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ABSTRACT 

Emergency Departments often experience sudden increases in patient visits, 

referred as surge. Surge brings challenges to setting staffing requirement. Since the 

patient arrival rate is not constant over time during surge, a network of nonstationary 

queueing models and time-varying discrete event simulation models have been developed 

to model the surge in emergency department. For queueing models, to mathematically 

analyze this time-varying system, many approximation methods that have been proposed 

in literature are compared in this work in order to identify the best approach for 

modelling surge. Due to the lack of analytical approaches to evaluate these methods, a 

validated time-varying simulation model was used as the reference for comparison.  In 

addition, a detailed discrete event simulation model was built and validated with 

historical data for St. Paul’s hospital in BC, Canada. Both the queueing theory approach 

and simulation method are studied and their advantages and disadvantages are discussed 

for modelling surge. 

 

Keywords: healthcare modelling, emergency department, queueing theory, 

discrete event simulation  
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1: INTRODUCTION 

Almost everyone encounters queues every now and then including waiting to 

make a bank deposit, pay for groceries, etc. People have become used to considerable 

amount of waiting, but yet get frustrated by unusually long waits. From another 

perspective, the amount of time that people waste waiting in queues is not only a personal 

annoyance, but also is a major factor of quality of life and efficiency of a nation’s 

economy. In United States, it is been estimated that people spend 37,000,000,000 hours 

per year waiting in queues [1]. If this time could be spent productively, it would make 20 

million person-years of useful work each year! 

In the healthcare section, these waiting times not only are a waste of people 

productive times, but also could be a source of threat to their lives. From the waiting in 

an emergency department to the waiting in the queue for special health services such as 

Magnetic Resonance Imaging (MRI), long waiting times could have undesirable impacts 

on people’s health.  

Healthcare is a large component of Canadian economy that affects every resident 

of this country. According to the latest OECD (Organization for Economic Co-operative 

and Development) total expenditure on healthcare accounted for 10.4% of the GDP in 

2008, which is more than one percent higher than the average of the OECD countries [2]. 

High quality healthcare is one of the main factors that contribute to Canada’s ranking as 

one of the best countries to live in, according to the United Nation’s Quality of Life 

Survey [2].  



 

 2

According to a study reported in 2007, 57% of Canadians waited more than four 

weeks to see a specialist and 24% waited for more than four hours in the emergency 

department [3]. Long waiting times and shortage of medical practitioners are among the 

major complaints about the Canadian healthcare system.  

The question is that, if we cannot take care of emergency patients on a normal 

day, how will we manage a large-scale disaster? When a disaster takes place, the 

significance of this problem is more highlighted. In the event of a surge such as a mass 

casualty incident, any minute of delay in serving patients can potentially cost a human’s 

life. Disaster is referred to low probability but high impact incident that causes a large 

number of individuals to become ill or injured [4].  

Disasters and infectious disease outbreaks over the last several years have 

demonstrated the importance of emergency preparedness for large-scale events affecting 

many people. The ability to respond effectively to events producing a massive flow of 

patients requires surge capacity [5]. According to Webster's Online Dictionary (2009b), 

surge is defined as “a sudden forceful flow" or "a sudden or abrupt strong increase." 

Although tools to measure “crowding” phenomenon have been developed and tested, no 

uniform agreement on the actual operational definition of it was attained [6].  In addition 

to influx (volume rate), surge is further composed of the following components: event 

(type, scale, and duration) and resource demand (consumption and degradation) [7]. 

Kelen and McCarthy proposed a recent modified definition for surge as “a sizeable 

increase in demand for resources compared with a baseline demand” [8]. 

Hospitals estimate of their average daily patient load under normal operations and 

prepare their resources and staffing accordingly. In case of a mass casualty incident, a 
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healthcare facility or system may be suddenly faced with a significant increase or surge 

of patients. We can call this incident a surge-generating event [9].  

The surge generating event that affects the operations at healthcare systems could 

have many forms. In terms of surge generating events, surge can be categorized as 

contained or population based. A contained event has a distinct geographic focus, even if 

the focus is very large. Such an event requires local response from hospitals, clinics and 

personnel within the affected region. Examples of contained events could include 

bombings, tornados, or hurricanes. A population-based event is not geographically 

defined and can spread infectiously. Such events would likely start from an initial local 

event but would soon spread out of the borders of a contained event. As an example, we 

could mention epidemic diseases [9]. Either event causes temporal high resource 

demands to hospitals and their Emergency Departments (ED). The ability to respond 

effectively to events producing a massive flow of patients requires surge capacity. 

1.1 The Problem of ED overcrowding 

Timely access to an emergency provider is an important factor of quality for 

emergency departments (ED), though many EDs are facing a number of challenges which 

lead to excessive waiting time and diversions. To provide a high quality healthcare to the 

public, healthcare issues such as overcrowding must be dealt effectively and quickly. One 

of the major challenges with healthcare systems is their complexity. There are many 

different decision making units involved with almost any individual healthcare issue. 

Therefore, it is very important to make informed decisions that are based on advanced 

methods. 



 

 4

One of the factors that contribute to ED overcrowding is the lack of available 

inpatient beds. ED patients’ that get stable health conditions are usually transferred to an 

inpatient bed, if not sent home. In this case, the ED bed is freed up for another patient 

whose condition is not stable. However, because of the lack of inpatient beds in hospitals, 

the process of transfer may not take place. In a study done by Estey et al. [10], it is 

mentioned that the lack of inpatient beds is believed to be one of the main causes of ED 

overcrowding and long waiting times. When there is no inpatient bed available, patients 

end up waiting in the ED beds and consequently, the ED becomes congested. Other 

factors that are recognized to contribute to the ED overcrowding are  

 Use of an ED bed for non-emergency cases 

 Staff shortage 

 Aging population and increasing patient acuity 

 Increase in volume of the patients coming to ED [4]  

In this work we focus on the shortage of staffing as a possible source of crowding 

when the patient arrival rate is increased as a result of a surge generating event. Hospitals 

mostly struggle to provide sufficient staffing to handle increasing demand for care. 

Experience shows that one of the most critical resources in the ED is usually physician. 

Furthermore, about 30-40% of the ED costs account for emergency physicians [4]. 

Therefore, determining the right number of physicians to satisfy the demand would have 

great impact both on the quality of the service and its costs.  
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1.2 Motivations 

The motivation of this study in the beginning was to find out a solution for the 

problem of overcrowding in a local emergency department at the time of the outbreak of 

an infectious disease. This directed us to the definition of the surge and the fact that surge 

inflicts temporal challenges to the managers for determining the staffing level that could 

respond effectively and efficiently to the influx of patients arriving at the ED. As the 

surge situation is sudden and short in duration, we had to analyse it with transient models 

such as simulation or transient queueing models.  

Both simulation and nonstationary queueing models have their own advantages 

and disadvantages. For example the simulation approach is easy to employ but it would 

take a long time and an excessive effort to construct and validate the model. In addition, 

examining alternative solutions with simulation requires direct experimenting and 

therefore, it generally requires a very long time to determine the best solution. On the 

other hand, queueing models are very fast and easy to build but they usually have 

difficulty capturing the true essence of the actual system in every aspect, or otherwise 

they would become so complicated that cannot be analyzed mathematically. As a 

compromise in this work, we built both a queueing model and a simulation model. The 

simulation model was validated with the result of the simple queueing model and then 

used in place of more complex queueing models when they could not be approached 

analytically.  

Specifying the time dependent number of staff is done by implementing a number 

of approximation methods found in literature. Currently, to the best of our knowledge, 

there are no tools that allow us to evaluate the performance of these methods for complex 
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queueing models. Such tool is developed in this work and is then utilized for determining 

the most appropriate approximation method for the specifics of our surge problem.  

1.3 Objectives  

The objective of this research is to develop a queueing model that represents ED 

at the event of surge, when the system has nonstationary arrival rate and non-exponential 

service time distribution. A number of approximation methods would be implemented to 

determine the staffing requirement of the ED according to variations in arrival rates.  All 

these approximation methods are to be compared to identify the most suitable one for 

modeling surge under certain conditions. 

It is also of interest in this work to use the discrete event simulation approach to 

model the surge in ED, and to compare both queueing models and simulation models as 

staffing tools. 

1.4  Thesis outline 

The remainder of this thesis is organized as follows: Chapter 2 provides a 

literature review on queueing theory and simulation and related studies about the 

nonstationary queueing model. The approximation methods that are developed to cope 

with this nonstationarity are introduced and the outcomes of implementing these methods 

for a challenging example are discussed. In chapter 3, a nonstationary simulation model 

is developed and validated with the analytical results obtained from a simpler 

nonstationary queueing model. In chapter 4, the validated simulation model is employed 

for comparison of a number of pre-introduced approximation methods for a more 

complex queueing model with non-exponential service time distribution. Chapter 5 



 

 7

describes the modeling of the ED of a local hospital by means of connecting three 

queueing models to form a queueing network. It also includes the outcome of applying 

the best approximation method found in the previous chapter, to this queueing model and 

presents the staffing level for each of the three nodes of the network. Finally, chapter 6 

will conclude the overall research and discusses future research directions. 
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2: BACKGROUND AND LITERATURE REVIEW 

Queueing theory is the study of waiting in various queues from the 

telecommunication transmissions and manufacturing to service. It uses queueing models 

to represent various types of the queueing systems. 

The basic process for the queueing models is assumed as follows. Customers 

requiring service are generated over time by input source. These customers enter the 

queueing system and join a queue. At certain times, a member of the queue is selected for 

service by some rule known as the queue discipline. The required service is then 

performed for the customer by the service mechanism, after which the customer leaves 

the queueing system. Figure  2-1 illustrates a basic queueing process. 

 

Figure  2-1 The basic queueing process [1] 
 

Input source or the calling population is the population from which arrivals come. 

It could be assumed to have finite or infinite size. Since the calculations are much easier 

for the infinite case, this assumption is often made. Customers are generated according to 

a statistical pattern, which in most cases is assumed to be a Poisson process. There are 
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some unusual assumptions such as balking and blocking, where the customers refuse to 

enter the system and is lost if the queue is too long. These assumptions must be stated if it 

is the case. 

The queue is where the customers wait before receiving service. A queue can 

have an infinite or finite capacity. The finite capacity queues bring difficulty to analysis 

of the system, but it should be considered, if it is small enough to be filled up with some 

frequency. 

Queue discipline refers to the order in which the members of the queue are 

selected for service. For instance, it could be first-come-first-served, random, according 

to some priority procedure, or some other order. The general assumption about the queue 

discipline is first-come-first-served, unless otherwise stated. The service mechanism 

contains one or more service facilities, each one with one or more parallel service 

channels, called servers [1]. Representing this information for a queueing model a 

specific notation is used in the form of - / - / - . Where any of the following letters that 

places in the first two dashed areas would denote a distribution for inter-arrival times. It 

is assumed that all the inter-arrival times are independent and identically distributed.  

           M = exponential distribution (Markovian),  

           D = degenerate distribution (constant times), 

           Ek = Erlang distribution (shape parameter = k), 

          G = general distribution (any arbitrary distribution allowed), 

For instance, the model can be labelled as follows: 

M/M/s 
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Thus in this example, the model assumes that both inter-arrival times and service 

times have an exponential distribution and the number of servers is s (any positive 

integer). Unless otherwise noted, the following standard terminology and notation will be 

used: 

State of system = the number of customers in queueing system. 

Queue length = the number of customers waiting for service to begin; equals to 

the state of system minus the number of customers being served. 

N(t) = the number of customers in queueing system at time t (t ≥ 0). 

Pn(t) = the probability of exactly n customers in the queueing system at time t, 

given the number of customers at time 0. 

s = the number of servers (parallel service channels) in the queueing system. 

λn = the mean arrival rate (the expected number of arrivals per unit time) of new 

customers when n customers are in the system. 

µn = the mean service rate for the overall system (the expected number of 

customers completing service per unit time) when n customers are in the system. 

Note: µn  represents the combined rate at which all busy servers (those serving 

customers) achieve service completions. 

When λn is a constant for all n, this constant is denoted by λ. When the mean 

service rate per busy server is a constant for all n ≥ 1, this constant is denoted by µ. (In 

this case, µn = sµ when n ≥ s, that is, when all s servers are busy.) Under these 

circumstances, 1/ λ and 1/ µ are the expected inter-arrival time and the expected service 

time, respectively. Also, ρ = λ/(sµ) is the utilization factor for the service facility, i.e., the 
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expected fraction of time the individual servers are busy, because λ/(sµ) represents the 

fraction of the system’s service capacity (sµ) that is being utilized on average by arriving 

customers (λ) [1]. 

Queueing models are analytically solvable only for very specific conditions. A 

more general approach to gain insight about the queueing models is to simulate them on a 

computer.  

2.1 Simulating queueing models 

Simulation is a collection of methods for mimicking the behaviour of a real 

system, usually run on computer with appropriate software. Like most analysis methods, 

it involves models of a system. System here refers to a facility or process, either actual or 

planned, such as a manufacturing plant, a bank, and so on. These systems are usually 

studied to measure their performance, improve their operation, or for new system design. 

Managers or comptrollers of a system might also like to have an available aid for day-to-

day operations. Moreover, some managers do not really care about the output of 

simulations; their primary goal is to understand how their system is working. Simulation 

could provide a great insight into what changes need to be made in a system [11]. 

Specialists turn to simulation when a detailed analysis is required of a complex 

system because mathematical or analytical modelling techniques are often not sufficient. 

Major weaknesses of mathematical and analytical techniques are: 

1. A mathematical model of a complex system can not accurately describe the 

stochastic elements of the system. Randomness and nonlinearity of the discrete 

operations leads to inexplicit functions. 
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2. Since dynamic systems involve randomness that changes with time, modeling of 

these complex systems theoretically requires too many simplifications; therefore, 

the emerging models may not be valid [12]. 

One other important use of simulation models lies in comparing and contrasting 

competing design alternatives without any physical costs. Many studies have been done 

on application of queueing models and simulation in emergency departments. For 

example, Green et al. [13] utilized queueing theory to adjust the staffing patterns subject 

to the variations in the patients’ arrival rate in order to optimize the timely care of 

patients. They used data from 78 weeks of patient visits to a medium size ED, and 

examined the effect of employing a queueing model for determining the staffing 

requirement. However, they only considered a single M/M/s model and excluded other 

types of providers (e.g. attending physicians, residents, nurse practitioners and locations 

and/or types of care (e.g. multiple district and fast track area).  

De Bruin et al.  modeled the emergency in-patient flow of cardiac patients in 

university medical centre in Amsterdam using a queueing system [14]. They assumed the 

patient inter-arrival rate to be exponentially distributed and applied a stationary 2-D 

queueing system with blocking to analyze congestion in emergency care chains. They 

determined the optimal bed allocation over the emergency care chain, given a required 

service level (e.g. maximum 5% refused admissions).  

Abujudeh et al. evaluated the operation of the portable X-ray machine in relation 

to examinations ordered by the University of Medicine and Dentistry of New Jersey, and 

identified bottlenecks in their system [15]. They considered a network of stationary 

queueing systems and estimated the arrival rate, service rate and utilization factor based 
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on historical data. They calculated the average response time (E[w]) using the estimated 

values. 

Connelly and Bair used discrete event simulation to model emergency department 

activities [16]. Bagust et al. also developed a stochastic simulation model to study the 

dynamics of bed use in accommodating emergency admissions [17]. However, to the best 

of our knowledge no one had yet studied the effect of surge on an emergency department 

with the help of queueing theory and simulation. 

As we previously discussed, hospitals use the information about the daily flow of 

patients and determine their staffing accordingly. However, not many hospitals make 

capacity decisions with the help of the Operations Research (OR) model-based analyses. 

Statistical fluctuations in individual patient arrival times and the variability of the time 

needed by a provider to treat patients can have a major impact on hospital operation and 

capacity requirements. If the variability is ignored in the process of modeling, an 

unrealistic and static image of reality would appear. Such a model would not be capable 

of explaining the dynamics of the flow of patients [14]. To consider the variability in 

queueing models we turn to modeling the transient phase of systems. 

2.2 Transient queueing systems 

One major application of queueing theory in service systems is for determining 

the number of servers needed to handle the demand. A common characteristic of many 

service systems – ranging from telephone call centres to police patrol and hospital 

emergency rooms – is that the demand for service often varies greatly by time of the day. 

This can be seen in Figure  2-2, which depicts the hourly arrival rates to a local 



 

 14

emergency department. Moreover when an unusual incident occurs, such as the 

population-based surge, the variability in arrival could become even worse, making it 

more difficult to determine the number of staff required for coping with the demand. 

When the arrival is highly time varying, traditional queueing theory formulas do 

not seem to be applicable of analysing the systems. Queueing theory has mostly focused 

on the steady state condition, partly because the transient case is more difficult to study 

analytically. 

When a queueing system has just begun operation, or when a sudden change 

occurs in the system, the state of the system (number of customers in the system) is 

greatly affected by its initial state and by the time that has since elapsed. The system is 

said to be in the transient condition. 

When sufficient time has elapsed, the state of the system becomes essentially 

independent of the initial state and the elapsed time. The system reaches a steady-state 

condition, where the probability distribution of the state remains the same over time (as 

the steady state or stationary distribution) [1]. 
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Figure  2-2 Arrival rate at St. Paul’s emergency department, BC, Canada. 

As mentioned before, most of the queueing models assume that the arrival process 

is Poisson with a rate that remains constant all the time. However, service systems 

usually experience cyclical demands with various cycle lengths, for example, daily, 

weekly, monthly and yearly cycles. Analysing the data collected from the St. Paul’s 

Hospital emergency department in BC, Canada at the time of the H1N1 flu outbreak, we 

realized that the arrival rate at this time also tends to have periodic behaviour. We focus 

on daily cycles since the amplitude of the variations is greater on this time scale; and 

besides, the duration at which the ED was facing the surge was short (about one month). 

We assume that the facility is operating continuously for T=24 hours per day.  

Different approaches are developed to cope with the time-varying demand and 

setting staffing requirements to satisfy the demand. Some of the approximation methods, 

however, assume the rate to be constant for blocks of time (e.g. two-hours), with a 
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separate queueing model fitted for each block of time. This is called the stationary 

independent period-by-period (SIPP) method. One way of capturing the changes in the 

arrival rate is through utilizing non-homogeneous Poisson process. The first step to fit a 

model to the system is forecasting the arrival rate. Here we will assume that arrival rate 

function has been created.  

2.3 Staffing queueing systems with time variant arrival rate 

Setting staffing requirements is a decision that must be made in the design and 

management of a service system. Managers decide what the overall capacity of the 

system would be in a long-term planning horizon. The daily staffing decision determines 

the number of servers needed to work during each staffing interval over the day. After 

setting the staffing requirements, managers make agent-scheduling decisions, which 

specify the number of agents that should work on specific tasks, period by period, 

corresponding to the previously determined staffing levels, work rules, and legal 

constraints. The scheduling decision is usually addressed using an integer linear program 

[18].  

There are a plenty of factors that could be taken in to account while developing 

specific staffing schedules. These include the complex scheduling constraints like 

employees’ preferred start times, quitting times, and shift lengths; legal or policy limits 

on the number of consecutive hours and/or days worked; restricting the patterns of days 

off and on duty; providing required lunch and coffee breaks, etc. The fundamental 

requirement, however, is that there should be enough staff on duty at all times to meet 

targeted service levels. 
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The goal in staffing problem is to determine the specification of the staffing-

requirement function s(t)— the number of servers required to be on duty as a function of 

time t. Since the changes in staffing are only allowed at certain times, e.g., once every 15 

minutes, once every hour, or only once every 8 hours, we would like to determine a good 

staffing function subject to this constraint that allows the changes only at the end of the 

pre-specified staffing intervals. 

The objective is to minimize the total number of staff hours required over the day, 

while meeting a desired level of service performance in each staffing interval. One of 

these performance constraints is service level: the requirement that x% of the demand is 

responded within y unit of time. Another performance measure, which is closely related 

to the former, is the delay probability, which is the probability that an arriving customer 

has to wait before starting service. That is the special case of the service level in which y 

= 0.  

Customer abandonments is also a very important measure. Managers often place 

bounds on the rate of abandonment. Expected waiting time (before starting service) is 

also another performance measure that is commonly constrained by managers. It is also 

called the average speed to respond [19]. Among all these measures, the delay probability 

constraint is easier to compute; it is relatively more robust and insensitive to model 

details and has meaning independent of scale (typical the number of servers). 

Simulation can also be employed to set staffing levels. In complex systems that 

cannot be described by analytical queueing models, simulation could be very helpful to 

measure performance. It is easy to evaluate the performance of a given model like 

 ,௧, for any given function of s(t), by using computer simulation. Neverthelessݏ/ܩ/௧ܯ



 

 18

determining a good function for staffing among the vast number of possibilities is 

challenging. As an example, consider a call centre with 100 agents, where there are 20 

available staffing-change points during a day and 20 possible staffing levels at each of 

these staffing intervals; there would be 2020 ≈ 1026 different staffing functions to 

consider. However, there are alternative analytical methods that make it possible to 

reduce to a small number of attractive alternatives. After determining the staffing 

requirements using the approximate analytical approaches, it would be helpful to simulate 

the system in detail to verify that the suggested staffing levels actually produce the 

desired performance [18].  

2.4 Using stationary models for non-stationary systems 

Even when the arrival rate is highly time varying, it might be possible to utilize 

the stationary models to specify the staffing requirements. Although it is not usually 

appropriate to staff to the overall average arrival rate over the entire day, surprisingly that 

is applicable when the arrival rate changes very rapidly (relative to the service time) [20]. 

Throughout this section we will consider a Markovian ܯ௧/ݏ/ܯ௧ system with 

exponential service times having mean of 1 and non-homogeneous Poisson arrival 

process with sinusoidal arrival rate function λ(t)= 30+20sin(5t). (A non-homogeneous 

Poisson process is a Poisson process that has time varying mean value, while in 

homogeneous Poisson process the mean value is constant). Assume that the target delay 

probability is 0.13, there are no abandonments, and patients would wait in a waiting room 

with unlimited capacity. This is a challenging example, since the arrival rate fluctuates 

rapidly relative to the mean service time. If we think of daily cycles, the mean service 

time is about 0.8 days (each cycle is 2π/5≈1.256).  
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2.4.1 Simple Stationary Approximation (SSA) 

We applied the Simple Stationary Approximation (SSA) to this arrival rate, which 

takes an overall average on the arrival rate, and determine a single staffing level for the 

entire day accordingly. The average arrival rate is 30, in this example. The steady state 

delay probability with this constant arrival rate is 0.112 if we have 38 servers. If we 

reduce the number of servers by one, the delay probability would be 0.155, which 

violates the targeted delay.  

The outcome of this experiment is shown in Figure  2-4 and Figure  2-3. As we 

expected, because of the rapid fluctuations of the arrival rate SSA performs fairly well 

and the probability of delay varies within [0 0.25] which is relatively close to the 

previously defined target of 0.13. 
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Figure  2-3 Number of servers determined by the SSA method and the offered load in hours of day 
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Figure  2-4 Probability of delay with the SSA method in hours of day 

Generally, it is possible to use stationary models in a nonstationary manner. That 

is to divide time into segments and use a stationary model for each segment. This is 

appropriate when the service times are short (e.g. 5-10 minutes) and the quality-of-

service standard is high. Under such conditions, the systems are seldom overloaded and 

staffing requirements follow predictable patterns. These methods are for the cases where 

the staffing intervals are short; however, some modifications are applicable for the longer 

staffing intervals [18]. 

Here we discuss a number of approaches that are developed for staffing 

nonstationary systems based on the approximations with a variant of stationary models. 
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2.4.2 Pointwise Stationary Approximation (PSA)  

The classic case with short service times, a high quality of service standard, and 

short staffing intervals is addressed by an effective analytic strategy called Pointwise 

Stationary Approximation (PSA). PSA provides a time-dependent description of 

performance based on a stationary model, using the arrival rate and other parameters 

that prevail at each moment in time to describe the performance at that time [21].  

However, PSA approach generates a time-dependent staffing function, which 

does not limit the changes to be at the boundaries of the staffing intervals. If we could 

staff in this fully time-dependent manner, we expect to produce a good staffing function. 

Nevertheless, one is usually forced to keep the staffing level constant during each staffing 

interval. 

Even though PSA is expected to be an excellent approach for staffing, if one does 

not specify any constraints for the length of the staffing intervals, experimenting with the 

aforementioned arrival rate reveals that there exist circumstances for which PSA fails 

miserably. As Figure  2-5 depicts, the PSA method applied to the arrival rate function 

λ(t)= 30+20sin(5t) does not provide very effective results. Since the offered load is 

changing between 10-50, with the target delay 0.13, PSA suggests the number of servers 

that varies between 15 to 50, and the delay probability oscillates nearly over the full 

range of 0 and 1.  
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Figure  2-5 Number of servers determined by the PSA method (upper graph) and the offered load 
(lower graph) versus hours of day 
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Figure  2-6 Probability of delay with PSA method in hours of day 

Staffing with PSA 

Let N(t) be the number of customers in the system, either waiting or being served 

at time t. We focused on the probability of delay aiming to choose time dependent 

staffing level s(t) such that 

                P(N(t) ≥ s(t)) ≤ α < P(N(t) ≥ s(t)-1) for all t ( 2-1)

where α is the target delay probability. This problem is challenging since the time 

dependent delay probability P(N(t) ≥ s(t)) in ( 2-1) depends on the staffing function before 

time t as well as at time t. 
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When we apply the PSA (or use an alternative method, such as modified offered 

load (MOL) which we discuss later), we replace our initial ܯ௧/ݏ/ܯ௧ model with a 

stationary M/M/s model. With PSA at time t, we use the limiting steady-state distribution 

for the model with a fixed arrival rate λ(t). The Markovian case M/M/s (Erlang-C or delay 

model) is not difficult to analyze, since closed form formulas for computing all the 

performance measures of the system are available. 

2.4.3 Segmented PSA 

Some adjustments have been made to the original PSA to reflect the staffing-

interval constraint. One of them is the Segmented PSA, which works well when the 

staffing intervals are short. It generates the PSA-required staffing at each time t and then 

sets the staffing to be the maximum of these staffing requirements over the staffing 

interval. Segmented PSA returns an upper bound on the required staffing. Although this 

approach may slightly overstaff, its results could be used as an initial policy and be 

evaluated and refined using simulation [18]. 

2.4.4 Infinite Server  

Another approach for approximating transient systems is the infinite server (IS) 

method. The main idea behind this approach is to assume infinitely many servers are 

available all the time and then approximate the distribution of the number N∞(t) of busy 

servers at time t [22]. The reason to consider the infinite server method is that it is 

remarkably tractable [23]. Moreover the IS method can be used to show the amount of 

capacity that would actually be used (and therefore is needed) if there are no capacity 

constraints (i.e. limited number of servers). The IS approximation is a procedure that 
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produces effective arrivals at all times. It also reveals the role of the service time 

distribution in this averaging. Given an approximate distribution of N∞(t) for each t, we 

try to choose s(t) so that 

P(N∞(t) ≥ s(t)) ≤ α     and 

P(N∞(t) ≥ s(t)-1) > α   for all t, 
( 2-2)

for some prescribed target probability α. Therefore the infinite-server staffing function 

s∞(t) is obtained by applying Eq. ( 2-1) with N∞(t) instead of N(t).This approximation 

simplifies the problem greatly because (i) the tail probability P(N∞(t) ≥ s(t)) at time t 

depends on the staffing function {s(t): t ≥ 0} only through its value at the single time t 

and (ii) the exact time-dependent distribution of N∞(t) is known.  

The first simplification is due to the fact that the distribution of the stochastic 

process {N∞(t): t ≥ 0} is totally independent of the staffing function {s(t): t ≥ 0}. When 

we calculate P(N∞(t) ≥ s(t)), the staffing level s(t) serves just as the argument of the tail-

probability function [23].  

The second simplification follows from the basic properties of ܯ௧/ܩ/∞ queues. 

For each t, N∞(t) has a Poisson distribution whenever the number in the system at the 

initial time has a Poisson distribution (Being empty is a degenerated case of a Poisson 

distribution). That Poisson distribution is fully known by its mean m∞(t) which can be 

expressed in terms of the arrival rate function and the service time c.d.f. G as [24] 

݉ஶሺݐሻ ൌ ׬ሾܧ ሿݑ݀ ሻݑሺߣ ൌ ݐሺߣሾܧ െ ܵ௘ሻሿܧሾܵሿ ൌ ׬ ሾ1 െ ݐሺܩ െ ݑሻ݀ݑሺߣሻሿݑ
௧
ିஶ

௧
௧ିௌ    2-3)

where Se is a random variable with stationary-excess (or residual lifetime) c.d.f. 

associated with the service-time c.d.f. G. A service time in process in an endless 

succession of service times in equilibrium will have a residual remaining lifetime 
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distributed as Se. in equilibrium, the remaining service times of the patients in service in 

the stationary M/G/∞ model, conditioned on that number in service, are iid random 

variables, each distributed according to Se. 

ܲሺܵ௘ ൑ ሻݐ ؠ
1

ሾܵሿܧ
න ሾ1 െ ,ݑሻሿ݀ݑሺܩ ݐ ൒ 0
௧

଴
 ( 2-4)

with k-th moment 

ሾܵ௘௞ሿܧ ൌ
ሾܵ௞ାଵሿܧ

ሺ݇ ൅ 1ሻܧሾܵሿ
 ( 2-5)

And so ሾܵ௘ሿ ൌ ሾܵሿሺܿ௦ଶܧ ൅ 1ሻ/2 , where ܿ௦ଶ is the standard coefficient of variation 

(SCV) of the service time S.  

After employing the IS method we can apply normal approximation to solve 

formula ( 2-2). This will be discussed further under the normal approximation section. 

In a ܯ௧/ݏ/ܯ௧ system where it is estimated by ܯ௧/ܯ/∞ system, the expected 

number of servers can be calculated from a simple differential equation as follows [24]. 

                                   ሻሿᇱݐሾܰஶሺܧ  ൌ ሻݐሺߣ െ μܧሾܰஶሺݐሻሿ  ( 2-6)

Viewing the number of busy servers as in ( 2-6) motivates a different choice of 

distribution to approximate Pn(t) (probability of n patients present in the system at time t). 

By applying the Little’s law in a stationary M/M/s system, we have the expected number 

of servers to be λ/µ. This approximation is used in a method known as the Modified 

Offered Load (MOL) that we will be explained in the following section.  
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2.4.5 Modified Offered Load (MOL) 

Usually the infinite server model is applied as the first step in a two-step 

procedure for generating better approximations for the time dependent measures and the 

required staffing. The second step is MOL, which also assumes that the system is never 

overloaded. We use stationary finite server M/G/s model at each t with the “modified 

time dependent arrival rate. 

ሻݐெை௅ሺߣ ؠ
݉ஶሺݐሻ
ሾܵሿܧ

 ( 2-7)

where as previously mentioned m∞(t) is the infinite server mean. 

The MOL approximation uses the stationary distribution for an M/M/s system to 

approximate Pn(t), with the number of busy servers that is obtained from solving ( 2-6). 

According to Little’s law we have λ/µ=E[N(t)]. Solving this equation for λ gives λ= 

E[N(t)]µ. So we approximate the Pn(t) with the stationary distribution for an M/M/s 

system with the arrival rate E[N(t)]µ, service rate µ, and s(t) servers. (Or equivalently, 

arrival rate E[N(t)], service rate 1, and s(t) servers, since the stationary distribution is 

insensitive to multiplication of the same constant with both the arrival and service rates). 

The arrival rate proposed by MOL approximation can be viewed as an “effective arrival 

rate” λeff(t) [25]. 

The MOL approximation is expected to work best when utilization is low enough 

that the solution obtained from Eq. ( 2-6) provides a good approximation to the number of 

busy servers over time. In cases where E[N(t)] > s(t) the MOL approximation is expected 

to be poor. When utilization λ(t)/(s(t)µ) exceeds 100%, the MOL approximation may fail 
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since the approximating stationary system is unstable. When this happens, we set the 

service level to zero [22]. 

Figure  2-7 and Figure  2-8 depict the result of applying the MOL method to our 

challenging arrival function λ(t)= 30+20sin(5t). As it is clear from the figure, application 

of the MOL method confines the variation of the number of servers needed to the interval 

of value [33 42] and keeps the probability of delay variations within [0.05 0.33] which is 

better than the PSA method. 

 

Figure  2-7 Number of servers determined by the MOL method (upper graph) and the offered load 
(lower graph) versus hours of day 
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Figure  2-8 Probability of Delay with the MOL method in hours of day 

2.4.6 The Normal Approximation 

For determining the staffing requirements there are easier ways that do not require 

calculation of the steady state performance measures in the staffing interval. The fact 

behind this method is that when the offered load is not too small (say at least five) and the 

targeted quality of service is high, the number of customers in the system is 

approximately normally distributed. Deriving the normal approximation, we first 

approximate the M/G/s model by an infinite server M/G/∞ model, having the same arrival 

rate and the same service time distribution. The steady state number of busy servers in 

M/G/∞ model has a Poisson distribution with a mean equal to the offered load a ≡ λE[S], 

independent of the service time distribution beyond its mean. The Poisson distribution 
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itself can be approximated by normal distribution. Since the actual distribution is Poisson, 

the variance equals the mean so the offered load is the only parameter in normal 

distribution [26], [18]. 

Square root staffing formula 

From the normal approximation, the square root staffing formula can be obtained, 

                                                      s(t) = ܽሺݐሻ + βඥܽሺtሻ, ( 2-8)

where a(t) ≡ λE[S], the offered load which is also the mean number of busy servers in the 

infinite server model, and β is a parameter that reflects the quality of service—in terms of 

delay congestion— the quality of service (QoS) improves as the β increases. A feasible 

integer staffing level is the least integer greater than or equal to s(t) in ( 2-8) [20]. When 

we divide the time into segments and deal with each segment of time with a stationary 

queueing model the offered is considered to be constant over that interval and would be 

calculated using the average of the arrival rate over that time segment. 

Utilizing the normal approximation, it is very easy to relate the steady state delay 

probability, which is denoted by α to the QoS parameter β. Letting Q denote the number 

of busy servers in the infinite server model, we can approximate the steady state delay 

probability α by 

         ܲሺݕ݈ܽ݁ܦሻ ؠ ߙ ൎ ܲሺܳ ൒ ሻݏ ൌ ܲ ቀೂషೌ
√ೌ

൒ ೞషೌ
√ೌ
ቁ ൎ 1 െ Фሺߚሻ,  ( 2-9)

where Ф is the c.d.f. of the standard normal distribution. 

Although the derivation of the aforementioned methods was focused on models 

with a large number of servers (i.e., high offered load), they work for any number of 

servers [20].  
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Normal approximation refinement 

In an actual M/G/s model, the steady state number of customers in the system is 

not exactly normally distributed. Therefore, the normal approximation may need to be 

refined. An effective way to do so is based on Many Server Heavy Traffic Limits 

(MSHTL) [27]. The idea is to let s →∞ and λ→∞, leaving the service time unchanged. 

Halfin and Whitt showed for the M/G/s model that the limits λ and s are related in a way 

that we should let s→∞ and λ→∞ so that 

                             ௦ି௔
√௔

՜  ≡ ܽ where             ߚ
ఒ

ఓ
 ( 2-10)

 In that limit, the steady state delay probability α ≡ α(λ,µ,s) in the M/G/s model 

approaches a limit strictly between 0 and 1. This confirms that the delay probability is a 

good performance measure, because it tends to have meaning independent of scale. That 

is not true for most of the other performance measures. For instance the mean waiting 

time is asymptotically of order 1/√ݏ in the limiting regime ( 2-10). 

From ( 2-10), we see that the MSHTL also produces a square root staffing law, 

which coincides with ( 2-8). 

As a consequence of the MSHTL for the M/G/s model, there is a continuous 

increasing function mapping the QoS parameter into the limiting delay probability α, now 

commonly called the Halfin-Whitt delay function 

ܲሺݕ݈ܽ݁ܦሻ ؠ ߙ ൎ ሻߚሺܹܪ ؠ ሾ1 ൅ ቆ
ሻߚΦሺߚ
߮ሺߚሻ

ቇሿିଵ, 0 ൏ ߚ ൏ ∞, ( 2-11)

where, Ф is the c.d.f. and ߮ is the associated probability density function (pdf) of the 

standard normal distribution [27]. 
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2.4.7 Stationary Independent Period-by-Period (SIPP) Method 

A very common method to maintain the staffing requirement is through using an 

approach that is called stationary independent period-by-period (SIPP). In this approach, 

first the workday or workweek is divided into “planning periods” such as shifts, hours, 

quarter-hours, etc. Then a series of stationary queueing models, usually M/M/s models, 

are constructed for each planning period. After that each of these models are 

independently solved to determine the minimum number of servers required to satisfy the 

target service level in that period. The staffing requirement generated by this method 

could be used to set the actual staffing schedules or could become the right-hand sides of 

the key constraints in a large optimization model that results in the actual workforce 

schedules. SIPP is appropriate for the classic case with short service times and short 

staffing intervals provided that the arrival rate function does not fluctuate too greatly over 

staffing intervals [28]. SIPP is also used in some of the commercial software packages 

developed for call centre management. 

Although SIPP is widely used, it is based on some assumptions that make it not 

applicable in some cases. These assumptions are (1) delays in consecutive planning 

periods are independent of one another, (2) within each planning period the system 

achieves steady state; and (3) the arrival rate does not change during the planning period.  

The common idea behind the segmented-PSA and SIPP approaches is that they 

both use a stationary independent period-by-period approach. Nonetheless, segmented 

PSA first specifies the staffing level at each time point, while SIPP first averages the 

arrival rate over the staffing interval. If the arrival-rate function does not greatly fluctuate 

within individual staffing intervals, these methods attain similar results [21]. 
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2.4.8 Busy-Hour Engineering and the Simple Peak Hour Approximation (SPHA) 

Another classic case is when the service times are short and the quality of service 

standard is high, but the staffing interval is long (e.g. 8 hours or even an entire day). One 

approach is to reduce the problem to one with stationary demand and determine the 

staffing requirement so that the satisfactory performance is obtained at all times. This is 

done by setting the staffing requirement to meet the peak demand during the long staffing 

interval. This method is also referred to as MaxSIPP in some of the papers.  

In some cases, the managers may staff to meet the average performance instead of 

peak performance over the long staffing interval. However, this is risky, because it leads 

to understaffing at peak times [18].  

2.5 Summary 

To summarize, in this chapter we discussed the related literature about 

nonstationary queueing systems with time varying arrival rates. We introduced a number 

of approximation methods that have been developed to set staffing requirement according 

to these variations. We discussed that appropriate stationary models can provide effective 

solutions to the surge staffing problems with varying arrival rates. Therefore, to 

determine the staffing requirement for the ܯ௧/ݏ/ܩ௧ model, it is sufficient to consider the 

staffing problem for the stationary M /G/s model with a specific arrival rate over a certain 

interval. We realized the performance of these methods is dependent of various 

parameters of the queueing systems such as the frequency and amplitude of changes in 

the arrival rate, the service rate etc. In the next chapter, we would like to develop a 

baseline model on which we could compare the performance of these approximation 

methods. 
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3: QUEUEING MODEL IMPLEMENTATION AND 
VALIDATION 

In the previous chapter, we discussed different methods that are used to 

approximate nonstationary queueing models. However, it is not clear which one of these 

methods would perform best for the given surge situation. In this chapter, we build a 

queueing model that captures the variation in arrival rates, simulating a surge situation, 

and set the staffing requirement according to these variations so that a target level of 

service is maintained.  

For evaluating the performance of such a model, an exact numerical solution was 

found in literature. This method, however, is limited to certain special conditions and is 

not applicable for many other queueing models. Therefore in this work, a simulation 

model with time varying arrival rate was built as a baseline, in order to compare and 

evaluate different queueing models for modelling the surge situation. This simulation 

model is validated with exact numerical solutions for 162 different model variants with a 

wide range of conditions. The validation not only gives us a credible simulation model, it 

also sheds some lights on the type and condition of queueing models. 

3.1 Setting staffing requirements for the emergency department with 
time varying arrivals 

As mentioned before, most of the queueing models assume that the arrival process 

is Poisson with a rate that remains constant all the time. However, service systems 

usually experience cyclical demands with various cycle lengths. As we mentioned in the 
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previous chapter, different approaches have been developed to cope with the time-

varying demand and setting staffing requirements to satisfy the demand. Some of these 

approximation methods assume the rate to be constant for blocks of time (e.g. two-hours), 

with a separate queueing model fitted for each block of time. This is also called the 

stationary independent period by period (SIPP) method. One way of capturing the 

changes in the arrival rate is through utilizing non-homogeneous Poisson process.  

We perform the statistical tests provided in [29] on the data from the ED at the 

time of surge and we could validate the assumption of the ED arrival rate following non-

homogeneous Poisson process. This observation motivated us to apply a couple of 

approximation methods to a wide range of models with periodic non-homogeneous 

Poisson arrivals and evaluate the performance of these methods.  

In order to be able to evaluate the performance of approximation methods we 

need to have a baseline model that does not involve so much approximation as these 

methods do. Ingolfsson et al. used the analytical solution to the differential equations 

associated with the queueing model with time varying arrival rate (ܯ௧/ݏ/ܯ) as a baseline 

for comparing other approximation methods [22]. Although this approach is a fast and 

convenient way of conducting this comparison, it has some shortcomings. This method, 

which is also referred to as “exact” method, involves approximations regarding to solving 

an infinite set of differential equations. Moreover, it can only be applied to the ܯ௧/ݏ/ܯ 

model. As soon as the model gets a little more complicated (e.g. the service time 

distribution does not follow an exponential distribution), it would become analytically 

intractable. Hence, the exact method would not be applicable.  
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3.2 The “Exact” method for time varying arrivals  

In this paper, we build a simulation model for the Markovian ܯ௧/ݏ/ܯ system for 

which we have the analytical solution. The solution to this queueing model is analytically 

calculated through solving a set of differential equations. We would like to evaluate with 

simulation the time-varying probability of delay resulting from a given staffing schedule. 

The staffing schedule could be selected manually or by calling a staffing subroutine. 

Here, we choose s according to the square root formula,  

                                  s = a + β√ܽ, ( 3-1)

where a ≡ λE[S], the offered load which is also the mean number of busy servers; 

in the infinite server model; λ is the arrival rate; E[S] is the mean service time; and β is a 

parameter that reflects the quality of service—in terms of delay congestion.  

To obtain the time dependent probability of delay, we calculate the time 

dependent distribution of the number of customers present in the system, by numerically 

solving the Chapman-Kolmogorov forward equations (a system of ordinary differential 

equations), as described below, using a variant of Runge-Kutta algorithm.  

଴݌
ᇱ ሺݐሻ ൌ െߣሺݐሻ݌଴ሺݐሻ ൅  ,ሻݐଵሺ݌ߤ

ሻݐ௡ሺ´݌ ൌ ሻݐ௡ିଵሺ݌ሻݐሺߣ ൅ ሺ݊ ൅ 1ሻ݌ߤ௡ାଵሺݐሻ െ ሺߣሺݐሻ ൅ ሻ,       1ݐ௡ሺ݌ሻߤ݊ ൑ ݊ ൏  ,ݏ

ሻݐᇱ௡ሺ݌ ൌ ሻݐ௡ିଵሺ݌ሻݐሺߣ ൅ ሻݐ௡ାଵሺ݌ߤݏ െ ሺߣሺݐሻ ൅ ,ሻݐ௡ሺ݌ሻߤሻݐሺݏ ݊ ൒ (2-3 ) .ݏ

where λ(t) is the arrival rate at time t, µ is the service rate, and Pn(t) is the probability of n 

customers in the system at time t. This involves approximation of the infinite set of 

forward equations with the first K+1 equations. We choose the finite capacity K (the 

maximum number of patients in the system) sufficiently large so that PK(t) is negligibly 

small (less than some user specified value, e.g., ε= 10-6). 
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The numerical integration is performed using forth- and fifth- order Runge-Kutta 

methods recursively. The length of the recursion interval is determined so that a user 

specified error is not exceeded. The integrations are initialized using the steady-state 

M/M/s solution for λ(0) as the stationary arrival rate. We could also start the system from 

empty; it will again end up giving us the same results. We have utilized the ode45 Runge-

Kutta ODE solver from the Matlab ODE suite [30].  

Since we have time varying arrivals, we should be very careful in definition and 

estimation of the performance measures. The measures should also be time-varying and 

should be defined for each time interval t, t Ԗ [0, T]. 

For computing the probability of delay, we use the formula in Eq. ( 3-3) that 

averages the instantaneous measures provided at PP*60 time segments of one minute 

(time step=1) gird (PP is the length of the planning period over which we are calculating 

the performance measure) [31]. Assuming that segment 1 begins at midnight and 

segments are numbered consecutively, let λi be the average arrival rate at the start of the 

segment i, so that ߣഥ ൌ ∑ ௜ߣ ሺܲܲ כ 60ሻ⁄௉௉כ଺଴
ଵ . Let pni be the probability that n customers 

are in the system at the start of segment i. Then the average probability of delay in each 

interval is computed as 

              ௗܲ ൌ ෍ ௜ሺ1ߣ െ෍݌௡௜

௦ିଵ

௡ୀ଴

ሻ/ሺܲܲ כ 60 כ ҧሻߣ

௉௉כ଺଴

௜ୀଵ

 

            =∑ ௗ௜݌௜ߣ
௉௉כ଺଴
௜ୀଵ /ሺܲܲ כ 60 כ  ҧሻߣ

( 3-3)

where pdi is the probability that all the servers are busy at the start of segment i. 
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3.3 Simulation approach 

It is important to pay attention to the fact that a physical phenomenon, a 

mathematical model of that physical phenomenon, and a simulation of that mathematical 

model are three different things. A mathematical model, whether simulated or analyzed, 

may provide useful and accurate information about the physical phenomenon [32]. We 

selected the mathematical queueing model because of its ability to explain queueing 

phenomena. Here, we also developed a stochastic simulation model to reveal statistical 

regularity. We expect the simulation model to capture key features of the queueing 

model, but do not expect a perfect fit with it. In this case, we first choose a standard 

queueing model with “exact” solutions as our reference and use it to validate our 

simulation model. Later, when queueing models involve non-exponential service rates 

and no analytical solution is available, the validated simulation model can be used as a 

reference to compare different approximation methods that are based on the queueing 

theory. The literature on building and validating simulation models for nonstationary 

queueing models is scarce.  

We built the simulation model in ArenaTM. It is shown in the conceptual model 

represented in Figure  3-1 that the simulation model consists of different modules. Since 

the arrival rate is not constant, we developed a separate module for advancing the time. 

We set the time step by which the simulation time is advanced to be close to the 

time steps used in queueing model for evolving the vector of probabilities through the 

Chapman-Kolmogorov forward equations. We recorded the time in a variable and used it 

as the argument for the inter-arrival function.  



 

 40

 

Figure  3-1 Conceptual representation of simulation model 

 

The inter-arrival time is changing according to an exponential distribution 

function with a time varying parameter. We used a sinusoidal function with a 24-hour 

cycle, 

ሻݐሺߣ ൌ ҧሺ1ߣ ൅ sinܣܴ ሺ224/ݐߨሻሻ ( 3-4)

where ߣҧ is the average arrival rate and RA ߳ [0, 1] is the relative amplitude. The 

sinusoidal form is used for the purpose of simplicity; the method applies to general 

arrival rate functions estimated from data.  

Another module is designed for collecting time dependent statistics, such as the 

probability of delay. This module is also used for changing the staffing level while the 

model is running. In this module at the end of the pre-specified planning period the 

staffing level is updated according to the staffing method that we had used. Then we 

calculate the probability of delay according to Eq. ( 3-5), which is to be explained later. 

This measure is recorded in a variable and compared with the time-dependent probability 

of delay calculated from the “exact” method. 
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At the end of each planning period when the number of servers changes, if the 

number is decreasing we would return the patient that is currently receiving service back 

to the queue. This is basically the underlying assumption in the queueing model as well. 

3.4 Validation of the simulation model 

The number of servers over time ideally is supposed to match the variation in 

demand. However, this match might not be perfect because of various circumstances, 

including (1) cost savings from reducing variability in staffing, (2) an upper limit on 

staffing, (3) limitations on when servers can begin and end work, and (4) lack of 

planning. We do not need, for the purpose of validation, the number of servers to be in 

perfect match with the arrival. Besides, such situations do not occur in reality very often. 

In addition, a scheduling algorithm that may call this method as a subroutine might need 

to alter the number of servers to improve a poor schedule [22].  

Most of the papers that have discussed the validation of either the queueing 

models or simulation with each other have mostly considered the steady state queueing 

models, in which case the simulation is usually run for one long time. The length of run is 

chosen so that the system reaches the steady state condition. The warm up period is 

determined to leave out the statistics associated with the transient phase of the beginning 

of the simulation and the effects of the system initial state [33]. This approach usually 

works well for stationary models. Another approach for validating simulation, which is 

expected to be more effective for nonstationary queueing models, is based on periodic 

steady state condition.  
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In this chapter, we implemented both steady state and periodic steady state 

conditions and realized, for the same simulation run time both approaches would give the 

same result, given the cycle length of the arrival function is not too large (e.g. less than 

24 hours). In our tests, we examined both approaches with a couple of arrival functions 

that would solely differ in the length of the cycle time and compared the probability of 

delay predicted by either one of the simulation approaches with the exact analytical 

solution. The result of this experiment is presented in Table  3-1. In this table, the first 

column is the probability of delay resulted from applying the exact method, and the two 

other columns represent, periodic steady state simulation, and stationary simulation 

respectively. The last two columns show the discrepancies (error percentage) of each of 

these simulation models with the exact method. It can be seen that in the cases where the 

length of period is large the PSSS approach yields very close results to the exact method, 

while the SS yields poor results. 

We used the PASTA (Poisson Arrivals See Time Averages) property [34] to 

calculate the performance measure in the stationary simulation case by dividing the 

number of patients that have not been served immediately in a planning period by the 

total number of patients arrived in that period. 

A slightly different approach is taken to calculate performance measures from 

simulation models in the periodic steady state case. According to Heyman and Whitt 

[35], the periodic ܯ௧/ܩ/s reaches periodic steady state meaning that if we let N(t) be the 

number of customers in the system at time t, there exist T>0 such that {N(nT+t)=N(t), 

n≥0}. In this approach, the model is run in shorter length for numerous times. For the 

periodic steady state case, for replication k, the delay probability in interval t is estimated 
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by the fraction of patients who are not served immediately upon arrival, out of all arriving 

patients during the t time interval. Namely, for the k-th replication, the estimator is 

ሻݐො௞ሺߙ ൌ
∑ 1ሼܿ݀݁ݎ݁ݐ݊݁ ݅ ݎ݁݉݋ݐݏݑ ݁ݑ݁ݑݍ ݐܽ ݈ܽݒݎ݁ݐ݊݅ ሽ௜ݐ

∑ 1ሼܿ݀݁ݎ݁ݐ݊݁ ݅ ݎ݁݉݋ݐݏݑ ݉݁ݐݏݕݏ ݐܽ ݈ܽݒݎ݁ݐ݊݅ ሽ௜ݐ

ؠ
෠ܳ௞ሺݐሻ
መܵ௞ሺݐሻ

 ( 3-5) 

We obtain the overall estimator ߙොሺݐሻ by averaging over all replications. This also 

happened to be the same as the ratio of the average of the ෠ܳ௞ሺݐሻ over all replications to 

the average of መܵ௞ሺݐሻ [23]. 

The process of estimating the time dependent delay probability for any given 

staffing function by computer simulation is subject to sampling error. This statistical 

sampling error decreases as we increase the number of independent replications. 

Therefore the error can be reduced to a certain degree at the expense of computational 

effort. But it will always be present for any amount of computational effort [23]. 

We ran the periodic simulation for various numbers of replications and realized 

that increasing the number of replications beyond 100 would not have a great impact on 

the average values of probability of delay estimated from it.  

Therefore, we ran the periodic simulation model for 100 replications with the 

length of 8640 minutes (6 days). For the other simulation model to have the same run 

time, we considered one single replication of length 600 days (864000 minutes). We 

considered the first two days as the warm up period for the former case and 200 days 

(288000 minutes) as the warm up period for the latter.  
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Generally, proving that the model produces the same results as the original system 

under all circumstances require a substantially large amount of resources. Therefore, the 

validation exercise is confined to a limited number of scenarios, which would logically 

cover all the important cases, thereby would increase the degree of confidence in the 

model results [36]. 
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Table  3-1 Comparing Stationary Simulation (SS) and Periodic Steady State Simulation (PSSS) for 
arrival rates with various cycle lengths 

λ(t) s Pd(EX) Pd(PSSS) Pd(SS) 
Disc 
(PSSS-EX) 

Disc     
(SS-EX) 

30
+

20
si

n 
(0

.0
00

1t
) 

8 0.167401 0.150693 0.611429 9.98082449 265.248117 

8 0.167663 0.150653 0.584786 10.1453511 248.786554 

8 0.167929 0.168231 0.594599 0.17983791 254.077616 

8 0.168223 0.177384 0.590023 5.44574761 250.738603 

30
+

20
si

n 
(0

.0
1t

) 

8 0.18128 0.182803 0.343326 0.83982554 89.3894853 

9 0.108605 0.105442 0.262348 2.91230218 141.561299 

9 0.128786 0.123911 0.220673 3.78478354 71.349436 

9 0.152535 0.156343 0.232829 2.49641718 52.6401882 

30
+

20
si

n 
(0

.1
t)

 

10 0.105038 0.090473 0.125596 13.8664075 19.5718759 

12 0.103012 0.099805 0.035745 3.11357696 65.2996893 

12 0.16846 0.17143 0.035949 1.76260406 78.660422 

12 0.130202 0.140319 0.041687 7.7701222 67.9825659 

30
+

20
si

n 
(t

) 8 0.495064 0.495253 0.456162 0.03808903 7.85801609 

8 0.488087 0.458439 0.439468 6.07421855 9.96103191 

8 0.485109 0.446523 0.450723 7.95394254 7.08830297 

9 0.326246 0.319829 0.333187 1.96699189 2.12763108 

30
+

20
si

n 
(5

t)
 

8 0.327951 0.308794 0.289168 5.84158617 11.8260323 

9 0.200659 0.184616 0.175674 7.99476728 12.4512498 

8 0.296494 0.283732 0.29605 4.30441532 0.1499415 

8 0.305361 0.310816 0.288716 1.78640991 5.45066904 

 

We have also applied the queueing model and simulation to a set of test problems 

with a wide range of conditions. Table  3-2 shows the parameters we varied and their 

values. The combinations of these values resulted in 162 different test problems. The 

number of servers was determined according to the square root formula for each planning 

period. We calculated probability of delay at one minute intervals, starting at time zero 

and ending at time 24, and we employed Eq. ( 3-3) for each planning period.  
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Table  3-2 Parameter values for computational examples 

Factor Low value High value 

Service rate (µ) 2 8 

Offered load (r=ߣത/μ) 2 8 

Arrival rate relative amplitude (RA) 0.1 1 

Planning period (PP) 2 6 

Service level target (α) 0.1 0.5 

Total combinations 162 

 

Model validation is normally performed by using statistical techniques to compare 

the model output data with the corresponding simulation output when the simulation 

model is run with the “same” input parameters. Performing a t-test on the output 

(probability of delay in each planning period) of the queueing model and simulation with 

100 replications, we could not reject the null hypothesis of the two sets of results having 

the same means (H0). The t-test has been done separately for each planning period (PP) 

over data provided with varying system parameters.  

Table  3-3 presents the t-test 95% confidence intervals (CI) and the p-values for 

each planning period when the length of the planning period is six hours.  

Table  3-3 Outcome of applying t-test to the model with six-hour long planning period 

PP 1 2 3 4 

CI [-0.0817 0.0922] [-0.1187 0.0659] [-0.1371 0.0910] [-0.1347 0.0929] 

H0 Not rejected Not rejected Not rejected Not rejected 
 

Table  3-4 and Table  3-5present the 95% confidence intervals and p-values related 

to the queueing model with four and two hours of length respectively. 
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Table  3-4  Outcome of applying t-test to the model with four-hour long planning period 

PP 1 2 3 4 5 6 

CI 
[ -0.0746 
0.1085 

[-0.1092 
0.0926 

[-0.1108    
0.0877 

[-0.1283    
0.1039 

[-0.1186    
0.0929 

[-0.1320 
0.1011 

H0 Not rejected Not rejected Not rejected Not rejected Not rejected Not rejected 
 

 
Table  3-5 Outcome of applying t-test to the model with two-hour long planning period 

PP 1 2 3 4 5 6 7 8 9 10 11 12 

CI 
[-

0.067 
0.115] 

[-0.096 
0.091] 

[-0.109 
0.089] 

[-0.110 
0.092] 

[-0.113 
0.093] 

[-0.106 
0.085] 

[-0.127 
0.102] 

[-0.13 
0.101] 

[-0.122 
0.093] 

[-0.121 
0.089] 

[-0.127 
0.093] 

[-0.137 
0.098] 

H0 
Not 

reject 
Not 

reject 
Not 

reject 
Not 

reject 
Not 

reject
Not 

reject
Not 

reject
Not 

reject
Not 

reject
Not 

reject 
Not 

reject 
Not 

reject

 

From the results presented in the tables above, we can conclude that the 

simulation model is predicting the same results as the queueing model and therefore is 

validated. 

As we discussed the simulation model is developed to replace the exact method 

for the cases where exact method is not applicable. Statistically analyzing the results from 

planned experiments performed on the queueing models with a wide range of parameters 

assured us that the simulation model generates the statistically equivalent results as the 

exact method. Now this model is ready to be used as a baseline for comparison for other 

queueing models. It is also found that for queueing/simulation models with time varying 

arrival rate, periodic steady state condition, rather than the steady state condition, is to be 

used to accurately reflect the situation. In the next step we would use the validated 

simulation model for evaluating the performance of a number of approximation methods 

applied to the ܯ௧/ݏ/ܩ௧ and would determine the conditions under which either of these 

methods would be most suitable. 
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4: COMPARISON OF THE QUEUEING APPROXIMATION 
METHODS 

One of the major problems in modeling is lack of data. Although the arrival data 

can be collected through patient registration process, there are no systems for collecting 

the “service” times, which include taking patient histories, performing physical 

examination, ordering and reading test results, consulting with other physicians, 

administering treatments and writing up reports. Moreover, these service times are very 

difficult to capture since they are usually discontinuous because physicians make up their 

treatment or discharge decisions based on the results of the tests that they have to order; 

and this procedure often takes time. While the tests are conducted physicians would 

handle other patients [18]. 

According to [29], service time distributions for call centers tend to be non-

exponential most of the time. It has been observed that the service time distributions can 

be better approximated with lognormal distribution; however the variability of the 

lognormal distribution in this case would not be too great. Particularly, the squared 

coefficient of variation (SCV, variance divided by the square of the mean) would be 

between 1 and 2. (SCV is independent of the mean, meaning it will not change if the 

random variable is multiplied by a constant, therefore it is a better measure to use than 

variance).  

Since there is not enough data to approximate a physician’s service time 

distribution in the ED properly, it is common to make a simplifying assumption and 
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consider it to be exponentially distributed. Although the previous discussion was about 

the call centers, it might be useful if we remove this simplified assumption for the ED 

service times, and instead use the lognormal distribution to better reflect the reality. 

In this chapter, we would study models with the lognormal service time 

distribution with various SCV values. We would utilize the simulation model validated in 

the previous chapter for comparing the performance of some of the approximation 

methods introduced previously. We will run 324 test problems with different parameters 

for each approximation method, using both the ܯ௧/ݏ/ܩ௧ queueing model and the 

simulation model. Then compare the time varying average error and maximum error and 

rank the approximation methods according to these measures.  

4.1 Experimental design 

We would apply a couple of approximation methods introduced in chapter two to 

an ܯ௧/ݏ/ܩ௧ model, for which there is no numerical solution available, and compare the 

performance of them by evaluating the probability of delay calculated by each method.  

One approach to simplify the problem of dealing with complex nonstationary 

queueing models is to approximate these models with a stationary model that uses the 

average arrival rate over a planning period and determines the minimum number of 

servers needed in the planning period to provide a specified level of service. However, 

for the case of ܯ௧/ݏ/ܩ௧ model this approach would not help the problem of intractability 

very much. Since the M/G/s model also tends to be intractable. Mathematical formulation 

of this model does not provide analytical insight and it is not suitable for numerical 
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computation either [37]. Therefore, for calculating the probability of delay for this model 

we have to use approximations.  

4.2 Approximating probability of delay in M/G/s model 

We consider the standard M/G/s queueing system with s(≥1) homogeneous 

servers in parallel, unlimited waiting room and with the first-come first-served rule. 

Customers arrive according to a Poisson process with a rate λ (>0). Their service times 

are i.i.d. with a c.d.f. G having finite 1/µ and independent of the arrival process. For 

simplicity we assume G(0)=0, but this assumption is not essential. Let c2 be the SCV of 

G and let ρ=λ/sµ be the traffic intensity. In addition, let Π(M/G/s) denote the delay 

probability in the M/G/s model, assuming that the system is stable and in steady state; i.e. 

ρ<1. 

It is been known that the Erlang delay formula, as in Eq. ( 4-1), which is for M/M/s 

queue is a good approximation for M/G/s queue 

Πሺݏ/ܯ/ܯሻ ൌ  
ሺߩݏሻ௦

!ݏ ሺ1 െ ሻߩ
቎෍

ሺߩݏሻ௝

݆!
൅

ሺߩݏሻ௦

!ݏ ሺ1 െ ሻߩ

௦ିଵ

௝ୀ଴

቏

ିଵ

, ( 4-1)

Mathematically 

Πሺݏ/ܩ/ܯሻ ؄ Πሺݏ/ܯ/ܯሻ ( 4-2)

There has been a number of other approximations proposed in literature (i.e. in 

[38] and in [39]) that have improved the Erlang delay approximation in ( 4-1). For large 

systems, Eq. ( 4-2) can be justified by the insensitive property of the M/G/∞ queue. For 

any distribution we have 
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lim
௦՜ஶ

Πሺݏ/ܩ/ܯሻ
Πሺݏ/ܯ/ܯሻ

ൌ 1 ( 4-3)

Considering this property, we are looking for an approximation for a relatively 

small s (e.g., s≤10) with the form 

Πሺݏ/ܩ/ܯሻ ؄ ݇ீΠሺݏ/ܯ/ܯሻ ( 4-4)

where kG≡ kG(s,ρ) denotes a correction factor. The approximation method that we 

employed is based on estimating the probability of delay with the mean waiting time in 

M/G/s queue and is defined ad below [37].  

Πሺݏ/ܩ/ܯሻ ؄ ቊሺ1 െ ܫீݏሻߩ ሺݏሻ ൅ ߩ
1 ൅ ܿଶ

2
ቋ
ିଵ

ܴீΠሺݏ/ܯ/ܯሻ ( 4-5)

where  

ܫீ ሺݏሻ ൌ න ሼ1 െ ,ݐሻሽ௦݀ݐ௘ሺܩ ݏ ൒ 1.
ஶ

଴
 

( 4-6)

ሻݐ௘ሺܩ ൌ නߤ ሼ1 െ ,ݑሻሽ݀ݑሺܩ ݐ ൒ 0,
௧

଴
 

( 4-7)

where Ge is the stationary-excess c.d.f. associated with the service time c.d.f. G i.e., and  

ܴீ ؠ
ܴ஽ሺ1 ൅ ܿଶሻ

ሺ2ܴ஽ െ 1ሻீܬ ሺݏሻ ൅ 1
 ( 4-8)

with  

ܴ஽ ؠ
1
2
ሼ1 ൅ ݂ሺݏሻ݃ሺߩሻ݄ሺݏ, ሻሽ, ( 4-9)ߩ

In which  
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݂ሺݏሻ ൌ
ሺݏ െ 1ሻ√4 ൅ ݏ5 െ 2

ݏ16
, ( 4-10)

݃ሺߩሻ ൌ
1 െ ߩ
ߩ

, ( 4-11)

And the bivariate function h(s,ρ) is given by 

݄ሺݏ, ሻߩ ൌ ,ݏ൫ߦ ܽሺߩሻ൯ߟሺܾሺݏሻ, ሻ ( 4-12)ߩ

with 

,ݏሺߦ ሻݔ ൌ ඨ1 െ exp ൬
െ2ݔ
ݏ െ 1

൰ , ݔ ൒ 0, ( 4-13)

,ݕሺߟ ሻߩ ൌ 1 െ exp ൬
െݕߩ
1 െ ߩ

൰ , ݕ ൒ 0. ( 4-14)

The functions a(ρ) and b(s) are defined by 

ܽሺߩሻ ൌ
25.6

ሼ݃ሺߩሻߟሺߚ, ሻሽଶߩ
 ( 4-15)

ܾሺݏሻ ൌ
ݏ െ 1

ሺݏ ൅ 1ሻ݂ሺݏሻߦሺݏ, ሻߙ
 ( 4-16)

Respectively, where α and β are arbitrary positive constants satisfying the relation 

ଶߚߙ ൌ 25.6 ( 4-17)

It is been shown in literature by numerical experiments that α=2.2 is an optimal value for 

the best performance of the approximation [37]. 

Eq. ( 4-5) is the approximation that we would use in this chapter for calculating 

the probability of delay in the M/G/s model. We would calculate the probability of delay 

at the end of each planning period, and compare it with the probability of delay estimated 

from the simulation model that is run with the same parameters. 
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4.3 Test and Comparison Results 

Similar to the validation procedure we applied the approximation methods to a set 

of 324 test problems with a wide range of conditions. Table  4-1 shows the parameters 

that we vary and their values. We calculated errors by comparing the results with the 

outcome of the related simulation models, and evaluate the errors of different 

approximation methods according to Eq. ( 5-2). We calculate the time averages and 

maxima of the errors for each test problem and each method.  

ௗܲሺܵܯܫሻ െ ௗܲሺܱܴܺܲܲܣሻ

ௗܲሺܵܯܫሻ
 ( 4-18)

Table  4-1 Parameter values for computational examples 

Factor Value 
Service rate (µ) 2, 4, 8 

Offered load (r=ߣҧ/μ) 2, 4, 8 

Arrival rate relative amplitude (RA) 0.1, 0.5 

Planning period (PP) 2, 4, 6 

Service level target (α) 0.1, 0.2, 0.5 

SCV 0.5, 1, 2, 4 

Total combinations 324 
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Table  4-2 presents the mean and median for the time average relative and 

maximum relative errors calculated over all the test problems. We summarized the results 

for each method with different SCV values to analyse how the error would be affected by 

increase in the variation in service time distribution. As we expected, the error would 

grow when increasing the variability of service time distribution, especially when SCV 

jumps to four, the change in error is much more visible. Among these approximation 

methods, MaxSIPP shows less sensitivity to change in SCV, probably because it 

mitigates the effect of the variations by offering a higher (upper bound for) staff level. 

Computing the staff-hours, that each of these methods propose, we realize that MOL 

offers the least number of staff-hours. SIPP is in the second position with about an 

average of 0.4 staff-hours more than MOL and MaxSIPP ranks third with an average of 

14.2 more staff-hours.  

Analysing Table 4-2 we realize that MOL outperforms MaxSIPP and SIPP 

considering both lower staff-hours and higher accuracy. Nonetheless, MaxSIPP and MOL 

compete very closely from the accuracy aspect, especially when the planning period is 

long (more than two hours). We can see from the table that for the smaller planning 

period, the MaxSIPP performances much better than MOL.  
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Table  4-2 Time average relative and maximum relative error by SCV and planning period (PP) 
length 

 SIPP MOL MaxSIPP 

SCV PP(hrs) 
Mean/ 

Median 
Max 

Error% 
Time Ave 
Error% 

Max 
Error% 

Time Ave 
Error% 

Max 
Error% 

Time 
Ave 

Error% 

0.5 

2 
mean 46.623 22.34606 46.1386 21.82092 16.047 8.038 

median 36.4622 18.07707 39.8848 17.53242 13.165 6.105 

4 
mean 38.7378 21.08358 13.8593 7.530134 16.345 9.79 

median 33.2374 19.46694 11.3894 5.506687 12.297 7.261 

6 
mean 29.742 17.12368 11.4679 6.052025 17.012 12.6 

median 26.3825 15.74273 8.7812 5.232265 12.247 8.194 

1 

2 
mean 47.5699 23.22282 47.5015 22.79289 16.243 8.313 

median 38.8264 19.1748 38.5256 18.76471 15.087 7.299 

4 
mean 42.6732 22.56089 14.9166 7.826452 16.21 9.886 

median 34.7452 19.12795 12.4852 6.481024 14.831 8.12 

6 
mean 32.1418 18.70206 12.0299 6.883359 16.132 12.199 

median 26.9269 16.26083 9.3777 5.919824 12.36 8.813 

2 

2 
mean 47.6016 25.6004 45.8793 24.27017 17.561 8.711 

median 46.1436 24.10426 44.9372 21.43283 16.76 7.993 

4 
mean 41.6944 25.39723 18.422 9.18414 16.674 9.226 

median 38.9898 23.18064 16.9209 9.058691 14.54 7.146 

6 
mean 36.1125 22.25201 14.5588 8.545564 14.162 10.499 

median 36.7203 22.28914 11.7577 7.381624 8.939 5.465 

4 

2 
mean 69.5943 51.94616 70.1395 51.54401 29.576 15.997 

median 73.1412 58.63171 73.1997 59.45892 27.418 14.067 

4 
mean 67.6459 52.77069 32.1167 20.03433 27.623 14.609 

median 71.3281 59.36151 29.3437 19.97489 25.999 12.436 

6 
mean 62.7614 52.6112 29.507 19.82894 18.672 13.273 

median 70.079 61.45038 28.6813 19.79942 13.544 9.592 

 

Next, we would like to analyse the result of the experiments from another 

perspective. Table 4-3 shows the time average relative and maximum relative error by the 

target service level and the planning period length. 
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Table  4-3 Time average relative and maximum relative error by target service level (α) and planning 
period (PP) length 

 SIPP MOL MaxSIPP 

α PP(hrs) Mean/ 
Median 

Max 
Error% 

Time Ave 
Error% 

Max 
Error% 

Time Ave 
Error% 

Max 
Error% 

Time 
Ave 

Error%

0.1 

2 
mean 66.9343 40.2998 66.1669 39.90555 12.789 6.363 

median 64.0608 35.6181 65.8937 35.82605 10.293 5.045 

4 
mean 60.0345 38.9558 13.7594 7.3497 11.676 5.733 

median 57.2515 36.6889 10.8433 5.8049 9.786 4.848 

6 
mean 51.1906 35.4289 13.4921 7.5106 7.722 5.185 

median 48.8189 28.2542 11.2088 6.1608 7.126 4.848 

0.2 

2 
mean 54.8198 32.69206 53.287 32.2024 17.119 9.019 

median 53.1887 26.54291 52.1208 26.8106 15.573 7.993 

4 
mean 48.0637 31.9792 17.8109 10.6893 15.43 8.3 

median 43.0697 25.1673 14.874 8.9904 14.069 7.327 

6 
mean 45.9172 31.7473 17.0711 10.6827 11.864 8.046 

median 45.6423 25.9827 15.6936 8.2632 10.839 7.093 

0.5 

2 
mean 37.2838 19.4536 38.3281 19.4419 30.117 15.797 

median 36.4353 18.507 37.0949 18.2435 27.92 13.796 

4 
mean 34.9062 20.1646 28.031 15.4068 30.679 18.59 

median 33.444 19.0664 24.7844 13.68 27.595 16.013 

6 
mean 23.8693 15.794 21.0521 13.22 30.756 23.578 

median 20.9631 14.137 17.6143 11.94 26.137 20.13 
 

We can see from the table that as the target service level (α) increases the 

accuracy of these methods are affected differently. The SIPP and MOL provide more 

accurate approximations for models with lower quality of service, while MaxSIPP is 

better when higher quality of service is required. One noticeable trend is the effect of the 

length of planning period on the performance of these methods. 

4.4 Summary 

A time-varying simulation model developed and validated with the exact method, 

which is then used to compare different approximation methods for nonstationary 

queueing models. Statistical analysis of planned experiment results on the test problems 
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with a wide range of parameters assured us that the model generates statistically 

equivalent results as the exact method. It is also found that for queueing/simulation 

models with a time varying arrival rate, periodic steady state condition, rather than the 

steady state condition, is to be used to accurately reflect the situation. Then we used the 

validated simulation model to evaluate the performance of a number of approximation 

methods applied to the ܯ௧/ݏ/ܩ௧ and determined conditions under which either of these 

methods would be most suitable. We realized that the MOL method is more accurate and 

requires less number of servers in comparison to other methods. MaxSIPP performs 

better when the quality of service is very high; however it demands a higher number of 

staff.  
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5: MODELING EMERGENCY DEPARTMENT WITH 
BOTH QUEUEING AND SIMULATION MODELS 

As we previously discussed the purpose of modelling was to represent the 

emergency department and help with decision-making regarding determining the number 

of staff when there is a sudden variation in arrival rate. In previous chapters, we built 

nonstationary queueing models that could capture the variation in arrival rate and used 

approximation methods to determine the staffing requirements in accordance with these 

variations. Then we calculated the performance measure resulted from employing those 

proposed number of servers. We then built a parallel simulation model to evaluate the 

accuracy of these approximation methods for the cases where there were not numerical 

solutions available. 

In all the experiments run in the previous chapter, we considered a single 

 ௧ queueing model. However, assuming the emergency department as a singleݏ/ܩ/௧ܯ

queueing model is not realistic. Since the actual system consists of different units which 

require different types of staff with their specific service time distributions.  

5.1 ED at St. Paul’s hospital 

St. Paul's Hospital is an acute care, academic, and research hospital located in 

downtown Vancouver. ED at St. Paul’s hospital consists of different parts: 

- Fast track (FT) 

- Diagnostic and Treatment Unit (DTU) 

- Triage and Registration 

- Acute Zone 
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- Rapid Assessment Zone (RAZ) 

The patient route in the St. Paul’s hospital starts by a patient getting into the triage 

and registration area either by foot or in an ambulance. In this area, one registration clerk 

registers the patient and then the patient waits for one of the two triage nurses to do a 

quick interview to determine the level of severity of his/her condition. A CTAS 

(Canadian Triage and Acuity Scale) level is then assigned to the patient and s/he will wait 

until the appropriate service is available. Complete registration of the patients is usually 

done after triage if the patient is not of high severity level. This is done by the same 

registration clerk or the other one who comes to work during peak hours.  

Once the CTAS level is determined for the patient, s/he will go through a special 

path designed for that CTAS level. Patients of the CTAS level I are usually assigned to 

the trauma room directly and immediately. These patients have the highest priority for 

handling and treatment in the ED. Once the patient is in the bed, a nurse would start the 

treatment and soon after, a physician will visit this patient and will order appropriate 

medications and/or tests for him/her. 

Patients of CTAS level II are supposed to be assigned to an acute bed shortly after 

they are triaged. These patients may go to the Rapid Assessment Zone (RAZ) if no acute 

beds are available. They are then seen by a nurse and a physician. 

Patients of CTAS level III belong to a heterogeneous category that includes a 

range of presenting complaints with a spectrum of severity. Higher acuity level III 

patients will mostly require a bed for care, whereas the lower acuity level III patients may 

not require a bed. In the current system, lower acuity III patients are supposed to be seen 
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in the RAZ likewise by a nurse and then a doctor. Higher level III patients should be 

placed in an acute bed if available. If no bed is available, they should be seen in the RAZ. 

The rest of the patients (levels IV and V) will go to the Fast Track area and will 

wait till a bed is available. In a research study it was shown that a fast track lane can help 

decreasing 50% of the required resources while resulting in less waiting time for all the 

patients on average due to providing the possibility of handling patients of CTAS levels 

III and IV, and therefore providing more space and resources for patients with higher 

acuity levels [40]. 

However, there are some exceptions to the flow of the patients. For example, 

patients who have an emergency eye problem and are of any of the five CTAS levels 

would go to the Fast Track area since the required equipment for their treatment is 

located there. Flow of patients in the hospital is shown in Figure  5-1. 

In a practical project a detailed simulation model for the ED was constructed and 

validated with historical data of the patients’ visits to the ED during the year 2009. The 

model was fed with the actual arrival times and other parameters of the systems were 

estimated from data. The performance statistics recorded by the model was compared to 

the reported values of the real system.  
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Figure  5-1 Flow of patients in the ED 

Analysing ED at St. Paul’s we realized that some of these different parts share the 

same resources most of the time, so we integrated them into one unit. Finally, we had 

three separate units that had their own specific resources. We named these units as 

Triage, Acute care and Fast Track.  

In this chapter, we would like to analyse the three-node network of queueing 

systems for the specific case of the ED. Figure  5-2 is a schematic representation of these 

units. In this network, the arrival to the Acute and Fast Track is the departure from the 

Triage unit. Therefore, first we have to determine the departure of this unit as a function 

of its arrival. 
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Figure  5-2 Schematic representation of the ED units 

5.2 Approximating the departure process 

The arrival to the first unit (Triage), as discussed before, is supposed to be a non-

homogeneous Poisson process with parameter λ(t). If we consider the service time of the 

first queueing model to be exponentially distributed, the outflow of that model will 

follow a non-homogeneous Poisson distribution with the rate µs(u), for u≥t (assuming all 

servers are busy throughout the interval, which could be realistic if we set the service 

level low enough) [41]. The outflow of this unit then divides into two parts, each entering 

another queueing system. So, the arrival rate to one unit would be a non-homogeneous 

Poisson distribution with a parameter kµs(u), for u≥t, where k is the percentage of the 

outflow entering that unit. Consequently, the arrival rate to the other unit would be a non-

homogeneous Poisson distribution with parameter (1-k)µs(u), for u≥t. The value for k can 

be estimated using historical data from ED.  

However, the aforementioned results hold only if all the servers are busy all the 

time, which may not be always true. Therefore, we turn to another strategy to 

approximate the departure rate of a ܯ௧/ݏ/ܩ௧ model.  

We can approximate the outflow of the ܯ௧/ݏ/ܩ௧  model with the outflow of a 

 using the following theorems. In this model, where the number of customers in ∞/ܩ/௧ܯ
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the system at time t is represented by Q(t) the following theorem can be proved. Let S be 

the generic service time random variable and let G be its cumulative distribution function 

(c.d.f.). The service times should be i.i.d and independent of the arrival process [42]. Se is 

a random variable associated with stationary-excess or equilibrium-residual-lifetime 

c.d.f..  

ሻݐ௘ሺܩ ؠ ܲሺܵ௘ ൑ ሻݐ ؠ
1

ሾܵሿܧ
න ,ݑሻ݀ݑ௖ሺܩ ݐ ൒ 0,
௧

଴
 ( 5-1)

where Gc(t)= 1-G(t),  

Theorem 1. [42] For each t, Q(t) has a Poisson distribution with mean  

݉ሺݐሻ ൌ ሾනܧ ሻݑሺߣ ሿݑ݀ ൌ ݐሺߣሾܧ െ ܵ௘ሻሿܧሾܵሿ.
௧

௧ିௌ
 ( 5-2)

The departure process is a Poisson process with time dependent rate function δ, 

where 

                           δ(t) = E[λ(t-S)] ( 5-3)

For each t, Q(t) is independent of the departure process in the interval (-∞,t]. The 

departure process is directly associated with the derivative of m(t) in the theorem 

described below.  

Theorem 2. [42] If the departure function δ in Eq. ( 5-3) is integrable in a 

neighbourhood of t, then the mean function m in Eq. ( 5-2) is absolutely continuous with 

respect to a Lebesgue measure in a neighbourhood of t, with density  

݉ᇱሺݐሻ ൌ ሻݐሺߣ െ ሻ ( 5-4)ݐሺߜ

If we revisit Eq. ( 2-6) from chapter two 
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ሻሿᇱݐሾܳሺܧ ൌ ሻݐሺߣ െ μܧሾܳሺݐሻሿ ( 5-5)

we can conclude that if the service time of the queueing system is exponential, the 

departure process can be estimated with a non-homogeneous Poisson process with rate 

µm(t). In other words, as a generalization to what was discussed earlier, the departure 

process is always a non-homogeneous Poisson process with rate m(t)/E[S], if the service 

times are exponential with mean E[S]=1/µ. 

If the service time is not exponential, we cannot draw the last conclusion. We are 

left with Eq. ( 5-3) which is complicated since the time lag of the arrival rate S appears 

inside the arrival function λ(t), inside the expectation E(.). If the expectation could be 

moved inside, we could produce a deterministic time lag E[S] and δ(t) could be expressed 

more generally in terms of the moment of S. This would have been possible if the arrival 

rate function λ(t) were a polynomial. Although the arrival rate function will not usually 

be polynomial, it can be approximated by polynomials in the neighbourhood of 

individual arguments, using Taylor-series approximations [43].  

Consider we are interested in performance in some time t. we can approximate the 

arrival rate function, λ(t), in an interval before time t using a first order Taylor-series 

approximation centered at t 

ݐሺߣ െ ሻݑ ൎ ሻݐሺߣ െ ݑሻݐሺଵሻሺߣ ݎ݋݂ ݑ ൒ 0 ( 5-6)

where λ(k)(t) is the kth derivative of λ(t) evaluated at time t. Applying Eq. ( 5-6) to Eq. 

( 5-3) we have 

ሻݐሺߜ ൎ ݐሺߣ െ ሾܵሿሻ, ( 5-7)ܧ

which shows that δ(t) is approximately the PSA arrival rate modified by the deterministic 

time lag E[S]. 
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5.3 Experimenting with queueing network 

In chapter three, we validated a single queueing model with the exact method. 

Here, we build a queueing network by connecting three of those single queueing models 

together with minor changes in their service times. To make sure that this network of the 

validated models is still valid we compare its results with the analytical solution obtained 

from the exact method, inputting a challenging arrival rate (λ(t)=30 + 20sin(5t)).  

Since the MOL method was proved to be better than the other methods in the last 

chapter for surge, we apply it to the units in the second layer of the network (Acute and 

Fast Track). We assume the arrival rates to these units are estimated from Eq. ( 5-3), and 

are divided into two branches with the coefficient k =0.4. We also extend the single 

simulation model to a three-node one and let it run with same parameters as the queueing 

network. Since we would like to compare the simulation outcomes with the results of the 

exact method we have to assume that all the service times are exponential.  

As it is clear from Table  5-1 and Table  5-2, the simulation model output, except 

for the first planning period, are close to the results obtained by the exact method. The 

large difference in the first period is due to the fact that there is a time lag in the arrival to 

the second layer models as a result of the delay of service in the Triage unit preceding 

them in the network. This causes the Fast Track and Acute unit to be empty during the 

time that patients are being served at Triage in the beginning of each day. This time lag 

which is generated at the start of each day has not been included in the queueing model 

and that is the reason why the errors in the first planning period are substantially greater 

than other periods.  
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Table  5-1 Comparison of the MOL solution with simulation for the Fast Track unit 

PP No. Servers Pd (MOL) Pd(Simulation) Error % 
1 8 0.127811 0.284289 122.4292 
2 9 0.183496 0.176322 3.909622 
3 10 0.100265 0.093006 7.239814 
4 9 0.162365 0.145007 10.69073 
5 10 0.105551 0.102717 2.684958 
6 9 0.159756 0.163029 2.048749 
7 9 0.187418 0.170082 9.249912 
8 10 0.098375 0.10376 5.473952 
9 9 0.165752 0.141202 14.81128 
10 10 0.104769 0.110627 5.591349 
11 9 0.158454 0.146426 7.590847 
12 9 0.189386 0.172901 8.704445 

 

Table  5-2 Comparison of the MOL solution with simulation for Acute unit 

PP No. Servers Pd (MOL) Pd(Simulation) Error % 
1 8 0.087064 0.336088 286.0241 
2 10 0.118574 0.126574 6.746842 
3 10 0.132206 0.120488 8.86344 
4 10 0.131164 0.087326 33.42228 
5 10 0.138698 0.106619 23.12867 
6 10 0.128311 0.140796 9.730265 
7 10 0.138797 0.13857 0.163548 
8 10 0.132531 0.124009 6.430194 
9 10 0.132908 0.099382 25.22497 
10 10 0.137905 0.133627 3.102136 
11 10 0.128276 0.120276 6.236552 
12 10 0.139362 0.139532 0.121984 

 

5.4 Applying the method to actual data 

As mentioned before, the purpose of modelling the ED was to develop a tool that 

could assist decision making in the event of surge, when managers encounter difficulty 

setting the staffing requirements. We built a queueing network of three ܯ௧/ݏ/ܩ௧ models 

that represented the actual system; then selected the best approximation method for surge 

to determine the staff level and predicted the resulting probability of delay. Now, we 
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would apply the chosen method to the queueing network whose arrival rate is estimated 

from historical data of the actual ED. 

5.4.1 Fitting non-homogeneous Poisson distribution to actual data 

We first have to make sure, if the data from the ED would actually fit into the 

assumption of non-homogeneous Poisson process. For determining whether the arrivals 

of the considered process form a non-homogeneous Poisson process, we have to build a 

test for this null hypothesis. The first step in constructing this test is to break up the 

duration of the day into relatively short blocks of time; short enough so that the arrival 

rate does not change significantly within a block. The length of the time blocks does not 

have to be equal; however, for convenience it is assumed so. Let Tij denote the j-th 

ordered arrival time in the i-th block, i=1, … I. Thus Ti1≤ …≤TiJ(i), where J(i) denotes the 

total number of arrivals in the i-th block. Then define Ti0=0 and 

ܴ௜௝ ൌ ሺܬሺ݅ሻ ൅ 1 െ ݆ሻ ቆെ ݃݋݈ ቆ
ܮ െ ௜ܶ௝

ܮ െ ௜ܶ,௝ିଵ
ቇቇ , ݆ ൌ 1, … , ሺ݅ሻ ( 5-8)ܬ

Under the formal null hypothesis that the arrival rate is constant within each given 

time interval, the {Rij} will be independent standard exponential variables, as discussed 

below. 

Let Uij denote the j-th (unordered) arrival time in the i-th block. Then as we have 

assumed the arrival rate within this block to be constant Poisson, conditionally on j(i), the 

unordered arrival times are independent and uniformly distributed, that is, Uij ~ U(0, L). 

Note that Tij= Ui(j). It follows that 
௅ି்೔ೕ
௅ି்೔,ೕషభ

 are independent beta(J(i)+1-j,1) variables. By 

a standard change of variables the conditional exponentiality of the Rij given the value of 
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J(i) is obtained. (Equivalently we may base the test on the variables ܴ௜௝
כ ൌ ݆ሺെ݈݃݋

்೔ೕ
்೔,ೕశభ

ሻ, 

where j=1,…, J(i) and Ti,J(i)+1=L. under the null hypothesis, these will also be independent 

standard exponential variables [44]. 

The null hypothesis does not imply that the arrival rate of different intervals 

should be equal or have any other prescribed relationship. Any customary test for the 

exponential distribution can be applied to test the null hypothesis. We use the 

Kolmogorov-Smirnov test, which is available in Matlab statistical toolbox. Moreover, 

exponential Q-Q plots can be very useful in determining goodness of fit to the 

exponential distribution [29]. 

We considered one-hour intervals, and could not reject the null hypothesis. This 

implies that the arrival rate follows non-homogeneous Poisson distribution. After 

confirming the assumption of non-homogeneous Poisson arrival distribution, we can 

estimate the arrival rate with a periodic function. We extracted the hourly arrival rates to 

the ED at the time of the outbreak of the H1N1 flu in fall 2009 from the data provided to 

us and utilized Matlab Curve Fitting tool to fit a sum of Sine functions to it. Figure  5-3 

depicts our data and the curve that is fit to it. The mathematical representation of this 

function is as follows:  

                       λ(t) = a1 sin(b1x+c1) + a2 sin(b2 x+c2) ( 5-9)

Table  5-3 presents the value for the parameters in arrival rate and the R-square and 

RMSE error for this fit. 
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Table  5-3 Parameters and fitting error for the approximated arrival rate 

a1 13.04 

b1 0.06042 

c1 0.317 

a2 4.173 

b2 0.3988 

c2 2.918 

R-Square 0.7072 

RMSE 3.152 
 

R-Square Error 

R-square is a statistic measure that shows how successful the fit is in explaining 

the variation of the data. In other words, R-square is the square of the correlation between 

the response values and the predicted response values. R-square is defined as the ratio of 

the sum of squares of the regression (SSR) and the total sum of squares (SST). SSR is 

defined as 

ܴܵܵ ൌ෍ݓ௜ሺݕො௜ െ തሻଶݕ
௡

௜ୀଵ

 ( 5-10)

SST is also called the sum of squares about the mean, and is defined as 

ܵܵܶ ൌ෍ݓ௜ሺݕ௜ െ തሻଶݕ
௡

௜ୀଵ

 ( 5-11)

where SST = SSR + SSE, and SSE is sum of squares due to error calculated as below 

ܧܵܵ ൌ෍ݓ௜ሺݕ௜ െ ො௜ሻଶݕ
௡

௜ୀଵ

 ( 5-12)

Given these definitions, R-square is expressed as 
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ܴ െ ݁ݎܽݑݍݏ ൌ
ܴܵܵ
ܵܵܶ

ൌ 1 െ
ܧܵܵ
ܵܵܶ

 ( 5-13)

R-square can take on any value between 0 and 1, with a value closer to 1 indicating that a 

greater proportion of variance is accounted for by the model.  

Root Mean Squared Error 

This statistic is also known as the fit standard error and the standard error of the 

regression. It is an estimate of the standard deviation of the random component in the 

data, and is defined as 

ܧܵܯܴ ൌ (14-5 ) ܧܵܯ√

where MSE is the mean square error or the residual mean square 

ܧܵܯ ൌ
ܧܵܵ
߭

 ( 5-15)

Just as with SSE, an MSE value closer to zero indicates a fit that is more useful for 

prediction. The residual degrees of freedom is defined as the number of response values n 

minus the number of fitted coefficients m estimated from the response values (υ= n-m) 

[45]. Based on the values for these error measures, we concluded that this fit is 

appropriate for our data. 
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Figure  5-3 The arrival function fitted over the actual data from the ED 

5.4.2 Service times 

From the data, we also estimated the percentage of patients that would enter the 

Acute unit to be k = 0.42. That results in the arrival rate to this unit to be kλ(t) and the 

arrival to the fast track to be (1-k)λ(t). As mentioned before, determining service times for 

different units in the ED is a challenging problem. Here we consider some estimation that 

have been recommended by the experts at ED. Table  5-4 shows the mean service times 

for each unit. In queueing network, all the units are assumed to have general distribution 

and are considered to have SCV=2. 
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Table  5-4 Service times mean and standard deviation 

Unit Service Time Mean (min) Service Time Standard Deviation (min)

Triage 10 7.07 

Fast Track 20 14.42 

Acute 30 21.21 

 

In the next step, we input the estimated arrival function to our queueing network, 

apply the MOL method to each unit and determine the staffing level for each unit. We 

compare suggested solutions for two strategies Quality-driven and Quality and Efficiency 

driven (Rationalized) with setting the target probability of delay to α=0.1 and 0.5 

respectively. We also determined the staffing with different planning periods. Tables 

below summarize the outcome of these experiments. 
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Table  5-5 The number of servers suggested for two-hour planning period and probability of delay 
estimated with MOL and simulation 

PP α 
Acute Fast Track Triage 

s 
Pd(M
OL) 

Pd(Si
m) 

Err. s 
Pd(M
OL) 

Pd(Si
m) 

Err. s 
Pd(M
OL) 

Pd(Si
m) 

Err. 

1 

0.1 

3 0.101 0.270 62.5 3 0.069 0.183 62.3 2 0.180 0.286 37.1 

2 2 0.176 0.136 29.7 2 0.131 0.091 44.6 1 0.700 0.341 105 

3 2 0.124 0.106 17.8 2 0.118 0.065 81.5 1 0.760 0.381 99.5 

4 3 0.077 0.083 7.7 3 0.086 0.096 10.5 2 0.354 0.322 9.8 

5 4 0.114 0.122 6.9 4 0.118 0.113 4.5 3 0.325 0.288 12.7 

6 5 0.150 0.148 1 5 0.134 0.119 13.2 4 0.265 0.238 11.2 

7 6 0.121 0.113 7.1 6 0.092 0.083 10.2 4 0.353 0.340 3.8 

8 6 0.124 0.113 9.8 6 0.083 0.075 9.5 4 0.291 0.252 15.4 

9 5 0.177 0.125 41.9 5 0.115 0.091 26.4 3 0.441 0.391 12.9 

10 5 0.077 0.059 29.8 4 0.153 0.145 5 3 0.267 0.262 1.9 

11 4 0.138 0.113 22.5 4 0.107 0.090 19.2 3 0.236 0.224 4.9 

12 4 0.177 0.187 5.3 4 0.156 0.127 23.2 3 0.354 0.328 8 

1 

0.5 

2 0.380 0.570 33.3 1 0.967 0.895 8 1 0.861 0.827 4.1 

2 1 0.857 0.614 39.4 1 0.792 0.731 8.4 1 0.700 0.514 36.3 

3 1 0.781 0.614 27.2 1 0.770 0.673 14.5 1 0.760 0.401 89.6 

4 1 0.983 0.761 29.3 2 0.338 0.616 45.1 2 0.354 0.351 0.8 

5 2 0.836 0.736 13.6 2 0.849 0.672 26.3 2 0.815 0.649 25.6 

6 3 0.791 0.738 7.1 3 0.744 0.695 7.1 3 0.626 0.585 7 

7 4 0.603 0.627 3.8 3 0.996 0.770 29.3 3 0.768 0.685 12.2 

8 4 0.611 0.585 4.5 3 0.950 0.814 16.7 3 0.670 0.659 1.6 

9 3 0.867 0.609 42.3 3 0.683 0.719 4.9 2 0.988 0.804 22.9 

10 3 0.544 0.561 2.9 2 0.956 0.807 18.5 2 0.721 0.737 2.2 

11 2 0.914 0.737 23.9 2 0.811 0.811 0 2 0.665 0.679 2.1 

12 3 0.467 0.594 21.4 2 0.967 0.821 17.7 2 0.861 0.744 15.7 
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Table  5-6 The number of servers suggested for four-hour planning period and probability of delay 
estimated with MOL and simulation 

P
P 

α 
Acute Fast Track Triage 

s 
Pd(M
OL) 

Pd(Si
m) 

Err. s 
Pd(M
OL) 

Pd(Si
m) 

Err. s 
Pd(M
OL) 

Pd(Sim) Err. 

1 

0.1 

3 0.062 0.192 67.6 2 0.202 0.325 37.7 2 0.127 0.217 41.5 

2 2 0.197 0.227 13.5 2 0.209 0.211 0.9 2 0.217 0.240 9.7 

3 5 0.079 0.114 30.6 5 0.075 0.092 18.5 4 0.178 0.196 9.1 

4 6 0.127 0.117 8.5 6 0.089 0.082 8.8 5 0.127 0.129 1.1 

5 5 0.120 0.108 10.9 5 0.077 0.085 9.6 4 0.119 0.131 9.4 

6 4 0.151 0.139 8.6 4 0.127 0.133 4.2 4 0.093 0.101 7.9 

1 

0.5 

1 0.950 0.899 5.7 1 0.200 0.889 77.5 1 0.785 0.786 0.1 

2 1 0.880 0.850 3.6 1 0.894 0.800 11.7 1 0.902 0.739 22 

3 3 0.553 0.688 19.6 3 0.537 0.644 16.6 3 0.469 0.505 7.1 

4 4 0.621 0.622 0.2 3 0.983 0.795 23.7 3 0.722 0.676 6.9 

5 3 0.699 0.654 6.7 3 0.544 0.632 14 2 0.852 0.789 8 

6 2 0.951 0.787 20.9 2 0.879 0.756 16.3 2 0.759 0.701 8.3 

 

 

Table  5-7 The number of servers suggested for six-hour planning period and probability of delay 
estimated with MOL and simulation 

P
P 

α 
Acute Fast Track Triage 

s 
Pd(M
OL) 

Pd(Si
m) 

Err. s 
Pd(M
OL) 

Pd(Si
m) 

Err. s 
Pd(MO

L) 
Pd(Sim) Err. 

1 

0.1 

2 0.205 0.352 41.9 2 0.165 0.298 44.8 2 0.119 0.188 36.7 

2 4 0.118 0.186 36.5 4 0.118 0.184 35.6 4 0.103 0.159 35.1 

3 6 0.108 0.114 5.5 5 0.185 0.196 5.6 5 0.099 0.110 10.5 

4 4 0.164 0.178 7.6 4 0.131 0.131 0.1 4 0.088 0.096 8.2 

1 

0.5 

1 0.889 0.911 2.4 1 0.842 0.918 8.3 1 0.771 0.722 6.8 

2 2 0.850 0.784 8.3 2 0.850 0.765 11.1 2 0.798 0.709 12.7 

3 4 0.562 0.671 16.3 3 0.890 0.873 1.9 3 0.627 0.710 11.8 

4 2 0.988 0.804 22.9 2 0.891 0.876 1.7 2 0.740 0.670 10.5 

Form the tables we can see, this method works better for the Quality driven 

strategy, since the probability of delay estimated with queueing model and its parallel 

simulation model is closer to the predefined target probability of delay (α=0.1). 
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Moreover, the outcome of the queueing model is also more similar to the simulation for 

(α=0.1). It can be concluded that these methods work better with lighter traffic. However 

they would still work for heavier traffic. 

5.5 Simulation of the ED at St. Paul’s 

As we discussed earlier in this chapter, the clinical procedures at St. Paul’s 

emergency department has been simulated with ArenaTM. The patient flow for the 

emergency department of St. Paul’s hospital is modelled according to the patients’ data in 

2009 (including arrival times, lengths of stay in different units, and information pieces 

such as the CTAS levels, dispositions, etc.). The probability distributions of lengths of 

stay at different units of ED, percentage of patients routing to different units and many 

other parameters have been identified from historical data and fed into the model. The 

simulation model was built based on the current number of resources and current 

procedural policy (e.g., sequence of the units through which a patient might be handled 

and treated during his/her stay in the ED). The model was verified and validated based on 

171,000 records of patients’ visits. For the cases where there were not enough data 

available, for example for the service time distributions the best guess of the expert 

physicians at the hospital was incorporated in the model.  

This model was then utilized to run scenarios to analyse the effect of making 

changes in the system. These scenarios included adding single or multiple resources to 

different units, considering the effects of closing some of the units, and so on. These 

impacts were studied as the effects on the overall performance of ED in terms of “time to 

provider (T2P)”, and “length of stay (LOS)”.  
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5.6 Scenarios for analysis 

Here, a number of potential options (questions) that have been studied with the 

help of the ED simulation model are presented 

 Dynamic resource allocation: Different parts of the ED are designed for specific 

types of patients and are handled by limited resources. Given resource costs, one 

question is which unit to keep open or closed daily. In other words, for example 

“Is opening RAZ more helpful during the peak hours than other measures?”, 

“What are the conditions (i.e. times, number of resources, utilization policies, 

etc.) under which each unit can be more helpful and of better performance in 

terms of service times?” 

 Bottleneck Analysis: What are the major factors that contribute to the problems 

of ED at St. Paul’s, such as overcrowding, poor throughput of patients, 

incompatibility of required resources (such as lack of enough nurses for the 

existing beds), etc.? Which sub-cycles contribute most to poor flow/overcrowding 

(in absolute and relative terms)? Where the target quality improvement 

interventions can be set to be cost-effective and to have the largest impact on 

improving the flow? 

 Demand/Capacity: What is the impact of hiring new physicians/nurses or adding 

extra stretchers? 

For the scenarios described above, results and important statistics are shown in 

Table  5-8 in detail; the findings for each scenario are as follows: 
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 Adding one doctor: As the results show, for adding a doctor (the word “doctor” 

refers to the doctors who visit patients in all units except FT, which is assigned 

separate doctors, known as “FT doctors” in the model), the best shift to make this 

assignment is from midnight to 7:00am. This change in number of doctors 

however, will result in only fifteen minutes of reduction in waiting time to 

provider, and consequently in length of stay for the patients on average.  

 Adding two doctors: Since the number of doctors during the night shift and 

afternoon is less than that of other times, a scenario was to add one doctor to each 

of those shifts to see how the performance of ED might improve. The results 

indicate that this alternative performs similar to adding one doctor during the 

night shift, and therefore it can be concluded that adding a doctor to the afternoon 

shift (from 14:00 to 18:00 typically) is not of any help for reducing waiting times 

and such investment is of no benefit to ED performance. 

 Adding beds and nurses: The number of beds in some units can be changed with 

the number of nurses because each nurse is supposed to handle a particular 

number of beds in some units. For example in Acute, each nurse is assigned to 

four beds while in the Trauma room each nurse takes care of exactly one bed. 

Therefore changing beds and nurses requires different arrangements for different 

units. As Table  5-8 shows, all units were considered for simultaneous increasing 

of beds and nurses. According to the results, the only effective resource increase 

in terms of beds and nurses is for RAZ, which shows a slight improvement (only 

five minutes for Time to Get a Bed). 
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 It can be concluded that it is not worth to consider merely adding beds along with 

nurses to any of the units. However, adding beds and nurses might result in 

remarkable results if it is accompanied by adding other types of resources or 

adding resources to other units as well.  

 Adding combinatorial resources: When considering making a variety of resource 

changes in more than one unit (i.e., combinatorial resources), we obtain the results 

presented in the forth scenario of Table  5-8. Since it shows some improvement 

subject to adding Trauma nurse(s) along with some other changes, we decided to 

perform a detailed analysis based upon the Trauma resources. For this purpose, 

the scenario of “adding 1 Trauma nurse and 1 bed” was also considered. 
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Table  5-8 Results of simulation for different scenarios in terms of desired statistics (LOS, T2P, T2B) 

                                                                           

                                              Times 

Scenarios 

Length of Stay (LOS) Time to 
Provider (T2P) 

Time to 
Get a 
Bed 
(T2B) 

Greatest amount of decrease in 
average waiting time Admitted Discharged 

Base case (current system) 641  280  45  17   

Adding a doctor 

8:00- 15:00 640  276  43  16 Not significant 

24:00- 7:00 624 265 31 13 15 min (LOS, T2P) 

15:00- 23:00 629  270 38 14 10 min (LOS, T2P) 

Adding 2 doctors  24:00- 7:00  

14:00- 18:00 

625 272 34 17 15 min (LOS, T2P) 

Adding beds and 
nurses 

Acute  4 beds            
1 nurse 

640 278 44 17 Not significant 

DTU 2 beds 

1 nurse 

639  275   43 15 Not significant 

FT 2 beds 

1 nurse 

643 280 45 16 Not significant 

RAZ 2 beds 

1 nurse 

643 274 41 12  5 min (T2P, T2B) 

Adding resources 
in combination 

Acute:   4 beds 

RAZ: 3 Care Spaces 

638 278 44 12 5 min (T2B) 

Trauma: 2 beds 

Acute:    4 beds 

638 279 37 (Trauma) 15 9 min (T2P) 

1 Trauma nurse 

1 doctor: 24:00-8:00 

2 nurses 

620 272  30  12  20 min (LOS) 

15 min (T2P) 

5 min (T2B) 

2 Trauma nurses 

2 Acute3 nurses 

2 doctors:   

24:00-7:00 

16:00-23:00 

610 269 32 15 30 min (LOS) 

13 min (T2P) 

1 FT doctor:  

24:00-7:00 

1 nurse to all units 

1 bed to all units 

2 doctors: 

24:00-7:00 

16:00-23:00 

615 263 30  13 25 minutes (LOS) 

15 minutes 

(T2P) 

4 minutes 

(T2B) 

Closing RAZ 635 370 53  21  Adding: 

100 min to LOS (discharged) 

8 min to T2P 

Closing RAZ during nights 632 323 46  17 Adding 40 min to LOS 
(discharged) 

Closing DTU 1142 940 297  189 Resulting in significant lack of 
resources and increasing in LOS, 
T2P, T2B 

Decreasing DTU 
resources 

1 nurse 

2 beds 

650 285 55 17 No significant increase 

* The bold face numbers show decrease in statistic values (favored effect of scenario), and the italic grey 
highlighted values show increase in the statistic value (adverse effect of scenario) 
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Various types of resource increases were studied among which, adding resources 

of all types in a combination, offers the best results. This fact implies that in case of 

increased resource allocation to more than one unit, the service quality will improve more 

noticeably than any other improvement on each individual resource. Since adding 

resources will increase the operational costs at ED, a tradeoff would be made between the 

increased cost and the waiting time reduction. Decision about the desired resource 

increase and the units receiving those resources will depend on targets and constraints of 

the authorities and more precise decisions will depend on simultaneously considering 

both sides (i.e., benefits of increasing resources, and costs accompanying the resource 

increase).  

Results of this analysis showed that while adding resources to some of the units in 

ED might not make significant improvement in decreasing the waiting times, closing 

them can remarkably add to waiting times and therefore revealed that their operation is 

vital in current layout and situation of the ED. 

For identifying the bottleneck units, it can be concluded that no single unit or 

resource might be a bottleneck per se, and all of the units and resource types seem to play 

an important role in serving the patients. However, precise studies might be able to reveal 

the exact differences between different resources. This stage is possible to be evaluated 

only if more reliable and precise data is available. 
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5.7 Inputting queueing model outcome to detailed simulation 

In an attempt to test our solution on the real system we applied the number of 

servers suggested by the methods we employed to the simulation model of the ED at St. 

Paul’s. We input the arrival rate function estimated from data to this model and changed 

the service time distributions to match that of the queueing network model. Our 

expectation was a dramatic decrease in the patients waiting times as a result of 

employing, for instance, the quality driven strategy in Table 5-6 which had almost twice 

staff hours as the original schedule of the ED. Unfortunately, the ED simulation model 

did not show significant sensitivity to the alterations that we did (The output of this 

experiment can be found in the appendix). 

We analysed the model to find out possible reasons that could have a potential 

role in this case, and found the following issues: 

1. The simulation model constructed captures many details of the system (which 

queueing model either does not or considers them with extra simplifying 

assumptions). Namely some of the features that are not exactly modelled in the 

queueing model are: 

a. Different types of staff, such as trauma nurses, acute nurses, fast track nurses, 

registration clerks etc, each with their own specific service times for any of 

the units. In the queueing model only three types of resources are considered 

(triage nurse, acute doctors, and fast track doctors) 

b. Priority of the patients, with respect to the severity of their condition would 

receive priority code, CTAS, (meaning that the patients of lower CTAS levels 

would get through the queue faster and be served sooner). In the queueing 
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model, in contrast, all the queues are assumed to be treated in the first-come-

first-served discipline. 

c. Abandonments, patients get intolerant with long wait times and leave without 

being seen by a doctor whereas in queueing model it is assumed that patients 

would wait until they receive service. 

d. Patients transferred within the units due to bed unavailability or to 

complete their treatment services (for example as we described before, if there 

are no beds available in the acute area patients would be transferred to RAZ). 

No such flexibility is considered in the queueing model, besides all patients in 

the trauma room, acute area, and RAZ are considered to be in one integrated 

unit since they received service from the same staff members. 

2. The validation and scenario testing for the simulation model were both done by 

inputting the actual arrival data from the real ED over the entire one-year period. The 

actual data is completely deterministic and does not include any randomness. On 

other the hand, the queueing model was fed with a stochastic arrival rate having time-

varying parameter. Moreover, the queueing model was built for a specific time of the 

year and focused on the variation of the arrival within a two-week period of the surge 

caused by H1N1 flu. Although we input the time varying arrival function into the 

simulation model when we were to check our proposed solutions, we could see from 

the results that the model was not sensitive to the changes in staffing requirement. It 

could be partly because the model was validated for a deterministic arrival rate and by 

adding the randomness generated from employing a time varying distribution 

function it does not show the expected output. We have not examined the effect of 
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randomness of the arrival rate on the results of the model and have not validated it 

under such conditions. 

3.  Given the argument in number 2, the scenario testing done on the validated model 

with deterministic arrival also does not reflect much sensitivity to changes in merely a 

single resource capacity (e.g. adding one or two doctors in an eight-hour shift). 

According to the results presented in Table  5-8, multiple resource changes of 

different types would best affect the output of the simulation model. This could be 

because no single resource can be identified as a bottleneck. Hence, the system would 

not stand to benefit from increasing one of them without changing the others. That 

could justify the unexpected results we had received from the changing just the 

number of physicians in the system. 

5.8 Summary 

This chapter discussed the construction of a network of three nodes that modelled the ED. 

We estimated the arrival rate to each node from data and with the help of the queueing 

theory rules. Then we applied the proper approximation method to this model and 

determined the number of servers in various planning periods with different lengths. We 

applied this solution to the detailed simulation of the ED as well as the three-node 

simulation. The output of latter was similar to the queueing network. However, we failed 

to confirm it with the detailed simulation model due to a number of reasons that we 

discussed in this chapter. Nonetheless, the queueing model solution can be utilized by the 

managers of the ED as estimation for the number of staff required under the surge 

circumstance. It also can be used as an input to a scheduling routine to determine 

appropriate shifts for the staff at ED. 
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6: CONCLUSION 

A major challenge in emergency departments is to determine the number of 

servers required to satisfy the demand, especially when a surge such as a mass casualty 

incident occurs. Queueing theory has long been employed to assist decision making 

regarding setting the staffing requirement to cope with the variation in the arrival rate. 

Specifically in the cases with highly varying arrival rate, often nonstationary queueing 

models would be developed. Since some of the nonstationary queueing models built to 

represent these complex systems are too complicated and are intractable mathematically, 

other approaches such as simulation and approximation methods are applied to analyse 

them. 

In this work, we constructed a queueing model that captured the variation in 

arrival rates, simulating a surge situation, and set the staffing requirement according to 

these variations so that a target level of service was maintained. For evaluating the 

performance of such a model, an exact numerical solution was found in literature. This 

method, however, was limited to certain special conditions and was not applicable for 

many other queueing models. Therefore, we developed a simulation model with time 

varying arrival rate as a baseline, in order to compare and evaluate different queueing 

models for modeling the surge situation. This simulation model was validated with exact 

numerical solutions for 162 different model variants with a wide range of conditions. The 

validation not only gave us a credible simulation model, it also shed some lights on the 

type and condition of queueing models. 
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Then we utilized the validated simulation model for comparing the performance 

of approximation methods. We ran the 324 scenarios for each approximation method 

both on simulation and queueing model and identified the one that better suggested less 

number of staff and predicted more accurate estimates of the performance measure. 

At the end, a three-node network of queueing models was constructed. It was 

shown that the result of the queueing network confirmed the related simulation model 

output. The best approximation method chosen previously was applied to this network 

inputting the actual arrival rate estimated from data of the real ED at the event of surge. 

We omitted the simplifying assumption of exponentiality of the service time distributions 

and used a general distribution with specified mean and variance. The queueing network 

then predicted the staff level required for each node (unit) and the performance resulted 

from employing them.  

As a part of a practical project, a detailed discrete event simulation model of the 

ED at hospital had been developed and validated based on the historical data from the 

actual patients’ visits. As the final step, we fed the staff number suggested by the 

queueing network to this simulation model. However, we failed to confirm the effect of 

these changes on this simulation model due to following reason. 

- Incompatibility of the queueing model with the simulation model in terms of the 

incorporated level of details from the actual system 

- Insensitivity of the simulation model to the single resource changes 
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- Determinism built in the simulation model as a result of employing the exact 

actual arrival times of the patients from the historical data, as opposed to the 

randomness of the queueing model caused by its time varying Poisson arrival rate 

6.1 Contributions 

The main contributions of this thesis can be categorized from theoretical and 

practical perspectives as below. 

6.1.1 Theoretical Contributions 

 It is the first time that the nonstationary queueing models have been 

utilized to analyse the impact of a surge generating event on an emergency 

department.  

 The three-node network queueing model proposed in this work captures 

more details of the real system compared to the previous single 

nonstationary queueing models developed in literature for this purpose.  

 The previous models assumed the ED with exponential service times. 

Whilst, in this work we considered a network of queueing models with 

general service time distributions.  

 A time-varying simulation model was developed to replace the exact 

method (when it was not applicable) and utilized for comparing the 

approximation methods on more complex queueing models, based on 

which the best approximation method has been identified for surge 

modeling. 
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6.1.2 Practical Contributions 

In addition to theoretical contributions, this work also bears practical merits, listed 

as follows: 

 The detailed simulation model developed for ED of St. Pauls’ Hospital has 

been employed for studying the effects of changes in the ED. This model 

has been applied by the managers of the ED to run many scenarios to 

answer what if questions. In addition, many alternative solutions were 

proposed for reducing patients waiting time based on the output of the 

simulation model for ED of St. Paul’s hospital.  

 Both queueing model and simulation have been applied to model surge in 

support of staff planning. The pros and cons of both methods are 

compared, which should be of help for future research and practice. Table 

6-1 below presents a comparison between these models. 
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Table  6-1 Comparison of the queueing and simulation models 

 Pros Cons 

Queueing model 

- Easy to construct 

- Fast to test alternatives 

- Provides good estimates 

- Difficult to solve 
analytically 

- Difficult to understand and 
grasp for practitioners  

- Assumptions are hard to 
validate 

- Very abstract; hard to 
capture details and 
flexibilities in the actual 
system 

Simulation model 

- Captures many details and 
flexibilities of the actual 
system  

- Versatile and can model 
virtually any system  

- Easy to analyse the output 

 

- Time consuming to 
construct the model  

- Difficult to validate the 
model 

- Time consuming for 
experimenting with 
alternative solutions 

- Hard to define various 
measures of performance 

 

6.2 Future work 

Although we tried to capture more details of the system in our queueing model 

than the previous models in literature, there is a still a long way before we could fully 

represent all the important features of the actual system. The next step could be to 

incorporate more details in to this queueing model to better reflect reality. Of the most 

important features that could have a significant impact if employed, we can name,  

 Abandonment 
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 Multiple servers type in each unit 

 Priority in service 

In addition, in order to be able to test the proposed solution of the queueing model 

we could modify the detailed simulation model and validate it with stochastic arrival rate. 

We could also record time varying performance measure in the simulation model rather 

than work with the averages over the total simulation time. This would help to study the 

effect of changes in staffing better.  
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APPENDICES 

Table A- 1 Sample of the experiment done for comparing different approximation methods 

µ α 
R
A 

λ 
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1 
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2 
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1 

S-
Pd
2 
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Pd
3 
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4 
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1 

Q-
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2 
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3 

Q-
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4 

Time
Ave 
Err 
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Err 

2 
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1 
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4 
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0.1
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44 

0.1
41 

0.2
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48 
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89 
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48 

0.163 0.264 
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2 
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4 1 4 4 4 4 
0.1
89 

0.1
99 

0.1
44 

0.1
41 

0.2
01 

0.2
01 

0.1
48 

0.1
48 

0.038 0.063 

0.
8 

8 1 6 6 6 6 
0.3
04 

0.3
51 

0.2
40 

0.2
14 

0.3
38 

0.3
38 

0.2
26 

0.2
26 

0.066 0.112 

1.
6 

1
6 

1 
1
1 

1
1 

1
0 

1
0 

0.2
93 

0.3
43 

0.3
38 

0.2
88 

0.3
38 

0.3
38 

0.3
11 

0.3
11 

0.082 0.153 

4 

0.
8 

8 2 4 4 4 4 
0.2
21 

0.2
31 

0.2
01 

0.1
78 

0.2
01 

0.2
01 

0.1
48 

0.1
48 

0.163 0.264 

1.
6 

1
6 

2 6 6 6 6 
0.3
21 

0.3
62 

0.2
81 

0.2
52 

0.3
38 

0.3
38 

0.2
26 

0.2
26 

0.104 0.195 

Various scenarios that are run for each approximation method are presented in the first five columns, the 
number of servers in each planning period and the probability of delay estimated with simulation and 
queueing model are presented in the following columns respectively. The last two columns represent the 
time average and maximum error . 
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Table A- 2 A sample of the data collected from detailed simulation model before and after applying 
number of staff suggested from queueing model. Times are in hours. 

Before applying suggested staffing After applying suggested 
staffing 

LOS Triage Fast 
Track 

RAZ  Acute LOS Triage Fast 
Track 

RAZ  Acute

0.5440 0.2402 0.3382 0.0016 0.2252 0.5468 0.2402 0.3382 0.0016 0.0033
1.3421 0.3382 0.3209 1.2565 3.8897 1.3421 0.3382 0.3246 1.2565 0.0050
1.4387 0.3209 0.2402 1.6577 0.9867 1.8282 0.3209 0.2447 0.0106 0.0664
2.2351 0.0016 0.2645 0.0051 0.3306 1.9433 0.0016 0.2483 0.0151 0.9410
2.0612 0.2645 0.2839 0.0027 0.3436 2.2124 0.2645 0.2738 0.0046 0.3486
2.4960 1.2565 0.2141 0.0013 0.8223 0.6430 1.2565 0.2566 0.0014 0.7343
2.3452 0.2839 0.2150 0.0029 0.8415 0.9022 0.2839 0.3196 0.0024 0.8356
2.2243 0.2150 0.3301 0.0013 1.1117 2.4517 0.2150 0.2331 0.0001 1.1786
2.6480 0.2141 0.2411 0.9183 0.4984 0.5814 0.2141 0.2357 0.9193 0.4019
0.2958 0.2529 0.2388 0.2159 0.2700 4.9629 0.2529 0.2480 0.1934 0.2711
. . . . . . . . . . 
. . . . . . . . . . 
1.4372 0.3392 0.3392 1.0700 0.8707 1.4307 0.3420 0.3421 0.8195 0.4578
LOS (Length of stay of the patients in the ED), other columns are the time that it takes a patients to see a 
provider in the named unit. The last row is the average of the entire column which is not presented here. 
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