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Abstract

A botnet is a group of compromised computers (called bots) controlled by remote attackers

to distribute spam emails, launch denial of service attacks, and perform other malicious

activities. Botnets can be deployed on top of different protocols, such as the Internet

Relay Chat (IRC), the Hyper Text Transfer Protocol (HTTP), and the Session Initiation

Protocol (SIP). The SIP is widely used to initiate voice over IP, and it has been recently

adopted by the telecommunications standards bodies to be the signaling protocol for mobile

telecommunication core networks. Such adoption will introduce a huge number of potential

devices to botnets. Therefore, botnets deployed over the SIP present a serious threat for

the Internet. We propose a novel approach to detect SIP botnets by looking for users

who behave in similar and coordinated patterns. We show through extensive experimental

evaluations that the proposed approach achieves low false positive and false negative rates.

Keywords: Botnet; Session Initiation Protocol; Botnet Detection Algorithms
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Chapter 1

Introduction

In this chapter, we provide a brief introduction to botnets, state the addressed problem in

this project, and summarize the project contributions.

1.1 What is a Botnet?

A botnet is a group of compromised computers running malicious software. The compro-

mised computers are called bots. Bots are controlled by remote attackers, which are called

botmasters. A botmaster controls bots through a Command and Control channel to orga-

nize different kinds of malicious activities. There are two types of the malicious activities:

local and external. The local malicious activities include keyboard logging and password

cracking [1]. The external malicious activities are the most common malicious activities for

botnets, which include distributed denial of service attacks, spamming, and phishing [2, 3].

The Command and Control channel can be deployed over different protocols such as the

Internet Relay Chat, the Hyper Text Transfer Protocol, the Peer to Peer (P2P) protocols,

and the Session Initiation Protocol. Therefore, as shown in Figure 1.1, a botnet is composed

of a botmaster who is a remote attacker controlling the botnet, and a Command and Control

channel used to pass botmaster instructions to bots. The botmaster instructions are hidden

within a legitimate traffic such as chat, web, voice over IP, and P2P messages.

A bot life cycle consists mainly of the following phases [1, 4]. The first is the Infec-

tion phase, which happens when a victim computer gets infected by an email attachment,

accesses a compromised web site, or downloads a malicious software that exploits some vul-

nerabilities in the victim’s operating system. The second is the bootstrap phase, where the

1
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Victim

BotMaster
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Command & Control 

Channel: IRC, HTTP, P2P
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Malicious Activity: 

Spam, DDoS

Figure 1.1: Botnet components

new infected computer finds and joins the botnet via initial list of key peers. The third is

the Command and Control phase, where bots are ready to receive botmaster instructions

through the Command and Control channel. The fourth is the propagation phase, which

can be implemented in two ways. The first is the passive way, where a bot injects itself in

the file sharing directory to infect any bots downloading those malicious files. The second

is the active way, where a bot picks candidates from a candidate list, and tries to exploit

operating system vulnerabilities in order to upload and install the bot software on them.

The fifth is the malicious activities phase. The last phase is the maintenance phase, where

bots patch their software through the Command and Control channel to fix a bug or add

new features.

1.2 Problem Statement

Botnets are among the most serious and growing threats on the Internet [5–7]. In addition

to the 40% of Internet computers connected to Internet that are considered potential bots

in a recent study [4], SIP extends the problem domain by introducing new potential bots

to it. SIP is widely used to initiate voice over IP sessions and it has been recently adopted

by the telecommunications standards bodies, i.e., 3GPP [8], to be the standard signaling

protocol for mobile telecommunication core networks. Such adoption will introduce a huge

number of potential devices to botnets. The problem addressed in this project is to design a

new approach to detect botnets formed on top of computing devices that utilize SIP as the
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signaling protocol. Computing devices that use SIP include personal computers, netbooks,

smart phones, and personal digital assistants (PDAs). The algorithm should detect botnets

efficiently and in a timely manner.

1.3 Project Contributions

The contributions of this project can be summarized as follows:

∙ We propose a novel approach to detect SIP botnets by looking for users who behave

in similar and coordinated patterns.

∙ We design and implement an online detection system based on the proposed approach.

∙ We conduct extensive experimental evaluations to test the system precision. Our re-

sults indicate that the proposed approach achieves low false positive and false negative

rates.

1.4 Project Organization

The rest of the project is organized as follows. In Chapter 2, we provide an overview on

botnet structures and the Session Initiation Protocol and how it can be a useful Command

and Control protocol for botnets. We also summarize related works in the literature in this

chapter. In Chapter 3, we present the proposed solution. In Chapter 4, we present the

experimental evaluation of the proposed solutions. In Chapter 5, we conclude the project

and outline potential extensions for this work.



Chapter 2

Background and Related work

2.1 Botnet Structures

A botnet can be deployed over different protocols such as the Internet Relay Chat, the

Hyper Text Transfer Protocol, the P2P protocols, and the Session Initiation Protocol. The

botnet structure is defined based on the Command and Control channel model which comes

mainly in two forms: centralized and distributed. Internet Relay Chat and Napster botnets

are example of centralized structure, where botmaster communicates with bots through

central controllers, e.g., IRC servers, Figure 1.1. A centralized botnet is easy to manage,

because message delivery is fast and can be guaranteed. However, a centralized botnet

is easy to break [5]. In a distributed structure, such as a P2P botnet, Figure 2.1, con-

trollers are scattered through out the network, which requires more management overhead,

slower or sometimes unguaranteed message delivery. However, a distributed botnet has

more resistance for mitigation techniques according to the dynamic and redundant set of

controllers [1, 9]. A distributed botnet also known as a decentralized botnet.

To clarify a P2P botnet functionality, it is important to explain how the Command and

Control channel works. There are two main techniques: Push and Pull [1,6]. The push style

is a slow mechanism, where the botmaster pushes the commands to bots through controllers.

It is similar to the Internet Relay Chat mechanism. The push mechanism in P2P network

is done by pushing the commands to selected peers, and they pass them further to another

selected list of peers, based on specific criteria [1], and so on. In the pull mechanism, also

called publish/subscribe mechanism, controllers publish predetermined set of keywords, and

bots query those controllers about those keywords to receive new instructions. Bots know

4
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Controller

bot

Figure 2.1: Distributed structure such as P2P botnet

where to send the query by looking up a distributed hash table, which works as a command

index.

Dagon et al. [10] identify three important botnet features: effectiveness, efficiency, and

robustness. Botnet potential damage, i.e., effectiveness, can be measured by the size of the

largest connected bots that participate in the Command and Control channel, and the total

bandwidth that botmaster can generate from the bots. The second feature is the communi-

cation efficiency which can be measured by the botnet diameter. When the diameter is large,

the communication becomes slower and the detection possibility becomes higher as message

passes many network nodes. The last feature is the robustness which indicates how a botnet

can resist a disruption. It can be measured by the redundancy/replication of servers and

links between bots. In order to avoid detection, a botmaster seeks a Command and Control

channel with the following features [11]: low management overhead, looks legitimate, quiet,

and efficient.

To mitigate the botnet power, bot communications have to be disrupted. Different bot-

net topologies require different response strategies. Cooke et al. [12] recommend mitigating

the whole botnet by taking down the key nodes, such as botnet controllers, instead of taking

down individual bots. Dagon et al. [10] confirm that the weakest link of a botnet is the

Command and Control channel and targeting high degree nodes increases botnet diameter

and reduce the transitivity. Transitivity is the probability that two neighbors of a node are

connected. When the transitivity increases, the robustness does too. Li et al. [13] find that

the botnet traffic comes from thousands of autonomous systems, i.e., different networks,

which indicates that blacklisting of the botnet sources might not be sufficient to disrupt the

botnet.
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2.2 The Session Initiation Protocol

2.2.1 Introduction

The Session Initiation Protocol (SIP) is a text based protocol designed to negotiate the

communication settings between multiple parties prior to establishing a communication ses-

sion and transmitting the actual media. The communication settings are: network settings,

transport protocol type, media type, bit rate and encoding. Once the communication has

been signaled, then the media itself, i.e., voice, text, and video, is transmitted over another

protocol; most often the Real-time Transport Protocol (RTP). The SIP role as a signaling

protocol is to establish, modify, and terminate sessions. The SIP can work on top of different

transport layer protocols, including User Datagram Protocol (UDP), Transmission Control

Protocol (TCP), and Stream Control Transmission Protocol (SCTP).

SIP has been designed by the Internet Engineering Task Force (IETF) to be easy, scalable

and flexible. It has been preferred by the Internet community over other signaling protocols,

such as: H.323 developed by the International Telecommunication Union (ITU). Therefore,

in November 2002, the 3rd Generation Partnership Project (3GPP) [8] adopted SIP as

the standard signaling protocol in IP Multimedia Subsystem (IMS) to ease the integration

and migration from circuit-based to IP-based network. 3GPP is the telecommunications

standards body. SIP has been developed through several RFCs, but the most important

two are: RFC3261 [14] which includes the core protocol specification, and RFC4083 [15]

which includes the SIP extensions required by 3GPP.

2.2.2 SIP Message Structure

There are two types of SIP messages: request and response. A SIP request can be one of the

following: REGISTER, to notify the SIP domain registrar about your location, INVITE,

to establish a session, BYE, to terminate a session, CANCEL, to drop any unestablished

session, OPTIONS, to ask another user/server about its capabilities, and MESSAGE, to

send instant messages. SIP response is the ACK message which is used to confirm receiving

a 200 OK reply. SIP full message consists of two parts separated by an empty line: header

and body. All SIP messages, except INVITE and MESSAGE messages, do not need a body.

A SIP user need an address/identifier in order to communicate with others, and his address
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is written in a Uniform Resource Identifier (URI) format [16], such as sip:user@domain. The

URI is similar the email address format.

The SIP message body is usually written in SDP: Session Description Protocol (SDP)

format [17] to notify the callee about the type of the requested media, encodings, transport

protocols. On the other hand, the body of the instant message request contains the text of

the message.

The SIP message header consists of two parts; the first line and the rest of the header.

The first line contains the request type, the Request-URI, and the SIP version. The Request-

URI should have initially the same value as the To field, but it can be set to the next hop

identifier as well. The first line in a response type message includes the response code.

The response code can be a provisional (1xx), a success (2xx), a redirection (3xx), a client

error (4xx), a server error (5xx), or a global failure (6xx). 2xx-6xx codes are called final

responses. The rest of the message header consists of other fields related to the message

type with corresponding values. Such fields include Via: specifies where should the recipient

send any further response to the sender, From: caller identifier, To: callee identifier, Max-

Forwards: similar to TTL in IP header, Call-ID: Call identifier, which is used with To and

From fields to identify a dialog, or to identify all registrations of a particular user, CSeq:

transaction identifier within a dialog, which helps maintaining the order, and identifies the

request to which a particular response belongs, Contact: where the recipient should send

any further request to the sender. To, From, CSeq, Call-ID, Max-Forwards, and Via header

fields are mandatory in all SIP requests.

2.2.3 SIP Components

A SIP message is normally classified into 3 overlaying layers, each layer is a subset of the

higher one. A Call consists of a one or more dialogs, and identified by the Call-ID header

field value. A Dialog consists of a one or more transactions, and represents a relationship

between two SIP users during a call. A Dialog starts with an INVITE request, and normally

ends with a BYE request. In order to distinguish each dialog from the others within one call

session, it is uniquely identified by three header field values: Call-ID, From, and To. The

final and the lower layer is called the Transaction. The Transaction is identified by a CSeq

header, and sometimes by a Branch parameter. The Branch parameter comes within the Via
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header and identifies a branch of a transaction. The branch parameter is used by clients

during a dialog establishment, and it is used by proxies to distinguish between different

user agent responses to a forked request. The transaction consists of any request and all

associated responses, such as the INVITE request and the associated responses until the

ACK response. When a final response is 2xx then that ACK response is not considered part

of the transaction. Another example of a transaction is the BYE request and the associated

responses. Transaction states and times are maintained, and based on that a reliable SIP

service can be provided over the User Datagram Protocol (UDP) protocol. Under this

mechanism, a caller might choose to cancel or periodically retransmit the request until a

response is received from the callee, then the caller send an ACK. The callee, on the other

side, would periodically retransmit the final response until it receives the caller ACK.

A SIP network must have at least the following components: a User Agent (UA), a Proxy

server, and a Registrar. Each domain has its own Proxy and Registrar servers. The SIP

Proxy servers are used only to signal the communication. To improve network scalability, it

is only the initial dialog signaling that actually goes through the SIP proxies, because later

on, once both parties know the address of each other, then further dialog communications

may bypass SIP proxies and both parties can communicate directly with each other. Each

user knows about other’s address via the Contact header field during the first INVITE

handshakes. The MESSAGE request does not establish a dialog, therefore it needs always

to go through the SIP proxies. The SIP message can be transmitted over User Datagram

Protocol (UDP), Transmission Control Protocol (TCP), or Stream Control Transmission

Protocol (SCTP) transport protocols.

The User Agent (UA) is the SIP client application that runs at the end systems, such as

a user computer and a mobile phone. The UA is used to register, negotiate communication

settings, establish a session, and terminate it. During a dialog, UA acts like a client and

a server. The UA acts like a client when it sends a request or receives a response, aka

User Agent Client (UAC). However, it acts like a server, when it receives a request or sends

a response, aka User Agent Server (UAS). Callee user agent retransmits periodically the

positive final response of an INVITE request, until it receives the Caller ACK.

For any two users to communicate, they have first to locate each other, and in order

to do that, they have to register themselves with their domain registrar. This is done

by sending a SIP REGISTER request to the domain Registrar via the proxy server. The

Registrar extracts user information and current location from the request and stores them
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in the domain’s location DB service. Registration has to be refreshed periodically.

The Proxy server is responsible of receiving user requests and responses under its domain.

It is also responsible for locating the receiver’s proxy server by a DNS lookup, and routing

the SIP message to it. The Receiver’s proxy server locates the receiver by querying the

domain location DB service, and then forwards the message to him. The Proxy server

can be stateful or stateless. The Stateful proxy is the default configuration despite the

performance limitation to maintain accounting, forking, and other services.

2.2.4 SIP Extensions

On November 2002; 3rd Generation Partnership Project (3GPP) [8] has adopted SIP to be

the multimedia signaling protocol for IP Multimedia Subsystem (IMS), i.e., mobile telecom-

munication core networks. Therefore, 3GPP has extended many aspects of SIP specifica-

tions, added new features required by IMS, and fixed some security flows. SIP requirements

identified by 3GPP Release 5 IMS are documented by IETF in RFC4083 [15], and they are

under analysis.

SIP is originally designed to be end-2-end clear text signaling protocol, where SIP net-

work elements are only needed to locate both parties, which happens to be at the beginning

of each dialog, other than that, both ends communicate directly with each other, which

avoids single point of failure and improves SIP network performance & scalability.

On IMS, a user may have one private identity and multiple public identities. User

agent is authenticated using a shared secret known only to the user device and the service

provider. SIP communication is encrypted by Internet Protocol Security(IPSec)/Transport

Layer Security(TLS). User communications have to go through IMS components, i.e., via

Call Session Control Function (CSCF) components. CSCF components protect the security

and the privacy of the networks and the users. The privacy is protected by enforcing the

communication to follow specific paths, and controlling the traversed information by masking

some header fields and adding others. All user communications have to go through IMS

access point Proxy-CSCF (P-CSCF), which is the closest component to the Proxy server

in SIP regular network, and IMS registrar is called Serving-CSCF (S-CSCF). The P-CSCF

prevents unauthorized users from accessing the network, by associating secure ports to each

registered user agent. In addition, P-CSCF enforces a strict route according to the reserved
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route during the registration process, which prevents session hijacking.

2.3 Exploiting SIP for Creating Botnets

2.3.1 Why is SIP attractive as a Command and Control protocol?

According to a study done by Berger et al. [18], SIP has outstanding features that nominate

it as useful Command and Control protocol. Unlike the P2P protocols, SIP, as a standard

voice over IP signaling protocol, is expected to have less restricted access policy, similar

to HTTP, DNS, and SMTP access policy. The SIP infrastructure provides botmaster with

some management tools, such as the registration mechanism, keeping track of client status

afterward, and providing reliable message delivery mechanism. The registration process of

the SIP identifier, i.e., the Uniform Resource Identifier (URI), helps maintain a dynamic

list of user name translations. Therefore, it helps maintain the reachability to SIP users

regardless of their real IP addresses. The SIP Presence service [19] is used to keep track

of user availabilities, where a bot can subscribe to a SIP presence Agent/Server to be

notified about the availabilities of other users. Such a service is valuable, because otherwise

very noisy and frequent short live status notification/request messages will be exchanged.

Finally, SIP message structure provides many options to conduct command and control

communications, such as SIP instant messaging, message standard header, message user-

defined header, and message body.

2.3.2 How it works?

In order to hide the Command and Control data or pass them to the bots, a botmaster can

choose from multiple options or use them all randomly to obfuscate detection effort [18].

One direct option to use is to establish a SIP session first, then exchange information and

instructions in between. The overhead and the noise is high in such option. In addition,

the accessibility to the ports that will be used by the further established communication

(such as RTP) is not guaranteed since SIP is only a signaling protocol. However, this option

mimics the pattern of the normal SIP traffic, especially if the length of sessions are random-

ized. Another simpler, lighter, and lower overhead option is to use SIP Instant Messaging

functionality and Reliable delivery [20] to exchange Command and Control information.

The third option is to use the Request/Response messages themselves to pass Command
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and Control information. Keep in mind that abnormal patterns can expose the botnet. An

example of an abnormal pattern is when a caller sends INVITE requests, and the callee

rejects them all.

A SIP message has many options that can be utilized to carry Command and Control

information, such as: standard message header, message body, or user-defined header. The

last option is the weakest option among the three as it would carry clear keys that can be

used for detection.

2.4 Related Work

There are different approaches for botnet detection and mitigation. They can be summarized

into the following categories [13]. The first approach is analyzing a bot source code to

understand how it works and how to stop it. The source code is not always available [4,13].

Another approach is to understand how a botnet works by installing a honeypot/honeynet.

A honeypot is a fake bot that attracts botnet infections in order to observe the botnet

activities. The third approach is the signature based detection approach. Botnet signatures

can be discovered by any of the previous two approaches, i.e., the source code and the

honeypot approaches. All the three previous categories have to be carried on frequently

whenever a new bot or a new version of an existing one exists. The fourth and final

category is anomaly based detection, which can be classified further into two subcategories:

the first is to detect a botnet based on an abnormal behavior such as a high volume traffic,

which can indicate potential botnet malicious activities, and the second subcategory is

to detect a botnet based on Command and Control communications, which is the recent

and recommended approach [6, 7, 12, 21]. We provide more details on this approach in the

following subsection.

2.4.1 Command and Control Detection Approaches

The Command and Control channel is the anchor point, and the middle joint between all

botnet components, because it is the control medium. Therefore, it is the best approach to

mitigate botnet threats. By monitoring and detecting the Command and Control channel

it is possible to intercept botnet communications at early stages, hopefully before launching

any attack. By detecting the Command and Control channel, a defender can detect both

the controllers and the bots that communicate with them. By blocking access to botnet
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controllers we disconnect the botmasters from their bots. Therefore, we disrupt botnet

managements [6, 7, 12, 21]. Detecting Command and Control channels is challenging, but

achievable based on a key principle that bots within a botnet tend to behave in a similar or

correlated manner [6, 22].

Strayer et al. [5] conducted the first work and proposed an IRC botnet detection model

based on the network behavior in the Command and Control communication channel. The

authors identify the Command and Control activities by characterizing the flow based on

number of parameters, such as bandwidth, packet timing, and burst duration. The recorded

traces are filtered out through number of steps. Then, the system classifies and correlates

between the remaining flows. The distance between 2 flows are calculated by this formula

D =
√
∑n

i=1(norm diffi)2, where n is the number of attributes, norm diffi is the normal-

ized difference between the itℎ attribute in 2 flows ( ∣v1−v2∣
v1+v2

). The goal was to find the flow

pairs with the very small distance (closes to zero), because it’d indicate they were part of

the same Command and Control channel. The flaws that successfully pass the classification

and the correlation phase are almost but not guaranteed part of botnet activities. Finally,

the system does a topological analysis to find out the controller. This is done by drawing

a directed graph based on the similar flows, then selecting the highest in-degree/out-degree

node.

Gu et al. [6] recognized that bots within a botnet usually share common preprogrammed

steps. The preprogrammed steps create a traceable patterns, therefore, they noticed that

bots behave in a crowd and similar manner. The authors propose BotSniffer system. The

proposed system detects a centralized Command and Control channel over two protocols:

IRC which is a Push style, and HTTP, that is a Pull style. It consists of a snort and

network-based analysis components. The proposed system identifies those bots that do

similar Command and Control and malicious activities within limited variance on sequence,

and time shift. BotSniffer looks into the density and homogeneity of response crowd that

comes from clients connecting to the same HTTP/IRC server, which is computed using

DICE coefficient based on the response message content. When the accumulated likelihood

of correlation between set of bots exceeds a given threshold, they are declared bots.

To overcome the limitations of previous work such as the botnet structure/protocol

dependent and some detection difficulties of crowd homogeneity based on encrypted message

content, Gu et al. [22] propose BotMiner which is a structure/protocol independent network

detection system. The BotMiner captures all TCP/UDP flows and aggregates them into
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fixed number of flows during a specific time window. The flows are aggregated by applying

quartiles(binning) technique. After aggregation, the system applies two X-means steps

to classify users. X-means is a clustering technique. Those users who share both similar

Command and Control communication patterns and similar malicious activity patterns are

clustered together and considered members of the same botnet.

Yu et al. [7] propose an online and a content-independent detection framework to de-

tect botnet activities. Each traffic flow is represented by a set of characteristics, such as:

Start/End time, duration, IP protocol, Number of packets, and Total number of bytes.

The similarity between flow characteristics are measured using incremental Discrete Fourier

Transform (DFT) technique. The flow pairs with high similarities are added to a list of

suspected hosts. The suspected hosts are monitored for a specific amount of time for botnet

malicious activities, such as a scanning and a spamming using Snort [23] plugins. When

ever a suspected host commit at least one botnet malicious activity, it is then classified as

a bot, otherwise, a host is removed from the suspected list if the observation time is over.

Similarly but simpler, Zeidanloo et al. [21] propose a general and content-independent P2P

Botnet detection framework, and the system consists of a couple of components. There is

a Traffic Monitoring component to detect hosts behaving similarly, by comparing the flows

characteristics. Another component is a Malicious activity detector which does exactly as

the name state. The last component is an Analyzer which combines the results from the

other two components, and the hosts that exist in both components are classified as bots.

2.4.2 SIP Botnet Detection

Berger et al. [18] designed and implemented a SIP botnet prototype, aka SipBot, based

on Storm botnet communication structure, where Overnet protocol was replaced by a SIP

protocol. The authors suggest the following points to improve the prototype and to have a

quieter SIP botnet implementation: switching to push mode, using SIP presence capabilities

for availability status, and aligning its behavior to be within the boundaries of natural SIP

communication patterns. We are not aware of previous works on detecting SIP botnets.

2.5 Summary

The Command and Control channel is the weakest point in botnets. Thus by blocking access

to it, the botmaster is prevented from controlling botnet members. Due to the dynamic
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nature of botnets, the most successful detection approach is the one that neither relies on

specific Command and Control channel settings, nor on keywords. This is because both can

be easily modified. Therefore, monitoring the user behavior is the best approach to detect

botnets Command and Control channel.



Chapter 3

Proposed SIP Botnet Detection

System

3.1 Overview

In this chapter, we propose an online botnet detection system, designed based on the follow-

ing factors: bots tend to behave in a similar or a correlated manner [6,22] and the Command

and Control channel is the botnet weakest point [6, 10]. The proposed system can detect

botnets at early stages even before they initiate any malicious activities. The proposed

system does not rely on the structure of the Command and Control channel. Thus, it works

for centralized and distributed botnets. In addition, the proposed system does not use the

contents of the SIP messages, which makes it not limited to specific botnet implementations.

Furthermore, the proposed system does not rely on the sequence of events, which enables it

to resist time evasion techniques.

In order to monitor any traffic coming in or going out to/from a networkX, The proposed

system should be installed betweenX’s gateway and the internal network, as shown in Figure

3.1.

The proposed system consists of two main components, Monitoring engine and Correla-

tion & Detection engine, as shown in Figure 3.2. The main role of the monitoring engine is

to capture and log the designated traffic. The role of the Correlation & Detection engine is

to detect bots, and identify potential botnet controllers.

The proposed system functions as follows:

15
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SIP-Botnet

Detection System

Internet (X) Internal Network

Gateway of
Network (X)

TAP

Figure 3.1: The proposed system is installed on this location to monitor network X.

Monitoring-Engine

Traffic
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 Traffic

Linux station

MySQL DB

Correlation & Detection

 Engine

Process (W) time of data

Every (S) time
List of C&C Controllers
List of suspected bots

Linux station

Snort

Figure 3.2: Components of the proposed SIP botnet detection system.

∙ SIP communications, i.e., Command and Control communications are captured by the

monitoring engine.

∙ Logs collected from SIP communications are transferred into feature vectors.

∙ A similarity algorithm classifies users based on their feature vectors. This classification

results in one or more groups of similar users.

∙ Similar users are identified as suspected bots. Then the SIP botnet Controllers are

identified based on a directed graph representation of the suspected bot communica-

tions.

∙ Both lists of suspected bots and controllers are reported to the administrator.

The following sections provide more details on the above steps.

3.2 The Monitoring Engine

The monitoring Engine captures SIP traffic and logs it to a central database server. The

monitoring engine consists of monitoring and logging agents, and a MySQL database server.
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# $Id: local.rules,v 1.11 2004/07/23 20:15:44 bmc Exp $
# ----------------
# LOCAL RULES
# ----------------

# Definitions:
portvar SIP 5060

# Catch C&C:
#
# 1. Catch any SIP communications from the monitored network.
log udp $HOME_NET any -> any $SIP (sid:100000;)

# 2. Catch any SIP communications to the monitored network.
log udp !$HOME_NET any -> $HOME_NET $SIP (sid:200000;)

Figure 3.3: Snort rule configuration to capture SIP traffic.

In order to eliminate any potential overhead on network routers, we propose to setup the

monitoring engine on a standalone system. As shown on Figure 3.1, the traffic can be

directed to our monitoring engine by installing a network TAP without imposing any risk

or overhead on the network. A TAP is a hardware layer device that provides access to a

traffic without imposing any overhead on the network and often used by intrusion detection

systems. For the purpose of the monitoring and logging functions, we use Snort, which

is an open source intrusion detection system [23]. Capturing the whole packet by snort is

necessary for our work, as tracking SIP sessions relies on some SIP headers information.

Snort can be installed on a standalone machine and supports logging to MySQL server.

We applied a set of Snort rules to capture any SIP communications coming in or out the

monitored network. These rules are listed in Figure 3.3.

Snort listens on the network interface and logs any captured traffic to a central MySQL

database server. The MySQL database is installed on another standalone machine to serve

as a central database server, in case there are more than one logging agents. A customized

database is created to receive the recorded traffic, following instructions suggested by Snort

team.
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W= 60min

S= 15min

Figure 3.4: The time window W slides forwards for S min.

3.3 The Correlation and Detection Engine

3.3.1 Representing user SIP sessions

Constructing SIP sessions requires at least the value of the Call-id field [14]. Tracking the

source/destination IP and port is not useful, because SIP uses port 5060 by default for both

source and destination.

In order to measure the similarity between users, we should be able to measure the

similarity between users’ activities. Therefore, it is important to represent the semantic

of user activities by series of unique features. To do that, we need first to identify such

features, and extract them from the raw session representations. The list of unique features

that we choose are:

∙ Duration of the session in seconds.

∙ Total size of the session in bytes.

∙ Number of packets in the session.

∙ Average Bytes per second (Bps) in the session.

∙ Average Bytes per packet (Bpp) in the session.

We transfer the extracted features into a Feature Vector (FV). We collect the feature

vectors of all SIP sessions conducted by each user during a time window W . A set of user

sessions during W are arranged in a Feature Stream (FS). The feature stream is a matrix

representation holding all the feature vectors, as shown in Figure 3.5. The time window W

consists of smaller and equal size of sliding windows S. The time window W moves forward

periodically by S minutes, as shown in Figure 3.4. At the end, the users that have sessions

during W are represented by their feature streams.
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Figure 3.5: SIP sessions during a time window W are represented by a Feature Stream (FS).
Each SIP session is represented by a Feature Vector (FV).

The functionality details of the Correlation and Detection engine are on the following

subsections, but can be summarized as follows:

∙ Detecting similar users who are active during the past time window W , by measuring

the similarity between them.

∙ The lists of similar users are identified as suspected bots since bots tend to behave in

similar or correlated manner [6, 22].

∙ The list of potential controllers is generated based on that.

∙ Both lists are reported to the network administrator.

The network administrator put the list of the suspected bots in the watch list of his

network detection system. As soon as a suspected bot initiates what is classified as botnet

malicious activity such as spamming, phishing, and denial of service attack [2, 3], then the

network administrator can confirm the identity of that suspected bot. As an extension

to the work of this project, monitoring the malicious activities can be integrated into the

proposed system.

3.3.2 Measuring Similarity among users

The similarity between two sessions are measured by the normalized euclidean distance

between their feature vector representations FV1 and FV2. If FV1 represents a feature

vector for user1, and FV2 represents a feature vector for user2, then the normalized euclidean

distance between the two feature vectors is calculated as:
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D(FV2, FV1) =

√

√

√

⎷

f
∑

i=1

(
∣FV2[i]− FV1[i]∣

FV2[i] + FV1[i]
)2 (3.1)

where f is the number of features in a feature vector. The euclidean distance has been

normalized to bound the distance to a maximum value of f [5]. Two sessions are considered

similar if the distance between them is ≤ �. � is a threshold used to measure the distance

between two sessions.

The similarity between two users U1 and U2 is measured by calculating the Jaccard

index between their feature stream representations FS1 and FS2, also known as Jaccard

similarity coefficient, as follows:

J(U1, U2) =
∣FS1 ∩ FS2∣

∣FS1 ∪ FS2∣
(3.2)

∣FS1 ∪ FS2∣ = ∣FS1 ∩ FS2∣+ ∣FS1ΔFS2∣ (3.3)

To measure the size of the intersection set, we count the similar feature vectors between

the two users. To find out the similar feature vectors, we measure the distance between

them. Therefore, if each user has a maximum of M feature vectors, then the normalized

euclidean distance is calculated M2 times between all feature vectors in both users. This

means calculating the distance between each feature vector in one user with all feature

vectors in the other one. The size of the Union set is calculated as shown in Eq.(3.3), which

includes the size of the intersection set and the total number of dissimilar feature vectors in

both users.

As shown in Figure 3.6, the more two users have in common, the more similar they

are. Two users are considered similar if the Jaccard index value is ≥ �. � is a threshold

used to measure the similarity between two users. The process of measuring the similarity

between all users is a combination without repetition, also called Binomial Coefficient,

where N=number of users, r=2 users, and the number of the required similarity checks is

CN
2 = N×(N−1)

2 , So generally speaking, the total time complexity of the proposed algorithm

is:

CN
2 =

N × (N − 1)

2
×M2 = O(N2M2) (3.4)

where N is the number of users, and M is the number of user sessions.
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In common

Figure 3.6: Graphic Representation of the similarity between users. For two users User-1
and User-2, the more feature vectors they have in common, the more similar they are to
each other.

In addition to that, The proposed algorithm is implemented in two modes; the normal

mode which what we have explained before, and means that, at every sliding window S, the

system constructs and compares the user sessions of the past time window W minutes. The

time complexity of the normal mode is shown in Eq.(3.4). Figure 3.7 shows a pseudocode of

the normal mode implementation. The second is the incremental mode, where the system

mainly compares only the recent users and sessions from the new S window with the available

users and sessions from the past W . Since S is typically much smaller than W , and the

amount of new data is only S
W

of the full amount of data duringW , then the time complexity

of the incremental mode is much smaller too. The time complexity of the incremental mode

is O(( S
W
)2N2M2), where ( S

W
) represents the proportional amount of the new data during

S to the total amount of data during the whole W . Figure 3.8 shows a pseudocode of the

incremental mode implementation.

We conducted some experiments to evaluate the time required to measure the similarity

between users. The computations took place on a laptop with 2.4GHz CPU and 2GB RAM.

The results in Figure 3.9 show that the computations can easily be performed in both modes

by any reasonable servers. The results show too that the incremental mode perform much

better than the normal mode. Figure 3.9 shows under the normal cost, that the average

execution time is about 1min, when the number of active sessions is about 6500, i.e., 9sec

for each 1000 sessions. The figure shows also that the execution time is about 12.8min,

when the number of active sessions is 32000, i.e., ≈ 23.5sec for each 1000 sessions, which

means a 2.3 times the time required to process 1000 sessions in the first case. On the other
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While running do

Initialize all data structures

Read IP flows for the past W min
Create/Update SIP sessions.

for user i = 1 to n do

for user j=i+1 to n do

if   Similarity(user[i], user[j]) > beta   then

add them to the bots list.

end if

end for

end for

Identify botnet controllers.
Report bot and controller lists to the Administrator

Sleep for S min
End while

Figure 3.7: Pseudocode of Normal mode implementation.

While running do

If the age of the buffered data  > W min then

Slide data buffers forward by S min, to get rid of old data.
end if

Read IP flows for the past S min

Create/Update SIP sessions.

for user i = 1 to n do

for user j=i+1 to n do

if   at least one user is new    then

if   Sim(user[i], user[j]) > beta   then

add it to the bots list.

end if

else if Sim_incremental (user[i], user[j]) > beta   then

add it to the bots list.

end else if

end for

end for

Identify botnet controllers.
Report bot and controller lists to the Administrator

Sleep for S min
End while

Figure 3.8: Pseudocode of Incremental mode implementation.
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hand, Figure 3.9 shows under the incremental cost that the average execution time required

to process the whole 32000 sessions together is only 50sec. The same figure shows that the

incremental mode manages to reduce the time by 68% to 93%.

3.3.3 Detecting SIP Botnet Controllers

Once we detect the lists of suspected bots, the next step is to identify botnet controllers

which helps disconnecting the Command and Control channel between the botmaster and

the bots. In order to find out the botnet controllers, we draw a directed graph based on the

sessions that carried on by the recent list of bots, where a directed edge is drawn between a

bot and a destination node if the bot initiates at least one connection to that node. Once

the directed graph is drawn, then the list of controllers are constructed from those nodes

that have in-degree > �.

Setting the value of � is a bit tricky to avoid lot of false positives and false negatives.

Knowing that controllers should receive a noticeable amount of connections from different

bots much higher than any other bots, then we preliminary set � as:

� = (
Number-of-bots

10
) (3.5)

i.e., we define the controller as a bot that has been contacted by more than 10% of the

bots.

Alternatively, we can sort the list of bots according to their in-degree values, then pick

number of nodes that have the highest in-degree, and identify them as controllers. However,

we would still need a minimum bound to avoid false positives.
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Figure 3.9: Average Execution Times at Normal & Incremental Modes when
W=1hr/2hr/3hr. Each figure shows the Average Execution Times at different number
of sessions. Number of sessions increases as number of bots increases, i.e., 10/50/100 bots.
Incremental mode shows a much less cost than the normal mode implementation.



Chapter 4

Experimental Evaluation

In order to evaluate precision of the proposed system, we built a test network at the Network

Systems Lab, SFU-Surrey. We evaluated the precision based on an emulated traffic gener-

ated by two tools: autosip and sipbot [18], and several shell scripts that help configuring

virtual interfaces, generating some configuration/contact files, and automating the process.

We measured the precision by computing the False Positive rate (FP) and False Negative

rate (FN). The experiments show that the proposed system achieves high precision with low

FP ≈ 4.7%, and almost zero FN.

4.1 Datasets

We collected data sets for our experiments from an emulated traffic generated by two C/C++

tools: autosip and sipbot [18].

4.1.1 Autosip software

Autosip emulates a realistic behavior of regular user calls by modeling various characteristics,

such as the number of on-line users should vary within time, call duration follows a log-

normal distribution [24], a user calls a friend with probability � and others with probability

(1− �), and the final variable is that a user makes on average � calls uniformly distributed

over the hour, and a call probability per minute is �
60 . The tool has two components:

a manager and a client. The manager component sets call parameters, distributes them

among users, and controls the number of on-line users during the time. The manager

25
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component comes with an interface used for configuring call parameters, providing status,

and starting/stopping the emulation. At the beginning, Autosip clients connect to the

manager and get the call parameters, then wait until they are executed, i.e., activated by

the manager. Active clients register, then sleep for a random time. Afterward, they start

calling other users using the contacts file.

4.1.2 Sipbot software

In order to generate SIP Botnet traffic, Berger et al. [18] developed Sipbot tool on top of

the Stormnet, which is a P2P botnet [25]. The Overnet protocol used in the Stormnet has

been replaced by the SIP. As a proof of concept, the authors emulate SIP Command and

Control communications by sending SIP INVITE message from the bots to the controllers,

and controllers in return respond with 603 Decline without establishing a session. Sipbot

does not have a manager component, and clients simply register then call each other.

4.2 Testbed Setup

The testbed is consisted of the following components, as shown in Figure 4.1:

∙ A MySQL Data Base (DB): A central log server installed on Ubuntu Linux station.

∙ Virtual bots: Sipbot tool has been used to emulate bot activities over SIP. It is

installed on another Ubuntu Linux station. Each bot is given a virtual IP. As part of

the monitoring engine, Snort [23] has been installed on the same station to capture

the designated SIP traffic, and log it into the central MySQL database. Opensips,

which is an open source implementation of a SIP server [26], has been installed on the

same station as well to act as a SIP Registrar for SIP bots.

∙ Virtual users: Autosip tool has been used to emulate normal user activities over SIP.

It is installed on two Ubuntu Linux stations. Each user is given a virtual IP. Same

as previous component, Snort [23] has been installed on both stations to capture the

designated SIP traffic, and log it into the central MySQL database. Opensips as well

has been installed to work as a SIP Registrar for SIP users.
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Figure 4.1: Testbed Setup

∙ Autosip management server: A server used to manage the virtual users. For sim-

pler network context, the autosip manager is installed on a separate Ubuntu station,

although it is possible to have it installed on one of the Autosip user stations.

∙ Correlation & Detection engine: It detect bots and identify controllers. It is installed

on external laptop that has access to the MySQL database server.

4.3 Performance Metrics and Experimental Setup

We measured the precision of the algorithm by two metrics:

∙ False Positive rate (FP), which is the ratio of normal users that have been identified

as suspected bots to the total number of active users.

∙ False Negative rate (FN), which is the ratio of bots that have not been detected to

the total number of active bots.

We conducted five types of experiments as follows:

∙ Set-A: Tuning thresholds � and � by fixing the time window W at 3hr and sliding

window S at 15min, while changing � and �.

∙ Four types of large scale experiments to generate different scales of data and to verify

the precision of the proposed system. The experiments lasted for 24 hours with 1000
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Index Type Description

Set-A Thresholds Tuning Tune � and �.

Set-B Compute FP/FN At 1000 users, 10 bots, and W= 2hr and 3hr.

Set-C Compute FP/FN At 1000 users, 50 bots, and W= 2hr and 3hr.

Set-D Compute FP/FN At 1000 users, 100 bots, and W= 2hr and 3hr.

Set-E Compute FP/FN At W= 1hr, 1000 users, and 10, 50, and 100 bots.

Table 4.1: Summary of the conducted experiments.

users and different number of bots proportional to the number of normal users: 10 bots

(1%), 50 bots (5%), and 100 bots (10%). We conducted the exepriments at different

sizes of time window W and sliding window S, in order to find out the optimum

window sizes required to achieve the best precision. We selected only 3 time window

sizes W= 1hr, 2hr, and 3hr. We think that the 3hr time window size represents a fair

upper bound. It is long enough to capture reasonable amount of botnet activities. We

think that any larger size would be unjustifiable, specially with the memory overhead

and the extra execution time that it would impose. The four types of experminets are

as follows, as shown in Table 4.1:

– Set-B: At 1000 users and 10 bots; we conducted two types of experiments at

window size W= 2 and 3 hours. For each time window, we conducted 6 exper-

iments at the following sliding window S: 5min, 10min, 15min, 20min, 25min,

and 30min.

– Set-C: We conducted a similar set of experiments of Set-B at 1000 users and 50

bots, but with only two sliding window S at 15min and 30min, due to the longer

execution time, as shown in Figure 3.9. Both S values represent the medium and

the maximum sliding window sizes, as 5min is too short and would increase the

overhead dramatically, and the distance between 10min and 15min is short too.

– Set-D: We conducted a similar set of experiments of Set-C at 1000 users and 100

bots.

– Set-E: At window size W= 1 hour, and sliding window S= 15min, we conducted

three types of experiments at 1000 users and 10, 50, and 100 bots.

Prior to previous types of experiments, a preliminary step has been done to verify the

correctness of the input data sets. The following subsections have more details.
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Figure 4.2: Number of users from two experiments. Both look alike and shows a dynamic
increase & decrease on the number of users during time.

4.3.1 Verifying Correctness of Input Data Sets

In order to be able to carry on the experimental evaluations as planned, we adjusted the

system to log all the required information which includes the following: �, �, window-start-

time, window-end-time, elapsed time since the beginning of the log, execution time, total

number of active users, number of active normal users, number of active bots, total number

of active sessions, number of active users sessions, number of active bots sessions, number

of false negatives, FN rate, number of false positives, and FP rate. We generated two data

sets from 1000 users and 10 bots communicating for 24 hours on two different days. The

time window W was set to 3 hours and S to 15 minutes. We shed some light previously

on the two tools that generated the input data sets. More details about their reliability is

found in [24]. What we’d like to show here is that the input data sets show a dynamic and a

consistent nature. The number of active users is shown in Figure 4.2. Both figures look alike

and the number of active users varies dynamically through time. The number of sessions is

shown in Figure 4.3. The number of active sessions increases or decreases according to the

number of active users during time.
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Figure 4.3: Number of sessions from two experiments with the same settings. Both look
alike and show increase & decrease on the number of sessions during time.

.

4.3.2 Set-A experiments: Tuning Thresholds

There are two threshold variables; � which helps determining if two sessions for two users

are alike, and � which helps determining if two users are alike. To be able to compute

FP/FN, it is necessary to have the optimum threshold values. Before tuning threshold

values, it is necessary to fix the other variables, like: time window size W at 3hr and Sliding

Window size S at 15min. The reason to why we sat W to 3hr is because some preliminary

experiments showed to us that the proposed system has achieved better precision when the

W= 3hr, so we anticipated that the best setting to tune our thresholds with is when W=

3hr. Finally we picked specific elapsed times at 30 min, 915 min, and 810 min, where FP/FN

had together the worst values.

Based on the previous two generated traffic (1000 users, 10 bots, W=3hr, and S=15m),

on specific elapsed times (30 min, 915 min, and 810 min), we first tuned � because it does

not rely on any other factors. We found that the optimum value, within [0.01 - 1.0] range,

is when �= 0.05, as shown in Figure 4.4, i.e. the difference between two similar sessions

must not exceed that. Next, we tuned � given that the optimum value of � is 0.05, and

found that the optimum value, within [0.51 - 1.0] range, is when �= 0.8, as shown in Figure

4.5, which means two users are considered similar if they have in common at least 80% of

their sessions, which is a very reasonable value that is not too high which might cause false

negatives, or too low that might cause higher false positives.
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Figure 4.4: Results for Set-A experiments (�). � has been tuned on two different times
where FP/FN were together the worst. The optimum value is 0.05 based on (a). Obviously,
false negative does not increase as � increases.
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Figure 4.5: Results for Set-A experiments (�). � has been tuned on two different times
where FP/FN were together the worst. The optimum value is 0.8 based on both graphs.
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4.4 Experiment Results for Algorithm Precision (FP/FN)

Given �=0.05 and �=0.8; the following sub sections presents the results of the four experi-

ment types that described before.

4.4.1 Set-B experiment Results

At 1000 users and 10 bots, FP/FN have been calculated at W=3hr and 2hr, for 6 different

sizes of sliding window S at 5min, 10min, 15min, 20min, 25min, and 30min. The results

show that regardless of the sliding window size, the maximum FP is 10.8%, when Win=2hr,

as shown in Figure 4.6, and it is 4.7%, when Win=3hr, as shown in Figure 4.7. On the other

hand, FN is zero when W=3hr, and demonstrates some few spikes when W= 2hr, but only

in 2-3 consecutive processing times across different sliding window sizes, which indicates

that they are related to the traffic nature at that time. Therefore the optimum precision

values are achieved at the time window W= 3hr.

4.4.2 Set-C experiment Results

At 1000 users and 50 bots, FP/FN have been calculated at W=3hr and 2hr. Only two

sliding windows S have been applied, due to a longer execution time. The two S are 15min

and 30min, which are the medium and the maximum sizes. The results show that FN is

always zero. It shows that the maximum FP is 6.3% when W= 2hr, and it is 2.7% when

W=3hr, as shown in Figure 4.8.

4.4.3 Set-D experiment Results

At 1000 users and 100 bots, FP/FN has been calculated at W= 3hr and 2hr. Only two

sliding windows S have been applied at 15min and 30min. The results show that the

maximum FP is 1.7% when W= 2hr, and it is 2.1% when W= 3hr. FN is always zero, as

shown in Figure 4.9.

4.4.4 Set-E experiment Results

To demonstrate inefficiency of setting W to 1hr, we conducted three types of experiments

at window size W= 1hr, and sliding window S= 15min for 1000 users and 10, 50, and 100

bots. Figure 4.10 shows that the maximum FP is 22% at Bots=10, and the next maximum
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is 18% at Bots=50, which means 7%-11% higher than the maximum FP on the previous

two window sizes, i.e., 2hr and 3hr. FN is 0% at Bots = 50 and 100, and unstable at Bots

= 10.

4.4.5 Results Summary of the proposed system

From all above experiments, we conclude that the proposed system performs the best when

�= 0.05, and �= 0.8. Among the three time window sizes, the proposed system achieves

the lowest FP and FN across all experiments when the window size W= 3hr, and the worst

FP and FN when the windows size W= 1hr. This is because when W= 1hr there is no

enough data to reliably estimate similarity among users. On the otherhand, various sizes

of the sliding window S that have been applied do not show any clear impact on the FP

and FN. Therefore, all of them are applicable. We notice that the FP seemed to decrease

when the number of bots increased, so we looked closer to the actual log data to have a

better understanding. Before trying to justify the previous behavior, we’d like first to clarify

that the number of active users at any time , the number of their activities, and the nature

of them are randomly and dynamically changing. They are done on this way to emulate

the normal user behaviors. Therefore, they are varied from one experiment to another.

Moreover, each behavior has different type of explanation. From a general overview of the

data, we notice that the actual number of false positives are generally close to each other

across all different number of bots experiments. What makes the false positive some times

smaller or larger is the number of active users at that time. This is the only reason that we

can think of and let the 100 bot experiments have smaller false positives. By looking to the

50 bot experiments, on the other hand, we notice that the number of active users and their

activities are generally much larger than the number of active users and their activities in

the 10 bot experiments. The 50 bot experiments took place during the day, and the 10 bot

experiments took place during the night. Having users who are more active, provides the

system with more data that leads to a better similarity measurement.
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Figure 4.6: Set-B Experiment Results at W= 2hr & Bots= 10: For 6 sliding win sizes.
Maximum FP is 10.8%, and FN is almost 0%. FP/FN values were not directly impacted
by different sliding win sizes.
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Figure 4.7: Set-B Experiment Results at W= 3hr & Bots= 10: For 6 sliding win sizes.
Maximum FP= 4.7%, and FN= 0%. The best FP values were at S= 15m and 30m, although
the difference is small. The maximum difference between the maximum FP across all sliding
window sizes is 0.05%.
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Figure 4.8: Set-C Experiment Results: Maximum FP/3hr= 2.7%, Maximum FP/2hr=
6.3%, and FN= 0%.
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Figure 4.9: Set-D Experiment Results: Maximum FP/2hr= 1.7%, Maximum FP/3hr=
2.1%, and FN= 0%.
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Figure 4.10: Set-E Experiments Results: Maximum FP/10bots= 22%, Maximum
FP/50bots= 18%. FN/50,100bots= 0% and unstable FN at Bots= 10.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

Botnets are a serious threat for the Internet, because of the huge number of potential bots

and the tremendous resources that they can provide for the remote attackers. The remote

attacker controls a botnet over a Command and Control channel. Botnets are deployed over

different kinds of protocols and come in centralized and distributed forms.

The Session Initiation Protocol (SIP) is attracting more attention and wide adoption.

In practice SIP provides many options and features that can be exploited. The SIP infras-

tructure minimizes management overhead. Therefore, SIP can be a useful Command and

Control channel protocol for botnets.

We proposed a novel approach to detect SIP botnets. Our approach looks for similar

behaviors in the Command and Control communications. We measured the similarity among

users using the Jaccard similarity coefficient. We implemented an online detection system

based on that. The proposed system is independent from the message contents, and the

sequence of events. The proposed system consists of two main components: Monitoring

engine and Correlation & Detection engine.

We conducted several sets of experiments to rigorously evaluate the system. We tuned

the two main thresholds in the botnet detection system: � and �. � is a threshold that

helps measuring the similarity between two SIP sessions, and � is a threshold that helps

measuring the similarity between two users. We found that the best value of � is 0.05 and

the best value of � is 0.8. We evaluated the precision of the botnet detection system by

calculating the false positive and false negative rates in different settings. We found that

39
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the proposed system achieves the lowest false positive and false negative when we apply the

detection algorithm over a window of 3 hours of SIP sessions.

5.2 Future Work

There are multiple areas of potential improvements for the proposed system in this project.

The first area is to improve the time complexity of calculating the similarity between two

users from O(M2) into O(M) which requires a redesigning of the Correlation and Detection

engine. We attempted to do that by maintaining a sorted list of user sessions based on

their length. We computed the similarity between two users in O(N) time by trying 3

types of similarity/distance algorithms: the Cosine Similarity, the Canberra distance, and

the Normalized Euclidean distance. At this time we calculated the difference between two

users in different way. Let us define a feature vector as a vector that represents all values of

a feature across all sessions, then let us assume that A is a feature vector for user U1 and

B is a feature vector for user U2. Therefore, the distance between U1, U2 on that specific

feature is measured by the distance between A and B. The general distance between U1,

U2 is measured by taking the average distance of all feature vector distances. The reason

behind maintaining a sorted list of sessions based on their length is to eliminate the session

time factor. Unfortunately, we could not find the right threshold settings that minimizes

both false positive and false negative. We have two challenges. The first one is to normalize

the number of sessions for each user to have an equal size of feature vectors among all users.

The second one is to improve the sort technique in order to have a better chance that each

closest feature value pair in two feature vectors A and B will face each other, which would

provide us with a more accurate distance between A and B.

Another area of improvement is to transfer the system to be a protocol independent

detection system by tracking IP flows instead of specifically tracking SIP sessions that

requires some SIP header values.

A third improvement area is handling more evasion techniques, such as using pool of

random SIP options, generating random session lengths, or generating random noise pack-

ets. These evasion techniques try to make bots look and behave differently, while still trying

to achieve various malicious activities. They worth more study and analysis although imple-

menting them is definitely not simple and requires complex programming and networking
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skills. The management overhead will extremely increase accordingly. We will briefly dis-

cuss the above evasion techniques in the following. Implementing those evasion techniques

will not necessarily result in bypassing the proposed detection system. For instance, the

proposed system does not rely on a specific SIP option, which means that applying different

SIP options is simply not enough to affect its performance. Applying different SIP options

such as using message header, message body, or user-defined header does not necessarily

result in a large distance on session’s feature vector values. From another perspective, such

evasion techniques might have negative impacts on the botnet functionality as well. For

example, generating random SIP session lengths is going to slowdown the propagation of

botmaster instructions, and receiving the feed back. Slowing down the propagation of in-

structions and feedback has a negative impact on the botnet efficiency. Another example,

is generating random noises which can be noticeable. Noise traffic can create abnormal

network patterns that might draw the attention of the anomaly based detection system that

looks for abnormal behaviors.
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