
A PRINCIPAL COMPONENT APPROACH TO

STRUCTURE FORMATION WITH MASSIVE

NEUTRINOS

by

Hasmik Hayrapetyan

BSc., Yerevan State University, 2007

THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN THE DEPARTMENT

OF

PHYSICS

c⃝ Hasmik Hayrapetyan 2011
SIMON FRASER UNIVERSITY

Spring 2011

All rights reserved. However, in accordance with the Copyright Act of Canada,
this work may be reproduced, without authorization, under the conditions for
Fair Dealing. Therefore, limited reproduction of this work for the purposes of
private study, research, criticism, review, and news reporting is likely to be

in accordance with the law, particularly if cited appropriately.



APPROVAL

Name: Hasmik Hayrapetyan

Degree: Master of Science

Title of thesis: A Principal Component Approach to Structure Formation

with Massive Neutrinos

Examining Committee: Dr. Jeffrey McGuirk, Chair

Assistant Professor, Department of Physics, SFU

Dr. Levon Pogosian, Senior supervisor

Assistant Professor, Department of Physics,

SFU

Dr. Andrei Frolov, Supervisor

Assistant Professor, Department of Physics,

SFU

Dr. Howard Trottier, Supervisor

Professor, Department of Physics, SFU

Dr. Dugan O’Neil, Internal Examiner

Associate Professor, Department of Physics,

SFU

Date Approved: April 7, 2011

ii



Last revision: Spring 09 

 

Declaration of 
Partial Copyright Licence 
The author, whose copyright is declared on the title page of this work, has granted 
to Simon Fraser University the right to lend this thesis, project or extended essay 
to users of the Simon Fraser University Library, and to make partial or single 
copies only for such users or in response to a request from the library of any other 
university, or other educational institution, on its own behalf or for one of its users.  

The author has further granted permission to Simon Fraser University to keep or 
make a digital copy for use in its circulating collection (currently available to the 
public at the “Institutional Repository” link of the SFU Library website 
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing 
the content, to translate the thesis/project or extended essays, if technically 
possible, to any medium or format for the purpose of preservation of the digital 
work. 

The author has further agreed that permission for multiple copying of this work for 
scholarly purposes may be granted by either the author or the Dean of Graduate 
Studies.  

It is understood that copying or publication of this work for financial gain shall not 
be allowed without the author’s written permission. 

Permission for public performance, or limited permission for private scholarly use, 
of any multimedia materials forming part of this work, may have been granted by 
the author.  This information may be found on the separately catalogued 
multimedia material and in the signed Partial Copyright Licence. 

While licensing SFU to permit the above uses, the author retains copyright in the 
thesis, project or extended essays, including the right to change the work for 
subsequent purposes, including editing and publishing the work in whole or in 
part, and licensing other parties, as the author may desire.  

The original Partial Copyright Licence attesting to these terms, and signed by this 
author, may be found in the original bound copy of this work, retained in the 
Simon Fraser University Archive. 

Simon Fraser University Library 
Burnaby, BC, Canada 



Abstract

It will soon become possible to study the evolution of large scale structures with tomo-

graphic weak lensing surveys, such as DES and LSST. This will provide a powerful way of

constraining the current cosmological model, LCDM, which assumes that neutrinos have

zero mass. On linear scales, any small departure of the growth dynamics from the LCDM

prediction can be described in terms of two functions of time and scale. Zhao et al derived

the principal components of these two functions that will be best constrained by DES and

LSST. This thesis demonstrates the possibility of using these principal components to de-

rive the expected constraints on the neutrino mass. It also discusses the effects of neutrino

mass on the evolution of cosmological perturbations, and their effect on observables, such

as the matter density contrast and the CMB spectrum.
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Chapter 1

Introduction

1.1 Overview

The standard Lambda Cold Dark Matter (ΛCDM) cosmological model is based on Gen-

eral Relativity (GR). It assumes that universe is filled with baryonic matter, radiation, dark

matter and dark energy, represented by a cosmological constant Λ. The existence of dark

energy explains the accelerated expansion of the universe, as opposed to gravitational at-

traction cause by normal matter. This universe also includes massless neutrinos.

According to the inflationary model of cosmology, the early universe was flat, isotropic

and homogeneous, but with small fluctuations. As the universe expands, these fluctuations

evolve. They are still very small when the universe is dominated by radiation. But at some

point, the expansion of the universe becomes dominated by matter, most of which is dark

matter that interacts only through gravity. The gravitational forces make the initially small

metric and energy-momentum perturbations grow. Those eventually become responsible

for large scale structures we see today in the universe.

The theory of GR works very well in our solar system, however the unknown nature

of dark matter and dark energy raises doubts about its validity on large scales. Models of

modified gravity have been suggested, and ways to test them against observations are being

developed. As far as the linear perturbations are concerned, any change in their evolution

due to modified gravity can be represented as a modification of the Newton’s gravitational

constant, and a modified relation between the Newtonian potential and the curvature per-

turbation.

1
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On the other hand, the evolution of perturbations would also be modified if neutrinos

were massive. As neutrinos can only have very small masses, they free stream out of small

gravitational potentials and lead to a suppression of growth of structure on small scales as

compared to ΛCDM with massless neutrinos.

Future surveys like Dark Energy Survey (DES) and Large Synoptic Survey Telescope

(LSST) will provide a way to study the evolution of cosmic structures at several redshifts,

using galaxy counts, gravitational weak lensing and Type Ia Supernovae. This will allow

for tests of GR on large scales. In [1] it was shown that any departure from ΛCDM growth

in linear regime can be encoded into two functions: µ and γ. They equal to unity in ΛCDM

but can depend on time and scale in other models. If one could measure these functions with

observations, then any specific model that predicts modification of linear growth could be

constrained from these functions.

Zhao et al [1] have examined the prospects of measuring functions µ and γ with DES and

LSST in combination with CMB data from Planck. In particular, they found the so-called

principal components of these two functions, i.e. their uncorrelated degrees of freedom that

can be best constrained by the surveys.

In this thesis, we demonstrate that the information stored in the principal components of

µ and γ calculated in [1] can be used to forecast the uncertainty in the measurement of the

neutrino masser by LSST. Our results are in good agreement with existing forecasts, which

were obtained by directly modelling the output of LSST. Methods like this can significantly

simplify the process of error forecasts for various models of modified gravity. Rather than

calculating the weak lensing, and galaxy count spectra and their cross-correlations for each

model, it is sufficient to evaluate the model predictions for functions µ and γ. We expect

such methods will be of use to the cosmological community. In addition to these novel

results, the thesis examines in detail the effects of the neutrino mass on the evolution of

cosmological perturbations.

1.2 Evidence for neutrino mass

In 1930 Pauli has suggested the existence of neutrinos in order to satisfy the energy, mo-

mentum and angular momentum conservation in beta-decay. In 1968 neutrinos coming

from the sky were detected and observed in laboratory by Homestake experiment [2]. In



CHAPTER 1. INTRODUCTION 3

1994 LEP experiments [3] have shown that there are three flavours of light neutrinos: elec-

tron νe, muon νµ, and tau ντ. These are electrically neutral particles which have half spin

and interact through the weak force. In addition, massive neutrinos interact through gravity.

For a long time the Standard Model (SM) of particle physics assumed that neutrinos

are massless. However, the Super-Kamiokande [4] and SNO experiments [5] in 2000 have

shown that the flavours of neutrinos oscillate. This is a quantum mechanical effect. Neu-

trinos produced as a certain type end up in a linear combination of three neutrinos after

traveling some distance. This can happen only if neutrinos are massive and their masses are

different. Neutrinos produced in weak interactions are either an electron neutrino, a muon

neutrino, or a tau neutrino. But these different flavours of neutrinos do not have a definite

mass. Instead they are composed of two or three slightly different mass states, which can

be considered as waves with different frequencies. While the neutrino travels, these three

waves interact with each other. There will be points were the frequency of the combined

wave is very close to that of the first wave, but at some other point it will be close to the

other. This process repeats itself periodically with a frequency defined by the difference of

the two wave frequencies. For a matter particle, in this case neutrinos, it is the difference

of mass square. This is the reason that neutrino oscillation experiments are sensitive to the

difference of the neutrino mass squares, not the absolute value:

∆m2
21 = m2

2 −m2
1 (1.1)

∆m2
31 = m2

3 −m2
1 (1.2)

For the mass differences, the neutrino oscillation experiments currently give [6]

(∆m2
21)

1/2 ≃ 0.009+0.0004
−0.0006eV (1.3)

(∆m2
31)

1/2 ≃ 0.047+0.010
−0.010eV (1.4)

These results provide evidence that at least two flavours of neutrinos are massive.

Experiments aiming to directly measure the neutrino mass have been conducted or be-

ing proposed. As mentioned above, neutrinos are produced in β-decay, where a neutron

decays into proton, electron/positron and a neutrino/anti-neutrino. The Karlsruhe Tritium

Neutrino experiment (KATRIN) [7] is a future experiment that was proposed in order to
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measure the endpoint region of the energy spectrum of the tritium beta-decay. They expect

to be able to put an upper bound on neutrino mass of

m(νe)< 0.35 eV (1.5)

at 95% confidence level.

In addition, a neutrinoless double β-decay has been used, where a neutrino is produced

in the first β-decay and it is absorbed in the next β-decay as an antineutrino. Current upper

bound on neutrino mass from double β-decay experiments [8] is

m(νe). 0.9 eV . (1.6)

Future double decay experiments are expected to reduce the sensitivity to [6]

m(νe). 0.05 eV . (1.7)

1.3 The dark matter problem

Historically, some additional motivation for massive neutrinos was provided by the dark

matter problem in cosmology. The problem occurs when different methods are used to

estimate the total amount of matter in the universe. One way to do it is by looking at the

amount of luminous matter. Locally, we know the distribution of luminous matter in our

galaxy, which will allow us to estimate its mass. Another method is to observe the motion

of stars in it. However, the results show that this mass is much larger than the one derived

from the luminosity of objects. This was explained by the existence of a new type of matter,

dark matter, which was affecting the motion of galaxies. It does not interact with the normal

matter via electromagnetic forces.

According to the latest observations of cosmic microwave background (CMB) and sur-

veys of large scale structure, dark matter is 23% of the total matter in the observable uni-

verse, while the ordinary matter makes only 4.6%. Ordinary matter includes galaxies, clus-

ters and the other matter that we can observe. Among the candidates of dark matter are

MACHOs (Massive Astrophysical Compact Halo Objects) and WIMPs (Weakly Interact-

ing Massive Particles). MACHOs consist of big structures, made of baryonic matter, which

almost does not interact with the ordinary matter. They could be made of brown dwarf stars
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and black holes. Brown dwarf stars were found near the halo of our galaxy with Hubble

telescope. But they make only 6% of galactic halo matter. This means that there are also

other forms of dark matter near the halo. WIMPs, which consist of subatomic particles, are

thought to be made of non-baryonic matter.

Neutrinos, being weakly interacting particles, have also been considered as dark matter

candidates. This would be what is known as hot dark matter (HDM), so called for the

relativistic speed of the particles. It is now clear that HDM cannot be the only component

of dark matter in the universe. They cannot explain the structure formation on small scales,

because they move fast, erasing all the structures on this scales. If they made the dark

matter, large scale structures would form first, and then small, which is called a “top-down”

scenario. This contradicts the observational data, which show that galaxies are older than

clusters. Thus cosmology provides a lower limit on the fraction of dark matter in neutrinos.

The fraction of energy density in neutrinos is given by

Ων =
∑i mi

93.14h2eV
, (1.8)

which will be discussed in next chapter. According to the WMAP 7 data, the upper bound

on the sum of the neutrino masses is 0.58eV [9]. This implies that light neutrinos with

0.5eV masses will roughly make only one tenth of dark matter, and thus other dark matter

components should be considered too.

Massive (sterile) neutrinos can also make the dark matter, which in this case will be

called warm dark matter (WDM). But there are some limitations on their masses. Tremaine

and Gunn [10] assumed that the dark matter in galactic halos are made of neutrinos. They

have shown that for this to be true, their mass should satisfy

mν > 1MeV . (1.9)

It is likely that neutrinos need to have much bigger masses in order to be cold dark mat-

ter. We should mention two things here. First, the cross section of neutrino annihilation

depends on their mass: neutrinos with small masses (mν < 1MeV ) would have small anni-

hilation cross section. On the other hand, these neutrinos would decouple from the rest of

the plasma earlier than heavy neutrinos. This will result in increased neutrino abundance

at the time of neutrino decoupling, which will make the present number of neutrinos really

big. Correspondingly, the energy density in the neutrinos would be much bigger. In order
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for these light neutrinos not to result in a spatially closed universe, there should be a lower

bound on their mass. Based on this argument, B. Lee and S. Weinberg [11] have shown that

in order for heavy massive neutrinos to form the dark matter, their mass should be

mν > 2GeV. (1.10)

1.4 Fisher information matrix

Fisher information matrix can be used to predict the ability of future observations to con-

strain cosmological parameters from a set of expected observables. Let’s assume we have

observables yb, b ∈ {1, ....B}, where each of them has Gaussian uncertainty σb. We will

assume that different yb observables are uncorrelated. Suppose also that there is a theoret-

ical model that can predict their values using a function fb that depends on some model

parameters p. We can then write the Fisher matrix which predicts the information one can

get about a parameter from yb. The likelihood of observing a particular set of observable yb

within a given model is

P(y|p) ∝ exp
(
−1

2
χ2
)
, (1.11)

where

χ2 =
B

∑
b=1

( fb(p)− yb)
2

σb
2 . (1.12)

According to Bayes theorem

P(p|y) = P(y|p)P(p)
P(y)

, (1.13)

namely, the likelihood of a set of parameters given the observables is proportional to the

likelihood of observables given the parameters. In the above, P(p) is the prior probability

of parameters. In the absence of theoretical prediction, it is common to take it to be constant

over a fixed range. We will state what we assumed for the priors where applicable. Suppose

the true value of a parameter is p0, i.e this is the value at peak of the likelihood. We can

expand the likelihood at the point pi = pi
0 +δpi near the the peak. The expansion of the χ2

is

⟨χ2(p)⟩= ⟨χ2⟩+ ⟨∂χ2

∂p j ⟩δp j +
1
2
⟨ ∂2χ2

∂p j∂pk ⟩δp jδpk + ... (1.14)
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Here expectation values are taken at the true value p0. The first term is zero. The second

term will also vanish, as fb(p0)= yb. In the expansion of exp
(
χ2) the lowest order non-zero

term is

exp
(
−1

2
χ2
)
= exp

(
−1

4
⟨ ∂2χ2

∂p j∂pk ⟩δp jδpk
)
= exp

(
−1

2
Fjkδp jδpk

)
, (1.15)

where Fjk is the Fisher matrix:

Fjk = ∑
b

1
σ2

b

∂ fb

∂p j
∂ fb

∂pk . (1.16)

The covariance matrix is defined as

C jk = ⟨δp jδpk⟩=
(
F−1) jk

. (1.17)

Marginalized errors of the parameters are given by σ(pi) =
√

(F−1)ii. More generally,

we can find the components of Fisher matrix, if we know the likelihood P(pi|yb) of the

parameters with given observables.

1.5 Principal component analysis

Errors on model parameters derived from a particular set of observables will in general be

correlated. Principal component analysis (PCA) is a way to find a new set of uncorrelated

parameters which are linear combinations of the original ones.

Lets assume that we have a set observables yb, which gives us some information about

a function q(x). This function can be discretized on x as

q(x)−q0 =
N

∑
i=1

qisi(x) (1.18)

where x1 < x2 < ... < xi−1 < xi < ...xN and si = 1 if xi < x < xi+1, otherwise si = 0. In this

case we think of quantities qi as a set of model parameters. Assume, there is a theoretical

prediction for this dependence. We also know what the observational results would be. Our

aim is to find how well these parameters can be constrained by data. For this case, the

Fisher matrix is

Fi j = ∑
b

1
σ2

y,b

∂yb

∂qi
∂yb

∂q j =C−1
i j , (1.19)
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where Ci j = ⟨(qi− q̄i)(q j− q̄ j)⟩ is the covariance matrix. The covariance matrix is diagonal

only if parameters qi are uncorrelated. In general, the uncertainties of different qi are corre-

lated too and the covariance is non-diagonal. Also, if we increase the number of the points

N at which we discretized our function, the number of parameters will increase and the ef-

fect of a particular qi on the observables will be negligible, i.e. any of the terms ∂yb/∂qi will

be very small. As a result, covariance, which is the inverse of Fisher matrix, will generally

be very large. Since

Cii = F−1
ii = σ2(qi) (1.20)

many more parameters will lead to bigger uncertainties.

PCA is a way to converge to a small number of well-constrained uncorrelated parame-

ters that a given data set can measure. For this we should diagonalize the covariance matrix.

Since Ci j is a symmetric matrix, it is possible to diagonalize it with its own eigenvectors.

Let Wi j = ei(z j) be its orthonormal eigenvectors, such that∫
ei(xk)e j(xk)dxk = δi j . (1.21)

Then the diagonalized covariance matrix can be found from

C =W T ΛW, (1.22)

where Λi j = λiδi j is a diagonal matrix. One can write parameter qi as an expansion in this

basis:

qi = ∑
j

e j(xi)α j , (1.23)

where pi is the new parameter. From (1.23) it follows that

αi =
∫

ei(x j)q jdx j . (1.24)

The new covariance matrix

Λi j = ⟨(αi − ᾱi)(α j − ᾱ j)⟩= λiδi j (1.25)

is uncorrelated and λi = σ2(αi). From (1.24) we obtain

qi = q(xi)−q0 = ∑
j

e j(xi)α j . (1.26)

In the limit of N → ∞, the last equation can be written as

q(x)−q0 = ∑
j

e j(x)α j . (1.27)



CHAPTER 1. INTRODUCTION 9

1.6 Storing and retrieving information using PCA

Suppose now that we have a particular functional form of q(x), which depends on a couple

of parameters a and b. For example, we could have q(x) = a+ bx. As it turns out, one

can find the uncertainties in parameters a and b given the eignenvalues and eigenmodes

{e j(x),λ j} of q(x) obtained in the previous section. Namely, the Fisher matrix for a and b

can be written as

Fab = ∑
i j

∂qi

∂pa
1

Ci j

∂q j

∂pb . (1.28)

One can interpret the above equations as treating the measured values of qi as a set of

observables, instead of the original set yb. We can then expand ∂q(x)/∂pa in the new basis:

∂q(x)
∂pa = ∑

j
α(a)

j e j(x) , (1.29)

and substitute into Eq. (1.28), giving us

Fab = ∑
k

α(a)
k α(b)

k λ−1
k . (1.30)

Thus, PCA of q(x) can be thought of as a way of storing information about q(x) in a way

that is independent of a particular functional form. If one wants to constrain parameters

of any particular form of q(x), it can be done from the existing eigenmodes. Another ad-

vantage of this approach is data compression. Namely, in practice, only a small number of

eigenmodes have small errors (i.e. small eigenvalues), and only the few best constrained

modes need to be included in the sum. We will demonstrate this in Chapter 6.



Chapter 2

Neutrinos in Cosmology

2.1 Neutrino decoupling temperature

The standard Big Bang theory predicts a large number of neutrinos per flavour in the visible

universe. These neutrinos were produced at high temperatures by weak interactions. In the

early universe, because of cosmic weak interactions, they were in thermal equilibrium with

the rest of plasma. As the universe expanded, this interaction rate decreased. At some point

it was equal to the expansion rate H of the universe. This is when neutrinos decoupled from

the rest of plasma. We can estimate the temperature of neutrino decoupling by comparing

these two rates. The interaction rate is

Γν ∝ σν ·nν , (2.1)

where nν is the neutrino number density,

nν ∝ T 3 , (2.2)

and σν is the e−νe interaction cross section:

σν ∝ G2
F ·T 2 , (2.3)

where GF is Fermi coupling constant. Therefore, we get

Γν ∝ T 5 ·G2
F . (2.4)

10
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The expansion rate is given by

H =

√
8πGρ

3
, (2.5)

where G is the gravitational constant and ρ is the density. Neutrinos decoupled during the

radiation dominated era of the universe, for which the density ρ ∝ T 4. Setting Γν equal to

H, and substituting the radiation density in the expression for H, gives us the decoupling

temperature

Tdec ≈

[√
G

G2
F

]1/3

≈ 1MeV . (2.6)

2.2 Temperature of neutrinos today

When the temperature of the universe reached 1 MeV , neutrinos decoupled from the rest

of the plasma. However, for some time neutrinos and photons continued to have the same

temperature evolution. At some point, the temperature of the universe fell below the elec-

tron mass, which allowed electrons and positrons to annihilate. Because the neutrinos were

already decoupled, the energy density and entropy of electrons and positrons are transferred

to the photons, but not to neutrinos. After this time, the temperature of neutrinos has been

different from that of the rest of the plasma.

It is possible to calculate the temperature of neutrinos today by writing the entropy

density of the universe before and after the electron-positron annihilation. According to

the second law of thermodynamics, the entropy of the universe can only increase or stay

the same. But the entropy produced by different processes is small compared to the total

entropy of the universe. Therefore, we can safely ignore all the changes and approximate

the expansion of the universe as an adiabatic process. For each spin state entropy density

for massless bosons is 2πT 3/45. For massive fermions it is 7/8 of that. Before annihilation

the only bosons are photons with 2 spin states, while the relevant fermions are the elec-

trons and positrons, with 2 spin states each. This shows that before annihilation, when the

temperature of the universe and decoupled neutrinos is T1, the entropy density is

s(a1) =
2π2

45
T1

3[2+(7/8)(2+2)] (2.7)
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After annihilation, the entropy density is

s(a2) =
2π2

45
2Tγ

3 (2.8)

As the entropy density is conserved, the ratio of temperatures is

Tν
Tγ

=

(
4

11

)1/3

, (2.9)

resulting in Tν = 1.95K today if we use T = 2.726K for the current temperature of CMB

photons.

2.3 Distribution of neutrinos in the universe

While coupled to the plasma, neutrinos satisfy the equilibrium Fermi-Dirac distribution

feq(p) =
[

exp
(

p−µν
T

)
+1
]−1

, (2.10)

where µν is the neutrino chemical potential. Before the time of Big Bang Nucleosynthesis

(BBN), because of neutrino oscillations, their flavours were in equilibrium. In [12] it was

shown that all the flavours share the same small value of chemical potential. Therefore, the

chemical potential can be safely ignored.

In the standard cosmological model, the neutrino decoupling is approximated with an

instantaneous process [13]. After the decoupling, the distribution function feq(p) stays the

same, while the temperature and the momentum of neutrinos decrease as a−1 with the

expansion of the universe. This means that in comoving coordinates the number density

of neutrinos will remain the same after the decoupling. Using the neutrino momentum

distribution function, we can estimate the neutrino number density per flavour as

nν =
∫ feq(p)

(2π)3 d3 p =
3

11
nγ =

6ζ(3)
11π2 T 3

γ (2.11)

where ζ = 1.202 is the Riemann’s zeta function [14], and Tγ is the photon temperature at

a given time. From this equation we can find the number of neutrinos and antineutrinos of

each flavor per cm3 today, which is approximately 113.



CHAPTER 2. NEUTRINOS IN COSMOLOGY 13

For relativistic neutrinos the energy density for one neutrino flavour can be calculated

from the distribution function as

ρν(mν ≪ Tν) =
7π2

120

(
4

11

)4/3

T 4
γ . (2.12)

After the neutrino decoupling, but before becoming non-relativistic (i.e. while mν ≪ Tν),

neutrinos contribute to the radiation energy density of the universe

ρR = ργ +ρν =

[
1+

7
8

(
4

11

)4/1

Ne f f

]
ργ (2.13)

where

ργ =
2π2

30
T 4

γ (2.14)

is the photon energy density, and Ne f f is the effective number of relativistic neutrinos. In

the standard model there are no other relativistic particles and Ne f f = 3.046 [6]. It is not

exactly equal to 3 because the neutrinos were somewhat heated by the electron-positron

annihilation processes, as the neutrino decoupling was not completely over before that

annihilation started. Any deviation from this number would imply existence of other rela-

tivistic particles in addition to the three flavours of neutrinos and photons. There are some

constrains on Ne f f coming from cosmology. The BBN analysis is consistent with a range

of 1.90 < Ne f f < 3.77, while the WMAP three year data implies Ne f f = 3.3+0.9
−4.4.

If the neutrinos were massive and non-relativistic, their energy density would be

ρν(mν ≫ Tν) = mνnν. (2.15)

After becoming non-relativistic the contribution of massive neutrinos to the energy density

in the universe is

Ων =
ρν
ρc

=
∑i mi

93.14h2eV
(2.16)

where we used (2.15), neutrino number density nν = 112cm−3 and critical energy density

of the universe today ρc = 1.8788∗10−29h2gcm−3. Here ∑i mi = 3m0 if the three neutrinos

have the same mass m0, h is the present Hubble parameter in 100kms−1Mpc−1 units. The

above equation is valid for non-degenerate neutrinos as well. From this equation it is possi-

ble to obtain a rough estimate of the neutrino mass. If we assume three degenerate neutrinos

with masses m0 = ∑i mi/3, and also consider the fact that neutrino density portion Ων is

much smaller than ΩM ≃ 0.3, we obtain m0 . 5eV .
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2.4 The neutrino free streaming length

The effect of the neutrino free streaming length is similar to that of the Jean’s length, and

we find it helpful to review it first (although its physical origin is different). When particles

of a gas are far enough from each other, they attract due to gravity. But as they get very close

to each other, below a certain distance, there will be a repulsive force (electromagnetic in

nature) preventing the gas from collapsing. The length scale below which the gas does not

collapse is called the Jean’s length. The Jean’s wavenumber and the Jean’s length [6] are

defined as

kJ(t) =
(

4πGρ̄(t)a2(t)
cs2(t)

)1/2

(2.17)

λJ(t) = 2π
a(t)
kJ(t)

= 2π
√

2
3

cs(t)
H(t)

(2.18)

where cs is the sound speed, H(t) is the Hubble constant, and ρ̄(t) is the average gas density.

It is possible to define the neutrino free streaming length in a similar way. Because they

can stream out of small scale gravitational potentials, neutrinos do not collapse on scales

smaller than a particular length scale λFS. This is essentially the maximum distance that

neutrinos can travel freely. On scales larger than λFS, gravitational potentials are big and

neutrinos can not escape them, and so they cluster. On smaller scales gravitational poten-

tials are smaller than the kinetic energy of neutrinos. The thermal velocity vth here plays

the role of resistance, similar to the way in which electromagnetically induced pressure

plays the role of the resistance for the Jean’s length. Thus, we can define the free-streaming

wavenumber and wavelength in the same way as we did for the Jean’s length by replacing

the sound speed with the thermal velocity of neutrinos:

kFS(t) =
(

4πGρ̄(t)a2(t)
vth

2(t)

)1/2

(2.19)

λFS(t) = 2π
a(t)

kFS(t)
= 2π

√
2
3

vth(t)
H(t)

(2.20)

As massless neutrinos travel with the speed of light, their free streaming length equals to

the Hubble radius. For massive neutrinos, on the other hand, we have

vth =
⟨p⟩
m

≃ 3Tν
m

=
3T 0

ν
m

(a0

a

)
≃ 150(1+ z)

(
1eV
m

)
km/s , (2.21)
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where T 0
ν is the neutrino temperature today. During the matter or Λ dominated eras, Eqs. (2.19)-

(2.21) give

λFS(t) = 7.7
1+ z√

ΩΛ +ΩM(1+ z)3

(
1eV
m

)
h−1Mpc (2.22)

kFS(t) = 0.82

√
ΩΛ +ΩM(1+ z)3

(1+ z)2

( m
1eV

)
h/Mpc , (2.23)

where ΩΛ and ΩM are the cosmological constant and matter density fractions today.

2.5 The non-relativistic transition for massive neutrinos

The energy of a neutrino can be written as ε2 = q2 + a2m2, where m is its mass, a is the

scale factor and q is the comoving momentum. At the time of neutrino decoupling, a is

very small, which means that rest energy am is very small compared to the kinetic energy

q2. As a grows, the term am increases. Starting from some value of a, the rest mass cannot

be ignored. This marks the transition of neutrinos from relativistic to non-relativistic, and

it happens when pν ∼ mν, or, equivalently, Tνnr = mν/3. The corresponding redshift is

1+ znr =
Tν,nr

Tν0
= 1.99×103(mν/eV ) (2.24)

The redshift of the radiation-matter equality is zeq ∼ 3000, and thus for sub-eV neutrino

masses that are of interest to cosmology, the transition happens during the matter-domination

epoch.



Chapter 3

Cosmological Perturbations

3.1 Background evolution

In the standard Big Bang model the universe is assumed to be homogeneous on very large

scales, and is described by the Friedmann-Robertson-Walker (FRW) metric [15]

ds2 = ḡµνdxµdxν = a2(τ)[−dτ2 +δi jdxidx j] , (3.1)

where a is the scale factor and τ is the conformal time related to the proper time t through

adτ = dt. In what follows we will take h̄ = c = 1. For a homogeneous FRW universe, the

Einstein equations give (
ȧ
a

)2

=
8π
3

Ga2ρ̄− k (3.2)

d
dτ

(
ȧ
a

)
=−4π

3
Ga2(ρ̄+3P̄) (3.3)

where ρ̄ is the energy density, P̄ is the pressure, and the dot means a derivative with respect

to τ. CMB measurements by BOOMERANG [16] and MAXIMA [17] in 2000, and later

by WMAP [18], strongly favour a universe which is almost spatially flat, which means we

can set k = 0. With this, the background evolution of the Universe is described by

H2 =
8πG

3
(ργ +ρcdm +ρb +ρν +ρΛ) (3.4)

where H is the Hubble parameter, defined as H = d(lna)/dt = ȧ/a2, the dot again denotes

a derivative with respect to the conformal time τ, and ργ, ρcdm, ρb, ρν, ρΛ are respectively

16
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the homogenous densities of photons, cold dark matter (CDM), baryons, neutrinos and

dark energy. The density of photons and massless neutrinos decrease as a−4, while CDM,

baryons and massive neutrinos decrease as a−3. We assume that the dark energy is the

cosmological constant, also favoured by current observations, and is time-independent. In

the radiation dominated era, the scale factor is a ∝ τ, while in the matter dominated era we

have a ∝ τ2.

3.2 Cosmological perturbations

The homogeneous universe is a good approximation on largest scales, but it cannot describe

the matter distribution in the universe and explain the structure formation. Let us consider

a universe with small departures from homogeneity. We can write the metric (gµν) and

energy-momentum (Tµν) as their background value plus perturbations:

gµν(⃗x, t) = ḡµν(t)+hµν(⃗x, t) (3.5)

Tµν(⃗x, t) = T̄µν(t)+δTµν(⃗x, t) (3.6)

During the radiation domination the growth of matter perturbations is suppressed. After

the onset of matter domination, perturbations in CDM begin to grow due to gravitational

attraction, while those of baryons and photons do not because of their tight electromagnetic

coupling. But after the decoupling of photons and baryons, perturbations of the baryon

density begin to grow as well and eventually catch up with those of CDM. Eventually,

perturbations in matter density become larger than the background density.

In this thesis only linear perturbations, which describe the universe at early times and/or

large scales, will be discussed. We will assume adiabatic initial conditions for the perturba-

tions, favoured by simplest models of Inflation, where one takes initial fractional perturba-

tions in all matter components to be equal. Working to linear order in perturbations results

in separate equations for each Fourier mode. This will be discussed later in this chapter.
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3.3 Linear perturbation theory

In the longitudinal Newtonian gauge, the line element in the presence of metric perturba-

tions is given by

ds2 = gµνdxµdxν = a2(τ)[−(1+2ψ)dτ2 +(1−2ϕ)δi jdxidx j] (3.7)

where perturbations are described by scalar potentials ϕ and ψ. It is obvious that there are no

vector and tensor perturbations in this gauge: we have only scalar diagonal perturbations.

Metric and energy-momentum perturbations are related to each other through the Einstein

equation. Different components of the perturbed Einstein equation in Fourier space give us

3
(

ȧ
a

)2

ψ+3
ȧ
a

ϕ̇+ k2ϕ = 4πGa2δT 0
0 (3.8a)

k2
(

ȧ
a

ψ+ ϕ̇
)
= 4πGa2(ρ̄+ P̄)θ (3.8b)(

2
ä
a
−
(

ȧ
a

)2
)

ψ+
ȧ
a
(ψ̇+2ϕ̇)+ ϕ̈+

k2

3
(ϕ−ψ) = 4πGa2δT i

i (3.8c)

k2(ϕ−ψ) = 12πGa2(ρ̄+ P̄)σ (3.8d)

where θ = ik jv j and σ are, respectively, the divergence of the fluid velocity and the shear,

related to the energy-momentum tensor via

(ρ̄+ P̄)θ = ik jδT 0
j (3.9)

(ρ̄+ P̄)σ =− (k̂ik̂ j −
1
3

δi j)Σi
j , (3.10)

where

Σi
j = T i

j −T k
kδi

j (3.11)

is the traceless part of energy-momentum tensor T i
j and k is the comoving wave number. If

we assume that the universe is filled with perfect fluid, then the energy-momentum tensor

is given by

T µ
ν = Pgµ

ν +(ρ+P)UµUν (3.12)

where Uµ is the four velocity of the fluid, and P and ρ are the pressure and density of the

fluid measured by the comoving observer, who is at rest with respect to the fluid. If the
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velocity of the fluid is very small, then we can consider it as a first order perturbation. For

the energy momentum tensor we will have

T 0
0 =−(ρ̄+δρ) (3.13)

T 0
i = (ρ̄+ P̄)vi =−T i

0 (3.14)

T i
i = (P̄+δP)δi

j +Σi
j (3.15)

Σi
i = 0 (3.16)

From the covariant conservation of energy-momentum, we can derive the continuity equa-

tion

δ̇ =−(1+ω)(θ−3ϕ̇), (3.17)

and the Euler equation

θ̇ =− ȧ
a
(1−3ω)θ− ω̇

1+ω
θ+

ω
1+ω

k2δ− k2σ+ k2ψ, (3.18)

where ω = P/ρ is the equation of state. These equations can be used both for individual

components and for the whole fluid. From (3.8a) and (3.8b) we can get the Poisson equation

k2ψk = 4πGa2δρ = 4πGa2ρ∆k (3.19)

where ∆k = δ + 3Hθ/k is the so-called comoving density contrast, which is a gauge-

invariant quantity [6].

3.4 Phase space and the Boltzmann equation

Phase-space is described by three comoving coordinates xi and the three conjugate mo-

menta Pi. Conjugate momenta are the spatial parts of the 4-momentum Pi = mUi, where

Ui = dxi/
√
−ds2 is the 4-velocity of the fluid. This momentum is related to the proper

momentum pi measured by an observer with fixed coordinates by

Pi = a(1−ϕ)pi . (3.20)

In other words, pi is the physical momentum. If there are no metric perturbations, Pi is

constant and pi decreases as a−1. In some cases we can ignore perturbations and replace
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the conjugate momentum Pi with a comoving one qi = api, which does not include pertur-

bations. The time-component of the 4-momentum can be written as

P0 =−(1+ψ)ε , (3.21)

where ε is defined as the proper energy times the scale factor, ε = a(p2 +m2)1/2 = (q2 +

a2m2)1/2, which is the energy measured in comoving coordinates.

The number of particles in the volume dx1dx2dx3dP1dP2dP3 is described by the phase-

space distribution f (xi,Pj,τ):

dN = f (xi,Pj,τ)dx1dx2dx3dP1dP2dP3 . (3.22)

If there are no perturbations, then the distribution is

f0 = f0(ε) =
1

eε/T0 +1
(3.23)

for fermions, and

f0 = f0(ε) =
1

eε/T0 −1
(3.24)

for bosons, where T0 = aT is the temperature today. The energy-momentum tensor is re-

lated to the phase-space distribution and the 4-momentum Pµ as

Tµν =
∫

dP1dP2dP3(−g)−1/2 PµPν

P0 f (xi,Pj,τ) , (3.25)

where (−g)−1/2 = a−4(1−π+3ψ) is the determinant of gµν. If the perturbations are small,

we can write the phase-space distribution as

f (xi,Pj,τ) = f0(q)[1+Ψ(xi,q,n j,τ)] (3.26)

where Ψ is the perturbation of the distribution.

The comoving 3-momentum can be expressed in terms of its magnitude and direction:

q j = qn j. In that case, the Boltzmann equation for the phase-space distribution is

D f
dτ

=
∂ f
∂τ

+
dxi

dτ
∂ f
∂xi +

dq
dτ

∂ f
∂q

+
dni

dτ
∂ f
∂ni

=

(
∂ f
∂τ

)
C
, (3.27)

where the last term describes redistribution of particles due to collisions. We will consider

only terms which are first order in perturbations. We note that dxi/dτ = qi/ε is of zero-th
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order, and to the first order, ∂ f/∂xi is Ψ. From the geodesic equation, P0Ṗ0+Γ0
µνPµPν = 0,

it is easy to show that
dq
dτ

= qϕ̇− ε(q,τ)nidiψ , (3.28)

which is first order in perturbations. d f/dni contributes at first order. In order to have

(dni/dτ)(d f/dni) term in first order, therefore we should take the zero order of dni/dτ,

which equals to zero. So the forth term in (3.27) will be zero. Considering all these, the

Boltzmann equation in Fourier space can be written as

dΨ
dτ

+ i
q
ε
(⃗k, n̂)Ψ+

d ln f0

d lnq

[
ϕ̇− i

ε
q
(⃗k, n̂)ψ

]
=

1
f0

(
d f
dτ

)
C

(3.29)

For collisionless particles, such as neutrinos after decoupling, or the CDM, the Boltzmann

equation is
dΨ
dτ

+ i
q
ε
(⃗k, n̂)Ψ+

d ln f0

d lnq

[
ϕ̇− i

ε
q
(⃗k, n̂)ψ

]
= 0 , (3.30)

which is also called the Vlasov equation. Note that in the Fourier decomposition we will be

using comoving wavelengths (2π/k), where k is the comoving wave vector. The physical

wavelength is λ = a(t)2π/k.

3.5 Massless neutrinos

We would like to write down the equations for perturbations in a universe with massless

neutrinos. Using relations (−g)−1/2 = a−4(1−ψ+3ϕ) and dP1dP2dP3 = (1−3ϕ)q2dqdΩ,

given in Newtonian gauge, we can find the components of energy-momentum tensor T µ
ν :

T 0
0 =−a−4

∫
q2dqdΩq f0(q)(1+Ψ) (3.31)

T 0
i = a−4

∫
q2dqdΩqni f0(q)Ψ (3.32)

T i
j = a−4

∫
q2dqdΩ

q2nin j

q
f0(q)(1+Ψ) (3.33)

Energy density and pressure are ρν = 3Pν = −T 0
0 = T i

i. Equations (3.31) and (3.33) for

unperturbed part of energy density and pressure give us

ρ̄ν = 3P̄ν = a−4
∫

q2dqdΩq f0(q) = 4πa−4
∫

q2dqq f0(q). (3.34)
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For perturbed energy density δρν, pressure δPν, energy flux δT 0
νi and anisotropic stress

Σi
ν j = T i

νi −Pνδi
j we will have

δρν = 3δPν = a−4
∫

q2dqdΩq f0(q)Ψ (3.35)

δT 0
νi = a−4

∫
q2dqdΩqni f0(q)Ψ (3.36)

Σi
ν j = a−4

∫
q2dqdΩq

(
nin j −

1
3

δi j

)
f0(q)Ψ (3.37)

As the momentum distribution function for relativistic neutrinos depends only on momen-

tum, it is easily integrable. We can introduce the distribution function of mean momentum

by integrating out the q-dependence in the distribution function f0:

Fν

(⃗
k, n̂,τ

)
=

∫
q2dqq f0(q)Ψ∫
q2dqq f0(q)

=
∞

∑
l=0

(
−il
)
(2l +1)Fνl (⃗k,τ)Pl(k̂ · n̂) , (3.38)

where we further expanded Fν into a Legendre series. Using this in equations (3.34) and

(3.35), we can write the density contrast δν, the velocity gradient θν and the shear σν in

terms of the new distribution function as

δν =
1

4π

∫
dΩFν

(⃗
k, n̂,τ

)
= Fν0 (3.39)

θν =
3i

16π

∫
dΩ
(⃗

k · n̂
)

Fν

(⃗
k, n̂,τ

)
=

3
4

kFν1 (3.40)

σν =− 3
16π

∫
dΩ
[(⃗

k · n̂
)2

− 1
3

]
Fν

(⃗
k, n̂,τ

)
=

1
2

Fν2 , (3.41)

where θ and σ were introduced in the beginning of Chapter 3. Using the definition of Fν in

equation (3.30) we obtain
dFν
dτ

+ ikµFν = 4(ϕ̇− ikµψ) , (3.42)

where µ = k̂ · n̂. Further, using the Legendre expansion of Fν, we get the evolution equations

for the density contrast, velocity gradient and shear:

δ̇ν =−4
3

θν +4ϕ̇, (3.43)

θ̇ν = k2
(

1
4

δν −σν

)
+ k2ψ, (3.44)
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Ḟνl =
k

2l +1
[
lFv(l−1)− (l +1)Fv(l+1)

]
, l ≥ 2 . (3.45)

Note that (3.43) and (3.44) are the continuity and Euler equations. Combining those two,

we can find the equation for the density contrast:

δ̈ν =−1
3

k2δν −
4
3

k2ϕ+4ψ̈− 4
3

k2σν. (3.46)

The first term on the right hand side describes relativistic pressure, the second one is the

gravitational force, third one represents the fact that when ψ is locally changed, then the

neutrino wavelength will change. This process is similar to integrated Sachs-Wolfe effect.

This will locally change the blackbody radiation temperature and density. And the last term

describes the shear of the neutrinos. The shear is not considered on the super-horizon scales,

where neutrinos are static and perturbations are proportional to the metric perturbations.

Shear becomes significant on scales smaller than horizon, were it acts as the viscosity in

the fluid, that damps the energy density and velocity perturbations. More generally, the

energy of smaller multipoles will decrease, giving rise to the energy of higher multipoles.

This can be explained in a way that locally there would be many flows randomly coming

from different direction, but the density contrast on average would be zero. The equation

for density contrast is similar to the equation for photon evolution. The only difference is

that before recombination photons do not experience shear. We have also considered here

baryon to photon ratio to be small, so we can ignore photon collisions with baryons.

3.6 Massive neutrinos

Massive neutrinos are also collisionless. The unperturbed density and pressure for massive

neutrinos are

ρ̄ν = a−4
∫

q2dqdΩε f0(q) = 4πa−4
∫

q2dqε f0(q) (3.47)

P̄ν =
1
3

a−4
∫

q2dqdΩ
q2

ε
f0(q) =

4π
3

a−4
∫

q2dq
q2

ε
q f0(q) (3.48)

where ε = ε(q,τ) =
√

q2 +m2
νa2. For perturbations we will have

δρ = a−4
∫

q2dqdΩε f0(q)Ψ (3.49)
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δP =
1
3

a−4
∫

q2dqdΩ
q2

ε
f0(q)Ψ (3.50)

δT 0
i = a−4

∫
q2dqdΩqni f0(q)Ψ (3.51)

Σi
j = a−4

∫
q2dqdΩ

q2

ε

(
nin j −

1
3

δi j

)
f0(q)Ψ (3.52)

For massive neutrinos ε and q are not equal anymore, which is why we can not integrate

out the q-dependence of f (q,τ) from the distribution function. Instead, we can use the

Legendre expansion of the perturbation Ψ:

Ψ
(⃗

k, n̂,q,τ
)
=

∞

∑
l=0

(
−il
)
(2l +1)Ψl (⃗k,q,τ)Pl(k̂ · n̂) , (3.53)

The perturbed energy density, pressure, velocity gradient and anisotropic stress can be writ-

ten as

δρ = 4πa−4
∫

q2dqε f0(q)Ψ0 (3.54)

δP =
4π
3

a−4
∫

q2dq
q2

ε
f0(q)Ψ0 (3.55)

(ρ̄+ P̄)θ = 4πka−4
∫

q2dqq f0(q)Ψ1 (3.56)

(ρ̄+ P̄)σ =
8π
3

a−4
∫

q2dq
q2

ε
f0(q)Ψ2 . (3.57)

The Vlasov equation (3.30)

Ψ̇0 =−qk
ε

Ψ1 − ϕ̇
d ln f0

d lnq
(3.58)

Ψ̇1 =
qk
3ε

(Ψ0 −2Ψ2)−
εk
3q

ψd ln f0d lnq, (3.59)

Ψ̇l =
qk

(2l +1)ε
[
lΨ(l−1)− (l +1)Ψ(l+1)

]
, l ≥ 2 . (3.60)

When neutrinos are well inside the non-relativistic regime, which is true when the distri-

bution function f0(q) is non-negligible for neutrinos with momentum q ≪ ε ∼ am, (3.54)-

(3.57) equations show that δPh and (ρ̄h + P̄h)σh are much bigger than δρh. In this case the

continuity and Euler equations

δ̇ν =−θν +3ϕ̇, (3.61)
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θ̇ν =− ȧ
a

θν + k2ψ, (3.62)

can be combined to give

δ̈ν +
ȧ
a

δν =−k2ψ+3(ϕ̈+
ȧ
a

ϕ̇) . (3.63)

Neutrinos in the sub-eV mass range become non-relativistic in the matter dominated uni-

verse, where ϕ and ψ are approximately constants. Then, the solution to the last equation

is

δν = A lnτ+B− (kτ)2

6
ψ (3.64)

where A and B are integration constants. For k > knr, which means the modes that are

inside the horizon at the time of the non-relativistic transition, the last term in the equation

dominates and the density contrast for neutrinos will be smaller than δcdm. But after long

time the third and first term will become equal to each other, and massive neutrinos will start

to behave as CDM on all scales. That time is not reached today yet. For k < knr, the modes

are outside the horizon at the time of non-relativistic transition and the density contrast of

neutrinos is time-independent. After the horizon crossing, it becomes equal to the density

contrast of CDM in a very short time. So, the density contrast of neutrinos equals to that of

CDM on scales k < knr, and is smaller on scales k > knr.

3.7 The growth of density fluctuations

Massive neutrinos affect the growth of perturbations in two ways. During the matter dom-

inated era, on scales smaller than the free streaming scale, neutrinos do not contribute to

clustering. But they still contribute to the background expansion of the Universe through

the Friedmann equation. This means that on these scales the growth function will grow

slower than a. It is possible to find how δcdm depends on scale a. For that let’s at first write

down the equations for neutrinoless universe. For the cold dark matter density contrast from

the continuity and Euler equations, we can write

δ̈cdm +
ȧ
a

δ̇cdm =−k2ψ+3
(

ϕ̈+
ȧ
a

ϕ̇
)
. (3.65)
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Well inside the Hubble radius, the first term in (3.65) will dominate. If the shear can be

neglected, then ϕ = ψ. Using the Poisson equation, (3.65) will be

δ̈cdm +
ȧ
a

δ̇cdm = 4πGa2δρ (3.66)

where δρ is the total density perturbation. For cold dark matter, using δρ ∝ δcdma−1 and

a ∝ τ2, the equation will become

δ̈cdm +
2
τ

δ̇cdm − 6
τ2 δcdm = 0 (3.67)

This has two solutions δcdm ∝ τ2 and τ−3. If we neglect the decaying mode, we will get

δcdm ∝ a. If we have massive neutrinos, then well inside the matter-domination era on

scales smaller then non-relativistic scale, these neutrinos will not contribute to the Poisson

equation, thus we have δρν = 0 and δρ = (ρ̄cdm + ρ̄b)δcdm. But they will contribute to the

expansion of the Universe through (3.4). We can introduce a new quantity, which is the

ratio of neutrinos to the total matter density,

fν ≡
ρν

(ρcdm +ρb +ρν)
=

Ων
Ωm

. (3.68)

With the presence of neutrinos, Eq. (3.67) becomes different:

δ̈cdm +
2
τ

δ̇cdm − 6
τ2 (1− fν)δcdm = 0 . (3.69)

From this equation, we get for the CDM density contrast

δcdm ∝ a1−(3/5) fν . (3.70)

Also, from the Poisson equation we find

k2ϕ ∝ a−(3/5) fν , (3.71)

which, as expected, gives ϕ= const for fν = 0. For fν ̸= 0, structure growth and the gravita-

tional potential are suppressed, because one of the matter components (massive neutrinos)

contributes to the homogeneous expansion of the Universe, but not to the clustering.



Chapter 4

Effects of Neutrino Mass on Observables

4.1 Adding a new component to the universe

Neutrinos become non-relativistic at redshift znr ≈ 200mν/(0.1eV ), after the decoupling of

CMB photons, which happened at zγd ≈ 1090. Therefore, their small mass does not directly

affect the perturbation dynamics at that the time of last scattering. However, their effect can

still be observed in the CMB lensing, which is caused by the structure formation.

After the non-relativistic transition, neutrinos effectively contribute as a matter com-

ponent with some Ων. If were to simply add this to the right hand side of the Friedman

equation describing a flat universe today,

ΩM +ΩΛ = 1 , (4.1)

then the sum would be greater than one. As already discussed, the observations show that

the Universe is spatially flat, and the right hand side in the equation above must remain the

same. Thus we can only change the relative densities, and this can be done in more than

one way, depending on how one wants to compare observables calculated with and without

massive neutrinos. Note that in all cases we have the usual three flavours of neutrinos, but

their masses can vary. In particular, let us discuss two examples:

• Case (a): Here one assumes that the universe started at some early time with a fixed

density of CDM, baryons, cosmological constant, relativistic neutrinos and photons.

If neutrinos are massive, at some point they will start contributing to the matter den-

sity. In terms of the parameters that we observe today, it means keeping ωb = Ωbh2,

27



CHAPTER 4. EFFECTS OF NEUTRINO MASS ON OBSERVABLES 28

ωcdm = Ωcdmh2, ωΛ = ΩΛh2 fixed, and adding Ωνh2 to the total density today. Then,

for a flat universe, we must have

ωb +ωcdm +ωΛ +Ωνh2

h2 = 1 , (4.2)

which we can use to solve for h. In other words, here one fixes the physical densities

of CDM, b and Λ, but adjusts h depending on the neutrino mass. This seems like a

reasonable approach, but it assumes that we somehow know the initial densities, but

don’t now the current expansion rate. In practice, the situation is often the opposite –

we infer the initial densities, based on the observations that include current expansion

rate.

• Case (b): Here one keeps h, ΩΛ, and Ωb fixed, which means that the total matter

fraction ΩM = Ωcdm +Ωb +Ων is also fixed. This means that when Ων is increased,

Ωcdm is decreased. We effectively fix the total dark matter fraction today, and any

contribution from massive neutrinos will be at the cost of having less CDM.

We will adopt Case (b) for the main calculations in this thesis, because it is consistent

with the assumptions made in deriving the principal components of the modified gravity

functions µ and γ that will be introduced later.

4.2 The matter power spectrum

The effect of the neutrino mass on the matter power spectrum, P(k) = 4πδ2
M(k), is demon-

strated in Fig. 4.1. The figure compares P(k) of the ΛCDM model with three other modes

in which neutrinos have masses of 0.05, 0.1 and 0.5 eV. These spectra were calculated

numerically, using the publicly available code CAMB [19]. As one can see in this figure,

the power spectrum on small scales is suppressed when we increase the neutrino mass.

On large scales, however, the different curves practically coincide. Let us understand the

shapes of the curves in Fig. 4.1 analytically by comparing spectra in two models of the

universe: one with massless neutrinos and one with massive neutrinos.

Let us at first consider large scales (k < knr). On these scales both neutrinos and CDM

perturbations are outside the horizon when neutrinos are still relativistic and neither density

contrast is growing. When they enter the horizon during the matter era, the neutrinos are
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Figure 4.1: The matter power spectrum for different neutrino masses, case b.

non-relativistic and contribute as a matter component to the growth of structures through

the Poisson equation. They also contribute as a matter component to the expansion of the

universe. As a result, the density contrast δcdm grows proportionally to the scale factor a.

The effect is the same as if neutrinos were massless – they affect neither the growth nor the

expansion. Therefore, on these scales, the two matter power spectra will be identical.

On smaller scales, for modes that enter the horizon before znr, i.e. k > knr, the matter

power spectra are different. Let us at first discuss the case after matter-radiation equality,

but before the non-relativistic transition of neutrinos, i.e. aeq < a< anr. The density contrast

of cold dark matter starts growing at aeq, but equality happens at different times for the two

models. We have
aeq

a0
=

Ωr

Ωb +Ωcdm
= (1− fν)

−1 Ωr

Ωm
, (4.3)

where Ωr includes photons and 3 massless neutrinos. As both models have the same values

for Ωr and Ωm, the equality takes place at different times:

a fν
eq/a fν=0

eq = (1− fν)
−1 . (4.4)
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This equation is written for the time of matter-radiation equality, but it is true at any a in

the range aeq < a < anr. This means that before the non-relativistic transition, a 6 anr, the

two models have the same dependence of δcdm on the scale factor a, but a/aeq is different.

Thus, the density contrast will be given by

δ fν
cdm[a] = δ fν=0

cdm [(1− fν)a] (4.5)

After the non-relativistic transition, a > anr, and on scales smaller than free-streaming,

k > kFS, the relation of the two density contrasts will be further modified. If we write down

their dependence on the scale factor, given by (3.70), then for δ fν
cdm today we will get

δ fν
cdm[a0] =

(
a0

anr

)1−(3/5) fν
δ fν

cdm[anr], (4.6)

where anr describes the time, at which the massive neutrinos became non-relativistic. We

can relate density contrasts of two models to each other, using the relations Eq. (4.5) and

Eq. (4.6). We will get

δ fν
cdm[a0] =

(
a0

anr

)1−(3/5) fν
δ fν=0

cdm [(1− fν)anr] , (4.7)

where a0 is the scale factor today. If we suppose that in the model with massless neutrinos

δcdm ∝ a, then for two different scale factors we can write

δ fν=0
cdm [a0]

a0
=

δ fν=0
cdm [(1− fν)anr]

(1− fν)anr
. (4.8)

Eq. (4.7) will be

δ fν
cdm[a0] =

(
a0

anr

)−(3/5) fν
(1− fν)δ

fν=0
cdm [a0] . (4.9)

In reality, δcdm is not proportional to a, and instead we can use the semi-analytical result [6]

δ fν=0
cdm [a0]≃

(
a0

(1− fν)1/2anr

)
δ fν=0

cdm [(1− fν)anr] . (4.10)

Using this we can get the ratio of density contrasts of massive and massless neutrino models

today:
δ fν

cdm[a0]

δ fν=0
cdm [a0]

= (1− fν)
1/2
(

a0

anr

)−(3/5) fν
. (4.11)
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Using the equation

P(k) =

{
⟨δ2

cdm⟩ k < knr

[1−Ων/ΩM]2⟨δ2
cdm⟩ k < kFS < knr

for the matter power spectrum, we can get their ratio, too

P(k) fν

P(k) fν=0 = (1− fν)
3
(

a0

anr

)−(6/5) fν
. (4.12)

Let us now consider the case, when knr < k < kFS, i.e. scales smaller than the non-

relativistic transition scale, but larger than the free-streaming length. In this case Eq. (4.5)

is correct again for a 6 anr. The relation of density contrasts at different times will be given

by

δ fν
cdm[a0] =

(
a0

anr

)
δ fν

cdm[anr] . (4.13)

From this and Eq. (4.8) it follows that

δ fν
cdm[anr] = δ fν=0

cdm [(1− fν)anr] =
(1− fν)anr

a0
δ fν

cdm[a0] . (4.14)

If we again use the semi-analytical result for the density contrast ratio, we will have

δ fν
cdm[a0] = (1− fν)δ

fν=0
cdm [a0] , (4.15)

δ fν
cdm[a0]

δ fν=0
cdm [a0]

= (1− fν)
1/2
(

a0

anr

)−(3/5) fν
. (4.16)

This means that the ratio of matter power spectra in this case is

P(k) fν

P(k) fν=0 = (1− fν) . (4.17)

Both the numerical and the analytical results in this section show that the matter power

spectrum is reduced in the case of massless neutrinos. When the matter-radiation equality

is postponed, modes crossing the horizon in the matter-dominated era have lesser time for

density perturbations to grow. Therefore, the amplitude of the perturbations on this small

scales will be small. In addition, perturbations are suppressed on scales smaller than the

free-streaming length.
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4.3 Cosmic microwave background anisotropies

CMB temperature fluctuations were first measured by COBE satellite in 1992 [20], and sig-

nificantly improved by subsequent experiments, most importantly by WMAP [18]. Given a

measurement of the CMB temperature anisotropy in various directions on the sky, one can

define the two point correlation function as

C(θ) = ⟨∆(n̂1)∆(n̂2)⟩ . (4.18)

It can be further expanded it into Legendre functions

C(θ) =
1

4π

∞

∑
l=0

(2l +1)ClPl(n̂1 · n̂2) , (4.19)

with coefficients Cl being the so-called angular power spectrum. In Fig. 4.2, we show

the CMB spectra as predicted by the ΛCDM model with massless neutrinos, as well as

models with neutrino masses of 0.05, 0.1 and 0.5 eV. The curves in the figure are calculated

numerically using CAMB [19].
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Figure 4.2: Angular power spectrum for different neutrino masses, case b.
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One can try to understand the differences between different lines in Fig. 4.2 as fol-

lows. For the neutrino masses that we have considered, the neutrinos are still relativistic

at the time of radiation-matter equality. This means that the equality occurs later than in

the universe with massless neutrinos, which affects the CMB anisotropy spectrum in two

ways. First, the first acoustic peak is enhanced, because of the so-called early integrated

Sachs-Wolfe (EISW) effect. Gravitational potentials evolve during radiation domination,

changing the energy of photons traveling through them. Increasing the amount of radiation

in the universe results in an increase in the EISW contribution to the CMB temperature

fluctuations due to increased rate of gravitational potential decay [21]. Thus, the fluctua-

tions near the first acoustic peak will increase. Secondly, increasing the mass of neutrinos

reduces the distance to the last scattering surface, which is inversely proportional to the

peak position. Hence, the position of the first peak will move towards the bigger ls [21]. As

we can see in the figure, the first effect is more visible for the small neutrino masses that

we are interested in.



Chapter 5

Principal Components of Modified
Linear Growth

Following Zhao et al [1] we focus on perturbations in the Newtonian gauge with metric

potentials ψ and ϕ, defined in Eq. (3.7) and assume that the matter perturbations obey the

standard conservation equations. Namely, we have

δ′+
k

aH
θ−3ϕ′ = 0 (5.1)

θ′+θ− k
aH

ψ = 0 , (5.2)

where the prime denotes differentiation with respect to lna, and H ≡ a−1da/dt, with t

being the physical time and where we have specialized to cold dark matter (for the sake of

simplicity we ignore radiation or baryonic effects, which can be included if relevant).

One needs two additional equations to close the system for the four variables ϕ, ψ, δ
and θ. These are normally provided by a theory of gravity, which prescribes how the two

metric potentials relate to each other, and how they are sourced by the matter perturbations.

In Zhao et al [1], it was proposed to consider a general way of allowing for alternatives to

GR, and the system of equations was closed by introducing two general functions of scale

and time defined as:

γ(k,a) ≡ ϕ
ψ

(5.3)

µ(k,a) ≡ − 1
4πGa2

k2ψ
ρ∆

, (5.4)

34
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where ∆ ≡ δ+3aHθ/k is the comoving matter density perturbation. Eqs. (5.1)-(5.4) form

a closed system, that can be used to calculate the evolution of perturbations for any given

functions µ and γ, and were extensively discussed in [22].

Let us comment on some of the properties of functions µ and γ. By design, in GR, and

in a universe made of dust (CDM) and a cosmological constant (Λ), µ = γ = 1. Departure

of µ and/or γ from unity can happen if, for example, DE is dynamical (because of the

clustering of DE) or if it has a non-negligible anisotropic stress. Alternatively, as will be

discussed later in the thesis, one could have µ ̸= 1 due to a significant fraction of massive

neutrinos, which free stream on small scales. Finally, alternative gravity models generally

predict scale- and time-dependent µ and/or γ [23].

The main benefit of introducing µ and γ, is that it allows for model-independent tests

of departures of linear growth of perturbations from that in adiabatic GR+ΛCDM. Any

measured deviation of either µ or γ from unity would signal that an ingredient in the ΛCDM

model needs to be modified. Additionally, since any departure of growth from ΛCDM on

linear scales corresponds to some form of µ and γ, these two functions can be used as a way

of storing information from observations in a model-independent way. It is this latter use

of the parameterization that is explored in this thesis.

5.1 Principal component analysis of µ and γ

In [1], Zhao et al have investigated how well the functions µ(a,k) and γ(a,k) can be con-

strained by future surveys, in particular CMB measurements from Planck and weak lensing

shear and galaxy surveys from LSST. They treat µ and γ as unknown functions of both time

and wavenumber, and bin them on a grid in the (z,k) space (notice that we are using the

redshift z as the time variable). With m z-bins and n k-bins, the values of the functions µ and

γ at the grid points can be treated as 2×m×n parameters, µi and γi. In addition, they also

vary the usual cosmological parameters: Ωbh2, Ωcdmh2, Hubble constant h, optical depth

τ, spectral index nS and amplitude AS, as well as the DE equation state, binned over the

same m grid points in z as µ and γ, and Nb bias parameters. They then use the Fisher matrix

formalism to estimate the covariance of the 2×m×n parameters after marginalizing over

the usual cosmological parameters.

Here we explain what was done in Zhao et al. Suppose one wants to know how well
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a given combination of experiments will measure µ, with other parameters marginalized

over. The relevant quantity is the µ block of the covariance matrix:

Ci j ≡ ⟨(µi − µ̄i)(µ j − µ̄ j)⟩ , (5.5)

where µ̄i is the fiducial value, which is in the case of a forecast plays the role of the best fit

value. Since the individual pixels of µ are highly correlated, the covariance matrix (5.5) will

be non-diagonal, and the value of µ in any particular bin would be practically unconstrained.

The PCA is a way to decorrelate the parameters and find their linear combinations that are

best constrained by data. Namely, we solve an eigenvalue problem to find a matrix W that

diagonalizes C:

C =W T ΛW ; Λi j = λiδi j , (5.6)

where λi’s are the eigenvalues. Smaller values of λi correspond to the better constrained

linear combinations of µ’s:

αi =
m×n

∑
j=1

Wi j(µ j − µ̄ j) . (5.7)

One can think of α’s as the new set of uncorrelated parameters obtained by a rotation of

µ’s, with the error on αi given by
√

λi. In practice, one finds that only a few of the α’s are

well constrained (i. e. their λ’s are small), while most are essentially unconstrained. This

is the main benefit of performing a PCA – it takes a function with many (infinite) degrees

of freedom and isolates their few linear combinations that can be constrained by a given

experiment. By construction, W TW = I, so Eq. (5.7) can be inverted as

µi − µ̄i =
m×n

∑
j=1

Wi jα j . (5.8)

In the above, i labels a point on the (z,k) grid. Thus, taking the continuous limit and using

µ = 1 as the fiducial value, we can formally rewrite this as

µ(z,k) = 1+∑
j

α jW j(z,k) , (5.9)

which is an expansion of µ into an orthogonal basis of eigenvectors W j(z,k). The best

constrained eigenvectors W j(z,k) can be plotted as surfaces in (k,z) space, with their shapes

indicating the kind of patterns that experiments are most likely to constrain.



CHAPTER 5. PRINCIPAL COMPONENTS OF MODIFIED LINEAR GROWTH 37

0.0 0.1
0
1
2

D
ES

 

 

 

LSST

0.0 0.1

 

 

 

0.0 0.1

 

 

 

0.0 0.1 0.2

 

 

 

-1

0

1

0

1

2

3
ec1

  

 

ec2

  

 

ec7

  

 

ec18

  

 

0

1

2

 

 

  

 

  

 

  

 

 

0
1
2 ec1

k h/Mpc

  

 

re
ds

hi
ft 

z

ec2

  

 

ec3

  

 

ec4

  

 

Figure 5.1: The combined eigenmodes of µ and γ as pairs of (k,z) surfaces for data sets

including LSST or DES data.

If one is interested in seeing how sensitive data is to any departure from “normal”

growth, then rather than trying to constrain µ or γ individually, one wants to know if either

function is deviating from unity, without specifying which. To address this question, Zhao

et al considered the combined principal components of µ and γ. Namely, they follow the

same procedure as described above, except now they diagonalize the block of the Fisher

matrix containing µ and γ pixels. The eigenmodes in this case are no longer single surfaces

in (k,z) space, instead each mode can be represented as two surfaces, one for each of µ and

γ. Some representative eigenmodes, represented as pairs of surfaces in the (k,z) space, are

shown in Fig. 5.1. We note that Zhao et al used the flatness prior, Ω = 1, and also limited

the range of each µ-pixel to 0 < µ < 2.

5.2 Modified growth from massive neutrinos

As we discussed in Chapter 3, neutrino mass alters the growth of cosmological pertur-

bations, as compared to that in ΛCDM. Neutrino mass does not produce any additional

anisotropic stress. Hence, in terms of the MG functions, γ = 1 for massive neutrinos. On
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the other hand, µ has a non-trivial form. To see this, let us look at the Poisson equations

with massive neutrinos:

k2ϕ =−4πGa2 ∑
i

ρi∆i =−4πGa2(ρcdm∆cdm +ρB∆B +ρν∆ν) . (5.10)

We can compare this to the one in ΛCDM:

k2ϕ =−4πGa2(ρcdm∆cdm +ρB∆B) . (5.11)

On the other hand, from the definition of µ, we have

k2ϕ =−4πGa2µρM∆cdm (5.12)

where ρM is the total matter density, including ρcdm and ρB. In other words, this parametriza-

tion is based on the fact that in ΛCDM ∆B = ∆cdm at redshifts probed by the surveys we

consider. From this definition, we can read off the form of µ for the case with massive

neutrinos:

µν(k,z) =
ρcdm∆cdm +ρB∆B +ρν∆ν

ρM∆cdm
(5.13)

where z = 1/a − 1 is the redshift, and ρM = ρcdm + ρB + ρν. Note that by design µν

approaches unity on large scales, where neutrino free-streaming is negligible, and de-

parts from unity below the free-streaming scale. We evaluate Eq. (5.13) numerically using

CAMB, and contours of constant µν in (k,z)-plane are shown in Fig. 5.2.
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Chapter 6

Uncertainty in mν from PCA of Modified
Growth

6.1 From eigenmodes of MG to uncertainties on neutrino
mass

As mentioned in the previous Chapter, parameterizing departures from the ΛCDM growth

in terms of µ and γ can be a convenient way of storing information in a model-independent

way. Here we will illustrate how, for example, the information stored in these functions can

be retrieved to calculate forecasted uncertainties on the sum of the three neutrino masses.

We will use the formalism of Section 1.6.

Let µi denote collectively the values of µ and γ on a grid in (k,z). These could be the

2× n×m pixels considered in Zhao et al. Now suppose we could measure µi from a set

of observations. Then, formally, we could think of µi’s as a new set of observables, which

contain all the information that you could extract about the growth of perturbations on linear

scales. Given this assumption, we can calculate the Fisher matrix in any set of parameters

pa that affect the linear growth as

Fab = ∑
i j

∂µi

∂pa

1
Ci j

∂µ j

∂Pb
, (6.1)

where Ci j is the covariance of the MG pixels. We can now diagonalize Ci j and rewrite the

40
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above Fisher matrix as

Fab = ∑
k

α(a)
k α(b)

k λ−1
k , (6.2)

where λk are the eigenvalues of Ci j, and coefficients α(a)
k are obtained by decomposing

derivatives of µi into the basis of orthogonal eigenmodes shown in Fig. 5.1:

∂µ j

∂pa
= ∑

i
α(a)

i Wi j , (6.3)

where

α(a)
k = ∑

i

∂µi

∂pa
W T

ik . (6.4)

Given a set of eigenmodes and eigenvalues provided by Zhao et al, Eq. (6.2) can be used

to find uncertainties any set parameters if it is possible to evaluate the partial derivatives in

Eq. (6.3).

Specifically, this method can be applied to derive the uncertainty in the measurement

of the sum of neutrino masses mν. Namely, we have

σ−2
mν = Fmνmν = ∑

k
α(mν)

k α(mν)
k λ−1

k , (6.5)

where

α(mν)
k = ∑

i

∂µi

∂mν
W T

ik . (6.6)

The derivative of µν with respect to mν can be evaluated numerically using CAMB [19].

When mν ̸= 0, γ = 1 and µ is given by (5.13). Namely, we calculate

∂µν(k,z)
∂mν

→ µν(mν +∆mν)−µν(mν)

∆mν
(6.7)

for a ∆mν, that is sufficiently small for the result to converge. To be consistent with the

fiducial model used in Zhao et al, we choose the ΛCDM fiducial value mν = 0, and we

checked that the derivative converges for ∆mν = 0.05eV.

The advantage of working with eigenmodes, as opposed to the complete set of pixels, is

that most of the eigenmodes are poorly constrained. That is, most of them have very large

eigenvalues λk and their contribution to the sum in Eq. (6.2) is negligible. Hence, it may

be possible to only work with a small subset of eigenmodes. We will check this in the next

section.
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6.2 Results

We calculated the expected uncertainty in the measurement of the neutrino mass from

the eignemodes of MG using Eq. (6.2) of the previous section. The forecasted error is

σν = 0.07eV, which is very close to the error forecast of 0.05eV for the combination of

Planck and LSST obtained in [25] by directly calculating all the observables. Note that

the difference between our result and theirs is well within typical uncertainties involved in

Fisher forecasts.

Figure 6.1: The forecasted uncertainty in the measurement of the sum of masses of the

three neutrinos derived from eignemodes of MG, as a function of the number of included

modes.

In Fig. 6.1 we demonstrate how strongly our forecasted error depends on the number

of eignemodes included in the analysis. We can see that at least 10 eigenmodes are needed

to get within 100% of the "correct" error, and about 40 to get within 10%. Clearly, this is

much less than the total number of the eigenmodes (which was equal to 800 for the set we
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used), and also much less than the total number of observables available from LSST and

Planck (which is of the order of many thousands of independent data points).



Chapter 7

Summary

In this thesis, we studied the effects of neutrino mass on cosmological observables. We also

demonstrated how information stored in the principle components of modified gravity can

be used to calculate the accuracy with which neutrino mass can be measured. While more

investigation is needed to make definitive forecasts of neutrino mass constraints from PCA

of MG, this work shows that using the existing eignemodes from Zhao et al [1] effectively

reproduces the constraints obtained by direct methods in [25]. We expect such methods

will be of use to the cosmological community, as they significantly simplify the process of

error forecasts for various models of modified gravity.
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