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Abstract

Model expansion is the task underlying many paradigms for declarative solving of com-

putationally hard search problems such as scheduling, planning, and formal verification.

We develop a technique to solve model expansion tasks involving arithmetic and other in-

finite secondary structures. Unlike previously developed methods, our technique produces

quantifier-free formulas suitable for tools that are specially designed for arithmetic such as

satisfiability modulo theories (SMT) solvers. The novelty is in that our method leaves part

of the specification not grounded. We design new algorithms which first perform partial

grounding, and then take a quantifier-free formula and produce a formula suitable for solv-

ing using SMT. An SMT solver is called on the resulting formula. We describe how we

constructed a software tool for partial grounding and list several example inputs and the

results of using the Yices SMT solver on the outputs.
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Chapter 1

Introduction

Search problems are a broad class of problems that includes instances in graph theory,

planning, and optimization. There are numerous tools that can be used for solving such

problems such as SAT solvers [102, 13] for propositional logic, Satisability Modulo Theories

[26, 8, 103] for specialized fragments of first-order logic, and Answer Set Programming [53]

solvers for logic programming.

Model expansion (MX) is a very intuitive way to formally represent a search problem.

In this way one can express a wide variety of problems using, for example, first-order logic

with extensions. It is useful to specialize automated solvers for specific varieties of model

expansion to improve performance, and then we can have both an intuitive problem repre-

sentation and an efficient solver. For example, arithmetic is commonly involved in practical

problems and computers are made to do arithmetic, so it is natural to build an automated

solver so that it uses a special strategy when arithmetic is present, especially since structures

that represent arithmetic tend to be infinite.

Satisfiability Modulo Theories (SMT) is the problem of using a first-order theory to

decide satisfiability of a first-order formula. Each SMT solver is constructed for a particular

set of theories and fragments of first-order logic that can be solved efficiently. It deliberately

separates a theory from the input formula so that solving algorithms can be specialized for

each theory. This should make them ideal for solving problems that involve arithmetic, as

well as potentially any problem involving one of the supported theories, but using an SMT

solver directly is far more technically complex than expressing a search problem as model

expansion.

A SAT solver is another problem solving tool, more commonly used than SMT solvers.

1



CHAPTER 1. INTRODUCTION 2

The SAT solver finds a satisfying assignment for propositional variables in a propositional

logic formula. This task is relatively simple compared to the task of a SMT solver. Since

SAT solvers need not deal with functions, predicates, or theories, the designer of a SAT

solver can focus a large amount of effort into shaving time and memory off the solving

procedure. Even so, for a SAT solver to solve a problem involving arithmetic, it must run

an algorithm that treats arithmetic just like any other problem. Without predicates or

functions, you cannot represent arithmetic in propositional logic in a way that makes it

directly recognizable as arithmetic.

When you have a problem involving arithmetic, if you reduced it to a SAT problem, you

can expect your SAT solver to solve it in highly efficient but naive way. We will design a

way to reduce model expansion problems represented in first-order logic with arithmetic to

SMT problems so that we can take advantage of solvers that a tailored to exactly the sort

of problem we are trying to solve.

For our purposes, grounding is taking a first-order formula and an instance structure

and constructing a ground formula whose models are the model expansions of the original

formula and structure. This is the usual method for solving model expansion problems

as it allows us to construct a propositional formula for a SAT solver. For example, you

may ground by substituting every possible constant for each variable, and then substitute

a propositional variable for each distinct ground atom. Instead of constructing a ground

formula, we will construct a formula without quantifiers but still potentially having variables,

as if stopping the grounding process partway through. We call this partial grounding and

it is very useful for reducing model expansion to SMT.

Depending on the theory being used, SMT solvers almost always accept a fragment of

first-order logic that does not include quantifiers, so partial grounding is the natural first

step. The fragments also tend to have very restricted vocabularies, often allowing only

the vocabulary of the theory itself. This leads us to the next step, where we perform

substitutions to eliminate all of the vocabulary that we are using for model expansion

and are left with only the vocabulary that our SMT solver will accept, such as arithmetic

vocabulary.

This thesis goes into depth on ways to construct a tool for partial grounding of a model

expansion problem with a given instance, how to use a partial grounding to construct an

input for an SMT solver, and how to interpret the output of an SMT solver to find a solution

to the original model expansion problem. Our goal is to allow practical search problems to
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be expressed compactly and easily as a model expansion problem, while at the same time

solving the problem efficiently.

1.1 Contributions

The following are the contributions that we have made in the area of computational logic

for the purpose of solving elaborate model expansion problems more easily, especially model

expansion involving arithmetic.

1. Definition of Partial Grounding

We define partial grounding in terms of a formula φ and a structure A. A partial

grounding is a quantifier free formula that represents the same model expansion prob-

lem with A as the original formula φ represented with A. When the free variables

are considered to be existentially quantified, any expansion of A that satisfies φ also

satisfies the partial grounding.

2. Algorithm for Finding a Partial Grounding

We describe two algorithms for constructing a partial grounding of a given formula and

structure. One algorithm is a simple direct approach to illustrate the concept. The

second algorithm makes use of relational algebra in an attempt to produce a smaller

partial grounding.

3. Technique for Solving Model Expansion using Satisfiability Modulo Theories

We show the usefulness of partial grounding by using it to solve model expansion prob-

lems efficiently with a satisfiability modulo theories solver. Given a partial grounding

of a model expansion problem, the algorithm constructs a satisfiability modulo the-

ories formula whose solution provides one possible solution for the model expansion

problem. By using satisfiability modulo theories, we can take advantage of the ability

of existing solvers to solve problems involving arithmetic and all of the other various

theories for which SMT solvers have been constructed. We also describe how one

might add to the algorithm to allow expansion functions in the partial grounding.

4. Tool for Constructing Satisfiability Modulo Theories Problems



CHAPTER 1. INTRODUCTION 4

We have constructed various versions of a computer program that takes a model

expansion problem formula and structure, constructs a partial grounding, and then

constructs a satisfiability modulo theories formula as output. The versions use various

software designs and have various features in both output formulas and the languages

that they accept. The first version is based upon a previously existing grounding

software for use with a SAT solver and we have heavily modified it to cause it to

perform partial grounding for use with an SMT solver. The second version was made

entirely for partial grounding for SMT, with the intention of avoiding some of the

unfortunate software design elements from the first grounder, as well as adding the

capability of accepting expansion functions in the input and simplifying the output

SMT formula.

1.2 Outline

In Chapter 2, we describe model expansion, grounding, and the standards by which satis-

fiability modulo theory solvers operate. The relational algebra of extended relations from

[98] is explained. Extended relations are relations that contain an extra column that holds

a formula for each row, and all of the relational algebra operations are extended to operate

on this column. The algorithm from [98] for grounding a first order formula using rela-

tional algebra is provided for comparison with the similar partial grounding algorithm in

Chapter 3.

In Chapter 3, partial grounding is defined and explained. An algorithm for finding a

partial grounding of a formula is introduced and its correctness is proven. A simple algorithm

is given, and we also show an elaborate algorithm which takes advantage of relational algebra

to produce a smaller output.

In Chapter 4, an algorithm for constructing an SMT formula for solving a model ex-

pansion problem using partial grounding is introduced and its correctness is proven. We

explain how to find a solution to the model expansion problem using the solution provided

by an SMT solver when given a constructed SMT formula.

In Chapter 5, we explain the design and details of construction of a software tool for

doing partial grounding and constructing the SMT formula as described in the previous

chapter. We also explain some of the changes that were made for the second version of the

partial grounding tool.
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In Chapter 6, we provide examples of model expansion problems and the resulting partial

groundings and SMT formulas. We examine each formula and show how it is partially

grounded and then converted to an satisfiability modulo theories problem.

In Chapter 7, we list the full input and the results of three applications of the grounder

described in Chapter 5. The output of the grounder is too large to include, but each output

is given to Yices[26], a satisfiability modulo theories solver, and the output of Yices is given

in full. We explain how to interpret each output of Yices to get a solution to the original

model expansion problem. For the magic square problem, we use the second version of the

grounder and an axiomatization involving expansion functions, then compare the solving

time of the SMT solver with the solving times of two other techniques for finding magic

squares.



Chapter 2

Background

In this chapter we will explain various topics that are important for the understanding of

partial grounding. In Section 2.2 we describe the way we will specify search problems.

In Section 2.3 and Section 2.4 we describe an existing technique for constructing ground

formulas. In Section 2.5 we describe Satisfiability Modulo Theories, a sort of problem that

can be constructed from a partially grounded model expansion problem.

Throughout the paper, := is used for “denotes”, ⊃ for material implication, and ∃x̄ for

∃x1 . . . ∃xn, similarly for ∀x̄.

We will use the term literal to mean either a first-order atom α that is not negated,

or a negation followed by a first-order atom, ¬α. A positive literal is an atom without a

negation and a negative literal is an atom and its negation.

We will use a bar over an uppercase letter to indicate a tuple of relations and functions,

as in the structure (U ; R̄), where U is the universe and R̄ is the interpretations of the

vocabulary.

2.1 Model Expansion

In this section we describe first-order model expansion (FO-MX), a representation for search

problems. We will explain the terminology we will use with representing model expansion

problems.

A vocabulary is a set of symbols. Each symbol has an arity and is either a relation symbol

or a function symbol. A constant symbol is a function symbol with zero arity. For a vocab-

ulary τ = {R1, . . . , Rn, f1, . . . , fm}, a τ -structure A is a tuple (U ;RA1 , . . . , R
A
n , f

A
1 , . . . , f

A
m),

6



CHAPTER 2. BACKGROUND 7

where U is the domain of A, RAi is a set of k-tuples where k is the arity of relation symbol

Ri, and fAi is a function from j-tuples to U , where j is the arity of function symbol fi.

Definition 2.1.1 (expansion). Let A be a σ-structure with domain A and B be a (σ ∪ ε)-
structure with domain B. The structure B is an expansion of A if A = B and for every

symbol s in σ, sA = sB.

For a formula φ, we write vocab(φ) for the collection of exactly those function and

relation symbols which occur in φ.

A structure A is a model of a formula φ if A satisfies φ by providing interpretations for

vocab(φ) such that φ is true. Structure A satisfies φ is written as A |= φ.

Definition 2.1.2 (model expansion). Let A be a σ-structure and φ be a formula such that

σ ⊂ φ. A structure B is a model expansion for φ over A if B |= φ and B is an expansion of

A.

The vocabulary σ is called the instance vocabulary. The vocabulary of vocab(φ) \ σ is

called the expansion vocabulary.

2.2 Model Expansion with Arithmetic

In order to take advantage of arithmetic in SMT problems, infinite model expansion must

be used since arithmetic predicates and functions are over infinite domains. Using infi-

nite structures naively would make grounding impossible, since formulas cannot be infinite.

Therefore we will use infinite arithmetic terms in finite problems by means of embedded

model expansion. This section describes embedded model expansion as it was described in

[110].

2.2.1 Embedded Model Expansion

Embedded finite model theory (see [72, 73]), the study of finite structures whose domain is

drawn from some infinite structure, was introduced to study databases that contain numbers

and numerical constraints. Rather than thinking of a database as a finite structure, it is

taken to be a set of finite relations over an infinite domain.

Definition 2.2.1. A structure A is embedded in an infinite background (or secondary)

structure M = (U ; M̄) if it is a structure A = (U ; R̄) with a finite set R̄ of finite relations
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and functions, where M̄ ∩ R̄ = ∅. The set of elements of U that occur in some relation or

function of A is the active domain of A, denoted adomA.

Notice that by the definition, an embedded structure is a structure. Recall that struc-

tures must have at least one element in their domains, so adomA is never empty.

Example 2.2.1. For a simple example, consider a company database with a table containing

employee numbers, salaries and pension plans. While employee numbers are abstract (sum-

ming them up makes no sense, for example), salaries and pension plans are not (taking their

sum makes sense). This database is a finite structure embedded in the infinite background

structure of the natural numbers with the standard arithmetic operations. Queries over

embedded databases may use the database relations and the arithmetical operations whose

interpretation is provided by the infinite background structure. For example, the following

query (a FO formula with free variable x) returns people whose total of salary and pension

plan contribution is more than $100,000.

∃s∃p (employee(x, s, p) ∧ s+ p ≥ $100, 000).

In database research, embedded structures are used with logics for expressing queries,

providing the interpretation of arithmetic operations in these queries. Here, they are used

similarly, with logics for MX specifications (which are second order queries).

Throughout, the following conventions are used regarding the vocabulary of formulas in

these logics and the associated structures.

1. σ denotes the vocabulary of the embedded structure A = (U ; R̄), which is the instance

structure.

2. ν denotes the vocabulary of an infinite background structure M = (U ; M̄).

3. ε is an expansion vocabulary.

4. R̄ and M̄ always denote the interpretations of σ and ν, respectively. We treat R̄ and

M̄ as tuples or as sets, depending on the context.

A formula φ over σ ∪ ν ∪ ε constitutes an MX specification. The model expansion task

is still to expand a (now embedded) σ-structure to satisfy φ.
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2.2.2 Double-guarded logic

A less expressive logic uses an adaptation of the guarded fragment GFk of FO [39]. In

formulas of GFk, a conjunction of up to k atoms acts as a guard for each quantified variable.

Definition 2.2.2. The k-guarded fragment GFk(ε) of FO for a given vocabulary ε is the

smallest set of formulas that:

1. contains all atomic formulas not in ε;

2. is closed under Boolean operations;

3. contains ∃x̄(G1∧ . . .∧Gm∧φ), provided the Gi are atomic formulas, m ≤ k, φ ∈ GFk,
and each free variable of φ appears in some Gi.

For a formula ψ := ∃x̄(G1 ∧ . . . ∧ Gm ∧ φ), conjunction G1 ∧ . . . ∧ Gm is called the

guard of the tuple of quantifiers ∃x̄.

Since GFk is closed under negation, universal quantification can be treated as an abbre-

viation in the usual way, so universal quantifiers are guarded as in ∀x̄(G1 ∧ . . . ∧Gm ⊃ φ).

In the particular case of partial grounding, universal quantifiers will not be considered an

abbreviation for existential quantifiers with negation, because the goal of partial grounding

is to treat universal quantifiers very differently from existential quantifiers. To create a

clear distinction between universal quantifiers and existential quantifiers, negations will be

required to only occur in literals and therefore never outside of a quantifier. With the

quantifiers so distinguished, the guards of universal quantifiers will be used to ground the

quantified variables.

Example 2.2.2. Let ε be {E1, E2}. The following formula is not guarded.

∀x∀y(E1(x, y) ⊃ E2(x, y)).

It is guarded when E1 is replaced by P which is not in ε.

The following formula is the standard encoding of the temporal formula Until(P1, P2).

∃v2 (R(v1, v2) ∧ P2(v2) ∧ ∀v3 (R(v1, v3) ∧R(v3, v2) ⊃ P1(v3)))

The formula is 2-guarded, that is it belongs to GF2, but it is not 1-guarded.



CHAPTER 2. BACKGROUND 10

The guards of GFk can be used to limit the range of a quantified variable, which is

limited to the elements in the interpretation of guard atoms. To limit the range of domain

elements that may occur in expansion predicates, we may use “upper guard” axioms, which

restrict the elements in expansion relations to those occurring in the interpretation of guard

atoms. To formalize this, we introduce the following restriction of FO, denoted GGFk.

Definition 2.2.3. The double-guarded fragment GGFk(ε) of FO, for a given vocabulary ε,

is the set of formulas of the form φ∧ψ, with ε ⊂ vocab(φ∧ψ), where φ is a formula of GFk,

and ψ is a conjunction of guard axioms, one for each symbol E of ε occurring in ψ, of the

form

∀x̄(E(x̄) ⊃ G1(x̄1) ∧ · · · ∧Gm(x̄m)),

where m ≤ k, and the set of free variables in G1(x̄1) ∧ · · · ∧Gm(x̄m) is precisely x̄.

We call the guards of GFk, which restrict the range of quantified variables, lower guards,

and the guard axioms of GGFk(ε) upper guards.

For expansion functions, the guard axiom is on the graph of the function. The graph of

k-ary function f is the (k + 1)-ary relation Gf = {(ā, b) : f(ā) = b}. An upper guard for

f thus is of the form ∀x̄∀y (f(x̄) = y ⊃ φ(x̄, y)), where φ is a conjunction of atoms.

Initially, we require all atoms providing upper and lower guards to be from the instance

vocabulary, so ranges of variables and expansion predicates are explicitly limited to adomA.

We later relax this restriction, adding a mechanism for “user-defined” guard relations that

may contain elements not in adomA. We assume that the instance vocabulary always con-

tains the predicate symbol adom, which always denotes the active domain. Then adom(x)

can be used as a guard atom (upper or lower)1.

Upper and lower guards provide a logical formalization of some aspects of the type

systems of some existing constraint modeling languages [91]. Lower guards correspond to

declaring the types of variables, and upper guards to declaring the types of arguments to

expansion predicates.

When using partial grounding to construct SMT formulas, the upper guards will not be

needed, and will be treated as the same as any other part of the formula.

1The relation which corresponds to the active domain is definable with respect to each instance structure,
but the defining FO formula requires disjunctions, thus cannot be used as a guard and the predicate symbol
adom(x) is necessary.
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For writing MX specifications for embedded structures, we extend the logic GGFk(ε)

with vocabulary for a fixed background structure M. We will talk about “GGFk(ε) MX

specifications with background structure M”.

2.2.3 Arithmetical Structures

The background structure of interest here is the arithmetical structure, since many SMT

solvers have theories which are optimized for solving arithmetic problems. (This structure

is the same as that used in [47].) In addition to standard arithmetical operators, it has

a collection of multiset operations, including max, min, sum and product. For any set R,

fm(R) denotes the class of all finite multisets over R. Any function f : U → U defines a

multiset mult(f) = {{f(a) : a ∈ U}} over U , the domain of A. A multiset operation (or

aggregate) is a function Γ : fm(U)→ U .

Definition 2.2.4. The Arithmetical structure N is a structure containing at least

(N; 0, 1, χ,<,+, ·,min,max,Σ,Π),

with domain N, the natural numbers, and where min, max, Σ, and Π are multi-set opera-

tions and χ[φ](x̄) is the characteristic function. Other functions, predicates, and multi-set

operations may be included, provided every function and relation of N is polytime com-

putable.

The arithmetical structure N is one possible for arithmetic in embedded model expan-

sion, but there are endless other possibilities. Any background structure may be used,

depending upon the needs of the problem to be specified. It can be useful to use a back-

ground vocabulary that contains only predicates, to avoid the difficulties that come with

using automated solvers on formulas with functions.

2.2.4 Well-Formed Terms

While the definition of GGFk(ε) formulas is applicable to an arbitrary background struc-

tures, the definition of well-formed terms is specific to the vocabulary ν of the arithmetical

structure N . Thus, the logic itself is parameterized with that vocabulary and should be

denoted GGFk(ε, ν). However, since we focus on the arithmetical structure, we will use the

simpler notation GGFk(ε).
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The structure N contains multi-set functions. Classical logic does not have terms to

denote such objects, so the syntax must be extended as follows. As usual, φ(x̄) denotes that

x̄ are the free variables of φ.

Definition 2.2.5 (well-formed terms). Let τ be the vocabulary σ∪ν∪ε and V a countable

set of variables. The set of well-formed terms is the closure of the sets of variables V and

constants of τ under the following operations:

1. If f is a τ -function of arity n, other than a multiset operation or the characteristic

function, and t̄ is a tuple of terms of length n then f(t̄) is a term.

2. If Γ is a multiset operation of ν, f(x̄, ȳ) a term, and φ(x̄, ȳ) a τ -formula in which x̄ is

guarded, then Γx̄(f(x̄, ȳ) : φ(x̄, ȳ)), is a term with free variables ȳ.

3. If φ(x̄) is a τ -formula such that ∃x̄φ(x̄) is a k-guarded formula, then χ[φ] is a term

with free variables x̄.

Multiset operations (case 2) act much like quantifiers, binding the variables x̄. Notice

that the free variables ȳ in φ, within a multiset operation term, need not be guarded within

φ. Their guards are in the formula where the term appears.

2.2.5 Semantics of multiset terms

Let G(ȳ) be the multiset term Γx̄(f(x̄, ȳ) : φ(x̄, ȳ)). The interpretation of G(ȳ) on τ -

structure D with valuation b̄ for ȳ is

GD(b̄) = Γ{{fD(ā, b̄) : D |= φ[ā, b̄]}}. (1)

As usual, A |= φ[ā] means that formula φ(x̄), is true in structure A when the free variables

x̄ are taken to denote domain elements ā.

The index x̄ in the term Γx̄ is not needed in the semantic definition (1) – think e.g. of

Γ being summation (Σ). For readability, we may omit φ when true and write Γx̄(f(x̄, ȳ));

omit free variables and write Γx̄(f : φ).

The interpretation of the characteristic function χ[φ](x̄) on τ -structure D with valuation

ā for x̄ is: χ[φ]D(ā) = 1 if D |= φ[ā] and 0 otherwise. We may write Γx̄(f × χ[φ]) instead

of Γx̄(f : φ) when Γ is invariant under multiple occurrences of 0 in the multiset (i.e.,

Γ(S) = Γ(S ∪ {{0, . . . , 0}})), as is the case for Σ and max on N .
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Definition 2.2.6. An embedded GGFk(ε) MX specification with secondary structure N is a

set of GGFk(ε) sentences over σ∪ε∪ν, with terms as in Definition 2.2.5, and the secondary

ν-structure is the arithmetical structure of Definition 2.2.4.

In our presentation here, all elements of the active domain are drawn from the arith-

metical background structure. All results of the paper generalize to the multi-sorted case,

including the case where some domains are not ordered.

The following are examples of embedded MX specifications with secondary structure N ,

for search versions of two common optimization problems.

Example 2.2.3. KNAPSACK: The instance vocabulary is {O,w, v, bv, bw}, where O is the

set of objects; w is the weight function; v is the value function; bw is the weight bound; and

bv is the value bound. The expansion vocabulary is {O′}, where O′ is the set of selected

objects.

Upper guard axiom:

∀x(O′(x) ⊃ O(x)).

The axioms are

Σx(w(x) : O(x) ∧O′(x)) ≤ bw

and

bv ≤ Σx(v(x) : O(x) ∧O′(x)),

where t1 ≤ t2 is an abbreviation for t1 < t2 ∨ t1 = t2. The lower guard for O(x) ∧O′(x) is

O(x).

Example 2.2.4. MACHINE SCHEDULING PROBLEM [54]: We must assign jobs

to machines to satisfy constraints on release and due dates and a cost bound. The instance

lists jobs, machines, possible start times, the release date and due date for each job, the

cost and duration for running each job on each machine, and the cost bound. The instance

vocabulary, σ, consists of: Job(j), the set of jobs to be scheduled; Machine(m), the set of

machines to perform jobs; Time(t), all possible starting times; ReleaseDate(j), a release

date for each job; DueDate(j), a due date for each job; Cost(j,m), cost of doing job j on

machine m; Duration(j,m), the duration of executing j on m; and c, the cost bound. The

active domain consists of all time points, costs, due and release dates, durations, jobs and

machines. The expansion vocabulary consists of two functions: Assignment(j) maps jobs

to machines and StartT ime(j) maps jobs to start times.
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Upper guard axioms:

∀j∀m (Assignment(j) = m ⊃Machine(m) ∧ Job(j))
∀j∀t (StartT ime(j) = t ⊃ Time(t) ∧ Job(j))

Axioms:

Σj(Cost(j, Assignment(j)) : Job(j)) ≤ c
∀j(Job(j) ⊃ StartT ime(j) ≥ ReleaseDate(j))
∀j(Job(j) ⊃ StartT ime(j)+Duration(j)≤DueDate(j))
∀t (Time(t) ⊃ (∀m (Machine(m) ⊃ maxj(countj(ψ(j,m, t))) = 1)).

In the last axiom, which specifies that at most one job is on a machine at a time,

countj(ψ(j,m, t)) is an abbreviation for Σj(χ[ψ(j,m, t)]), and ψ defines the set of jobs

being executed on machine m at time t, that is, ψ(j,m, t) is:

Job(j) ∧Assignment(j) = m ∧ Time(StartT ime(j))

∧ StartT ime(j) ≤ t
∧ t < StartT ime(j) +Duration(j, Assignment(j)),

It is easy to see that all axioms are in GGFk(ε).

An optimization version would include the objective function:

minimizing :Σj(Cost(j, Assignment(j)) : Job(j)).

2.3 Grounding

In this section we will describe grounding, the process of constructing a ground formula

from a model expansion problem, so that it can be compared to partial grounding which

will be described later.

The first step in automated solving of model expansion problems is to use the instance

structure to construct a variable-free formula that is equivalent to the given formula. The

equivalence that we need is called model preservation, meaning that the set of model expan-

sions is equal to the set of models of the ground formula. The authors of [98] define grounding

of model expansion problems and describes an algorithm for constructing groundings.

We can also remove occurrences of σ and ν vocabulary by using the instance structure

and background structure. Such a simplification is called reduction and it can greatly
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shorten the formula as well as allowing a solver to solve the formula without knowing about

arithmetic. The formula which is produced from the first step of solving is called a reduced

grounding when it has neither variables nor instance structure vocabulary. With little

additional manipulation, a reduced grounding can be solved by a SAT solver.

In order to define reduced grounding, some notation must be explained. For a set A, the

notation Ã represents a vocabulary with exactly one constant for each element of A. For

structure B, the notation (B, ÃB) represents a structure that is the same as B but defines

the vocabulary Ã by the corresponding elements of A.

Definition 2.3.1 (reduced grounding for MX). From [98], a formula ψ is a reduced ground-

ing of a (σ ∪ ε)-formula φ over a σ-structure A with domain A if

1. ψ is a ground formula over ε ∪ Ã.

2. For every expansion structure B of A over vocab(φ), B |= ψ iff (B, ÃB) |= φ.

This definition was created for [98] which dealt with model expansion, and did not

include embedded model expansion as we will use here, but the definition of grounding

for model expansion works just as well for embedded model expansion if we consider the

background structure to be part of the instance structure. In other words, we can modify

the definition as follows.

Definition 2.3.2 (reduced grounding for embedded MX). A formula ψ is a reduced ground-

ing of a (σ∪ν ∪ε)-formula φ over a σ-structure A embedded in ν-structureM with domain

A if

1. ψ is a ground formula over ε ∪ Ã.

2. For every expansion structure B of (A,M) over σ ∪ ν ∪ ε, B |= φ iff (B, ÃB) |= ψ.

The version for embedded MX is the same as the version for MX, except with (A,M)

in place of A, and σ ∪ ν in place of σ. This is because the distinction between background

vocabulary and instance vocabulary is meaningless for the definition of grounding, even

though it is quite useful for other purposes.

The second condition in the definition is the model preservation property. It is necessary

because it ensures that the resulting formula ψ represents the same problem as the original

formula φ. As long as the model preservation property holds, we are free to transform the

formula in any way we feel might make the problem easier to solve, including grounding.
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The use of lower guards reduces the task of grounding a formula. Take for example,

∀x(P (x) ⊃ E(x)), with P a predicate of the instance structure that is serving as a guard.

In this case, we need only consider assignments for x that are in P which may be much

smaller than the instance domain. For this reason, we will assume that the formulas that

are to be ground are guarded.

2.4 Grounding with Extended Relational Algebra

In this section we will describe grounding using extended relational algebra as it was intro-

duced in [98].

In order to construct a reduced grounding for first-order logic efficiently, one can take

advantage of relational algebra algorithms as described in [98]. Starting at the atoms of the

formula, construct relations to represent the instance structure interpretation for each atom,

including an empty table for uninterpreted atoms, then use relational algebra operations for

each connective of the formula until you have constructed a relation for the formula. In

order to produce a formula as the result, the relations must be extended by an extra column

that holds the formula represented by each row, and the relational algebra operations must

be modified to keep the formula correct.

Definition 2.4.1 (Extended X-Relation). Let X be a tuple of variables and A be a domain.

An extended X-relation over A is a set R of pairs (γ, ψ) such that γ : X → A, ψ is a formula,

and for all γ1 and γ2, if (γ1, ψ) ∈ R and (γ2, ψ) ∈ R, then γ1 = γ2.

In this grounding procedure, an extended relation R is used to represent the grounding

of a formula φ with the free variables of φ being the columns of R, so R contains a ground

formula for each variable assignment. When R has no row matching a variable assignment,

then for that variable assignment φ must ground to false. To maintain this property, all

relational algebra operations must be redefined to include manipulation of the formula parts

of the relations.

To understand how the relational algebra operations are defined for extended relations,

think of the formula for each row as a precondition. For row (γ, ψ) with columns γ and

formula ψ, γ is to be treated as absent unless ψ is true. For example, if extended relation R1

contains (γ, ψ1) and extended relation R2 contains (γ, ψ2), then we must include (γ, ψ1∨ψ2)

in R1 ∪ R2 to represent the two ways which γ could be in R1 ∪ R2. Similarly, intersection
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and join operations may result in conjunctions of formulas when two preconditions must

both be satisfied before a row is included in the result.

For an instance atom, the extended relation is the relation provided by the instance

structure extended with true for every row. For an expansion atom, the extended relation

is every possible variable assignment extended by the expansion atom with variables sub-

stituted according to the assignment. For a background atom, a relation is constructed by

selecting the rows of the relation formed from the guards that satisfy the background atom.

For a conjunction, the procedure can be applied recursively followed by a join, and for

a disjunction the answer would be the union of the extended relations. Quantifiers and

negations can be grounded with slightly more elaborate procedures.

The notation δR(γ) will be used to represent the formula associated with row γ of

extended relation R.

Definition 2.4.2 (δR). Let R be an extended X-relation over A with k = |X|, then δR is

a function from k-tuples of elements of A to formulas such that:

• for all γ such that (γ, ψ) ∈ R, δR(γ) = ψ;

• for all γ where there does not exist ψ such that (γ, ψ) ∈ R, δR(γ) = false.

Definition 2.4.3 (Extended Relational Algebra). Let R be an extended X-relation and S

an extended Y -relation, both over domain A.

• ¬R is the extended X-relation ¬R = {(γ, ψ) | γ : X → A, δR(γ) 6= >, and ψ =

¬δR(γ)}

• R on S is the extended X ∪ Y -relation R on S = {(γ, ψ) | γ : X ∪ Y → A, γ|X ∈
R, γ|Y ∈ S, and ψ = δR(γ|X) ∧ δS(γ|Y )};

• R onc S is the extended X ∪ Y -relation R onc S = {(γ, ψ) | γ : X ∪ Y → A, γ|X ∈
R, γ|Y ∈ S, and ψ = δR(γ|X) ∧ ¬δS(γ|Y )};

• R∪S is the extended X ∪ Y -relation R∪S = {(γ, ψ) | γ|X ∈ R or γ|Y ∈ S, and ψ =

δR(γ|X) ∨ δS(γ|Y )}.

• For Z ⊆ X, the Z-projection of R, denoted by πZ(R), is the extended Z-relation

{(γ′, ψ) | γ′ = γ|Z for some γ ∈ R and ψ =
∨
{γ∈R|γ′=γ|Z} δR(γ)}.
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• For Z ⊆ X, the Z-quotient ofR, denoted by dZ(R), is the extended Z-relation {(γ′, ψ) |
∀γ(γ : X → A ∧ γ|Z = γ′ ⊃ γ ∈ R), and ψ =

∧
{γ∈R|γ′=γ|Z} δR(γ)}.

• For Z ⊆ X and T a Z-relation, the T -quotient of R, denoted by dT (R), is the ex-

tended (X \ Z)-relation {(γ′, ψ) | ∀γ(γ ∈ T ⊃ ∃γ′′(γ′′ ∈ R ∧ γ′′|Z = γ ∧ γ′′|(X\Z) =

γ′)), and ψ =
∧
{γ∈R|γ′=γ|(X\Z)} δR(γ)}.

Using the above definitions for relational algebra operations, grounding for non-embedded

model expansion can be described as in Figure 2.1, where Gnd′(A, φ) is a grounding of φ

over A. For atom φ and structure A, with G being the predicate of φ, the notation φ(A)

means the table GA with each column labeled by the corresponding argument of φ. It is

assumed that functions do not appear in the formula to complicate φ(A). For example, let

GA = {(1, 2), (3, 4), (5, 6)} and φ = G(x, y), then

φ(A) =

x y

1 2

3 4

5 6

Procedure Gnd′(A,∃ȳ(G1∧. . .∧Gm∧φ)) = Gnd(A,R, φ′) whereR = G1(A) on . . . on Gm(A)
and φ′ is the result of pushing the negations of φ inward to be in front of only existential
quantifiers or atoms with no universal quantifiers.
Procedure Gnd(A,R, φ)

1. If φ is a positive σ-literal, then Gnd(A,R, φ) = R on φ(A);

2. If φ is a negative σ-literal ¬ψ, then Gnd(A,R, φ) = R onc ψ(A);

3. If φ is a ε-literal, then Gnd(A,R, φ) = {(γ, φ[γ] | γ ∈ R};

4. Gnd(A,R, φ ∧ ψ) = Gnd(A,R, φ) on Gnd(A,R, ψ);

5. Gnd(A,R, φ ∨ ψ) = Gnd(A,R, φ) ∪ Gnd(A,R, ψ);

6. Gnd(A,R, ∃ȳφ) = R on Gnd′(A,∃ȳφ);

7. Gnd(A,R,¬∃ȳφ) = R onc Gnd′(A,∃ȳφ).

Figure 2.1: Relational Algebra Grounding for (non-embedded) MX as described in [98]
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2.5 Satisfiability Modulo Theories

In this section we will describe Satisfiability Modulo Theories, a problem that is like satis-

fiability but with the assistance of a fixed theory.

Satisfiability Modulo Theories [103] problems in general are first-order logic satisfiability

problems except that one or more theories are supplied in addition to the formula to be

solved. Solving algorithms are commonly designed with the theories as given.

Commonly, SMT solvers will only accept a fragment of first-order logic, such as the

quantifier-free fragment. Arbitrary atomic constants and term constants are usually allowed,

but functions and predicates are often restricted to those that the theory deals with, since

satisfiability with arbitrary functions and predicates is a harder problem. This sort of

SMT solver is like a propositional SAT solver where some propositional variables have been

replaced by first-order atoms containing predicates and functions from a list of specially

built-in predicates and functions.

Theories often include arithmetic of various kinds because arithmetic is a very convenient

abstraction and it can be awkward to define a propositional logic formula by hand to solve

arithmetic problems. Other theories can represent data structures such as arrays and bit

vectors. When a solver is designed for a certain theory, a fragment logic is also chosen

to ensure that the solver can run efficiently, and so solvers are categorized by logic-theory

pairs such as QF LIA which stands for quantifier-free linear integer arithmetic. Sometimes

the theory is even empty and the solver is doing ordinary satisfiability checking on a fragment

of first-order logic, such as in QF UF where uninterpreted functions are allowed. The term

logic is used to refer to the logic-theory pair that is used in the specification of a problem.

There is an issue about terminology for SMT formulas such as x + y < 2. The solver

must assign values to x and y, but it is not clear whether x and y are variables or constants.

Intuitively they are variables and they are often called variables when explaining a logic like

QF LIA. It is useful for clarity to separate x and y as variables from constants like 2 and

other numerals. Even so, if this problem were first-order satisfiability, then x and y would

be called constants so that satisfiability could be proven by a model instead of a variable

assignment. Even [5] is not consistent, sometimes calling the constants variables. For this

paper, we will choose to call x and y variables and consider SMT solving to be a problem

of finding a variable assignment.

Because most logics used in SMT are small fragments of first-order logic, it is easiest to
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list the parts of first-order logic that are allowed rather than describing the restrictions. In

the following examples all binary connectives and negation are always allowed, but quanti-

fiers are not allowed unless explicitly stated. The following are examples of logics that SMT

solvers support [5]:

QF LIA Quantifier-free linear integer arithmetic uses the theory of integer arithmetic. The

following are allowed: propositional variables, term variables, linear arithmetic terms,

and the following predicates: <, ≤, >, ≥, =. For example: 3x < y − 2 ∧ y < 10.

QF LRA Quantifier-free linear real arithmetic is similar to QF LIA but using the theory of

real arithmetic in place of the theory of integer arithmetic. For example: y + 2 <

3/x ∧ y > 2.3.

QF NIA Quantifier-free integer arithmetic uses the theory of integer arithmetic. The follow-

ing are allowed: propositional variables, term variables, arithmetic functions, and the

following predicates: <, ≤, >, ≥, =. For example: x > 2 ∧ y > 2 ∧ xy < 15.

QF RDL Quantifier-free difference logic over reals uses the theory of reals. The following are

allowed: propositional variables, and atoms of the form x−y ≤ c, x−y ≥ c, x−y < c,

x − y > c, x − y = c, and x < y, where x and y are variables and c is a numeral

constant.

LRA Linear real arithmetic uses the theory of real arithmetic. The following are allowed:

existential and universal quantifiers, propositional variables, term variables, linear

arithmetic terms, and the following predicates: <, ≤, >, ≥, =. For example: ∀x(x <

1 ∨ x > 10 ∨ xy < 100).

QF BV Quantifier-free bit vectors logic is the quantifier-free fragment of first order logic with

the theory of fixed-size bit vectors. The theory of fixed-size bit vectors includes the

following functions:

concat(x, y) This term is the concatenation of bit vector y to the end of bit vector x.

extract(i, j, x) This term is the bit vector that represents the bits from index i to

index j in bit vector x.

bvnot(x) This term is bit vector x with every 1 bit replaced by 0 and every 0 bit

replaced by 1.
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bvand(x, y) This term is the bitwise and of the two given bit vectors.

bvor(x, y) This term is the bitwise or of the two given bit vectors.

There are also bvadd(x, y), bvmul(x, y), bvudiv(x, y), bvurem(x, y), which treat bit

vectors as the natural numbers that they represent in binary notation and perform

the arithmetic operations that match their names. The term bvneg(x) represents the

2’s complement negation of bit vector x. This is not a complete list. The functions

of the theory of fixed-size bit vectors are allowed, as are propositional variables, term

variables, = atoms, and bit vector constants.

QF UF Quantifier-free uninterpreted functions uses no theory. All unquantified formulas are

allowed. The SMT solver must find an interpretation for every predicate and function

in the formula.

The SMT-LIB Standard is a standardized notation for representing SMT problems that

allows many tools to work upon the same inputs. To participate in contests, an SMT solver

must support the SMT-LIB Standard in addition to any other input formats it accepts, so

the following is an outline of the important features of the SMT-LIB Standard based on [6].

An SMT problem in the notation of SMT-LIB Standard is a series of commands. The

most important commands are (set-logic QF LIA) which puts the solver into a mode

to solve problems in the specified logic, and (assert φ) which causes the solver to add

the specified formula φ to the axiomatization to be solved. In this syntax, formulas are

considered terms and predicates are considered boolean functions, so assert interprets its

parameter as a term that must be evaluated as true.

The terms that represent first-order logic connectives are written (and T1 . . . Tn), (or

T1 . . . Tn), (not T), (forall ((x1 S1) . . . (xn Sn)) T), (exists ((x1 S1) . . . (xn

Sn)) T), where T and T1 through Tn are terms, x1 through xn are variables, and S1

through Sn are sorts which represent the universe for the quantification of each variable,

such as Int, Real, and Bool. In the case of QF LIA, the quantifiers forall and exists are

forbidden.

The command (declare-fun F (S1 . . . Sn) S) specifies that a function F will appear

in the formulas with arguments of sorts S1 through Sn in that order, and with a value of sort

S. For the purposes of quantifier-free linear integer arithmetic, we will use the declare-fun

command in this way: (declare-fun x () Int), for some variable x. This indicates that

x will be a integer variable that needs to be assigned.
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The command (check-sat) takes no parameters and simply causes the solver to solve

the problem as defined by previous commands. In order to get the solver to report the

variable assignment used, the (get-value (T1 ...Tn)) command is used, which reports

the value of each term it is given.



Chapter 3

Partial Grounding

In this chapter we will define partial grounding and provide two algorithms to construct

partial groundings, given a guarded first-order formula and an instance structure.

For example with an instance with universe {1, 2, 3, 4}, the formula ∃x∀yP (x, y) could

be partially grounded as P (x, 1) ∧ P (x, 2) ∧ P (x, 3) ∧ P (x, 4). For another example with

a more difficult arrangement of quantifiers, ∀x∃yP (x, y) could be partially grounded as

P (1, y1) ∧ P (2, y2) ∧ P (3, y3) ∧ P (4, y4). These examples illustrate how the algorithms that

will be defined later construct partial groundings.

In order to deal with variables conveniently we will assume that for any domain A, Ã

is a set of constant symbols that represent all the elements of A, with each element of A

represented by exactly one element of Ã. The notation A |= φ means that there exists a

variable assignment s for the free variables of φ such that A |= φ[s], and if s is not a partial

variable assignment for φ, then A |= φ[s] means that there exists a total variable assignment

t that is an extension of s such that A |= φ[t]. The notation φ[[s]] means formula φ with

the uniform variable substitution specified by function s where variable x is replaced by a

constant symbol from Ã representing s(x).

23
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Definition 3.0.1 (partial grounding for MX). Formula ψ is a partial grounding of formula

φ over structure A with domain A iff

1. ψ is a quantifier-free formula. In other words, all the first-order variables are free.

2. ψ has vocabulary vocab(φ) ∪ Ã.

3. For every structure B that is an expansion of A to vocab(φ) and for every variable

assignment s with domain free(φ), B |= φ[s] iff (B, ÃB) |= ψ[s], where (B, ÃB) is the

structure obtained by expanding B by the interpretations of the Ã with the corre-

sponding elements of A.

While s is a total variable assignment for φ in the above definition, ψ[[s]] may still contain

some free variables, as in the example for ∀x∃yP (x, y). The examples given above satisfy

this definition of partial grounding. Notice that a partial grounding may contain variables

which are not in the original formula.

As an example, take φ = ∀x∃yP (x, y), ψ = P (1, y1) ∧ P (2, y2) ∧ P (3, y3) ∧ P (4, y4), and

A = ({1, 2, 3, 4}). The first two conditions of partial grounding are clearly satisfied. The

third condition requires us to examine every possible expansion B of A to vocab(φ), meaning

every possible interpretation of P in the universe of {1, 2, 3, 4}, and every possible variable

assignment s with domain free(φ). Since φ has no free variables, s is empty. If we assume

that B |= φ, then PB must contain tuples {(1, y1), (2, y2), (3, y3), (4, y4)} for some values of

y1, . . . , y4. The structure (B, ÃB) contains the same interpretation for P , plus interpretations

for the numeral constants of Ã = {1, 2, 3, 4}. Therefore, for some s′, (B, ÃB) |= ψ[s′]. If we

assume (B, ÃB) |= ψ[s′], then s′ can be used to provide a variable assignment for y for each

assignment for x, with y = s′(y1) for x = 1, y = s′(y2) for x = 2, and so on. Therefore,

B |= φ.

Just as with grounding, partial grounding for embedded MX is the same as partial

grounding for MX, as long as the background structure is taken together with the instance

structure instead of treating them as separate.

The formula ∃x̄α(x̄, ȳ) cannot by definition appear as part of a partially ground formula

ψ, but it is convenient to use it as a notation to represent α(z̄, ȳ) where z̄ is a tuple of

variables that occur nowhere else in ψ. This allows our algorithms to avoid the details of

variable renaming that may be necessary for some partial groundings. The notation η(φ)

for formula φ means φ with all existential quantifiers removed and all variables renamed as

needed.
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In this chapter we will introduce two algorithms for constructing partially ground formu-

las from model expansion problems and prove that the algorithms produce correct results.

First will be a simple grounding algorithm, and then a grounding algorithm that uses a

modification of the extended relational algebra technique from Section 2.4.

3.1 Naive Grounding

The following grounding procedure requires a formula to be in a guarded fragment (see

Section 2.2) and starts by constructing an equivalent formula in negation normal form.

This is done so that the resulting formula is still in a guarded fragment, even when a ∀
quantifier is replaced by an ∃ quantifier or vice-versa. The procedure for this construction

is skipped here.

For this algorithm, on is the join operator with for non-extended relational algebra, since

the guard relations that it joins are not extended relations.

Figure 3.1 shows the algorithm for the Gnd procedure which performs partial grounding.

It assumes that negations only occur in first-order literals, as defined in chapter 2.

Procedure Gnd(A, φ)

1. If φ is a literal then Gnd(A, φ) = φ

2. Gnd(A, φ ∧ ψ) = Gnd(A, φ) ∧ Gnd(A, ψ)

3. Gnd(A, φ ∨ ψ) = Gnd(A, φ) ∨ Gnd(A, ψ)

4. If φ = ∀ȳ((G1 ∧ · · · ∧Gm) ⊃ φ′), then

Gnd(A, φ) =
∧
s∈G

Gnd(A, φ′)[[s]]

where G = G1(A) on · · · on Gm(A)

5. If φ = ∃ȳφ′, then
Gnd(A, φ) = ∃ȳGnd(A, φ′).

Figure 3.1: Naive partial grounding

We now prove that the algorithm of section 3.1 produces a partial grounding.

Proposition 3.1.1 (Correctness of the naive algorithm). Let φ be a σ∪ε-formula in negation
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normal form. Let A be a σ-structure. The formula η(Gnd(A, φ)) is a partial grounding of φ

over A.

Proof. We can prove the proposition inductively over the structure of the formula Gnd(A, φ).

• Let α be a literal. η(Gnd(A, α)) = α and α is a partial grounding of itself because α

is a literal.

• Let γ be α ∨ β. Let γ′ = Gnd(A, γ) = α′ ∨ β′. Assume for induction that η(α′) is a

partial grounding of α over A and η(β′) is a partial grounding of β over A. Assume

B is an expansion of A and s is a variable assignment from free(γ) to A.

– For one direction of ’iff’, assume that B |= γ[s]. Then B |= α[s] or B |= β[s]. If

B |= α[s], then (B, ÃB) |= α′[s], by definition of partial grounding and similarly

for β and β′. Therefore, (B, ÃB) |= α′[s] or (B, ÃB) |= β′[s]. Therefore, (B, ÃB) |=
γ′[s].

– For the other direction, assume that (B, ÃB) |= γ′[s]. Then (B, ÃB) |= α′[s] or

(B, ÃB) |= β′[s]. If (B, ÃB) |= α′[s] then B |= α[s] by definition of grounding and

similarly for β′ and β. Therefore, B |= α[s] or B |= β[s]. Therefore B |= γ[s].

• Let γ be α ∧ β. Let γ′ = Gnd(A, γ) = α′ ∧ β′. Assume for induction that η(α′) is a

partial grounding of α over A and η(β′) is a partial grounding of β over A. Assume

B is an expansion of A and s is a variable assignment from free(γ) to A.

– For one direction of ’iff’, assume that B |= γ[s]. Then B |= α[s] and B |= β[s]. If

B |= α[s], then (B, ÃB) |= α′[s], by definition of grounding and similarly for β and

β′. Therefore, (B, ÃB) |= α′[s] and (B, ÃB) |= β′[s]. Therefore, (B, ÃB) |= γ′[s].

– For the other direction, assume that (B, ÃB) |= γ′[s]. Then (B, ÃB) |= α′[s] and

(B, ÃB) |= β′[s]. If (B, ÃB) |= α′[s] then B |= α[s] by definition of grounding and

similarly for β′ and β. Therefore, B |= α[s] and B |= β[s]. Therefore B |= γ[s].

• Let γ be ∀ȳ((G1 ∧ · · · ∧Gm) ⊃ α). Let γ′ = Gnd(A, γ) where

Gnd(A, γ) =
∧
s∈G

α′[s]

where G = G1(A) on · · · on Gm(A)
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Assume for induction that η(α′) is a partial grounding of α over A. The set G rep-

resents all the relevant values that ȳ can take. By definition of grounding for all

expansion structures B and for all s ∈ G, B |= α[s] iff (B, ÃB) |= α′[s]. Therefore, for

all expansion structures B and for all assignments t, B |= γ[t] iff (B,AB) |= γ′[t].

• Let γ be ∃ȳα. Let γ′ = Gnd(A, γ) where

Gnd(A, γ) = ∃ȳα′

Assume for induction that η(α′) is a partial grounding of α over A. Assume that

B |= γ[s]. Then B |= α[s]. By induction, (B, ÃB) |= α′[s], and therefore (B, ÃB) |=
∃ȳα′. The other direction is proven similarly. This is possible because in Chapter 3

we defined B |= α[s] to implicitly existentially quantify all unassigned free variables.

3.2 Grounding with Extended Relational Algebra

In this section we describe an algorithm that uses the extended relational algebra of Sec-

tion 2.4. The algorithm is shown in Figure 3.2. The procedure Gnd(A, G,X, φ) has four

parameters: A, the instance structure, G, the relation formed from the guards, X, the set

of free variables that are to be substituted for partial grounding, and φ, the formula. For

simplicity, this algorithm assumes that there are no functions in the formula and no nega-

tions except literals. This restricts background vocabulary to predicates and constants, but

a more elaborate algorithm can avoid this restriction.

To show that the procedure is correct, consider the following proposition.

Proposition 3.2.1 (Correctness of the relational algebra algorithm). Let φ be a σ ∪ ε-
formula with negations only in literals. Let A be a σ-structure. Let G be a relation. The

formula Gnd(A, G, φ) is an extended relation R such that for all γ ∈ G, η(δR(γ)) is a partial

grounding of φ[[γ]] over A.

Proof. The proposition can be proven inductively, using the literals as base cases.

• Since a literal is a partial grounding for itself, the proposition is clearly true for literals.
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Procedure Gnd(A, G, φ)

1. If φ is an expansion predicate literal or a background predicate literal then Gnd(A, G, φ)
is {(γ, φ[[γ]]) | γ ∈ G}.

2. If φ is an instance predicate literal and G is an X-relation then Gnd(A, G, φ) is the set
of all (γ, φ[[γ]]) such that γ ∈ πX(G on φ(A))

3. Gnd(A, G, φ ∧ ψ) = Gnd(A, G, φ) on Gnd(A, G, ψ)

4. Gnd(A, G, φ ∨ ψ) = Gnd(A, G, φ) ∪ Gnd(A, G, ψ)

5. Gnd(A, G,∀ȳ((G1 ∧ · · · ∧Gn) ⊃ φ)) = dG′(Gnd(A, G′′, φ)) where

G′ = πȳ(G1(A) on · · · on Gn(A))
G′′ = G on G′

6. Gnd(A, G,∃ȳφ) is {(γ,∃ȳψ) | (γ, ψ) ∈ Gnd(A, G, φ)}

Figure 3.2: Relational algebra partial grounding

• For φ ∧ ψ, assume the proposition for Gnd(A, G, φ) = R and Gnd(A, G, ψ) = S for

induction. Let γ ∈ G, then η(δR(γ)) is a partial grounding of φ[[γ]] and η(δS(γ))

is a partial grounding of ψ[[γ]]. Therefore η(δR(γ) ∧ δS(γ)) is a partial grounding of

(φ ∧ ψ)[[γ]]. Therefore, the proposition is true for Gnd(A, G, φ ∧ ψ) = R on S.

• For φ ∨ ψ, assume the proposition for Gnd(A, G, φ) = R and Gnd(A, G, ψ) = S for

induction. Let γ ∈ G, then η(δR(γ)) is a partial grounding of φ[[γ]] and η(δS(γ))

is a partial grounding of ψ[[γ]]. Therefore η(δR(γ) ∨ δS(γ)) is a partial grounding of

(φ ∨ ψ)[[γ]]. Therefore, the proposition is true for Gnd(A, G, φ ∨ ψ) = R ∪ S.

• For ∀ȳ((G1∧· · ·∧Gn) ⊃ φ), assume the proposition for Gnd(A, G′′, φ) = R for induction

where G′ = πȳ(G1(A) on · · · on Gn(A)) and G′′ = G on G′. Let dG′(R) = S. Let γ ∈ G,

then an extension γ′′ of γ is in G′′, and η(δR(γ′′)) is a partial grounding of φ[[γ′′]]. By

division, δS(γ) is the conjunction of δR(γ′′0 ) for all γ′′0 ∈ R where γ′′0 is an extension of γ.

Therefore, η(δS(γ)) is a partial grounding of (∀ȳ((G1 ∧ · · · ∧Gn) ⊃ φ))[[γ]]. Therefore,

the proposition is true for Gnd(A, G,∀ȳ((G1 ∧ · · · ∧Gn) ⊃ φ).

• For ∃ȳφ, assume the proposition for Gnd(A, G, φ) = R for induction. Given that R is

a correct extended relation of groundings, the proposition is clear for Gnd(A, G,∃ȳφ)
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since it is the result of merely adding an existential quantifier.



Chapter 4

Solving Model Expansion Using

Partial Grounding

In this chapter we describe how to construct an SMT problem from a partial grounding of

a model expansion problem.

4.1 Reduction Algorithm

Given a (σ ∪ ν ∪ ε)-formula φ and a (σ ∪ ν)-structure A, our goal is to find an (σ ∪ ν ∪ ε)-
structure B which is an expansion of A such that B |= φ. In order to use partial grounding

to find B, let us split A into two structures, the instance structure C of vocabulary σ and the

background structure D of vocabulary ν as described in section 2.2.1. Informally structure

C is an encoding of a problem instance and D is the arithmetic that we want to use to

solve the problem. Instead of being given the structure D, we will use an SMT solver that

will produce a variable assignment that allows D to satisfy a given ν-formula, if such an

assignment exists.

The following defines what we need an SMT solver to do. The abilities of actual SMT

solvers are described in section 2.5.

Definition 4.1.1 (SMT-solver). For ν-structure D, a total function f from first order

formulas to variable assignments is an D-SMT-solver iff

1. The domain of f is the set of first-order ν-formulas that contain no universal quanti-

fiers.

30



CHAPTER 4. SOLVING MODEL EXPANSION USING PARTIAL GROUNDING 31

2. For any φ in the domain of f , if there exists a variable assignment s such that D |= φ[s]

then D |= φ[f(φ)].

Given a (σ∪ν∪ε)-formula φ, a σ-structure C, and a D-SMT-solver S for some ν-structure

D, we need to find a (σ ∪ ν ∪ ε)-structure B which is an expansion of C and D such that

B |= φ. Let ψ be a partial grounding of φ over C such that ψ contains no universal quantifiers

and no negations except negative literals. We will use ψ, C, and S to construct B if any

such structure exists.

We will make three assumptions that are true of almost all SMT solvers in practice.

First, assume that ν contains = so that we can have subformulas of the form x = a where

x is a variable required to have the value of constant a. We also assume that the domain of

D contains at least two elements so that we can represent true and false, and ν contains at

least one constant which we will call c so that we can have subformulas of the form x = c

to indicated that x is a propositional variable that must be true in the resulting structure.

We will also assume ν contains a constant for every element in the domain of C so that new

constants introduced in grounding are always in ν.

We start by constructing a ν-formula ψ′ from ψ so that we can give ψ′ to S. This

requires removing all atoms containing vocabulary from ε or σ. Since S is a D-SMT-solver,

the domain of S is ν-formulas. We replace each σ atom α with ν-formula β such that for

all variable assignments s, D |= β[s] if and only if C |= α[s]. The formula β is constructed

from α and C by using equations.

The handling of σ atoms is straight-forward, so let us illustrate it by an example. If P is

a predicate of 3 arguments in σ, and P C = {(1, 2, 3), (2, 2, 2), (3, 3, 3)} then where P (x, 3, a)

appears in ψ, there will be the following in the ν-formula ψ′:

(x = 3 ∧ 3 = 2 ∧ a = 3) ∨ (x = 2 ∧ 3 = 2 ∧ a = 2) ∨ (x = 3 ∧ 3 = 3 ∧ a = 3)

Before we finish constructing ψ′, we need to convert any ε-literals into ν-formulas. This

conversion is very different depending upon whether the ε-literal is positive or negative. For

a positive literal α, we create a new variable xα and construct the ν-equation xα = c. Let

D be the set of all positive ε-literals in ψ, then for any negative ε-literal ¬P (x̄) in ψ, we

construct a conjunction ∧
P (ȳ)∈D

(xP (ȳ) 6= c ∨ ȳ 6= x̄)



CHAPTER 4. SOLVING MODEL EXPANSION USING PARTIAL GROUNDING 32

The above conjunction says that for every positive expansion literal with predicate P and

arguments ȳ, either that literal is false or ȳ does not match the arguments of ¬P (x̄). The

reason for this is to avoid any inconsistencies when the SMT solver chooses a truth assign-

ment for xα for each positive ε-literal α.

The goal of this construction for ε is to have the SMT solver assign true or false to

every positive ε-literal in ψ, so each distinct positive ε-literal is given a variable. Since the

SMT solver does not understand that the variables represent atoms, we need to include the

meaning of atoms in ψ′. We do this by replacing each negative ε-literal with a formula that

exhaustively tests each variable for a truth value that would make the negative ε-literal

false. For example, the formula for ¬P (1) would contain a conjunct representing that the

variable for P (1) is assigned false, and another conjunct that say that if x = 1, then P (x)

must be assigned false. In this way, we encode the meaning of both positive and negative

ε-literals in ψ′.

Figure 4.1 shows the procedure for the construction of ψ′ more formally, where ψ′ :=

Reduce(C, N, ε, ν, α) and α is ψ in negation normal form. The set N is all positive ε-literals

in ψ. For tuples t̄ = (t1, . . . , tn) and x̄ = (x1, . . . , xn), the notation t̄ = x̄ is a short form for

t1 = x1 ∧ · · · ∧ tn = xn.

Once we have ψ′, we use S(ψ′) to construct B. If D 6|= ψ′[S(ψ′)] then B does not exist.

Otherwise, we start constructing B by assuming it is an expansion of C and D so that we

only have to provide interpretations for the elements of ε.

We use N and S(ψ′) to construct an interpretation for each predicate P in ε as follows:

PB = {t̄[[S(ψ′)]] | P (t̄) ∈ N,S(ψ′)(xP (t̄)) = c}

This works because the SMT solver provides truth values for each positive ε-literal α in the

form of a variable xα as well as values for each variable in the arguments of α. To construct

B, all we have to do is create a structure which agrees with the truth values that the SMT
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Procedure Reduce(A, N, ε, ν, φ)

1. Reduce(A, N, ε, ν, φ ∧ ψ) = Reduce(A, N, ε, ν, φ) ∧ Reduce(A, N, ε, ν, ψ)

2. Reduce(A, N, ε, ν, φ ∨ ψ) = Reduce(A, N, ε, ν, φ) ∨ Reduce(A, N, ε, ν, ψ)

3. Reduce(A, N, ε, ν, φ) = φ if φ is a ν-literal.

4. For any predicate symbol E in ε,

Reduce(A, N, ε, ν,¬E(t̄)) =
∧

E(ȳ)∈N

(xE(ȳ) 6= c ∨ ȳ 6= t̄)

Reduce(A, N, ε, ν, E(t̄)) = (xE(t̄) = c)

5. For any predicate symbol P in the vocabulary of A then

Reduce(A, N, ε, ν,¬P (t̄)) = ¬
∨

x̄∈PA

(t̄ = x̄)

Reduce(A, N, ε, ν, P (t̄)) =
∨

x̄∈PA

(t̄ = x̄)

Figure 4.1: Reduce

solver provides.

Theorem 4.1.2. Let C be a σ-structure with domain C and ν is a vocabulary containing

true such that σ and ν are disjoint. Let D be a ν-structure with a domain of size at least

2. Let S be a D-SMT solver. Let φ be a (σ ∪ ν ∪ ε)-formula. Let ψ be a partial grounding

of φ with respect to C.

If

• N is the set of all positive ε-literals in ψ

• ψ′ = Reduce(C, N, ε, ν, ψ) and ψ′ is an ν-formula

• D |= ψ′[S(ψ′)]

• B is a (σ ∪ ν ∪ ε)-structure that is an expansion of C and D and such that for any

predicate P ∈ ε
PB = {t̄[[S(ψ′)]] | P (t̄) ∈ N,S(ψ′)(xP (t̄)) = c}

then B |= φ.
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Proof. Let ψ be a partial grounding of φ with respect to C in negation normal form.

There are six kinds of literals, positive and negative from each of the three vocabularies,

σ, ν, ε. For each literal α in ψ, Reduce(C, N, ε, ν, ψ) uniformly substitutes a formula α′ in

ψ′. We will show that B |= α[S(ψ′)] if D |= α′[S(ψ′)].

• Let α be a σ-literal. From the definition of Reduce, α′ is a disjunction of equations

representing the corresponding relation in C, or the negation of that if α is negative.

Assume D |= α′[S(φ′)]. Since variable assignment is the same, clearly C |= α[S(φ′)],

and since B is an expansion of C, B |= α[S(φ′)]. Similarly, if we assume B |= α[S(φ′)]

then we must have C |= α[S(φ′)] since α is a σ-literal, and therefore D |= α′[S(φ′)].

• Let α be a ν-literal. From the definition of Reduce, α′ = α. Since B is an expansion

of D, it is clear that D |= α′[S(ψ′)] iff B |= α[S(ψ′)].

• Let α be a positive ε-literal. From the definition of Reduce, α′ = (xα = c) where xα

is a variable. Assume D |= α′[S(ψ′)]. The variable assignment S(ψ′) must assign c to

xα. Directly from the construction of B, B |= α[S(ψ′)]. Similarly, if we assume B |=
α[S(ψ′)] then the construction of B ensures that S(ψ′)(xα) = c and so D |= α′[S(ψ′)].

• Let α be the negative ε-literal ¬E(t̄). From the definition of Reduce,

α′ =
∧

E(ȳ)∈N

(xE(ȳ) 6= c ∨ ȳ 6= t̄)

Assume D |= α′[S(ψ′)]. For all E(ȳ) in D, either S(ψ′)(xE(ȳ)) 6= c or ȳ[S(ψ′)] 6=
t̄[S(ψ′)]. By the construction of B, the only way B |= E(ȳ)[S(ψ′)] can be true is if

both S(ψ′)(xE(ȳ)) = c and ȳ[S(ψ′)] = t̄[S(ψ′)] for some E(ȳ) in N , therefore B |=
¬E(ȳ)[S(ψ′)]. If we assume that B |= ¬E(ȳ)[S(ψ′)] then we have S(ψ′)(xE(ȳ)) 6= c

and ȳ[S(ψ′)] 6= t̄[S(ψ′)] for all E(ȳ) in D and therefore D |= α′[S(ψ′)].

By induction, we can now prove that for any ψ that meets the above conditions, B |=
ψ[S(Reduce(C, D, ε, ν, ψ))]. For formulas α and β, where α′ = Reduce(C, D, ε, ν, α) and

β′ = Reduce(C, N, ε, ν, β), assume B |= α[S(ψ′))] iff D |= α′[S(ψ′)] and B |= β[S(ψ′)] iff

D |= β′[S(ψ′)].

• Let γ = α ∨ β. Let γ′ = Reduce(C, D, ε, ν, γ) = α′ ∨ β′. Assume D |= γ′[S(ψ′)],

then either D |= α′[S(ψ′)] or D |= β′[S(ψ′)]. By assumption, either B |= α[S(ψ′)] or

B |= β[S(ψ′)] and therefore B |= γ[S(ψ′)].
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If we assume B |= γ[S(ψ′)], then either B |= α[S(ψ′)] or B |= β[S(ψ′)] and therefore

D |= γ′[S(ψ′)].

• Let γ = α ∧ β. Let γ′ = Reduce(C, D, ε, ν, γ) = α′ ∧ β′. Assume D |= γ′[S(ψ′)], then

D |= α′[S(ψ′)] and D |= β′[S(ψ′)]. By assumption, B |= α[S(ψ′)] and B |= β[S(ψ′)]

and therefore B |= γ[S(ψ′)].

If we assume B |= γ[S(ψ′)], then B |= α[S(ψ′)] and B |= β[S(ψ′)] and therefore

D |= γ′[S(ψ′)].

• Let γ = ∃x α. Let γ′ = Reduce(C, N, ε, ν, γ) = α′. Assume D |= α′[S(ψ′)]. By

assumption, B |= α[S(ψ′)] and therefore B |= ∃x α[S(ψ′)].

4.2 Expansion functions as SMT variables

Previous sections have assumed that there are no functions in the formula to simplify the

algorithms, either because all other functions were eliminated during the grounding process

or because equivalent predicates were used in place of functions. Sometimes it is imprac-

tical to write a formula without functions and impossible to eliminate those functions in

grounding because they are expansion functions. In that case, it is possible to substitute

each function term with a variable term that an SMT solver can accept.

Let f be an ε-function. Let φ be a formula. Let Nf be the set of tuples of terms that

represent the arguments of each instance of f that appears in φ. For every tuple of terms

x̄ ∈ Nf , let fx̄ be a new variable that represents the value of the term f(x̄). For every

unordered pair {x̄, ȳ} ⊆ Nf , let ψx̄,ȳ be the formula x̄ = ȳ ⊃ fx̄ = fȳ, which is a legal SMT

formula for ensuring that if the arguments of f are equal then the terms are equal. Since

an SMT solver does not know that we are using a set of variables to represent each f , we

can explicitly add
∧
{x̄,ȳ}⊆Df

ψx̄,ȳ to ensure that the implicit rules of being a function are

followed in any solution found.

For example, the partially ground formula f(x, y) = g(1)+f(1, 2)∧f(0, 0) < g(0) would

become fx,y = g1 + f1,2 ∧ f0,0 < g0 ∧ ψ where ψ is the explicit condition that f and g are

functions as follows:

ψ = ∧
(x = 1 ∧ y = 2) ⊃ fx,y = f1,2)

(x = 0 ∧ y = 0) ⊃ fx,y = f0,0)
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The formula ψ excludes conjuncts that simplify to true such as 1 = 0 ⊃ g1 = g0 and

(1 = 0 ∧ 2 = 0) ⊃ f1,2 = f0,0, since they are unnecessary.



Chapter 5

The Tool

In this chapter we describe the construction of a software tool for constructing partial

groundings from model expansion problems. The first version is described in detail, then we

briefly discuss the changes made for the second version in Section 5.6. The most important

classes in the object-oriented design are explained and detailed. In Section 5.5, we describe

the language that the tool uses to represent model expansion problems.

The following first version of the partial grounding tool is heavily based upon the ground-

ing tool developed by Amir Aavani and Shahab Tasharrofi. While preserving as much as

possible of the original software, we made the modifications necessary to create the first

version of the partial grounder out of their work.

5.1 BaseFOFormulaNode class

The fundamental class of the grounder’s object oriented design is called BaseFOFormulaN-

ode, which is the base class of all node objects which make up a formula. The functions

of BaseFOFormulaNode and its subclasses are responsible for all operations upon formulas,

and there are few design considerations provided for performing operations in any other way.

Therefore, a list of the functions of BaseFOFormulaNode is a good way to get an overview

of capabilities of the grounder.

The following is a partial list of the functions of BaseFOFormulaNode.

ToXML() This produces an XML representation of the formula. This is for debugging

purposes, to represent most details of the internal structure of the formula, including

37
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things which could not be represented in first order formula notation. Since its only

use is debugging, the details of the representation are omitted.

ToString(Assignment) Given an AssignmentCollection object, this renders the formula as

a string that resembles standard first order formula notation. The given Assignment-

Collection object represents a variable assignment that will be used before rendering.

ToSMT(Atoms, IsPositive, Assignments) Given a PosAtomCollection object, a boolean,

and an AssignmentCollection object, this renders the formula in a form that an SMT

solver can recognize using the standard contest notation. The PosAtomCollection

object represents a list of every instance of expansion predicate atoms appearing in

the overall formula, including parent nodes and nodes of entirely different branches.

This list has to be created before ToSMT can be called because ToSMT performs a

transformation on negative expansion predicates that depends on the list. Assign-

mentCollection is a variable assignment that allows for variable substitutions.

The IsPositive boolean variable represents whether an even or an odd number of nega-

tions contain this node. This is necessary because ToSMT renders positive expansion

atoms differently from negative expansion atoms and IsPositive determines which rep-

resentation is used. The IsPositive parameter makes it unnecessary to have the formula

in negation normal form.

CollectPosAtoms(Atoms, IsPositive, Assignments) Given a PosAtomCollection object,

a boolean, and an AssignmentCollection object, this searches this node and its chil-

dren for positive atoms and modifies the given PosAtomCollection object to include

everything found. The AssignmentCollection object is given because the BaseFOFor-

mulaNode data structure sometimes assigns values to variables at certain nodes, and

those assignments need to be stored with the atoms.

PushNegation(negative) Given a boolean, this constructs a new node tree to represent

this formula after it has been transformed to an equivalent negation normal form

formula. It works by recursively examining the children of this node and using the

given boolean argument to keep track of whether atoms should be positive or negative

when they are discovered.

DoGrounding() This constructs a TableCls object that represents the ground form of
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this formula. It works by recursively constructing TableCls objects for its children

and then using relational algebra operations to create the table for this node.

Intuitively DoGrounding() should take parameters to represent the universe and the

interpretations for instance predicates, but in this implemetation it requires no parameters

because at each node where such information is needed there is a BasicInfo object which

contains all needed interpretations. BasicInfo has several subclasses (PredicateSymbolInfo,

FunctionInfo, IntegerOperatorInfo, VariableInfo, IntegerContainerInfo), one for each kind of

situation where interpretation is needed. In other words, the tree of BaseFOFormulaNode

objects represents both the formula and the instance. BasicInfo will be discussed in detail

later.

The following is a partial list of the subclasses of BaseFOFormulaNode which are used

to represent the various formulas the tool can accept and report.

OperatorFOFormulaNode This is the class of nodes that may have children.

Subclasses:

UnaryOperatorFormulaNode This is the class of objects that represent unary

operators, including quantifiers because a quantifier node has only a single child.

• NotOpFOFormulaNode

• QuantifierFOFormulaNode

– ExistentialQuanFOFormulaNode

– ForAllQuanFOFormulaNode

– ConditionalQuanFOFormulaNode

∗ GuardedExistentialQuanFOFormulaNode

∗ GuardedForAllQuanFOFormulaNode

• RenamingFormulaNode

– AssignValueToVarFormulaNode

BinaryOperatorFormulaNode This is the class of objects that represent binary

operators.

• AndOpFOFormulaNode

• OrOpFOFormulaNode
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• ImpliesOpFOFormulaNode

• IffOpFOFormulaNode

GeneralOperatorFormulaNode This is the class of objects that represent formulas

with more than two subformulas. Each subclass serves the same purpose as the

corresponding BinaryOperatorFormulaNode subclass, but with more arguments.

• GeneralAndOpFOFormulaNode

• GeneralOrOpFOFormulaNode

AtomicFormula This is the class of nodes whose children are TermNodes instead of Base-

FOFormulaNodes.

Subclasses:

RelationFOFormulaNode This class brings together a PredicateSymbolInfo object

which contains the interpretation of a predicate, with the TermNode arguments

which are needed to determine if an atom is true or false.

EqualityFOFormulaNode This is the class of nodes for identity relations.

OrderingFOFormulaNode This is the class of nodes for inequality relations.

TrueFOFormulaNode These nodes represent true as a propositional constant.

FalseFOFormulaNode These nodes represent false as a propositional constant.

The RenamingFormulaNode class serves a special purpose in the graph of a formula’s

nodes. It allows a formula to reuse nodes instead of being represented by a tree. Even if

the same node is used in several places, by use of a RenamingFormulaNode, it can have a

different interpretation in each place by substituting variables with terms. Each Renaming-

FormulaNode has a pointer to a VariableInfo that represents a variable to be substituted,

while the subclasses specify what sort of term should replace the variable. In fact, Assign-

ValueToVarFormulaNode is the only subclass of RenamingFormulaNode. Each AssignVal-

ueToVarFormulaNode has a VariableInfo object and a Value object, and represents that for

the child formula of this node every occurrence of that VariableInfo is to be interpreted as

the Value.

AssignValueToVarFormulaNode takes the place of term nodes which would be used to

represent constant value terms. Wherever a constant with a known value is needed, a

variable and a AssignValueToVarFormulaNode can be used.
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The AssignmentCollection class of objects is used to keep track of which AssignValue-

ToVarFormulaNodes have been seen while traversing the node graph of a formula. Without

this, it would be impossible to determine what a variable represents. For the same rea-

son, when we construct lists of atoms in a formula, we must store (BaseFOFormulaNode,

AssignmentCollection) pairs, since a node alone would be meaningless.

5.2 TermNode class

The TermNode class is similar to BaseFOFormulaNode class, but it represents nodes of

terms instead of formulas. The following is a list of functions for TermNode.

GetReference() This simply returns a pointer to the BasicInfo object for this term. (Is

it assumed that all terms have info? What about aggregates? Investigation needed.)

ToXML() This produces an XML representation of the term.

ToSMT(Atoms, Assignment) Given a PosAtomCollection object and an AssignmentCol-

lection object, this renders the term into a string that an SMT solver would under-

stand.

ToSMTName(Assignment) Given an AssignmentCollection object to provide values for

the variables of this node, this produces a legal name in the SMT Standard that will

represent this term. It begins with the function name or variable name and if there

are any arguments they are surrounded by ’and separated by _. For example, f(x, y)

with assigmnent {(y, 3)} would be represented as f’x_3’. The result is something

that a human can recognize as the term it came from, but an SMT solver will see as

nothing but a single name.

GetFreeVariables() This produces a list of VariableInfo objects that represent variables

that are unquantified.

GetGroundableVariables() This produces a list of VariableInfo objects that represent

variables that are to be substituted for values during grounding.

IsEqual(Node) Given a TermNode object, this returns true if this term has the same

syntax as the given term.
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Evaluate(Assignments) Given an AssignmentCollection object, this returns a Value ob-

ject that represents the interpretation of the term.

The following is a partial list of subclasses for TermNode.

VarSymbTermNode This is a class of TermNodes that have no arguments and contain

VariableInfo objects that can be used with AssignmentCollection objects to produce

Value objects. Evaluate(Assignments) uses the given AssignmentCollection with the

contained VariableInfo.

FunctionTermNode This is a class of TermNodes that uses a FunctionInfo object and

the evaluations of its children to produce its Value object.

IntTermNode This is the class of nodes that can be involved in integer arithmetic. For

all IntTermNodes except for IntegerContainerTermNodes, the children are only al-

lowed to be other IntTermNodes. In addition to Evaluate(x), IntTermNodes have

IntegerEvaluate(x) that does the same calculation but returns an int instead of an

object. Evaluate(Assignments) calls IntegerEvaluate(Assignments) and constructs

a Value object around the resulting int.

Subclasses:

IntegerContainerTermNode This class of nodes wraps a TermNode in an Int-

TermNode to allow variables, functions, and constants to be part of arithmetic.

IntegerEvaluate(Assignments) calls Evaluate(Assignments) and extracts an int

from the resulting Value object.

IntegerOperatorTermNode This is the class of nodes that represent arithmetic

operators with built-in integer arithmetic functions. Each of its subclasses differ

only in how they implement IntegerEvaluate(x).

• SumOperatorTermNode

• SubtractOperatorTermNode

• MultiplicationOperatorTermNode

5.3 BasicInfo class

The BasicInfo class is the superclass of all the objects which represent vocabulary with

interpretations. The important values stored in every BasicInfo object are a String for the
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name of the object and a TypeInfo object which will be explained later. Each subclass adds

whatever interpretation is needed for how the subclass is to be used.

The following is a partial list of BasicInfo subclasses.

VariableInfo These objects are held by quantifier nodes and VarSymbTermNodes to keep

track of where a variable occurs. One object is used for each variable, and each

instance of that variable is a pointer to the object within a VarSymbTermNode. For the

purposes of partial grounding, each VariableInfo has a ToBeGround boolean variable

which is true if the variable is universally quantified and needs to be substituted in

the grounding.

FunctionInfo Each object of this class contains a function interpretation in the form of

a DataSet object. Each FunctionTermNode contains a pointer to a FunctionInfo to

name the function and so that the formula can be evaluated. For functions where no

interpretation is available, the DataSet pointer of the FunctionInfo is null.

IntegerOperatorInfo This subclass of FunctionInfo has additional functions to rep-

resent integer arithmetic. GetValue(x) takes a list of Value objects and pro-

duces a Value object that is the appropriate result for the particular operator.

GetIntegerResult(x) takes a list of ints and returns an int, for the same purpose

as GetValue(x).

• SumOperatorInfo

• SubtractOperatorInfo

• ProductOperatorInfo

PredicateSymbolInfo This class is similar to FunctionInfo, but it serves predicates in-

stead of functions, and RelationFOFormulaNodes instead of FunctionTermNodes.

IntegerContainerInfo These objects wrap other info objects. Each IntegerContainerT-

ermNode has an IntegerContainerInfo that contains the BasicInfo of the inner TermNode.

The name of every IntegerContainerInfo is INTEGER.

5.4 DataSet class and TableCls class

Objects of the DataSet class represent predicate interpretations and function interpretations.

A DataSet is a list of Tuples, and Tuples are lists of Values. The functions of DataSet are
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all for accessing the Tuples and Values or performing simple modifications. No interesting

algorithms are implemented by the DataSet class.

Relations are represented by objects of the TableCls class. Each TableCls contains a

list of VariableInfo objects and a pointer to a DataSet. For example P (x, y) could be rep-

resented by TableCls R1 and P (y, x) could be represented by TableCls R2. Both R1 and

R2 would share the same DataSet, but they would have different variable lists. Unlike

BaseFOFormulaNode objects, TableCls objects are designed to be used entirely by algo-

rithms implemented outside the class and its subclasses. No relational algebra operations

are implemented as functions of TableCls.

5.5 Input Language

The input for the tool comes in two parts, each with its own language. The theory file

encodes the formula and includes declarations of the instance predicates and expansion

predicates. The instance file encodes the instance structure with interpretations for the

instance predicates.

The input language used by this version of the tool is identical to the input language

used by the original grounder that this version was based upon.

5.5.1 Theory File

The theory file begins with ( and ends with ) and everything after the final ) is ignored.

There are three sections: given, find, and satisfying. Each section must be present even if it

is empty. The three sections are written (GIVEN givens), (FIND finds), and (SATISFYING

axioms), respectively.

The givens section contains three subsections and each must be present even if it is

empty. The subsection (TYPES types) declares the list of types that will be used, giving

each type a name. The subsection (SYMBOLS predicates) declares the names and parameter

types of the predicates that are used in the axioms. The subsection (FUNCTIONS functions)

declares names, parameter types, and result types for functions. The givens section must

include all vocabulary; expansion vocabulary must not be excluded.

Each type declaration is written as (TYPE name), where name is a name beginning

with either the letter I or the letter S. When the name begins with I it means that this type

represents integer values, and S means that the type represents string values. Even though
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string values are implemented in the tool, integer values serve the needs of SMT solvers so

in practice all types will start with the letter I.

Each predicate declaration is written as (SYMBOL name (parameters)). The name can

be any name, and parameters is a list of type names without commas. The type names

must each have been declared in the types section. This determines how many terms are

expected in atoms of the named predicate, and also the size of tuples for the predicate in

the instance file.

Each function declaration is written as (FUNCTION name (parameters): type). The

name must begin with an underscore because that is an enforced naming convention. The

parameters are a list of type names without commas and type is a single type name that

represents the type of the result of an instance of the function.

The finds section is a list of predicate names without commas. This list represents the

expansion vocabulary of the model expansion problem. Function names are not allowed.

The axioms section is any number of first-order formulas. These are the formulas to be

modeled in the model expansion problem.

5.5.2 First-Order Formula

As with the sections of the theory file, each first-order formula is surrounded by parenthe-

ses. Conjunction and disjunction are written (AND children) and (OR children), where

children are one or more formulas, each surrounded by its own parentheses to visually sep-

arate it from its neighbors. Other formulas that are accepted include (NOT φ), (IMPLIES

φ1 φ2), and (IFF φ1 φ2), where φ, φ1, and φ2 are formulas. The NOT form is negation, the

(IMPLIES φ1 φ2) means (OR (NOT φ1) φ2), and the (IFF φ1 φ2) means (AND (IMPLIES

φ1 φ2) (IMPLIES φ2 φ1)).

Each quantifier is allowed to have any number of variables. You write (FORALL x1 . . . xn

φ) or (EXISTS x1 . . . xn φ) where φ is a formula and x1 through xn are names for the

variables to be quantified.

Unlike formulas, terms are not necessarily surrounded by parentheses and terms in a list

are separated by commas. An atom is written (P(t1,. . . ,tn)), where P is the name of a

predicate and t1 through tn are terms. An atom without terms is written (P()). A term

is written F(t1,. . . ,tn), where F is a function name. A constant is written F().

Arithmetic functions are represented by the function names +, -, and *. These function

names do not begin with an underscore because they are built into the tool and not declared
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in the theory file, nor interpreted by the instance file. For term t where t is an argument

of an arithmetic function, t must be an instance of an arithmetic function, or else t must

be an instance of the INTEGER function. The INTEGER function takes one argument and its

result value is exactly the value of its argument. The only purpose of INTEGER(x) is to

allow term x to be included in arithmetic. Internally, an instance of the INTEGER function

is represented as an IntegerContainerTermNode object.

Comparison predicates are also allowed, such as (=(t1,t2)), (<(t1,t2)), and (<=(t1,t2)).

Unlike arithmetic functions, t1 and t2 can be any terms. Predicates > and >= are not allowed.

In addition to being a well formed formula according to the notation of the tool’s input

language, the grounding procedure only produces correct answers on a fragment of first

order logic. All negations must be inside all quantifiers. Otherwise that tool would have

to convert an existential quantifier to a universal quantifier or a universal quantifier to an

existential quantifier. It does not do that conversion, and the procedure treats universal

quantifiers and existential quantifiers very differently.

All existentially quantified variables must have distinct names. During the grounding

process new variables are created as necessary and they are all given distinct names by the

tool, but an input such as (∃yP (x, y))∧(∃yP (y, x)) would cause confusion because there are

two distinct variables named y. Universally quantified variables have no similar restriction

because they are replaced by values during grounding.

5.5.3 Instance File

The instance file provides interpretations for predicates, functions, and types declared in

the theory file. There are no sections to this file; it is just an unordered collection of

interpretations. Each interpretation is surrounded by parentheses to separate it from the

others.

A type interpretation has the form (TYPE name n [ n1 .. n2 ]) where name is a

declared type from the theory file starting with the letter I, n is a numeral indicating the

number of values in this type, n1 and n2 are numerals indicating the range of integers

represented by this type. The numeral n1 must not be greater than the numeral n2 and n

must equal n2 − n1 + 1.

A predicate interpretation has the form (PREDICATE name p1 . . . pn) where name is a

declared predicate from the theory file and p1 through pn are tuples of numerals matching

the parameters listed in the theory file. Tuples are written as (r1,. . . ,rm) where r1 through
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rm are numerals and m is the arity of the predicate.

A function interpretation has the form (FUNCTION name q1 . . . qn) where name is a

declared function from the theory file and q1 through qn are of the form (t1,. . . ,tm:r),

where t1 through tm are numerals representing function parameter values and r is a numeral

representing the corresponding term value. For each i with 1 ≤ i ≤ n, qi represents a tuple

that can be given to the function an the resulting value of the term, so if the function is a

constant that takes no parameters then qi has the form (:r). For example (FUNCTION one

(:1)) is a way of providing a constant for the number 1 in the axioms of the theory file.

5.6 Second Version

Using what was learned from the construction of the above software tool, we constructed a

second version to explore alternate design ideas. While the first version was written in C++

by modifying previously existing software, the second version was written in Java using an

entirely new design.

Biggest design change was the removal of almost all responsibilities from the class that

represents formulas. Instead of having many subclasses, one for each connective and variety

of atom, the Formula class has no subclasses. Each Formula is merely a code to identify the

connective, predicate, or quantifier that it represents, a list of variables that is empty for all

formulas but quantifiers, and a list of subformulas. Terms are also represented by Formula

objects, and it is left to the algorithm to determine which objects are formulas and which

are terms from context.

The ability to reduce a partially ground formula involving expansion functions to an

SMT formula has also been added. The second version also allows variables with neither

quantifiers nor guards, since these variables translate directly to variables in the resulting

SMT formula.

The syntax of the allowed input files has been made less restrictive. Underscores are no

longer required as a prefix of every function name, and the letter I is no longer required as

a prefix for type names.

In order to match the input syntax for a grounding tool that will be used for comparison

in a later chapter, quantifiers now require a type for each variable. This sort is internally

converted into a guard before grounding, and in general the tool does not distinguish between

instance predicates and types.
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These design changes were made partially with the goal of improving performance of the

SMT solver by simplifying the output formula of the partial grounder. This simplification

was difficult to produce with the first version of the tool, but it was successfully achieved

in the second version, and so the second version was used in the performance testing for

finding magic squares that is discussed later.
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Examples

The following are examples of using partial grounding and an SMT solver to solve model

expansion problems. The logic of the SMT solver is assumed to be QF LIA, the quantifier

free fragment of first order logic plus the theory of linear integer arithmetic. Addition and

comparison vocabulary will be defined by the SMT solver, as will integer numeral constants,

but we will also simplify arithmetic whenever possible before giving it to the SMT solver.

6.1 Scheduling

The following is a simple illustration of partial grounding and using SMT to solve a model

expansion problem where the expansion vocabulary is a single function of two parameters.

Without existential quantifiers in the axioms, the partial grounding is a ground formula

as could be produced by any grounding algorithm. This example shows how an expansion

function must be converted into a set of variables for the SMT solver to evaluate.

There is a set of jobs {J1, . . . , Jm} and a list of machines m1, . . . ,mn. For each job j and

machine m, j requires d(j,m) time on m, and if x < y then j must be finished on mx before

it can start on my because j must visit each machine in the order that they are listed. Each

machine can only process one job at a time.

Given jobs, a list of machines, and function d, we want to find function t such that for

each job j and machine m, t(j,m) is the time to start j on m in a schedule that uses the

least total time to process all jobs through all machines. To simplify this example, we will

merely try to find t such that the total time is less than some constant T and we will use

only two machines. The instance predicate J is the set of jobs. The instance constants m1

49
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and m2 are the machines, and the predicate M is the set of machines.

σ = {d, T, J,M,m1,m2} ε = {t}

Axioms:

∀j(J(j) ⊃ (t(j,M1) + d(j,M1) ≤ t(j,M2) ∧ t(j,M2) + d(j,M1) ≤ T ))

∀j1∀j2∀m

(
(J(j1) ∧ J(j2) ∧M(m) ∧ j1 < j2) ⊃ ∨

t(j1,m) + d(j1,m) ≤ t(j2,m)

t(j2,m) + d(j2,m) ≤ t(j1,m)

)
An example instance: m1 = 1, m2 = 2, M = {1, 2}, J = {1, 2}, T = 10,

d(1, 1) = 1

d(1, 2) = 2

d(2, 1) = 3

d(2, 2) = 4

This example assumes that expansion functions are allowed. Because of that assumption

there are no existential quantifiers and a partial grounding is practically the same a proper

grounding.

t(1, 1) + d(1, 1) ≤ t(1, 2) ∧ t(1, 2) + d(1, 2) ≤ 10

t(2, 1) + d(2, 1) ≤ t(2, 2) ∧ t(2, 2) + d(2, 2) ≤ 10

t(1, 1) + d(1, 1) ≤ t(2, 1) ∨ t(2, 1) + d(2, 1) ≤ t(1, 1)

t(1, 2) + d(1, 2) ≤ t(2, 2) ∨ t(2, 2) + d(2, 2) ≤ t(1, 2)

Reducing the expansion function t to variables and the instance function d to constants,

we get the following:

t1,1 + 1 ≤ t1,2 ∧ t1,2 + 2 ≤ 10

t2,1 + 3 ≤ t2,2 ∧ t2,2 + 4 ≤ 10

t1,1 + 1 ≤ t2,1 ∨ t2,1 + 3 ≤ t1,1
t1,2 + 2 ≤ t2,2 ∨ t2,2 + 4 ≤ t1,2

Converting t to a set of variables normally requires adding axioms to ensure that the

variables obey the rules of a function, but since there are no variables as argument terms

for t, the axioms would all simplify to true. For example, (1 = 2 ∧ 1 = 1) ⊃ t1,1 = t2,1

simplifies as true.
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6.2 N-Queens

The following is an illustration of partial grounding with an existential quantifier so that the

resulting formula is not a ground formula. The variables that exist after partial grounding

allows both parts of case 5 in the Reduce procedure in Figure 4.1, meaning the positive

and the negative instance of an expansion predicate. Without the variable, both positive

and negative instances produce the same result. Because of the variable, a literal such as

¬Q(1, 2) must be replaced by the negation of a disjunction of variable assignments that

could cause Q(1, 2) to be true.

The N-Queens problem is putting n queens on an n × n chess board so that no queen

threatens any other by the rules of chess. In other words, no queen is on the same horizontal,

vertical, or diagonal line as any other. The expansion predicate Q(x, y) is true if a queen is

at position (x, y).

σ = {n} ε = {Q}

∀x(1 ≤ x ≤ n ⊃ ∃y(1 ≤ y ≤ n ∧Q(x, y)))

∀x∀y1((1 ≤ x ≤ n ∧ 1 ≤ y1 < n) ⊃ [Q(x, y1) ⊃ ∀y2(y1 < y2 ≤ n ⊃ ¬Q(x, y2))])

∀x1∀y((1 ≤ x1 < n ∧ 1 ≤ y ≤ n) ⊃ [Q(x1, y) ⊃ ∀x2(x1 < x2 ≤ n ⊃ ¬Q(x2, y))])

∀x1∀x2∀y1∀y2

(1 ≤ x1 < x2 ≤ n ∧ 1 ≤ y1 < y2 ≤ n) ⊃ [(Q(x1, y1) ∧Q(x2, y2)) ⊃ x2 − x1 6= y2 − y1]

∀x1∀x2∀y1∀y2

(1 ≤ x1 < x2 ≤ n ∧ 1 ≤ y2 < y1 ≤ n) ⊃ [(Q(x1, y1) ∧Q(x2, y2)) ⊃ x2 − x1 6= y1 − y2]

To prevent the partial grounding from becoming large, let n = 3. The partial grounding

of the first axiom is:
1 ≤ y1 ≤ 3 ∧Q(1, y1)

1 ≤ y2 ≤ 3 ∧Q(2, y2)

1 ≤ y3 ≤ 3 ∧Q(3, y3)
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The partial grounding of the second axiom is:

Q(1, 1) ⊃ (¬Q(1, 2) ∧ ¬Q(1, 3))

Q(1, 2) ⊃ ¬Q(1, 3)

Q(2, 1) ⊃ (¬Q(2, 2) ∧ ¬Q(2, 3))

Q(2, 2) ⊃ ¬Q(2, 3)

Q(3, 1) ⊃ (¬Q(3, 2) ∧ ¬Q(3, 3))

Q(3, 2) ⊃ ¬Q(3, 3)

The partial grounding of the third axiom is:

Q(1, 1) ⊃ (¬Q(2, 1) ∧ ¬Q(3, 1))

Q(2, 1) ⊃ ¬Q(3, 1)

Q(1, 2) ⊃ (¬Q(2, 2) ∧ ¬Q(3, 2))

Q(2, 2) ⊃ ¬Q(3, 2)

Q(1, 3) ⊃ (¬Q(2, 3) ∧ ¬Q(3, 3))

Q(2, 3) ⊃ ¬Q(3, 3)

The partial grounding of the fourth axiom involves comparing every possible pair of

coordinates for diagonal threats. For example:

(Q(1, 1) ∧Q(2, 2)) ⊃ 2− 1 6= 2− 1

(Q(1, 1) ∧Q(2, 3)) ⊃ 2− 1 6= 3− 1

The full list of unsimplified grounding lines is too large to write out, but the right side of

the ⊃ of each line can be simplified to true or false. Allowing the grounder to perform that

step, the fourth axiom becomes:

¬(Q(1, 1) ∧Q(2, 2))

¬(Q(1, 1) ∧Q(3, 3))

¬(Q(2, 1) ∧Q(3, 2))

¬(Q(1, 2) ∧Q(2, 3))

¬(Q(2, 2) ∧Q(3, 3))

The grounding of the fifth axiom is similar, and its simplified form is:

¬(Q(1, 2) ∧Q(2, 1))

¬(Q(2, 2) ∧Q(3, 1))

¬(Q(1, 3) ∧Q(2, 2))

¬(Q(1, 3) ∧Q(3, 1))

¬(Q(2, 3) ∧Q(3, 2))



CHAPTER 6. EXAMPLES 53

To convert to SMT QF LIA, we replace each predicate atom with a propositional vari-

able. The first axiom becomes:

1 ≤ y1 ≤ 3 ∧Q1,y1

1 ≤ y2 ≤ 3 ∧Q2,y2

1 ≤ y3 ≤ 3 ∧Q3,y3

For the SMT solver, the problem requires values to be supplied for six variables: y1, y2, y3,

Q1,y1 , Q2,y2 , Q3,y3 . The above lines ensure that each column of the chess board contains a

queen, as represented by Q1,y1 , Q2,y2 , and Q3,y3 . It also ensures that each queen is located

between y = 1 and y = 3, as represented by 1 ≤ yi ≤ 3.

All of the other axioms contain only negative instances of Q, so to convert to SMT all

that is needed is to substitute the appropriate subformula for each negative instance. For

example Q(1, 1) becomes Q1,y1 ∧ y1 = 1 and Q(2, 3) becomes Q2,y2 ∧ y2 = 3.

6.3 Edge Matching

6.3.1 Version 1

The following illustrates converting instance vocabulary atoms into disjunctions for the

benefit of the SMT solver as described in case 6 of the Reduce procedure of Figure 4.1.

This case uses instance functions rather than the instance predicates which complicates the

procedure by forcing a conversion from something of the form P (f(x)) to ∃y(f(x) = y ∧
P (y)). Expansion functions becoming variables is illustrated again. The partial grounding

results in a ground formula because there are no existential quantifiers and so there are no

variable parameters to expansion vocabulary to complicate the Reduce procedure.

Given a set of square tile patterns where each side of each tile has a color, fill a k ×
m area with instances of those patterns such that adjacent tiles have matching colors on

the sides that touch. Tiles can be rotated. Let T be the set of tile patterns and t(x, s)

be an instance function such that pattern x has color t(x, s) on side s. Let p(x, y) be

an expansion function representing the pattern chosen for position x, y, and r(x, y) be an

expansion function representing the rotation chosen for position x, y.

σ = {k,m, t,m4, T} ε = {p, r}
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The quantifier-free linear integer arithmetic logic of SMT does not allow modulo, so

define the instance function m4 as follows:

m4(0) = 0

m4(1) = 1

m4(2) = 2

m4(3) = 3

m4(4) = 0

m4(5) = 1

m4(6) = 2

The function m4 allows us to wrap the sides of each tile around as it rotates. The domain

of {0, . . . , 6} is chosen because sides and rotations vary from 0 to 3, so a side plus a rotation

will always be between 0 and 6.

The axioms are as follows:

∀x∀y((1 ≤ x ≤ m ∧ 1 ≤ y ≤ k) ⊃ (T (p(x, y)) ∧ 0 ≤ r(x, y) ≤ 3))

∀x∀y
(1 ≤ x ≤ m ∧ 1 ≤ y < k) ⊃

t(p(x, y), r(x, y)) = t(p(x, y + 1),m4(2 + r(x, y + 1)))

∀x∀y
(1 ≤ x < m ∧ 1 ≤ y ≤ k) ⊃

t(p(x, y),m4(1 + r(x, y))) = t(p(x+ 1, y),m4(3 + r(x+ 1, y)))

To ground these axioms, choose the following instance for example.

m = 2 k = 2 T = {1, 2}

t(1, 0) = 0

t(1, 1) = 8

t(1, 2) = 8

t(1, 3) = 8

t(2, 0) = 0

t(2, 1) = 0

t(2, 2) = 8

t(2, 3) = 8

The first axiom grounds to:

T (p(1, 1)) ∧ 0 ≤ r(1, 1) ≤ 3 T (p(2, 1)) ∧ 0 ≤ r(2, 1) ≤ 3

T (p(1, 2)) ∧ 0 ≤ r(1, 2) ≤ 3 T (p(2, 2)) ∧ 0 ≤ r(2, 2) ≤ 3



CHAPTER 6. EXAMPLES 55

With simplification the second axiom grounds to:

t(p(1, 1), r(1, 1)) = t(p(1, 2),m4(2 + r(1, 2)))

t(p(2, 1), r(2, 1)) = t(p(2, 2),m4(2 + r(2, 2)))

With simplification the third axiom grounds to:

t(p(1, 1),m4(1 + r(1, 1))) = t(p(2, 1),m4(3 + r(2, 1)))

t(p(1, 2),m4(1 + r(1, 2))) = t(p(2, 2),m4(3 + r(2, 2)))

Converting the expansion functions into variables creates:

T (p1,1) ∧ 0 ≤ r1,1 ≤ 3 T (p2,1) ∧ 0 ≤ r2,1 ≤ 3

T (p1,2) ∧ 0 ≤ r1,2 ≤ 3 T (p2,2) ∧ 0 ≤ r2,2 ≤ 3

t(p1,1, r1,1) = t(p1,2,m4(2 + r1,2))

t(p2,1, r2,1) = t(p2,2,m4(2 + r2,2))

t(p1,1,m4(1 + r1,1)) = t(p2,1,m4(3 + r2,1))

t(p1,2,m4(1 + r1,2)) = t(p2,2,m4(3 + r2,2))

To finish the conversion to an SMT axiomatization, we need to simplify the instance

predicates and functions. For the first four formulas, this is simply:

(p1,1 = 1 ∨ p1,1 = 2) ∧ 0 ≤ r1,1 ≤ 3 (p2,1 = 1 ∨ p2,1 = 2) ∧ 0 ≤ r1,1 ≤ 3

(p1,2 = 1 ∨ p1,2 = 2) ∧ 0 ≤ r1,1 ≤ 3 (p2,2 = 1 ∨ p2,2 = 2) ∧ 0 ≤ r1,1 ≤ 3

For the remaining formulas, we first replace the instance functions with equivalent atoms

because the procedure does not deal with terms. It is simple to substitute a variable for

each term and create a conjunction that equates the variable with the term as follows:

t(p1,1, r1,1) = t1 ∧m4(2 + r1,2) = x1 ∧ t(p1,2, x1) = t2 ∧ t1 = t2

t(p2,1, r2,1) = t3 ∧m4(2 + r2,2) = x2 ∧ t(p2,2, x2) = t4 ∧ t3 = t4

m4(1 + r1,1) = x3 ∧ t(p1,1, x3) = t5 ∧m4(3 + r2,1) = x4 ∧ t(p2,1, x4) = t6 ∧ t5 = t6

m4(1 + r1,2) = x5 ∧ t(p1,2, x5) = t7 ∧m4(3 + r2,2) = x6 ∧ t(p2,2, x6) = t8 ∧ t7 = t8

Each of the instance function atoms is then substituted with an equivalent disjunction

based on its definition in the instance structure. The resulting formula is too large to include
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in full, but for example t(p1,1, r1,1) = t1 is substituted with

∨



p1,1 = 1 ∧ r1,1 = 0 ∧ t1 = 0

p1,1 = 1 ∧ r1,1 = 1 ∧ t1 = 8

p1,1 = 1 ∧ r1,1 = 2 ∧ t1 = 8

p1,1 = 1 ∧ r1,1 = 3 ∧ t1 = 8

p1,1 = 2 ∧ r1,1 = 0 ∧ t1 = 0

p1,1 = 2 ∧ r1,1 = 1 ∧ t1 = 0

p1,1 = 2 ∧ r1,1 = 2 ∧ t1 = 8

p1,1 = 2 ∧ r1,1 = 3 ∧ t1 = 8


The other substitutions for t are similar and vary only by the names of the variables. For

m4, take m4(2 + r1,2) = x1 as an example:

∨



2 + r1,2 = 0 ∧ x1 = 0

2 + r1,2 = 1 ∧ x1 = 1

2 + r1,2 = 2 ∧ x1 = 2

2 + r1,2 = 3 ∧ x1 = 3

2 + r1,2 = 4 ∧ x1 = 0

2 + r1,2 = 5 ∧ x1 = 1

2 + r1,2 = 6 ∧ x1 = 2


6.3.2 Version 2

The following is an example where the SMT solver is required to solve linear integer arith-

metic of the form x + 1 = y which is an instance of summation that cannot be simplified

away. The variables involved are generated to represent expansion functions. There are

no existential quantifiers to produce variables after partial grounding. Converting instance

vocabulary to disjunctions is also illustrated.

Given a set of square tiles where each side of each tile has a color, lay the tiles within

a k ×m area such that adjacent tiles have matching colors on the sides that touch. Tiles

can be rotated. Let T be the set of tiles and t(w, s) be an instance function such that tile

w has color t(w, s) on side s. Let x(w) and y(w) be expansion functions representing that

tile w is laid at coordinates (x(w), y(w)), and r(w) be an expansion function representing

the rotation chosen for tile w.
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σ = {k,m, t,m4, T} ε = {x, y, r}

The quantifier-free linear integer arithmetic logic of SMT does not allow modulo, so

define the instance function m4 as follows:

m4(0) = 0

m4(1) = 1

m4(2) = 2

m4(3) = 3

m4(4) = 0

m4(5) = 1

m4(6) = 2

The function m4 allows us to wrap the sides of each tile around as it rotates. The domain

of {0, . . . , 6} is chosen because sides and rotations vary from 0 to 3, so a side plus a rotation

will always be between 0 and 6.

The axioms are as follows:

∀w(T (w) ⊃ (1 ≤ x(w) ≤ m ∧ 1 ≤ y(w) ≤ k ∧ 0 ≤ r(w) ≤ 3))

∀w1∀w2

(T (w1) ∧ T (w2) ∧ w1 6= w2) ⊃
(x(w1) = x(w2) ∧ y(w1) + 1 = y(w2)) ⊃ t(w1, r(w1)) = t(w2,m4(2 + r(w2)))

∀w1∀w2

(T (w1) ∧ T (w2) ∧ w1 6= w2) ⊃
(x(w1) + 1 = x(w2) ∧ y(w1) = y(w2)) ⊃ t(w1,m4(1 + r(w1))) = t(w2,m4(3 + r(w2)))

To ground these axioms, choose the following instance for example.

m = 2 k = 2 T = {1, 2, 3}

t(1, 0) = 0

t(1, 1) = 8

t(1, 2) = 8

t(1, 3) = 8

t(2, 0) = 0

t(2, 1) = 0

t(2, 2) = 8

t(2, 3) = 8

t(2, 0) = 7

t(2, 1) = 8

t(2, 2) = 8

t(2, 3) = 7
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The simplifying the constants, grounding for the first axiom is:

1 ≤ x(1) ≤ 2 ∧ 1 ≤ y(1) ≤ 2 ∧ 0 ≤ r(1) ≤ 3

1 ≤ x(2) ≤ 2 ∧ 1 ≤ y(2) ≤ 2 ∧ 0 ≤ r(2) ≤ 3

1 ≤ x(3) ≤ 2 ∧ 1 ≤ y(3) ≤ 2 ∧ 0 ≤ r(3) ≤ 3

The grounding for the second axiom is:

(x(1) = x(2) ∧ y(1) + 1 = y(2)) ⊃ t(1, r(1)) = t(2,m4(2 + r(2)))

(x(1) = x(3) ∧ y(1) + 1 = y(3)) ⊃ t(1, r(1)) = t(3,m4(2 + r(3)))

(x(2) = x(1) ∧ y(2) + 1 = y(1)) ⊃ t(2, r(2)) = t(1,m4(2 + r(1)))

(x(2) = x(3) ∧ y(2) + 1 = y(3)) ⊃ t(2, r(2)) = t(3,m4(2 + r(3)))

(x(3) = x(1) ∧ y(3) + 1 = y(1)) ⊃ t(3, r(3)) = t(1,m4(2 + r(1)))

(x(3) = x(2) ∧ y(3) + 1 = y(2)) ⊃ t(3, r(3)) = t(2,m4(2 + r(2)))

The grounding for the third axiom is:

(x(1) + 1 = x(2) ∧ y(1) = y(2)) ⊃ t(1,m4(1 + r(1))) = t(2,m4(3 + r(2)))

(x(1) + 1 = x(3) ∧ y(1) = y(3)) ⊃ t(1,m4(1 + r(1))) = t(3,m4(3 + r(3)))

(x(2) + 1 = x(1) ∧ y(2) = y(1)) ⊃ t(2,m4(1 + r(2))) = t(1,m4(3 + r(1)))

(x(2) + 1 = x(3) ∧ y(2) = y(3)) ⊃ t(2,m4(1 + r(2))) = t(3,m4(3 + r(3)))

(x(3) + 1 = x(1) ∧ y(3) = y(1)) ⊃ t(3,m4(1 + r(3))) = t(1,m4(3 + r(1)))

(x(3) + 1 = x(2) ∧ y(3) = y(2)) ⊃ t(3,m4(1 + r(3))) = t(2,m4(3 + r(2)))

By converting all the expansion functions to variables we get:

1 ≤ x1 ≤ 2 ∧ 1 ≤ y1 ≤ 2 ∧ 0 ≤ r1 ≤ 3

1 ≤ x2 ≤ 2 ∧ 1 ≤ y2 ≤ 2 ∧ 0 ≤ r2 ≤ 3

1 ≤ x3 ≤ 2 ∧ 1 ≤ y3 ≤ 2 ∧ 0 ≤ r3 ≤ 3

(x1 = x2 ∧ y1 + 1 = y2) ⊃ t(1, r1) = t(2,m4(2 + r2))

(x1 = x3 ∧ y1 + 1 = y3) ⊃ t(1, r1) = t(3,m4(2 + r3))

(x2 = x1 ∧ y2 + 1 = y1) ⊃ t(2, r2) = t(1,m4(2 + r1))

(x2 = x3 ∧ y2 + 1 = y3) ⊃ t(2, r2) = t(3,m4(2 + r3))

(x3 = x1 ∧ y3 + 1 = y1) ⊃ t(3, r3) = t(1,m4(2 + r1))

(x3 = x2 ∧ y3 + 1 = y2) ⊃ t(3, r3) = t(2,m4(2 + r2))
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(x1 + 1 = x2 ∧ y1 = y2) ⊃ t(1,m4(1 + r1)) = t(2,m4(3 + r2))

(x1 + 1 = x3 ∧ y1 = y3) ⊃ t(1,m4(1 + r1)) = t(3,m4(3 + r3))

(x2 + 1 = x1 ∧ y2 = y1) ⊃ t(2,m4(1 + r2)) = t(1,m4(3 + r1))

(x2 + 1 = x3 ∧ y2 = y3) ⊃ t(2,m4(1 + r2)) = t(3,m4(3 + r3))

(x3 + 1 = x1 ∧ y3 = y1) ⊃ t(3,m4(1 + r3)) = t(1,m4(3 + r1))

(x3 + 1 = x2 ∧ y3 = y2) ⊃ t(3,m4(1 + r3)) = t(2,m4(3 + r2))

We must replace the instance functions with equivalent atoms because the procedure

does not deal with terms. It is simple to substitute a variable for each term and create a

conjunction that equates the variable with the term as follows:

(x1 + 1 = x2 ∧ y1 = y2) ⊃ t(1,m4(1 + r1)) = t(2,m4(3 + r2))

becomes

(x1 + 1 = x2 ∧ y1 = y2) ⊃
m4(1 + r1) = a1 ∧ t(1, a1) = t1 ∧m4(3 + r2) = a2 ∧ t(2, a2) = t2 ∧ t1 = t2

The entire transformation is too large to include in full, but each line is transformed similarly.

Each of the instance function atoms is then substituted with an equivalent disjunction based

on its definition in the instance structure. Continuing with the above example, m4(1+r1) =

a1 is substituted with:

∨



2 + r1,2 = 0 ∧ x1 = 0

2 + r1,2 = 1 ∧ x1 = 1

2 + r1,2 = 2 ∧ x1 = 2

2 + r1,2 = 3 ∧ x1 = 3

2 + r1,2 = 4 ∧ x1 = 0

2 + r1,2 = 5 ∧ x1 = 1

2 + r1,2 = 6 ∧ x1 = 2


The including simplification, atom t(1, a1) = t1 is substituted with:

∨


a1 = 1 ∧ t1 = 0

a1 = 2 ∧ t1 = 8

a1 = 3 ∧ t1 = 8

a1 = 4 ∧ t1 = 8


The other substitutions are similar, varying only by the names of the variables.
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6.4 Hydraulic Planning

The following example expands upon the use of case 5 of the Reduce procedure of Figure 4.1

already illustrated using N-Queens in Section 6.2. It contains several existential quantifiers

and multiple expansion predicates that appear in both positive and negative instances with

variable arguments. Case 6 disjunction substitutions are never needed for the instance

predicates because they are used always either as guards or with constant arguments after

partial grounding. It makes no use of arithmetic.

A directed graph represents connected pipes, valves, and tanks. Each edge represents a

valve that can be either open or closed. Each node in V represents a pipe or other space

where fluid may reside. If a node x is a pressurized tank then instance predicate T (x) will

be true. If valve x, y is initially closed then instance predicate C(x, y) will be true and if it

is initially open then O(x, y) will be true. If a node is an empty tank that needs to be filled,

then instance predicate G(x) will be true. Find a set of no more than n valves to open so

that all tanks in G are filled from some tank in T .

The expansion predicate P (x, y, i) means that node y is pressurized from node x after

step i. The expansion predicate A(x, y) is the set of valves that are to be opened.

σ = {V, T,C,O,G} ε = {P,A}

The axioms are as follows:

∀x∀y∀i((V (x) ∧ V (y) ∧ 1 ≤ i ≤ n) ⊃ ((¬O(x, y) ∧ ¬C(x, y)) ⊃ ¬P (x, y, i)))

∀x0∀y0∀x1∀y1∀i
(C(x0, y0) ∧ C(x1, y1) ∧ 1 ≤ i ≤ n) ⊃ ((P (x0, y0, i) ∧ P (x1, y1, i)) ⊃ (x0 = x1 ∧ y0 = y1))

∀x∀y∀i
(O(x, y) ∧ 1 ≤ i ≤ n) ⊃ (P (x, y, i) ⊃ (T (x) ∨ ∃j∃w(V (w) ∧ 1 ≤ j ≤ i ∧ P (w, x, j))))

∀x∀y∀i
(C(x, y) ∧ 1 ≤ i ≤ n) ⊃ (P (x, y, i) ⊃ (T (x) ∨ ∃j∃w(V (w) ∧ 1 ≤ j < i ∧ P (w, x, j))))

∀y(G(y) ⊃ ∃x∃i(V (x) ∧ 1 ≤ i ≤ n ∧ P (x, y, i)))

∀x∀y(C(x, y) ⊃ (A(x, y)↔ ∃i(0 ≤ i ≤ n ∧ P (x, y, i))))

For this example, the instance structure will be defined as follows:
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V = {1, 2, 3, 4, 5}
O = {(2, 3), (1, 4)}

C = {(1, 2), (3, 5), (4, 5)}
T = {1}
G = {5}
n = 2

After simplifying the instance predicates O and C, the grounding of the first axiom

becomes:
¬P (1, 1, 1) ¬P (1, 1, 2) ¬P (2, 2, 1) ¬P (2, 2, 2)

¬P (3, 3, 1) ¬P (3, 3, 2) ¬P (4, 4, 1) ¬P (4, 4, 2)

¬P (5, 5, 1) ¬P (5, 5, 2)

¬P (2, 1, 1) ¬P (2, 1, 2) ¬P (3, 1, 1) ¬P (3, 1, 2)

¬P (4, 1, 1) ¬P (4, 1, 2) ¬P (5, 1, 1) ¬P (5, 1, 2)

¬P (3, 2, 1) ¬P (3, 2, 2) ¬P (4, 2, 1) ¬P (4, 2, 2)

¬P (5, 2, 1) ¬P (5, 2, 2)

¬P (4, 3, 1) ¬P (4, 3, 2) ¬P (5, 3, 1) ¬P (5, 3, 2)

¬P (5, 4, 1) ¬P (5, 4, 2)

¬P (1, 3, 1) ¬P (1, 3, 2) ¬P (1, 5, 1) ¬P (1, 5, 2)

¬P (2, 4, 1) ¬P (2, 4, 2) ¬P (3, 4, 1) ¬P (3, 4, 2)

The simplifying away cases where x0 = x1 and y0 = y1 and cases which differ only by

conjunct order, the grounding for the second axiom becomes:

¬(P (1, 2, 1) ∧ P (3, 5, 1)) ¬(P (1, 2, 2) ∧ P (3, 5, 2))

¬(P (1, 2, 1) ∧ P (4, 5, 1)) ¬(P (1, 2, 2) ∧ P (4, 5, 2))

¬(P (3, 5, 1) ∧ P (4, 5, 1)) ¬(P (3, 5, 2) ∧ P (4, 5, 2))
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The grounding of the third axiom is as follows:

P (2, 3, 1) ⊃ (T (2) ∨ (V (w1) ∧ 1 ≤ j1 ≤ 1 ∧ P (w1, 2, j1)))

P (2, 3, 2) ⊃ (T (2) ∨ (V (w2) ∧ 1 ≤ j2 ≤ 2 ∧ P (w2, 2, j2)))

P (1, 4, 1) ⊃ (T (1) ∨ (V (w3) ∧ 1 ≤ j3 ≤ 1 ∧ P (w3, 2, j3)))

P (1, 4, 2) ⊃ (T (1) ∨ (V (w4) ∧ 1 ≤ j4 ≤ 2 ∧ P (w4, 2, j4)))

Simplifying the above grounding with the definition of T gives:

P (2, 3, 1) ⊃ (V (w1) ∧ 1 ≤ j1 ≤ 1 ∧ P (w1, 2, j1))

P (2, 3, 2) ⊃ (V (w2) ∧ 1 ≤ j2 ≤ 2 ∧ P (w2, 2, j2))

The atoms P (w1, 2, j1) and P (w2, 2, j2) are positive instance of expansion predicate P .

All positive instance of expansion predicates must be noted for use when converting the

grounding into an SMT problem.

The grounding of the forth axiom is as follows:

P (1, 2, 1) ⊃ (T (1) ∨ (V (w3) ∧ 1 ≤ j3 < 1 ∧ P (w3, 1, j3)))

P (1, 2, 2) ⊃ (T (1) ∨ (V (w4) ∧ 1 ≤ j4 < 2 ∧ P (w4, 1, j4)))

P (3, 5, 1) ⊃ (T (3) ∨ (V (w5) ∧ 1 ≤ j5 < 1 ∧ P (w5, 3, j5)))

P (3, 5, 2) ⊃ (T (3) ∨ (V (w6) ∧ 1 ≤ j6 < 2 ∧ P (w6, 3, j6)))

P (4, 5, 1) ⊃ (T (4) ∨ (V (w7) ∧ 1 ≤ j7 < 1 ∧ P (w7, 4, j7)))

P (4, 5, 2) ⊃ (T (4) ∨ (V (w8) ∧ 1 ≤ j8 < 2 ∧ P (w8, 4, j8)))

With simplification, the above grounding becomes:

¬P (3, 5, 1)

P (3, 5, 2) ⊃ (V (w6) ∧ 1 ≤ j6 < 2 ∧ P (w6, 3, j6))

¬P (4, 5, 1)

P (4, 5, 2) ⊃ (V (w8) ∧ 1 ≤ j8 < 2 ∧ P (w8, 4, j8))

The atoms P (w6, 3, j6) and P (w8, 4, j8) are the positive expansion predicate instances in the

above grounding.

The grounding of the fifth axiom is as follows:

V (x) ∧ 1 ≤ i ≤ 2 ∧ P (x, 5, i)

The atom P (x, 5, i) must be noted as a positive instance.
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The grounding of the sixth axiom is as follows:

A(1, 2)↔ (0 ≤ i1 ≤ 5 ∧ P (1, 2, i1))

A(3, 5)↔ (0 ≤ i2 ≤ 5 ∧ P (3, 5, i2))

A(4, 5)↔ (0 ≤ i3 ≤ 5 ∧ P (4, 5, i3))

The atoms A(1, 2), A(3, 5), A(4, 5), P (1, 2, i1), P (3, 5, i2), and P (4, 5, i3) must be noted as

positive instances of expansion predicates. Because of the↔ connective, all of the atoms are

both positive and negative as is clear when the connective is expanded into a conjunction

of disjunctions. This expansion must be performed because the negative instances will need

a different substitution than the positive instances.

All positive instance of expansion predicates must be substituted with propositional

variables which represent the truth of the original atom. So that the meanings of the new

variables are clear, they are named according to the original atom. For example, P (w1, 2, j1)

will become Pw1,2,j1 which is a propositional variable whose truth no longer depends upon

w1 or j1 because those variable names are the subscript; they are not standing in for some

other subscript. Similarly, A(1, 2) will become A1,2.

Each negative instance must be substituted with a subformula in terms of the positive

instances of that expansion predicate. For example, P (3, 2, 1) appears negatively in the

grounding of the first axioms. The following subformula would be substituted for that

atom:

∨



Pw1,2,j1 ∧ w1 = 3 ∧ 2 = 2 ∧ ji = 1

Pw2,2,j2 ∧ w2 = 3 ∧ 2 = 2 ∧ j2 = 1

Pw6,3,j6 ∧ w6 = 3 ∧ 3 = 2 ∧ j6 = 1

Pw8,4,j8 ∧ w8 = 3 ∧ 4 = 2 ∧ j8 = 1

P1,2,i1 ∧ 1 = 3 ∧ 2 = 2 ∧ i1 = 1

P3,5,i2 ∧ 3 = 3 ∧ 5 = 2 ∧ i2 = 1

P4,5,i3 ∧ 4 = 3 ∧ 5 = 2 ∧ i3 = 1


Several simplifications should be made to the above formula before it is given to the SMT

solver, but as it is it serves to illustrate how every positive instance of P must be considered

when substituting for each negative instance of P . In the case of A, the negative instances

become the same as the positive instances after simplification.
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6.5 Magic Square

The example of a magic square is intended to illustrate summation in a model expansion

problem as the rows, columns, and diagonals are summed. Partial grounding produces a

ground formula because there are no existential quantifiers, but expansion functions cause

variables in the SMT formula and a large portion of the SMT formula is occupied with

arithmetic.

A magic square is an n × n matrix of integers from 1 to n2 such that all columns

and all rows sum to the same integer. The two diagonals must also sum to that integer.

To axiomatize the finding of a magic square of size n for model expansion, the instance

structure consists only of the constant n. The expansion structure has the function f(x, y)

which represents the magic square and the constant c which represents the sum of any row

or column. For bookkeeping purposes, we will also use h(x, y), j(x, y), k1(y), and k2(y).

The function h(x, y) represents the sum along row y from column 1 to column x. The

function j(x, y) represents the sum along column x from row 1 to row y. The function k1(y)

represents the sum along the diagonal from (1, 1) to row y. The function k2(y) represents

the sum along the diagonal from (n, 1) to row y.

σ = {n} ε = {c, f, h, j, k1, k2}

The axiomatization for finding a magic square is as follows:

∀x∀y((1 ≤ x ≤ n ∧ 1 ≤ y ≤ n) ⊃ 1 ≤ f(x, y) ≤ n2)

∀x1∀y1∀x2∀y2

(1 ≤ x1 ≤ n ∧ 1 ≤ y ≤ n ∧ 1 ≤ x2 ≤ n ∧ 1 ≤ y2n) ⊃
x1 6= x2 ∧ y1 6= y2 ⊃ f(x1, y1) 6= f(x2, y2)

∀y(1 ≤ y ≤ n ⊃ h(1, y) = f(1, y))

∀x∀y((2 ≤ x ≤ n ∧ 1 ≤ y ≤ n) ⊃ h(x, y) = h(x− 1, y) + f(x, y))

∀y(1 ≤ y ≤ n ⊃ h(n, y) = c)

∀x(1 ≤ x ≤ n ⊃ j(x, 1) = f(x, 1))

∀x∀y((1 ≤ x ≤ n ∧ 2 ≤ y ≤ n) ⊃ j(x, y) = j(x, y − 1) + f(x, y))

∀x(1 ≤ x ≤ n ⊃ j(x, n) = c)
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k1(1) = f(1, 1) ∧ k2(1) = f(n, 1)

∀i(2 ≤ i ≤ n ⊃ k1(i) = k1(i− 1) + f(i, i))

∀i(2 ≤ i ≤ n ⊃ k2(i) = k2(i− 1) + f(n− i+ 1, i))

k1(n) = c ∧ k2(n) = c

To ground this example, we will use the instance n = 3. The first axiom grounds to 9

similar instances of 1 ≤ f(x, y) ≤ 9 for every x and y between 1 and 3, ensuring that no

illegal numbers will appear in the square. With simplification, the second axiom grounds

to 36 similar instances of f(x1, y1) 6= f(x2, y2) for every relevant x1, y1, x2, y2 to ensure that

no number is used more than once. The remaining axioms are organized into three groups,

one for each of h, j, and k.

The grounding for the h axioms is as follows:

h(1, 1) = f(1, 1)

h(1, 2) = f(1, 2)

h(1, 3) = f(1, 3)

h(2, 1) = h(1, 1) + f(2, 1) h(3, 1) = h(2, 1) + f(3, 1)

h(2, 2) = h(1, 2) + f(2, 2) h(3, 2) = h(2, 2) + f(3, 2)

h(2, 3) = h(1, 3) + f(2, 3) h(3, 3) = h(2, 3) + f(3, 3)

h(3, 1) = c

h(3, 2) = c

h(3, 3) = c

The grounding for the j axioms is as follows:

j(1, 1) = f(1, 1)

j(2, 1) = f(2, 1)

j(3, 1) = f(3, 1)

j(1, 2) = j(1, 1) + f(1, 2) j(1, 3) = j(1, 2) + f(1, 3)

j(2, 2) = j(2, 1) + f(2, 2) j(2, 3) = j(2, 2) + f(2, 3)

j(3, 2) = j(3, 1) + f(3, 2) j(3, 3) = j(3, 2) + f(3, 3)

j(1, 3) = c

j(2, 3) = c

j(3, 3) = c

The grounding for the k axioms is as follows:
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k1(1) = f(1, 1) ∧ k2(1) = f(3, 1)

k1(2) = k1(1) + f(2, 2) k1(3) = k1(2) + f(3, 3)

k2(2) = k2(1) + f(2, 2) k2(3) = k2(2) + f(1, 3)

k1(3) = c ∧ k2(3) = c

The conversion of the above grounding to an SMT formula is a trivial matter of replacing

each expansion function term with an SMT variable. For example, x could be substituted for

all occurrences of f(1, 1) and y could be substituted for all occurrences of f(1, 2). We often

write the variable name for f(1, 1) as f1,1 to make it easy to recognize, but subscripts are

not actually accepted in the SMT-LIB Standard, so some variable names must be chosen for

all 34 variables of the grounding. Once the variable names have been chosen, the grounding

is ready for the SMT solver.



Chapter 7

Demonstration

In this chapter partial grounding is demonstrated using an SMT solver called Yices[26]

and the partial grounder of Chapter 5. The first section uses the n-queens problem and

the second section uses the hydraulic planning problem from Section 6.4, both using the

first version of the partial grounder. In the third section we use the magic square problem

to compare between a Yices solution running time using partial grounding and a SAT-

solver solution running time. The second version of the partial grounder is used for best

performance.

The output of the version information for Yices is as follows.

Yices 2.0 prototype. Copyright SRI International, 2009

GMP 4.2.1. Copyright Free Software Foundation, Inc.

Build date: Thu Jul 29 14:32:44 PDT 2010

Platform: i686-pc-mingw32 (release)

7.1 N-Queens

The n-queens problem is given to the grounder in the formula file. Using the notation that

the grounder requires, the formula file is as follows.

(

(GIVEN

(TYPES (TYPE INum))

(SYMBOLS

(SYMBOL Queen(INum INum))

67
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)

(FUNCTIONS )

)

(FIND Queen)

(SATISFYING

(FORALL x (EXISTS y (Queen(x,y))))

(FORALL x1 y1 x2 y2

(OR

(NOT

(AND

(< (x2, x1))

(Queen(x1, y1))

(Queen(x2, y2))

)

)

(NOT

(= (-(INTEGER(x2),INTEGER(x1)), -(INTEGER(y2),INTEGER(y1))))

)

)

)

(FORALL x1 y1 x2 y2

(OR

(NOT

(AND

(< (y2, y1))

(Queen(x1, y1))

(Queen(x2, y2))

)

)

(NOT

(= (-(INTEGER(x1),INTEGER(x2)), -(INTEGER(y2),INTEGER(y1))))

)

)

)

(FORALL x y1

(OR

(NOT (Queen(x,y1)))
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(FORALL y2 (OR (NOT (Queen(x,y2))) (=(y2,y1))))

)

)

(FORALL x1 y

(OR

(NOT (Queen(x1,y)))

(FORALL x2 (OR (NOT (Queen(x2,y))) (=(x2,x1))))

)

)

)

)

The following instance file says that we want a solution for 4-Queens. It defines the

integers to be 1, 2, 3, 4.

(TYPE INum 4[1..4])

The result of the grounder is a long SMT formula in the standard notation that Yices

accepts. It is too long to include here in full, but here are several excerpts.

(and

(and (<= 1 Y.1) (<= Y.1 4))

(and (<= 1 Y.2) (<= Y.2 4))

(and (<= 1 Y.3) (<= Y.3 4))

(and (<= 1 Y.4) (<= Y.4 4))

)

The grounder knows that the variables involved are of type INum, so it starts by en-

suring that the SMT solver knows it as well. Without this, the SMT solver might as-

sign the variables any integer. The variables Y.1 through Y.4 were generated by the

grounder because of (FORALL x (EXISTS y (Queen(x,y)))), which grounds to four ver-

sions of (Queen(i,Y.i)), each with a different i. This is given to the SMT solver as the

following.

(and Queen_1_Y.1 Queen_2_Y.2 Queen_3_Y.3 Queen_4_Y.4)

All four columns must have a queen, so all four propositions must be true. The interesting

part of the model produced by the SMT solver will be the values of Y.1 through Y.4, which
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indicates the position of each queen. The remainder of the SMT formulas are devoted to

preventing illegal arrangements of queens. For example, the following two conjuncts prevent

Queen(2, 2)∧Queen(1, 1) and Queen(3, 3)∧Queen(1, 1). I have added the indentation by hand.

(not

(and

(or

(and Queen_1_Y.1 (= 2 1) (= 2 Y.1))

(and Queen_2_Y.2 (= 2 2) (= 2 Y.2))

(and Queen_3_Y.3 (= 2 3) (= 2 Y.3))

(and Queen_4_Y.4 (= 2 4) (= 2 Y.4)))

(or

(and Queen_1_Y.1 (= 1 1) (= 1 Y.1))

(and Queen_2_Y.2 (= 1 2) (= 1 Y.2))

(and Queen_3_Y.3 (= 1 3) (= 1 Y.3))

(and Queen_4_Y.4 (= 1 4) (= 1 Y.4)))))

(not

(and

(or

(and Queen_1_Y.1 (= 3 1) (= 3 Y.1))

(and Queen_2_Y.2 (= 3 2) (= 3 Y.2))

(and Queen_3_Y.3 (= 3 3) (= 3 Y.3))

(and Queen_4_Y.4 (= 3 4) (= 3 Y.4)))

(or

(and Queen_1_Y.1 (= 1 1) (= 1 Y.1))

(and Queen_2_Y.2 (= 1 2) (= 1 Y.2))

(and Queen_3_Y.3 (= 1 3) (= 1 Y.3))

(and Queen_4_Y.4 (= 1 4) (= 1 Y.4)))))

The grounding for the formulas that prevent two queens on the same row or column is

more elaborate because of the way the original formula was designed. Here are the first two

conjuncts, with indentation added by hand.

(or

(not (or

(and Queen_1_Y.1 (= 1 1) (= 1 Y.1))

(and Queen_2_Y.2 (= 1 2) (= 1 Y.2))

(and Queen_3_Y.3 (= 1 3) (= 1 Y.3))
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(and Queen_4_Y.4 (= 1 4) (= 1 Y.4))))

(and

(not (or

(and Queen_1_Y.1 (= 1 1) (= 2 Y.1))

(and Queen_2_Y.2 (= 1 2) (= 2 Y.2))

(and Queen_3_Y.3 (= 1 3) (= 2 Y.3))

(and Queen_4_Y.4 (= 1 4) (= 2 Y.4))))

(not (or

(and Queen_1_Y.1 (= 1 1) (= 3 Y.1))

(and Queen_2_Y.2 (= 1 2) (= 3 Y.2))

(and Queen_3_Y.3 (= 1 3) (= 3 Y.3))

(and Queen_4_Y.4 (= 1 4) (= 3 Y.4))))

(not (or

(and Queen_1_Y.1 (= 1 1) (= 4 Y.1))

(and Queen_2_Y.2 (= 1 2) (= 4 Y.2))

(and Queen_3_Y.3 (= 1 3) (= 4 Y.3))

(and Queen_4_Y.4 (= 1 4) (= 4 Y.4))))))

(or

(not (or

(and Queen_1_Y.1 (= 1 1) (= 2 Y.1))

(and Queen_2_Y.2 (= 1 2) (= 2 Y.2))

(and Queen_3_Y.3 (= 1 3) (= 2 Y.3))

(and Queen_4_Y.4 (= 1 4) (= 2 Y.4))))

(and

(not (or

(and Queen_1_Y.1 (= 1 1) (= 1 Y.1))

(and Queen_2_Y.2 (= 1 2) (= 1 Y.2))

(and Queen_3_Y.3 (= 1 3) (= 1 Y.3))

(and Queen_4_Y.4 (= 1 4) (= 1 Y.4))))

(not (or

(and Queen_1_Y.1 (= 1 1) (= 3 Y.1))

(and Queen_2_Y.2 (= 1 2) (= 3 Y.2))

(and Queen_3_Y.3 (= 1 3) (= 3 Y.3))

(and Queen_4_Y.4 (= 1 4) (= 3 Y.4))))

(not (or

(and Queen_1_Y.1 (= 1 1) (= 4 Y.1))

(and Queen_2_Y.2 (= 1 2) (= 4 Y.2))
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(and Queen_3_Y.3 (= 1 3) (= 4 Y.3))

(and Queen_4_Y.4 (= 1 4) (= 4 Y.4))))))

The output of the SMT solver is exactly as follows.

sat

MODEL

(= Queen_4_Y.4 true)

(= Queen_3_Y.3 true)

(= Queen_2_Y.2 true)

(= Queen_1_Y.1 true)

(= Y.4 3)

(= Y.2 4)

(= Y.3 1)

(= Y.1 2)

----

The propositional variable Queen 1 Y.1 represents Queen(1, Y.1), and since Y.1 = 2, we

have Queen(1, 2). Similarly, the positions of all the queens can be read from the Y variables:

{(1, 2), (2, 4), (3, 1), (4, 3)}.

7.2 Hydraulic Planning

The following is the formula for the problem of hydraulic planning in the notation of the

grounder.

(

(GIVEN

(TYPES (TYPE INum))

(SYMBOLS

(SYMBOL A(INum INum))

(SYMBOL P(INum INum INum))

(SYMBOL T(INum))

(SYMBOL C(INum INum))

(SYMBOL O(INum INum))

(SYMBOL G(INum))
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(SYMBOL V(INum))

(SYMBOL N(INum))

)

(FUNCTIONS

(FUNCTION _one():INum)

)

)

(FIND P A)

(SATISFYING

(FORALL x y i

(OR

(NOT

(AND (V(x)) (V(y)) (N(i)))

)

(OR (O(x, y)) (C(x,y)) (NOT (P(x,y,i))))

)

)

(FORALL x0 y0 x1 y1 i

(OR

(NOT

(AND (C(x0,y0)) (C(x1,y1)) (N(i)))

)

(OR (NOT (P(x0,y0,i)))

(NOT (P(x1,y1,i))) (AND (=(x0,x1)) (=(y0,y1)))

)

)

)

(FORALL x y i

(OR

(NOT

(AND (O(x,y)) (N(i)))

)

(OR

(NOT (P(x,y,i)))

(T(x))

(EXISTS j1 w1

(AND (V(w1)) (<=(_one(),j1)) (<=(j1,i)) (P(w1,x,j1)))
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)

)

)

)

(FORALL x y i

(OR

(NOT

(AND (C(x,y)) (N(i)))

)

(OR

(NOT (P(x,y,i)))

(T(x))

(EXISTS j2 w2

(AND (V(w2)) (<=(_one(),j2)) (<=(j2,i)) (P(w2,x,j2)))

)

)

)

)

(FORALL y

(OR

(NOT (G(y)))

(EXISTS x3 i3 (AND (N(i3)) (P(x3,y,i3))))

)

)

(FORALL x y

(OR

(NOT (C(x,y)))

(AND

(OR (NOT (A(x,y))) (EXISTS i4 (AND (N(i4)) (P(x,y,i4)))))

(OR (A(x,y)) (FORALL i (OR (NOT (N(i))) (NOT (P(x,y,i))))))

)

)

)

)

)

We will demonstrate the grounder using two instances. The first instance is as follows.

This is the same instance as in the example in section 6.4.
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(TYPE INum 5[1..5])

(PREDICATE V (1)(2)(3)(4)(5))

(PREDICATE N (1)(2))

(PREDICATE O (2,3)(1,4))

(PREDICATE C (1,2)(3,5)(4,5))

(PREDICATE T (1))

(PREDICATE G (5))

(FUNCTION _one (:1))

The output of the grounder when given this instance starts with a long list of things

which P cannot contain, as in:

(not (or

(and P_W1.2.3.1_2_J1.2.3.1 (= 1 W1.2.3.1) (= 1 2) (= 1 J1.2.3.1))

(and P_W1.2.3.2_2_J1.2.3.2 (= 1 W1.2.3.2) (= 1 2) (= 1 J1.2.3.2))

(and P_W1.2.3.3_2_J1.2.3.3 (= 1 W1.2.3.3) (= 1 2) (= 1 J1.2.3.3))

(and P_W2.3.5.1_3_J2.3.5.1 (= 1 W2.3.5.1) (= 1 3) (= 1 J2.3.5.1))

(and P_W2.4.5.1_4_J2.4.5.1 (= 1 W2.4.5.1) (= 1 4) (= 1 J2.4.5.1))

(and P_W2.3.5.2_3_J2.3.5.2 (= 1 W2.3.5.2) (= 1 3) (= 1 J2.3.5.2))

(and P_W2.4.5.2_4_J2.4.5.2 (= 1 W2.4.5.2) (= 1 4) (= 1 J2.4.5.2))

(and P_W2.3.5.3_3_J2.3.5.3 (= 1 W2.3.5.3) (= 1 3) (= 1 J2.3.5.3))

(and P_W2.4.5.3_4_J2.4.5.3 (= 1 W2.4.5.3) (= 1 4) (= 1 J2.4.5.3))

(and P_X3.5_5_I3.5 (= 1 X3.5) (= 1 5) (= 1 I3.5))

(and P_1_2_I4.1.2 (= 1 1) (= 1 2) (= 1 I4.1.2))

(and P_3_5_I4.3.5 (= 1 3) (= 1 5) (= 1 I4.3.5))

(and P_4_5_I4.4.5 (= 1 4) (= 1 5) (= 1 I4.4.5))))

(not (or

(and P_W1.2.3.1_2_J1.2.3.1 (= 2 W1.2.3.1) (= 1 2) (= 1 J1.2.3.1))

(and P_W1.2.3.2_2_J1.2.3.2 (= 2 W1.2.3.2) (= 1 2) (= 1 J1.2.3.2))

(and P_W1.2.3.3_2_J1.2.3.3 (= 2 W1.2.3.3) (= 1 2) (= 1 J1.2.3.3))

(and P_W2.3.5.1_3_J2.3.5.1 (= 2 W2.3.5.1) (= 1 3) (= 1 J2.3.5.1))

(and P_W2.4.5.1_4_J2.4.5.1 (= 2 W2.4.5.1) (= 1 4) (= 1 J2.4.5.1))

(and P_W2.3.5.2_3_J2.3.5.2 (= 2 W2.3.5.2) (= 1 3) (= 1 J2.3.5.2))

(and P_W2.4.5.2_4_J2.4.5.2 (= 2 W2.4.5.2) (= 1 4) (= 1 J2.4.5.2))

(and P_W2.3.5.3_3_J2.3.5.3 (= 2 W2.3.5.3) (= 1 3) (= 1 J2.3.5.3))

(and P_W2.4.5.3_4_J2.4.5.3 (= 2 W2.4.5.3) (= 1 4) (= 1 J2.4.5.3))

(and P_X3.5_5_I3.5 (= 2 X3.5) (= 1 5) (= 1 I3.5))

(and P_1_2_I4.1.2 (= 2 1) (= 1 2) (= 1 I4.1.2))
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(and P_3_5_I4.3.5 (= 2 3) (= 1 5) (= 1 I4.3.5))

(and P_4_5_I4.4.5 (= 2 4) (= 1 5) (= 1 I4.4.5))))

(not (or

(and P_W1.2.3.1_2_J1.2.3.1 (= 3 W1.2.3.1) (= 1 2) (= 1 J1.2.3.1))

(and P_W1.2.3.2_2_J1.2.3.2 (= 3 W1.2.3.2) (= 1 2) (= 1 J1.2.3.2))

(and P_W1.2.3.3_2_J1.2.3.3 (= 3 W1.2.3.3) (= 1 2) (= 1 J1.2.3.3))

(and P_W2.3.5.1_3_J2.3.5.1 (= 3 W2.3.5.1) (= 1 3) (= 1 J2.3.5.1))

(and P_W2.4.5.1_4_J2.4.5.1 (= 3 W2.4.5.1) (= 1 4) (= 1 J2.4.5.1))

(and P_W2.3.5.2_3_J2.3.5.2 (= 3 W2.3.5.2) (= 1 3) (= 1 J2.3.5.2))

(and P_W2.4.5.2_4_J2.4.5.2 (= 3 W2.4.5.2) (= 1 4) (= 1 J2.4.5.2))

(and P_W2.3.5.3_3_J2.3.5.3 (= 3 W2.3.5.3) (= 1 3) (= 1 J2.3.5.3))

(and P_W2.4.5.3_4_J2.4.5.3 (= 3 W2.4.5.3) (= 1 4) (= 1 J2.4.5.3))

(and P_X3.5_5_I3.5 (= 3 X3.5) (= 1 5) (= 1 I3.5))

(and P_1_2_I4.1.2 (= 3 1) (= 1 2) (= 1 I4.1.2))

(and P_3_5_I4.3.5 (= 3 3) (= 1 5) (= 1 I4.3.5))

(and P_4_5_I4.4.5 (= 3 4) (= 1 5) (= 1 I4.4.5))))

Next, it lists every pair of valves that cannot both be opened in the same step. In other

words, for every step, every pair of valves that are closed are not both opened in this step.

For example, step 1, valves (3, 5) and (1, 2):

(or

(not (or

(and P_W1.2.3.1_2_J1.2.3.1 (= 3 W1.2.3.1) (= 5 2) (= 1 J1.2.3.1))

(and P_W1.2.3.2_2_J1.2.3.2 (= 3 W1.2.3.2) (= 5 2) (= 1 J1.2.3.2))

(and P_W1.2.3.3_2_J1.2.3.3 (= 3 W1.2.3.3) (= 5 2) (= 1 J1.2.3.3))

(and P_W2.3.5.1_3_J2.3.5.1 (= 3 W2.3.5.1) (= 5 3) (= 1 J2.3.5.1))

(and P_W2.4.5.1_4_J2.4.5.1 (= 3 W2.4.5.1) (= 5 4) (= 1 J2.4.5.1))

(and P_W2.3.5.2_3_J2.3.5.2 (= 3 W2.3.5.2) (= 5 3) (= 1 J2.3.5.2))

(and P_W2.4.5.2_4_J2.4.5.2 (= 3 W2.4.5.2) (= 5 4) (= 1 J2.4.5.2))

(and P_W2.3.5.3_3_J2.3.5.3 (= 3 W2.3.5.3) (= 5 3) (= 1 J2.3.5.3))

(and P_W2.4.5.3_4_J2.4.5.3 (= 3 W2.4.5.3) (= 5 4) (= 1 J2.4.5.3))

(and P_X3.5_5_I3.5 (= 3 X3.5) (= 5 5) (= 1 I3.5))

(and P_1_2_I4.1.2 (= 3 1) (= 5 2) (= 1 I4.1.2))

(and P_3_5_I4.3.5 (= 3 3) (= 5 5) (= 1 I4.3.5))

(and P_4_5_I4.4.5 (= 3 4) (= 5 5) (= 1 I4.4.5))))

(not (or

(and P_W1.2.3.1_2_J1.2.3.1 (= 1 W1.2.3.1) (= 2 2) (= 1 J1.2.3.1))
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(and P_W1.2.3.2_2_J1.2.3.2 (= 1 W1.2.3.2) (= 2 2) (= 1 J1.2.3.2))

(and P_W1.2.3.3_2_J1.2.3.3 (= 1 W1.2.3.3) (= 2 2) (= 1 J1.2.3.3))

(and P_W2.3.5.1_3_J2.3.5.1 (= 1 W2.3.5.1) (= 2 3) (= 1 J2.3.5.1))

(and P_W2.4.5.1_4_J2.4.5.1 (= 1 W2.4.5.1) (= 2 4) (= 1 J2.4.5.1))

(and P_W2.3.5.2_3_J2.3.5.2 (= 1 W2.3.5.2) (= 2 3) (= 1 J2.3.5.2))

(and P_W2.4.5.2_4_J2.4.5.2 (= 1 W2.4.5.2) (= 2 4) (= 1 J2.4.5.2))

(and P_W2.3.5.3_3_J2.3.5.3 (= 1 W2.3.5.3) (= 2 3) (= 1 J2.3.5.3))

(and P_W2.4.5.3_4_J2.4.5.3 (= 1 W2.4.5.3) (= 2 4) (= 1 J2.4.5.3))

(and P_X3.5_5_I3.5 (= 1 X3.5) (= 2 5) (= 1 I3.5))

(and P_1_2_I4.1.2 (= 1 1) (= 2 2) (= 1 I4.1.2))

(and P_3_5_I4.3.5 (= 1 3) (= 2 5) (= 1 I4.3.5))

(and P_4_5_I4.4.5 (= 1 4) (= 2 5) (= 1 I4.4.5)))))

Next, we verify that each valve we open is pressurized before we open it. Since we are

trying to supply pressure by opening a limited number of valves, we cannot afford to waste

time opening valves without pressure. For example, before we open valve (2, 3) in step 1, we

make sure that some valve (w, 2) has pressure in step 1 or earlier. Since there is no earlier

step, we get:

(or

(not (or

(and P_W1.2.3.1_2_J1.2.3.1 (= 2 W1.2.3.1) (= 3 2) (= 1 J1.2.3.1))

(and P_W1.2.3.2_2_J1.2.3.2 (= 2 W1.2.3.2) (= 3 2) (= 1 J1.2.3.2))

(and P_W1.2.3.3_2_J1.2.3.3 (= 2 W1.2.3.3) (= 3 2) (= 1 J1.2.3.3))

(and P_W2.3.5.1_3_J2.3.5.1 (= 2 W2.3.5.1) (= 3 3) (= 1 J2.3.5.1))

(and P_W2.4.5.1_4_J2.4.5.1 (= 2 W2.4.5.1) (= 3 4) (= 1 J2.4.5.1))

(and P_W2.3.5.2_3_J2.3.5.2 (= 2 W2.3.5.2) (= 3 3) (= 1 J2.3.5.2))

(and P_W2.4.5.2_4_J2.4.5.2 (= 2 W2.4.5.2) (= 3 4) (= 1 J2.4.5.2))

(and P_W2.3.5.3_3_J2.3.5.3 (= 2 W2.3.5.3) (= 3 3) (= 1 J2.3.5.3))

(and P_W2.4.5.3_4_J2.4.5.3 (= 2 W2.4.5.3) (= 3 4) (= 1 J2.4.5.3))

(and P_X3.5_5_I3.5 (= 2 X3.5) (= 3 5) (= 1 I3.5))

(and P_1_2_I4.1.2 (= 2 1) (= 3 2) (= 1 I4.1.2))

(and P_3_5_I4.3.5 (= 2 3) (= 3 5) (= 1 I4.3.5))

(and P_4_5_I4.4.5 (= 2 4) (= 3 5) (= 1 I4.4.5))))

(and

(and

(and

(or
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(= W1.2.3.1 1)

(= W1.2.3.1 2)

(= W1.2.3.1 3)

(= W1.2.3.1 4)

(= W1.2.3.1 5))

(<= 1 J1.2.3.1))

(<= J1.2.3.1 1))

P_W1.2.3.1_2_J1.2.3.1))

Now that we know that P (x, y, i) is only true when valve (x, y) is open and has pressure

at step i, we simply demand that the goal pipe, 5, is given pressure at some step i from

some other pipe x. In other words, P (x, 5, i), or as it appears in the grounder output:

(and (or (= I3.5 1) (= I3.5 2) (= I3.5 3)) P_X3.5_5_I3.5)

Finally, we need to ensure that A is the set of valves that are to be opened. Among the

many things we test are the following, that A(1, 2) implies P (1, 2, i) for some i, and that

¬A(1, 2) implies ¬P (1, 2, i) for each of i = 1, i = 2, i = 3.

(or

(not (or

(and A_1_2 (= 1 1) (= 2 2))

(and A_3_5 (= 1 3) (= 2 5))

(and A_4_5 (= 1 4) (= 2 5))))

(and (or (= I4.1.2 1) (= I4.1.2 2) (= I4.1.2 3)) P_1_2_I4.1.2))

(or A_1_2

(and

(not (or

(and P_W1.2.3.1_2_J1.2.3.1 (= 1 W1.2.3.1) (= 2 2) (= 1 J1.2.3.1))

(and P_W1.2.3.2_2_J1.2.3.2 (= 1 W1.2.3.2) (= 2 2) (= 1 J1.2.3.2))

(and P_W1.2.3.3_2_J1.2.3.3 (= 1 W1.2.3.3) (= 2 2) (= 1 J1.2.3.3))

(and P_W2.3.5.1_3_J2.3.5.1 (= 1 W2.3.5.1) (= 2 3) (= 1 J2.3.5.1))

(and P_W2.4.5.1_4_J2.4.5.1 (= 1 W2.4.5.1) (= 2 4) (= 1 J2.4.5.1))

(and P_W2.3.5.2_3_J2.3.5.2 (= 1 W2.3.5.2) (= 2 3) (= 1 J2.3.5.2))

(and P_W2.4.5.2_4_J2.4.5.2 (= 1 W2.4.5.2) (= 2 4) (= 1 J2.4.5.2))

(and P_W2.3.5.3_3_J2.3.5.3 (= 1 W2.3.5.3) (= 2 3) (= 1 J2.3.5.3))

(and P_W2.4.5.3_4_J2.4.5.3 (= 1 W2.4.5.3) (= 2 4) (= 1 J2.4.5.3))

(and P_X3.5_5_I3.5 (= 1 X3.5) (= 2 5) (= 1 I3.5))

(and P_1_2_I4.1.2 (= 1 1) (= 2 2) (= 1 I4.1.2))
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(and P_3_5_I4.3.5 (= 1 3) (= 2 5) (= 1 I4.3.5))

(and P_4_5_I4.4.5 (= 1 4) (= 2 5) (= 1 I4.4.5))))

(not (or

(and P_W1.2.3.1_2_J1.2.3.1 (= 1 W1.2.3.1) (= 2 2) (= 2 J1.2.3.1))

(and P_W1.2.3.2_2_J1.2.3.2 (= 1 W1.2.3.2) (= 2 2) (= 2 J1.2.3.2))

(and P_W1.2.3.3_2_J1.2.3.3 (= 1 W1.2.3.3) (= 2 2) (= 2 J1.2.3.3))

(and P_W2.3.5.1_3_J2.3.5.1 (= 1 W2.3.5.1) (= 2 3) (= 2 J2.3.5.1))

(and P_W2.4.5.1_4_J2.4.5.1 (= 1 W2.4.5.1) (= 2 4) (= 2 J2.4.5.1))

(and P_W2.3.5.2_3_J2.3.5.2 (= 1 W2.3.5.2) (= 2 3) (= 2 J2.3.5.2))

(and P_W2.4.5.2_4_J2.4.5.2 (= 1 W2.4.5.2) (= 2 4) (= 2 J2.4.5.2))

(and P_W2.3.5.3_3_J2.3.5.3 (= 1 W2.3.5.3) (= 2 3) (= 2 J2.3.5.3))

(and P_W2.4.5.3_4_J2.4.5.3 (= 1 W2.4.5.3) (= 2 4) (= 2 J2.4.5.3))

(and P_X3.5_5_I3.5 (= 1 X3.5) (= 2 5) (= 2 I3.5))

(and P_1_2_I4.1.2 (= 1 1) (= 2 2) (= 2 I4.1.2))

(and P_3_5_I4.3.5 (= 1 3) (= 2 5) (= 2 I4.3.5))

(and P_4_5_I4.4.5 (= 1 4) (= 2 5) (= 2 I4.4.5))))

(not (or

(and P_W1.2.3.1_2_J1.2.3.1 (= 1 W1.2.3.1) (= 2 2) (= 3 J1.2.3.1))

(and P_W1.2.3.2_2_J1.2.3.2 (= 1 W1.2.3.2) (= 2 2) (= 3 J1.2.3.2))

(and P_W1.2.3.3_2_J1.2.3.3 (= 1 W1.2.3.3) (= 2 2) (= 3 J1.2.3.3))

(and P_W2.3.5.1_3_J2.3.5.1 (= 1 W2.3.5.1) (= 2 3) (= 3 J2.3.5.1))

(and P_W2.4.5.1_4_J2.4.5.1 (= 1 W2.4.5.1) (= 2 4) (= 3 J2.4.5.1))

(and P_W2.3.5.2_3_J2.3.5.2 (= 1 W2.3.5.2) (= 2 3) (= 3 J2.3.5.2))

(and P_W2.4.5.2_4_J2.4.5.2 (= 1 W2.4.5.2) (= 2 4) (= 3 J2.4.5.2))

(and P_W2.3.5.3_3_J2.3.5.3 (= 1 W2.3.5.3) (= 2 3) (= 3 J2.3.5.3))

(and P_W2.4.5.3_4_J2.4.5.3 (= 1 W2.4.5.3) (= 2 4) (= 3 J2.4.5.3))

(and P_X3.5_5_I3.5 (= 1 X3.5) (= 2 5) (= 3 I3.5))

(and P_1_2_I4.1.2 (= 1 1) (= 2 2) (= 3 I4.1.2))

(and P_3_5_I4.3.5 (= 1 3) (= 2 5) (= 3 I4.3.5))

(and P_4_5_I4.4.5 (= 1 4) (= 2 5) (= 3 I4.4.5)))))))

The output of the SMT solver is as follows. The only interesting propositional variables

are the ones that are true: P_4_5_I4.4.5, P_X3.5_5_I3.5, P_W2.4.5.1_4_J2.4.5.1, and

A_4_5. They represent P (4, 5, 1), P (4, 5, 1), P (1, 5, 1), and A(4, 5), which is a solution to

the given instance.

sat
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MODEL

(= A_1_2 false)

(= P_1_2_I4.1.2 false)

(= P_4_5_I4.4.5 true)

(= A_4_5 true)

(= P_W2.3.5.2_3_J2.3.5.2 false)

(= P_W1.2.3.1_2_J1.2.3.1 false)

(= P_W1.2.3.2_2_J1.2.3.2 false)

(= P_X3.5_5_I3.5 true)

(= P_W2.3.5.1_3_J2.3.5.1 false)

(= P_W2.4.5.2_4_J2.4.5.2 false)

(= A_3_5 false)

(= P_W2.4.5.1_4_J2.4.5.1 true)

(= P_3_5_I4.3.5 false)

(= J1.2.3.2 1)

(= J2.3.5.1 1)

(= W2.3.5.1 1)

(= X3.5 4)

(= J2.4.5.2 1)

(= J2.3.5.2 1)

(= W2.4.5.1 1)

(= W2.4.5.2 1)

(= I3.5 1)

(= I4.4.5 1)

(= W1.2.3.1 1)

(= W1.2.3.2 1)

(= I4.1.2 1)

(= J2.4.5.1 1)

(= I4.3.5 1)

(= J1.2.3.1 1)

(= W2.3.5.2 1)

----

To make the solution more elaborate, we will look at an instance with an additional

vertex.

(TYPE INum 6[1..6])

(PREDICATE V (1)(2)(3)(4)(5)(6))
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(PREDICATE N (1)(2)(3))

(PREDICATE O (2,3)(1,4))

(PREDICATE C (1,2)(3,5)(4,6))

(PREDICATE T (1))

(PREDICATE G (5)(6))

(FUNCTION _one (:1))

Since the output of the grounder is very similar in structure with this instance to what

it was with the previous instance, we will not include any excerpts here. The output of the

SMT solver is as follows.

sat

MODEL

(= P_W2.3.5.2_3_J2.3.5.2 true)

(= P_X3.6_6_I3.6 true)

(= P_W2.3.5.3_3_J2.3.5.3 false)

(= P_W2.3.5.1_3_J2.3.5.1 true)

(= A_1_2 true)

(= P_1_2_I4.1.2 true)

(= P_W2.4.6.1_4_J2.4.6.1 true)

(= P_W1.2.3.1_2_J1.2.3.1 true)

(= P_X3.5_5_I3.5 true)

(= P_W2.4.6.3_4_J2.4.6.3 true)

(= P_3_5_I4.3.5 true)

(= P_4_6_I4.4.6 true)

(= P_W2.4.6.2_4_J2.4.6.2 false)

(= P_W1.2.3.3_2_J1.2.3.3 false)

(= A_3_5 true)

(= P_W1.2.3.2_2_J1.2.3.2 false)

(= A_4_6 true)

(= J2.4.6.2 1)

(= W1.2.3.3 1)

(= J2.3.5.2 1)

(= W1.2.3.1 1)

(= W1.2.3.2 1)

(= W2.3.5.1 1)

(= W2.3.5.3 1)
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(= I3.5 2)

(= X3.6 4)

(= J2.4.6.1 1)

(= I4.1.2 1)

(= J2.4.6.3 1)

(= J1.2.3.1 1)

(= J1.2.3.2 1)

(= J1.2.3.3 1)

(= X3.5 3)

(= I4.3.5 2)

(= W2.4.6.1 1)

(= J2.3.5.3 1)

(= I3.6 3)

(= J2.3.5.1 4)

(= W2.4.6.2 1)

(= I4.4.6 3)

(= W2.3.5.2 2)

(= W2.4.6.3 1)

----

From that output, the true propositional variables are:

Propositional Variable Meaning

P_W2.3.5.2_3_J2.3.5.2 P (2, 3, 1)

P_X3.6_6_I3.6 P (4, 6, 3)

P_W2.3.5.1_3_J2.3.5.1 P (1, 3, 4)

P_1_2_I4.1.2 P (1, 2, 1)

P_W2.4.6.1_4_J2.4.6.1 P (1, 4, 1)

P_W1.2.3.1_2_J1.2.3.1 P (1, 2, 1)

P_X3.5_5_I3.5 P (3, 5, 2)

P_W2.4.6.3_4_J2.4.6.3 P (1, 4, 1)

P_3_5_I4.3.5 P (3, 5, 2)

P_4_6_I4.4.6 P (4, 6, 3)

A_1_2 A(1, 2)

A_3_5 A(3, 5)

A_4_6 A(4, 6)

This result opens the valves in three steps, exactly as the instance requested.
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7.3 Magic Square

For the purposes of timed testing, we will use the second version of the partial grounder, A,

that allows expansion functions to be used in a theory file. This allows for simpler theory

files and greatly improves the time performance of an SMT solver on the output of the

partial grounder. The theory file a1 that represents a magic square for A follows. It will

be used to compare the time performance of an SMT solver on partial grounding with the

time performance of a SAT solver on a grounding output by grounder B.

(

(SATISFYING

(FORALL x:IOrd y:IOrd (INum(f(x,y))))

(FORALL x1:IOrd y1:IOrd x2:IOrd y2:IOrd

(OR (AND (=(x1,x2)) (=(y1,y2))) (NOT (=(f(x1,y1),f(x2,y2))))))

(FORALL y:IOrd (=(h(1,y),f(1,y))))

(FORALL x:IOrd y:IOrd (=(h(x,y),+(h(-(x,1),y),f(x,y)))))

(FORALL y:IOrd (=(h(n,y),c)))

(FORALL x:IOrd (=(j(x,1),f(x,1))))

(FORALL x:IOrd y:IOrd (=(j(x,y),+(j(x,-(y,1)),f(x,y)))))

(FORALL x:IOrd (=(j(x,n),c)))

(AND (=(k1(1),f(1,1))) (=(k2(1),f(n,1))))

(FORALL i:IOrd (OR (=(i,1)) (=(k1(i),+(k1(-(i,1)),f(i,i))))))

(FORALL i:IOrd (OR (=(i,1)) (=(k2(i),+(k2(-(i,1)),f(-(+(n,1),i),i))))))

(AND (=(k1(n),c)) (=(k2(n),c)))

)

)

The input syntax of A varies from the syntax used for first version of the partial grounder

to allow for greater compatibility with the input language for B. The syntax is not com-

pletely compatible with the language for B, since the grounding solver does not allow ex-

pansion functions or numeral constants which have been allowed in A for clarity. The

INTEGER function is also required by B but has been omitted from the requirements for A

for clarity. Each variable following a quantifier is given a domain as is required by B, where

(FORALL x:P y:R (Q(x,y))) represents ∀x((P (x) ∧R(y)) ⊃ Q(x, y)).

For a 4x4 magic square, the instance for a1 is as follows:

(TYPE IOrd 4[1..4])

(TYPE INum 16[1..16])
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(FUNCTION n (:4))

The first line represents the predicate IOrd which represents the set of row and column

numbers of the magic square, 1 through n. The second line represents the predicate INum

which represents the set of numerals which may appear in the square, 1 through n2. The

last line represents the instance constant n, the number of the last row and last column

of the magic square. The rule requiring a _ before function and constant names has been

omitted from A for clarity.

Since it is impossible to use expansion functions with B, an alternative axiomatization

of magic square must be used. One possibility is to represent each expansion function as

an expansion predicate, and axiomatize that each predicate represents a function. The

following is axiomatization b1 which represents this strategy in the input syntax of B.

(

(GIVEN

(TYPES (TYPE IOrd) (TYPE IOrdMax) (TYPE INum)

(TYPE ISum) (TYPE ISumMax)

)

(SYMBOLS

(SYMBOL F(IOrd IOrd INum))

(SYMBOL H(IOrdMax IOrdMax ISumMax))

(SYMBOL J(IOrdMax IOrdMax ISumMax))

(SYMBOL K1(IOrdMax ISumMax))

(SYMBOL K2(IOrdMax ISumMax))

)

(FUNCTIONS

(FUNCTION _n():IOrd)

(FUNCTION _one():IOrd)

)

)

(FIND F H J K1 K2)

(PHASES (PHASE (FIXPOINT )

(SATISFYING

(FORALL x:IOrd y:IOrd z1:INum z2:INum

(OR (NOT (F(x,y,z1))) (NOT (F(x,y,z2))) (=(z1,z2))))

(FORALL x:IOrdMax y:IOrdMax z1:ISumMax z2:ISumMax

(OR (NOT (H(x,y,z1))) (NOT (H(x,y,z2))) (=(z1,z2))))

(FORALL x:IOrdMax y:IOrdMax z1:ISumMax z2:ISumMax

(OR (NOT (J(x,y,z1))) (NOT (J(x,y,z2))) (=(z1,z2))))
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(FORALL i:IOrdMax z1:ISumMax z2:ISumMax

(OR (NOT (K1(i,z1))) (NOT (K1(i,z2))) (=(z1,z2))))

(FORALL i:IOrdMax z1:ISumMax z2:ISumMax

(OR (NOT (K2(i,z1))) (NOT (K2(i,z2))) (=(z1,z2))))

(FORALL x:IOrd y:IOrd (EXISTS z:INum (F(x,y,z))))

(FORALL x1:IOrd y1:IOrd x2:IOrd y2:IOrd z:INum

(OR (NOT (F(x1,y1,z)))

(AND (=(x1,x2)) (=(y1,y2))) (NOT (F(x2,y2,z)))

)

)

(FORALL y:IOrd (EXISTS z:INum (AND (H(_one(),y,z)) (F(_one(),y,z)))))

(FORALL x:IOrd (EXISTS z:INum (AND (J(x,_one(),z)) (F(x,_one(),z)))))

(FORALL x:IOrd y:IOrd

(OR (=(x,_one()))

(EXISTS w:ISum z:INum

(AND

(H(-(INTEGER(x),INTEGER(_one())),y,w))

(F(x,y,z))

(H(x,y,+(INTEGER(w),INTEGER(z))))

)

)

)

)

(FORALL x:IOrd y:IOrd

(OR (=(y,_one()))

(EXISTS w:ISum z:INum

(AND

(J(x,-(INTEGER(y),INTEGER(_one())),w))

(F(x,y,z))

(J(x,y,+(INTEGER(w),INTEGER(z))))

)

)

)

)

(EXISTS c:ISum

(AND

(FORALL y:IOrd (H(_n(),y,c)))

(FORALL x:IOrd (J(x,_n(),c)))

(K1(_n(),c)) (K2(_n(),c))
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)

)

(EXISTS w:INum (AND (K1(_one(),w)) (F(_one(),_one(),w))))

(EXISTS w:INum (AND (K2(_one(),w)) (F(_n(),_one(),w))))

(FORALL i:IOrd

(OR (=(i,_one()))

(EXISTS w:ISum z:INum

(AND

(K1(-(INTEGER(i),INTEGER(_one())),w))

(F(i,i,z))

(K1(i,+(INTEGER(w),INTEGER(z))))

)

)

)

)

(FORALL i:IOrd

(OR (=(i,_one()))

(EXISTS w:ISum z:INum

(AND

(K2(-(INTEGER(i),INTEGER(_one())),w))

(F(-(+(INTEGER(_n()),INTEGER(_one())),INTEGER(i)),i,z))

(K2(i,+(INTEGER(w),INTEGER(z))))

)

)

)

)

))) (PRINT (F))

)

The instance file for a 3x3 magic square with b1 is as follows.

(TYPE IOrd 3[1..3])

(TYPE IOrdMax 4[0..3])

(TYPE INum 9[1..9])

(TYPE ISum 15[1..15])

(TYPE ISumMax 24[1..24])

(FUNCTION _n (:3))

(FUNCTION _one (:1))

The sort IOrd represents the set of numbers of the rows and columns of the magic square.
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The sort IOrdMax represents the range of row and column numbers that may occur in the

grounding, which is the set IOrd plus 0 which may occur when subtracting one from a row

or column number. The sort INum represents the set of numerals which may be contained

in the magic square. The sort ISum represents a set containing at least all possible sums

of elements of the rows, columns, or diagonals in a correct magic square. For a 3x3 magic

square this happens to be 1 through 15 because the sum of all rows, columns, and diagonals

must be n(n2 +1)/2, so any subset of elements from any particular row, column, or diagonal

must be at most 15. The sort ISumMax represents a set containing at least all of ISum, plus

the sum of each element of INum with each element of ISum. This is required so that the

grounder can add elements of ISum and elements of INum. The constant _n represents the

number of the last row and column of the square. The constant _one represents the number

1 because B does not permit numeral constants.

The grounder B happens to provide an alternate way to axiomatize magic square that

performs much better than b1, but uses an entirely different axiomatization. The SUM

operator allows input to B to express magic squares much more compactly. The following

axiomatization is b2, the magic square axiomatization for B using SUM. The SUM operator is

used as a term written (SUM( x̄ ; y(x̄) ; z(x̄) ), x̄ is a list of variables with domains, y(x̄)

is a term, and z(x̄) is a formula. The value of the SUM term is the sum of y(x̄) for all x̄ in

the given domain such that z(x̄) is satisfied.

(

(GIVEN

(TYPES (TYPE IOrd) (TYPE INum) (TYPE ISum))

(SYMBOLS

(SYMBOL F(IOrd IOrd INum))

)

(FUNCTIONS

(FUNCTION _n():IOrd)

(FUNCTION _c():ISum)

(FUNCTION _one():IOrd)

)

)

(FIND F)

(PHASES (PHASE (FIXPOINT )

(SATISFYING

(FORALL x:IOrd y:IOrd z1:INum z2:INum
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(OR (NOT (F(x,y,z1))) (NOT (F(x,y,z2))) (=(z1,z2))))

(FORALL x:IOrd y:IOrd (EXISTS z:INum (F(x,y,z))))

(FORALL x1:IOrd y1:IOrd x2:IOrd y2:IOrd z:INum

(OR (NOT (F(x1,y1,z)))

(AND (=(x1,x2)) (=(y1,y2))) (NOT (F(x2,y2,z)))

)

)

(FORALL x:IOrd

(=(INTEGER(_c()),INTEGER(SUM(y:IOrd z:INum;z;(F(x,y,z))))))

)

(FORALL y:IOrd

(=(INTEGER(_c()),INTEGER(SUM(x:IOrd z:INum;z;(F(x,y,z))))))

)

(=(INTEGER(_c()),

INTEGER(SUM(i:IOrd z:INum;z;(F(i,i,z)))))

)

(=(INTEGER(_c()),

INTEGER(

SUM(

i:IOrd z:INum;z;

(F(-(+(INTEGER(_n()),INTEGER(_one())),INTEGER(i)),i,z)))

)

)

)

))) (PRINT (F))

)

The sum of each row, column, and diagonal is called _c in this axiomatization. For

grounding each variable must be given a domain, but there is no natural domain for _c.

By studying magic squares in general, we know that for any n, the correct value for _c is

n(n2 + 1)/2, and any domain containing that value would allow the solver to find a magic

square. Since we have no way to prefer one domain over another, we will choose the domain

that makes solving fastest, the domain containing only n(n2+1)/2, by making _c an instance

constant equal to n(n2 + 1)/2.

The following is the instance for a 5x5 magic square with b2.

(TYPE IOrd 5[1..5])



CHAPTER 7. DEMONSTRATION 89

(TYPE INum 25[1..25])

(TYPE ISum 1[65..65])

(FUNCTION _n (:5))

(FUNCTION _one (:1))

(FUNCTION _c (:65))

Table 7.1 provides a comparison of solving times when the output of a grounder or partial

grounder is given to an appropriate solver. The axioms a1 is partially ground and given

to an SMT solver, while b1 and b2 are ground and given to a SAT solver. The grounding

time is not included. The result is left blank when the solver runs for more than an hour,

since it is assumed to be impractical for finding magic squares at that point and beyond.

The axioms b2 caused a segmentation fault in the solver for the 6x6 instance, so it failed to

return a result in any amount of time.

Size 3 x 3 4 x 4 5 x 5 6 x 6

a1 0.0 seconds 0.0 seconds 7 minutes
b1 0.9 seconds 20 minutes
b2 0.0 seconds 20 seconds 7 minutes Segmentation fault

Table 7.1: Approximate solving time for magic squares by axioms and instances
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Conclusion

8.1 Usefulness of Reduction to SMT

Satisfiability Modulo Theories solvers are powerful and flexible tools for solving a wide

variety of problems efficiently, but a common practice of making solvers that do not allow

universal quantifiers results in many very large SMT formulas that are more meaningful to

a machine than to a person, a problem that is shared with SAT solvers. In order to make

an SMT solver into a truly convenient tool, there must be an additional tool that can assist

with the construction of an SMT formula.

Using a partial grounder as a preprocessor, the universal quantifier becomes a macro

that can generate an SMT formula of any size from single small and intuitive input formula.

Instead of writing fifty variations of Q(y, z) ∧ y + 1 < z by hand, we can write ∀x(P (x) ⊃
∃yz(Q(y, z)∧y+x < z)) just once, and write an instance structure to define P = {1, . . . , 50}.

As a very useful tool, a partial grounder should be included with every SMT solver.

8.2 Future Software

It should be simple to implement a summation operator for a partial grounder to SMT. By

using a non-first-order term of the form SUM(x̄;α(x̄);φ(x̄)), where x̄ is a tuple of variables,

α(x̄) is a term, and φ(x̄) is a formula, one can construct a sum a1 + . . .+an, with additional

formula to ensure that a1 = α(ȳ1) if φ(x̄) is true, and a1 = 0 otherwise.

To produce the same effect without a SUM operator tends to require an additional ex-

pansion function f such that f(i) represents the sum up to index i and (φ(ȳi) ⊃ f(i+ 1) =
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f(i) + α(ȳi)) ∧ (¬φ(ȳi) ⊃ f(i + 1) = f(i)). In the first version of the partial grounder, f

would have to be represented by a predicate, adding even more to ground, but even in the

second version of the partial grounder the resulting SMT formula far larger than the simple

a1 + . . . + an that is intended. Experiments should be done with SUM to get possibly even

better performance from the SMT solver.

When using an satisfiability modulo theories solver it is necessary to convert the output

of the solver into a form that more directly expresses the solution to the original model

expansion problem. There is no standardized output format for all SMT solvers in the

way that the SMT-LIB standard provides a uniform notation for inputs, but it would be

invaluable to have a tool to do the conversion automatically for whatever SMT solver is

being used. It is time-consuming and error-prone to do it by hand even for small examples.
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based on Grädel’s theorem. In Proceedings of the Sixteens annual IEEE symposium
on Logic in Computer Science, pages 177–186, 2001.

[18] M. Dao-Tran, T. Eiter, M. Fink, and T. Krennwallner. Distributed nonmonotonic
multi-context systems. In Proc. KR’10.

[19] L. de Moura and N. Bjørner. Model-based theory combination. Electron. Notes Theor.
Comput. Sci., 198(2):37–49, 2008.

[20] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. 4963:337–340, 2008.
10.1007/978-3-540-78800-3 24.

[21] M. Denecker. Extending classical logic with inductive definitions. In Proc., First Int’l
Conference on Computational Logic (CL-2000), pages 703–717. Springer, 2000.

[22] M. Denecker and E. Ternovska. Inductive situation calculus. In Proc., Ninth Int’l
Conf. on Principles of Knowledge Representation and Reasoning (KR-04), pages 545–
553. AAAI Press, 2004.

[23] M. Denecker and E. Ternovska. A logic of non-monotone inductive definitions and
its modularity properties. In Proc., 7th Int’l Conf., on Logic Programming and Non-
monotonic Reasoning (LPNMR-04), pages 47–60. Springer, 2004. LNCS 2923.

[24] M. Denecker and E. Ternovska. Inductive situation calculus. Artificial Intelligence,
171(5-6):332–360, 2007.

[25] M. Denecker and E. Ternovska. A logic of non-monotone inductive definitions. ACM
transactions on computational logic (TOCL), 9(2):1–51, 2008.

[26] B. Dutertre and L. de Moura. The Yices SMT solver. August 2006.



BIBLIOGRAPHY 94

[27] D. East and M. Truszczynski. Predicate-calculus based logics for modeling and solving
search problems. ACM Transactions on Computational Logic (TOCL), 7(1):38–83,
2006.

[28] H. D. Ebbinghaus and J. Flum. Finite model theory. Springer Verlag, 1995.

[29] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In
Complexity of Computation, volume 7, pages 43–73, 1974.

[30] R. Fagin. Finite-model theory – a personal perspective. Theoretical Computer Science,
116:3–31, 1993.
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