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Abstract

In this thesis, we address two different problems in computer vision. First, the human interaction

recognition is discussed whose goal is to recognize the action type of interacting humans in videos.

We model the interaction using a sequence of key poses, important atomic-level actions. Spatial

arrangements between the actors are included in the model as is strict temporal ordering of the key

poses.

Second, we attack the problem of color from gray. Our goal is to build a gray level image which

can be used to recover color image with the minimum amount of embedded information. We use

a parametric curve which maps the gray values to rich samples of color space. Next, we attach

the parameters for the curve to the gray image in order to recover an approximation of color. The

method rests on an optimization of parameters in which both the gray and color error are minimized.
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“The middle path is the way to wisdom.”
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Chapter 1

Introduction

In last decades, the study of various emerging computational problems has formed many new fields

in computer science. Computer vision is one of those new fields formed to study automatic per-

ception of the world through cameras. Computer vision widely discusses object recognition, digital

photography, automatic surveillance, navigation, content based media retrieval and in general any

application whose goal is to replace or improve human visual and recognition system with a (semi-)

automatic system.

In this thesis, we try to address two different problems in computer vision. First, in Part. I the

human interaction recognition is discussed whose goal is to recognize the action class of interacting

humans in a sequence of images. Later, in Part. II we will attack the problem of color from gray. In

this problem we are interested in construction of a gray level image which contains color information

with the minimum amount of embedded information.

1.1 Human Interaction Recognition

Computer-vision based analysis of human movement is a broad active area of research. The solution

to this problem can be used in automatic surveillance, computer game industry and content based

video retrieval. Surveillance is usually needed in secured areas such as airports to decrease the emer-

gency service arrival time. However, surveillance videos contain huge amount of visual data with

rare occurrence of abnormal actions, and action recognition can be used to save the operator time by

automatic detection of abnormal activities. In addition, action recognition helps game industry to

create new controllers which enable players to play with their body instead of using small handheld

devices. Content based video retrieval systems are used by content providers to search among huge

1
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Time

... ...

Figure 1.1: High level depiction of our model. Horizontal axis represents time. We attempt to
recognize an interaction by localizing the key poses of its subjects. In the localization of key poses
we consider the common distance of the poses for the action, and their order in temporal domain.
We use exemplar representation of key poses which is visualized in upper row.

number of videos based on their content extracted automatically. Action labels of involving subjects

in videos can be used in query of such systems which arise the need for automatic action recognition

in visual database.

In this thesis, we focus on recognizing activity-level interactions between individuals, those

composed of atomic-level poses or movements. We here distinguish between action, activity and

interaction. Actions are atomic short movements or poses of human such as waving hand, bending

and jumping. Activities are composed of several actions that occur in particular order such as shop-

ping in a store or paying the bill. Finally, interaction is a subset of activities which is caused by

several subjects. Examples of such interactions are people embracing, shaking hands, and pushing

each other.

Similar to many recognition problems, interaction recognition also has several intrinsic chal-

lenges. First, intra class variation is natural due to difference of subject’s behavior at different

environments. For example, one may kick high in upper body; however, one may hit the opponent’s

leg. The speed of action and also body shape of actors can vary from a subject to another subject. In

addition, environmental constraints such as obstacles or different illumination conditions change the

appearance of an action. Second, extraneous movements or poses may occur in longer activity level

scenarios. The subject may prepare before taking action or avoid an obstacle while performing.

These intermediate poses are irrelevant for action recognition or can be shared between different

classes.

The approach we take in this thesis models an interaction with a set of key poses of the indi-

viduals involved. In a sequence of human poses, key poses are defined as those extreme poses in

human motion which are discriminative for action recognition. For example, in pushing action these
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key poses can be considered as stepping forward and pushing done by a subject, as well as falling

backward of other subject. Transitional poses between the key poses or initial and terminal standing

poses are not considered as key poses since they do not have extra information than key poses or

they are common between many classes. A high-level depiction of the model is shown in Fig. 1.1.

We use an exemplar-based model of the instantiation of these key poses. We believe the spatial

configuration of actors and temporal order of these key poses provide discriminative cues for inter-

action recognition. We will consider these cues when we are looking for key poses of an interaction

in a sequence. In contrast with many exemplar-based methods that match exemplars to the whole

sequence, we localize key poses in small subset of frames which enables us to discard irrelevant

poses.

The main contribution of this thesis is the development of this model. This work was done

in collaboration with Bo Gao, Mani Ranjbar, and Greg Mori. The contribution of the author was

centered around development of sparse key pose sequence model and dynamic program for the

inference.

1.2 Color From Gray

Color quantization consists of reducing the number of color levels, usually in a lossy fashion. This

technique is used to compress an image to display on devices such as legacy monitors or handheld

devices that support limitted number of colors. Typically, color quantization starts with a clustering

of color points of an image, followed by representation of each color with the index of its cluster.

In decoder side, image can be recovered using the color look-up table and indices of each pixel.

Similarly, transforming a color image to gray scale takes a 24-bit color pixel into a 256-level (or

fewer) gray scale value.

Here, we are concerned with the question of what is the minimum amount of auxiliary informa-

tion necessary to transmit, along with gray levels, to be able to have the decoder side generate both

an accurate gray image as well as an accurate color representation. Solution to this problem enables

us to design scalable image compression standards that both devices with and without color display

can use at the same time. Especially if the devices with gray display have limited computational

power, they can display the image without any convertion from color to gray.

But we also wish to develop a color-to-grayscale transformation which as best as possible also

encodes color information in the gray values, and we’ll be willing to accept some gray level error

provided we also obtain a good level of color accuracy. Here, we make use of a parametric curve,
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which maps gray scale space to points in color space. Then one can reconstruct an approximation

of the input color image from the gray scale image simply by also using the mapping from gray to

color which can be rebuild from a few parameters of curve.

We make the parametric curve adaptive to the input image by optimizing its parameters such that

the mapping produces a gray scale and a reconstructed color image with minimum amount of error.

Here, we use a parametric expression of traversing color space that takes merely 13 parameters, and

these would easily be included in a file header. We transform colored image to CIELAB color space

which is designed in a way that the Euclidean distance of points measures the magnitude of observed

perceptual difference.

The contribution here is the notion of utilizing a curve that visits gray value planes in color

space, as well as the novel mapping used in the parametric curve: The curve is designed so as to

minimize color error adaptively according to the data content of the input image. The intent of the

thesis is to examine whether one can indeed use a small characterization of the gamut of an image,

encompassed by a simple curve, to represent color using gray. Results are shown to be promising.



Part I

Human Interaction Recognition
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Chapter 2

Previous Work

The action recognition literature in computer vision is immense. Weinland et al. [59] review the

previous works in four groups including spatial action representations, temporal action representa-

tions, action segmentation and view-independent action recognition. Poppe [44] also provides recent

works on action recognition in two category including image representation and action classification

techniques. Moeslund et al. [41] review the work on human tracking, pose estimation, and action

recognition. Forsyth et al. [16] provide a survey on human pose and motion analysis which share

many similarity to action recognition taxonomies, and Krüger et al. [30] discuss the recent works on

action recognition and mapping in robotics context.

In this chapter, we review the previous works in three sections. In Sec. 2.1, we focus on proposed

features that describe human action. In Sec. 2.2, we review the action recognition models, and finally

we discuss the interaction models in Sec. 2.3.

2.1 Action Representation

In this section we discuss the features that are proposed to represent an action. The desiderata of

these features are robustness to background clutter, noise, occlusion, intera-class variation as well as

being discriminative. Overall, proposed feature can be classified to three groups including: global

features, local features and hybrid features. Global feature are those that represent the action as a

whole around the subject. Local features describes the action as a collection of local cuboids, and

finally, hybrid features typically divides the image sequence in spatial and temporal domain and

calculate local features in each segments.

6
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2.1.1 Global Features

Global features represent the action as whole feature around the subject. In this group of features,

the human is typically detected by background subtraction or a human detector and tracker. Next,

the image around the subject is described using a feature. Global features are rich in represention

of spatial and temporal configuration and appearance of action; However, they are sensitive to the

performance of localizer, noise, and occlusion. A small shift in bounding box around the subject or

partial occlusion will change the total feature and can cause recognition failure.

Silhouette images are one of the earliest global features proposed for action recognition. Bobick

and Davis [4] proposed motion energy image (MEI) and motion history image (MHI) to recognize

action. They use background subtracted images to calculate the silhouette image for each frame, and

they aggregate them over time to construct the MHI. MEI is a binary version of MHI that can be built

by threshholding it. As the final descriptor, they represent MEI and MHI using Hu moments [24]

which were proposed for scale-, orientation- and translation-invariant visual pattern matching. Chen

et al. [5] used the contour of human body and extract star skeleton by finding distance extrems of

points on the contour to the centroid point which are likely to be legs, hands and head.

Gorelick et al. [20] created a 3D silhouette volume for a sequence by stacking silhouette images

over time. Then, they use the Poisson equation to calculate the mean time that a random walker

needs to reach to the boundary of 3D silhouette. Solution to the equation is a measure of distance to

the boundary of 3D silhouette and can be used to extract local features such as space-time saliency,

shape structure, and orientation of action. Their final global descriptor is formed by computing

wighted moments over these local features.

A drawback of silhouette based features is their sensitivity to forground detection which may

fail in the case of dynamic background. One way to overcome such a problem is to use Chamfer dis-

tance between pre-computed silhouette image and edge map. Weinland and Boyer [58] proposed an

exemplar based action recognition and they represent exemplars using silhouetted image. In match-

ing the exemplars to an input sequence, they use Chamfer distance which measures the distance

between a point on edge map and the closest point on silhouette edges. In this way, they eliminate

the background subtraction in test stage.

Moreover, a silhouette image is not discriminative for the poses with self occlusion. Many previ-

ous works used optical flow for action recognition which captures the movement of a subject’s body

part in consequent images. Even though optical flow may carry noise with a dynamic background or
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moving camera, it reflects better cues of action than silhouette image. Efros et al. [12] calculated op-

tical flow in a human centric bounding box to compensate camera movement. They divided motion

flow vectors to four channels based on their sign in vertical and horizontal components, and, they

filtered each channel using a Gaussian filter to overcome the camera jitter. Finally, all channels are

flattened together to form the feature. Ali and Shah [1] used optical flow to define a set of kinematic

features such as diversity, vorticity of optical flow field. They use Principal Component Analysis

to find the dominant mode for each kinematic feature and they represent the action using bag of

kinematic modes.

Another group of global features are formed using body part detection and tracking. In Ramanan

and Forsyth [46], the pose of subject is represented by output of body parts detector and tracker. Rao

et al. [47] also used the 2D track of hands for action recognition. The performance of body part-

based features rely on human pose estimation which is still an open challenging problem in video

data. Failure in pose estimation is caused due to the large degree of freedom of human body and

background texture. In addition, 3D pose reconstruction suffers from ambiguity of back projection

from 2D space to 3D space in the case we are using one camera. In contrast, optical flow or silhouette

features do not rely on the track of body parts and represent an action using dense image features.

2.1.2 Local Features

Local features describe an action using a collection of local cuboids. Instead of human localizing,

interest points are detected using an interest point detector or dense sampling. Next, image around

the interest points are represented using a feature such as motion or image gradient, and the final

action representation is typically formed as histogram of quantized visual words. Local features do

not rely on a human localizer and are robust against partial occlusion. However, they usually discard

all spatial and temporal configuration which can cause failure on complex activities.

Interest points can be detected either automatically using a interest point detector from image

sequence or by dense sampling. Interest point detectors attempt to detect regions in spatiotemporal

domain that a complex motion is taking place. A widely used interest point detector called Space-

Time Interest Points (STIP) is proposed in Laptev [31]. The STIP is a generalization of the two

dimensional Harris corner detector [21] to the three dimensional video. STIP is triggered at spatio-

temporal points that indicate a change in the velocity of a moving corner in the video. For example

in a hand waving action interest points are detected at the points that movement direction of hand

is changed. Dollar et al. [11] proposed a different interest point detector using the Gabor Filter for
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temporal domain of image sequences. Their feature is sensitive to periodic movements or any other

complex motion. Rapantzikos et al. [48] proposed to use energy of discrete wavelet transformation

on each spatil and temporal domain to find the salient cuboids.

Another group of local feature detectors are inspired from biologicall visual system. In Jhuang

et al. [26] a hierarchical feed-forward architecture is proposed for action recognition. At their first

level, a set of spatio-temporal filters are applied to the sequence. Then, templates are matched to

the high scores of the first level, and, at upper level score maximization and template matching is

performed again on the out put the previous level. The Final descriptor is formed using the maximum

score of the last level which is a spatio-temporal position invariant feature.

Many sparse models use the Bag of Words (BOW) representation as the final descriptor of an

action. In this representation a feature such as image gradient or optical flow is used to describe

the image cube around the interest points. Then, a vocabulary of visual words is constructed by

clustering large number of samples of interest points, and, the final descriptor histogram of occur-

rence of each word in the sequence. In contrast to global features, the bag of words representation is

translation invariant, however it discards all global information about arrangement of visual words

in spatial and temporal domains which is not desired in the case that configuration of those visual

words is discriminative for action recognition. In order to overcome this problem, many hybrid

features are proposed which is covered in the following section.

2.1.3 Hybrid Features

In order to have both configuration information of global features and translation invariance of local

features several hybrid features are proposed. These features mainly take two approaches. One ap-

proach is to divide the spatio-temporal space of action to bins and calculate the translation invariant

features inside the bins. Their final descriptor is formed by concatenation of features of all bins

which is robust to small displacement of signal as long as the translation keeps the signal mainly

inside their bins. The second approach is to detect local features first and capture the spatio tempo-

ral configuration of local points in the feature. This approach is invariant to larger displacements,

however, with large number of interest points, the configuration extraction may become intractable.

As an example of the first approach, Yamato et al. [67] binned the silhouette image of each frame

to non-overlapping cells and they count number of forground pixels in a cell as their feature. More-

over, in Laptev et al. [32] temporal and spatial domains are divided into non-overlapping segments

and bag of words features are computed in each segment.
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Among hybrid features proposed using first approach, the Histogram of Oriented Gradients

(HOG) is a popular feature which was introduced by Dalal and Triggs [8] first for human detec-

tion. But, later it was used for human action recognition. The process of HOG feature extraction

starts with Gamma normalization of input image, followed by a gradient computation in vertical

and horizontal directions. Then, the gradient vectors vote into a histogram over oriented bins with

different Gaussian weights centered at the pixel in the center of non-overlapping cells. For illumina-

tion invariance purpose, the histogram in each cell is normalized with respect to all four neighboring

cells, and the final descriptor is made by concatenation of the histogram of oriented gradients for all

cells with their different normalizations. Although original HOG is proposed for 2D image, Klaser

et al. [28] extended 2D HOG feature to 3D video for action recognition. The HOG feature carries

cues of human pose and in contrast to the optical flow feature, it has information on still parts of

human which can not be captured in motion feature. However, it may carry some noise due to a

cluttered background.

Kovashka and Grauman [29] take the second approach and propose a hierarchical representation

to capture the spatial and temporal configuration of visual words. They start with interest points as

zero level, and in first level they bin the 3D space around each interest point and the histogram of the

closest points are calculated in each bin. Then, new words are created by clustering the histograms at

level one. In further layers, histograms of words are created around the words of previous level. They

show their method can model the spatial and temporal structure of local interest points in actions at

different scales. Gilbert et al. [19] also proposed similar hierarchical technique to encapsulate the

structure of local interest point. However, instead of clustering patterns of previous level, they mine

the most frequent patterns, and use them as words for upper layer.

2.2 Action Classification Models

Having a representation of action, we need a classification model to recognize the action in an

unknown sequence. In this section we review previous models proposed for action recognition. We

divide them to template matching models, generative models, discriminative models, and key pose

models.

2.2.1 Template Matching Models

Template models capture the temporal dynamic of an action implicitly in the templates, and classi-

fication is typically done using Nearest neighbor method that assign a test sample to the class of the
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nearest training sample in the space of features. Gorelick et al. [20] used Euclidean distance in the

space of their global features to find the nearest neighbor, and Bobick and Davis [4] used Mahalanbis

distance which is a normalized Euclidean distance based on variance of each dimension.

In several works, frame level distance measure is used to match the whole sequence. In Efros et

al. [12] a template is defined as a sequence of human centric images described by 4-channel blurred

motion feature. In order to account for shift in a periodic action, the correlation of a sequence and

a template for all different starting frames is calculated using sum of frame-to-frame correlation

measure. Then, temporal smoothing is used to overcome difference in speed. In Lin et al. [34] each

sequence is matched to a set of predefined shape and motion prototypes in a frame-based manner.

Then, action is recognized using a dynamic prototype matching to the closest sequence in training

data.

Overall, template matching models are capable of classification of short actions that have simple

temporal dynamic. Classification of long complicated activities using template is infeasible due to

limitation in total number of templates that one can generate. In addition, complex activities may

have irrelevant visual information that can not be handled using templates. In order to over come

this problem, several richer models are proposed that are discussed in the following sections.

2.2.2 Generative Models

Generative models are probabilistic models that specifies the joint probability distribution over fea-

tures and action class. Sampling from these models will produce samples of classes, and classifica-

tion can be done by calculating conditional probability of a class given an observation. A popular

generative model used in action classification is the Hidden Markov Model (HMM). A HMM mod-

els an action as a sequence of hidden states which makes it suitable for modeling action dynamics.

State transition and observation probabilities are considered in HMM. There are two typical assump-

tions in HMM to keep the parameter training tractable. The Markov assumption forces that a state

transition is conditioned on only previous state, not on other states. Second, an observation is only

dependent to the current state. In Yamato et al. [67], a Hidden Markov Model is used to recognize

the action. They consider a HMM for each tennis stroke class, and they represent the observation us-

ing quantized silhouette over super pixels. The parameters are learned using Maximum Likelihood

for each class and in test stage, a sequence is assigned to a class that has highest probability given

that class’s model. In Ramanan and Forsyth [46] 2D body joints are matched to an annotated 3D

motion sequence using HMM. Another HMM is used to infere the class of frame using annotation
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of 3D motion data. Lv and Nevatia [37] also try to recognize action using human motion capture

data. They define several features produced from different combination of joint locations, and learn

a HMM for each feature set. The probability of each HMM is then fed to an AdaBoost classifier.

In Xiang and Gong [64] Dynamic Bayesian Network is used to model complex activities con-

taining multiple humans and objects in cluttered scenes. In this work, an activity is represented using

atomic scene events and their temporal and causal correlation are modeled in a Dynamic Bayesian

Network whose parameters and structure are learned by structured Expectation-Maximization (EM).

2.2.3 Discriminative Models

In contrast to generative models, discriminative models learn the conditional probability of a class

given a sample point instead of modeling the hard problem of sample generation. In this class,

conditional random field (CRF) is typically used to model dependency of different variables of a

model in a discriminative graphical model. Sminchisescu et al. [53] used a chain CRF to recognize

per-frame action in sequence of images. Wang and Mori [56] used a hidden conditional random

field to combine local patch features with global feature for per-frame action recognition. Their

hidden variables are part labels connected to the global label and patches in the frame. They learn

parameters using gradient decent on log-likelihood.

Classifiers are another group of discriminative method which attempt to learn the boundary

between classes typically in non-probabilistic manner. Support Vector Machines (SVM) learn a

hyperplane in the feature space that has maximum margin to the closest samples of each class.

Similar to many other classification tasks, SVM are also popular in action recognition, and in the

simplest way it can be used to classify the features extracted from the sequence; such as in [26,

32, 11]. Boosting is also another discriminative technique that forms a classifier from several weak

classifiers. Fathi and Mori [14] proposed a two level AdaBoosting for action recognition on a human

centric motion feature. They first train AdaBoost classifiers in small regions of a bounding box, then

the response of those mid-level weak classifiers are fed to another classifier.

Several discriminative methods train the parameters of their models in a max margin criterion

which tries to maximize the gap between score of ground truth label and any other hypothetical

labeling. Wang and Mori [57] proposed max margin hidden CRF to learn parameters of the same

model in [56]. They showed the new training has better accuracy then previous log-likelihood based

parameter training. Shi et al. [51] proposes a semi-Markov model to segment a sequence temporally

and label segments with an action class. In this model, a set of features is defined for each segment,
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as well as features for the boundary and transition between the actions of neighboring segments.

Then, features are scored using a linear function and the parameters of the model are learned in a

discriminative max margin framework. Niebles et al. [42] develop a similar discriminative model

to recognize activity by defining atomic-action classifiers. Both [51] and [42] are similar to our

model, but for recognizing single person activities, without hard temporal ordering, without the

non-parametric exemplar matching.

2.2.4 Key pose Models

Action recognition models usually consider whole temporal domain in recognition. On the con-

trary, key pose models attempt to localize important poses of human called “key poses” to recognize

action. The term “Key Pose” was originally initiated in animation to describe the critical configu-

ration of a character or an object which carries the extreme points in its motion or expression. In

the action recognition context, key poses are used for human poses that are discriminative for action

recognition purpose.

In early attempts, key pose is used in Sullivan and Carlsson [54] for action recognition and

human tracking. They localize key poses in a video sequence using shape matching to a particular

pre-defined poses, and then, the manual part labels are used to re-initialize the human body tracker.

However, the proposed key pose model is capable of action recognition in a frame, and can not be

used for complex activity recognition.

Lv and Nevatia [38] also proposed a key pose based model for view-invariant human action

recognition. They represent each action as sequence of synthetic 2D human poses rendered from

different view points. Constraints on transition between key poses are represented using a state

diagram called “Action Net” which is constructed based on the order of key poses of an action.

Given the input, the silhouette of the input frames are matched to the key poses using a dynamic

program, Viterbi Algorithm. The per-frame action recognition is done based on the annotation

of matched key poses. Their method is similar to our method. However, we learn the order of

discriminative key poses for each action, but, they fixed the key pose of an action and their order

at the beginning.However we assume that key poses can be shared between actions and we learned

the discriminative key poses of an action. We also match the key pose to subset of frames and we

consider interaction instead of action.
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2.3 Interaction Models

Much work focuses on atomic action recognition of individuals instead of interaction. Interac-

tions were considered by Intille and Bobick [25] who used probabilistic techniques for recognizing

hand-specified structured activities such as American football plays. They define low-level action

primitives and temporal relationship between them, and they use Baysian Networks to combine un-

certainty of feature evidence and temporal information. Medioni et al. [40] developed a system for

recognizing events from aerial video surveillance data, for instance interactions between vehicles

and road checkpoints. They track the objects in the scene, and they extract their location and speed

features with respect to the checkpoint. A set of recursive scenarios is defined, and the likelihood of

each primitive scenario is calculated using the spatial and temporal features. Then, they are used to

calculate the likelihood of higher level scenarios.

In our experiments we use the UT-Interaction (SDHA) dataset introduced by Ryoo and Ag-

garwal [50]. Ryoo and Aggarwal develop a matching kernel that considers spatial and temporal

relations between space-time interest points to detect and localize non-parametric activities. How-

ever, the proposed method relies on spatial and temporal interest point detector which can have very

sparse output on a non-periodic action. Yao et al. [68] use dense local patches in a Hough transform

voting scheme. They construct random trees to learn mapping from local feature space to spatial-

temporal-action Hough space. In training, discriminative codebooks are formed in leaves of the

trees that can be used for voting of action location based on local features in a probabilistic manner.

Yu et al. [69] develop an efficient algorithm using semantic texton forests with a pyramidal version

of Ryoo and Aggarwal’s matching kernel. These methods are based on local patches and have less

explicit modeling of the presence of individuals than our method, and our method obtains higher

accuracy on the UT-Interaction dataset.



Chapter 3

Modeling Human Interaction

Our goal in this thesis is to recognize human interactions in videos. The interactions we consider

are activities such as pushing, handshaking or hugging that involve two people interacting.

We will model these interactions by a sequence of key poses. For example, as shown in Fig. 1.1

a common scenario for pushing is the following: one person steps forward, raises his hands, and

pushes the other person while he takes a defensive pose, steps backward, and falls back at the end.

Similarly, we can decompose other interaction scenarios to sequences of key poses. Observing them

and their chronological order can be used to recognize an interaction.

Given an input video and a putative interaction, four things are unknown:

1. Who is involved in the interaction? More specifically, which person is taking which role in

the interaction – many asymmetric interactions, such as pushing or kicking, have distinct “subject”

and “object” roles which can have different key pose sequence.

2. When do the key poses occur? We model each interaction by a fixed-length sequence of key

poses, but we do not know a priori when these key poses occur in an input video.

3. How are the key poses executed? There is variation in appearance for the key poses of an

interaction – e.g. is the push with one hand, two hands, a forceful push, or a weak push.

4. Where are the people when the key poses occur? The spatial arrangement of these key

poses is important – interactions such as pushing or embracing have stereotypical relative distances

between the people involved.

These are unknown and, while inferring them is useful, are not our direct goal of recognizing inter-

actions. Hence, we treat them as latent variables in a novel constrained variant of a structured latent

variable model.

15
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Following the standard notation in structured latent variable models, we now provide a formula-

tion of our model. Let x ∈ X be a video sequence that consists of people performing an interaction

y ∈ Y where Y is the finite set of interactions. Given a set of video and interaction label pairs,

our task in training is to learn a scoring function F : X × Y → < over these pairs. Following the

usual latent variable formulation, we will assume F maximizes a model G that includes the latent

variables H: F (x, y) = maxH G(x, y,H).

In our work, the latent variables H answer the four questions above. Namely, H = [b, t, e, p],

where:

1. b specifies who takes which role in the interaction. In this work we assume we are provided

roughly correct tracks of the people in a scene, and b denotes which person is the subject and object

of the interaction. More generally, one could build b from tracklets, or infer it while tracking.

2. t specifies when the key poses occur. Our interaction model has a fixed number of key poses

(e.g. 5 in experiments). t specifies when in the (much longer) input video x these key poses occur.

This key pose sequence will be constrained to be in chronological order.

3. e specifies how the key poses are executed. We use an exemplar-based representation in

which e specifies which discrete type of execution of a key pose is present in a video. Essentially,

this is similar to an aspect or mixture model to account for key pose variation.

4. p specifies the spatial locations in the video frames for the key poses. As with b, we will rely

on a tracker to assist with this information, allowing small shifts in position from tracker output to

account for tracker error.

In the following sections we provide more precise details on these latent variables and the scoring

functionG. For ease of exposition, we start with a single subject key pose sequence model (Sec. 3.1),

followed by a model for interactions (Sec. 3.2). We do not assume the key poses are provided as

training data, and instead aim to automatically discover them. Algorithms for this learning, and

associated inference, are in Chapter. 4.

3.1 Single Subject Key Pose Sequence Model

We start by describing a model of videos of a single person performing an activity. Given a set of

such videos, we want to find a set of key poses in these sequences and use them to model the activity

class. Key poses are meant to be important, infrequent actions; much of each video can consist of

highly variable human action that can be misleading when attempting to build an activity model.

Considering our pushing example, there are poses such as standing or walking at the beginning or



CHAPTER 3. MODELING HUMAN INTERACTION 17

Figure 3.1: Graphical depiction of our model for single subject key pose sequence matching. The
lower layer x is the observed sequence of frames, and the middle layer h is the key pose sequence
layer and the top layer y is the activity label. Edges with boxes denote factors in our model. Dashed
lines represent temporal constraints between key poses.

the end of the video that are variable and not discriminative. Further, each of the key poses will have

variation in appearance. Finally, the spatial arrangement of these key poses is important (particularly

for interactions), so the model will also include what spatial location in a video frame contains the

key pose.

An instantiation of a single subject key pose model in a video sequence will consist of three

things: when do the key poses occur, how is each key pose executed, and where in space do they

occur. We assume that we are given a rough track of the subject, via human detection and tracking

algorithms. We represent each key pose in a sequence by a triple h = [e, t, p]. Variables t and p

are its spatio-temporal locations, with p restricted to locations near the tracker output. The variable

e = 1, 2, . . . , |E| denotes which appearance variant of the key pose is taking place at time t and

location p where E is a discrete set of exemplars used as a representation of the appearance of key

poses – for instance, the different types of pushes noted above would each be represented by its own

element of E . As noted above, a model contains multiple key poses in sequence, and we denote

the K key poses of a sequence by H = [h1,h2, ..,hK ], where each hi is a triple [ei, ti, pi]. Our

model also has a constraint on the temporal component of the key poses H . The key poses should

be matched to the input sequence in chronological order, hence ti < tj if i < j. This hard constraint

will be enforced in inference via an efficient algorithm.

We now describe the scoring functionG(x, y,H) for a single subject model. A graphical depic-

tion of our model is shown in Fig. 3.1. Factors in this model include terms measuring compatibility

between input sequences and instantiations of key poses, between key poses and activity label, and
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among the three. Based on this model, a sequence of key poses H is scored for the input x and

the label y by G(x, y,H) = ωTΦ(x, y,H) which is a linear function on ω, the parameters of the

model. We formulate the scoring function as:

ωTΦ(x, y,H) =

K∑
i=1

αTφ0(x, ti, ei, pi) +

K∑
i=1

βi
Tφ1(y, ei) +

K∑
i=1

γTφ2(x, y, ti, pi)

where φ0(·), φ1(·) and φ2(·) are the potential functions defined on the links which will be described

below. α, β = [β1,β2, . . . ,βK ] and γ are the parameters of the model which are grouped in

ω = [α,β,γ] .

Exemplar Matching Link: αTφ0(x, ti, ri, pi) measures the compatibility between key pose

with appearance of the eith exemplar and the image evidence of one track at time ti and location pi.

It is formulated as:

αTφ0(x, ti, ei, pi) =

|E|∑
e=1

αe
TD(f(x, ti, pi), g(ei))1{ei=e} (3.1)

where f(x, t, p) computes features for sequence x at the location p and time t. Similar to f(·),

g(·) calculates the features for exemplars. The details of these features and distance measure D are

described in Sec. 3.3. 1 is an indicator function selecting for the weight vector associated with the

ei
th exemplar.

Activity-Key Pose Link: βiTφ1(y, ei) models the compatibility between activity y and exem-

plar ei as the ith key pose. It is a scalar for each activity and exemplar, and if it is high it means that

particular type of exemplar is strongly associated with the activity label y:

βi
Tφ1(y, ei) =

∑
a∈Y

|E|∑
e=1

βiae1{y=a}1{ei=e} (3.2)

The activity-key pose term is indexed on key poses βi, and it means that an exemplar in a sequence

of key poses may have different compatibility with the activity at different times. This models the

fact that key poses have a particular order for each activity. For example bending starts with a

standing pose, continues with bending until the subject reaches ground, and ends with a standing

pose.

Direct Root Model: γTφ2(x, y, ti, pi) measures the compatibility of global features extracted

from x at time ti and location pi and activity class label y. This directly models the features of the

input to the activity class label, without exemplars. It is parametrized as:

γTφ2(x, y, ti, pi) =
∑
a∈Y

γa
T f(x, ti, pi)1{y=a} (3.3)



CHAPTER 3. MODELING HUMAN INTERACTION 19

3.2 Interaction Key Pose Sequence Model

Our goal is to recognize human interactions in a video. There are several ways to extend our model in

Sec. 3.1 to capture interactions. The easiest way would be to learn parameters of the model for each

individual of the interaction, and use them to score each participant separately. The problem with

this method is that it cannot capture any information about interaction. For asymmetric activities

such as kicking, pushing, or punching the model parameters should be different for each participant.

The participants of these interactions are the subject of activity, the one who does the activity, and the

object of the activity, the one to whom the activity occurs. The subject and object in an interaction

may have different key poses. For example, in pushing the key poses for the subject are stepping

forward, putting hands in front, and shoving actions. However, for the object who is pushed the

key poses are a defensive pose, stepping backward, and falling back because of the push. So, we

expect to see a different group of key poses for the subject and object trajectories. Further, as noted

above the relative spatial position of the subject and object of an interaction is an important cue for

recognition.

We modify our single subject model to incorporate this information: who is playing which role,

and additional cues about where these people are. The model is depicted in Fig. 1.1. We assume we

are given the rough trajectories of a potential subject and object of an interaction, and similar to our

model in Fig. 3.1 we match key poses to each trajectory. However, we model the asymmetry in the

interaction, and we define two different compatibilities between key poses and activity for subject

and object tracks. In other words, in Eq. 3.1, we use βs and βo for subject and object trajectories.

Further, we model the spatial distance of the key poses by an additional term in the scoring function,

denoted by θ. The intuition is that the key poses of an activity occur at common spatial distances

from each other. For example in hugging subjects open their hands at a certain distance and then

embrace at very nearby spatial locations afterwards.

Let x be a video that contains two people interacting. In our interaction model the latent variables

are H = [H1,H2, b]. H1 and H2 are the key pose configuration for each person. The variable

b = (b1, b2) selects which person trajectories take the subject and object roles in the interaction.

We assume a tracker provides the rough trajectories of the people in the video. We use l(x, t, b1) to

denote the location of subject actor in sequence x at time t (same as l(x, t, b2) for object trajectory).

Given a sequence, a latent variable configuration, and a class label, we calculate the score of each

participant, and include the score of the spatial distance link. The scoring function for the interaction
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model is formulated as:

L(x, y,H;ω) = G(x, y,H1, b1;ωs) +G(x, y,H2, b2;ωo) +Q(x, y,H;µ) (3.4)

where we make explicit the dependence of G on different parameter subsets ωs = [α,βs,γ],

ωo = [α,βo,γ] for different trajectories. The parameter b is used to select tracks (not consid-

ered in the single-subject model). Note that α and γ are assumed to be identical for the sub-

ject’s and object’s trajectories, while β, the compatibility of key poses and activity is different.

µ = [µ1,µ2, ...µK ], µi are the parameters that measure the compatibility between activity y and

binned distance between tracks at the time of the ith key pose. Q(x, y,H;µ) measures the relative

distance of two tracks at the time of the key poses and is formulated as:

Q(x, y,H;µ) =
K∑
i=1

µi
Tθ(x, y, t1i , b) +

K∑
i=1

µi
Tθ(x, y, t2i , b) (3.5)

where

µi
Tθ(x, y, tji , b) =

∑
a∈Y

µia
Tbin(‖l(x, tji , b

1)− l(x, tji , b
2)‖2)1{y=a} (3.6)

i.e., the distance between the tracks at the time of the ith key pose in jth trajectory. The function

bin(·) discretizes this distance. To summarize, the full set of parameters is ω = [βs,βo,α,γ,µ].

Note that the scoring function L is a linear function of ω.

3.3 Features

In order to match key poses to the input sequence, we choose the histogram of oriented gradients

(HOG) and histogram of optical flow (HOF) features to capture shape and movement of human. For

the HOG feature we used implementation of Felzenszwalb et al. [15] which is a similar and efficient

implementation of the original HOG feature proposed by Dalal and Triggs [8]. They calculate the

gradient of an image in vertical and horizontal directions, and then bin them to different oriented

bins. The histograms in each cell is normalized with respect to the L2-norm of histograms at four

neighboring cell one by one. Then the final feature is projected to the 13 directions proposed in

[15] which is similar to principal direction obtained by Principal Component Analysis(PCA). We

calculate the HOF feature in exactly similar manner, except we use motion vector between two

frames calculated by Lucas and Kanade [36] optical flow method instead of gradient vector. Thus,
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we represent each frame using a concatenation of HOG and HOF features of 8× 8 non-overlapping

cells organized on a grid inside a bounding box around the subject.

In Eq. 3.1 we use a function D(·, ·) to measure the distance of two bounding boxes. The inputs

to D are HOG and HOF features of the two bounding boxes and the output is a vector with ith

component storing normalized Euclidean distance between HOG and HOF features at the ith cell.

In other words, D calculates the Euclidean distance of features at corresponding cells provided by

HOG and HOF.

3.4 Selecting Exemplars

Our model requires an exemplar set consisting of instantiations of various discriminative key poses

E . Given the tracks of subjects in training sequences we have access to thousands of samples of

cropped images of human subjects. A clustering algorithm such as k-means could be used to extract

various human poses from cropped bounding boxes. But naive clustering methods focus on common

rather than discriminative poses. In order to get varied, discriminative key poses, we trained a

multiclass linear SVM classifier using LIBLINEAR [13] on top of all cropped bounding boxes

from different activities. This classifier is used to score the training samples as a measure of how

discriminative a sample is. Next, we clustered the samples with the highest scores using k-means.

The k-means centers are mean feature of each class which is virtual poses and do not exist as training

samples. We use the nearest samples of the training set to the centers provided by k-means as a set

of key human pose candidates. This heuristic procedure is efficient and effective in our experiments;

though other supervised clustering techniques could also be used (e.g. Lazebnik and Raginsky [33]).



Chapter 4

Key Pose Detection and Parameter
Learning

Given the training set, we need to learn the parameters of the model to be able to find the key poses in

a test sequence and recognize its activity class. The learning algorithm we use requires the inference

procedure, so we first describe the inference procedure to find the key poses for a sequence, and then

explain how we train the parameters of the model.

4.1 Inference

Given a video sequence x, model parameters ω, and a hypothesized activity label y, we score the

sequence by finding the best sequence of key poses. The activity label for a sequence is the y that

maximizes this score. We assume we are given a tracker that produces person trajectories, but we

do not know which of these people takes which role in the activity. We define the scoring function

E(x, y):

E(x, y;ω) = max
(b1,b2)∈S

max
(H1,H2)∈H1×H2

L(x, y,H;ω), (4.1)

with L being the dual-trajectory scoring function defined in Eq. 3.4. b1 and b2 select which person

trajectories take the subject and object roles in the interaction. S is the set of all ordered pairs

of actors in sequence x. In the case with many actors in a sequence, i.e. TRECVID experiment

we limit S to pairs of temporally overlapping trajectories which are close spatially. Recall from

Sec. 3.1 that key pose sequences are constrained by a chronological ordering. H1 and H2 are the

sets of chronologically valid keypose sequences for the trajectories corresponding to people b1 and

22
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b2.

Note that the interaction distance term Q in Eq. 3.5 measures the distance of a trajectory from

the other one at time point of its key pose for both trajectories which is decomposable. Hence, the

maximization in Eq. 4.1 can be decomposed into maximization for each trajectory. So, we can write

E(x, y;ω) = max
(b1,b2)

{
max

H1∈H1

{
G(x, y,H1, b1;ωs) +

K∑
i=1

µi
Tθ(x, y, t1i , b)

}
︸ ︷︷ ︸

subject trajectory

+ max
H2∈H2

{
G(x, y,H2, b2;ωo) +

K∑
i=1

µi
Tθ(x, y, t2i , b)

}
︸ ︷︷ ︸

object trajectory

}
(4.2)

The score maximization for each trajectory consists of findingK key poses, hi = (ei, ti, pi) , ∀i ∈
1, ...,K that match to the sequence. However, our model has a chronological ordering constraint on

the key poses found in the input sequence, which states t1 < t2 < · · · < tK . The exemplar and

spatial perturbation of the key pose are free from this constraint, so we can maximize the partial

score of our model for the ith key pose at frame t over possible exemplars and spatial perturbation:

Ati = max
ei,pi

{
αTφ0(x, t, ei, pi) + βi

Tφ1(y, ei) + γTφ2(x, y, t, pi) + µi
Tθ(x, y, t, b)

}
(4.3)

where t = 1, 2, · · · , T , and T is the number of frames in x. Next, considering the constraint, we can

rewrite the score maximization of a trajectory in Eq. 4.2 as:

max

K∑
i=1

Atii (4.4)

s.t. ti < ti+1 ∀i = 1, 2, · · · ,K − 1

We use an efficient dynamic programming algorithm to solve this maximization. We define M τ
j as

the best score using j elements of A until the τ th frame:

M τ
j = max

j∑
i=1

Atii (4.5)

s.t. 1 ≤ ti < ti+1 ≤ τ ∀ i = 1, 2, · · · , j − 1

We can write M τ
j as a recursive function:

M τ
j = max{M τ−1

j−1 +Aτj ,M
τ−1
j } 1 < j ≤ K, j < τ ≤ T

M j
j = M j−1

j−1 +Ajj 1 < j ≤ K

M τ
1 = max{A1

1, A
2
1, · · · , Aτ1} 1 ≤ τ ≤ T

(4.6)
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The optimal solution of Eq. 4.5 is MT
K , and can be calculated in time O(KT ), the number of

keyposes multiplied by the number of frames in the video sequence. In summary, to solve the

maximization in Eq. 4.2, given a (b1, b2) pair, we maximize the score for each track specified with

b1 and b2 using dynamic program in Eq. 4.6, and then we maximize this score over all possible pairs

of (b1, b2) (elements in S).

4.2 Learning

We use y∗ = arg maxy E(x, y;ω) as the predicted label of x. Given {(x1, y1), (x2, y2), ..., (xn, yn)},
the set of training data, we aim to find parameters that score xi and yi higher than other activity types.

Similar to Felzenszwalb et al. [15] and Wang and Mori [57] we formulate the training criteria in the

Max-Margin framework. We set ω by:

min
ω,ξi

λ

2
‖ω‖2 +

∑
i

ξi (4.7)

s.t. E(xi, yi;ω)− E(xi, y;ω) > ∆(yi, y)− ξi ∀i,∀y ∈ Y

where λ is a tradeoff constant and ∆(yi, y) is 0-1 loss.

The constraint in Eq. 4.7 forces the score of the true labeling for each training sequence to be

higher than the best score for an incorrect hypothesized label. The optimization problem in Eq. 4.7

is a non-convex optimization problem and we use the non-convex extension of the cutting plane

algorithm using NRBM [10] to learn the parameters.

4.3 Initialization

Parameter initialization can be crucial in learning latent variable models since they can converge

to a local optimum. We use some heuristic to initialize the parameters. In order to initialize β,

which affects the valid key pose sequence, each trajectory in class a is divided into K (number

of key poses) equal length, non-overlapping temporal segments. Each frame of a trajectory in the

ith segment is matched to its nearest exemplar in E , and βiae is set to the frequency of matching

exemplar e to the ith segment of sequence in class a. Since, in training we only have involving

people, not their rules, we set both βs and βo to the same before-mentioned β. The initial α and

µ are set to a constant vector normalized based on the number of their components. In order to

speedup the training procedure we learn the direct root model separately by a multi-class linear

SVM using LIBLINEAR [13]. Next, we augment the SVM score with a constant for bias term and
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we change γ to a two-component weighting vector for each action which is set to a constant vector

in the initialization.



Chapter 5

Experiment Details and Results

We consider two datasets to gauge our model’s effectiveness in classifying human interactions. First,

we test our model on the UT-Interaction dataset [50], a publicly available benchmark with compar-

ative results. Second, we construct a dataset for recognizing embrace interactions by selecting a

subset of the TRECVID 2008 Surveillance Event Detection challenge [52] and demonstrate our

model on a non-choreographed dataset. Fig. 5.2 shows sample frames from the UT-Interaction and

TRECVID embrace datasets.

5.1 UT-Interaction Dataset

The UT-Interaction dataset contains videos of 6 classes of human-human interactions: shake hands,

hug, kick, point, punch, and push. There are 20 video sequences in total. Each video contains at

least one execution per interaction, providing 8 executions of human activities per video on average.

The dataset is divided into two sets. Set 1 is recorded in a parking lot with a stationary background

and set 2 is recorded on a lawn with slight background movement and camera jitter. We follow

the experimental setting of the classification task described in the High-level Human Interaction

Recognition Challenge [50] – bounding boxes are used as input and the performance of our model

is evaluated using leave-one-out cross validation on each set. Note that no additional information is

used – in particular roles in the interaction (b variables) are inferred both in learning and test time.1

1For the point activity, the ground truth in the UT-Interaction dataset only contains the person performing the activity
without the other one being pointed at. We search horizontally for a person nearest to the one performing the point activity
and include him as the other part of the activity.
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5.1.1 Implementation Details

The bounding boxes provided as input contain the two humans performing an interaction, not tracks

of individuals. We employ a pedestrian detector [8] to obtain initial positions of the people in the first

frame of every video clip. We select a pair of detections with the minimum horizontal distance out

of the three highest scoring detections, then run a tracker [49] to find trajectories of two individuals

interacting with each other in the subsequent frames. To handle tracker jitter, we allow key pose

positions at small spatial perturbations around the tracker output. We use a 20 pixel step size and

allow up to 1 step horizontally, a 15 pixel step size and allow up to 1 step vertically to locate p,

the position of key pose in the track. Considering camera zoom in set 1, we also perform multi-

scale search at 2 scales. In other words, we assume we have another latent variable for scale which

can have two different zoom rates for set 1. In inference, we maximize the score over this hidden

variable similarly to other hidden variables.

5.1.2 Results

Confusion matrices of the two sets in the UT-Interaction dataset are shown in Fig. 5.1. The figure

shows some confusion between the activities push and punch on set 2. This is consistent with the

fact that pushing and punching are similar in both appearance and motion. Comparisons with other

approaches are summarized in Table 5.1. A direct comparison is possible to the methods by Yao et

al. [68] and Yu et al. [69]. Our method clearly outperforms the other methods.

Table 5.1: Per-clip classification accuracy on UT-interaction dataset.
Method Set 1 Set 2 Avg

Our method 0.93 0.90 0.92
Yu et al. [69] N/A N/A 0.83
Yao et al. [68] 0.88 0.80 0.84

5.1.3 Visualization of Model Weights

In this section we provide visualization of portions of our model to understand what it has learned.

We visualize the exemplar matching model, which is patch-based weights, to demonstrate that

our model is able to localize key poses in the trajectory and fire on discriminative patches for pose.

Figure 5.2 shows our exemplar-matching model. We show weights between exemplars and activity

labels to show our model can handle pose variation via the exemplar representation. Figure 5.3
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(a) set 1 (b) set 2

Figure 5.1: Confusion matrices of per-clip classification result on UT-Interaction dataset. Horizontal
rows are ground truth and vertical columns are predictions.

visualizes our learned activity-key pose weights. We visualize the weights for distances between the

localization of key poses in each trajectory to illustrate the contribution of spatial constraints. The

first bin (bin 1) is assigned to distance smaller than a threshold, and the last bin (bin 5) is assigned

to all distances larger than the maximum step size. Figure 5.4 shows the learned spatial distance

weights.

5.2 TRECVID Embrace Dataset

We collected a subset from the development dataset of the TRECVID 2008 Surveillance Event De-

tection challenge [52] for the embrace event classification task. Our goal is to examine performance

of our method on non-choreographed activities. The full TRECVID dataset is very challenging,

and state-of-the-art methods perform poorly on it (>95% miss rate at 10 FP/hour). Considering the

fact that human detectors and trackers have difficulty in challenging datasets like TRECVID, we

manually select a subset of the dataset the detector/tracker perform well. This subset will certainly

be easier than the full dataset, but it can be argued that with a better detector/tracker, performance

should improve.

We choose five days of video from camera view 3, which contains 343 embrace events (63% of

those in the whole dataset). We manually select a positive set of 36 embrace clips where our detector

and tracker provide reasonable output. For negative set, we randomly sample 300 video clips that

do not overlap with the temporal interval that the embrace events occur, and use the same human

detector/tracker used for positive examples to obtain trajectories. There are 1074 pairs of trajectories
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Frame 69Frame 58Frame 52Frame 41Frame 40Frame 1

... ...

Frame 39

... ...

Frame 38 Frame 49 Frame 52 Frame 54 Frame 58 Frame 60Frame 1

Figure 5.2: Discriminative frames of a trajectory are automatically extracted. Separated by a dashed
line, the upper part of the figure comes from the UT-Interaction dataset and the lower part from the
TRECVID embrace dataset. The localizations of key poses in trajectories are highlighted by red
bounding boxes. In the upper part, our model localizes 5 key poses in a 69-frame long trajectory and
selects exemplars for each of them. The frame number under each key pose localization indicates
its time in the trajectory. Exemplars are selected based on similarity in appearance and localization
of key pose. The similarity is defined as patch-weighted distance. The model learns to give high
weights on patches where poses appear to be unique. Patch-based weights are shown beside each
exemplar on the first row. The weights spread over the contour of each individual and concentrate
on outstretched arms for the push activity. Similar visualizations are shown in the lower part for a
trajectory from the TRECVID embrace dataset.



CHAPTER 5. EXPERIMENT DETAILS AND RESULTS 30

Push

Hand-shake Hug Kick

Point Punch

Figure 5.3: Visualization of activity-key pose model. For the heatmap of each activity, the horizontal
axis is the concatenation of the 5 key poses in the activity and the vertical axis specifies 20 exemplars
belong to the activity. Each pixel describes the score for an exemplar being matched to a key pose
in the activity. The weights represent our model’s preference for an exemplar in a key pose. For the
second key pose in each activity, we also visualize the exemplars with highest weights. For each
activity, selected exemplars have large pose variation.
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Figure 5.4: Spatial distance model for six activities in UT-Interaction dataset. Three axes are discrete
distance, key poses and weights. For a key pose in each activity, the heights of bars indicate our
model’s preference among different distances. Bars are also colored according to height. The spatial
distances in the hug activity are preferred to be smaller than that in the point activity, which illustrates
the fact that people are closer to each other in hugging compared with pointing. For the push activity,
the spatial distance preferred by the last key pose is much greater than previous ones, reflecting the
separation of the two individuals at the end of the activity.
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that intersect spatio-temporally, but are not embrace events. We sample 108 pairs of trajectories to

use.

The TRECVID Event Annotation Guidelines state that embrace starts at the latest time when

subjects do not have physical contact prior to the embrace. However, we believe important and

discriminative information is also present in frames before people have physical contact. For ex-

ample, pairs of people with both arms outstretched strongly indicates the upcoming embrace event.

So we decide to label the starting frame of embrace 20 frames earlier than the TRECVID ground

truth. We also fix the length of embrace samples at 60 frames for both positive and negative sam-

ples. Note that the negative samples come from videos randomly sampled in time, hence is a fair

comparison to non-embrace videos, though our dataset lacks the “near”-embrace events that would

require non-maximum suppression. Our embrace dataset excludes groups hugging and other seri-

ous occlusions in which case one can barely see embrace event. However, the dataset still inherits

the challenging characteristics of TRECVID videos: it contains large intra-class variation with a

cluttered background. The precise dataset will be available for download at our website.

5.2.1 Preprocessing

Our dataset is created by collecting a set of trajectories from the TRECVID dataset. We run a

HOF/HOG SVM human detector on the first frames of the clips and use a tracker [2] to obtain

trajectories of individuals. The task is now a classification task – given a pair of trajectories, is there

an embrace activity occurring or not.

5.2.2 Results

We evaluated our method using 6-fold cross-validation. To evaluate the effectiveness of different

parts of our model, we introduce two baseline methods. The first baseline is our full model without

the root model, the direct link between key poses and activity labels. The second baseline is our

full model without the spatial distance model, the link between localizations of key poses in one

trajectory and poses in the other trajectory simultaneously. The ROC (Receiver Operating Charac-

teristic) curves in Fig. 5.5 show the effectiveness of our method relative to these baselines. In order

to draw these curves on the TRECVID embrace dataset instead of using maximization to classify a

sequence, we use a threshold on the gap between the scores of two classes for an input sequence.

By changing this threshold we could move from assigning all samples to the positive class toward

assigning all samples to the negative class. Each threshold results in particular true positive rate
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Figure 5.5: ROC curves on TRECVID embrace dataset. Legend shows Area Under ROC (AUR) for
methods.

(TPR) and false positive rate (FPR) that is shown on the curves.

The 6% increase in AUR (Area Under ROC) from the first baseline to our full model reflects the

contribution of the root model to our full model. For negative examples, we only select trajectories

that occurs at the same temporal interval, and are spatially close to each other, since the positive

samples are spatially close to each other (they are embracing) as expected the models with and

without spatial distance are similar.

Our experiments are on a subset of the TRECVID embrace dataset, but we can extrapolate per-

formance to the complete TRECVID dataset. Camera view 3 captures the majority of the embrace

events. In the worst case, if we misclassify all other positive examples, the maximum achievable

true positive rate (TPR) in ROC will be 63%. Due to failures of the human detector, tracker and

ignorance of short positive samples, our TPR will at most decrease to 10% × 63% of our reported

TPR. On the contrary, our negative examples are randomly selected pairs of trajectories which are

spatially close to each other, they are a very difficult subset of negative examples. Hence, we be-

lieve experiment on the full dataset, will not increase the false positive rate dramatically, and we can

achieve promising performance on that dataset.



Chapter 6

Conclusions

In this part we addressed human interaction recognition problem in computer vision. We presented

a discriminative model for human interactions based on a sequence of key poses. Strict temporal or-

dering, and the spatial relation between actors in an interaction were modeled with structured-latent

variables. Variability in instantiation of key poses are all enforced in this model using exemplar-

based representation. An efficient dynamic programming algorithm for inferring key pose sequences

was presented, and parameters were learned using the discriminative max-margin criterion. Exper-

iments on the benchmark UT-Interaction dataset verified the effectiveness of the model. Further,

non-choreographed activities were explored using a subset of the TRECVID dataset.

Our method has its limitations in handling the real world videos. The method uses human

trajectories as input. As future works, examining the addition of tracking as an additional latent

variable could alleviate this direct prerequisite. Moreover, due to the noise in the spatial domain and

cluttered background, key pose localization can sometimes fail. Our current key pose representation

is limited to the spatial domain and two successive frames in temporal domain due to the use of the

HOG and the motion features. One can define richer segments in wider temporal domain. Exploring

such rich segmentation and representation is another possible direction of future research.

In order to develop a tractable system we were limited to a simple model. Our strict ordering

of key poses can not recognize the scale of an action in temporal domain or the length of irrelevant

movements between the key poses. The temporal distance of key poses could be modeled rather

than their order. In addition, a richer model can be developed by modeling the co-occurrence of

key poses of actors or their temporal distance instead of distance between trajectories. But, both

the modifications in temporal order of key poses and their spatial link will make the exact inference

intractable which require further research on approximation techniques.
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Color From Gray
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Chapter 7

Previous Work

Color quantization techniques have been mainly explored in 1980s and 1990s, the period that the

techniques were popular due to the limitation of display memory. Modern computers can now

display milions of colors which limits the application of color quantization to mobile devices. In

addition to display, color quantization may be used to compress images, since they can replace colors

(typically 24bits) with their indices (8bits or less) in color look-up tables.

Color quantization methods can be divided to two groups: fixed quantization and adaptive quan-

tization. In fixed color quantization, a fixed set of representative colors is used for all images. But,

in adaptive methods representative colors are formed for an image such that the visual difference of

output is as close as possible to the input color image. The advantage of fixed quantization is that

it eliminates the need for attaching the colormap to the image which saves the required memory to

store and transfer the image. For this reason, fixed color quantization is widely used on world wide

web specially for small images such as logos or icons that have small size and when attaching the

look-up table is expensive e.g. web safe colors. However, a fixed color mapping has large amount

of error on real world images which have broad range of colors. For this purpose most researchers

focus on adaptive color quantization techniques.

In adaptive color quantization the set of representative colors is created based on the color points

of input image such that the quantized image has small error. The error usually is measured by mean

squared error, and the task can be considered as a clustering of color points to groups that total error

of groups is minimum. It has been shown in Gray et al. [17] that the finding the optimum solution to

such problem is NP-complete. Hence, proposed methods uses heuristics to find an approximation of

the optimal representative colors. These heuristics can be divided to two main categories: clustering

methods and splitting methods. The clustering methods are typically bottom-up techniques that
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iteratively group the data to clusters that have lower error. Splitting techniques usually start with all

points, and divide them to smaller groups in each iteration such that each group has smaller error.

7.1 Clustering Methods

Clustering techniques are typically bottom-up iterative methods, that start with all color points and

group them to clusters that have lower errors. Time complexity of these methods are usually higher

than splitting methods. However, in practice they usually achieve better approximation of optimum

solution.

The popularity algorithm is an early method proposed by Tom Boyle and Andy Lippman in 1978

which was implemented in Heckbert [22]. The method is not iterative, but is bottom-up, hence it is

considered as clustering technique. This method divides the color space to small bins, and calculates

the histogram of points using those bins. Then, the bins with the largest number of colors are chosen

for color mapping, and the points in the non-empty bins which are not chosen are assigned to the

closest bin. Finally, representative colors are set to the mean of each group. The method is sensitive

to the initial bins size and it may fail for images with wide range of colors.

Several clustering methods are used for color quantization. Linde et al. [35] used popular clus-

tering algorithm, k-means method, for vector quantization. They initialize centers of the clusters

with random samples from colors. In each iteration they assign a point to the closest cluster, and

they update the centers to the mean of the points in the cluster. Xiang and Joy [65] used the agglom-

erative clustering technique for color quantization. In this technique, each color point represents a

cluster at the beginning of the algorithm. In each iteration, two clusters are chosen to merge such

that the resulting cluster has the lowest error. They represent each cluster by surrounding box, and,

they measure error by spread of color points in dimensions of the box. Xiang [66] minimized the

maximum interclass distance in order to cluster the input color points. They proposed an iterative

approach which starts with all points at the beginning, an in each iteration it calculates the distance

of the representative of a cluster to all other points in the cluster. The furthest point is assigned as

representative of a new cluster. The points closer to the new representative are then moved to its

cluster.

Dekker [9] used the self organizing networks to cluster the color points. A network is defined by

a set of nodes and edges. Nodes are representative colors in the color map, and the edges connects

the neighboring color points in color space. In each iteration, the position of the nodes are updated

toward weighted direction of both the closest color points of the input image, and the neighboring



CHAPTER 7. PREVIOUS WORK 38

nodes. At the end, the network spreads in the color space such that it represents the topology of color

points of the input image. Generally speed of self organizing maps depends on the initialization of

the network. Mavridis and Papamarkos [39] used the principal component analysis to initialize the

network for color quantization.

7.2 Splitting Methods

Splitting methods typically start with all color points of an image as a cluster. In each iteration they

choose a cluster, and divide it into small groups such that the resulting groups have the smallest

error. These techniques differ based on the criteria of cluster selection, the splitting border location,

and number of groups that are created in each iteration.

One of the most popular splitting methods is the median cut algorithm proposed in Heck-

bert [23]. The basic idea of the median cut algorithm is that each color entries in a colormap

represents the same number of pixels in the original image. This method starts with a box that

tightly encloses all color points of an image. In each iteration, a box with largest range on an axis is

selected. Then, a plane perpendicular to the axis at the median of points along that axis divides the

box to two smaller boxes which have the same number of color points. The process continues until

the number of the rectangular subspaces reaches a desired number of entries in colormap. Wu and

Witten [61] proposed mean-split algorithm which places the partitioning plane at the mean of a box,

and Joy and Xiang [27] place the plane at the center of the box. However, Wan et al. [55] argued

that considering the variance instead of spread for partitioning results in lower mean squared error.

They chose the box with the highest variance, and they find the partitioning plane that reduce the

variance most. Orchard and Bouman [43] proposed a binary splitting tree similar to Wan et al. [55].

However, they find the partitioning plane perpendicular to the principal direction of the data instead

of the space axes.

Gervautz and Purgathofer [18] proposed the octree portioning method for color quantization.

They saved the color map entries in the leaves at the the 8th level of a tree whose its inner nodes are

from degree 8. They scan the input image and they push down all colors of image to the correspond-

ing leaves in the tree until the number of leaves exceeds the number of representative colors. Then,

the leaves at the deepest level with the smallest number of nodes are merged to their parrents node.

Finally, each color map entries is assigned to the mean of colors at the corresponding leaf.

Balasubramaian et al. [3] proposed the sequential color quantization which splits the color space

sequentially along the axes of color space. First, they quantize a component of color according to the
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marginal distribution of the component. Then, they quantize the second color component using the

conditional distribution of the second color component given the first component, and similarly they

quantize the third component using the first two components. Even though they derive the optimum

quantization for each successive stage given an order of color components, but, they iterate the

algorithm for each order to find the one that results in minimum mean squared error.

Some methods use both splitting methods and clustering techniques for color quantization. Wu

and Zhang [62] find a splits the partitions similar to Wan et al. [55]. Then, two resulting partitions

are fed to the algorithm proposed in Linde et al. [35] as initial clusters to find a locally optimum bi-

partition with minimum sum of inner variance. Procedure chooses a partition with largest variance,

and continue the partitioning and the refining until a desired number of clusters are achieved. In

later work Wu [60] show that for color image data, points are usually spread along the intensity

direction, and the first few partitioning planes are perpendicular to the first principal component

of data. They proposed to split the color points to more than two partitions using parallel planes

found by a dynamic program at the beginning of partitioning, and they use other binary partitioning

afterwords such as the one in Wu and Zhang [62].

Overall splitting methods are greedy algorithm that in each iteration attempt to minimize the

error by choosing the partition that has the highest decrease in error. Even though they are typically

faster than clustering methods, but their error is greater than clustering techniques.

A common artifact of color quantization is contouring which is resulted from mapping smoothly

varying regions to small of number of representative colors. Typically a subsequent processing is

done on the quantized color image to reduce the degradation. The techniques are known as Dither-

ing methods which are based on the properties of human vision system. Human beings perceive

high frequency spatial variation as homogeneous colors, which can be considered as a low-pass or

averaging filter. These techniques create larger number of colors by spatial mixing of colors.

Some color quantization algorithm model both the quantization and dithering together. Orchard

and Bouman [43] reweight the squared error of quantization based on the area of a region with same

quantized color after first color mapping, and repeat the process with new weights to decrease the

contouring effect. Puzicha et al. [45] model both the quantization and the dithering in a cost function

which is derived from the human visual system.



Chapter 8

Color from Gray by optimized color
ordering

Our goal in this part is to store color information in gray values, and, to recover color later using

small amount of extra information attached to the constructed gray image. However, the mapping

from color image to gray scale typically deletes color information by assignment of the same gray

intensity to different colors. For example, in the standard NTSC multimedia-standard mapping from

RGB to gray scale luma is done by Y ′ = 0.299R′ + 0.587G′ + 0.114B′, where typically primed

quantities are gamma-corrected values. For quantized gray levels this means that in RGB color

space points on planes with normal vector u = (0.299, 0.587, 0.114) all are assigned to the same

gray scale value. As an extreme case, in Fig. 8.1 a color image and its corresponding, single gray

level in this case, image are shown: Although the image consists of different colors, all colored

points on it have the same gray scale value.

We also need to measure the error in the recovered color image, so we transform the image

to CIELAB color space instead of using RGB space. CIELAB space is a perceptually uniform

color space which means that distance of two color points reflects the magnitude of the perceptual

difference observed by human visual system. CIELAB color space consists of three components.

L∗ component represents the lightness and both a∗ and b∗ reflect the color dimensions. Here, we use

L∗ and CIELAB color space respectively as our internal gray space and color space and we measure

the error by the colorimetric error [63] which is Euclidean distance between two points in the gray

or color space. We also assume that input-image colors are in the standard, nonlinear sRGB color

space [7], and visualization will be done in sRGB space.

40



CHAPTER 8. COLOR FROM GRAY BY OPTIMIZED COLOR ORDERING 41

Figure 8.1: Left: an image containing different colors, all corresponding to the same gray. Right:
Grayscale image of left image.

8.1 Color to Gray and Back

In order to encode color information in an L∗ gray scale image, we assume that in a small color

neighborhood each gray intensity corresponds to a fixed color point, representing all neighboring

colors instead of whole plane visualized in Fig. 8.1. The task at hand, then, is to decide which

representative color to use for each gray level, adaptive to the input image, and also allow this

mapping changes if that will decrease color error at the expense of some gray scale error.

In Fig. 8.2 this mapping for a small region in color space is shown, using solid points for the

representative color in each plane. Suppose we have created a curve traversing colors in color space

in an orderly fashion so as to move steadily upward from L∗ gray level 0 to gray level 255, visiting a

rich color sampling in both hue and saturation. In the illustrative figure, suppose that for quantized

gray scale g, the color assigned is a green, and for the next quantized gray value (g − 1), the color

is a pink and for (g − 2) is a blue — filled points on a spiralling curve are the initial representative

colors that correspond to each of the quantized gray levels.

In this case to encode an input color, that happens to correspond to gray levels g, we use the

gray scale of the closest filled point in 3D; e.g., for input-image point A, which happens to be a

red and has quantized L∗ value g, and is not one of our representative colors on the mapping, we

actually use a gray scale of (g − 1) instead of g, because (1): (g − 1) is within a small search range

in quantized gray scale of g, and (2): the representative color for (g − 1) is closer to A’s color. So,
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we represent color point A with point B because it is the closest to A. We accept small amount of

error in gray scale image by assigning gray value (g − 1) instead of g to point A. However, this

small error enables us to recover approximate color of A in decoder side, since g − 1 is assigned to

a color point close to the original color of A. Hence, all that is necessary at the decoder side is (1)

the gray level actually assigned to the pixel and (2) the mapping used, so that the color pertaining to

that gray level is known.

Figure 8.2: Color planes with uniform gray scale values. On each plane we fix a color point on the
intersecting curve and during transformation from color image to gray scale value we use gray scale
of the closest fixed point. So point A is transformed to gray scale g − 1 and in reconstruction color
point B is used.

8.2 Parametric curve

As illustrated in Fig. 8.2, we need an efficient way to store and represent the mapping between gray

scale and color values. The standard approach is to use a palette to store RGB values in a look-

up table. The image data itself then consists of look-up table index values, which cannot of course

provide a sensible gray scale image itself – instead, gray is produced by regenerating an approximate

color image and then transforming that to gray.

Here we take the tack of instead using a 3-space curve C(g) : < 7→ <3 which maps gray scale

values to points in color space. By choosing an appropriate parametric function we can optimize its

shape for each input image, and attach its parameters instead of a large look-up table. Not only do
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we thus save on bandwidth, but in fact we show in Chapter. 9 that we achieve better results than the

standard adaptive GIF file in the accuracy of gray images and recovered color.

The mapping function can be thought as a curve with gray scale value as its parameter. In

order to have small error on transformation form color to gray and back, the mapping should cover

different colors as gray scale changes. In other words, the curve should have different color samples

in small a neighborhood of gray scale values. Hence, in CIELAB space, if we assume a curve with

a vertical axis, equal to lightness component L∗, a helical curve will satisfy this requirement. As

shown in Fig. 8.2, as g increases the curve travels through different colors on planes parallel to

the a∗, b∗ plane. However, the requisite curve should also cover different saturation values which

corresponds to distance of curve from the middle axes. Thus, instead of using a fixed radius, we

assume an alternating radius with a sliding Gaussian peak:

radius = r(g) = c1 exp(
−(g − c2)2

(c3)2
) sin2(c4 g + c5) + c6 (8.1)

where g is gray level value.The mapping curve is then taken to be

a∗ = r(g) sin(c7 g) + ca

b∗ = r(g) cos(c7 g) + cb

L∗ = g

(8.2)

where L∗, a∗, b∗ are the color components and c1, c2, . . . , c7 are the coefficients which will be op-

timized later. ca and cb are the center of the curve in the a∗, b∗ plane, which can be assigned to the

mid-value 0 (128 in Matlab). However to allow the main L∗ axis to bend to suit the actual gamut of

the image, instead of fixing ca and cb we add two further 3-vector parameters, w1,w2 expressing a

polynomial fit of g to a∗ and b∗: [
1, g, g2

]
w1 = a∗

[
1, g, g2

]
w2 = b∗

(8.3)

Hence our final expression of curve C is as follows:

a∗ = r(g) sin(c7 g) + w1 · [1, g, g2]

b∗ = r(g) cos(c7 g) + w2 · [1, g, g2]

L∗ = g

(8.4)

c1, c2, . . . , c7,w1 andw2 are 13 parameters of our curve. The radius and curve with initial parame-

ters used in optimization are shown in Figs. 8.3 and 8.4.
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Figure 8.3: Radius function.

8.3 Transform to gray scale image and color image reconstruction

Each pixel in the input image can be thought as a point in 3-dimensional CIELAB space. In order

to transform it to gray scale, first the closest point on the curve in 3D is found: then its gray level

is used as that pixel’s gray level. Due to the special shape of the curve that closest color point will

also have similar gray scale value and the amount of error will be small. So, we can use this fact

when we are looking for the closest point on the curve to a point by limiting the search range to a

neighborhood of original gray scale value of that point. Hence, the gray scale value for each pixel p

with color ρ(p) is obtained by:

grayapex = arg min
g

(‖C(g)− ρ(p)‖) (8.5)

where g = L∗(ρ)−K, . . . , L∗(ρ), . . . , L∗(ρ)+K andK is the search range. In order to reconstruct

the color image from the corresponding gray scale image constructed in this way, we simply use the

corresponding color point on the curve for gray value grayapex:

Labrecon = C(grayapex) (8.6)
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Figure 8.4: Parametric curve traversing color space.

8.4 Optimization

Each color image can consist of points in different regions of CIELAB space. So a fixed curve

cannot always reconstruct the image very well. The main advantage of the proposed curve is that its

shape can be changed by a few parameters. Thus, for each input image we adaptively optimize the

parameters such that the error in both the gray image and the reconstructed color image is low. The

parameters w1 and w2 captures the center of curve and can be found by a simple polynomial fit in

Eq. 8.3. However, we need to find optimum values for c1, . . . , c7. We limit the search over nearby

gray scale values to g → g ± k, k = 0..K (we use K=5 here). Then the appropriate objective

function is as follows:

min
c1..c7

Cost(C, ρ) =
∑
p∈Ω

{
min

k=−K..K
‖C(g + k) − ρ‖

}2

(8.7)

with g = L∗(ρ) and where Ω is the image domain. Optimization in Eq. 8.7 forces the closest point on

the curve in small neighborhood of original gray values get as close as possible to the original color.

We use Matlab’s built-in nonlinear least-squares curve fitting function which is implementation of

the Trust Region Approach [6] to minimize the cost function in (Eq.8.7).



Chapter 9

Experiment Details and Results

Let us compare the performance of our algorithm with the standard GIF file format color quantiza-

tion method, especially concentrating on low-bitrate representations for mobile-device applications.

For fewer bits, we quantize to only 2n gray levels and also search in color space only on those quan-

tized planes. However, we should note that even comparing our method to the GIF file format is

unfair. The GIF file type saves the color mapping in a look-up table. But, in our method, the color

mapping is stored in a curve with 13 parameters. Our goal is to save the color information in gray

level values, but the GIF file format has not such constraint.

(a) (b)

Figure 9.1: (a): Input image; (b): gray for input.

Consider the input image I1 shown in Fig. 9.1(a): its corresponding gray is shown in Fig. 9.1(b).

Now, Figs. 9.2(a-d) show the gray images for the present method, for bpp (bits per pixel) values

3,4,6,8; and Figs. 9.2(e-h) show the corresponding gray images using GIF. Figs. 9.3(a-d) show the
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color versions for the present method, over these bpp values, and Figs. 9.3(e-h) show GIF color.

Fig. 9.4 shows quantitative comparison of our method for a few images. Typically, the present

method generates a better gray representation, and can also generate a comparable color as well.

Nevertheless we see that the method performs remarkably well given the small number of curve

parameters needed to be stored on top of the gray scale values.

The error measure used here is CIELAB error, for both gray images and color, and one should

note that since this is a pixel-wise measure, it does not correctly take into account mechanisms of

spatial integration, as in e.g. the s-CIELAB measure proposed by Zhang and Wandell [70]. Since

for lower bitrates GIF tends to produce speckled images, a better error metric might tend to discount

these speckles in favor of the overall fidelity of the image and thus numerical results might be

different.

Fig. 9.5(a) shows how the fit to the gamut for Fig. 9.1 (shown in red, subsampled) is indeed well

fit by the (blue) parametric curve. The GIF palette is shown in Fig. 9.5(b), as opposed to that for the

proposed method in Fig. 9.5(c). For our method, the palette is of course well-ordered from L∗=0 to

255. Further results are shown in Fig. 9.6, Fig. 9.7 and Fig. 9.8.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9.2: (a-d): Gray for 3,4,6,8 bpp; (e-h): GIF gray.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9.3: (a-d): Color for 3,4,6,8 bpp; (e-h): GIF color.
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Figure 9.4: (a): CIELAB errors for gray images,; (b): Color error for input images I1-I4 visualized
respectively in Fig. 9.3, Fig. 9.6, Fig. 9.7 and Fig. 9.8
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Figure 9.5: (a): Gamut encompassed by parametric curve; (b): GIF palette; (c): Ordered colors along
curve.
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(a) (b)

(c) (d)

Figure 9.6: (a): Input image; (b): Gray for input; (c,d): Color output at 4bpp,8bpp.

(a) (b)

(c) (d)

Figure 9.7: (a): Input image; (b): Gray for input; (c,d): Color output at 4bpp,8bpp.
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(a) (b)

(c) (d)

Figure 9.8: (a): Input image; (b): Gray for input; (c,d): Color output at 4bpp,8bpp.



Chapter 10

Conclusions

In this part, we proposed a novel method to reconstruct color from a gray scale image. We proposed

a parametric curve that stores the mapping from gray level space to color space, and we optimized its

parameters to achieve low error on both gray level image and recovered color image. Remarkably,

results show that the method reconstructs gray scale with surprisingly small error, and the color

version had comparable error.

Our method has several limitations. We used a constant quantization rate to sample from the

curve. This results in dense samples at small radius or low saturation but sparse samples at large

radius or saturated colors. So, the method has lower error for images with low saturation. In addition,

the accuracy of our method declines for an image with narrow range of colors. In a very special case

such as an image with colors all on the plane parallel to a∗ and b∗ plane our method will have poor

results since small part of it covers these parallel planes. Typically the curve traverse over all color

space, and some representative color are wasted. Different quantization methods can be explored

to address these problems which is a possible direction of future research. We also ignored spatial

domain in color quantization. One further study can be done on incorporating spatial information in

optimization.

Overall, we have succeeded in the intent of this part, namely showing that a very low-complexity

curve (just 13 parameters, here) may indeed describe the gamut of the input image sufficiently well.

Clearly it is likely possible to improve the precise form of the curve, and as well user studies are

called for to study the efficacy of the method. These are the subject of future work.
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