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Abstract

Societal perception of homelessness has shifted from it being an individual to a social prob-

lem, reflected in the changing interpretation of “home:” from ‘house’ to ‘place of belonging.’

Although appropriate, the broadened definition poses a challenge in measuring the outcome

of homeless outreach: provision of housing can be counted whereas provision of belonging

cannot.

Data collected by the Hope for Freedom Society, a homeless outreach organisation in

the Tri Cities, were explored in search for evidence of social interaction and belonging. We

anonymised the provided raw text activity logs and extracted a network containing clients,

locations and dates. Projections of this network were then used to examine community

structure in the clients’ social network and activity space, using statistical models and

modularity-based community finding algorithms.

Despite the inclusion of interaction information, personal information, locations and

dates, we were unable to find evidence of social interaction in the data.
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“If men define situations as real, they are real in their consequences.”

William Isaac Thomas
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Chapter 1

Introduction

Homelessness is a paradox of the present time. It seems that, with global prosperity in-

creasing, so too is homelessness. National governments are rising to the challenge and have

set targets to reduce or even end homelessness, for example in England, The Netherlands,

Scotland and the United States of America [17, 59, 14, 44, resp.]. Also the Canadian gov-

ernment has made homelessness a focal point of policy through its National Homelessness

Initiative (NHI), announced on December 17, 1999 [18, 25]. Its goal was to reduce and pre-

vent homelessness across Canada by helping communities address local homelessness issues

through the creation of Sustaining Community Partnership Initiatives (SCPIs).

Greater Vancouver was one of the initial 61 communities with “demonstrated homeless-

ness problems” [26] in which an SCPI was set up [5]. The Regional Steering Committee on

Homelessness (RSCH), a key player in the SCPI for Greater Vancouver, set a more ambi-

tious goal than its granting programme, the NHI, as it aimed to “eliminate homelessness

in Greater Vancouver” [55]. Ten years later, despite the continued effort and support from

the federal government [27], Greater Vancouver continues to face a serious homeless crisis:

the results of regional homeless counts (conducted in 2002, 2005, 2008 and 2011) show a

steady increase in the number of people who are homeless [31, 56, 11, 13]. The latest official

estimate of the total number of homeless in Greater Vancouver is from the March 2008

homeless count: at that time, 2,660 homeless were counted. [56].

1



2 CHAPTER 1. INTRODUCTION

1.1 Changing ‘Homelessness’

“Homelessness is a broad term that can encompass a range of housing conditions.

These can be understood on a continuum of types of shelter:

• At one end absolute homelessness is a narrow concept that includes only

those living on the streets or in emergency shelters.

• Hidden or concealed homelessness is in the middle of the continuum. These

include people without place of their own who live in a car, with family or

friends, or in a long-term institution.

• At the other end of the continuum, relative homelessness is a broad category

that includes those who are housed but who reside in substandard shelter

and/or who may be at risk of losing their homes” [15]

This thesis, and the data used in it, concerns itself with absolute homelessness only.

The interpretation of what it means to be ‘homeless’, and consequently the approaches

taken to address homelessness, has changed markedly over the past 20 years [59]. Home-

lessness is now generally viewed as a social problem rather than just a personal one, a

social perspective which is reflected well in the changing meaning of “home,” from ‘house’

to ‘place of belonging’. In my native language, Dutch, this shift has been even more explicit:

‘dakloze’ (‘roof-less’) became ‘thuisloze’ (‘home-less’) within my lifetime. This perspective

presents a difficulty in developing programmes that aim to reduce homelessness: it is easier

to describe the process of housing provision for an individual as an entity without context

than it is to describe the process of a social individual finding a place of belonging. Yet the

two are intricately linked: social support is an important factor in the long-term success of

housing provision, and vice versa [59].

Social support is usually referred to as a ‘social network,’ and in the context of homeless-

ness this buzz word [48] is used for a variety of other quite distinct concepts. In outreach

and social work, a homeless person’s social network consists of those people with whom

this person had a positive relationship before becoming homeless, or those with whom (s)he

might develop a relationship that would help him/her overcome homelessness [36, 59, 62].

The few cases in which relationships between homeless are studied refer to them as ‘com-

pany’ or ‘community’ rather than ‘social network,’ and conclude that these relationships

are a significant factor in maintaining homelessness [21, 47]. In health and criminology, a



1.1. CHANGING ‘HOMELESSNESS’ 3

homeless person’s social network consists of those other homeless with whom this person

has a relationship [16, 32, 54, 67]. The effect of these relationships is sometimes positive, for

example in reducing the incidence of depression [67], and sometimes negative, for example

in encouraging deviant behaviour [32]. From these studies, no definite conclusion can be

drawn about the net effect of social relations among homeless on homelessness.

Virtually all studies mentioned here approach social networks among homeless from a

qualitative point of view. In this thesis, we take a quantitative point of view in studying

data collected by the Hope for Freedom Society, a homeless outreach organisation that

operates in the Tri Cities area (Coquitlam, Port Coquitlam and Port Moody) of the Greater

Vancouver Metropolitan Area, British Columbia (B.C.), Canada. The Hope for Freedom

Society is first and foremost a drug rehabilitation organisation that runs two recovery centres

(Resurrection House and Glory House). Its outreach activities with on-the-street homeless

started in 2006, when it was approached by representatives from the B.C. Ministry for

Employment and Income Assistance (MEIA) to initiate a 6 month pilot project to establish

a connection with the homeless population in the Tri Cities and assess what could be done to

help homeless individuals overcome homelessness. After succesful completion of the initial

pilot project the Hope for Freedom Society continued its work with funding from B.C.

Housing, and the data collected in the following two years are the subject of this thesis.

We extracted information about social interaction from the data (chapter 2), and used

these data to investigate social interaction among the Hope for Freedom Society’s clients to

shed light on some questions raised in earlier research, and by the data set itself:

• in focus group discussions with homeless drug addicts in the Vancouver Downtown

East Side (DTES) [68], participants said drug preferences divided the community into

several tightly-knit “cliques.”

– is this also the case in our study area (the Tri Cities)?

– can we find strong sub-communities? (section 3)

– if so, do they align with drug preference, or any other personal traits? (chapter 4)

The Hope for Freedom Society suggests that that in the Tri Cities, there seems

to be a tight-knit group of long-term homeless [66].

• reference [47] states that social relationships among homeless are a significant factor

in maintaining homelessness. If this is so,
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– is the outreach organisation (unintentionally) strengthening these relationships

by providing venues for interaction?

– can we find evidence for positive social interactions? (section 5.2)

• can we extract actionable insights from the data, that the outreach organisation could

use to improve their outreach?

The connecting thread of our analysis is the search for a principled way of determining

the strength of a relationship between two individuals, based on interaction (chapter 3),

personal characteristics (chapter 4) and personal activity spaces (chapter 5).



Chapter 2

Data Extraction

The data set used in this study was collected over a period of 2 years as part of the outreach

activities of the Hope for Freedom Society in the Tri Cities area of B.C., Canada, an area

consisting of three municipalities (Coquitlam, Port Coquitlam and Port Moody) with a total

population of approximately 195,000 [9]. The Hope for Freedom Society has approximately

120 homeless clients at any given point in time [64, 65, 66], and it maintains detailed logs

of its activities and its clients. Each individual with whom the outreach workers are in

sustained contact has a personal file in which the client’s information is recorded. These

personal profiles may contain:1

• name (and nickname);

• date of birth (or age);

• place of origin;

• appearance (sex, height, weight, eye colour, hair colour, tattoos and other features);

• government IDs (Social Insurance Number, Personal Health Number and Ministry of

Employment and Income Assistance number);

• drug of choice;

• job skills;

1the presence and accuracy of information in a person’s file depend on their ability and willingness to
provide it.

5
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• how long this person has been in the region;

• how long this person has been homeless; and

• a log of interactions with this person.

The Hope for Freedom Society uses this information to account for how it spends its

funding, and to provide better services for its clients. Beyond the day-to-day provision of

services, it also wants the information it collects to be used to further research into the

factors that influence (aspects of) homelessness in the Tri Cities [64, 65], and has kindly

provided access to their data for this thesis.

Our main focus in this thesis will be on the social network as captured by the Hope for

Freedom Society’s log of interactions with each person.2 Each interaction log contains a

wealth of information about the interaction between outreach workers and the person the

file is associated with, but it also registers co-occurrence of, and interactions between, clients

of the Hope for Freedom Society.

The first step in defining a network based on these data is to establish where to draw

the boundary [34], determining what to include and what not to include. Each observation

mentions individuals and locations, so these are candidates for inclusion. Not all individuals

mentioned should be represented as vertices, however. For example, if an individual is

reported to be convinced that he is John Lennon, that should not mean John Lennon is

included in the network. Less hypothetically, it is unclear if mention of a client’s sister

should include her in the network. Two ‘natural’ boundaries may be conceived for the

network: the Hope for Freedom Society’s database forms an ‘imposed’ boundary on the

network, delineating exactly those actors who are clients of the Hope for Freedom Society

and about whom some personal information is known, but the logs contain approximately

twice as many actors as are in the database, so the logs themselves could also be taken as

the boundary of the network. We decide this trade-off between data quality and network

(sample) size in favour of data quality, keeping only those actors for whom the Hope for

Freedom Society has a client file. This limits our ability to investigate the effect of social

support from non-homeless but allows us to incorporate personal information for every actor.

2From a methodological point of view, the information in these logs was collected by participant observers
(the outreach workers) who follow a regular schedule of observations (presence at locations in the Tri Cities)
supplemented by random observations (mostly personal service and emergency calls).
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2.1 Privacy

These data are privacy-sensitive. Instead of stating this as a factoid, let us discuss the matter

briefly, because privacy is a much misunderstood in the public domain [10]. The narrative of

privacy often over-emphasises the need to restrict access to individual pieces of information,

and neglects the importance of linkages between pieces of information (i.e. the semantic web

in which they are embedded). For example, the number 301088019 is not privacy-sensitive

on its own, nor is the number 922670095. Both these 9-digit numbers are numbers without

any intrinsic meaning. When linked with the additional piece of information that the first is

an SFU Student ID number, and the second a Canadian Social Insurance Number (SIN), the

latter becomes potentially more privacy-sensitive than the former. This is only potentially

so because although knowledge about which SFU ID and SIN numbers actually exist is not

in the public domain, neither can be connected to any individual by the information given

so far. A link between those two pieces information, e.g. that they belong to the same

individual (they do not), is privacy-sensitive, i.e. more identifying than the information

offered by both numbers separately: the first couple of digits of the SIN indicate that it

concerns a non-resident, and the first couple of digits of the SFU ID indicate that this

SFU student started their academic career at SFU after 2006. The connection reduces the

possible individuals to which this information belongs to “international SFU students who

started their academic career at SFU after 2006,” and the SIN number possibly gives some

additional indication about the date of entry into Canada (SIN issuance date).

Much of the personal information that the Hope for Freedom Society collects is far

too privacy-sensitive to be looked at. Information on appearance and government IDs

have been discarded immediately. Other, more useful information has been anonymised.

Anonymisation in this context demands more than mere removal of personal identifiers; it

demands that no conjunction of information about an individual would allow association of

any file with an individual.

Two examples will make clear exactly how demanding this constraint is. Suppose there

is only one person in the data set who is over 75 years of age. Clearly, the ages would have

to be categorised to prevent this from being identifiable in the data. One could, for example,

categorise age as <30, 30–50 and >50. Now suppose there was only one woman in the data

set who is over 50 years of age. She would still be identifiable within the data set with just

these two pieces of information. This can be carried through to all data fields in the set,
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Variable (N = 256) # missing min max median X̄ sX

Age (yrs) 17 8 73 42 40 9.8
Time Homeless (m) 40 1 216 8.5 16.5∗ 22∗

Time in the Tri Cities(yrs) 172 1/12 45 3 7.4 10.3

∗ two outliers (12 and 18 years) affect these statistics. Without these outliers,
the mean would be 15 and the standard deviation 15.4.

Table 2.1: Descriptive statistics for continuous variables. None of the variables are normally
distributed (p≪ 10−10 Kolgomorov-Smirnov)

and the resulting requirement is then that no element of the refinement of all observable

categorisations contains a ‘small’ group of individuals. Unfortunately, this refinement is

subject to a combinatorial explosion, which is extremely problematic when the number of

records is small, as is the case for this data set (N = 256).

The data fields that could (and should) be so categorised are:

1. Sex,

2. Drug of Choice,

3. Job Skills,

4. Place of Origin,

5. Age,

6. how long this person has been in the region (Time in the Tri Cities), and

7. how long this person has been homeless (Length of Homelessness).

Reducing each of these to just a binary (Sex and Job Skills already are) would still

produce 128 refined categories, with in expectation 2 individuals per category. Information

provided by the Hope for Freedom Society suggests that 3 and 4 may not be relevant for our

purposes. Furthermore, 6 is missing in 67.6% of the cases. At risk of discarding valuable

information, but in the interest of being able to work with this data at all, we only retain

the following categorised variables:

• Sex (male, female, unknown)

• Drug of Choice (alcohol, heroine, cocaine, crystal meth, pot, unknown)
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Figure 2.1: Histogram plots of continuous variables
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• Age (<33 years, 33–40 years, 40–47 years, >47 years, unknown)

• Length of Homelessness (<6 months, 6–15 months, >15 months, unknown)

The small number of observations in the Drug of Choice category “pot” (see 2.2) suggests

that it needs to be categorised as “unknown”. It is worth noting that both Length of

Homelessness and Drug of Choice are only identifying within this data set, as neither are

observable or recorded elsewhere. Moreover, an actor’s drug of choice records a preference.

Actual drug use is much less clearly categorised, to the point that most clients of the Hope

for Freedom Society are generalist poly-drug users [66]. Drug of Choice is retained, however,

because it may be indicative of other, unrecorded and/or unobservable information about

clients, such as their social behaviour (e.g. cocaine addicts may be more socially isolated

due to drug-related paranoia [57, 66]). In the end, we are left with 8 observable categories,

the refinement of Age and Sex.

Each of the data fields mentioned on page 8 was extracted from the data separately, and

permuted randomly to destroy association with the original data set and other variables

to compute the descriptive statistics listed in 2.1 (continuous variables; see also 2.1) and

2.2 (categorical and categorised variables; see also 2.2). For continuous variables, standard

descriptive statistics are reported; for categorical variables, frequency counts as well as

statistics on the extracted social interactions are reported. These statistics on extracted

social interactions will be discussed in 2.2.1.

Interaction Logs

With the anonymisation of personal information done, we now turn to the more challenging

task of anonymising the raw text data of the interaction logs. We could not read these logs

due to privacy constraints, so an alternative approach was required. The actual textual

information is not important for our purposes, and neither is it for anonymisation. It

suffices that those words and other strings that identify individuals or locations be marked

and replaced by a random but consistent identifier. This can be done by looking at each

word separately, one at a time. The words in the logs have meaning only conditional upon

other words, i.e. actual words are privacy-sensitive only in context, as argued on page 7:

the word “hoegaerdt” by itself, for example, is not associated with anyone. It may or may

not be a name, and without the cue of capitalisation it is hard to tell.
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Overall N Nobs N∗obs
N∗

obs/Nobs

256 (100%) 11,105 (100%) 10,082 90.79%

Sex N Nobs N∗obs
N∗

obs/Nobs

Female 39 (15.23%) 2097 (18.88%) 1936 92.32%
Male 99 (38.67%) 5465 (49.21%) 4992 91.34%
Unknown 118 (46.09%) 3543 (31.90%) 3514 89.02%

Drug of Choice N Nobs N∗obs
N∗

obs/Nobs

Alcohol 21 (8.20%) 936 (8.43%) 745 79.59%
Cocaine 45 (17.58%) 3013 (27.13%) 2910 96.58%
Crystal Meth 21 (8.20%) 1687 (15.19%) 1458 86.43%
Heroine 18 (7.04%) 786 (7.08%) 716 91.09%
Pot 6 (2.34%)
Unknown 145 (56.64%) 4683 (42.17%) 4253 90.82%

Job Skills N Nobs N∗obs
N∗

obs/Nobs

Has skills 63 (24.61%)
Does not have skills 193 (75.39%)

Age N Nobs N∗obs
N∗

obs/Nobs

< 33 years 57 (22.27%) 2237 (20.14%) 2146 95.93%
33–40 years 53 (20.70%) 3014 (27.14%) 2764 91.71%
40–47 years 62 (24.22%) 2330 (20.98%) 1793 76.95%
> 47 years 67 (26.17%) 3197 (28.79%) 3071 96.06%
Unknown 17 (6.64%) 327 (2.94%) 308 94.19%

Length of Homelessness N Nobs N∗obs
N∗

obs/Nobs

< 6 months 73 (28.52%) 1912 (17.22%) 1741 91.06%
6–15 months 83 (32.42%) 3106 (27.97%) 2697 86.83%
> 15 months 60 (23.44%) 4621 (41.61%) 4216 91.24%
Unknown 40 (15.63%) 1466 (13.20%) 1428 97.41%

Time in the Tri Cities N Nobs N∗obs
N∗

obs/Nobs

< 2 years 24 (9.38%)
≥ 2 years 60 (23.44%)
Unknown 172 (67.19%)

Table 2.2: Frequency counts for categorical and categorised personal attributes, with total
number of observations (Nobs), of which most are unambiguous (N∗obs; see 2.2.1). N

∗
obs counts

the number of times we could unambiguously assign an observation of a name, for example,
to an actor who prefers cocaine.
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M
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23.4%

missing
67.6%

(f) Time in the Tri Cities (categorised)

Figure 2.2: Categorical variables and categorised continuous variables
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In this way, we anonymised these data without looking at the actual text, but by instead

extracting a list of individual unique words (6283 in all, as opposed to 110,242 in the

original text), sorted alphabetically to break syntactic relations. The words were stripped

of numbers, apostrophes, punctuation, capitalisation and any other semantics beyond the

word level. We then categorised unique words as either names (privacy-sensitive), locations

or irrelevant words (not privacy-sensitive). Similar names were grouped and replaced in the

text by a representative from the group they belonged to, for example “John,” “jhon” and

“Johnm” were all replaced by “john”. Finally, the list of names was used to hash occurrences

of these names in the logs to unique random numerical values.

We note that this approach may well scale because the number of unique words in a text

increases logarithmically with the total length of the text [6, 38, 50].

2.2 Social Network

After anonymisation, and with the word lists (locations, names, other) in hand, the logs

could readily be converted into hypergraphs representing several (social) networks.

Before proceeding, let us introduce some notation and definitions. Readers who are

unfamiliar with social network analysis may refer to Appendix B for an introduction into

the use of hypergraphs for social network analysis. See also reference [63] for a similar

conceptual model.

Definition 2.2.1. A hypergraph H(V,E) consists of a set of n vertices V and a set of m

hyperedges E . A vertex vi ∈ V represent an entity, e.g. an actor (client), a name or a location.

A hyperedge εi ∈ E , εi ⊂ V represents a connection, e.g. an interaction (observation) or a

profile, between one or more entities, and may occur multiple times (e.g. the same group of

people observed at different dates).

Because we will be using several different hypergraphs in our analyses, denote xHy the

hypergraph with x as edges and y as vertices, e.g. obsHloc is a hypergraph of observations

(as hyperedges) containing location names (as vertices) and profHname is a hypergraph of

client profiles (as hyperedges) containing names (as vertices). This notation derives from

the computational representation of a hypergraph as an incidence matrix I:

I = [i]m×n , iij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
True if vj ∈ εi

False otherwise
(2.1)
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in which each row represents a hyperedge, and each column represents a vertex, so it is the

function table of the relation “vertex j belongs to edge i”. As with H, let xI
y denote the

incidence matrix of the hypergraph with x as edges and y as vertices.

From a hypergraph one can derive two ‘projections,’ graphs that represent bilateral

association between vertices or edges.

Definition 2.2.2. A graph G(V,E) that is a vertex projection of a hypergraph H(V,E)
consists of the set of vertices V of H and a set of edges E. Two vertices are connected by

an edge eij = eji = {vi, vj} ∈ E in G if they are connected by a hyperedge in H.

A hyperedge projection G(E ,E) is similar: its ‘vertices’ are the hyperedges of the hy-

pergraph, and two hyperedges are connected if they share a vertex.

Similar to H, let xG
y denote the graph with y as vertices and sharing of x as edges,

e.g. locG
obs is a graph of observations connected when they mention the same location. It

is the hyperedge projection of obsHloc.

A graph is represented computationally as an n × n adjacency matrix A. Elements aij

in the adjacency matrix of the vertex projection of a hypergraph H(V,E) count the number

of hyperedges (ε) in which the two vertices vi and vj occur together

A = [a]n×n , aij = ∣{ε ∈ E ∣ vi, vj ∈ ε}∣ (2.2)

Similarly, for the hyperedge projection, elements aij count the number of vertices the two

hyperedges εi and εj share:

A = [a]m×m , aij = ∣εi ∩ εj ∣
As with G, let xA

y denote the adjacency matrix of the graph with y as vertices and

sharing of x as edges. The relationship between xA
y and xI

y, and yA
x and xI

y is simple

(using True = 1 and False = 0):

xA
y = (xIy)T xI

y (2.3a)

yA
x = xI

y (xIy)T (2.3b)

2.2.1 Network Extraction

We will use several hypergraphs to discuss separate aspects of the data: names mentioned in

observations (obsHname), locations mentioned in observations (obsHloc) and names mentioned
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in personal profiles (profHname) (see also Table 2.3). These, and the dates of observation

and profile in the log of which the observation was recorded, could be extracted straight-

forwardly by a one-pass scan of the observations, because observations are well delimited in

the interaction log.

An example (hypothetical) interaction log could look like

( Ali ) 01/17/07 Met Peter and Mary near Coquitlam River. Petres bene clean

now for two weeeks, he says. His sister Shaema has been pushin ghim to go for

recovery.

{ Kees ] 10/05/06 At PoCo City Hall, gave coffee and snacks.

All observations follow the same pattern: they start with some descriptive information,

a date and the name of an outreach worker in brackets. Therefore, a one-pass scan of

these observations can correctly determine the boundaries between observations and identify

(using the word lists) client names, staff names, the observation date and locations:

( ⟨⟨N24⟩⟩ ) 01/17/07 Met ⟨⟨N184⟩⟩ and ⟨⟨N80⟩⟩ near ⟨⟨L136⟩⟩ ⟨⟨L24⟩⟩. ⟨⟨N184⟩⟩
bene clean now for two weeeks, he says. His sister ⟨⟨N444⟩⟩ has been pushin ghim

to go for recovery.

{ ⟨⟨N4⟩⟩ ] 10/05/06 At ⟨⟨L2⟩⟩ ⟨⟨L96⟩⟩ Hall, gave coffee and snacks.

Note that our approach to anonymisation and relevant word identification is not affected

by mild misspellings (provided diligence in anonymising), but prohibits identification of

words that are locational only in context (e.g. “Hall”). Staff and client names were hashed

by the same process, as clients and staff may have the same name (they do not), but are

stored separately to retain as much information as can be extracted.

It is crucial that the aforementioned hypergraphs accurately represent the data, so that

they can form a solid basis for the construction of two additional hypergraphs, associating

observations with profiles (obsHprof ; the ‘true’ social network) and locations with profiles

(locHprof ). We now turn to the construction of obsHprof , which will then allow us to construct

locHprof by linking the association between observations and profiles to the association

between observations and locations:

locI
prof = obsI

locT
obsI

prof ,

so that a location name is connected to a profile if that location has been visited by the

person the profile is associated with (that person and location were mentioned together in

one observation).
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Notation Hyperedges Vertices semantics

obsHname Observations Names each observation joins names of clients
who are related in some way

obsHloc Observations Locations observations may mention one (or some-
times multiple) locations

profHname Profiles Names each profile contains a first name, a last
name (20 missing) and possibly a nick-
name (in 38 cases)

obsHprof Observations Profiles the actual social network: co-observation
of clients

profHloc Profiles Locations a geographical network of clients at loca-
tions

Table 2.3: Hypergraphs extracted (upper 3) and derived (lower 2) from the data

Construction of obsHprof In linking observations to profiles (constructing obsHprof ) we

made use of all of the already determined links between observations and profiles. For

example, the second observation of the hypothetical example on the preceding page does

not have any client name in it, but it is clearly referring to the client in whose profile the

observation was recorded, and will be linked to the file in the log of which it occurred.

Conversely, this reasoning was used to remove from the observation those names associated

with the profiles it was thus unambiguously linked to (“Peter” in the hypothetical example

on the previous page), resolving 0.5% of connections between names and observations. Next,

unique first and last names were used to assign observations to the profiles these names

belonged to, resolving most connections (70.9%). Names that did not appear in any profile

(individuals who were not in sustained contact with the Hope for Freedom Society; see on

page 5) were removed from the observations altogether (16.43%). There was no overlap

between the outreach workers’ and clients’ names.

After these matchings, 40 names and 12.2% of connections in obsHname were left un-

resolved (not assigned to a person’s profile). These were cases in which multiple people

(profiles) had the same name and the association was not resolved by the previous match-

ing. In 2.2 on page 11, we have broken down the total number of observations (Nobs) and

the number of unambiguous observations of individuals (N∗obs) by personal characteristics.

Drug of Choice category ‘Alcohol’ and Age category ‘40–47 years’ stand out as having lower
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percentages of unambiguous observations, which is likely due to two individuals with many

ambiguous observations (see also Figure 2.3). Note that Table 2.2 was constructed after all

observations had been resolved in order to make the division by personal attributes, and that

the overall percentage of ambiguous observations of people (N∗obs/Nobs) is therefore different

from the 12.2% reported here, which is for ambiguous observations of names.

We formulated the remaining disambiguation task (e.g. “given several observations of a

‘John,’ which ones refer to John Doe, and which to John Smith?”) as a clustering problem:

every observation is a point in space, with coordinates {0,1} representing the absence or

presence of a name or person. The clusters in this many-dimensional space represent indi-

viduals. In applying this reasoning, we assumed that the group of people (other names) an

individual (name) occurs with can help determine who they are. This reasoning is deeply

embedded in folklore, for example in the hispanic proverb “Dime con quién andas, y te diré

quién eres” [Tell me who you walk with, and I will tell you who you are], and we can actually

verify it, too.

Most observations of persons with an ambiguous name are not ambiguous. A name

may occur in multiple profiles, and therefore be an ambiguous name, but there are usually

many more unambiguous observations of the people this name may be associated with (see

Figure 2.3). On average, 76.3% of observations are unambiguous, providing a substantial

ground truth to validate the clustering against.

We used this ground truth to select an appropriate clustering algorithm from those

available in MATLAB: Cluster-Data and K-Means. These algorithms represent two

conceptually different approaches to clustering: optimising boundary consistency (points

are close to some other point(s) in their cluster) or internal consistency (points are close

to the centre of their cluster), respectively. Each comes with a host of distance functions3

to make precise what ‘close’ means, and we compared all of them using our ground truth.

Cluster-Data consistently outperformed k-Means, although only by a narrow margin

(see Figure 2.4).

From among the distance measures, we selected the best, Pearson’s correlation coeffi-

cient [45, 53] to parameterise Cluster-Data with, so if X1 and X2 are observations (points

3Cluster-Data: Chebychev distance, cityblock (taxicab) distance, Cosine distance, euclidean distance,
Hamming distance, Jaccard coefficient, Mahalanobis distance, Minkowski distance, Pearson’s correlation,
Spearman rank correlation, and standardised euclidean distance
K-Means: cityblock (taxicab) distance, Cosine distance, Hamming distance, Pearson’s correlation and stan-
dardised euclidean distance
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Figure 2.3: Ambiguous observations of names v. unambiguous observations of the persons
this name could be associated with (used as training data and ground truth on the previous
page). Each bar represents one ambiguous name (e.g. ‘John’), with (in brackets) the
number of profiles containing this name. The lower bar represents the number of times this
name (‘John’) is observed but cannot be unambiguously assigned to a profile. The upper
bar represents the number of unambiguous observations of all individuals with this name
(Johns) in the data.
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Figure 2.4: Comparison of the two clustering algorithm available in MATLAB:
Cluster-Data and K-Means (average performance per distance measure)

in many-dimensional space), the distance between them is

rδ(X1,X2) = 1 − X1 − X̄1√
SSX1

⋅
X2 − X̄2√

SSX2

, SSX = (X − X̄) ⋅ (X − X̄) (2.4)

where X ⋅X = XTX denotes the dot product of X and itself, and the subscript δ indicates

that the formula has been adjusted to measure distance rather than similarity.

2.3 Descriptive Statistics

Only now it is possible to calculate descriptive statistics for the network. Some results

were already tabulated in Table 2.2, showing a tendency for individuals with missing per-

sonal information to be observed less frequently. The causation is likely reversed: personal

information in clients’ files is updated as outreach workers interact with them, and fewer

interactions simply provide less opportunity for completing the files. This apparent ten-

dency may, however, be the result of mere chance. An Analysis of Variance (ANOVA) failed

to reject the null hypothesis that groups were similar (p < 0.05) for all personal attributes

but Length of Homelessness, where short-term homeless (< 6 months) are observed less fre-

quently (p < 0.05) than long-term homeless (> 15 months; using Scheffé’s correction [58] for
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comparisons of multiple means), and the category ‘missing’ was not significantly different

from any other groups. The significant difference for Length of Homelessness is expected:

short-term homeless may not have been present since the Hope for Freedom Society started

recording (see also section 5 and Figure 5.1).

Global distributions of observation frequency and observation ‘size’ (in number of peo-

ple or number of locations) are reported in Figure 2.5. Several outliers (specified in the

figure captions) were omitted from the histogram plots to improve visual resolution. These

outliers in the number of observations mentioning a location name may be the result of mis-

classification in the anonymisation process. It is possible that a commonly occurring word

was mistakenly tagged as a location when it was not. Therefore, these location names were

removed from the data and will not be considered in further analyses. The outliers in the

number of observations containing a person’s name are not the result of misclassification:

both outlier names occur in a client’s profile (and only in that one profile). Consequently,

mentions of these names in observations are correctly interpreted as observations of the two

clients.

One more aspect of the data should be illuminated here: time (see Figure 2.6). The

observation density (i.e. number of observations per month) increases over time, as should

be expected with data going back to the very first month in which the Hope for Freedom

Society was active. The increase in observation size is likely in part due to the starting up

of some programmes in which larger groups of clients participate at the same time. It may,

however also be a result of data entry fatigue: several observations may be recorded as one

to avoid having to log multiple. The apparent dip in observation frequency in the summer

of 2008 could be seasonal but additional years of data would be required to establish if this

effect is structural. It likely is, since demand for services is quite weather-dependent [66],

and the Hope for Freedom Society also runs a number of winter-only programmes (e.g. the

Cold and Wet Weather Mat Programme [4]).

2.3.1 Network Properties

As described in 2.2 on page 14, several simple graphs can be derived from the hypergraphs

extracted here. Rather than treating all possible derived graphs, let us focus on the in-

teractions between people, the core of this thesis, and between locations, which will be of

use for chapter 5. In 2.5 on page 27 we list several statistics for four derived networks (see

Table 2.4). Below we briefly explain the statistics, for which we will use some additional
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Figure 2.5: Relation distributions (edge and vertex degrees) in the extracted hypergraphs
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Figure 2.6: Number of people mentioned in an observation over time, with fitted linear
regression line (R2 = 0.104, p < 10−10; see Equation 4.4)
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Notation A = Vertices semantics

obsG
prof

obsI
profT

obsI
prof Profiles ‘the’ social (interaction) network, in which

edges represent co-observation

locG
prof

profI
locT

profI
loc Profiles individuals connected by an edge visited

the same location, possibly at different
times

obsG
loc

obsI
locT

obsI
loc Locations a semantic web of location names, con-

necting location names that were men-
tioned in the same observation

profG
loc

profI
loc

profI
locT Locations an insight into the activity space of the

Hope for Freedom Society’s clients, con-
necting locations if they were visited by
the same person.

Table 2.4: Selected derived graphs, with semantics (using profI
loc = obsI

profT
obsI

loc; See
Table 2.2.1)

notation that will help write formulae concisely.

Definition 2.3.1. In a graph G(V,E), the neighbourhood Ni of a vertex vi consists of

those vertices vj that vi is connected to by an edge:

Ni = {vj ∈ V ∣ {vi, vj} ∈ E}
The size of vi’s neighbourhood is its degree d (vi).

Density The density (ρ) of a graph is a measure of how ‘full’ or densely connected a graph

is.

ρ =
m

(n
2
) (2.5)

Typically, social networks have a low density.

Distance

Distance in a graph is measured over paths between vertices.
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Definition 2.3.2. A path p, denoted vi↝ vj , (vi, vj ∈ V ), is a sequence of edges p =

({vi, vk1} ,{vk1 , vk2} , . . .{vkℓ , vj}) connecting two vertices that does not visit any vertex

more than once. The length of a path ℓ (p) counts the number of edges on the path. The

distance ℓ(i, j) between two vertices vi and vj is the length of the shortest path between

these two vertices:

ℓ(i, j) =min
p=vi↝vj

ℓ(p)
The distribution of path lengths in a graph is usually summarised using the distribution

of largest shortest path lengths from each vertex:

ℓk =
RRRRRRRRRRR{vi ∣max

j
ℓ(i, j) = k}RRRRRRRRRRR (2.6)

Perhaps due to the importance of this distribution in graph theory, its minimum and

maximum have been given special names: radius (rad) and diameter (�), respectively. These

are also reported in Table 2.5, together with the average ℓ̄

Connected Component Using the notion of paths, one can identify connected compo-

nents in a graph as those groups of vertices in which each vertex can reach each other via a

path. The number of vertices in the largest such component (ncc) is reported in Table 2.5.

In obsG
prof , our main object of analysis, the largest connected component is also the only

connected component, and the other vertices are isolated (see Figure 2.7).

Transitivity: Clustering Coefficient (γ)

The clustering coefficient or transitivity of a graph measures how much a person’s friends

are also friends among themselves. The local clustering coefficient for a vertex vi measures

the ‘realised potential’ of connections among neighbours of vi as the proportion of possible

connections ((d(vi)
2
)) that actually exist.

γi =
∣{e = {vj , vk} ∣ e ∈ E, vj , vk ∈ Ni}∣

(d (vi)
2
) (2.7)

Note that the similarity to Equation 2.5; the local clustering coefficient measures the density

of links among the neighbours of vi.
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Pajek

Figure 2.7: obsG
prof (20 isolated vertices omitted), diagrammed using the Kawada-Kamai

spring mass graph layout algorithm [33]
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The global clustering coefficient, the average local clustering coefficient over all vertices,

gives an indication of how tightly knit communities in the graph are:

γ =
3 × number of triangles

number of 2-paths
(2.8)

Centrality & Centralisation

Centrality is a measure of how important (central) an actor is in the network, and can be

defined in many ways. Centrality measures are usually used to rank vertices in the graph,

and analyse an intervention (e.g. removal) targetting the most central actors [20, 35, 63], but

they can also be used to describe balance in the network by computing the corresponding

centralisation, a single-number measure of the disparity between centrality of vertices [34].

The centrality of a vertex vi by centrality measure x is written as Cx(i). The corresponding
centralisation Cx is then the average disparity with respect to the largest centrality of any

vertex:

Cx =max
j
(Cx(j)) −

∑
i

Cx(i)
n

(2.9)

A high centralisation means that the distribution of vertex centralities is skewed, which is

an indication that there may be a few very central actors in the network.

A number of centrality measures have been defined [19]. We will use three of the most

common ones: degree, closeness and betweenness.

Degree Centrality assumes that the degree of an actor reflects their activity within the

network, and that more active actors are more central in the network:

Cd(i) = d (vi)
n − 1

(2.10)

This scales the degree to fall within [0,1], which is necessary for being able to compare

centralisations.

Closeness Centrality reflects how close an actor is to other actors in the network. It is

the inverse of the average distance from a vertex to all other vertices in the network.

Cℓ−1(i) = ⎛⎜⎜⎝
∑
j≠i

ℓ(i, j)
n − 1

⎞⎟⎟⎠
−1

(2.11)
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n ncc m ρ rad ℓ̄ � γ Cℓ−1 CB Cd

obsG
prof 256 236 3375 0.103 3 4.059 6 0.495 0.315 0.397 0.465

locG
prof 256 224 19172 0.587 2 2.170 3 0.865 0.196 0.112 0.282

obsG
loc 150 129 663 0.059 3 3.775 5 0.340 0.247 0.216 0.266

profG
loc 150 144 5057 0.453 2 2.076 3 0.703 0.256 0.336 0.473

Table 2.5: Statistics for selected derived networks

Actors that can ‘reach’ other actors in the network quickly are more central in the network,

assuming every increment in distance costs more time.

Betweenness Centrality reflects how much of a hub for shortest paths an actor is. It is

the proportion of all shortest paths that go through a vertex:

CB(i) = ∣{p = vj↝vk ∣ ℓ(p) = ℓ(j, k), vi ∈ p}∣
∣{p = vj↝ vk ∣ ℓ(p) = ℓ(j, k)}∣ (2.12)

where ℓ(p) = ℓ(j, k) says that “p is a shortest path between vi and vj ,” Actors that are on

shortest paths between many pairs of actors could moderate information that flows along

those paths, and may therefore be influential in the network.

Application to obsG
prof

The co-observation network (obsG
prof ) is not very dense, as would be expected from a social

network. The largest distance between any two vertices is 6, in keeping with the popular

belief that in a social network, any pair of people is separated by at most six degrees [69].

This is higher than one would expect from a graph with uniformly random connections

(rad = ℓ̄ = � = 3), but this can be explained in conjunction with the relatively high clustering

coefficient, and may be evidence of a core-periphery structure: as more connections are local

within the neighbourhoud of a vertex, fewer edges are available to make the long-distance

(non-local) connections that make paths short. All centralisations are quite high, indicating

that there may be a few very central individuals, or a core group of individuals. Betweenness

centralisation being slightly higher than closeness centralisation could be a point in favour

of a few very central individuals, but this may be a consequence of betweenness being 0 for

quite a few vertices (closeness never is for vertices in a connected component).
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Application to locG
prof

The co-location network (locG
prof ) encodes information about the overlap between the ac-

tivity spaces of actors, and this overlap is large indeed (58.7%). Still there is some evidence

of localisation, found in the large clustering coefficient, much larger than would be expected

from a graph with uniformly random connections (γ ≈ 0.587). This large clustering coeffi-

cient is likely in part a consequency of how locG
prof is constructed, connecting every pair of

actors who visit a particular location, effectively creating a large cluster for every location

(see Figure 3.1 on page 34).

Application to obsG
loc

The location association network (obsG
loc) is a semantic web of location names: locations

that are mentioned together in an observation are somehow related. This network is the most

sparse of the networks treated here, but still has a high clustering coefficient, suggesting that

some semantic grouping of locations may be possible. The high clustering coefficient may

in part be an artefact of the way obsHloc was constructed. For example, in the hypothetical

example given on page 15, “Poco City Hall” was converted to two separate locations: “⟨⟨L2⟩⟩
⟨⟨L96⟩⟩ Hall.” Three or more location names connected in this way may artificially increase

the clustering coefficient somewhat, but this does not harm the interpretation: these location

names are indeed highly semantically related. The distance distribution suggests that there

may be a few peripheral locations (ℓ = 5) that are only mentioned in special circumstances.

Application to profG
loc

The actor activity spaces, of which the joint structure is represented by profG
loc, are well-

connected. The low average distance indicates that information about events at one location

can spread geographically quite easily. With these small distances, it is not surprising that

the closeness centralisation is not very high. The higher betweenness and degree central-

isations suggest that there may be some geographical hubs that many actors frequent. It

may also reveal that a few locations are frequently visited by outreach workers, increasing

the number of observations at this location and thereby sampling more of the population

at this particular location.



Chapter 3

Interaction-Based Edge Weights

We are now in a position to investigate social interaction among the Hope for Freedom

Society’s clients. We would particularly like to identify groupings and important individuals.

• Finding communities within the population would allow the development of group-

specific strategies, and finding distinct parts within the joint activity space may help

find effective locations to do outreach. High clustering coefficients (γ) for the location-

based graphs suggest there is at least some local grouping, although they may also be

artifacts of high density (ρ).

• Important individuals might be targets for specific action, or could be utilised to spread

information among the population. The relatively high betweenness and closeness

centralisations (CB, Cℓ−1) in the co-observation network suggest that indeed there

may be such information brokers in the network.

Communities

Many community finding strategies have been developed (see reference [46] for a review),

but few have been developed on as generic a probabilistic footing as those based on modu-

larity [41, 42]. Modularity itself is not an algorithm but a measure of how ‘community-ish’

a division of a graph into communities is. The quality of such a community division is

computed by comparing to a random null model, and subtracting the expected from the

observed edge weight w:

bij =w(i, j) −E (w(i, j) ∣ G) (3.1)

29
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Positive residuals (bij) in the modularity matrix B indicate that something social is going

on between vi and vj . Intuitively, a ‘good’ community is one within which much social is

going on, i.e. in which many pairs of vertices have positive bij . Modularity operationalises

this by summing over all within-community bij . It is customary to use bii = 0, to avoid

isolated vertices being good communities.

The most common null model used for modularity is a random graph in which the

probability (and expected value) of an edge between two vertices is proportional to the

degrees d(⋅) of these two vertices:

E (w(i, j) ∣ G) = d (vi)d (vj)
2m

(3.2)

where m is the number of edges in the graph.

Now that we have the two building blocks, and using Kronecker’s delta

δ(i, j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 vi and vj are in the same community

0 otherwise
(3.3)

to codify the communities, we can write modularity as [43]

q =
1

2m
∑
i,j

⎡⎢⎢⎢⎢⎣w(i, j) −
d (vi)d (vj)

2m

⎤⎥⎥⎥⎥⎦ δ(i, j), (3.4)

where a conventional 1/2m factor and

m =
1

2
∑
i′
d (vi′)

d (vi) = ∑
j′
w (i, j′)

scale q to fall within [0,1]. In this formulation communities may overlap, but most analyses

and algorithms (ours also) restrict themselves to finding disjoint communities.

Modularity being a generic quality measure, it can be heuristically maximised (actual

maximisation is NP-hard [7]) by a variety of general as well as special-purpose algorithms.

The best algorithm to our knowledge was proposed by Mark Newman [43]. Although no

approximation bound for this algorithm is known, in practice it performs well [43], and

for the only benchmark for which a comparison with optimal modularity could be made

(Zachary’s karate network [71]), it is within 5% of the optimal.1

1optimal modularity for this network is reported in reference [7] and the performance of Newman’s method
is reported in reference [43].
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Newman’s algorithm was used to heuristically maximise modularity for obsG
prof , locG

prof ,

obsG
loc and profG

loc, but the results are mostly disappointing: q ≈ 0.06 for locG
prof and

profG
loc (no community structure), and q = 0.209 for obsG

prof where 0.4 ≤ q ≤ 0.7 is usual for

most social networks [7, 12, 43]. Only obsG
loc shows some community structure (q = 0.379

for 7 communities of sizes {5,13,20,20,25,27,32}), indicating that locations can be divided

into 7 categories such that locations from a particular category are usually mentioned in

an observation with other locations from that category, and not with locations from other

categories. These categories could represent functional domains (e.g. locations related to

rehabilitation, health care, housing, etc.) or perhaps the activity spaces of each outreach

worker (there are six). The result is interesting regardless of the underlying mechanism be-

cause although such categories can be constructed, these categories are not found in locG
prof

or profG
loc, indicating that whatever be the defining features of these categories, clients visit

all of them. The evidence of structure found here will be used in chapter 5 to incorporate

location information into an edge weighting scheme.

Information Brokers in obsG
prof

Broadcasting information about a change in service hours or a new outreach initiative with-

out proper targeted broadcast media can be a tedious and time-consuming task for the Hope

for Freedom Society. This time could be just as well spent actually helping clients. The

question that naturally arises is:

“is it possible to let the clients spread the news themselves? And if so, who

should the news be spread to?”

In large social networks, such questions would be answered approximately by selecting

actors with high centrality (e.g. closeness), but since obsG
prof is quite small, it is possible

to determine exactly who to spread the news to so that it reaches everyone, and to keep

the number of people to contact as low as possible. This can be done by modelling the

question as a set cover problem in which the sets are the immediate neighbourhoods (Ni)

of the actors:

Definition 3.0.3. Given a set V a family of subsets S = {Ni ∣ Ni ⊂ V }, find the smallest

possible collection of subsets S′ ⊆ S such that their union equals V :

min
S′⊆S
∣S′∣ such that ⋃

Ni∈S
′

Ni = V
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Note that we restrict our analysis to the connected component of obsG
prof , since the

remaining vertices are all singletons, and would have to be contacted individually.

We solved the corresponding Integer Linear Programme to find the set cover represented

by column vector c, in which True values indicate that a vertex is in the set cover.

min
c

fTc such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
obsA

profc ≥ b

c integer
(3.5)

where

f = [1]n×1 b = [1]n×1
using MATLAB’s Bint-Prog function. Despite the NP-hardness of the set cover problem,

an optimal solution was obtained in 0.613 seconds on a 2008 laptop computer.2 This fast

solution (for a random graph of same size and density, the ILP takes multiple days to solve)

suggests that the graph contains quite some structure that was exploited by the ILP solver,

and it does. For example, consider following the greedy algorithm

• find vertices of degree 1, and select their single neighbour for the set cover;

• remove all vertices now covered (the neighbours of all vertices in the set cover); repeat.

When applied to obsG
prof , it cuts down the size of the graph to only 12 vertices before it

can no longer find vertices of degree 1. The efficacy of this strategy is further evidence for

a core-periphery structure as hypothesised on page 27.

The smallest possible group that can reach all clients (set cover c) is rather large: it

contains ∣c∣ = 27 actors, approximately 11.4% of clients (ncc) in the connected component.

This may be a disadvantage because we were looking for an efficient way to reach clients, and

the overhead of specifically targetting these 27 actors may outweigh the gain from letting

the network do the information spreading. On the other hand, on average a vertex in the

set cover reaches 9 vertices not reached by others, but the average degree is 28.6 for the

whole graph, and 31.3 for the vertices in the connected component. Because of this, 70%

of vertices are covered more than once. This overlap is good for spreading information,

because individuals are then not dependent on one provider of information.
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Figure 3.1: Proportion of vertices in the largest connected component (ncc/n), modularity
(q) and proportion of the vertices in the connected component that are in the set cover
(∣c∣/ncc) for increasing co-observation frequency cut-off. Only edges with frequencies larger
than the cut-off point are retained

Cutting the Low-Frequency Interactions

Perhaps the ‘real’ results are better (higher modularity, smaller set cover) than presented

in the previous section. It is well possible that the results are influenced by inaccuracies in

the data in the form of spurious co-observations of individuals who do not actually know

each other. Since these inaccuracies likely originates from misrecordings, random encounters

recorded in the data, and errors in anonymising and disambiguating the data, most of it

should occur as low-frequency interactions. Cutting out these low-frequency interactions

may improve the network and also focus the results on the more active and possibly more

essential relationships in the network. The effect this cutting has on the network size,

modularity and the size of the set cover is shown in Figure 3.1. To give an impression of

what this means for the actual network, Figure 3.2 shows snapshots of the network with

a selection of different thresholds for what is ‘low-frequency’ and therefore cut from the

network.

To the extent that communities are present in the network, the increase in modularity

achieved by Newman’s method [43] as low-strength edges are cut from the network indicates

that edges connecting communities are being cut more than edges within communities, in

22 GHz dual core processor, 2GB RAM
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line with Mark Granovetter’s famous observation/hypothesis that weak ties connect inti-

mately connected communities [22, 23]. However, 80% of actors are disconnected from the

network (Subfigure 3.2(f)) before modularity reaches a reasonable level of modularity. The

relative size of the set cover actually increases to around 25%, making information spread

even more robust to failure of transmission, but also more time-consuming to initiate.

These snapshots do not seem to change much as more edges (and vertices) are cut out,

supporting the existence of a nested core-periphery structure, as suggested by the analysis

of descriptive statistics on on page 27 and corroborated by the set cover experiment on

page 31. The fact that this structure is persistent even when when 60% of the vertices

in the network have been cut out (Subfigure 3.2(e)) shows that the core is not only more

connected, but also connected by higher-frequency interactions.

Though not directly useful due to the rapid shrinking of the connected component, these

results do suggest that co-observation frequency counts have a meaningful role to play in

the network, and it is to this role that we now turn.

3.1 Social Influence as Link Strength

The construction of A as ITI results in a matrix in which elements aij ∈A represent absolute

frequencies of co-observation:

w(i, j) = ∑
k

iki ⋅ ikj (3.6)

In other words, observations of size x are replaced by complete graphs of size x, and

the resulting edge weights between vertices are summed over all observations to give a co-

observation frequency (see Figure 3.3 for an example). This may be useful in itself, but

we would rather attempt to compute a weighting w(i, j) between vertices vi and vj that

conveys information about less concrete but more powerful concepts such as influence of

one actor over another.

Column normalisation [34] is a quite common way of deducing information about influ-

ence from a social network that has weights associated with the edges. It uses the degree

of the ‘target’ vertex j, which reference [34] defines as

d (vj) = ∑
i≠j

aij (usually ajj = 0) (3.7)

to scale the weights so that the resulting edge weights represent each actor’s proportional
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Pajek

(a) cut-off: 1 (44 isolates)

Pajek

(b) cut-off: 2 (60 isolates)

Pajek

(c) cut-off: 4 (84 isolates)

Pajek

(d) cut-off: 8 (124 isolates)

Pajek

(e) cut-off: 16 (164 isolates)

Pajek

(f) cut-off: 32 (198 isolates)

Figure 3.2: obsG
prof for various co-observation frequency cut-off points (isolated vertices

omitted), diagrammed using the Kawada-Kamai spring mass graph layout algorithm [33] in
Pajek [3]. See Figure 2.7 for the original (uncut) network.
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Figure 3.3: The problem of co-observation frequency as connection strength: when A = ITI,
a complete graph is substituted for every hyperedge

participation in an interaction with another actor.

w(i, j) = aij

d (vj), (3.8)

For example, suppose elements aij in the adjacency matrix count the number of letters sent

from vi to vj . A column-normalised weight w(i, j) = 0.41 then means that of all letters sent

to vj , 41% came from vi. Row normalisation works analogously, scaling by the degree of

the ‘source’ vertex i.

In the context of our data set, elements aij in the adjacency matrix count the number

of co-observations of vi and vj . Applying column normalisation directly to the example of

Figure 3.3 would, for example, givew(2,3) = 2/6, supposedly meaning that of all observations

of v3, 33% are with v2. Clearly, it should be 100%. This näıve application does not accurately

reflect the conceptual underpinning of column normalisation, because the degree as defined

in Equation 3.7 is not an accurate representation of total activity.

In this chapter, rather than just correcting the calculation by using the degree as defined

in 2.3.1 on page 23, we take the intuition behind column normalisation several steps further,

and develop a more elaborate edge weighting scheme on that footing, because weighting

schemes are usually defined on A, which, being a projection of I, contains less information

than is available. The adjusted operationalisations of the edge weighting schemes were

designed to make use of this extra information while remaining true to the original concept.
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After introducing our extension to the underlying intuition (section 3.2) and making it

precise (subsection 3.2.1), we guide the reader through a series of edge weighting schemes

that incorporate ever more of the intuition sketched in section 3.2. At every step along the

way, we check our progress against criteria set out in subsection 3.2.1.

3.2 Intuition

The weight w(i, j) of edges in the graph represented by A should measure influence, opera-

tionalised as a neighbour vi’s relative importance to the current vertex vj . To make precise

relative importance we assume that an individual who wants to exert influence needs to

dedicate effort (time) to doing so, and that an individual will be influenced more by people

who invest more effort in influencing him/her. From this follow several desirable properties:

1. the influence of a neighbour vi over the current vertex vj increases

• as they interact more, and

• as they have stronger interactions (see property 3);

i.e. more effort invested translates to more influence.

2. influence depends on the total influence received (sent), i.e. it takes more to (be)

influence(d by) a vertex that has many contacts (high degree) than one that has few

(low degree); and

3. the probability (and strength) of an interaction within a meeting goes down as more

people are involved in a meeting.

Each of these are explained below.

3.2.1 Operationalisation

Property 1 translates into monotonicity of weight with respect to the number of co-observations.

We could operationalise property 1 as

∑
k

iki ⋅ ikj < ∑
k

ikp ⋅ ikq ↔w(i, j) <w(p, q), (3.9)

so that if vi and vj are observed together less frequently than vp and vq, our weighting

scheme should give the edge between vi and vj a lower weight than the edge between vp and
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vq. The implication is bidirectional because the left hand side is symmetric with respect to

i, j, p and q. A consequence of this definition which will be useful in later proofs is that

∑
k

iki ⋅ ikj = ∑
k

ikp ⋅ ikq ↔w(i, j) =w(p, q), (3.10)

but this means that w(i, j) can only be an element-wise monotonic function on A.

Consequently, Equation 3.9 is not useful for our purpose, as we expressly wish to find a

weighting function that conveys something more than what is already captured in A. The

following list describes one alternative weaker operationalisation of Equation 3.9 and three

possible subsets of Equation 3.9 that may hold for functions that are not an element-wise

mapping of A. These will constitute the criteria that will be used to guide the development

of weighting schemes in this chapter.

(adding an interaction) (Strict) Monotonicity of w(i, j) with respect to co-observation:

the weight w(i, j) should monotonically increase with co-observation of vi and vj ,

i.e. adding one co-observation of vi and vj should (ceteris paribus) not decreasew(i, j).
Strict monotonicity is desirable for w(i, j), i ≠ j but not necessarily for w(i, i), e.g. in
the case of column normalisation on A (see Figure 3.1 on page 34), in which all

elements in a column i are divided by w(i, i) to give proportional co-observation

(“w(i, j)% of the time vj was observed, (s)he was observed with vi”).

If ikℓ and w(i, j) represent the original interactions and edge weights, and i′kℓ and

w(i, j)′ the interactions and edge weights after a single interaction between vi and vj

has been added, the above translates to

∑
k

iki ⋅ ikj ≤ ∑
k

i′ki ⋅ i
′
kj ↔w(i, j) ≤w(i, j)′

This requirement (adding an interaction) should be maintained at all times. The

following should be broken, since they ‘measure’ how close a weighting scheme still is to

being an element-wise monotonic function of A. Each is here presented with a positive

interpretation, to illustrate the reasons for inclusion in this listing.

(diagonal comparison) Strict Monotonicity along the diagonal

if w(i, i) is strictly monotonic in the sense of the (adding an interaction), it is also

possible that it is strictly monotonic with activity when compared to other diagonal

elements w(j, j), i.e. that
Equation 3.9 ∣ i = j, p = q
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This would allow the diagonal elements to be interpreted as a measure of overall

activity, as in A, in which the diagonal contains the total number of observations

(degree) of the actors.

(diagonal = max) Relationship between w(i, j), and w(i, i) or w(j, j) ∶
since both w(i, i) and w(i, j) are measures of activity (vertex and between-vertex,

respectively), they should use the same currency (units). Hence, it may be desirable

that the diagonal is the maximal element in its row and/or column:

Equation 3.9 ∣ i = p = q
Intuitively, an actor’s influence over him-/herself should be at least as much as that

of any other actor over him/her, since at least as much time is spent with oneself as

with others.

(within-row/-column comparison) Within-row and -column monotonicity:

by extension of the previous, it may be desirable that an element w(i, j) can not only

be compared to the diagonal elements of the row and column it is in, but also to the

other elements in its row or column:

Equation 3.9 ∣ i = p
3.2.2 Inverse Proportionality

Property 1 only required the contribution of a single co-observation k to w(i, j) to depend

on iki ⋅ ikj , but in order to capture property 2 and 3, it should also depend (inversely) on

the number of interactions vj has, as well as the number of other actors involved in each

interaction between vi and vj :

w(i, j) = ∑
k

g
⎛⎜⎝iki ⋅ ikj ,

⎛⎝∑ℓ iℓi
⎞⎠
−1

,
⎛⎝∑ℓ iℓj

⎞⎠
−1

,
⎛⎝∑ℓ ikℓ

⎞⎠
−1⎞⎟⎠ (3.11)

where g is a function that will be developed throughout this chapter.

To avoid extraneous notation, use

d (vi) = ∑
ℓ

iℓi

d (εk) = ∑
ℓ

ikℓ
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Figure 3.4: Counterexample used throughout section 3.3

wherever the details of the sum are unimportant, so that Equation 3.11 is

w(i, j) = ∑
k

g (iki ⋅ ikj , d (vi)−1 , d (vj)−1 , d (εk)−1) (3.12)

Throughout we will use 3 parameters to fine-tune the weighting scheme: βout, βin and

βε, which are associated with d (vi), d (vj) and d (εk), respectively.
3.3 Candidate Edge Weighting Schemes

In this section we introduce a sequence of edge weighting schemes by concept, common

operationalisation, and their desirability as per section 3.2.

Throughout we will mostly use the same counterexample (see Figure 3.4) to show that

requirements from subsection 3.2.1 are broken:

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1

1 1 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(counterexample)

3.3.1 Column Normalisation on I

As our first step in extending the intuition behind column normalisation on A we investigate

column normalisation on I, taking the conceptual motivation from the previous subsection

and apply it (meaningfully) to I by weighting an interaction by the inverse of the total

number of interactions of an actor:
iki

d (vi).
Thereby satisfying property 2. The interpretation is still the same: w(i, j) = 0.41 means

that of all interaction that vj (vi) is involved in, 41% is with vi (vj). The only difference is

now that ∑k≠j w(k, j) no longer needs to sum to 100% because actors may be observed on

their own (e.g. vertex 3 in Figure 3.4).
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The resulting weights are then

w(i, j) =∑
k

⎛⎜⎜⎝
iki

d (vi)βout
⋅

ikj

d (vj)βin

⎞⎟⎟⎠ (3.13)

Desirability A look at the diagonal elements

w(i, i) =∑
k

i2ki

d (vi)βout+βin
= d (vi)1−(βout+βin)

makes clear that it would be desirable to restrict the values of the parameters such that

βout + βin ≤ 1 to maintain positive monotonicity for (adding an interaction), which is

strict if the inequality is.

(adding an interaction) Satisfied

Since iij ∈ {True,False} and we are only adding one interaction between vi and vj

(ceteris paribus), when we compare the numerator and denominator, after adding an

interaction (i′) over before (i), it is clear that the numerator grows more rapidly than

the denominator. This is because the interaction added may not increase ∑ℓ iℓj , but

it must always increase ∑k iki ⋅ ikj .

∑
k

i′ki ⋅ i
′
kj

∑
k

iki ⋅ ikj
≥
∑
ℓ

i′ℓj

∑
ℓ

iℓj

Therefore, w(i, j) is indeed monotonic with ∑k iki ⋅ ikj , and strictly positively so if

βout + βin < 1.

(diagonal comparison) Satisfied

w(i, i) = ∑
k

i2ki

d (vi)βout+βin
= d (vi)1−(βout+βin)

diagonal elements can be compared as measures of activity if βout + βin < 1.

(diagonal = max) Satisfied (Column) Not Satisfied (Row)

Diagonal elements are the maximum of their column

∑
k

iki

((((((((((
d (vi)βout ⋅ d (vj)βin

≥
∑
k

iki ⋅ ikj

((((((((((
d (vi)βout ⋅ d (vj)βin

≤
∑
k

ikj

((((((((((
d (vi)βout ⋅ d (vj)βin
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but not of their rows:

Counterexample. (using (counterexample) and Equation 3.10)

∑
k

ik1 =∑
k

ik1 ⋅ ik2

w(1,1) = 1 ≠w(1,2) = 1

2βin

	

(within-row/-column comparison) Not Satisfied

The different denominators across rows and columns break the within-column mono-

tonicity

Counterexample. (using (counterexample) and Equation 3.10)

∑
k

ik2 ⋅ ik1 =∑
k

ik2 ⋅ ik3

w(1,2) = 1

2βin
≠w(3,2) = 1

2βout+βin

and similarly for within-row monotonicity. 	

This first edge weighting scheme has already shown a few general properties of an edge

weighting scheme that will fulfill the requirements set in subsection 3.2.1:

• βout and βin need to be upper bounded in order to keep (adding an interaction);

• the (diagonal comparison) condition cannot be broken by βout or βin; and

• (diagonal = max) is a special case of (within-row/-column comparison).

Now with some more understanding of normalisation by vertex degrees, let us turn to the

role of interaction size.

3.3.2 Row Normalisation on I

Row normalisation on I is not merely analogous to column normalisation: it is special

because the effects of the normalisation and the dot product’s summation (∑k iki ⋅ ikj) are

orthogonal to one another, thereby incorporating information from all of I into each w(i, j).
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In our data, the rows of I are co-observations of actors, and the rationale for normalisation

is that larger meetings have weaker interactions (see subsection 3.2.2):

iij

d (εk)
The reasoning behind this is that on average, when two actors vi and vj are involved in

two interactions εk1 and εk2 , and ∣εk1 ∣ < ∣εk2 ∣, we would expect that the chance of an actual

interaction between vi and vj occurring in εk1 be larger than the same chance in εk2 , and

also (in part consequently) that the expected strength (duration) of the interaction in εk1

be larger than in εk2 (ceteris paribus).

The resulting weights are then

w(i, j) =∑
k

⎛⎜⎜⎝
iki

d (εk)βε
⋅

ikj

d (εk)βε

⎞⎟⎟⎠ (3.14)

satisfying property 3 on page 37.

Desirability No restriction needs to be put on βε from the point of view of maintaining

or breaking any of the properties described in subsection 3.2.1, but a requirement based on

interpretability should be made. As mentioned, any pair of individuals should be less likely

to have a strong actual interaction as the size of the interaction (hyperedge) increases, but

only to a limited extent: the total amount of interacting going on should intuitively still

increase with increasing interaction size, and should at least not decrease for any individual.3

Therefore, we require that 2βε ≤ 1.

(adding an interaction) Satisfied

Observe that
iki

d (εk) is constant for all i and strictly postive. Every True in I, then, is

replaced with some strictly positive value, which is enough to satisfy the monotonicity

condition with respect to adding an interaction.

(diagonal comparison) Not Satisfied

Diagonal elements can still be compared as activity under our changed definition that

takes into account the interaction sizes, but no longer as ‘raw’ activity.

3the expected number of interactions for an individual is d (εk)1−βε
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Counterexample. (using (counterexample) and Equation 3.10)

∑
k

ik1 =∑
k

ik4

w(1,1) = 1

22βε
≠w(4,4) = 2

32βε

	

(diagonal = max) Satisfied

As mentioned,
iki

d (εk) is constant for all i. Then since the set of elements that contribute

tow(i, j) is the intersection of those that contribute tow(i, i) andw(j, j), the diagonal
elements must necessarily be largest (but not strictly) in each column/row.

(within-row/-column comparison) Not Satisfied

By a similar argument as for (diagonal comparison), interpreting comparisons for

‘raw’ activity is no longer valid.

Counterexample. (using (counterexample) and Equation 3.10)

∑
k

ik1 ⋅ ik2 =∑
k

ik2 ⋅ ik3

w(1,2) =w(2,1) = 1

22βε
≠w(2,3) =w(3,2) = 1

32βε

	

This edge weighting scheme already has most of the properties we want: it main-

tains (adding an interaction), and breaks two out of the three ‘bad’ monotonicities

of subsection 3.2.1. Normalising by interaction size proves to be a very effective way of

creating a weighting function that contains more information than just co-observation, and

that should not come as a surprise. This is where the extra information captured by I (as

opposed to A) becomes apparent.

3.3.3 ‘Mixed’ Normalisation on I

In both previous normalisations, some monotonicity may have been lost due to the normal-

isation effect being duplicated in the multiplication for constructing A. This is undesirable

since it is an artefact of the operationalisation rather than a generic consequence of the
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model. It is possible to remove this squaring effect by mixing row and column normalisa-

tions on I. The resulting weights are then

w(i, j) = ∑k
iki

d (εk)βε
⋅ ikj

d (vj)βin
(3.15)

Edge weights w(i, j) may still be interpreted as the proportion of interaction of vj that is

with vi, as in subsection 3.3.1, but interaction is now measured as in subsection 3.3.2, giving

less weight (expected interaction) to larger interactions (hyperedges).

Desirability The bounds on βin and βε for this weighting scheme can be derived from

earlier subsections: βin, βε < 1.

(adding an interaction) Not Satisfied

Here, the generic counterexample cannot show what we would like it to, so a special

counterexample is required.

Counterexample. If we start with one interaction of size 2 (ε2), and one of size n − 1

(ε1), and add v1 to ε1

I =

⎡⎢⎢⎢⎢⎢⎣
0 1 1 . . . 1

1 1 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦
, I′ =

⎡⎢⎢⎢⎢⎢⎣
1 1 1 . . . 1

1 1 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦
then w(2,1) should increase, but it does not:

∑
k

i′k2 ⋅ i
′
k1 >∑

k

ik2 ⋅ ik1

w(2,1) = 1

2βε
, w(2,1)′ = 1

2βε
+ 1

nβε

2βin

= 2−βin ⋅ (a21 + n−βε)
≤w(2,1) if log2

⎛⎜⎝1 + (
2

n
)βε⎞⎟⎠ ≤ βin

and the strictness of both inequalities is linked. 	

(diagonal comparison) Not Satisfied

As could be expected, this weighting scheme inherits the inability to compare diagonal

elements as ‘raw’ activity from subsection 3.3.2 on page 42.
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Counterexample. (using (counterexample) and Equation 3.10)

a11 =
1

2βε
≠ a44 =

1

3βε

	

(diagonal = max) Satisfied (column) Not Satisfied (row)

The diagonal element is the maximum of each column by a similar argument as in

section 3.3.2 on page 43: d (vj) applies uniformly for all column elements, and the

sum in the numerator is strictly monotonically increasing.

For the row maximum this scheme fails on the same counterexample as on the pre-

ceding page:

Counterexample.

I =

⎡⎢⎢⎢⎢⎢⎣
0 1 1 . . . 1

1 1 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦
∑
k

ik2 =∑
k

ik2 ⋅ ik1

w(2,2) = 1

2βe
+ 1

(n−1)βε

2βin
≤w(2,1) = 1

2βε
if log2

⎛⎜⎝1 + (
2

n − 1
)βε⎞⎟⎠ ≤ βin

	

(within-row/-column comparison) Satisfied (column) Not Satisfied (row)

As mentioned on page 42, (diagonal = max) is a special case of (within-row/-

column comparison , and the same reasoning and counterexample apply.

A straightforward combination of row and column normalisation did not turn out well:

although it did come close to being a complete departure from an element-wise mapping of

A, the price paid was in (adding an interaction). Row and column normalisation need

to be combined in a different way.



3.3. CANDIDATE EDGE WEIGHTING SCHEMES 47

Alternative Operationalisation

The counterexample given for (adding an interaction) on page 45 relied on the change

in the denominator of Equation 3.15 being disproportional to the change in the numerator.

This suggests that the following may be a fruitful edge weighting to consider:

w(i, j) = ∑
k

iki ⋅ ikj

d (εk)βε

⎛⎜⎜⎝∑ℓ
iℓj

d (εℓ)βε

⎞⎟⎟⎠
βin

(3.16)

Now the numerator and denominator both count in the same units: a large interaction that

contributes only weakly to the influence of vi over vj also only contributes weakly to vj ’s

‘quotum of influence’, his/her total amount of influence received.

Desirability The properties of this weighting scheme are better than for the first proposal

in this subsection because the column normalisation in the denominator is applied overtop

of a row normalisation, harmonising currency between denominator and numerator. Again,

monotonicity according to (adding an interaction) may become negative, but this can

be resolved by requiring that 0 < βε(1 − βin) < 1.
(adding an interaction) Satisfied

Since we are only adding an interaction, say interaction k′, between vi and vj (ce-

teris paribus), then the new weight w(i, j)′ after adding the interaction will be

w(i, j)′ =
∑
k

i′ki ⋅ i
′
kj

∣ε′
k
∣βε

⎛⎜⎜⎜⎝∑ℓ
i′ℓj

∣ε′
ℓ
∣βε

⎞⎟⎟⎟⎠

βin
=

1

∣εk′ ∣βε
+∑

k

iki ⋅ ikj

d (εk)βε

⎛⎜⎜⎝
1

∣εk′ ∣βε
+∑

ℓ

iℓj

d (εℓ)βε

⎞⎟⎟⎠
βin

and the denominator of Equation 3.16 always increases less rapidly than the numera-

tor, and thus that w(i, j) is indeed monotonic with ∑k iki ⋅ ikj , and strictly positively

so if βin < 1.

(diagonal comparison) Not Satisfied

the same counterexample as given on page 43 applies:
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Counterexample. (using (counterexample) and Equation 3.10)

w(1,1) = ( 1

2βε
)1−βin

≠w(4,4) = ( 1

3βε
)1−βin

(when βin < 1) 	

(diagonal = max) Satisfied

the diagonal element is the maximum of each column by a similar argument as on

page 45: [∑ℓ iℓjd (eℓ)−βε]βin

applies uniformly for all column elements, and the sum in

the numerator is strictly monotonically increasing. Perhaps surprisingly, the diagonal

element is also the maximum of each row:

w(i, i) = ⎛⎜⎜⎝∑k
iki

d (εk)βε

⎞⎟⎟⎠
1−βin

≥
⎛⎜⎜⎝∑k

iki ⋅ ikj

d (εk)βε

⎞⎟⎟⎠
1−βin

≥
∑
k

iki ⋅ ikj

d (εk)βε

⎛⎜⎜⎝∑ℓ
iℓj

d (εℓ)βε

⎞⎟⎟⎠
βin

(within-row/-column comparison) Not Satisfied

for within-column monotonicity, ∑ℓ iℓjd (εℓ)−βε does not make any difference, so the

counterexample from page 43 applies:

Counterexample. (using (counterexample) and Equation 3.10)

a12 =
1

2βε

�������( 1

2βε
+ 1

3βε
)βin
≠ a32 =

1

3βε

�������( 1

2βε
+ 1

3βε
)βin

	

and the same counterexample also works for row monotonicity.

The insight to “harmonise currency” was aimed primarily at monotonicity with respect

to adding an interaction, but had the surprising side effect of also restoring the diagonal

elements as maximum.
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3.4 Joint Normalisation

Pulling all the strands from the previous schemes together, use the following to weight the

edges:

w(i, j) = ∑
k

iki ⋅ ikj

d (εk)βε

⎛⎜⎜⎝∑ℓ
iℓi

d (εℓ)βε

⎞⎟⎟⎠
βout ⎛⎜⎜⎝∑ℓ

iℓj

d (εℓ)βε

⎞⎟⎟⎠
βin

(3.17)

Desirability Again, monotonicity according to (adding an interaction) may become

negative, but this can be resolved by requiring that 0 < βε(1 − βout − βin) < 1.
(adding an interaction) Satisfied

By a similar argument to the one on page 47, the denominator of Equation 3.17 always

decreases less rapidly than the numerator, and thus w(i, j) monotonically increases

when an interaction between vi and vj is added.

(diagonal comparison) Not Satisfied

the same counterexample as given on page 43 applies:

Counterexample. (using (counterexample) and Equation 3.10)

w(1,1) = ( 1

2βε
)1−βin−βout

≠w(4,4) = ( 1

3βε
)1−βin−βout

(when βin < 1) 	

(diagonal = max) Satisfied

Quite surprisingly, diagonal elements are still the maximum of each column and row:

w(j, j) =
⎛⎜⎜⎝∑k

ikj

d (εk)βε

⎞⎟⎟⎠
1−βout

�
�
�
�

�
�
�
�⎛⎜⎜⎝∑ℓ

iℓj

d (εℓ)βε

⎞⎟⎟⎠
βin

≥

⎛⎜⎜⎝∑k
iki ⋅ ikj

d (εk)βε

⎞⎟⎟⎠
1−βout

�
�
�
�
�

�
�
�⎛⎜⎜⎝∑ℓ

iℓj

d (εℓ)βε

⎞⎟⎟⎠
βin

≥
∑
k

iki ⋅ ikj

d (εk)βε

⎛⎜⎜⎝∑ℓ
iℓi

d (εℓ)βε

⎞⎟⎟⎠
βout

(Swap βin and βout, and i and j to obtain the result for rows.)
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Figure 3.5: Parameter space of the edge weighting scheme of Equation 3.17

(within-row/-column comparison) Not Satisfied

The generic counterexample applies here as it did on page 47:

Counterexample. (using (counterexample) and Equation 3.10)

w(1,2) = 1

2βε

( 1

2βε
)βout

�������( 1

2βε
+ 1

3βε
)βin
≠w(2,3) = 1

3βε

(1 + 1

3βε
)βout

�������( 1

2βε
+ 1

3βε
)βin

	

and the same counterexample also works for row monotonicity.

3.5 Application to obsH
prof

Proofs aside, our goal was and is to find an appropriate edge weight for obsG
prof . Since

modularity is undirected, we set βin = βout = βin,out, and search the parameter space of

Equation 3.17 for maximum modularity within the bounds 0 < 2βin,out, βε ≤ 1. The sur-

face representing modularity achieved by Newman’s method [43] over this parameter space

(shown in Figure 3.5) has many local maxima, but also a clear global maximum (q = 0.515)

at (βin,out ≈ 0.5, βε ≈ 1). The high modularity may be evidence that our edge weighting
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scheme has uncovered some underlying social structure by adjusting for individuals’ activity

levels. However, it seems somewhat counterintuitive that βε should be close to 1. As ex-

plained in subsection 3.3.2, that would mean that every actor on average interacts with only

a single person, no matter how large the meeting. From personal experience volunteering

with the Cold Wet Weather Mat Programme, that seems unrealistic. In addition, actual

optimal modularity is as high as q = 0.863, when βin,out ≈ 1.5, βε ≈ 4, suggesting that the

weighting scheme capitalises on odd cases, such as a single pair of actors who have only

been seen once, together.

We conclude that the edge weighting scheme developed in this chapter, although well

founded in principle, is not suited for application to these data. The edge weighting scheme

has too strong a tendency to assign high importance to very low-frequency interactions.

This could not be remediated by cutting low-frequency interactions, as each cut creates new

low-frequency interactions (see Figure 3.2 and its explanation on page 33).

In the following, we will use the interaction frequency as edge weight w(i, j) = aij .



Chapter 4

Attribute-Based Edge Weights

The major assumption in applying the foregoing network analysis and arguing its usefulness

is that outreach workers would have real-time access to the information derived from the

analyses. While the Hope for Freedom Society’s client group is small enough for the outreach

workers to memorise up-to-date information (it may change over time) about each client in

order to have it available when they are out on the street, that approach does not scale well.

To get around this obstacle, we attempt to essentialise within-community and between-

community relationships using the clients’ personal characteristics. In this way, information

about relationships between particular individuals is translated into generic lessons about

interactions between types of individuals whose personal characteristics are observable to

the outreach workers.

The contention that it is indeed possible to essentialise some aspects of social interaction

or relations between individuals to interactions or relations between generic actors with

specific personal attributes is deeply entrenched in folk wisdom, for example in the sayings

“birds of a feather flock together” and “opposites attract.” It also lies at the basis of the

hypothesis quoted in chapter 1, that communities form by drug preference. In the literature

on social network analysis this idea has received attention in the form of network homophily

(see reference [37] for an excellent review of evidence for homophily) and analyses using

Exponential Random Graph Models (ERGMs; see Vol. 29, Iss. 2 of Social Networks for an

overview).

Similarity In order to find out if similar actors interact more, ‘similarity’ needs to be

defined. Since similarities for all attributes need to be meaningfully combined in the end,

52



53

define similarity over a particular attribute x between two actors vi and vj in a consistent

and unitless way:

Categorical Attributes: (Drug of Choice and Sex)

simx(i, j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if fx (vi) = fx (vj)
0 otherwise (also if either is missing)

(4.1)

where fx (vi) denotes personal feature (attribute) x of actor vi. For example, if fsex (vi) =
‘Male’ and fsex (vj) = ‘Female’, then simsex(i, j) = 0.
Categorised Continuous Attributes: (Age and Length of Homelessness)

simx(i, j) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −

∣fx (vi) − fx (vj)∣
max
i′

fx (vi′) −min
i′

fx (vi′) normally

0 missing values

(4.2)

where the category mean is used for fx (vi). For example, if fage (vi) = ‘< 33 years’ and

fage (vj) = ‘33–40 years’, then simage(i, j) = 1 − ∣30−35∣/50−30 = 3/4.
Linear Regression As exploratory data analysis, we attempted a least squares linear

regression. The model model we tried to fit would predict the number of times two actors

have been observed together âij ,
1 and contains a parameter βx which goes with a linear

term for similarity simx by each personal attribute x.

âij = β0 +∑
x

βxsimx(i, j) (4.3)

= β0 + βagesimage(i, j) + βdrugsimdrug(i, j) + . . .
Least-squares regression minimises the sum of squared differences between the predicted

(âij) and the observed (aij) number of co-observations.

min
β0,βage,...

∑
i,j

(aij − âij)2

1if we had used presence or absence of a tie (aij ∈ {0,1}), a logistic regression model would have been
more appropriate.
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It should be noted that this exploration was meant to gain preliminary insight into which

personal attributes should be focused on. The model is not appropriate for the data because

the data are not independently sampled.

MATLAB’s Stepwise-Fit function was used to conduct a stepwise regression. The

algorithm proceeds as follows:

1. find the best (least squares) fit for an initial model containing only β0.

2. estimate the p-value for each term that is currently not in the model.2 Add the term

with the lowest p-value less than 0.05, find the best fit, and repeat step 2.

If no terms can be added, proceed to step 3.

3. remove the term with the largest p-value greater than 0.1, find the best fit, and go

back to step 2.

If no terms need to be removed, stop.

The goodness of fit of the model was evaluated using the coefficient of determination R2:

R2 = 1 −

∑
i,j

(aij − âij)2
(aij − ā)2 (4.4)

where ā is the mean over all aij .

The best fitting model out of this procedure had too little explanatory power to be of

any use (R2 = 0.005). This may mean there is little association between personal attribute

difference and co-observation, or that violations of the model assumptions were too severe.

The fitting procedure assumes that all observed aij are sampled independently from an

underlying distribution, i.e. that each sample is unrelated to any other sample. This is not

the case: aij and aik are related because they share information about vi. Consequently,

the standard errors (and therefore p-values) are unreliable, undermining also the stepwise

fitting procedure.

SIENA The precise effect of the violation of the independence assumption on the esti-

mated β’s and p-values depends on the structure of the network (the observed variables

aij), so we attempted to fit a model that takes into account network structure to correct

2the p-value of a term βx ∣fx (vi) − fx (vi)∣ is the probability that βx = 0. A parameter βx with a low

p-value is unlikely to have no effect on the model.
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for the violation of the independence assumption. We used SIENA (Simulation Investiga-

tion for Empirical Network Analysis) [51, 61], a programme that implements an estimation

procedure for estimating an Exponential Random Graph Model (ERGM) [1, 39, 52, 60].

SIENA allows one to fit an equation much like Equation 4.3, except that extra terms

for structural network effects (e.g. clustering) are added, and the error estimation is done

by simulation. Because the error estimation is done by simulation, the fitting procedure

may take quite long to reach any result (∼ 1 week for our data). ERGMs are more fragile

than regression models, and estimation may fail to converge. Indeed it did fail for even the

simplest model, containing only a constant and a degree term. This means SIENA cannot

be used to obtain a converging model [51], and we conclude that we are unable to find

evidence of homophily at a person-to-person level.

Can the same be concluded at the community level? This question is precarious because

its answer depends on how communities are defined and found.

4.1 Modularity

Motivated in part by our failure to find evidence for homophily at a person-to-person

level, and in part by the low modularity afforded by obsG
prof , we attempted to amend

and strengthen the network community structure by adding information about similarity

(sim) between actors’ personal attributes to our original weights (w(i, j) = aij ; as defined

in section 3.5):

w′(i, j) = βww(i, j) + βsimsim(i, j), βw, βsim ≥ 0 (4.5)

In order to combine similarities across different personal attributes fage, fdrug, etc., use

sim(i, j) =∑
x

simx(i, j) (4.6)

We do not use the β’s estimated by the linear regression because they are rendered useless

by the low R2 value.

We would like to interpret βw and βsim as proportional contribution, so that βw = 2βsim
means that co-observation weights are indeed twice as important as similarity in features.

This interpretation requires that w(⋅, ⋅) and sim(⋅, ⋅) use the same currency (operate at the

same scale). To ensure this, normalise both w and sim by their standard deviation over all
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possible vertex pairs:

w′(i, j) = βww(i, j)
σw

+ βsim
sim(i, j)
σsim

, βw, βsim ≥ 0 (4.7)

where σw is the standard deviation of the weights, and σsim is the standard deviation of

the similarities. The standard deviation of a set of numbers X is defined as

σ(X) =
¿ÁÁÁÀ 1

∣X ∣ − 1 ∑x∈X (x − x̄)2, x̄ =
1

∣X ∣ ∑x∈X x (4.8)

Both w and sim will be symmetric functions, since modularity as we use it does not distin-

guish direction.

It is easy to see that a graph with weights according to Equation 4.7 will afford a

community division with modularity at least 0.209, the maximum of the modularity for

the original network (q = 0.209 with weights w(i, j)) and the modularity for the homophily

network (q = 0.030 with weights sim(i, j)), achieved when βw = 0 or βsim = 0. The maximum

modularity achievable between these two extremes (βw = 0 or βsim = 0) may provide some

suggestion on whether homophily plays a role in community structure. As mentioned on

the previous page, βw and βsim will be interpreted as proportional contribution. Also,

the amount by which maximum modularity modularity increases from 0.209 will give an

indication of the importance of homophily in community structure.

To find a vector of weights

β =

⎡⎢⎢⎢⎢⎢⎣
βw

βsim

⎤⎥⎥⎥⎥⎥⎦
that approximately maximise modularity, a community division (δ(i, j)) needs to be given.

Remember that Kronecker’s δ(i, j) is 1 if vi and vj are in the same community, and 0

otherwise.

We cast the question of manipulating β to approximately maximise modularity as a

quadratic programme with linear constraints. The general form for such a quadratic pro-

gramme used by MATLAB’s Quad-Prog function is:

min
β

βTHβ + hTβ such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Xβ = y

lb ≤ β ≤ ub
(4.9)

In the following we derive H, h, X, y, lb and ub from B, the modularity matrix (see

Equation 3.1).
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The formulation of Equation 4.9 is quite removed from modularity as presented on

page 30, since we now use the weight (w′(i, j)) instead of ‘raw’ co-observation (aij) to

construct B:

bij =

⎛⎜⎜⎜⎜⎜⎜⎝
w′(i, j) −

⎛⎜⎝∑j′ w′(i, j′)
⎞⎟⎠
⎛⎝∑i′ w′(i′, j)

⎞⎠
∑
i′
∑
j′
w′(i′, j′)

⎞⎟⎟⎟⎟⎟⎟⎠
(4.10)

So that modularity is now

q =

∑
i,j

bijδ(i, j)
∑
i,j

w′(i, j) (4.11)

To move toward the matrix notation of Equation 4.9, use

Aw =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(1,1)
σw

⋯
w(1,n)
σw

⋮ ⋱ ⋮

w(n,1)
σw

⋯
w(n,n)

σw

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Asim =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

sim(1,1)
σsim

⋯
sim(1,n)

σsim

⋮ ⋱ ⋮

sim(n,1)
σsim

⋯
sim(n,n)

σsim

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Aw′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

w′(1,1) ⋯ w′(1, n)
⋮ ⋱ ⋮

w′(n,1) ⋯ w′(n,n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Aδ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ(1,1) ⋯ δ(1, n)
⋮ ⋱ ⋮

δ(n,1) ⋯ δ(n,n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. Now let the column vectors Dw, Dsim and Dw′ capture the degrees of the vertices:

Dw =Awe

and similarly for the others, where e is a column vector of ones of appropriate length. Now

eTDw′ =∑
i,j

w′(i, j)
so that modularity can be written as

q =
1

eTDw′

⎛⎜⎜⎝Aw′ −
β2
wDwD

T

w + βwβsimDwD
T

sim
+ βsimβwDsimDT

w + β
2

sim
DsimDT

sim

eTDw′

⎞⎟⎟⎠ ⋅Aδ

where A ⋅ B denotes the scalar product, or dot product, of A and B. It sums over the

element-wise product of A and B.
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Observe that Aδ can be distributed

q =
1

eTDβ

⎛⎜⎜⎜⎜⎝
[Aw ⋅Aδ Asim ⋅Aδ]β − βT

⎡⎢⎢⎢⎢⎢⎣
(DwD

T

w) ⋅Aδ (DwD
T

sim
) ⋅Aδ

(DsimDT

w) ⋅Aδ (DsimDT

sim
) ⋅Aδ

⎤⎥⎥⎥⎥⎥⎦
β

eTDβ

⎞⎟⎟⎟⎟⎠
(4.12)

Now we have the start of a quadratic programme of the form of Equation 4.9 with

h = −
1

eTDβ
⋅ [Aw ⋅Aδ Asim ⋅Aδ] , H =

1

eTDβ
⋅

⎡⎢⎢⎢⎢⎢⎣
(DwD

T

w) ⋅Aδ (DwD
T

sim
) ⋅Aδ

(DsimDT

w) ⋅Aδ (DsimDT

sim
) ⋅Aδ

⎤⎥⎥⎥⎥⎥⎦
eTDβ

From this arises a surprising insight: the size of the quadratic programme, and with it

the computational cost of solving it, is independent of the number of vertices or edges, and

quadratic in the number of attributes.

As constraints we can set βsim = 1, because only the relative weight of βw with respect

to βsim is of interest to us, by the reasoning introduced on the previous page. Because all

entries of B must be positive, one arbitrary but useful constraint would be that

eTDβ = 1

to simplify H and h. This is permitted because scaling of all elements aij by the same

amount does not affect modularity.

Proof. When applying a constant scaling factor c to aij so that a′ij = c ⋅ aij , bij changes as

follows:

b′ij =
1

2m

⎛⎝a′ij −
d′ (vi)d′ (vj)

2m

⎞⎠
=

1

2∑i,j a
′
ij

⎛⎜⎜⎝a
′
ij −
(∑j′ a

′
ij′)(∑i′ a

′
i′j)

2∑i,j a
′
ij

⎞⎟⎟⎠
=

1

2�c ⋅∑i,j aij

⎛⎜⎜⎝�c ⋅ aij −
��c
2 ⋅ (∑j′ aij′) (∑i′ ai′j)

2�c ⋅∑i,j aij

⎞⎟⎟⎠
= bij
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The variables in Equation 4.9 now become:

H =

⎡⎢⎢⎢⎢⎢⎣
(DwD

T

w) ⋅Aδ (DwD
T

sim
) ⋅Aδ

(DsimDT

w) ⋅Aδ (DsimDT

sim
) ⋅Aδ

⎤⎥⎥⎥⎥⎥⎦
h = − [Aw ⋅Aδ Asim ⋅Aδ]

X = eTD y = 1 lb =

⎡⎢⎢⎢⎢⎢⎣
0

1

⎤⎥⎥⎥⎥⎥⎦
ub =

⎡⎢⎢⎢⎢⎢⎣
1

1

⎤⎥⎥⎥⎥⎥⎦
This quadratic programme finds a β that maximises modularity for a given community

division. However, the community division is not given a priori ; rather, it must be con-

structed in tandem with the optimisation. The method used so far does not lend itself

well for such a task, because its step size is rather large: it proceeds by iteratively splitting

communities in two until no more modularity gain can be achieved. To produce k commu-

nities this algorithm takes k − 1 steps. An alternative, Newman’s bottom-up approach [41]

starts out with n singleton communities and proceeds by greedily merging the two commu-

nities that would result in the highest increase in modularity if they were merged, until no

more modularity gain can be achieved. To produce k communities this algorithms takes

n − k steps. Usually in social networks, k = Θ (logn) [41], giving the bottom-up approach a

considerable edge over the top-down method in terms of resolution.

The quadratic programme of Equation 4.9 was ‘nested’ inside Newman’s bottom-up

algorithm [41]. After every merge of two communities, the quadratic programme was solved

for the new community division using QuadProg. The new β, determined by QuadProg,

was then used to determine B for the next step in Newman’s bottom-up algorithm, etc. until

modularity could no longer be increased. This combination (Newman’s bottom-up algorithm

with the quadratic programme nested inside it) was run 1000 times with random initial βw

(βsim was set to 1).

4.2 Application to obsH
prof

The low modularity afforded by the ‘raw’ homophily network already foreshadowed that

personal attributes might not have much to contribute to community structure. This

is confirmed by an exploration of the parameter space of modularity-based community

division using Equation 4.7 shown in Figure 4.1. The highest point (q = 0.230) lies at



60 CHAPTER 4. ATTRIBUTE-BASED EDGE WEIGHTS

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

βw

q

Figure 4.1: Modularity afforded by different relative weighting of co-observation and per-
sonal attributes in 4.5

βw = 42.0, βsim = 1, giving βsim a rather small proportional contribution (2.33%) in w′ for

a comparatively large increase in modularity (9.90%).

The modularity contribution is not negligible, and we conclude that personal attributes

may contribute to community structure, but that the contribution is small.



Chapter 5

Observation-Based Edge Weights

Two pieces of information that were extracted from the data have not yet been included

in our edge weighting: locations and dates. As in the previous chapters, we incorporate

these aspects to potentially strengthen the community structure as measured by modularity

achieved by Newman’s top-down method [43]. Location and time of observation do not

necessarily add to the likelihood of interaction per se, but all the times and locations at

which two individuals were co-observed do jointly influence the strength of the relationship

between these two individuals. Therefore, both are taken as multiplicative factors L and T

(defined on the following page and on the next page) that moderate relationship strength

w′ between vertices vi and vj rather than as additive terms:

w∗(i, j) = L(i, j)T (i, j)w′(ij) (5.1)

where w′ incorporates interaction and personal influence as defined in Equation 4.7.

Location The location at which interactions occurred may merit inclusion because par-

ticularly in the context of outreach, locations are not merely the environment within which

interactions occur; they may be home to factors that actively attract or repel certain or all

actors (e.g. a soup kitchen). This conceptualisation of the role locations play in interactions

(and hence in observations) ties in well with the hint of location-based interaction found

on page 31, in the fact that obsG
loc could be divided into 7 categories that were possibly

representative of a distinction in the function of locations.

One could use the division into categories created by Newman’s method to incorporate

locations into edge weights by assigning a higher weight to a relationship between individuals
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if they are co-observed at locations of diverse categories. It is possible, however, to extend

this reasoning from categories to individual locations: intuitively, individuals that interact

in few locations are less strongly connected than individuals that interact in many locations,

ceteris paribus. Therefore, if loc (vi) denotes the set of locations at which vi is observed,

define the location factor L of co-observation as the Jaccard coefficient [30, 49] of the sets

of locations at which vi and vj are observed:

L(i, j) = ∣loc (vi) ∩ loc (vj)∣∣loc (vi) ∪ loc (vj)∣ (5.2)

A high location factor (L(i, j) = 1) is achieved by a pair of individuals whose activity spaces

(sets of location they visit) are identical, and a low location factor (L(i, j) = 0) is achieved
by a pair of individuals whose activity spaces do not overlap at all.

Time The time at which interactions occurred may merit inclusion because it provides

information on whether or not the relationship between individuals is a sustained one or

not. Individuals who have interacted over a longer period of time likely have a stronger

relationship than individuals who have interacted over a shorter period of time.

If t (vi) denotes the set of dates at which vi is observed, then define the time factor of

co-observation akin to Equation 5.2, but using the standard deviation (σ; see Equation 4.8)

as a measure of spread:

T (i, j) = σ (t (vi) ∩ t (vj))
σ (t (vi) ∪ t (vj)) (5.3)

The reasoning for not using the Jaccard coefficient (Equation 5.2) directly is that the dates

are continuous, and hence provide more information than simple set overlap. A high time

factor is achieved by a pair of individuals who are observed together consistently over time.

A low time factor is achieved by a pair of individuals who interact in only a short period of

time, but are separately observed for a much longer period of time.

This comparison assumes that all individuals can interact with one another from the

very first day of recording. If a large group of people only entered the population at a

later date, the duration of a relationship would be influenced this later entry. However,

although some clients were indeed not yet homeless when the Hope for Freedom Society

first started their outreach activities, the majority was (> 80% by January ’08, with only
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Figure 5.1: Percentage of clients that is homelessness (53 values missing) and percentage
of observations made over time (cumulative). The vertical dashed line represents when the
Hope for Freedom Society started their outreach activities

< 10% of observations made; see Figure 5.1),1 so this should be only a minor concern.

5.1 Application to obsH
prof

These two factors have the potential to affect modularity to quite a large extent, because

individually they already afford a comparatively high modularity (q = 0.102 for the location

factor, and q = 0.272 for the time factor). In fact, it seems that the time factor dominates

w∗, because the resulting modularity is almost exactly the same (q = 0.272). The community

divisions, however, are quite different: the community division by the time factor (δT ) results

in 7 communities, whereas community division by w∗ (δw∗) results in 15 communities.

The adjusted Rand index [28], which compares two partitions of the same set, is used

to compute how similar the community divisions are. If cij is the number of vertices of

community i in δT that are also in community j of δw∗ , and ci⋅ and c⋅j the total number

of vertices in community i in δT and community j of δw∗ , respectively, then the adjusted

1we assume that once an individual becomes homeless they are able to interact with other clients. The
date of commencement of homelessness is calculated as the earliest date at which a person was observed
minus the length of homelessness recorded in his/her file.
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Rand index is defined as

R (δT , δw∗) = ∑i,j (cij2 ) −E ((cij2 ))
(upper bound on ∑i,j (cij2 )) −E ((cij2 ))

=

∑i,j (cij2 ) − ∑i (ci⋅2 )∑j (c⋅j2 )(n
2
)

∑i (ci⋅2 )∑j (c⋅j2 )
2

−
∑i (ci⋅2 )∑j (c⋅j2 )(n

2
)

and ranges from 0 to 1. For the community divisions by T and w∗, the adjusted Rand index

is low: R (δT , δw∗) = 0.092, confirming that the community divisions are different, and thus

that the modularity was not a result of the time factor dominating the behaviour of w∗.

5.2 Is Something Social Going On?

The results in the foregoing have not been what should be expected from a social network.

Therefore we ask “is something social going on?” Nothing so far has suggested a positive

answer. In this section, we make a final attempt at discovering something social, investigat-

ing if there are at least social locations, which we define as those locations people meet at

for social reasons. The motivation behind this is perhaps most easily understood through

a negative example: a soup kitchen is not expected to be a social location (although much

social interaction may occur over a hearty meal), since a client’s motivation for being at

this location is largely the service provided there rather than the people who are there.

In cases where the location is not the primary reason for a client being at that location,

co-observation of multiple clients may indicate that something social is going on.

5.2.1 Methods

In order to test if co-observations of two individuals at a certain location are evidence of

a social connection between them, we compute the probability that nothing social is going

on. For this we use a null model in which clients go to locations and meet unintendedly in

the process.

Let X be a random variable denoting the number of meetings between person 1 and

person 2, then the probability distribution of X

Pr (X ∣ n,n1, n2) , (5.4)
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depends on the total number of observations (n) at this location, the number of observations

of person 1 (n1) and the number of observations of person 2 (n2). Naturally, n1, n2 ≤ n.

Then if person 1 and 2 are seen together k times at this location, we wish to compute

the probability that this is positively unusual

Pr (X ≥ k ∣ n,n1, n2) =min (n1,n2)∑
i=k

Pr (X = i ∣ n,n1, n2) (5.5)

This probability can be rewritten discretely as

Pr (X = k ∣ n,n1, n2) = N (n,n1, n2, k)( n
n1

)( n
n2

) , (5.6)

where N(n,n1, n2, k) is the number of possible meeting patterns in which person 1 and

person 2 are observed together exactly k times. It may be defined recursively as

N(n,n1, n2, k) = N(n − 1, n1, n2, k) [neither observed]
+N(n − 1, n1 − 1, n2, k) [person 1 observed]
+N(n − 1, n1, n2 − 1, k) [person 2 observed]
+N(n − 1, n1 − 1, n2 − 1, k − 1) [both observed]

The ubiquitous “n − 1” term points to redundancy in this recursive formulation, which can

be removed. Define

n11 = k

n10 = n2 − k

n01 = n1 − k

n00 = n − (n00 + n01 + n10)
= n − n1 − n2 + k

so that

N ′ (n00, n01, n10, n11) = N (n00 + n01 + n10 + n11, n01 + n11, n10 + n11, n11)
= N ′ (n00 − 1, n01, n10, n11) [neither observed]
+N ′ (n00, n01 − 1, n10, n11) [person 1 observed]
+N ′ (n00, n01, n10 − 1, n11) [person 2 observed]
+N ′ (n00, n01, n10, n11 − 1) [both observed]
= (n00 + n01 + n10 + n11

n00, n01, n10, n11

)
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The multinomial has a clear interpretation: it is the number of distinct sets of n {0,1}-
strings (events) that contain exactly k co-observations, n1−k observations of person 1 alone,

n2 − k observations of person 2 alone, and the remaining observations of neither. Given the

large number of probability queries, the recurrence will be used in dynamic programming

to compute the probabilities instead of the multinomial.

Now Equation 5.6 can be written as

Pr (X = k ∣ n,n1, n2) = (
n

n−n1−n2+k,n1−k,n2−k,k
)

( n
n1

)( n
n2

) , (5.7)

This rewriting also makes it possible to rewrite Equation 5.5, since the denominator is

independent of k:

Pr (X ≥ k ∣ n,n1, n2) =
min (n1,n2)∑

i=k

N ′ (n − n1 − n2 + i, n1 − i, n2 − i, i)
( n
n1

)( n
n2

) (5.8)

Therefore, define:

N ′′ (n00, n01, n10, n11) =min (n01,n10)∑
i=0

N ′ (n00 + i, n01 − i, n10 − i, n11 + i)
= N ′ (n00, n01, n10, n11) +N ′′ (n00 + 1, n01 − 1, n10 − 1, n11 + 1)

with boundary condition

∀n00, n10, n11 N ′′ (n00,0, n10, n11) = N ′ (n00,0, n10, n11)
∀n00, n01, n11 N ′′ (n00, n01,0, n11) = N ′ (n00, n01,0, n11)

to compute Pr (X ≥ k ∣ n,n1, n2) efficiently using dynamic programming.

5.2.2 Results

If the null model were appropriate and true, the p-values of Equation 5.5 should be uniformly

distributed. A higher probability mass at lower values would indicate that something social

is going on. The distribution of p-values shown in Figure 5.2 clearly suggests that indeed

there is no evidence of positive social interaction under the defined null model. No locations

seem to be especially social or anti-social (see Subfigure 5.2(b)), since the average p-values for
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locations appear to be almost normally distributed, but they are not (p≪ 10−10 Kolgomorov-

Smirnov). The appearance is due to the binning done by the histogram. We used fewer

bins (bars) for this plot due to the low number of samples (N = 150) in comparison with

the others (N = 2562 and N = 2562 × 150). The skew of average actor-to-actor p-values (in

figure Subfigure 5.2(c)) towards higher p-values may even be indicative of negative social

interaction (avoidance behaviour), but it is more likely an indication that the null model is

inappropriate. If, for example, either or both individuals were not able to freely (randomly)

appear at a given location, the expected number of interactions should be lower than it

is under this null model, and consequently the p-value would be overestimated. Evidence

of this is visible in both Subfigure 5.2(a) and Subfigure 5.2(c). The spike at 0 in figure

Subfigure 5.2(a) is due to observations for which n1 = n2 = k, where usually k = 1 or at least

small. The fact that there is a spike means that such instances occur more than would be

expected. These instances are, however, not centered on any pair of individual or location,

so we cannot say they are due to a relationship or a location conducive to social interaction.
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Figure 5.2: p-values for Equation 5.5: the probability that interaction between two individ-
uals at a location is random



Chapter 6

Conclusion

Can we find evidence of something social going on among homeless in the Tri

Cities?

In search of an answer to this question, we used data provided by the Hope for Free-

dom Society, a homeless outreach organisation. These data, raw text logs of interaction

between outreach workers and homeless clients, were anonymised (section 2.1), and infor-

mation about social interaction among homeless in the Tri Cities was extracted from them

(section 2.2). The resulting social networks were then analysed for evidence of commu-

nity structure (section 3). A principled way of determining the strength of the relationship

between two individuals was developed, based on interaction (chapter 3), personal charac-

teristics (chapter 4) and personal activity spaces (chapter 5), and at each step the resulting

weighted network was analysed for evidence of community structure.

Despite the inclusion of interaction information, personal information, locations and

dates, we were unable to find evidence of community structure or positive social interaction

in the data. The interaction information shows signs of a core-periphery structure, suggest-

ing that there may be just a single community. The hypothesis mentioned in chapter 1,

that the community is subdivided by drug preference, should therefore likely be rejected,

based on these data. It may be argued, as in Figure 2.1, that the data on drug preference

does not reflect actual drug use, and that this lies behind our inability to find drug-based

communities. This is, however, to some extent also the case in the context from which the

hypothesis arises. Moreover, the Hope for Freedom Society is first and foremost a drug

rehabilitation organisation, so their record of a person’s drug preference is likely as accurate
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as possible.

The addition of personal attributes to the information captured in edge weights allowed

modularity to increase compared to using just co-observation frequency as edge weight.

Although the increase was quite substantial (8.61%), the resulting modularity is still well

below the range expected for a social network (0.4 ≤ q ≤ 0.7) [7, 12, 43]. The inclusion

of time and location overlap between pairs of actor (in chapter 5) did increase modularity

(to q = 0.272), but it was still well outside of the ‘social’ range. It did become clear that

time played an important role in the network, and it would be interesting to see if time-

evolving communities could be found. Some modularity-based methods for time-evolving

communities have been developed [40], but at present these only use time slices rather than

continuous time.

However, if nothing by way of social interaction is present in the data, little can be

extracted. We have been unable to find evidence of positive social interaction in the data, but

our most direct approach to this (in section 5.2) relies on a null model in which individuals

can freely partake in any interaction at locations they have visited at least once. Similarly,

the null model underlying modularity assumes that each individual could interact freely

with each other individual. Geographical constraints and absences (e.g. hospitalisation,

drug rehabilitation, housing) could undermine these assumptions. The way observations

are made also has its inherent limitations: clients do not freely participate in an observation

made as a result of an emergency call, for example. Thus our inability to find evidence of

positive social interaction may be due to limitations of our methods.

Taking the (absence of) evidence for what it is, the fact that we were unable to find

evidence of positive social interaction may be a positive sign. If social relationships among

homeless are a significant factor in maintaining homelessness [47], then the Hope for Freedom

Society is positively contributing to resolving homelessness by not providing venues for social

interaction. The focus of their outreach is on the service provided [66], and social interaction

is mostly geared towards that. The factors that alleviate homelessness are already present

in the Hope for Freedom Society’s outreach, so the need for social interaction in this respect

may be less than reported in reference [67].

Much more information is present in the data than could not be extracted, particularly

in the semantics of the interaction logs, but also just in the accuracy of the data. The Hope

for Freedom Society could increase the effectiveness of their data collection, and thereby the
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usefulness of their data by analysing it in house.1 Although our anonymisation approach

could be applied as data are collected, it would be even better if the tagging of individuals

in an observation used the outreach workers’ input. One could, for example, use auto-

completion to link names of individuals and locations to personal profiles and geocoded

positions. Such a feature could be seemlessly embedded in the interface used for logging

activities, so that the increase in workload for the outreach workers is kept to a minimum.

With such small adjustments, the data could become useful in real time (not after 2 years

of a Master’s thesis). For example, the data could be used to detect disappearances, or for

internal or external audit.

1The data we used is exceptionally detailed, and a good example of record keeping among other outreach
and government organisations. The Hope for Freedom Society’s commitment to data collection is commend-
able, especially with the small number of staff it has. The suggestions and recommendations made should
be taken as encouragement rather than criticism.
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Anonymisation Procedure

A.1 Introduction

We are proposing a methodology for systematically substituting identifiers (e.g. <<N5468>>)

for names in textual data sets, without anyone looking at any semantically meaningful part

of the data. Our proposal is aimed at removing 99.9% of names while minimising semantic

information loss.

A.2 Procedure

For this procedure we would employ three people who would not be informed about the

source of the data they are working with.

1. mechanically process the data

• extract all unique words of alphabetical characters from the data. numbers,

apostrophes, punctuation and any other semantics beyond the word level are

ignored, but capitalisation is preserved.

• write these unique words into a two-column MS Excel file in alphabetical order,

and fill the second column with Ignore.

2. Identify the names and possible names

three people perform this task independently of one another, and the resulting lists

are compared
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• words that are uniformly identified as names are added to the dictionary of names

• other words that are flagged at least once as a word that cannot be ignored are

added to the dictionary of possible names

Both are written to a MS Excel file for the researcher (or a fourth employee) to

disambiguate.

3. Group similar names

three people perform this task independently of one another, and the resulting lists

are compared by the researcher (or a fourth employee).

The alphabetical order destroys any correlation between words, and with it all semantics

beyond the word level.

A.3 Full MATLAB code

Listing A.1: Extract Words

1 function [words] = extractWords( fileName )

2 % open the file for reading

3 fid = fopen( fileName, 'r' );

4

5 % measure the file size

6 D = dir( fileName );

7 fileSize = D.bytes;

8

9 % read the file into a sufficiently large string

10 text = textscan( fid, '%s' , 'Delimiter' , '' , ...

11 'BufSize' , fileSize+1 );

12 % split the text at non −alphabetical characters.

13 words = regexp( text, '[ \Wˆ\d]+' , 'split' );

14

15 fclose( fid );

16 end
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Listing A.2: Write Excel “Dictionary”

1 function writeDictionary( fileName, words )

2 % open the file for writing

3 fid = fopen( fileName, 'w' );

4

5 % write the words to a tab −delimited file

6 fprintf( fid, '%s \tIgnore \r \n' , words {: } );

7

8 fclose( fid );

9 end

Listing A.3: Parse Excel “Dictionary”

1 function [dicts] = parseDictionary( inputFileName )

2 %% READ FROM THE FILE

3 % open the file for reading

4 fid = fopen( inputFileName, 'r' );

5

6 % the file must again be tab −delimited

7 columns = textscan( fid, '%s %s' , 'Delimiter' , ' \t' , ...

8 'endOfLine' , ' \r \n' );

9 % the first column contains the words

10 words = columns {1};

11 % the second column contains the categorisations;

12 % ignore lowercase/uppercase differences.

13 cats = lower( columns {2} );

14

15 fclose( fid );

16

17 %% INITIALISE THE OUTPUT

18 dicts = struct;

19 % create (currently empty) dictionaries per category

20 for category = unique(cats)'

21 % initialise empty dictionary

22 dicts.(category {: }) = cell(0);

23 end

24

25 %% PARSE THE FILE

26 % for all words
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27 for w = 1:numel(words)

28 % append this word to the appropriate dictionary

29 dicts.( cats {x} ) {end +1} = words {x};

30 end

31 end

Listing A.4: Compare Excel “Dictionaries”

1 function compareDictionaries( dictFileNames, outputFileName )

2 %% READ FROM THE FILE

3 % initialise data storage

4 words = cell( 0 );

5 cats = cell( 1, numel(dictFileNames) );

6 for f = 1:numel(dictFileNames)

7 % open the file for reading

8 fid = fopen( dictFileNames {f }, 'r' );

9

10 % the file must again be tab −delimited

11 columns = textscan( fid, '%s %s' , 'Delimiter' , ' \t' , ...

12 'endOfLine' , ' \r \n' );

13 % the first column contains the words

14 words = columns {1};

15 % the second column contains the categorisations;

16 % ignore lowercase/uppercase differences.

17 cats {f } = lower( columns {2} );

18

19 fclose( fid );

20 end

21

22 % concatenate the categorisations

23 cats = [ cats {: } ];

24

25 % sort by categorisation

26 [cats,indices] = sortrows( cats, 1:size(cats,2) );

27 % also permute the words accordingly

28 words = words(indices);

29

30 %% COMPARE DICTIONARIES

31 % open the file for writing
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32 fid = fopen( outputFileName, 'w' );

33

34 numberOfColumns = size( cats, 2 );

35 lineForAmbiguousInput = [ '%s' , ...

36 repmat( ' \t%s' ,1,numberOfColumns) ' \r \n' ];

37

38 % write the words to a tab −delimited file

39 for w = 1:numel(words)

40 if ( all( ismember(cats(w,:),cats {w,1 }) ) )

41 % only need to write a single category to the file

42 fprintf( fid, '%s \t%s \r \n' , words {w}, cats {w,1 } );

43 else

44 fprintf( fid, lineForAmbiguousInput, ...

45 words {w}, cats {w,: } );

46 end

47 end

48

49 fclose( fid );

50 end

Listing A.5: Write Excel “Thesaurus”

1 function writeThesaurus( fileName, thesaurus )

2 % open the file for writing

3 fid = fopen( fileName, 'w' );

4

5 % write the words to a tab −delimited file

6 fprintf( fid, '%s \t%s \r \n' , thesaurus {1,: }, ...

7 thesaurus {2,: } );

8

9 fclose( fid );

10 end

Listing A.6: Parse Excel “Thesaurus”

1 function [thesaurus] = parseThesaurus( inputFileName )

2 % open the file for reading

3 fid = fopen( inputFileName, 'r' );
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4

5 % the file must again be tab −delimited

6 columns = textscan( fid, '%s %s' , 'Delimiter' , ' \t' , ...

7 'endOfLine' , ' \r \n' );

8 % the first column contains the words

9 words = columns {1};

10 % the second column contains the categorisations;

11 % ignore lowercase/uppercase differences.

12 substitutions = lower( columns {2} );

13

14 fclose( fid );

15

16 thesaurus = sortrows( [ substitutions, words ] );

17 end

Listing A.7: Anonymise

1 function anonymise( fileName, dicts, thesaurus )

2 % open the file for reading and writing

3 fid = fopen( fileName, 'r+' );

4

5 % measure the file size

6 D = dir( fileName );

7 fileSize = D.bytes;

8

9 % read the file into a sufficiently large string

10 text = textscan( fid, '%s' , 'Delimiter' , '' , ...

11 'BufSize' , fileSize+1 );

12

13 % do thesaurus substitutions first

14 text = strrep( text, thesaurus {1,: }, thesaurus {2,: } );

15 % do replacement for every dictionary

16 for dict = fieldnames(dicts)'

17 % substitute numbered codes for the words in

18 % this dictionary

19 subst = ( 1:numel(dicts.(dict {: })) )';

20 subst = [ ' <<' dict {: } num2str(subst) ' >>' ];

21 text = strrep( text, dicts.(dict {: }) {: }, subst );

22 end
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23

24 % write the anonymised text back to the file

25 fprintf( fid, '%s' , text );

26

27 fclose( fid );

28 end



Appendix B

Conceptual Model

“[A]ll any model is supposed to do [. . . ] is to provide an abstract representation

of effects that are important in determining the behavior of a system. And below

the level of these effects there is no reason that the model should actually operate

like the system itself.” [70, p. 366]

In this chapter we will introduce graphs in a quite general form and explore how they may

be appropriate to model particular social phenomena. For a less broad but more detailed

introduction to Social Network Analysis, please refer to the books used as resources for this

section [34, 24, Ch. 3]. Good introduction to graphs can be found in [8, Ch. 1], [29, Ch. 2].

B.1 Graphs

Graphs are a collection of objects, actors or entities, represented and referred to as vertices,

which are associated with each other, typically through interactions or relations, represented

and referred to as edges; graphs represent things that somehow have something to do with

other things.

As defined here, graphs represent only the descriptive topology (structure) of relation-

ships between the objects represented as vertices; there is no mention of information about

the objects or relations. We will ignore such additional information as we guide the reader

through a series of graphs with ever more general definitions of an edge, introducing the

requisite terminology as we move along. First we consider the number vertices participating

in an edge and then the possibility of duplication.
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1

23

4

5 6

Figure B.1: An example simple graph

B.1.1 Simple Graphs

Our base case for this exposition is the simple graph. In a simple graph, edges represent

symmetric bilateral association: they are (unordered) pairs of vertices. In this case, where

edges always relate exactly two vertices, it is common to use eij (or eji, by symmetry of the

relationship) to denote an edge relating vi and vj . A good example of a simple graph would

have facebook© profiles as vertices and approved friend links as edges (see Figure B.1 for a

toy example).

More precisely, E ⊆ ℘2(V ), where the notation ℘k(V ) denotes the set (unordered collec-

tion) of all sets of k elements drawn from a set V :

℘k(V ) = {e ⊆ V ∣ ∣e∣ = k}
This definition of edges as sets immediately implies the restriction that there be no loops,

i.e. that a vertex cannot be in a relation with itself: eii = ‘{vi, vi}’ = {vi} ∉ ℘2(V ). This

restriction on loops makes sense in the example of facebook© friendship links, but not in

a graph that has people as vertices and kinship links upto the second degree as edges: you

are your own kin.
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Figure B.2: An example hypergraph (circles are vertices, boxes are hyperedges)

B.1.2 Hypergraphs

Facebook© friendship is a necessarily bilateral association, but for example bobsleigh 4-

crew membership is necessarily quadrilateral (see Figure B.2), and institutional affiliation

is multilateral or oligolateral: relations, and therefore edges, may have more than two

participants, and the number of participants may vary between relations. Graphs with such

edges are called hypergraphs, usually denoted H.

A hyperedge ε ∈ E is a set of vertices, so E ⊆ ℘(V ) without limit on the size of the edges.

B.1.3 Duplication

When edges model interactions rather than relationships, the same edges may typically occur

multiple times. The above definition does not allow this because E and E are sets, enforcing

the uniqueness of each edge. Defining E or E as a multiset (unordered collection allowing

duplicates) lifts this restriction: E,E ⊆ (℘(V ) ×N), so an edge is a pair (e,1E(e)) , e ⊆ V or

(ε,1E(ε)) , ε ⊆ V of the ‘actual’ edge (which is a set of vertices), and a number indicating

the multiplicity of the edge, i.e. how many copies of this edge exist in the graph. 1E is

the usual notation for a multiset’s indicator function, which returns the multiplicity of its

argument (the edge).
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B.2 Graph Representation

The conceptual exposition of graphs in section B.1 already contained some hints about the

mathematical/computational representation of graphs. In this section, we make explicit

some mathematical and computational representations of graphs and discuss the relation-

ships between them. Throughout this thesis, and especially in chapter 3, we present methods

in terms of the mathematical representions of graphs.

B.2.1 Mathematical representation

Mathematically, a graph is usually represented by a matrix, a rectangular array of elements,

denoted X = [x]m×n, where m and n are the sizes in dimensions 1 and 2, and elements

xij ∈ X (0 < i ≤ m,0 < j ≤ n are indexed according to a rectangular grid. Let us start from

our first example in section B.1 (see Figure B.1).

Simple Graphs are usually represented by an adjacency matrix. An adjacency matrix A

is the truth table of a binary relation “a is connected to b” on vertices:

A = [a]n×n , aij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
True if {vi, vj} ∈ E
False otherwise

(Equation 2.2)

The adjacency matrix corresponding to Figure B.1 is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1

1 0 1 0 0 1

1 1 0 1 1 1

1 0 1 0 0 0

1 0 1 0 0 1

1 1 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.1)

Hypergraphs Adjacency matrices cannot capture relations on a variable number of ver-

tices well. Such general hypergraphs are usually represented by an incidence matrix [34].

An incidence matrix I, with actors (vertices) on the horizontal and events (edges) on the

vertical, is the truth table of a binary relation on vertices and hyperedges: “vertex j belongs
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to hyperedge i”

I = [i]m×n , iij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
True if vj ∈ εi

False otherwise
(Equation 2.1)

Incidence matrices are not restricted to general hypergraphs, but can represent simple

graphs as well. Just as an example, the incidence matrix of Figure B.1 is

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0

1 0 1 0 0 0

0 1 1 0 0 0

1 0 0 1 0 0

0 0 1 1 0 0

1 0 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 0 1

0 0 1 0 0 1

0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.2)

B.2.2 Relationships between Adjacency and Incidence matrices

Intuitively, the actor-event affiliation (incidence) matrix I and the actor-actor or event-event

adjacency matrices must be related. The relationship is in fact simple:

Aactors = ITI (B.3a)

Aevents = IIT (B.3b)

The diagonals of Aactors and Aevents encode the column and row sum (degrees of vertices

and hyperedges) of I, respectively, i.e. total event attendance per actor and the number of

attendees per event. The incidence and adjacency matrices corresponding to the example

of Figure B.2 are:

I =

⎡⎢⎢⎢⎢⎢⎣
1 1 1 0 0 1

1 1 0 1 1 0

⎤⎥⎥⎥⎥⎥⎦
,
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Aactors =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 1 1 1 1

2 2 1 1 1 1

1 1 1 0 0 1

1 1 0 1 1 0

1 1 0 1 1 0

1 1 1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Aevents =

⎡⎢⎢⎢⎢⎢⎣
4 2

2 4

⎤⎥⎥⎥⎥⎥⎦
.

Semantically, Aactors contains information about actor co-attendance at events, and

Aevents contains information about event co-participation by actors. Both are therefore

measures of similarity.
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SIENA

SIENA (Simulation Investigation for Empirical Network Analysis)[51, 61] allowed us to

attempt to fit an Exponential Random Graph Model (ERGM) [1, 39, 52, 60] to our data.

This appendix explains how SIENA was parameterised.

SIENA estimates parameters for a statistical model of a time-evolving network by con-

ditioning on the change between subsequent ‘snapshots’ of the network. Since our data are

continuous in time, the time range needed to be evenly split into a number of snapshots. In

addition, SIENA only deals with binary association, so co-observation frequencies could not

be incorporated directly. It was therefore necessary to find an appropriate co-observation

cut-off point (see also 3) to eliminate the effect of spurious observations.

The number of snapshots and the co-observation cut-off point jointly affect the number

of interactions that are retained, and the amount of change between snapshots. Creating

too many snapshots will lead to low density (see 2.5) and large change between snapshots,

and few connections being retained (reaching above the co-observation cut-off point). Cre-

ating too few snapshots will also lead to relatively large change between snapshots, because

actors leave and join the network (structural change). In order to find a ‘sweet spot’ that

has relatively low change between snapshots and retains relatively many connections, we

computed average rate of change for all combinations of co-observation cut-off and number

of snapshots. Because retention goes down rapidly with increasing cut-off (as discussed on

page 34), we created 7 snapshots with a cut-off point of 1 (connections with only 1 co-

observation are removed). The average change between snapshots was 60.9%, the lowest

possible, and 56.3% of connections were retained.
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Model Estimation

Reference [51] recommends to start by fitting a very simple model containing only a constant

term that accounts for snapshot density (see 2.5). To this we added a term to account

for differences in activity (degree) between actors, also following the recommendation of

reference [51]. This basic initial model was not expected to be a good fit for the data, but

rather a starting point to expand from.

SIENA simulates the formation of connections to stochastically increase the model fit.

The approach is actor-based, allowing each actor to stochastically select new connections to

make or old connections to break to maximise its own (local) model fit. Connections can

be made using several slightly different mechanisms, but since the formation of links in our

case is bilateral (undirected), and only on of them (the “pairwise compensatory model” [51])

is appropriate: a tie is formed based on how it affects the sum of the model fits of the two

actors involved.

Finally, with the model pieces in place, several estimation algorithms could be used

to estimate the model. The default algorithm, the Method of Moments (using default

conditional estimation and score function 1 to estimate derivatives; see reference [51]), was

chosen because the alternatives would be impractically slow on a network of this size. Other

parameters of the algorithm were kept at their default values, except the number of phase 2

subphases (set to 8 instead of 4) and the number of phase 3 iterations (set to 4,000 instead

of 1,000), to increase precision and reliability [51].

Failure to Converge

Even the above simple model failed to converge. Reference [51] gives several situations in

which this may occur, and for each we have indicated if and why they could or could not

apply to our data and set-up.

• Misspecification of the data.

The data specification was verified several times.

• On rare occasions convergence may be poor due to ‘bad’ random initial values.

The model estimation was attempted four times, decreasing the likelihood of the

already rare event.
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• The model is not appropriate for the data.

This is the most likely case.

• The snapshots are inappropriately chosen.

We believe that the procedure described above has generated the most appropriate

snapshots that could be generate from these data.

• Too many weak effects are included.

This is not the case in our simple model.

• One or more terms are collinear.

This is not the case in our simple model.

• A term with a large but poorly-determined parameter is included in the model.

Usually these are inappropriate parameters (reciprocity in an undirected network, for

example), but neither of our terms is a candidate.
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[58] Henry Scheffé. The Analysis of Variance. Wiley and Sons, 1959. 19

[59] Scottish Homelessness Task Force. Helping homeless people. Technical report, Ministry
for Social Justice of the Scottish Executive, 2002. 1, 2

[60] Tom A.B. Snijders, Philippa E. Pattison, Garry L. Robins, and Mark S. Handcock.
New specifications for exponential random graph models. Sociological Methodology,
36:99–153, 2006. 55, 85

[61] Tom A.B. Snijders and Marijtje A.J. van Duijn. Simulating Social Phenomena, volume
456 of Lecture Notes in Economics and Mathematical Systems, chapter Simulation for
statistical inference in dynamic network models, page 493–512. Springer, Berlin, 1997.
55, 85

[62] Lesley Stenhouse. Social networks—why are they important to homeless people? Tech-
nical report, Shelter, 2005. 2

[63] Mohammad Tayebi, Uwe Glaesser, Laurens Bakker, and Vahid Dabbaghian-Abdoly.
Locating central actors in co-offending networks. In Proceedings of the 2011 Interna-
tional Conference on Advances in Social Network Analysis and Mining (ASONAM),
2011. 13, 26

[64] Rob C. Thiessen. Report on the homeless in tri-cities. Technical report, The Hope for
Freedom Society, April–September 2006. 5, 6

[65] Rob C. Thiessen. 2nd report on the homeless in tri-cities. Technical report, The Hope
for Freedom Society, October–March 2007. 5, 6

[66] Rob C. Thiessen, 2009–2010. personal communication. 3, 5, 10, 20, 70

[67] Jennifer B. Unger, Michele D. Kipke, Thomas R. Simon, Christine J. Johnson, Su-
sanne B. Montgomery, and Ellen Iverson. Stress, coping, and social support among
homeless youth. Journal of Adolescent Research, 13(2):134–157, April 1998. 3, 70

http://www.metrovancouver.org/planning/homelessness


BIBLIOGRAPHY 93

[68] Krisztina Vásárhelyi. Impact of hiv testing strategies on characteristics of the un-
diagnosed population. Presentation at the 6th IRMACS Day, April 2011. personal
communication. 3

[69] Duncan J. Watts. Six Degrees—The Science of a Connected Age. W.W. Norton &
Company, 2003. 27

[70] Stephen Wolfram. A New Kind of Science. Wolfram Media, 2001. 79

[71] Wayne W. Zachary. An information flow model for conflict and fission in small groups.
Journal of Anthropological Research, 33(4):452–473, winter 1977. 30


	Approval
	Abstract
	Quotation
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Changing `Homelessness'

	Data Extraction
	Privacy
	Social Network
	Network Extraction

	Descriptive Statistics
	Network Properties


	Interaction-Based Edge Weights
	Social Influence as Link Strength
	Intuition
	Operationalisation
	Inverse Proportionality

	Candidate Edge Weighting Schemes
	Column Normalisation on the Incidence Matrix
	Row Normalisation on the Incidence Matrix
	`Mixed' Normalisation on the Incidence Matrix

	Joint Normalisation
	Application to the Co-Observation Network

	Attribute-Based Edge Weights
	Modularity
	Application to the Co-Observation Network

	Observation-Based Edge Weights
	Application to the Co-Observation Network
	Is Something Social Going On?
	Methods
	Results


	Conclusion
	Anonymisation Procedure
	Introduction
	Procedure
	Full MATLAB code

	Conceptual Model
	Graphs
	Simple Graphs
	Hypergraphs
	Duplication

	Graph Representation
	Mathematical representation
	Relationships between Adjacency and Incidence matrices


	SIENA
	Bibliography



