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Abstract

A random planted formula is constructed by, first, fixing a certain, planted assignment to

the variables, and then adding only clauses that are satisfied by the planted assignment. The

purpose of such approach is to generate a random-like formula that is guaranteed to have

a satisfying assignment. The random planted 3-SAT has received significant attention. In

particular, it has been shown through different approaches that when containing sufficiently

many clauses such a problem is solvable with high probability in polynomial time.

In this work we obtain a similar result for the random planted Not-All-Equal-SAT prob-

lem, which is defined in the same way except that the clauses added are the Not-All-Equal

clauses. We follow one of the aforementioned approaches by Krivelevich and Vilenchik.

Their algorithm first obtains an approximation of the planted solution by counting the

number of occurrences of each variable positively and negatively, then unassigning ‘unreli-

able’ variables and searching an assignment for then by brute force. In the case of NAE-SAT

the first step, voting, makes no sense. We show that the same result can be achieved by

solving the MAX-CUT problem in the co-occurrence graph of the formula.
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“There is no branch of mathematics, however abstract, which may not some day be

applied to phenomena of the real world”

— Nikolai Ivanovich Lobachevsky
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Chapter 1

Introduction

The Boolean satisfiability problem (SAT) is one of the most studied problems in computer

science. It has attracted much attention in recent years. Nowadays, more problems are being

solved faster by SAT solvers than any of its competitors (for example, integer and linear

programming solvers). Many problems originating from artificial intelligence, computer

engineering, software verification, graph theory, operations research, and scheduling have

various translations to SAT [53, 40, 39, 38, 54]. Due to this flexibility, many mathematical

tools developed in these areas are now available to further improve the performance of SAT-

solvers. SAT is by far the most natural of mathematical models for operations done with

computers. Modeling problems with SAT has caused many advancements in SAT to be

translated to other areas such as QBF reasoning and Pseudo-Boolean solvers [7, 17]. Many

advancements in other fields like statistical physics [48, 55] are also being incorporated to

improve the efficiency of SAT-solvers.

1.1 History and Development

Development of SAT is best understood with respect to its logic roots. Logic, as a science,

was first invented by Aristotle (384-322 B.C.). One of the applications of SAT is to show that

propositions p1, · · · , pn, with certain restrictions, do or do not logically imply proposition

q. Consider the statement:

Some A is B ∧ Some C is B → every A is C.

1
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Aristotle would give an example to show that the implication is false. For example, state-

ments “some student is computer savvy” and “some professor is computer savvy” are both

true, but every student is a professor is false. In the language of Logic, we say that the set

{some A is B, some C is B, ¬(every A is C ) },

is satisfiable. Stoics (300s-200s BC) developed a sophisticated language using symbols simi-

lar to ∧, ∨, and ¬. In the language developed by the Stoics, a proposition is the meaning of

a sentence that expresses it. For example, the sentence “some student is computer savvy” is

a proposition. Using this language, they discovered propositional inferences that have been

part of Logic ever since.

Before the 19th century, many logicians, among which Descartes, Leibniz, and Boole

are most notable, tried to develop algebraic languages to express reasoning. However, the

semantics of these languages were imprecise; Therefore rigorous reasoning systems could not

be developed through them. Some mathematicians were relatively successful. For example,

Giuseppe Peano axiomatized part of set theory, which we now call Peano arithmetic. It

was not until mid 19th century that a mathematician by the name of Gottlob Frege (1848-

1925) tried to expand the meaning of reasoning. He started a project called logicism. Its

primary goal was devising a mechanism by which one could deduce not only Logic but “all of

mathematics”. The realms of mathematics he was concerned with were set theory, number

theory, and analysis. The project was proven to be a failure. However, the contributions

made delineating the boundaries of “formal reasoning” through this project were grand [5].

Formal reasoning can be thought of as a set of rules that will decide based on a given

set of assumptions, whether a logical statement is true or false. A classic example of logical

syllogism concerning Socrates can be found in the following deduction:

All men are mortal ∧ Socrates is a man→ Socrates is mortal

Here, the assumptions are: All men share a common property of being mortal, and Socrates

is a member of the set of all men. From this, we concluded that Socrates is mortal. The set

of rules that decides whether Socrates is mortal from those assumptions can be thought of as

a computer’s reasoning. Being able to come up with a finite set of rules that can potentially

deduce all of mathematics is what logicism tried to accomplish. Any hope for logicism

was shattered when Kurt Gödel astounded philosophers, logicians, and mathematicians by

proving that there are logically determined outcomes that are not derivable by any finite
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set of rules. However, as it was proven by Gödel himself, for a subset of mathematics, first

order logic, any logically determined outcome is derivable from a finite set of rules.

1.1.1 Modern definition of satisfiability and its algorithms

By definition, decidable problems are problems that can be solved by a sequence of instruc-

tions in a finite number of steps. As Logic developed in the 20th century, the importance of

effective decidability increased. The importance of the decidability of a problem was becom-

ing apparent, and the lack of any formal definition for “process” was unsettling. Defining a

process itself became a research goal and motivated the invention of the Turing machine as a

mathematical model for solving problems. Around the same time, Alfred Tarski enunciated

the notion of satisfiability for first-order logic [50, 51]. Tarski coined the term satisfaction

to refer to the truth relative to an interpretation of Boolean variables. We will use the term

assignment instead of interpretation, and we will use the terms Boolean variables and propo-

sitions interchangeably. Essentially, Tarski defined a “satisfiable propositional formula” to

be a formula for which there is an assignment to variables that makes it true. This was the

first definition of SAT in its modern form.

In 1937, Claude Shannon defended his master’s thesis titled A Symbolic Analysis of Relay

and Switching Circuits [49]. Shannon provided many logical statements and stated that they

can be used to achieve minimal circuit representations for a problem he was considering with

regard to switches on communication channels. But he did not offer a systematic way of

doing this. While SAT was historically seen as a systematic way of using information to

deduce statements, Shannon saw it as a possibility for modeling communication channels

and simplifying them. Howard Gardner, a prominent psychologist and founder of the theory

of multiple intelligence, calls this thesis “possibly the most important, and also the most

famous, master’s thesis of the century” [5]. This is partly due to the fact that it was the

first time a practical application of SAT was discovered. This breakthrough led researchers

to focus on efficiently solving large SAT instances.

Meanwhile, computers were developing rapidly, and research in the field of automated

deduction was on the rise. In the beginning, researchers did not consider the amount of

time and space their proposed algorithms for automated deduction required to solve complex

problems, and this lead to huge failures [5]. An improvement was introduced when Davis

and Putnam proposed using CNF, conjunctive normal form, for satisfiability testing [13].

CNF, over set of variables {x1, ···, xn} is an encoding of SAT where formulas are conjunction
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of clauses C1, · · ·, Cm, where each clause Ci where 1 ≤ i ≤ m is a disjunction of literals. A

literal is either a variable xi for 1 ≤ i ≤ n, or its negation (i.e. ¬xi). This encoding of SAT

is what we use in this work. In their manuscript [13], Davis and Putnam provided all the

essentials for modern DPLL SAT solvers [14, 12].

As heuristics were being developed, due to the availability of the Turing machine as a

mathematical framework, mathematicians were working on theoretically efficient algorithms

in various problems. In 1960, Jack Edmonds coined the term “good algorithm” to mean

an algorithm that executes a polynomial number of steps with respect to the size of the

input [16]. A problem is said to be in NP, if and only if there is a nondeterministic Turing

machine that halts in a polynomial number of steps with respect to the size of every instance

of the problem, and solves that problem. Stephen Cook showed that SAT can capture the

hardness of all problems in NP [10]. That is, every instance of a problem P in NP can

be reduced with a polynomial number of steps to a SAT instance with size polynomial

in the size of the original instance of P . The problems that capture the complexity of

the class NP are referred to as NP-complete. A year after Stephen Cook published his

landmark paper on the NP-completeness of SAT, Karp showed there are other NP-complete

problems by demonstrating that SAT is reducible to them in polynomial time [31]. Among

these problems was the version of SAT in which every clause contains only 3 literals. This

problem is called 3-SAT. Some years later, Garey and Johnson also published their famous

book [21] that contained other NP-complete problems. Among the problems mentioned by

Garey and Johnson was the version of 3-SAT in which a satisfying assignment should set

at least one literal in each clause to false, i.e. a satisfying assignment should set at least

one literal to true, and at least one literal to false in each clause. This problem is called

NAE-3-SAT. The problem that is the focus of this work is NAE-E3-SAT. In this problem,

variables appear only positively (unnegated) in clauses, and an assignment to variables in

every clause should satisfy the conditions of NAE-3-SAT. This problem is also NP-complete

since NAE-3-SAT is reducible to it within polynomial number of steps (see, e.g. [23]).

1.1.2 Complete Algorithms

One class of algorithms for SAT is concerned with the guarantee of an answer (satisfiable

or unsatisfiable) upon completion. Different approaches are considered within this class of

algorithms. One approach is a systematic search in the space of possible truth assignments.

That is, checking every possible set of assignments to variables in a systematic way to find
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a satisfying one. The dominating class of solvers that use this approach are DPLL based

solvers. Another approach is to apply a simple, and complete set of inference rules on

the SAT instance until either contradiction is reached and we conclude that the instance

is unsatisfiable, or no application of these inference rules is possible and we conclude the

instance is satisfiable. The last approach discussed here is the combination of search and

inference, which is a fundamental part of all modern complete SAT-solvers.

The SAT-solvers that are called DPLL solvers are descendants of the algorithm devised

by Davis, Putnam, Logemann, and Loveland [12, 13]. Imagine a search tree that is specified

by a decision for a variable at every branch point, and consequently its leaves are truth

assignments. It is obvious that every leaf can be reached from the root by only one sequence

of decisions, and the number of these decisions, i.e. the depth of the tree, is the same as the

number of variables. In order to optimize our search for a solution we should consider the

fact that after each decision, the CNF has the potential to be simplified by either removing

a clause, which means fewer conditions to consider, or reducing the search space; meaning

that one clause is found to be unsatisfied by the partial assignment and therefore that

branch is eliminated. After every decision, some clauses have the potential of becoming

unit (i.e. only one literal left undecided in that clause, and the rest are decided to be false)

and the literal in a unit clause should be assigned true. Therefore, we build the search

tree as we go along, and the decisions are made according to which clause has become

unit and what decision at that branch point produces a partial assignment that satisfies

the unit clause. This technique is called “unit resolution” or “unit clause propagation”,

and is one of the most important techniques behind systematic search-based algorithms.

Another technique to add to the systematic search based SAT-solvers toolbox, which can

also be used in inference based algorithms, is pure literal elimination. This is essentially

eliminating unipolar variables from the instance. Pure literal elimination along with unit

clause propagation are among the most effective techniques used in DPLL SAT-solvers.

The idea behind the inference based approach is resolution. It was first introduced by

Blake in 1937 [6] and completed by Quine in 1955 [52]. Let x be a Boolean variable, and

suppose that φ is a CNF formula which contains clauses Ci and Cj . If Ci contains x and

Cj contains ¬x, we can derive the clause C = C ′i ∨ C ′j , where C ′i is a clause produced by

removing x from Ci and C ′j is a clause produced by removing ¬x from Cj . The formula

φ′ is a new CNF formula with C added. If an empty clause is obtained, the CNF is not

satisfiable. Unfortunately, resolution is not complete, i.e., it is not guaranteed to derive
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every clause that is implied by φ. However, resolution is refutation complete, i.e., it derives

the empty clause if the given φ is unsatisfiable. The idea behind inference based algorithms

is to recursively apply resolution until no application of resolution is possible, in which case

we can conclude the instance of SAT is satisfiable, or an empty clause is reached, and we

can conclude that the instance of SAT is unsatisfiable.

Modern complete SAT-solvers incorporate the ideas of search based solvers and infer-

ence based solvers to achieve ideal results. One of the most important ideas involving the

combination of these approaches is clause learning. The idea came from the realization

that certain partial assignments are sufficient to cause a conflict. By remembering these

assignments, the solver would not fall back to the same conflict. It has been shown that

clause learning reduces the search time by an exponential factor [26]. By remembering a new

clause, we essentially add to the space complexity of the problem. The question researchers

are trying to answer is when to add each clause to optimize this trade off [45].

One of the motivating factors for researchers to look beyond DPLL based algorithms

came from the work of Mitchell et al. [37]. They observed that DPLL based solvers perform

quite poorly on certain randomly generated instances. They also observed that a key trait

that would characterize this hardness is clause to variable ratio, typically denoted by α.

They demonstrated a now well known easy-hard-easy transition of randomly generated

SAT instances with respect to α. The hard region has shown experimentally to be around

α = 4.26 [36]. Discovery of this apparent hard region initiated a research on both phase

transition phenomena (see Section 1.2) and looking at new approaches of solving SAT, i.e.

incomplete algorithms. We review briefly what these approaches are, and refer the reader

to Cook and Mitchell [11] for a detailed survey on early works on incomplete algorithms.

1.1.3 Incomplete Algorithms

It is apparent from the name incomplete algorithms that these methods provide no guarantee

of a satisfying assignment or a report of unsatisfiability. Clearly, they are biased toward

satisfiable side because they will run for a limited time and either they reach a solution

and or report failure. They never output unsatisfiable as they lack the ability to reach that

conclusion. These algorithms are generally based on stochastic local search (SLS). There

have also been attempts to combine DPLL and SLS approaches to get the best of both

worlds. We do not consider these techniques. The reader is referred to [24, 35, 42, 43] for

further reading on the subject.

Siavash Bolourani
You underline recursively here. Did you mean that you want me to explain what recursively means?
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Two methods that played a key role in the development of SLS solvers were GSAT and

WalkSAT. The GSAT algorithm was first introduced by Selman et al [47]. The idea behind

GSAT is iteratively improving the assignment. The improvement is usually the best flip, i.e.

flipping the assignment to the propositional variable that will cause the maximum number

of satisfied clauses. There are also “sideway” moves, i.e. moves that retain the number of

satisfied clauses. The algorithm terminates either by reaching a satisfying assignment, or

by reaching the maximum number of steps. This was a huge success as it outperformed

the best backtracking search algorithm of the time. However, experiments showed that

GSAT spends most of its time on plateaus [20], i.e. sequence of truth assignments that are

connected together by a sequence of possible sideways moves. Some subtle modifications to

GSAT were introduced to create some noise that would eliminate plateaus, leading to the

development of WalkSAT [46]. The algorithm WalkSAT first picks a variable at random

among unsatisfied clauses. If flipping a variable does not turn any of the satisfied clauses

to an unsatisfied one, it flips this variable. Otherwise, it flips a random literal. This means

that every variable, even a variable that reduces the number of satisfied clauses if flipped,

has the potential of being chosen to be flipped. This seemingly simple idea turned out to be

very beneficial [28]. Further modifications to WalkSAT, and an adaptive noise mechanism

was later introduced by Holger Hoos in the algorithm Adaptive Novelty+ [27]. Adaptive

Novelty+ is among the best algorithms for solving satisfiable random SAT instances.

1.2 Random SAT

We say that a 3-SAT formula φ has size m iff there are m clauses in formula φ. There are

two main distributions we consider for generating random 3-SAT formulas. In the first, the

formula is chosen uniformly from all 3-SAT formulae of size αn, where n is the number of

variables and α is a positive number called the order of the formula. This distribution is

denoted by Uα,n. In the second distribution, the formula is generated by including every

3-SAT clause over n variables with probability p in it. The constant p is called the density

of the formula. We will focus more on former in this section.
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1.2.1 Thresholds

Going back to the results of Mitchell et al [37] in early 90s, we mentioned that it instigated

the research on the phenomenon of phase transitions. One of the Random 3-SAT distribu-

tions they looked at was Uα,n. Mitchell et al. provided experimental evidence that solving

randomly generated 3-SAT is relatively easy in the region up to α = 4.26 threshold, and

then it becomes sharply harder at the threshold, quickly becoming easier at larger densi-

ties. Mitchell et al. conjectured that there is a threshold c, such that for every α > c, the

probability that there is a solution for a randomly generated SAT formula by distribution

Uα,n goes to 0 as n→∞. In this case, we say that with high probability, there is no solution

to randomly generated SAT formula. Furthermore, they conjectured that with high proba-

bility there is a solution for randomly generated 3-SAT instances with α < c. Usually, c is

referred to as the satisfiability threshold. Finally, Friedgut proved that a sharp satisfiability

threshold exists for randomly generated SAT (k-SAT) formula, i.e. there is a c such that for

every ε > 0, formulas generated by Uc+ε,n have no solution with high probability and for-

mulas generated by Uc−ε,n have a solution with high probability. He thereby confirmed the

conjecture made by Mitchell et al. [37]. However, Friedgut’s result left open the possibility

that satisfiability threshold is a function of n that tends to a constant limit as n→∞. The

problem of finding the satisfiability threshold is still open. For now, the focus of research is

proving tighter upper and lower bounds for the satisfiability threshold.

One way of getting close to the satisfiability threshold is by proving upper bounds, i.e.

finding a value for α, such that with high probability a randomly generated SAT formula

is unsatisfiable. The most popular way of proving upper bounds is by resolution, i.e. by

proving that the probability that the shortest resolution proof is polynomially bounded goes

to 0 as n→∞. The first of these results was obtained by Franco and Paull [19]. They showed

that a random k-SAT formula is unsatisfiable with high probability if α > − ln(2)
ln(1−2−k)

. This

translates to α > 5.19089307 for 3-SAT [19]. The upper bound was further improved to

4.598 [32] and later to 4.506 [15].

Another way is to improve the lower bound on the threshold. These results are obtained

by devising algorithms for SAT that would find a satisfying assignment for a CNF of certain

α ratio with high probability. The first of these results was Chao and Franco’s algorithm

in 1986 called UC (unit clause propagation) [8]. They showed that UC finds an assignment

with high probability given α < 8/3. Combined with voting (discussed in section 1.2.2) and
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choosing two variables at a time, Achlioptas improved the lower bound to α = 3.145 [1]. The

rest of the results included incorporation of sophisticated spectral and greedy techniques.

The best known lower bound is currently α = 3.52 [25, 29, 30].

1.2.2 Hard satisfiable instances and voting

As far back as the early 90s, the idea of generating hard satisfiable instances has attracted

much attention. Among the distributions considered by researchers were the uniform dis-

tribution Sα,n, where a satisfiable formula of size αn is chosen at random, and the uni-

form distribution Pp,n (or planted 3-SAT) where an assignment τ is chosen at random. A

satisfiable formula is constructed by including every clause satisfied by τ in the formula

with probability p. There is no theoretical complexity result connecting the unsatisfiability

threshold to hardness. But how do we prove that the satisfiable formulas whose density

surpasses the satisfiability threshold are not hard; How do we solve these hard instances?

One idea is to give each variable a certain value by looking at the polarity of its appearances.

If the majority of its appearances are positive, then it is voted to be true, and it is voted

to be false if the majority of its appearances are not positive. We call this process voting.

Building on the idea of voting, Ben-Sasson, Bilu, and Gutfreund [4] proved that an instance

generated according to distribution Sα,n where α ≥ Θ(n log n), can be solved by a simple

voting algorithm with high probability in polynomial time.

Another approach to solving hard satisfiable instances was introduced by Flaxman [18].

He looked at a more general distribution, In,p1,p2,p3 , where an assignment is chosen at

random and then a random formula constructed by including each that has i of its literals

satisfied in the formula with probability pi. Note that by setting p = p1 = p2 = p3, the

distribution In,p1,p2,p3 is the same as Pp,n. Another example is a random distribution for NAE-

3-SAT problem by setting p3 = 0, and p1 = p2. In 1992, Papadimitriou and Koutsoupias

conjectured that there is an algorithm that solves instances from Pn,p with high probability

in polynomial time, where p ≥ d
n2 for some large constant d [33]. Flaxman devised a

highly sophisticated algorithm using spectral techniques and proved that this algorithm

finds a satisfying assignment for the formula generated by In,p1,p2,p3 with high probability in

polynomial time, given some constraints on p1, p2, and p3. The restriction p1 = p2 = p3 = d
n2

satisfies the assumptions of the proof provided d is large enough. Therefore, Flaxman’s result

proved the conjecture made by Papadimitriou and Koutsoupias.

The idea of voting for lower densities p = d
n2 was considered by Krivelevich and Vilenchik.
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They showed that highly sophisticated spectral techniques are not required to solve a planted

3-SAT with high probability in polynomial time. They came up with a simple algorithm

[34] based on voting that would achieve Flaxman’s result for distribution Pn,p, where p ≥ d
n2

for some large constant d.

1.3 Results

Planted 3-SAT and similar planted problems have an inherent asymmetry in them. In the

case of 3-SAT, the asymmetry is due to the difference in the expectation of number of

positive and negative appearances of variables given their planted value. For the planted 3-

SAT, a simple counting argument shows that if x is set to true in the planted assignment, the

probability that it appears positively in a random satisfied clause is 4/7, and the probability

that it appears negatively is 3/7. Therefore, we expect to get a “good” (close enough to

the planted one) assignment by voting. This asymmetry is why voting works very well on

3-SAT.

What if we consider a problem that is completely symmetric in its planted assignment?

NAE-E3-SAT is inherently symmetric since for any assignment with variable x set to true,

there is an assignment with variable x set to false (the complement of the planted assign-

ment). Answering this question is the concern of this work.

An important contribution of this thesis is introducing a new way to break the symmetry

in inherently asymmetric problems. The word symmetric is relative in a sense that it cor-

responds to a harmonious behavior on some specific property of the solution. For example,

in NAE-3-SAT, there is a symmetry in solution space corresponding to a single variable, i.e.

looking at a single variable, there is a symmetry in its value with respect to the solution.

Therefore, we cannot give preference to > (true) or ⊥ (false) assignments no matter what

the NAE-E3-SAT formula is. In other words, we cannot use the structure of the instance

to get information on whether the value of a single variable is true or false in the planted

solution. Note that we only talk about the assignment of a single variable in the solution.

Any other trait of the solution may have asymmetry in it. To get some intuition, in the

3-Colorability problem, while it is true that for any planted color assignment that has node

x set to Green, there is an assignment that has x set to Blue (or Red), if we look at two

nodes x and y depending on the structure of graph (instance), we can get information on

whether the two colors are the same or different. For example if they are adjacent we know
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that their colors should be different.

The problem that we tackle in this work is NAE-E3-SAT. As for NAE-3-SAT, the sym-

metry in the problem is that for every planted assignment π that assigns the variable x to

>, there is a satisfying assignment π′ that sets x to ⊥. The way this symmetry is broken

is by considering two variables together. The number of appearances of two variables in

the same clause give us information on the equality or inequality of the two variables. In

order to clearly comprehend this information, we need to introduce the formal definition of

NAE-E3-SAT problem.

Definition 1 (NAE-clause, NAE-formula, NAE-E3-SAT problem). A NAE-clause C over set

of variables V = {x1, x2, . . . , xn} is a triple of form (xi, xj , xk) where xi, xj , xk ∈ V and it

evaluates to true with respect to assignment π if and only if π(xi), π(xj), and π(xk) are not

all equal.

NAE-formula φ over set of variables V = {x1, x2, . . . , xn} is conjunction of NAE-clauses

C1, C2, . . . Cm, Ci 6= Cj for 1 ≤ i, j ≤ m, and it evaluates to true with respect to assignment

π if and only if every clause Ci, 1 ≤ i ≤ m, evaluates to true with respect to π.

NAE-E3-SAT(φ) is the problem of deciding whether there is an assignment π such that

NAE-formula φ evaluates to true with respect to π.

A planted NAE-E3-SAT instance φ over distribution PNAE
p,n is generated by first picking

at random a truth assignment τ to n variables x1, x2, . . . , xn. Next, each NAE-clause that

evaluates to true with respect to τ is included in the formula with probability p.

Using the same approach as Ben-Sasson et al [4], we devise an algorithm for solving (i.e.

finding a satisfying Boolean assignment for) planted NAE-E3-SAT problem instances over

distribution PNAE
p,n , where p ≥ d logn

n . This is made possible due to the fact that the expected

number of appearances of two variables in clauses, given that in a planted assignment they

are assigned to the same value, is at most 2
3pn, and the expected number of appearances of

two variables in clauses, given that in a planted assignment they are assigned to a different

value, is pn. This discrepancy means we can vote a pair of variables to be equal or not equal

depending on the number of their appearances together. We show that with high probability

every relationship assigned by our devised algorithm to pairs of variables is correct. It is easy

to see that every inequality is equivalent to (¬x∨¬y)∧(x∨y), which are two 2-SAT clauses.

The same can be said about equalities. The 2-SAT formula can therefore be constructed

from the relationship given to pairs. We can conclude that any assignment that satisfies
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the 2-SAT clause satisfies the inequality (or equality) and vice versa. Therefore, w.h.p,

the algorithm generates a 2-SAT formula that has the same satisfying assignment as the

NAE-E3-SAT instance. The process of generating the 2-SAT formula from the NAE-E3-SAT

resembles voting. We call this process pseudo-voting. From here on, we abbreviate PNAE
p,n to

Pp,n in this work.

Theorem 2. A pseudo-voting algorithm solves NAE-E3-SAT in polynomial time with high

probability over distribution Pp,n where p ≥ d logn
n , and d is a sufficiently large constant.

For the case of p ≥ d
n2 , using a similar approach to Krivelevich and Vilenchik [34], we

start with an initial assignment and improve it to get the satisfying assignment to the NAE-

E3-SAT formula. Due to the small density, the difference between the expected number

of appearances of two variables in clauses, given that in the planted assignment they are

assigned to the same value, and expected number of appearances of two variables in clauses,

given that in the planted assignment they are assigned to different values, asymptotically (as

n → ∞) approaches 0. Krivelevich and Vilenchik used voting to get an initial assignment,

and improved it to get a satisfying assignment. For low density NAE-E3-SAT, p ≥ d
n2 , the

expected number of appearances of any pair approaches 0 whether they are assigned to the

same value by the planted assignment or not. Therefore, pseudo-voting alone is not effective.

An important contribution of this work is devising an algorithm that uses approximation

algorithms to generate an initial assignment.

Approximation algorithms are algorithms that find approximate solutions to optimiza-

tion problems. Unlike heuristics, approximation algorithms have a proven efficient running

time and an approximation factor. The approximation factor associated with an approxi-

mation algorithm is a guarantee that the solution is optimal up to that factor. An algorithm

that has an approximation factor a is called an a-approximation algorithm. To understand

this better, let us consider NAE-E3-SAT; As we mentioned, NAE-E3-SAT is an NP-complete

problem. An optimization version of NAE-E3-SAT is the problem of finding an assignment

to a NAE-formula, that satisfies greater than or equal to the number of clauses that any

other assignment satisfies. We call this problem MAX-NAE-E3-SAT (φ). The best known

approximation factor for MAX-NAE-E3-SAT is 3
2π arccos(−1

3 ) ' 0.91226 [56], i.e., if the

maximum number of clauses satisfiable by any assignment is max, then the algorithm guar-

antees that it will find an assignment that satisfies greater than or equal to 0.91226×max

clauses. Building on the idea of voting, we use an algorithm that guarantees a slightly
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weaker approximation factor for MAX-NAE-E3-SAT, i.e. approximation factor of 0.8785.

This approximation is obtained by applying the approximation algorithm of Goemans and

Williamson [22] to the translation of the NAE-E3-SAT instance to a MAX-CUT instance.

We show that the initial assignment obtained has the potential to improve to the planted

solution.

Theorem 3. There is an algorithm that is a modified version of pseudo-voting and solves

NAE-E3-SAT with high probability, and runs in polynomial time over distribution Pp,n where

p ≥ d
n2 and d is a sufficiently large constant.

Two different algorithms are used to prove Theorem 2 and Theorem 3. However, for

obvious reasons the algorithm used for Theorem 2 is faster and easier to analyze.

1.4 Preliminaries

Before we start proving Theorem 2 and Theorem 3, it is best to introduce several standard

tools that we use throughout this work:

Definition 4 (With high probability (whp)). Let n be the size of the random instance. An

event A occurs with high probability (whp) iff

Pr[A] = f(n), and

lim
n−>∞

f(n) = 1,

where f(n) is some function of n.

In probability theory, the union bound says that for a set of events, the probability

that at least one of the events in the set happens is at most the sum of the probabilities of

individual events. More formally:

Theorem 5 (Union bound, also known as Boole’s inequality [?]). Let S = {A1, . . . , Am}
be the finite set of events Ai, for 1 ≤ i ≤ m, and m ≥ 1. We have

Pr

 ⋃
Ai∈S

Ai

 ≤ ∑
Ai∈S

Pr[Ai].
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Chernoff bounds, named after Herman Chernoff [9], are extremely useful inequalities in

computer science. They are applied to a class of random variables and give an exponential

fall-off of probability with distance from the expectation. We need the following definition

to understand the class of random variables Chernoff bounds apply to:

Definition 6 (Indicator random variable). An indicator random variable associated with

an event A, XA, is a random variable that takes the value 1 if the event A occurs and takes

the value 0 otherwise.

There are many versions of Chernoff bounds. We use the following:

Theorem 7 (Chernoff bounds). Let X1, . . . , Xn be independent indicator random variables

such that Pr[Xi = 1] = p, for some constant 0 < p ≤ 1. Let random variable X =∑
1≤i≤nXi, and E[X] = µ. The following inequalities hold:

Pr(X ≥ (1 + δ)µ) ≤ e−δ2µ, δ > 0,

Pr(X ≤ (1− δ)µ) ≤ e−δ2µ, 0 < δ < 1.



Chapter 2

Density of at least p ≥ d log n
n

Before we start analyzing the algorithm that we used to prove Theorem 2, we offer some

intuition on how the algorithm was designed and define the terminology needed. In this

section we assume instances are generated by Pp,n where p ≥ d logn
n .

Algorithm LDensity constructs a “2-SAT” formula that has a boolean assignment that is

whp the planted assignment of the NAE-E3-SAT formula given as an input to the algorithm.

To accomplish this, the algorithm adds a relationship (inequality or equality) to the “2-SAT”

formula for every pair of variables. This relationship, as described in previous section, is set

by the number of occurrences of those variables together.

Algorithm 1 LDensity(φ)

1: ψ = ∅
2: for all x, y ∈ Variables do
3: set Yx,y = number of co-occurrences of x and y in formula φ
4: if Yx,y ≥ 5

6pn then
5: ψ = ψ ∧ (x 6= y)
6: else
7: ψ = ψ ∧ (x = y)
8: end if
9: end for

10: τ = 2-SAT(Ψ)
11: return τ

15
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2.1 Intuition

The algorithm’s ultimate goal is to find an assignment that satisfies all of the clauses whp.

Pairs of variables that have different truth assignments appear in more clauses together than

pairs of variables with the same truth assignments. In fact the expectation of the number of

their appearances together differs by at least 1
3pn. For a random assignment whp the number

of variables assigned true is almost the same as the number of variables assigned false.

Therefore, by counting the number of their appearances together in NAE-clauses we can

decide whether they have the same or different values with high probability. By considering

every pair of variables, the algorithm constructs a 2-SAT formula that has the same solution

as the planted NAE-E3-SAT formula. This is very similar to the algorithm proposed by Ben-

Sasson et el [4]. The important distinction here is that since voting (considering the number

of positive occurrences of a variable in contrast to its negative occurrences) has no meaning

here, we cannot rely on voting to find the planted solution whp. We apply voting on pairs

of variables and instead of true and false, we give the pairs = and 6= values.

2.2 Correctness

In order to prove Theorem 2, we need to show that all of the relationships that the algorithm

assigns within pairs are true with respect to the planted solution to NAE-E3-SAT formula

φ. Furthermore, since the algorithm includes a relationship for every pair, there can only

be one pair of assignments (a solution and its complement are both solutions) that satisfies

all the relationships. Therefore, it is in fact the solution to NAE-E3-SAT. By showing every

“2-SAT” relationship derived evaluates to true with respect to the planted assignment, we

can conclude that the solution to the “2-SAT” formula constructed is also a solution to

the NAE-E3-SAT formula. The relationships that the algorithm assigns to variables are not

really 2-SAT clauses. They are equalities of the form (x = y), or inequalities of the form

(x 6= y). The following translation would change them into a set of 2-SAT clauses:

(τ(x) 6= τ(y)) ≡ (x ∨ y) ∧ (¬x ∨ ¬y)

(τ(x) = τ(y)) ≡ (x ∨ ¬y) ∧ (¬x ∨ y).

If we prove that the 2-SAT formula has the same solution as planted NAE-E3-SAT formula,

since 2-SAT has a polynomial time algorithm [41], Theorem 2 follows.

Siavash Bolourani
I think you have a problem with saying it is exactly the same. There might be some other solution. But the instances are large enough that whp there is only 1 solution to the formula. 
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Proposition 8. For constant d ≥ 109 and p ≥ d logn
n , algorithm LDensity finds a solution

to the random formula φ chosen by distribution Pp,n whp.

Before proving the proposition, we need to show that the number of variables assigned

> is almost the same as the number of variables assigned ⊥. The following lemma proves

this. Let τ be the planted solution and let X be a random variable counting the number of

variables x such that τ(x) = >

Lemma 9. For every 0 < ε ≤ 1
2 , whp, (1

2 − ε)n ≤ X ≤ (1
2 + ε)n.

Proof. Given that

E[X] =
n

2
.

By Chernoff bound,

Pr[X > (
1
2

+ ε)n] ≤ e−2εn,

Pr[X < (
1
2
− ε)n] ≤ e−2εn.

Since we have proven that the number of >s and ⊥s are distributed almost evenly

between variables, we are now able to bound the expected number of times the variables

appear together given that they have the same truth assignment. We will show that the

expected number of times two variables with different truth assignment appear together is

significantly larger than the expected number of times two variables with the same truth

assignments appear together in clauses. Given this difference, the algorithm can distinguish

between equal and unequal pairs, and Proposition 8 follows.

Proof. (of Proposition 8) Let Yx,y be the number of co-occurrences of x, y in clauses of

NAE-E3-SAT instance φ. The conditional expectation of Yx,y, given that ε ≤ 1
6 is as follows:

E[Yx,y|τ(x) 6= τ(y)] = pn− o(1),

E[Yx,y|τ(x) = τ(y)] ≤ (
1
2

+ ε)pn ≤ 2
3
pn.

The algorithm LDensity may work incorrectly if for some variables x,and y such that τ(x) =

τ(y), it decides that the variables have different values, or when τ(x) 6= τ(y) it decides that

they have the same value. We will show that this does not happen whp. Let R denote the
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event that the algorithm makes a wrong decision about some pair of variables. We show

that Pr[R] ≤ n−1/54.

Let Rx,y be the event that we choose a wrong relationship for x and y (equality or

inequality) and consequently wrong clauses to add to ψ. Assume first that x and y have

the same assignment in the planted solution τ . By Chernoff bound we have

Pr[Rx,y] ≤ Pr[Yx,y ≥
5
6
pn] ≤ exp

{
−
(

1
6

)2 2
3
pn

}

= exp
{
− 1

54
pn

}
≤ exp

{
− 1

54
109 log n

}
= n−109/54.

If x and y have different values in τ , the probability of Rx,y can be evaluated in the same

way.

By the union bound Pr[R] ≤
∑

x,y Pr[Rx,y] ≤ n2 × n−109/54 = n−1/54. We have assumed

that ε ≤ 1
6 , and by Lemma 9 we can now assume (1

2 − ε)n ≤ X ≤ (1
2 + ε)n. Therefore,

Pr[R or
(
(1

2 − ε)n > X or X > (1
2 + ε)n

)
] is greater than the probability that the algorithm

does not find a correct 2-SAT formula.

Pr[R or X >
(
(1

2 − ε)n or X > (1
2 + ε)n

)
] ≤ Pr[R] + Pr[

(
(1

2 − ε)n > X or X > (1
2 + ε)n

)
]

≤ n−1/54 + 2e−
1
3
n.

As n grows, both e−
1
3
n and n−1/54 approach 0.

There are at most n2 pairs of variables x, y. Therefore the algorithm runs in polynomial

time. The probability that we get any of the relationships within pairs wrong approaches 0

as n goes to infinity. This concludes the proof of the Theorem 2.
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Density of at least p ≥ d
n2

In this section we assume that an instance is chosen from the distribution Pp,n. The al-

gorithm LDensity works quite well with denser instances. However, we can easily conclude

from the previous section that for density p < logn
n algorithm LDensity may wrongly de-

termine values of variables. Moreover if p ≤ 1
n , the expected value of Yx,y, the number of

co-occurrences of x, y in clauses of NAE-E3-SAT instance φ is as follows:

E[Yx,y|τ(x) 6= τ(y)] ≥ (n− 2)× d

n2
,

E[Yx,y|τ(x) = τ(y)] ≤ (
1
2

+ ε)n
d

n2
.

This means that whp, the two variables x and y do not both appear in any clause. Therefore,

counting the number of appearances of x and y does not make sense. We will discuss in

reasonable detail how we can change the algorithm to work for smaller density.

Before we introduce the algorithm, we need some definitions. In this section we introduce

some well known problems and their connection to NAE-E3-SAT.

Definition 10 (Neighbor, support). A variable y is a neighbor of x iff y 6= x and it appears

with x in a clause. A variable x supports clause C with respect to partial assignment π iff

all three variables in C are assigned and assignment of x, π(x), is different from that of the

other 2 variables in a C.

The notion of support is a way of measuring the correctness of an assignment to a

particular variable. The following definitions are well known graph theoretic concepts that

we will use in this work:

19
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Definition 11 (MAX-CUT, Max-CUT-formula). Let G = (V,E) be an undirected graph.

A cut is a partition of the set of vertices V into two sets S and T . Any edge (u, v) ∈ E with

u ∈ S and v ∈ T is an edge that is crossing the cut. The size of a cut is the total number of

edges crossing that cut. A maximum cut is a cut that has a size greater than or equal to any

other cut. The problem of finding a maximum cut in a graph is known as the MAX-CUT

problem.

Let V be the set of Boolean variables. A cut-clause is a clause of the form (x 6= y),

where x and y are variables in V and a cut-formula is a conjunction of cut-clauses. For a

cut-formula φ, the problem of finding an assignment to Boolean variables in V , such that

the maximum number of cut-clauses are satisfied is called MAX-CUT-formula problem.

We can see now that the problem MAX-CUT-formula is equivalent to MAX-CUT.

Lemma 12. Any a-approximation algorithm for MAX-CUT, can be transformed to an a-

approximation for MAX-CUT-formula.

Proof. Suppose we have an algorithm that finds an a-approximation for MAX-CUT. For

any cut-formula with set of variables V = {x1, . . . xn} and m cut-clauses, we build a graph

G = (V ′, E) where V ′ = {x′1 . . . x′n} and (x′i, x
′
j) ∈ E if and only if there is a cut-clause

xi 6= xj in cut-formula. The size of both instances is the same (m cut-clauses vs m edges).

Now any cut to G = (V ′, E) would be a partition of V ′ into two disjoint subsets S′, T ′. Let

π be the assignment to V such that π(xi) = > if and only if x′i ∈ S′ and π(xi) = ⊥ if and

only if x′i ∈ T ′. The size of the cut S′, T ′ is K, if and only if there are K cut-clauses in the

cut-formula that are satisfied by π. Therefore the algorithm can also solve MAX-cut-formula

with approximation a.

Theorem 13 (Goemans and Williamson [22]). There is a 0.8785-approximation algorithm

for MAX-CUT.

Given the Theorem 13 and Lemma 12, we have a following corollary:

Corollary 14. There is a 0.8785-approximation algorithm for MAX-CUT-formula.

From here on, we know that a variation of Goemans-Williamson algorithm can solve

MAX-CUT-formula with an approximation ratio of 0.8785. The algorithm we use to prove

Theorem 3, algorithm SDensity, is similar to the algorithm proposed by Krivelevich and
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Algorithm 2 SDensity(φ)

1: if p ≥ 1
n3/2 then

2: p′ =
d

n3/2

p
3: θ = empty formula
4: for all clause C ∈ φ do
5: Include C in θ with probability p′

6: end for
7: else
8: θ = φ
9: end if

10: Gθ = (V,E), E = ∅
11: for all x, y ∈ V do
12: if Yx,y ≥ 3/4pn then
13: E = E ∪ (x, y)
14: end if
15: end for
16: π =GOEMANS-WILLIAMSON(Gθ)
17: for all x ∈ V do
18: Nx = number of neighbors of x
19: Nx

= = number of neighbors of x that are same as x by π
20: if Nx

= > 1
2N

x then
21: π(x) = ¬π(x)
22: end if
23: end for
24: σ = π
25: while there is x with support less than 0.99pn2 clauses do
26: σ = σ − x
27: end while
28: Let U be the set of unassigned variables in σ
29: Construct the residual graph G and find the set of its connected components {Γi}
30: ι = σ
31: for all Γi do
32: Let Ui be the set of variables in Γi
33: Let ιi be the satisfying assignment for residual formula of Γi found by trying every

combination of values
34: ι = ι+ ιi
35: end for
36: return ι



CHAPTER 3. DENSITY OF AT LEAST P ≥ D
N2 22

Vilenchik [34]. The algorithm SDensity constructs a cut-formula by assigning equalities and

inequalities to pairs of variables. If τ(x) 6= τ(y), the expected number of times variables

x, y appear together in a same clause is pn. On the other hand if τ(x) = τ(y), the expected

number of times variables x, y appear together in a same clause is roughly 1
2pn. Therefore

the algorithm regards 3
4pn as “sufficiently many” times that two variables should appear

together in order consider them unequal. By finding these inequalities, the algorithm builds a

cut-formula Gθ. We will show that whp almost every NAE-clause in θ adds three cut-clauses

to Gθ, two of which are satisfied by the planted solution. Note that the planted solution

satisfies a 2
3 portion of cut-clauses. Therefore whp any 2

3 × γ-approximation solution to Gθ,

is a γ-approximation to θ. That is, any solution that satisfies 2
3 γ̇ portion of cut-clauses in

Gθ will satisfy γ portion of NAE-clauses in θ. We have such an approximation algorithm

from [22] where γ = 0.8785. Throughout this work, we will refer to this algorithm as

Goemans-Williamson. This approximation gives us a solution that can be improved. There

is a systematic way of deciding which of the variables are assigned correctly (whp). The

algorithm finds these variables and unassigns the rest. Before we discuss the rest, we need

following definitions:

Definition 15. The graph of an NAE-formula φ with set of variable V is graph G = (V,E)

where (xi, xj) ∈ E iff there is a clause in φ containing both xi and xj. The graph of G

induced by V ′ ⊆ V is the graph G′ = (V ′, E′) where (x, y) ∈ E′ iff x, y ∈ V ′ and (x, y) ∈ E.

The residual formula w.r.t. V ′ is a sub formula φ, where only clauses that contain at least

one variable from V are included.

The next step of the algorithm SDensity is the unassignment of the variables that are

assigned incorrectly. Consider the graph induced by set of unassigned variables. If we prove

that this graph contains connected components of size Θ(log n) (whp), we can perform brute

force search to get the correct assignment.

3.1 An Overview of the algorithm

The algorithm works in 5 stages:

1. If the density of the formula φ is p > 1
n3/2 , build the formula θ with density p = d

n3/2

that has the same solutions as φ and behaves as though it is chosen from Pn, d

n3/2
and

set θ = φ otherwise (line 1 to 9).

Siavash Bolourani
I don't know if "a" is correct here or "an"
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2. Build a cut-formula from θ and approximate its maximum cut using Goemans-Williamson

(line 10 to 16).

3. For every variable check the assignments of its neighbors and decide if the assign-

ment of the variable should be changed because it is connected to too many variables

assigned the same value (line 17 to 23).

4. Unassign the variables that do not support enough clauses (line 25 to 27)

5. Construct the graph induced by the set of unassigned variables and find connected

components of the graph and the corresponding residual formulas of connected com-

ponents. Then try every combination of assignments on each residual formula to

find a satisfying assignment with respect to that residual formula. This can be done

efficiently because whp, the connected components have size Θ(log n) (line 28 to 36).

The proof of Theorem 3 is divided into 4 parts. In the first part we prove that in fact

the formula θ has the same solution(s) as φ, and we can assume that p ≤ d
n3/2 . Then we

prove that after applying the neighbor counting algorithm (line 17-23) on the approximate

solution of Goemans-Williamson we get a significant improvement on our closeness to the

planted solution compared to the solution without neighbor counting. This improvement

is significant enough so that whp only a small fraction of variables are assigned a different

value in the planted assignment τ . Furthermore, we prove that there is a small fraction

of variables that do not support “enough” clauses (i.e. less than (1 − ε)d/9 clauses) with

respect to the planted assignment τ , and if in our assignment a variable does not support

enough clauses, it is probably assigned wrong and those supporting many clauses are right.

Finally, we prove that the variables that we keep after unassigning stage (line 25-27) are a

“good” set of variables, i.e. whp they are correctly assigned, and the rest of the variables

(unassigned variables) are grouped into some small (of size Ω(log n)) isolated connected

components and applying brute force on each of those isolated components completes the

assignment τ whp.

3.2 Property of planted assignment

One of the properties of a random planted solution is that the number of variables assigned

’true’ is almost the same as the number of variables assigned ’false’. Let A denote the
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total number of clauses satisfied by a random assignment. For propositional variable x, let

Nx be the random variable denoting the number of neighbors of x in a random planted

formula, Nx
= be the random variable denoting the number of neighbors of x that have the

same assignment as x in the planted assignment, and Nx
6= be the random variable denoting

the number of neighbors of x that have different assignment from that of x in the planted

assignment. Let ζ be the fraction of variables assigned false in the planted solution. The

following proposition shows that the number of true and false variables are almost the same.

But in contrast with the previous section, the numbers need to be exact (not just ε away)

because it would be much harder to work with given that ε would appear in every statement

and we have to bound it. Moreover, since the random selection happens in two stages we

can consider E[Nx] to be a random variable depending on the portion of variables set to

true.

Proposition 16. The probability that any of the following does not happen is less that

exp{−5× 10−8n}:

(i) 0.748pn2 ≤ E[Nx] ≤ 0.752pn2

(ii) n3/9 ≤ A < n3/8

(iii) 0.499 ≤ ζ ≤ 0.501

Proof. First we prove that 0.499 ≤ ζ ≤ 0.501 with high probability. The rest of the state-

ments follow. Given that the value for each variable is picked independently,

E[ζn] =
1
2
n.

By Chernoff bound,

Pr[|ζn− 1
2
n| ≥ 0.001n] ≤ exp{−5× 10−8n}.

Given that 0.499 ≤ ζ ≤ 0.501, we can bound A as follows:(
0.501n

2

)(
0.499n

1

)
+
(

0.501n
1

)(
0.499n

2

)
≤ A ≤ 2

(
n/2
2

)(
n/2
1

)
n3/9 ≤ A ≤ n3/8.
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Let Ax be the total number of clauses with x in them. In NAE-clauses, one variable’s

assignment should be different than the other two in order for the clause to be satisfied (i.e.

2 variables are true variables and 1 is false or vice versa). Therefore, we can bound Ax by:

(
0.499n

2

)
+
(

0.499n
1

)(
0.501n−1

1

)
≤ Ax ≤

(
0.501n

2

)
+
(

0.499n−1
1

)(
0.501n

1

)
.

Considering the expectation of Nx given that Ax = m, we have that:

E[Nx|Ax = m] = 2pm− o(1).

From this we get that whp:

2×
[(

0.499n
2

)
+
(

0.499n
1

)(
0.501n−1

1

)]
p ≤ E[Nx] ≤ 2×

[(
0.501n

2

)
+
(

0.499n−1
1

)(
0.501n

1

)]
p− o(1)

0.748pn2 ≤ E[Nx] ≤ 0.752pn2.

From here on, we are going to assume that 0.499 ≤ ζ ≤ 0.501, n3/9 ≤ A < n3/8, and

0.748d ≤ E[Nx] ≤ 0.752d. The probability that these inequalities are false does not depend

on d. Therefore, we can not bound it by making d larger. So we assume that n is large

enough so that this probability is tiny.

3.3 Decreasing the density of the formula

We would like to prove that our Goemans-Williamson 0.8786-approximation to the cut-

formula produced from NAE-E3-SAT instance would result in 0.8786-approximation to NAE-

E3-SAT. If no pair appeared more than once, then every NAE-clause corresponds to 3 cut-

clauses in the cut-formula, and 0.8786-approximation to the cut-formula would result in

the 0.8786-approximation algorithm to NAE-E3-SAT instance. However, there are some

pairs that appear more than once in the NAE-SAT instance. Let N be the size of cut-

formula, and NR be the total number of repetitions of pairs. In order to show that a

0.8786-approximation to the cut-formula is a 0.8786-approximation to the NAE-E3-SAT

instance, it is sufficient to show NR ∈ o(N). Therefore any 0.8786-approximation to the

cut-formula is a 0.8786− o(1)-approximation to the NAE-E3-SAT instance. This condition

(NR ∈ o(N)) only holds whp when p ∈ o( 1
n). From the assumption of the algorithm, the

density of the NAE-formula is p ≥ d
n2 for some large d. We picked the density p = d

n3/2 so
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that it satisfies both criteria. Therefore, what we need is cut formula θ chosen from Pn, d

n3/2
.

In line 1 - 9 of the algorithm SDensity, we make sure that the density of the formula φ

is p ≤ d
n3/2 for some large constant d. The algorithm accomplishes this by choosing each

clause from φ with probability p′ =
d

n3/2

p and places it in θ. Since p′ × p = d
n3/2 , θ behaves

as though it was chosen from Pn, d

n3/2
.

If we show that for θ chosen from Pn,p where p ≥ d
n3/2 whp only 1 pair of solutions (the

solution and its complement) exists, we can conclude that this solution is also the solution

of φ and therefore whp we have not lost any information with regards to solution of φ by

constructing θ. We prove this using in Lemma 17. It will be convenient to treat the number

of variables on which two assignments τ and η disagree as the Hamming distance between

two strings of values, and denote it by Ham(τ, η).

Lemma 17. If p ≥ d
n3/2 , then whp there is only 1 pair of solutions to a planted NAE-E3-SAT

formula.

Proof. Let Ak be the event that some assignment η, k = Ham(τ, η), satisfies all the clauses

in φ. Note that if k > n/2 then Ham(τ̄ , η) < n/2, where τ̄ is the complement of the planted

solution. Since τ̄ is also a solution to the NAE-E3-SAT instance, we assume that k ≤ n/2.

Let Nk denote the total number of NAE-clauses (not just those in the formula) that are

satisfied by τ , but not satisfied by η. A clause that is satisfied by τ is not satisfied by η,

if the variable that is assigned a different value than the other two variables in the clause

is among the k variables that are different in τ and η while the other two variables in that

clause are not. Note that a clause is also satisfied by τ and not by η if the variable that

is assigned a different value than the other two variables in the clause is not among the

k variables that are different in τ and η while the other two variables in that clause are.

However, we neglect these clauses in our calculation of Nk since the number of these clauses

is negligible and will only strengthen the inequality 3.1. Let s be the number of variables x

that are different in τ and η, where τ(x) = 0. Note that k − s is the number of variables x
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that are different in τ and η, where τ(x) = 1. By Proposition 16, whp we have

Nk ≥ (k − s)
(

0.499n
2

)
− (k − s)

(
s

1

)(
0.501n

1

)
+ s

(
0.499n

2

)
− (s)

(
k − s

1

)(
0.501n

1

)
≥ k

(
0.499n

2

)
− 2s(k − s)

(
0.501n

1

)
≥ k(0.4992 × n2 − 0.501nk

2
)

≥︸︷︷︸
k≤n/2

−k(0.4992 × n2 − 0.501n2

4
)

≥ k × n2

10
.

(3.1)

We need to show ∑
1≤k≤n/2

(
n

k

)
Pr[Ak] = o(1).

Each clause is chosen by probability p ≥ d
n3/2 . Therefore, we have

∑
1≤k≤n/2

(
n

k

)
Pr[Ak] ≤

∑
1≤k≤n/2

(
n

k

)
(1− d

n3/2
)N

k

≤
∑

1≤k≤n/2

(
n

k

)
(1− d

n3/2
)
kn2

10

≤
∑

1≤k≤n/2

nk exp(−dk
10
n1/2)

≤
∑

1≤k≤n/2

exp(−dk
20
n1/2)

≤ n

2
× exp(− d

20
n1/2)

≤ exp(− d

30
n1/2).

3.4 MAX-CUT approximation

In this section, we consider the assignment π produced by the Goemans-Williamson algo-

rithm. We know that the Goemans-Williamson approximate solution satisfies more than



CHAPTER 3. DENSITY OF AT LEAST P ≥ D
N2 28

0.8786 of all clauses. The following proposition proves that this solution is in fact close to

the planted solution.

First, we consider the assignment π produced by Goemans-Williamson algorithm.

Proposition 18. Pr[Ham(π, τ) ≥ 0.15n] ≤ exp
{
−0.00001 · 0.8726pn

3

16

}
Proof. We start by showing that the number of cut-clauses contained in the cut-formula

is in the order of 3N where N is the size of formula θ (number of cut-clauses). We know

that only one occurrence of a pair in the NAE-E3-SAT formula appears in the cut-formula.

Therefore, if a pair appears k + 1 times, k of the appearances are not included in the cut-

formula. The probability that a pair is repeated more than k times is pk+1nk+1 and there

are at most n2 pairs appearing in clauses. Therefore, the expected number of pairs that

are repeated more than k times is at most pk+1nk+3. Let NR denote the total number of

repetitions of all pairs in the NAE-formula. By Lemma 17, we can assume that the density

of the formula is p ≤ d
n3/2 . We have

NR =
∑

k=1,...,n

pk+1nk+3 ≤ 2p2n4 ∈︸︷︷︸
p≤ d

n3/2

o(pn3)

If N is the number of clauses in θ then Gθ contains 3N −NR ≥ 3N − o(N) edges.

Among the 3 edges that arise from each clause at most 2 can be included into a cut.

On the other hand, the cut corresponding to the planted solution contains 2N edges, and

therefore is almost maximum one. Thus if an assignment λ does not satisfy αN clauses, it

gives rise to a cut that is smaller than the maximum one by a factor of α− o(1). Let λ be

a random assignment, and let Aλ be the event that Ham(λ, τ) > 0.15n.

E[Yλ|Aλ] ≤
(
0.853 + 0.153 + 2(0.85)2(0.15) + 2(0.85)(0.15)2

)︸ ︷︷ ︸
probability that a clause is satisfied

by random λ with Ham(λ, τ) < 0.85n

×p× n3

8

≤ 0.8726
pn3

8
.
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By Chernoff bound,

Pr[Yλ ≥ 0.8786
pn3

8
|Aλ] = Pr[Yπ ≥ (1 + 0.006)0.8726

pn3

8
|Aλ]

≤
(

exp{0.006}
(1.006)1.006

)0.8726 pn
3

8

= exp
{

0.8726
pn3

8
(0.006− 1.006 log 1.006)

}
≤ exp

{
−0.00001 · 0.8726

pn3

8

}
.

Moreover, if d is sufficiently large whp no assignment λ exists such that Yλ ≥ 0.8786, and

Aλ. Indeed, applying the union bound we have

Pr[Ham(λ, τ) ≥ 0.15n] ≤ Pr[∃λ|Yλ ≥ 0.8778
pn3

8
|Aλ]

≤ 2n exp
{
−0.00001 · 0.8726

pn3

8

}
≤ exp

{
−0.00001 · 0.8726

pn3

16

}
.

Finally, since the assignment π found by the Goemans-Williamson algorithm satisfies at

least the fraction 0.8786 of all clauses, whp Ham(π, τ) < 0.15n.

3.5 Neighbor counting

Ultimately, we would like to count the neighbors of x that are assigned the same value as x

in our Goemans-Williamson solution and then unassign the x’s that do not support enough

clauses. Before we get to the unassigning stage, we need to see why the set of variables

that the algorithm SDensity assigns wrong is small. We prove this in 2 stages. Let σ be the

assignment that the algorithm finds after the neighbor counting stage. First we prove that

the number of variables x such that |Nx
6= −Nx

=| ≤
13pn2

100 is small. In the next stage we prove

that the set of variables whose number of neighbors differ in the planted solution and σ by

more than 12pn2

100 , is also small. Therefore, the union of these two sets is a small subset of

variables.

Proposition 19. Let FNC be the number of variables x that satisfy the following inequality

Nx
6= −Nx

= ≤
13pn2

100
.

Siavash Bolourani
You mentioned that this turns out to be sqrt{n}. But that is not true. It almost has O(log(n)) neighbors.
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Let α be a constant such that exp{− d
4×105 } ≤ α ≤ 1

3000 . For p ≥ d
n2 and d ≥ 3000 we have

Pr[FNC ≥ αn/2] ≤ exp{− d

4× 105
αn}

Proof. The problem with calculating the expected value of FNC is that the random variables

Nx
6= are not independent. Therefore we need to introduce another set of random variables,

N̂x
6=, that are independent from each other and serve our purpose. This would help us

calculate the expected value of FNC .

Let T = {x1, ..., xαn/2} be a random subset of variables in V . A variable from T is

called T -influenced iff it shares more than d/1000 neighbors with other variables of T . Let

Y ⊆ T be the set of all T -influenced variables of T , F xi be the random variable counting

the number of neighbors that xi has in common with other variables of T , and F xi,xj be the

random variable counting the number of neighbors xi and xj have in common. Considering

the expectation of F xi and F xi,xj we have:

E[F xi ] ≤ E
[ αn/2∑
j=0

F xi,xj
]

=
αn/2∑
j=0

E[F xi,xj ]

≤ αn

2
p+ o(1)

≤︸︷︷︸
α≤1/3000

pn2

2000
.

By Chernoff bound, we have

Pr[F xi ≥ pn2/1000] ≤ exp{−pn2/2000}.

Calculating the expected size of Y we obtain the following:

E[|Y |] ≤
αn/2∑
i=1

Pr[F xi ≥ pn2/1000] ≤ exp{−pn2/2000}αn/2.
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By Chernoff bound, since d > 3000 (d/2500 > 1), we have:

Pr[|Y | > αn/4] ≤ exp{−(exp{pn2/2500})2 exp{−pn2/2000}αn
2
}

≤ exp{−(exp{pn2/1250}) exp{−pn2/2000}αn
2
}

≤ exp{− exp{pn2/30000}αn/2}

≤︸︷︷︸
d≥3000

exp{−d/300
αn

2
}.

Therefore we can assume that |Y | ≤ αn/4. Without loss of generality, assume that

x1, ..., xαn/4 are non-T -influenced variables of T . Let N̂xi
= be the number of neighbors of

xi that have the same truth value as xi but are not neighbors of any other variable in T .

Considering the expectation of N̂xi
= , we obtain the following:

E[N̂xi
= ] =

n∑
m=0

E[N̂xi
= |Nxi = m] Pr[Nxi = m]

=
n∑

m=0

Pr[Nxi = m]
n∑
l=0

E[N̂xi
= |Nxi = m,Nxi

= = l] Pr[Nxi
= = l|Nxi = m]

=
n∑

m=0

Pr[Nxi = m]
n∑
l=0

(1− α/2)lPr[Nxi
= = l|Nxi = m]

= (1− α/2)
n∑

m=0

Pr[Nxi = m]E[Nxi
= |Nxi = m]︸ ︷︷ ︸

m
3

=
1
3

(1− α/2)E[Nxi ].

Similarly,

E[N̂xi
6= ] =

2
3

(1− α/2)E[Nxi ].

Therefore, since α ≤ 1/3000 and by Proposition 16 we have:

E[N̂xi
6= − N̂

xi
= ] ≥ 1

3
(1− α

2
)E[Nxi ] ≥ 1

3
(1− α

2
)0.748pn2 ≥ 0.249pn2.

By the definition of N̂xi
6= and Nxi

6= , we know that for i ∈ [1, αn/4],

Nxi
6= −N

xi
= ≤ N̂

xi
6= − N̂

xi
= −

d

1000
.

This is due to the fact xi can only have at most pn2/1000 misleading neighbors (neighbors

that also have neighbors in T ) . Therefore, for Nxi
6= −N

xi
= to be less than 13pn2

100 , it suffices
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that N̂xi
6= −N̂

xi
= < 131pn2

1000 . If N̂xi
6= −N̂

xi
= < 131pn2

1000 , then at least one of N̂xi
6= or N̂xi

= has deviated

from its expectation by 0.249−0.131
2 pn2 ≥ 0.01pn2. Estimating the probability of this event,

we obtain

Pr[Nxi
6= −N

xi
= <

13pn2

100
] ≤ Pr

[
|N̂xi
6= − E[N̂xi

6= ]| ≥ 0.01pn2
]

+ Pr
[
|N̂xi

= − E[N̂xi
= ]| ≥ 0.01pn2

]
≤ 2 exp{−2× 0.0001× (0.249)pn2}

≤ exp{− pn2

100000
}.

Let F T be the event that every variable x in T has the property Nx
6= −Nx

= < 13pn2

100 and let

F T/2 be the event that from some variable xi ∈ {x1, · · · , xαn/4} has the propertyNxi
6= −N

xi
= <

13pn2

100 . Since the random variables N̂xi
6= (and random variables N̂xi

= ) are independent, they

correspond to disjoint set of variables or neighbors. We conclude:

Pr[F T ] ≤ Pr[F T/2
∣∣|Y | < αn/4] Pr[|Y | < αn/4] + Pr[|Y | ≥ αn/4]

≤ exp{−pn
2

105
αn/4}(1− exp{−pn

2

300
× αn

2
}) + exp{−pn

2

300
× αn

2
}

≤ exp{− d

2× 105
αn}.

Furthermore, by the union bound,

Pr[FNC ≥ αn/2] ≤ Pr[∃T, |T | = αn/2 and F T ]

≤
(

n

αn/2

)
exp{− d

2× 105
αn}

≤
(
2e/α

)αn
2 exp{− d

2× 105
αn}

≤ exp{αn
2

(log 2 + log(1/α)− d

105
)}

≤︸︷︷︸
α>exp{− d

4×105
}

exp{− d

4× 105
αn}.

We have proven that whp the number of neighbors of a variable x that in the planted

solution τ have a different value than τ(x) is significantly larger that the number of neighbors

that have the same value in the planted solution for most variables. Furthermore, we have

proven that whp Goemans-Williamson algorithm gives us a solution that is close to the

planted solution (Ham(π, τ) < 0.15n). Now, we would like to show that after the neighbors

counting step whp only a sublinear number of wrongly assigned variables remains.
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Proposition 20. Let σ be the assignment obtained after line 25 of the algorithm SDensity.

Then for any constants α and d such that max{exp{−d/4800}, 3000
d } < α < 1

500 and d ≥
70000 (recall that we assume p ≥ d

n2 ),

Pr[Ham(σ, τ) ≥ αn] ≤ exp{−d× 10−10αn}.

We prove the proposition in the rest of this section. Let π be the assignment generated

in line 16 of the algorithm. Recall that Nx
= and Nx

6= denote the number of neighbors y of the

variable x such that π(y) = π(x), and the number of neighbors of x such that π(y) 6= π(x),

respectively. Let Nx,NC
= and Nx,NC

6= be the numbers of neighbors y of variable x such that

ρ(y) = τ(y) and ρ(y) 6= τ(y), respectively. Let also Dx
NC denote the number of neighbors

of x that are different in their truth assignment in τ and π. Variable x gets the right

assignment if Dx
NC ≤ 0.12pn2 and Nx

6= −Nx
= ≤ 0.13pn2. Since

|Nx,NC
6= −Nx,NC

= | ≥ |Nx
6= −Nx

=| −
12pn2

100
≥ pn2

100
> 0,

if x is has the wrong value, then either Dx
NC > 0.12pn2 or Nx

6= − Nx
= < 0.13pn2. Let Y

be the set of variables in which Dx
NC > 0.12pn2, and Y ′ be the set of variables such that

Nx
6= −Nx

= < 0.13pn2. We have

Pr[Ham(σ, τ) ≥ αn] ≤ Pr[|Y ∪ Y ′| ≥ αn]

≤ Pr[|Y | ≥ αn/2] + Pr[|Y ′| ≥ αn/2].
(3.2)

We have already shown that Pr[|Y ′| ≥ αn/2] = Pr[FNC ≥ αn/2] ≤ exp{− d
4×105αn}. It

remains to bound Pr[|Y | ≥ αn/2]. We do this in the following lemma.

Lemma 21. Let π be the assignment returned in line 16 of the algorithm. Let DNC denote

the number of variables x in which Dx
NC ≥ 0.12pn2. For constants α and d such that

max{exp{−d/4800}, 3000
d } < α < 1

500 and d ≥ 70000 (recall that p ≥ d
n2 ), we have

Pr[DNC ≥ αn/2] ≤ exp{−10−8αn}.

Proof. By Proposition 18 we can assume that Ham(π, τ) < 0.15n. Let T = {x1, ..., xαn/2}
be a random set of variables, and let T -weak influenced variables be variables that share

more than pn2/200 neighbors with other variables of T . Let Y ⊂ T be the set of all T -

weak influenced variables of T . Recall from Proposition 19 that F xi is the random variable

counting the number of neighbors that xi has in common with variables from T . Observe,
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however, that now the set T is different. Also F xi,xj is the random variable counting the

number of neighbors that xi and xj have in common. We have

E[F xi ] ≤ E
[ αn/2∑
j=0

F xi,xj
]
≤

αn/2∑
j=0

E[F xi,xj ] ≤ αn

2
np+ o(1) ≤︸︷︷︸

α≤1/500

pn2

400
.

Bounding the probability of F xi ≥ pn2

200 we get

Pr[F xi ≥ pn2/200] ≤ exp{−pn2/500}.

Therefore,

E[|Y |] ≤
αn/2∑
i=1

Pr[F xi ≥ d/200] ≤ exp{−pn2/500}αn
2
.

From this we can calculate the chances that |Y | ≥ αn/4

Pr[|Y | > αn/4] ≤ exp{−(exp pn2/600)2 exp{−pn2/500}αn
2
}

≤ exp{− exp{pn2/600} exp{−pn2/30000}αn
2
}

≤ exp{− exp{pn2/6000}αn
2
}

≤︸︷︷︸
pn2≥70000

exp{−pn2/60
αn

2
} ≤ exp{−d/60

αn

2
}.

Therefore we can assume that |Y | ≤ αn/4. Without loss of generality assume that

{x1, ..., xαn/4} the set of non-T -weak influenced variables of T . Let π be a random assign-

ment such that Ham(π, τ) < 0.15n, as the Goemans-Williamson solution agrees whp with

more that 0.85n of the assignments of the planted solution. Let Dxi
π be defined as the

random variable counting the number of neighbors of xi that are assigned different values

in π and τ . Let D̂xi
π be the number of neighbors of variables xi that are different in π

from planted solution τ where we only count the neighbors that are not neighbors of other

variables in T . For i ∈ [1, αn/4], by definition of Dxi
π and D̂xi

π we know that Dxi
π ≤ D̂xi

π + pn2

200

because it can only have pn2/200 misleading neighbors (neighbors that also have neighbors

in T ). Note that for Dxi
π ≥ 0.12pn2, it is necessary that D̂xi

π ≥ 0.115pn2. For i ∈ [1, αn/4]
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the following holds

E[D̂xi
π ] =

n∑
m=0

E[D̂xi
π |Nxi = m] Pr[Nxi = m]

≤︸︷︷︸
π is random

0.15E[Nxi ]

≤ 0.15× 0.752pn2 ≤ 0.1128pn2.

Which implies

Pr[D̂xi
b ≥ 0.115pn2] ≤ exp{−(0.019)2(0.1128)pn2} ≤ exp{−pn2/30000}.

Let DT
π be the event that Dx

π ≥ 0.12pn2 for every variable x in T . Let T/2 ⊆ T denote the

first αn/4 of the variables of T and let DT/2
π be the event that for all x ∈ T/2, Dx

π ≥ 0.08pn2.

Now, since D̂xi
π and D̂

xj
π for i 6= j are independent,

Pr[DT
π ] ≤ Pr[DT/2

π ||Y | < αn/4]× Pr[|Y | < αn/4]] + Pr[|Y | ≥ αn/4]

≤ exp
{
−(pn2/30000)

αn

4

}
(1− exp{− d

60
× αn

2
}) + exp{− d

60
× αn/2}

≤︸︷︷︸
p≥ d

n2

exp{− d

500
× αn}.

This inequality holds for a random assignment π and random subset T of size αn/2. By the

union bound,

Pr[DNC ≥ αn/2] ≤ Pr[∃π∃TDT
π ]

≤
(

n

0.2n

)(
n

αn/2

)
exp{− d

500
× αn}

≤ (5e)n/5(
2e
α

)αn exp{− d

500
× αn}

≤︸︷︷︸
α≥ 3000

d

(
2e
α

)αn exp{− d

600
× αn}

≤︸︷︷︸
d>1800

exp{− d

800
× αn}.

By Proposition 18 we can assume that D < 0.15n. Then

Pr[DNC ≥ αn/2|D < 0.15n] ≤ exp{−d/800αn}.
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Making use of Proposition 18 we obtain:

Pr[DNC ≥ αn/2]

≤Pr[DNC ≥ αn/2|D < 0.15n]× Pr[D < 0.15n] + Pr[D ≥ 0.15n]

≤ exp{− d

800
αn} × (1− exp{−d× 10−9αn}) + exp{−d× 10−8αn}

≤ exp{−d× 10−9αn}.

Considering equation (3.2), by Proposition 21 and 19 we have

Pr[Ham(σ, τ) ≥ αn] ≤ exp{−d× 10−9αn}+ exp{− d
4×105αn}

≤ exp{−d× 10−10αn},

Proposition 20 is proved.

3.6 Support

Now we estimate the number of variables supporting insufficiently many clauses.

Proposition 22. For 0 ≤ ε < 1, let Xε be the random variable counting the number of

variables that support less than (1−ε)pn2/9 clauses with respect to τ . For α ∈ [exp{− ε2d
90 }, 1],

we have

Pr[Xε ≥ αn] ≤ exp{−ε
2d

10
αn}.

Proof. Let Sxτ be the number of clauses that x supports w.r.t τ . Then

E[Sxτ ] ≥ p
(

0.499n
2

)
≥ pn2

9
.

Let Fx be the event that x supports less that (1− ε)pn2/9. As it is easily seen,

Pr[Fx] ≤ exp{−ε2pn2/9}.

For any variables x and y, the clauses that x supports are disjoint from the clauses supported

by y, and clauses are chosen independently. Let {x1, ..., xαn} be a random set of variables,

Pr[Fx1 ∧ Fx2 ∧ ... ∧ Fxαn ] ≤ Pr[Fx1 ]× Pr[Fx1 ]× ...× Pr[Fxαn ] ≤ exp{− 1
18
ε2pn3α}.
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Therefore, for any set {x1, ..., xαn} of size αn, it follows that

Pr[Xε ≥ αn] ≤ Pr[∃{x1, ..., xαn}, Fx1 ∧ Fx2 ∧ ... ∧ Fxαn ]

≤
(
n

αn

)
exp{− 1

18
ε2pn3α} ≤ exp{−ε

2d

36
αn},

where the last inequality follows from α > exp{− ε2d
90 } and p ≥ d

n2 .

3.7 Unassigning variables

In this section, we consider the partial assignment obtained after the unassigning step (lines

25-27) of the algorithm. The main goal is to prove that the number of variables unassigned

is small (sublinear), and that the residual graph induced by the set of such variables has

very small connected components.

First we show that whp the algorithm does not produce a large number of unassigned

variables. Let Z denote the set of variables remaining assigned after the unassigning step

(line 28 of the algorithm).

Proposition 23. Let α < (1/10)4. If |Z| = k for some k ∈ [1, αn], then Pr[∃Z] ≤
exp{−dk

40 log(n/k)}.

Before proving this proposition, we start with a different proposition that proves that

whp there is no large set Y with the following property: there are “many” clauses that

have at least 2 variables from Y . Note that “many” actually still means a set much smaller

than the set of all variables. This proposition will be used when estimating the number

of variables unassigned in line 26, as well as a model for proving Proposition 23. We will

show that unassigning variables that support only a few clauses does not create too many

new variables that have the mentioned property. Observe that if another variable with

low support is created this means that it occurs in many clauses together with unassigned

variables; and the probability of this happening is very small.

Proposition 24. Let Y ⊆ V and f(Y ) denote the set of clauses in formula φ such that

least 2 of their variables belong to Y . Let γ ∈ (0, 1/2], γ ≥ 2/d, and α ∈ (0, γ4]. Then,

Pr[∃Y, |Y | = αn, |f(Y )| ≥ γαpn3] ≤ exp
{

1
4
γdαn logα

}
.
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Proof. For a fixed Y , let CY be the total number of clauses satisfied by τ containing at least

two variables from Y (not necessarily belonging to φ). Then

CY ≤
(
αn

2

)
(n− 2) ≤ α2n3.

Therefore,

Pr[∃Y, |Y | = αn, |f(Y )| ≥ γαpn3]

≤
(
n

αn

)(
α2n3

γαpn3

)
pγαpn

3

≤ (
en

αn
)αn
( eα2n3

γαpn3

)γαpn3

pγpαn
3

≤ (
e

α
)αn(

eα

γ
)γαpn

3

≤ exp{γαpn3(1− log γ + logα)} exp{αn(1− logα)}

≤︸︷︷︸
d≥2/γ,p≥d/n2

exp{γdαn(
3
2
− log γ +

1
2

logα)}

≤︸︷︷︸
α≤γ4

exp{(−1
4
γd logα× αn}.

Before proving Proposition 23 we need an auxiliary lemma.

Lemma 25. Let Z, |Z| = k, be the set of variables that survived the unassignment stage

and π is different than the planted solution τ on those variables. Then there are at least
pn2k

10 clauses that contains at least 2 variables from Z.

Proof. For x ∈ Z, since x survived the unassignment stage, it must support at least
(1−ε)pn2

9 ≥ pn2

10 clauses in which all the variables are assigned. Since π is wrong on x,

this means that the true value of x would make the clauses it supports (pn
2

10 of them) to

become unsatisfied. Therefore there must be another variable with a wrong assignment of

π in those clauses. Since that variable also survived the unassignment stage, it is also in Z.

Therefore there are pn2

10 clauses that x supports with respect to π and has another variable

from Z in them. Since the set of clauses that x supports is disjoint from the set of clauses

that y, a different variable in Z supports. There are at least pn2k
10 of these clauses.

Now, we are ready to prove Proposition 23.
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Proof. (of Proposition 23) Given that we know by Lemma 25 there are at least pn2k
10 clauses

that contain at least 2 variables from Z, it suffices to plug in k instead of αn and 1/2 instead

of γ in Proposition 24.

Now we turn to the last part of the proof.

3.8 Small connected components

We have proven that by the time we arrive to line 28 of the algorithm, we have a partial

assignment that matches the planted assignment on the variables that it has assigned. In this

section, we will show that the remaining variables constitute a set of isolated components

of size Ω(log n) in the graph of the formula φ. We will accomplish this by the following

Proposition:

Proposition 26. Let d and ε be such that d ≥ 70000 and ε ∈ (0, 10−10]. For any α ∈
[4 exp{− ε2d

90 }, (
ε

72)4]. Let 1 ≥ β ≥ c · logn
(nε6d)

for some constant c > 0. Let G = (Y,E′) be the

residual graph induced by Y . There is a constant s > 0, such that the probability that there

is a connected component of size βn in G is at most exp{−s · (ε6d)βn}.

Before we prove this proposition, we need some preliminaries.

Definition 27 ([34]). Let α < 1 be some small constant independent of d and let σ be an

assignment of variables of φ. We say that a set of variables C is a core of φ with respect to

σ, if the following holds:

1. |V |/|C| ≤ α;

2. Every variable in C supports at least (1−ε)pn2/9 (for some small ε to be chosen later)

clauses with respect to π in which the other two variables are also in C.

Observe that the set of variables that remain assigned after lines 17 and 18 is a core set.

The set H we construct below is a maximal core set, later we show that this is exactly the

set constructed in lines 17 and 18. Let W be the set of variables in which σ disagrees with

the planted solution τ , let B be the set of variables that support less than (1 − ε/2)pn2/9

clauses, and let H ⊆ V be constructed as follows:

1. H0 = V \(B ∪W );
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2. while there exists a variable xi ∈ Hi which supports less than (1− ε)pn2/9 clauses in

the subformula induced by Hi, define Hi+1 = Hi \ {xi};

3. let xm be the last variable removed at step 2; then set H = Hm+1.

The second property of a core set for H follows from the construction, the first property is

proven by the following lemma:

Lemma 28. Let H̄ = V \H. Let d and ε be such that d ≥ 70000 and ε ∈ (0, 10−10]. For

any α ∈ [4 exp{− ε2d
90 }, (

ε
72)4],

Pr[|H̄| ≥ αn] ≤ exp
{
−ε

2d

42
αn

}
.

Proof. Partition the variables in H̄ into variables that belong to B ∪W , and variables that

were removed in the iterative step, H̄ it = H0/H. If H̄ ≥ αn, then B ∪ W or H̄ it has

cardinality at least αn/2. Consequently,

Pr[|H̄| ≥ αn] ≤ Pr[|B ∪W | ≥ αn/2] + Pr[H̄ it ≥ αn/2
∣∣|B ∪W | ≤ αn/2].

By Proposition 20 and 22 (here we assume α/2 > exp{−d/4000}) we have

Pr[|B ∪W | ≥ αn/2] ≤ Pr[|W | ≥ αn/4] + Pr[|B| ≥ αn/4]

≤ exp{−d/2× 10−10αn}+ exp{−ε2(d/40)αn}

≤︸︷︷︸
ε≤10−10

exp{−ε
2d

41
αn}.

To bound Pr[H̄ it ≥ αn/2
∣∣|B ∪W | ≤ αn/2], observe that every variable that is removed in

iteration i (removing xi) supports at least ε/2 × d/9 clauses in which at least one variable

belongs to {x1, x2, ..., xi}∪B∪W . Consider iteration αn/2; note that we reach this iteration

only if H̄ ≥ αn. By the end of this iteration, there is a set {x1, x2, ..., xαn/2} ∪ B ∪W of

size at least αn such that its variables support at least ε
2 ×

pn2

9 ×
αn
2 ≥

ε
36 × pn2 × αn

clauses with respect to the planted solution τ containing another variable from this set. By

Proposition 24, using ε/36 instead of ρ and α < (ε/72)4, we have

Pr[H̄ it ≥ αn/2
∣∣|B ∪W | ≤ αn/2] ≤ exp{(− ε

36
× pn2 × log

1
4α
× αn} ≤ exp{εdαn}.

Combining the two inequalities we get

Pr[|H̄| ≥ αn] ≤ exp{−εdαn}+ exp{−ε2(d/41)αn} ≤ exp{−ε2(d/42)αn}.

The proposition is proved.
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Next, let T be a fixed tree on βn variables, and let T ′ be a fixed collection of clauses

such that each edge of T is induced by some clause of T ′. Let V (T ) be the set of vertices of

T . We say that an edge of T is covered by T ′ if there is a clause in T ′ that contains both

its endpoints. T ′ is a minimal no proper subset of T ′ covers T . By minimality,

|T ′| ≤ |V (T )| − 1. (3.3)

Let I be the set of clauses in the formula φ. First, we bound the following probability

Pr[T ′ ⊆ I ∧ V (T ) ∩H = ∅]. If this probability is small for every tree of size βn and every

minimal set, it would provide a bound for the probability of the existence of a connected

component of size βn in G(H̄, E). However, T ′ ⊆ I and V (T )∩H = ∅ are not independent

events because H is not a random subset of V . Therefore instead of H and V (T ), we

introduce different sets, H ′ and J , such that H̄ ′ is small enough and J is big enough, so

that

Pr[T ′ ⊆ I ∧ V (T ) ∩H = ∅] ≤ Pr[T ′ ⊆ I] Pr[J ∩H ′ = ∅].

Let J ⊆ V (T ) be a set of variables of T which appear in at most 6 clauses of T ′. Let V (T ′)

be the set of variables appearing in clauses of T ′. Let H ′ be the set constructed by the

following process:

• set W ′ to be the set of variables x such that Nx
6= −Nx

= < 13;

• set B to be the set of variables that support less than (1− ε/2)pn2/9 clauses in I;

• let H ′ ⊆ V be constructed as follows:

1. H ′0 = V \ (B ∪W ′ ∪ (V (T ′)\J));

2. while there exists a variable xi ∈ H ′i which supports less than (1−ε)pn2/9 clauses

in I[H ′i], define H ′i+1 = H ′i \ {xi};

3. let xm be the last variable removed at step 2 and set H ′ = H ′m+1.

The bound 13 here is explained by the choice of set J . If a variable x appear in at

most 6 clauses of T ′ (it is the definition of J) it means that for any set F ⊆ I, the number

of neighbors of x in F ∪ T ′ is at most 6 × 2 greater than the number of neighbors of x

in F . If the deviation is at least 13, adding T ′ to set of clauses would not change the

neighborhood structure of x, i.e., if Nx
6= − Nx

= > 13, then after adding T ′ the deviation is

Nx
6= −Nx

= > 13− 12 > 0.
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Lemma 29. Let H̄ ′ be as described above, let α, d, and ε be such that α ∈ [4 exp{−ε2d/4}, (ε/10)4],

and d ≥ 70000, and ε ∈ (0, 10−10]. Let β be a constant such that β ≤ α where βn is the size

of V (T ). Then Pr[|H̄| ≥ 4αn] ≤ exp{−(ε2pn2/24)αn}.

Proof. Note that |V (T ′) \ J | ≤ |V (T ′)| ≤ 3|V (T )| ≤ 3βn ≤ 3αn. Therefore, this lemma is

essentially Lemma 28 with αn replaced with 3αn. If |H̄ ′| ≥ 4αn, we can show that at least

one of W ′∪B and H ′it is of size at least (4αn−3αn)/2 = αn/2 and the proof of Proposition

28 is repeated. In proof of Proposition 20, we know that the difference between Nx
6= −Nx

=

with respect to π is at least 13pn2/100 − 13pn2/100 = pn2/100 ≥ d/100 > 13 (d is large

enough). Therefore it would not change anything when replacing W ′ with W .

Now we have to prove that J is big enough.

Proposition 30. J ≥ V (T )/2.

Proof. For the sake of contradiction, assume that J < V (T )/2. This means there are more

than V (T )/2 variables that appear in more than 6 clauses. Therefore, they appear in at

least 1
3 × V (T )/2× 6 = V (T ) clauses. But by definition of minimality, this cannot happen,

since V (T ′) ≤ V (T )− 1. The proposition is proved.

Let F be any set of clauses, and let H(F ) (respectively, H ′(F )) denote the set defined

analogously to the set H (respectively, H ′) for the formula induced by F . It is not necessarily

true that H(F ) ⊆ H(F ∪ T ), because some variable appearing in H(F ) might not be in

H(F ∪ T ) due to a change of the fraction of neighbors of those variables in F . However,

it is always true that H ′(F ) ⊆ H(F ∪ T ′). This would help us bound the probability

Pr[T ′ ⊆ I ∧ V (T ) ∩H = ∅] by Pr[T ′ ⊆ I]× Pr[J ∩H ′ = ∅].

Lemma 31. H ′(F ) ⊆ H(F ∪ T ′)

Proof. We will prove this lemma by induction on Hi and H ′i as they are defined above. First

we show that H ′0(F ) ⊆ H0(F ∪ T ′). If x ∈ H ′0(F ) then Nx
6= −Nx

= > 13, and x supports at

least (1 − ε)pn2/9 clauses. Since x appears in at most 6 clauses from T ′ and each clause

adds at most 2 neighbors, the number of neighbors of x that T ′ can add is at most 12. Since

Nx
6=−Nx

= > 13−12 ≥ 1, variable x is in H. Note the number of clauses x supports can only

increase.

Suppose H ′i(F ) ⊆ Hi(F ∪ T ′). If x supports at least (1− ε)pn2/9 clauses that contains

only variables from H ′i(F ), then, as Hi(F ) ⊆ Hi(F ∪ T ′) and F ⊆ F ∪ T ′, it supports the
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same clauses from F ∪ T ′ with only variables of Hi(F ∪ T ′). Hence if it is in H ′i+1(F ) it is

also in Hi+1(F ∪ T ′).

Lemma 32. Pr [(T ′ ⊆ I) ∧ (V (T ) ∩H = ∅)] ≤ Pr[T ′ ⊆ I] Pr[J ∩H ′ = ∅].

Proof. Since J ⊆ V (T ), we have:

Pr
[
(T ′ ⊆ I) ∧ (V (T ) ∩H = ∅)

]
≤︸︷︷︸

J⊆V (T )

Pr
[
(T ′ ⊂ I) ∧ (J ∩H = ∅)

]
≤ Pr[J ∩H = ∅|T ′ ⊆ I] Pr[T ′ ⊆ I].

Therefore, we only need to show that

Pr[J ∩H = ∅|T ′ ⊆ I] ≤ Pr[J ∩H ′ = ∅].

Let F ′ = F \ T ′ and let F ′′ = F ∩ T ′. We start with the right hand side:

Pr[J ∩H ′ = ∅] =
∑

F :J∩H′(F )=∅

Pr[I = F ]

≥︸︷︷︸
H′(F )⊆H(F∪T ′)

∑
F :J∩H(F∪T ′)=∅

Pr[I = F ]

≥
∑

F ′:F ′∩T ′=∅,F ′′⊆T ′,J∩H′
(

(F ′∪F ′′)∪T ′
)

=∅

Pr[I\T ′ = F ′ ∧ I ∩ T ′ = F ′′]

≥
∑

F ′:F ′∩T ′=∅,F ′′⊆T ′,J∩H′(F ′∪T ′)=∅

Pr[I\T ′ = F ′ ∧ I ∩ T ′ = F ′′].

We can now split the sum into two parts:

≥
∑

F ′:F ′∩T ′=∅,J∩H′(F ′∪T ′)=∅

∑
F ′′⊆T ′

Pr[I\T ′ = F ′ ∧ I ∩ T ′ = F ′′].

where I ∩ T ′ and I ∩ T are disjoint sets. The clauses are chosen independently, therefore

the event I\T ′ = F ′ is independent of the event I ∩ T ′ = F ′′. Hence,

≥
∑

F ′:F ′∩T ′=∅,J∩H′(F ′∪T ′)=∅

∑
F ′′⊆T ′

Pr[I\T ′ = F ′]× Pr[I ∩ T ′ = F ′′]

≥
∑

F ′:F ′∩T ′=∅,J∩H′(F ′∪T ′)=∅

Pr[I\T ′ = F ′]
∑
F ′′⊆T ′

Pr[I ∩ T ′ = F ′′]︸ ︷︷ ︸
1

≥
∑

F ′:F ′∩T ′=∅,J∩H′(F ′∪T ′)=∅

Pr[I\T ′ = F ′].
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Again, I∩T ′ and I∩T ′ are disjoint sets, and the clauses are chosen independently, therefore

the event I \ T ′ = F ′ is independent of the event T ′ ⊆ I, and Pr[I \ T ′ = F ′] = Pr[I \ T ′ =
F ′|T ′ ⊆ I]. We can rewrite the last expression as:

≥
∑

F ′:F ′∩T ′=∅,J∩H′(F ′∪T ′)=∅

Pr[I\T ′ = F ′|T ′ ⊆ I]. (3.4)

Now let us consider Pr[J ∩H = ∅|T ′ ⊆ I]. We have

Pr[J ∩H = |T ′ ⊆ I] =
∑

F :J∩H(F )=∅

Pr[I = F |T ′ ⊆ F ]

=
∑

F ′,F ′′:J∩H(F ′∪T ′)=∅,F ′∪T ′=∅,F ′′⊆T ′
Pr[I\T ′ = F ′ ∧ I ∩ T ′ = F ′′|T ′ ⊆ F ′ ∪ F ′′].

We have F ′′ ⊆ T ′, T ′ ⊆ F ′ ∪ F ′′ and I\(T ′ ∪ F ′) = ∅. From these we can conclude that it

can only be F ′′ = T ′ so we replace it with T ′ and get

=
∑

F ′:F ′∩T ′=∅,J∩H′(F ′∪T ′)=∅

Pr[I\T ′ = F ′|T ′ ⊆ I]. (3.5)

The concluding expression in (3.5) is the same as (3.4). Therefore,

Pr[J ∩H = ∅|T ′ ⊆ I] ≤ Pr[J ∩H ′ = ∅].

The following lemma proves bounds which are needed to prove of Proposition 26.

Lemma 33. (1) Let γ ∈ [0, 1] and k < n/2. Then
(
γn
k

)
/
(
n
k

)
≤ (6γ)k.

(2) Let γ ∈ [β, 1] and β ≤ α < 1
2 such that |H ′| = (1−γ)n. Then Pr[J ∩H ′ = ∅] ≤ (6γ)βn/2.

(3) Let γ be as in (2). Then, Pr[T ′ ⊂ I ∧ V (T ) ∩H = ∅] ≤ (6γ)|T
′|/2pT

′
.

(4) Let T be a fixed tree with k vertices. The number of minimal sets of NAE-clauses that

span T is at most
∑k/2

s=0

(
k
2

)
nk−2s−1.

Proof. (1) First observe that
(
γn
k

)
≤ (eγn/k)k and

(
n
k

)
≥ (n−kk )k ≥ (n/2k)k. Therefore,

(eγn/k)k/(n/2k)k ≤ (6γ)k.

(2) Since H ′ is independent of J we have

Pr[J ∩H ′ = ∅] ≤

(n−|J |
|H′|

)(
n
|H′|
) =

(n−|H′|
|J |

)(
n
|J |
) ≤ (6γ)βn/2.
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(3) By Lemma 32, Pr[J ∩ H = ∅|T ′ ⊆ I] ≤ Pr[T ′ ⊆ I] × Pr[J ∩ H ′ = ∅]. By part (2)

Pr[J ∩H ′ = ∅] ≤ (6γ)|T
′|/2. Since the clauses are chosen independently, Pr[T ′ ⊆ I] ≤ p|T ′|.

(4) Let T ′ be a minimal set. We showed that a minimal set can contain at most k − 1

clauses (inequality (3.3)). Any clause may cover up to 2 edges (otherwise T is not a tree).

Let us say we have s clauses covering 2 edges and k − 1 − 2s clauses covering 1 edge. The

total number of clauses is k − s− 1. For every clause that covers 1 edge, there are at most

n − 2 ways to choose the third variable. The clause that covers 2 edges is of course has a

only 1 way. We have at most
(
k
2

)
ways to form the clauses that cover 2 edges. The variable

s can range from 0 to k/2, as otherwise it covers more than k nodes.

Recall that the number of spanning trees of an n-vertex clique Kn is nn−2 ([2]).

We are now ready to prove Proposition 26. Before we start, note that a sum like
∑β/2

0

is always understood as a sum over all rational numbers ξ that are between 0 and β/2 of

the form ξ = d s
βn/2e where s is an integer.

Proof. (Proposition 26) It suffices to prove that the probability that there is a tree of size
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βn in the residual graph G induced by H̄ is small.

Pr[∃T, T is a tree of size βn ∈ G] ≤ Pr[∃T ′ ⊆ I, |V (T )| = βn, V (T ) ∩H = ∅]

=
1∑

ρ=β

Pr[∃T ′ ⊆ I, |V (T )| = βn ∧ V (T ) ∩H = ∅||H̄ ′| = ρn] · Pr[|H̄ ′| = ρn]

≤
1∑

ρ=β

Pr[|H̄ ′| = ρn]
βn/2∑
s=0

(
n

βn

)
· (βn)βn−2︸ ︷︷ ︸

number of trees

·nβn−2s−1

(
βn

2

)
︸ ︷︷ ︸

minimal set

· pβn−s−1 · (6ρ)βn/2︸ ︷︷ ︸
Pr[T ′⊂I∧V (T )∩H=∅]

≤
max(16 exp{−ε2d/4},β)∑

ρ=β

(6ρ)βn/2(e · pn2)βnβn/2 +
1∑

ρ=max(16 exp{−ε2d/4},β)

Pr[|H̄ ′| = ρn]

≤︸︷︷︸
Lemma 29

max(16 exp{−ε2d/4},β)∑
ρ=β

(6ρ)βn/2(e · pn2)βnβn/2 +
max (ε/72)4,β∑

ρ=max(16 exp{−ε2d/4},β)

exp{(ε2pn2/24)ρn}

+
1∑

ρ=max (ε/72)4,β

exp{−Ω(ε6d)n}

≤
max(16 exp{−ε2d/4},β)∑

ρ=β

(6ρ)βn/2(e · pn2)βnβn/2 +
max (ε/10)12,β∑

ρ=max(16 exp−ε2d/4,β)

exp{−(ε2pn2/9)βn}

+
∑

ρ=max{(ε/10)12,β}

exp{−Ω(ε6pn2)βn}

≤ n · exp{−Ω(ε6pn2)βn} ≤ exp{−Ω(ε6pn2)βn+ log n}

≤︸︷︷︸
β∈[Θ(logn/(nε6pn2)),1],p≥ d

n2

exp{−Ω(ε6d)βn}.

The proposition is proved.

Proposition 26 proves that the probability that there is a connected component of size

greater than c
ε6d

log n is at most exp{−c·s·log n}. Indeed, assume that the size of the largest

connected component is less than c
ε6d

log n. The number of combinations the algorithm has to

try for each connected components is at most 2
c
ε6d

logn ≤ n
c
ε6d and the number of connected

component is at most n so the algorithm runs in time O(n
c
ε6d

+1) after the unassigning

step (line 28 to line 36) which is polynomial. It follows that the algorithm SDensity is also

polynomial. Theorem 3 is proved.
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