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Abstract

Ordered categorical data arise in many applied settings. For example, many surveys

have responses that may be restricted to “Strongly Disagree”, “Disagree, “Neutral”,

“Agree”, and “Strongly Agree”. Here, the responses are ordinal variables. That is, the

agreeability of respondents to questions have relative ranks, but there is no measure

of exact magnitude like there is with continuous variables.

In many scenarios, questions may have correlated responses. As well, different

respondents may be spatially or otherwise correlated. Probit models are a means to

using normal latent variables in modelling ordinal responses. In this project, we take

a Bayesian approach and include both “between question” and “between respondent”

correlations in a multivariate probit model. We discuss the efficacy of this spatial

multivariate probit model.
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Chapter 1

Introduction

Ordinal data often arise when using various surveys, polls, and other similar methods

to obtain opinions and attitudes toward certain issues. In particular, some methods

attempt to gauge the strength of agreeability (or disagreeability) of respondents to

statements or questions. One commonly used scale for this purpose is the Likert scale

(Likert 1932), where respondents may be presented with a statement or question

and possible answers of “Strongly Disagree”, “Disagree”, “Neutral”, “Agree”, and

“Strongly Agree”. It is common to assign numerical scores of 1 (Strongly Disagree)

to 5 (Strongly agree) when dealing with such data.

As an example, consider responses the following two statements from a teaching

evaluation survey, where possible responses are restricted to those listed above.

• Your course was valuable and informative.

• Your instructor was effective and helpful.

Data obtained from a survey of this form would be ordered categorical data. One

temptation would be to treat data of this form as continuous and analyse them as

such. However, there are certain fundamental flaws with this technique. For one,

the difference between “Neutral” and “Disagree” might be quite dissimilar to the

1



CHAPTER 1. INTRODUCTION 2

difference between “Strongly Agree” and “Agree”. That is, we have knowledge of the

rankings of these responses, but we do not know the exact magnitude of agreeability.

Several approaches to this problem have been proposed and examined. Among

them are McCullagh (1980), where the author proposes a latent variable model that

uses an explicit measure of distance between each ordinal category. In this approach,

the unobserved variable space is partitioned using unknown cutpoints. This approach

yields maximum likelihood estimators for various parameters of interest as well as the

nuisance cutpoint parameters. Albert and Chib (1993) develop much of the current

Bayesian framework for ordered categorical data analysis using univariate probit mod-

els. Latent variables in their approach are treated as missing, and data augmentation

techniques are used to perform necessary inference.

Chib and Greenberg (1998) provide a similar Bayesian approach to the multivari-

ate probit model. In their case, they propose a method that estimates correlations

between questions using Markov chain Monte Carlo (MCMC) techniques. Lawrence

et al. (2008) propose a more efficient method of Bayesian inference by using param-

eter expansion, an algorithm that was first proposed in Liu and Wu (1999) to speed

up the convergence of MCMC algorithms.

De Oliveira (2000) develop a method of incorporating spatial dependence in the

binary regression model. In this spatial probit model, correlations between respon-

dents were incorporated into a model for binary data using indicator Kriging. Higgs

and Hoeting (2010) extend this method to ordered categorical data with more than

two categories. In the two papers, predictive algorithms were also implemented and

discussed.

In this project, we propose a method to incorporate correlations between ques-

tions and correlations between respondents into the probit regression model. This

work combines the work of Lawrence et al. (2008), where efficient modelling of “be-

tween question” correlations is done, with Higgs and Hoeting (2010), where “between

respondent” correlations are modelled using Bayesian spatial methods. In short, we
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develop the spatial multivariate probit (SMVP) model, and use Bayesian methods for

inference.



Chapter 2

Preliminaries and Notation

In this chapter, several models for ordinal responses with various correlation structures

are discussed. In particular, the univariate probit model and multivariate probit

models are examined.

2.1 Ordinal Data and Latent Variables

Ordinal data can arise in many situations. For example, surveys often have questions

where responses are limited to “Strongly Disagree”, “Disagree”, “Neither Disagree

Nor Agree”, “Agree”, and “Strongly Agree”. The Likert scale is often used to assign

numerical values to the possible responses. In this scenario, the numbers one (Strongly

Disagree) to five (Strongly Agree) could be assigned.

One approach to modelling ordinal responses is the use of latent variables. These

unobserved random variables can be useful in a mathematical sense, and can be

interpreted as follows. In a case of possible responses being restricted to the five

options above, the latent variable associated with this response can be thought of as

an “amount of agreeability”. That is, the higher the value of the latent variable, the

more agreeable the respondent is to the statement or question. Latent variables are

4



CHAPTER 2. PRELIMINARIES AND NOTATION 5

an important part of the probit models that we will be discussing.

As an example, students in a class can be asked to answer a survey regarding their

course, instructor, and other related issues. Consider again these two statements,

with possible responses restricted to those listed above.

• Your course was valuable and informative.

• Your instructor was effective and helpful.

Here, each student is a respondent with a certain attitude toward the statements.

Less agreeable students will respond with “Strongly Disagree”, slightly less agreeable

students will respond with “Disagree”, and so on. Here, the “amount of agreeability”

is a latent variable where certain values of this variable will be associated with different

ordinal values.

In this setting, attitudes towards the first and second questions could be depen-

dent. That is, a student’s attitude toward the course might be highly correlated with

his attitude toward the instructor. We call this the “between question” correlation.

As well, it seems likely that students are not all independent. For example, students

that are friendly with each other may have correlated attitudes. We call this the

“between respondent” correlation.

2.2 Regression on Latent Variables

It is quite likely that certain variables can impact the way respondents answer surveys.

One way to account for this is simply to use a regression model on our latent variables.

That is, the means of the latent variables are fit based on certain predictors. In our

example, the students attitudes may be affected by age, GPA, years of study, etc.

For example, one might expect the average 25-year-old student to have a different

attitude from the average 20-year-old student.
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In traditional regression methods, a model may look something like Y ∼ N(βX, σ2),

where Y is a response and X is a predictor. In the context of latent variable models

for ordered categorical data, the latent variable Z, not the actual response Y , is mod-

elled. That is, one may see something like Z ∼ N(βX, σ2), where the actual ordered

categorical value of each response is based on Z and associated cutpoints.

2.3 Univariate Probit Model

Consider possible responses to a single survey question with a 1-5 Likert scale. The

possible ordinal responses to this question, Y , are said to have associated probabilities

P (Y = k), for k = 1, . . . , 5. One method to model these probabilities is the univariate

probit model, where a Gaussian latent variable, Z, is regressed on predictors. The

probabilities P (Y = k), for k = 1, . . . , 5 are determined by the probability that Z lies

within certain ranges determined by cutpoints (Johnson and Albert 1999). That is,

Z ∼ N(Xβ, σ2), and P (Y1 = k) =
∫ γk
γk−1

(2π)−
1
2 (σ)−

1
2 exp

{
− 1

2σ2 (Z − βX)2
}
dZ.

If the intercept term in β and all the cutpoints γk are estimated, identifiability

issues arise. To see this, note that if a constant were added to the intercept of

the regression model and to all the cutpoints, the resulting probabilities would be

identical. The conventional means to solving this identifiability problem is to set the

first cutpoint, γ1, to be 0. As well, note that multiplying our variance parameter σ2

and all cutpoints by a constant would also yield identical probabilities. This creates

another identifiability problem, which can be solved by setting our variance to 1 (see

Lawrence et al. 2008, Higgs and Hoeting 2010).

In short, the Gaussian latent variable, Z, is regressed on predictors. Associated

cutpoint parameters on the latent space are used to determine probabilities of ob-

serving each response, the first of these cutpoints being set to zero for identifiability

reasons. As well, the variance of the latent variable is set to be 1.

As stated, Y can take on one of k ordered values, with probabilities specified by
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a Gaussian random variable. This model is appropriate in the case where questions

and respondents in a survey are assumed to be independent. However, in many

applications, the assumption of independence may not be valid. When there are

several questions, the responses may be dependent. One extension that accounts for

this dependency is the multivariate probit model, where correlations among questions

are included. In addition, similar subjects may respond in similar ways. To this end,

we will propose the spatial multivariate probit model, where spatial correlation is

combined with the multivariate probit model. To do so, we must first define some

convenient notation.

2.4 Notation and Definitions

2.4.1 Vectorization

Let vec(A) denote the vectorization of the matrix A such that the columns of A are

stacked to form a vector. If

A =

 a b c

d e f

 ,

then

vec(A) =



a

d

b

e

c

f


.

2.4.2 Kronecker Product

A Kronecker product, denoted ⊗ is a matrix multiplication operation. For a q × p

matrix A and an n×m matrix B, A⊗B yields a qn×pm matrix as follows (Petersen
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and Pedersen 2008):

A⊗B =


a11B · · · a1pB

...
. . .

...

aq1B · · · aqpB

 .

2.4.3 The Matrix Variate Normal Distribution

A matrix A is said to follow a matrix variate normal distribution with mean matrix

M and covariance matrix B ⊗ C if and only if vec(A′) follows multivariate normal

distribution with mean vector vec(M ′) and covariance matrix B ⊗ C (Gupta and

Nagar 2000). That is,

A ∼ MatVN(M,B ⊗ C)

if and only if

vec(A′) ∼ MVN(vec(M ′), B ⊗ C),

where MatVN denotes the matrix variate normal distribution and MVN denotes the

multivariate normal distributiom. Consider a random q × n matrix A with q × n

mean matrix M and covariance matrix B ⊗C, where B is q × q and C is n× n. The

associated matrix variate normal density, f(A), is stated as follows:

f(A) = (2π)−
qn
2 |B ⊗ C|−

1
2 etr

{
−1

2
B−1(A−M)C−1(A−M)′

}
,

where etr(x) = exp(trace(x)).

A useful interpretation of the individual matrices B and C is as follows. B rep-

resents the “between row” correlation, and C represents the “between column” cor-

relation. Matrix variate normal random variables exhibit a multiplicative correlation

structure. In this case, Cor(Aij, Alk) = BilCjk.



CHAPTER 2. PRELIMINARIES AND NOTATION 9

2.5 Multivariate Probit Model

Multivariate probit models (MVP) are a generalization of univariate probit models.

Instead of responses to a single question, consider a survey of q correlated questions

and n independent respondents. Let Y be the q×n matrix of responses to the survey.

Let each column, Yj, correspond to data from a single respondent, and let each row

correspond to responses to each question. That is, Yij is the response of person j to

question i. So,

Y =
[
Y1 Y2 · · ·Yn

]
.

We can denote the jth observation and associated predictors by {Yj, Xj}, for j =

1, . . . , n. Here, each Yi,j (where i denotes the question index) takes on one of ki

ordered values. That is, the ith question has ki possible responses. In the case where

each question has the same number of possible responses, ki=k. Likewise, X is a

p × n matrix of predictor values, where each row corresponds to one predictor and

each column corresponds to one respondent.

Let Zj be the corresponding q-variate normal latent variable for the jth respon-

dent. In the univariate probit model, the latent variable has associated cutpoints

that correspond with different values of Y (see Johnson and Albert 1999). Extending

this to the multivariate case, each Yj can be obtained from the latent variable Zj

as follows. Let Γ be a set of cutpoints, with each question having k + 1 associated

cutpoints. For the purposes of identifiability, γi,0 = −∞ and γi,ki = ∞ for all i. So,

if γi,c−1 < Zi,j ≤ γi,c, Yi,j = c is observed. The vector of means of Zj is determined

by the predictors and regression parameters. Specifically, let βi be a 1 × p vector of

regression coefficients associated with the ith question. The mean for Zi,j is given by

βiXj. If the matrix of regression coefficients is denoted by β = (β′1, β
′
2, . . . , β

′
q)
′, then

Zj is distributed normally with mean βXj.

For the model to be identifiable, certain parameters have to be restricted. Similar

to the univariate probit model, the first cutpoint for each question is fixed at 0. As
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well, the variances are restricted to one, which means that the covariance matrix of

Z is restricted to a correlation matrix, denoted R. In this scenario, a correlation

between questions can be modelled. The off-diagonal entries in the R matrix would

be the correlations between questions, such that Rij is the correlation between Zli

and Zlj. As such, the correlation matrix R contains the “between row” correlations

of Z. Assuming independence between respondents leads to independence between

columns. This yields a convenient expression for the correlation matrix associated

with Z, R⊗ I.

2.5.1 Inference for the Multivariate Probit Model

Recall from section 2.4.3 that:

If vec(A′) ∼ MVN(vec(M ′), B ⊗ C), then A ∼ MatVN(vec(M ′), B ⊗ C).

So, Z ∼ MatVN(βX,R⊗ I) since vec(Z ′) ∼ MVN(vec((βX)′), R⊗ I).

As such, using the multivariate probit model, the probability of observing Y can

be stated in the following manner:

P{Y1 = y1, . . . , Yq = yq} =

∫ γq,yq

γq,yq−1

. . .

∫ γ1,y1

γ1,y1−1

(2π)−
qn
2 |R⊗ I|−

1
2 etr

{
−1

2
R−1(Z − βX)I(Z − βX)′

}
dZ1 . . . dZq,

where Yi is a response to the ith question.

This model is very useful when dealing with survey data with dependent questions

and independent respondents; however, it may be necessary in practice to consider

the case of spatially dependent respondents. The matrix I in this framework indicates

respondents are independent. The case we are specifically interested in has spatial

dependence. In the next chapter, we adapt the multivariate probit model to account

for this spatial dependence.



Chapter 3

Spatial Correlations, Fitting, and

MCMC

This chapter deals with modelling multivariate ordered categorical data in the pres-

ence of spatial dependence. Gaussian processes are used to include spatial dependence

in the multivariate probit model. The aim of this approach is to incorporate both

spatial correlations between respondents and correlations between questions.

3.1 Spatial Correlations

In addition to regular predictor variables, spatial locations often arise in applied set-

tings. While the method outlined in Lawrence et al. (2008) works well for surveys

involving independent respondents, it does not have the direct ability to account for

spatially or otherwise dependent respondents. We propose an approach that accounts

for this spatial dependency.

Consider again a survey of q questions and n respondents. Yij is the response of

person j to question i, and Zij is the associated latent variable. Cor(Zi., Zk.) is the

correlation between the responses to ith and kth question. Likewise, Cor(Z.j, Z.l) is

11
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the correlation between the jth and lth respondent.

The correlation between questions can be accounted for using the correlation ma-

trix R in the multivariate probit model. Cor(Z.j, Z.l), the spatial correlation, can be

modelled using one of many spatial models, such as a Gaussian process model.

Gaussian Process Models

One often-used model in spatial statistics is the Gaussian process model (Cressie

1993). Similar to other spatial models, close neighbours are thought of as having a

higher correlation than respondents who are further apart. We take a similar view here

and model that spatial information using a stationary, isotropic covariance model. If

we let Ψ be the matrix of spatial correlations, where Ψij = Cor(Z.i, Z.j), this spatial

correlation structure can be used to account for the correlation between respondents

in our probit model.

3.2 Spatial Probit Models

Spatial probit models (SPM) are an extension of univariate probit models, except that

respondents are spatially correlated. We have considered the matrix R of between

question correlations in some models. Now consider an n × n matrix Ψ of spatial

correlations to account for “between respondent” correlations. In our presentation of

the multivariate probit model, the q × n matrix of Y (or the qn× 1 vector, vec(Y ′))

responses previously had an associated correlation matrix of R⊗ I. Here, the matrix

R is a q × q correlation matrix, where Ri,j is the correlation between questions i and

j. Spatial probit models involve a “between respondent” correlation matrix, denoted

Ψ, where Ψlk is the correlation between respondent l and k. While other authors

have not considered the multivariate probit model with spatial correlation, we will

be combining the spatial probit model and multivariate probit model to incorporate

both kinds of correlation.
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We begin by presenting the univariate probit model with spatial correlations (see

Higgs and Hoeting 2010 and De Oliveira 2000), and then propose the SMVP model

for multivariate ordinal responses with spatial correlation. Recall in the UVP model,

Z ∼ N(βX, 1). In the spatial probit model, Z ∼ MVN(βX,Ψ).

3.3 Clipped Gaussian Processes

Spatial probit models have received attention recently in the literature. De Oliveira

(2000) proposed the clipped Gaussian process (CGP) model for an application in-

volving correlated binary data. In Higgs and Hoeting (2010), the clipped Gaussian

process model was suggested for a similar problem involving ordinal data with two or

more categories.

The idea behind CGP for ordinal data is that a Gaussian process could be fit to

the latent variables. The “clipping” is the process of observing certain ordinal values

based on latent variables being within two cutpoints. The proposed method in Higgs

and Hoeting (2010) for CGP extends the model in De Oliveira (1998) to account for

more than two categories. In the next section, we propose the spatial multivariate

probit model, where both aforementioned types of correlation are incorporated.

3.4 Spatial Multivariate Probit Models

In this section, the spatial multivariate probit model is proposed. The proposed

approach is a latent variable model for multivariate ordinal data where both “between

question” and “between respondent” correlations are incorporated. In this model,

between respondent information is incorporated via spatial methods.

A key assumption made in our approach is the multiplicative correlation function,

as seen in McMillian et al. (1999) and Qian et al. (2008). That is, Cor(Zi,j, Zk,l) =

Cor(Zi., Zk.)Cor(Z.j, Z.l). Using this, we can state the correlation matrix of Z, or more
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specifically, vec(Z ′), as a Kronecker product, R ⊗ Ψ. This representation becomes

particularly useful as we try to model both kinds of correlations. We now formally

develop such a model.

Let S be a d × n matrix of spatial locations. Here, the jth column of S corre-

sponds to the jth column of Y , and d is the number of spatial dimensions. Let Ψ be

the matrix of spatial correlations obtained using spatial locations, and let ρ be the

corresponding spatial correlation parameter. Similar to Higgs and Hoeting (2010),

we use the exponential correlation Gaussian process model for our spatial correlation

structure. That is, Cor( Z.i, Z.j) = Ψij = ρ−dist(Si,Sj), where ρ is non-negative.

So, if we assume the multiplicative correlation structure such that Cor(Zij, Zlk) =

RilΨjk, we can then state the correlation matrix of vec(Z ′) as R ⊗ Ψ. If the latent

variables follow a matrix variate normal distribution, the observed data model would

be as follows:

P{Y1 = y1, . . . , Yq = yq} =

∫ γq,yq

γq,yq−1

. . .

∫ γ1,y1

γ1,y1−1

(2π)−
qn
2 |R⊗Ψ|−

1
2

etr

{
−1

2
R−1(Z − βX)Ψ−1(Z − βX)′

}
dZ1 . . . dZq,

where Yi is the response to the ith question. Here, Z is latent variable that corre-

sponds to Y , R is the correlation between questions, and Ψ is the correlation between

respondents. Our goal is to perform Bayesian inference using this SMVP model and

implement an MCMC algorithm. However, Gibbs sampling of the correlation matrix

R is problematic and drawing each individual term in R will lead to long, slowly

mixing Markov chains (Lawrence et al. 2008). To get around this issue, we will use

the parameter expansion technique, as seen in Liu et al. (1998).
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3.5 Bayesian Inference and Parameter Expansion

One issue concerning Bayesian inference in this setting is the effective sampling or

drawing of valid correlation matrices. While covariance matrices can be easily sam-

pled using the Inverse-Wishart distribution, the restriction of unit diagonal elements

creates a problem of slow or inefficient sampling. Chib and Greenberg (1998) use a

“one element at a time” approach for sampling individual correlation parameters. To

increase efficiency, Lawrence et al. (2008) propose a method to sample an uniden-

tifiable covariance matrix using Gibbs steps and then integrating out the scaling

parameters to yield an identifiable correlation matrix. This approach is a special case

of parameter expansion as seen in Liu et al. (1998) and Liu and Wu (1999).

Parameter expansion was first created to speed up convergence of MCMC algo-

rithms. However, the technique was adapted in Lawrence et al. (2008) for easy and

efficient sampling of correlation matrices in the context of MVP models. In this ver-

sion of the algorithm, the parameter space is expanded by allowing for latent variables

to have non-unit variances. This is done to allow for a Gibbs step as opposed to a

Metropolis step. Note that ordinal data are invariant to affine transformations on the

underlying latent variables and associated cutpoints. That is, affine transformations

on latent values have no impact on the actual observed ordinal data or associated

probabilities. So, after drawing from the expanded parameter space, latent values

are re-scaled so that a correlation matrix is obtained, thus mapping us back onto the

unexpanded parameter space. We adapt the technique as seen in Lawrence et al.

(2008) by including the spatial correlation matrix, Ψ.

3.5.1 Parameter Expansion in the SMVP Model

Recall that Z is the q × n matrix of latent values. To use the parameter expansion

technique, we will be apply a scale transform on the values of Z. Let the matrix V

be a q × q diagonal matrix with elements v1, . . . , vq, where all elements are positive.
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Consider the following transformation on the latent variable Z: vec(W ′) = (V
1
2 ⊗

I)vec(Z ′), where I is the n×n identity matrix. Note that since vec(Z ′) is multivariate

normal, vec(W ′) = (V
1
2 ⊗ I)vec(Z ′) must also be multivariate normal (see Petersen

and Pedersen, 2008). So, we derive the expectation and covariance matrix of vec(W ′)

as follows:

E(vec(W ′)) = (V 1/2 ⊗ I)vec((βX)′)

= vec(I(βX)′V 1/2)

= vec(X ′β′V 1/2)

= vec(X ′(V 1/2β)′).

Var(vec(W ′)) = (V 1/2 ⊗ I)(R⊗Ψ)(V 1/2 ⊗ I)

= ((V 1/2R)⊗ (IΨ))(V 1/2 ⊗ I)

= ((V 1/2RV 1/2)⊗ (IΨI))

= (V 1/2RV 1/2)⊗Ψ.

Thus, vec(W ′) ∼ MVN(vec(X ′(V 1/2β)′), (V 1/2RV 1/2) ⊗ Ψ). Using the results from

section 2.4.3, we see that W ∼ MatVN(V 1/2βX, (V 1/2RV 1/2)⊗Ψ). This transforma-

tion and subsequent substitution yields the following probability for Y :

P{Y1 = y1, . . . , Yq = yq} =

∫ √vqγq,yq
√
vqγq,yq−1

. . .

∫ √v1γ1,y1
√
v1γ1,y1−1

(2π)−
q
2 |V |−

1
2 |R⊗Ψ|−

1
2

etr

{
−1

2
(V

1
2RV

1
2 )−1(W − V

1
2βX)Ψ−1(W − V

1
2βX)′

}
dW1 . . . dWq,

where Yi is a response to the ith question. This linear transformation on Z is useful

due to invariance of the probabilities for Y despite the expansion of the parameter
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space. We seek a representation of the probabilities for Y based on the matrix variate

normal with unrestricted variances. We get exactly that if we rewrite the parameters

in the following way:

• α = V
1
2β

• θj,c =
√
vjγj,c

• Σ = V
1
2RV

1
2 .

That is, we now have a very convenient form for the probability of Y.

P{Y1 = y1, . . . , Yq = yq} =

∫ θq,yq

θq,yq−1

. . .

∫ θ1,y1

θ1,y1−1

(2π)−
q
2 |Σ⊗Ψ|−

1
2

etr

{
−1

2
Σ−1(W − αX)Ψ−1(W − αX)′

}
dW1 . . . dWq.

As noted before, the parameter set has been expanded and now includes variance

parameters which were fixed at one. As such, this model is called the expanded

parameter model. This model has a likelihood as follows:

L(α,Σ, θ) = |Σ|−
n
2 |Ψ|−

q
2 etr

{
−1

2
Σ−1(W − αX)Ψ−1(W − αX)′

}
n∏
i=1

q∏
j=1

I{θj,Yi,j−1 < Wi,j ≤ θj,Yi,j}.

In short, Wk+1|αk, θk, ρk,Σk ∼ MatVN(αkX,Σk ⊗ Ψk). We use this expanded pa-

rameter likelihood for our MCMC sampling algorithm. To implement the MCMC

algorithm, we first state our prior distribution and derive our posterior distribution

for each parameter.
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3.6 Priors and Full Conditional Posterior Distri-

butions

Each parameter has a prior distribution and an associated full conditional posterior

distribution. Where applicable, the priors used for our parameters are the same as

those used in Lawrence et al. (2008). The authors elected to use reference priors on

all parameters, and we take the same approach. The only significant difference is the

addition of the prior on ρ, where we elect to use a beta(2,2) prior for a bounded but

relatively uninformative prior on the spatial correlation parameter. In reality, more

informative priors could be used based on available information. We now derive the

full conditional posterior distributions for each parameter.

Between Question Covariance

Σ is the “between question” covariance matrix in the expanded parameter space. Let

P (Σ) ∝ |Σ|− q+1
2 , where P (Σ) is the prior distribution of Σ. Let P (Σ|...) be the full

conditional distribution of Σ. The full conditional distribution of Σ is derived as

follows:

P (Σ|...) ∝ L(α,Σ, θ,Ψ) ∗ P (Σ)

∝ |Σ|−
n+q+1

2 etr

{
−1

2
Σ−1(W − αX)Ψ−1(W − αX)′

}
.

So, given all other parameters, Σ ∼ Inverse-Wishart(n + q + 1, (W − αX)Ψ−1(W −

αX)′). As such, we have a method for Gibbs sampling of the covariance matrix on

the expanded parameter space. This will prove highly useful when rescaling is done

to map the parameters back to the original parameter space.

Regression Parameters

The matrix of regression parameters in the expanded parameter space is denoted α.

Let P (α) ∝ 1, Mα = WΨ−1X ′(XΨ−1X ′)−1, and H = XΨ−1X ′. The full conditional
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distribution of α is derived as follows:

P (α|...) ∝ L(α,Σ, θ,Ψ) ∗ P (α)

∝ etr

{
−1

2
Σ−1(W − αX)Ψ−1(W − αX)′

}
∝ etr

{
−1

2
Σ−1(−2αXΨ−1W + αXΨ−1X ′α′

}
∝ etr

{
−1

2
Σ−1(−2α(XΨ−1X ′)(XΨ−1X ′)−1XΨ−1W + α(XΨ−1X ′)α′

}
∝ etr

{
−1

2
Σ−1(MαHM

′
α − 2αHMα + αHα′)

}
∝ etr

{
−1

2
Σ−1((α−Mα)H(α−Mα)′)

}
.

So, given all other parameters, α ∼ MatVN(WΨ−1X ′(XΨ−1X ′)−1,Σ⊗(XΨ−1X ′)−1).

This is also obtained by using a multivariate normal prior and letting the variance of

the prior tend to infinity.

Latent Cutpoints

Recall that θk,c denotes the cutpoint for the expanded latent variable W such that

any W value below θk,c is associated with Y = c, and any point above θk,c has an

associated Y value of c + 1. The subscript k refers to question k. By again using a

reference prior, the full conditional distribution of θj,c can be derived as follows:

P (θk,c|...) ∝ L(α,Σ, θ,Ψ) ∗ P (θk,c)

∝
n∏
i=1

q∏
j=1

I{θj,Yi,j−1 < Wi,k ≤ θj,Yi,j}.

∝
n∏
i=1

I{θk,Yi,k−1 < Wi,j ≤ θk,Yi,k}I{θk,Yi,k < Wi,k ≤ θk,Yi,k+1
}

∝ I{(max
i
{Wi,k|Yi,k = c} < θk,c ≤ min

i
{Wi,k|Yi,k = c+ 1})}.
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Thus, given all other parameters, θk,c ∼ Unif(maxi{Wi,k|Yi,k = c},mini{Wi,k|Yi,k =

c+ 1}).

The reason for wanting closed forms for the full conditional posterior distributions

for θ, α,Σ, and W is to do Gibbs sampling. Gibbs steps are easier to implement than

the alternative Metropolis steps because Gibbs steps involve direct sampling from the

full conditional distribution, as opposed to rejection sampling in the Metropolis step.

In fact, the Gibbs algorithm is a special case of the Metropolis-Hastings algorithm

where the proposal density is the target density (Carlin and Louis 2000). Unfortu-

nately, we do not have a closed form for the posterior of ρ. This leads us to using

a Metropolis step for ρ, resulting in what is known as a Metropolis-within-Gibbs

(MWG) algorithm.

Metropolis-within-Gibbs

The Metropolis-within-Gibbs algorithm is an MCMC algorithm that is particularly

useful when the full conditional posterior distributions of some parameters have closed

forms while the others do not (Ntzoufras 2009). The algorithm is implemented sim-

ilarly to the Gibbs sampler, except that the parameters with no closed form for the

full conditional posterior distribution are sampled using the Metropolis-Hastings al-

gorithm.

3.7 Markov Chain Monte Carlo Algorithm

To fit the model, a Metropolis-within-Gibbs algorithm is used. In this particular

application, the algorithm is essentially the same as a Gibbs algorithm, except that

one of the draws is done by means of proposal-rejection sampling. To run the MCMC

algorithm, we first must decide on initial parameter values.
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Initial Parameter Values

For our initial parameter values, we take the same approach as Lawrence et al. (2008).

The initial parameter values for the cutpoints, predictive coefficients, and latent vari-

ables are chosen by first fitting the model assuming independence between respondents

and between questions. This is done using a Gibbs sampling algorithm to ensure that

the initial cutpoints, predictive coefficients, and latent variables are plausible. That

is, the univariate probit fit allows us to initialize the algorithm at a sensible values

for these parameters. In addition, the R matrix of between question correlations is

initialized at the identity matrix, and the initial value of ρ is chosen to be 0.4. In

our simulated examples, the choice of any sensible starting value for ρ has little to no

impact on our inference.

After obtaining initial values, samples of the expanded latent variable W , the

parameters α, θ, and Σ are drawn using the full conditional distributions via Gibbs

steps. Then, a new ρ is proposed and accepted or rejected based on the Metropolis

step. The parameters are then rescaled to map from the expanded parameter space

to the original parameter space. The process is then repeated iteratively, yielding

MCMC samples of the unexpanded parameters.

Metropolis Step

As mentioned, a Metropolis step is required to sample the correlation parameter, ρ.

This Metropolis step is done in the following manner. Propose a candidate correlation

parameter, ρc. This can be done by generating a value from a uniform distribution

centred at ρk. For our purposes, a beta(2,2) prior is used on ρ since values have to

be between 0 and 1 and we sought a relatively uninformative prior. This yields a

probability of accepting a new candidate ρ, which is equal to min(t,1), where t is
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evaluated as follows:

t =
f(Z|α,Σ, θ,Ψc) ∗ P (ρc)

f(Z|α,Σ, θ,Ψk−1) ∗ P (ρk−1)

=
etr
{
−1

2
Σ−1(W − αX)Ψ−1c (W − αX)′

}
etr
{
−1

2
Σ−1(W − αX)Ψ−1k−1(W − αX)′

} |Σ|−n/2|Ψc|−q/2

|Σ|−n/2|Ψk−1|−q/2
P (ρc)

P (ρk−1)

=
etr
{
−1

2
Σ−1(W − αX)Ψ−1c (W − αX)′

}
etr
{
−1

2
Σ−1(W − αX)Ψ−1k−1(W − αX)′

} |Ψc|−q/2

|Ψk−1|−q/2
(1− ρc)ρc

(1− ρk−1)ρk−1
.

Instead of t, log(t) is calculated in our algorithm because it yields better numerical

stability.

log(t) = log

{
etr
{
−1

2
Σ−1(W − αX)Ψ−1c (W − αX)′

}
etr
{
−1

2
Σ−1(W − αX)Ψ−1k−1(W − αX)′

} |Ψc|−q/2

|Ψk−1|−q/2
(1− ρc)ρc

(1− ρk−1)ρk−1

}
= −1

2
Tr
{

Σ−1(W − αX)Ψ−1c (W − αX)′ − Σ−1(W − αX)Ψ−1k−1(W − αX)′
}

−q
2
{log|Ψc|)− log(|Ψk−1|)}+ {log(1− ρc)− log(1− ρk−1)} .

The MWG algorithm is as follows

1. Draw Wk+1|αk, θk, ρk,Σk.

2. Draw Σk+1|Wk+1, αk, θk, ρk.

3. Draw αk+1|Wk+1, θk, ρk+1,Σk+1.

4. Draw θk+1|Wk+1, αk+1, ρk+1,Σk+1.

5. Draw ρk+1 using a Metropolis step as outlined in the previous section.

Following this, rescale the drawn parameters using the following transformation:

1. Zi,j = Wi,j/
√

Σj,j.

2. Ri,j = Σi,j/
√

Σi,i × Σj,j.
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3. βk,j = αk,j/
√

Σj,j.

4. γj,c = θj,c/
√

Σj,j.

Once the rescaling is done, we are effectively drawing samples from our desired pos-

terior distributions using the MWG algorithm.

Summary of Proposed Algorithm

In summary, the study is designed as follows:

1. Initialize parameters using UVP fit.

2. Draw samples of the expanded parameters θ,W, α,Σ using Gibbs sampling.

3. Draw a sample of ρ using a Metropolis step.

4. Map expanded parameters onto the original parameter space to effectively get

samples of Γ, Z, β, R.

5. Repeat steps 2-4 for each MCMC iteration.

In the next chapter, we use this MWG algorithm on some simulated examples

for the purposes of parameter estimation. We will be examining the efficacy of the

algorithm, as well as some computational issues.



Chapter 4

Parameter Estimation and Variable

Selection

In this chapter, we will discuss simulated examples aimed at evaluating the proposed

methodology. Ideally, our approach would demonstrate good parameter estimation

and the ability to identify active or inert predictors and spatial correlations. All

simulations and fits are done in Matlab.

4.1 Study Design and Model Fitting

To evaluate the proposed approach, we design a set of nine simulation studies to

investigate how well the algorithm performs in parameter estimation and variable

selection. Ideally, the algorithm would give sensible estimates, as well as the ability

to properly identify active or inert predictors and spatial correlations. That is, spatial

dependency and the activity of predictors should be properly identified.

In our simulation studies, data are generated using the SMVP model and then fit

using the MCMC algorithm as outlined in chapter 3. We consider a three question

survey, each with three possible responses using several settings for sample size and

24
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strength of spatial correlation. Ordinal response values will be obtained by first

simulating latent variables and using then pre-determined cutpoints to assign actual

ordinal values. The model will then be fit via the proposed MWG algorithm using

these simulated data.

Parameter Settings and Study Design

Ordinal data will have to be generated to study the proposed approach. It is relatively

easy to simulate the latent variables when given real ordinal values. However, to

generate ordinal data from this model, latent variables and cutpoints have to be

simulated and used to obtain the actual ordinal values. This process can be difficult.

This is because numerical complications can arise if the latent variables yield all or

most of the observed ordinal values in one ordered category. No algorithm would

be able to give us much information in cases where all responses were identical. In

essence, for a particular set of X values, only certain combinations of β and γ values

can be detected.

Consider a case where β values were all large, such that βX led to large Z means.

If the cutpoints were relatively small, any generated set of ordinal values would likely

be in one category. That is, the Y values would all be identical. In this scenario,

inference would be difficult, if not impossible. As such, the matrix of predictive

coefficients β and Γ has to be chosen carefully to ensure that sensible and plausible

ordinal values are actually generated.

In addition to those conditions, we sought slope values that were not identical.

This was done to test the algorithm under a setting with some diversity in parameter

values. We chose to have have “high”, “medium”, and “low” settings for our regression

parameters. In this study, we selected 0, 1, and -3, for our slope values, and 2, 0, and
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1 for the associated intercept values. This yielded:

β =


2 −3

0 1

1 0

 .
Given that there were three possible responses to each question, only one cutpoint

had to be selected per question. Given that the cutpoints are nuisance parameters, we

wanted a simple set of values that would be fairly plausible. For that reason, we set

these nuisance cutpoints at one for each question. This yielded the following cutpoint

matrix:

Γ =


0 0 0

1 1 1

∞ ∞ ∞

 .
The three “between question” correlations were chosen to be 0.5 (correlation be-

tween respones to questions 1 and 2), 0.25 (questions 1 and 3), and 0.1 (questions 2

and 3). These values were chosen to have “high”, “medium”, and “low” settings like

our β values. This yielded the correlation matrix:

R =


1.0 0.5 0.25

0.5 1.0 0.1

0.25 0.1 1.0

 .
To investigate the proposed approach under different strengths of spatial correla-

tion, the spatial correlation parameter will also be varied, taking on values of 0, 0.25

and 0.5. Here, we sought scenarios with no spatial correlation, low spatial correla-

tion, and high spatial correlation. To investigate the impact of various sample sizes

(low, medium and high), n will take on values of 50, 100, and 200. This yields 9

combinations of sample sizes and spatial correlations, and all 9 will be examined.
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Along with parameter values, the design must also be specified. The predictor

matrix, X, is generated from a latin hypercube design ranging from 0 to 1. The

spatial location matrix, S, is generated from a latin hypercube design ranging from

0 to 10. In practice, the design could be easily changed, but we elected to use a

design with some space-filling properties (Tang 1993). The latent variable matrix, Z,

is then generated from the matrix-variate normal distribution with a mean of βX and

a correlation matrix of R⊗Ψ.

For each parameter setting and simulation run, latent variables are simulated from

the distribution specified above. Based on our latent values and cutpoints, the ordinal

Y responses are then generated as follows: Y = 1 if Z ≤0, Y = 2 if 0 < Z ≤ 1, Y = 3

if Z > 1. These Y,X, and S matrices are used as simulated data for model fitting. In

essence, we use our design to generate responses at varying parameter settings, and

each set of simulated data was fit using the proposed MWG algorithm.

Ideally, the MCMC samples from the posterior distributions of the parameters

should be centered somewhere near the true value, the location of the center varying

from simulation to simulation. That is, on average, we would want the posterior

distribution to be centered at or near the true value. Simulations were repeated 500

times and the medians of parameter samples from the MCMC draws were evaluated.

We also wish to examine the efficacy of the algorithm with respect to variable selection.

To this end, we first discuss the use of credible intervals.

Credible Intervals

A 95% credible interval is a range of values such that the posterior probability that a

parameter of interest is in that range is 0.95. When sampling using MCMC methods,

such an interval can be formed by using the 2.5th percentile value as the lower bound

and the 97.5th percentile value as the upper bound. We take such an approach.

For the purposes of variable selection, 95% credible intervals were evaluated for
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each of the slope parameters. This is done based on the MCMC samples to ascertain

how often zero is contained in the computed intervals. If zero is contained in the

interval for the slope parameter, we deemed the associated predictor to be inert. If

zero is not contained in the interval for the slope parameter, the associated predictor

was deemed to be active. Ideally, the highly active variable (β12 = −3) will be

identified as active almost always, the less active variable (β22 = 1) will be identified

as active fairly often, and the inert variable (β32 = 0) will be identified as inert around

95% of the time. In practice, one could adjust the intervals for multiple comparisons.

However, for the sake of simplicity, we take the outlined approach.

Summary of Study Design

In summary, the study is designed as follows:

1. Parameters are set at values listed above.

2. Samples sizes of n = 50, 100, and 200 and spatial correlations ρ = 0, 0.25 and

0.5 are used for each of the nine simulation studies.

3. Use a latin hypercube design ranging from 0 to 1 for X and ranging from 0 to

10 for S.

4. For each simulation run, draw latent variable matrix Z based listed parameter

values and design.

5. Based on the Z values and cutpoints, obtain associated ordinal responses Y .

6. Use Y,X, and S as data to fit SMVP model using the outlined MWG algorithm.

7. Obtain point estimates for parameters and 95% credible intervals for variable

selection.

8. Repeat for each of the 500 simulations in the nine studies.
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4.2 Parameter Estimation Results

The point estimate from each simulation was taken to be the median of posterior

samples from the MCMC algorithm. There were only slight differences between me-

dian and mean values, so we elected the measure less affected by potential outliers

from our MCMC samples. Ideally, the point estimates would be centered around the

truth. The following are the results from our simulation studies.

4.2.1 Results

Estimation of R

In the nine studies, the 500 simulations each yielded point estimates for all the pa-

rameters. The following tables contain means of the 500 point estimates and the

associated root mean square errors (RMSE) for each case, where each point estimate

is a posterior median. As mentioned, the nine combinations for n = 50, 100, 200 and

ρ = 0, 0.25, 0.5 are examined. Relatively small RMSE values would also suggest good

estimation. As well, a decrease in RMSE with increasing sample sizes would indicate

improved estimation with higher sample size.

Table 4.1: Mean of point estimates (and RMSE) of R12 = 0.5
n = 50 n = 100 n = 200

ρ = 0.00 0.54 (0.18) 0.54 (0.13) 0.54 (0.09)
ρ = 0.25 0.48 (0.20) 0.49 (0.16) 0.48 (0.13)
ρ = 0.50 0.45 (0.23) 0.46 (0.19) 0.45 (0.17)
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Table 4.2: Mean of point estimates (and RMSE) of R13 = 0.25
n = 50 n = 100 n = 200

ρ = 0.00 0.27 (0.21) 0.27 (0.15) 0.26 (0.10)
ρ = 0.25 0.24 (0.26) 0.25 (0.20) 0.24 (0.15)
ρ = 0.50 0.22 (0.26) 0.23 (0.22) 0.23 (0.19)

Table 4.3: Mean of point estimates (and RMSE) of R23 = 0.1
n = 50 n = 100 n = 200

ρ = 0.00 0.12 (0.21) 0.12 (0.15) 0.10 (0.10)
ρ = 0.25 0.11 (0.23) 0.11 (0.19) 0.09 (0.17)
ρ = 0.50 0.09 (0.26) 0.09 (0.22) 0.10 (0.19)

Looking at Table 4.1, we see that the correlation parameter (R12=0.50) is being

fairly well estimated. For fixed values of the spatial parameter, ρ, we see that as n

increases, the RMSE decreases. For fixed ρ, we see that the RMSE appears to increase

slightly as the spatial dependence becomes more severe. These observations are also

seen for the other values of R (e.g., Tables 4.2 and 4.3).

Estimation of Intercept Terms

Moving on to the intercept terms (Tables 4.4-4.6), we see that the results are somewhat

mixed.

Table 4.4: Mean of point estimates (and RMSE) of β11 = 2
n = 50 n = 100 n = 200

ρ = 0.00 1.8 (0.47) 1.8 (0.34) 1.9 (0.25)
ρ = 0.25 2.0 (0.61) 2.2 (0.59) 2.3 (0.68)
ρ = 0.50 2.4 (0.91) 2.6 (1.03) 2.8 (1.19)
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Table 4.5: Mean of point estimates (and RMSE) of β21 = 0
n = 50 n = 100 n = 200

ρ = 0.00 -0.04 (0.31) -0.05(0.24) 0.00 (0.16)
ρ = 0.25 -0.03 (0.44) -0.02 (0.43) 0.02 (0.45)
ρ = 0.50 -0.02 (0.59) 0.01 (0.66) -0.04 (0.75)

Table 4.6: Mean of point estimates (and RMSE) of β31 = 1
n = 50 n = 100 n = 200

ρ = 0.00 0.9 (0.34) 0.9 (0.26) 0.9 (0.19)
ρ = 0.25 1.0 (0.48) 1.1 (0.52) 1.2 (0.50)
ρ = 0.50 1.1 (0.70) 1.3 (0.81) 1.4 (0.91)

Notice that when there is no spatial dependence that the intercept is fairly well

estimated. This holds particularly true as sample sizes increase, as evidenced by lower

RMSE values. When there is a non-zero intercept and strong spatial dependence

(ρ = 0.5), the methodology has a more difficult time estimating the intercept term.

However, point estimates tended to be in the right neighbourhood. That is, larger

values tended to yield larger estimates. This is also the case with slope coefficients.

Estimation of Slope Coefficients

The following tables show how the slopes were estimated in our study.

Table 4.7: Mean of point estimates (and RMSE) of β12 = −3
n = 50 n = 100 n = 200

ρ = 0.00 -2.77 (0.74) -2.79 (0.54) -2.84 (0.37)
ρ = 0.25 -3.07 (0.80) -3.34 (0.67) -3.53 (0.75)
ρ = 0.50 -3.58 (1.09) -3.92 (1.19) -4.32 (1.51)
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Table 4.8: Mean of point estimates (and RMSE) of β22 = 1
n = 50 n = 100 n = 200

ρ = 0.00 0.90 (0.55) 0.95 (0.41) 0.90 (0.29)
ρ = 0.25 1.02 (0.42) 1.10 (0.30) 1.17 (0.28)
ρ = 0.50 1.16 (0.47) 1.32 (0.46) 1.48 (0.56)

Table 4.9: Mean of point estimates (and RMSE) of β32 = 0
n = 50 n = 100 n = 200

ρ = 0.00 -0.03 (0.57) 0.03(0.37) -0.01 (0.29)
ρ = 0.25 0.02 (0.39) -0.03 (0.24) 0.00 (0.16)
ρ = 0.50 -0.01 (0.36) -0.01 (0.24) -0.00 (0.15)

Again, notice that the algorithm performs well in the absence of spatial correlation.

Furthermore, Tables 4.7-4.9 suggest that the algorithm does fairly well in the presence

of small spatial correlation. These estimates seem to be helped by increased sample

size. However, some difficulties with estimation of non-zero slopes in the presence of

high spatial correlation were observed. Still, positive “true values” usually yielded

positive estimates. Also, larger values tended to yield larger estimates. Estimation of

the nuisance cutpoints yielded a similar situation.

Estimation of Γ Cutpoints

The following tables show how the nuisance cutpoints were estimated in our study.
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Table 4.10: Mean of point estimates (and RMSE) of γ21 = 1
n = 50 n = 100 n = 200

ρ = 0.00 0.84 (0.26) 0.88 (0.20) 0.89 (0.15)
ρ = 0.25 0.98 (0.27) 1.08 (0.23) 1.17 (0.25)
ρ = 0.50 1.19 (0.40) 1.28 (0.39) 1.43 (0.50)

Table 4.11: Mean of point estimates (and RMSE) of γ22 = 1
n = 50 n = 100 n = 200

ρ = 0.00 0.82 (0.25) 0.87 (0.19) 0.89 (0.15)
ρ = 0.25 1.00 (0.24) 1.08 (0.22) 1.19 (0.26)
ρ = 0.50 1.19 (0.38) 1.33 (0.45) 1.48 (0.55)

Table 4.12: Mean of point estimates (and RMSE) of γ23 = 1
n = 50 n = 100 n = 200

ρ = 0.00 0.84 (0.26) 0.87 (0.20) 0.89 (0.14)
ρ = 0.25 1.00 (0.28) 1.09 (0.26) 1.18 (0.26)
ρ = 0.50 1.20 (0.44) 1.33 (0.51) 1.47 (0.61)

Once again, we see fairly decent estimation of the parameters in the absence of

spatial correlation. As well, Tables 4.10-4.12 demonstrate that the RMSE values tend

to decrease with increased sample size in the absence of spatial correlation. However,

the algorithm seems to have trouble with estimating the cutpoints in the presence of

spatial correlation. Still, sensible estimates tend to be obtained, whereby cutpoints

are still estimated in the correct neighbourhood.

Estimation of ρ

The estimation of ρ also yielded mixed results.
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Table 4.13: Mean of point estimates (and RMSE) of ρ
n = 50 n = 100 n = 200

ρ = 0.00 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ρ = 0.25 0.20 (0.10) 0.15 (0.12) 0.12 (0.14)
ρ = 0.50 0.27 (0.25) 0.21 (0.30) 0.15 (0.36)

It is evident from Table 4.13 that ρ seems to be underestimated when the true value is

non-zero. However, the algorithm seems to detect the presence of spatial correlation

when there is spatial correlation and seems to detect no spatial correlation when

there is none. In terms of properly identifying an active or inert spatial correlation,

the algorithm seems to be performing fairly well.

Summary of Parameter Estimation

The tables above demonstrate mixed results when it comes to parameter estimates.

In the absence of spatial correlation, most parameters are estimated fairly well. As

seen, increasing sample size seems to reduce RMSE values in this situation. Some

parameters are also estimated well in the presence of low spatial correlation. However,

with the exception of the matrix R of “between question” correlations, it seems that

there are difficulties with estimating most parameter in the presence of high spatial

correlation. Despite this, it seems as if the algorithm tends to yield fairly sensible

numbers, whereby estimates are still in the correct neighbourhood. While there are

evidently some challenges with parameter estimation, variable selection may still prove

fruitful.
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4.3 Variable Selection

Variable selection is an important activity. Methods that can identify active or inert

predictors are highly desirable in applied settings. In this section, we examine the

efficacy of the algorithm when it comes to variable selection.

For our purposes, 95% credible intervals were computed for each simulation run,

and predictors were deemed active if the interval for the associated regression coef-

ficient did not contain 0. Likewise, a predictor was deemed inert if the associated

interval did contain zero. As mentioned, the three slope values examined were -3, 1,

and 0.

4.3.1 Results

In the nine studies, coverage proportions of zero were computed for the slope values.

We would expect to see higher magnitudes of the true slope associated with lower

coverage probabilities. That is to say, the higher the true slope, the more likely it

is to appear active. For the value zero, would expect the coverage proportion to be

around 95%. The following tables show how often 0 is contained in the 95% credible

interval for each slope parameter. For β12 = −3 and β22 = 1, these proportions

represent how often the predictor was incorrectly identified as inert. For β32 = 0, the

proportions represent how often the predictor was correctly identified as inert.

Table 4.14: Proportion of times 0 was in the 95% credible interval for β12 = −3
n = 50 n = 100 n = 200

ρ = 0.00 0.0040 0 0
ρ = 0.25 0 0 0
ρ = 0.50 0 0 0



CHAPTER 4. PARAMETER ESTIMATION AND VARIABLE SELECTION 36

Table 4.15: Proportion of times 0 was in the 95% credible interval for β22 = 1
n = 50 n = 100 n = 200

ρ = 0.00 0.5840 0.2720 0.0580
ρ = 0.25 0.2460 0.0140 0
ρ = 0.50 0.1300 0.0040 0

Table 4.16: Proportion of times 0 was in the 95% credible interval for β32 = 0
n = 50 n = 100 n = 200

ρ = 0.00 0.9460 0.9380 0.9240
ρ = 0.25 0.9520 0.9660 0.9400
ρ = 0.50 0.9620 0.9700 0.9740

The algorithm seems to be fairly successful at detecting active predictors. As seen

in Tables 4.14-4.16, the credible intervals cover 0 most often when the true value is

0, less often when the true value is 1 and least often when the true value is -3. As

expected, there are some problems identifying moderately active predictors (β22 = 1)

when the sample size is low. However, it is evident that proper identification is helped

by increased sample size. As well, the inert factor is being deemed inert about 95%

of the time. In short, the algorithm is fairly efficient with respect to distinguishing

between active and inert predictors.

4.4 Discussion

Our goal in this project was to construct a model in which both “between question”

and “between respondent” correlations could be incorporated. We also wanted to

propose an approach to allow for Bayesian inference. This was accomplished using

the Metropolis-within-Gibbs algorithm to fit the spatial multivariate probit model.

Ideally, our fitting algorithm would have yielded perfectly centered point estimates
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with small error terms. The algorithm seemed to do fairly well in situations with

no spatial correlations and sometimes with small spatial correlations. There were

some difficulties with parameter estimation in cases with high spatial correlation.

Still, parameter estimation yielded fairly sensible values, with estimates usually in

the neighbourhood of the truth.

In the interest of space, 95% credible interval coverage probabilities of the true

parameter values were not included. As one might expect, in situations where param-

eters were well estimated, coverage probabilities were around 95%. Also expected,

estimates that were less accurate tended to have associated probabilities that were

lower. There was little additional insight to be gained from these coverage probabili-

ties.

Despite facing some challenges with parameter estimation in the presence of high

spatial correlation, the algorithm performs fairly well when dealing with variable

selection. Active spatial correlations, as well as predictors, were successfully detected.

In addition, inert predictors were usually deemed inert, and the absence of spatially

correlation was also successfully identified. From a practical standpoint, the ability

of the proposed approach in detecting these properties seems highly important.



Chapter 5

Conclusion and Future Work

In the proposed approach to correlated ordinal data, we develop the spatial multivari-

ate probit model to incorporate both “between question” and “between respondent”

dependency. The proposed method yielded mixed results, with variable selection per-

forming well despite some challenges with parameter estimation in the presence of

high spatial correlation.

One feasible way to improve upon this may be to use different prior distributions.

For example, One possible change would be the use of an Inverse-Wishart prior for

the expanded covariance matrix, Σ. The improper priors on certain parameters may

have skewed results in the model fits and it would be worthwhile investigating this.

Another area for future work would be goodness-of-fit testing (Muthukumarana

2010). Methods that can test the validity of the SMVP model may be very useful in

various applied settings.

Prediction is another area for future work. One thing of interest is the ability

to predict the ordinal response at a new set of predictors and spatial locations. In

Higgs and Hoeting (2010), the authors generate latent values at each iteration of their

MCMC algorithm. Clipping based on cutpoints and the latent values, they predict

the ordinal response of a new point to be the most commonly observed category. A

38
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similar topic of interest would be the predicton of the exact probabilities associated

with different categories at a new set of predictors and locations. This could be done

by computing the proportion of times each category is observed based on MCMC

generated latent values.

An alternative approach would be to perform Kriging (Cressie 1993) on the latent

space. Kriging would allow us to find the conditional distribution of a new point based

on our model and existing data. Using this conditional distribution at each MCMC

iteration, we could compute probabilities for each categories (or set of categories) and

average over each iteration.
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