

GPU AND CELL PHONE-AIDED MULTIMEDIA

PROCESSING

by

Ming-Chao Che
B.A.Sc., Simon Fraser University, 2007

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

In the
School of Engineering Science

© Ming-Chao Che 2010
SIMON FRASER UNIVERSITY

Spring, 2011

All rights reserved. However, in accordance with the Copyright Act of Canada,
this work may be reproduced, without authorization, under the conditions for Fair
Dealing. Therefore, limited reproduction of this work for the purposes of private

study, research, criticism, review and news reporting is likely to be in accordance
with the law, particularly if cited appropriately.

 ii

APPROVAL

Name: Ming-Chao Calvin Che
Degree: Masters of Applied Science
Title of Thesis: GPU and Cell Phone-Aided Multimedia Processing

Examining Committee:
 Chair: Dr. Sami (Hakam) Muhaidat

Assistant Professor, School of Engineering Science

 Dr. Jie Liang

Senior Supervisor
Associate Professor, School of Engineering Science

 Dr. Faisal Beg
 Supervisor

Associate Professor, School of Engineering Science

 Dr. Jiangchuan Liu
 Internal Examiner

Associate Professor

 School of Computing Science, Simon Fraser University

Date Defended/Approved: January 14, 2011

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

 iii

ABSTRACT

Computing technology has been evolving rapidly during the past decades.

New ideas and inventions are constantly developed to improve usability and

processing power of applications. This thesis develops a multimedia processing

system that uses GPU and cell phone to improve speed and user experience.

The CUDA framework developed by NVIDIA turns the GPU into a manycore

coprocessor of the CPU. We show in this thesis that by taking advantage of

GPU computing, algorithms such as image encoding and resolution

upconversion can be up to five times as fast. We also develop algorithms to use

accelerometer-equipped cell phone as a remote controller to improve user

interaction. When user performs various actions, input command is sent to the

PC via Bluetooth and identified using motion detection algorithms. Some

applications of these tools are presented, including image slideshow, multiview

video viewer, as well as cell phone aided Google Map application and web

browser.

Keywords: GPU programming; CUDA; resolution upconversion; image coding;
JPEG-XR; accelerometer; motion detection; Bluetooth; Silverlight; Google Street
View

 iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to many people as this thesis would

not be possible without their support and guidance.

First, I would like to thank my supervisor Dr. Jie Liang for providing various

ideas, tips, and guidance throughout the course of my MASc study. From his

source coding and signal processing classes, I also gained valuable knowledge

that helps me in writing of this thesis.

I want to thanks Dr. Xiaolin Wu for his image/video resolution upsampling

algorithm, which was used for the GPU implementation. I also thank Dr. Mirza

Faisal Beg and Dr. Jiangchuan Liu for being my committee member, and Dr.

Sami Muhaidat for chairing my defense.

I like to thank Nokia for providing the cell phones used in the research.

Without the hardware and their online documentations, this thesis would not be

possible.

Finally, I want to thank all my labmates in the multimedia communication

lab, as well as all my friends, for making my MASc study enjoyable.

 v

TABLE OF CONTENTS

Approval .. ii
Abstract .. iii
Acknowledgements .. iv
Table of Contents .. v
List of Figures...vii
List of Tables .. ix

Chapter 1: Introduction .. 1

1.1 Introduction ... 1
1.2 Main Contribution .. 3
1.3 Thesis Outline ... 5

Chapter 2: GPU Implementation of Image Resolution Upsampling 7

2.1 Background in GPU Programming .. 7
2.1.1 GPU Architecture and General-Purpose GPU Programming 8
2.1.2 Fundamentals of CUDA Programming ... 9
2.1.3 Performance Guideline .. 13

2.2 Directional Image/Video Spatial Resolution Upconversion 17
2.3 CUDA Implementation of the Directional Interpolation Algorithm 22

2.3.1 Branch and Loop Replacement ... 24
2.3.2 Thread Configuration ... 25
2.3.3 Float Data Type ... 26
2.3.4 Four Sub-Images ... 26
2.3.5 Using Shared Memory ... 29

2.4 Experimental Result .. 33
2.4.1 Interpolation Performance.. 34
2.4.2 Speed Performance ... 34

Chapter 3: GPU Implementation of JPEG-XR ... 38

3.1 Background of Image/Video Coding and JPEG-XR ... 38
3.1.1 Overview of JPEG-XR ... 39

3.2 CUDA Implementation of JPEG-XR Encoder .. 41
3.2.1 Input and Colour Space Conversion .. 42
3.2.2 Downsampling ... 46
3.2.3 Transform .. 48
3.2.4 Quantization .. 52
3.2.5 DCAC Prediction, Coefficient Scanning, and Entropy Coding 53

3.3 Experimental Result .. 54
3.3.1 Speed Performance for Each Code Segment .. 54
3.3.2 Speed Performance for Different Output Types ... 56

 vi

3.3.3 Speed Performance for Different Image Sizes ... 57

Chapter 4: Cellphone Aided Multimedia Processing ... 59

4.1 Introduction ... 59
4.2 Cellphone as Input Device .. 60

4.2.1 Rotations ... 64
4.2.2 Shaking Movements .. 68
4.2.3 Motion Matching .. 69

4.3 Communication with PC .. 73
4.3.1 Bluetooth Communication between Phone and PC Server 74
4.3.2 Communication between Bluetooth Server and Web Content 77

4.4 Implementations and Results .. 80
4.4.1 TiltShow... 81
4.4.2 Veaver ... 82
4.4.3 Turbo Street View .. 85
4.4.4 Cellphone Aided Web Browser .. 92

Chapter 5: Conclusion and Future Work .. 93

5.1 Conclusion .. 93
5.2 Future Work .. 94

5.2.1 GPU Programming Component ... 95
5.2.2 Motion Detection and Bluetooth Communication Component 97
5.2.3 Google Street View Component... 98

Reference List ... 101

 vii

LIST OF FIGURES

Figure 1.1 Illustration of the interactive multimedia manipulation system 4

Figure 2.1 The difference between CPU and GPU architecture 8

Figure 2.2 Heterogeneous programming model ... 10

Figure 2.3 A kernel launch with threads organized into grids and blocks 11

Figure 2.4 Memory architecture of a CUDA GPU ... 12

Figure 2.5 Flow chart of memory access for a typical GPU program 16

Figure 2.6 Two-pass interpolation process .. 18

Figure 2.7 Diagonal cubic interpolation for both 35 and 135 degrees 19

Figure 2.8 Verification for both 45 and 135 degrees interpolators 20

Figure 2.9 Error interpolation window W for the 135 degrees interpolator 21

Figure 2.10 General program flow for GPU implementation of the interpolation
algorithm ... 23

Figure 2.11 Original CPU memory allocation ... 27

Figure 2.12 Uncoalesced memory access produced with original CPU
implementation ... 27

Figure 2.13 Position of pixels on each sub-image relative to the original pixel 28

Figure 2.14 GPU memory allocation .. 28

Figure 2.15 Coalesced memory access produced with new GPU implementation 29

Figure 2.16 Size of cached data in shared memory compared to block size 30

Figure 2.17 Global to shared memory transfer mechanism .. 31

Figure 2.18 Bank conflict occurs when flipping pixels around image boundary 32

Figure 2.19 Conflict-free memory access when flipping pixels around image
edge ... 33

Figure 2.20 Comparison of different interpolation methods .. 34

Figure 3.1 Block diagram for image and video coding .. 39

Figure 3.2 Comparison between memory arrangements of CPU and GPU
implementations.. 42

Figure 3.3 Memory access pattern of RGB input stream from global memory............ 43

Figure 3.4 Memory access pattern of RGB input stream from after memory
caching using shared memory .. 44

 viii

Figure 3.5 The downsampling process .. 46

Figure 3.6 The block boundary for PCT and POT .. 49

Figure 3.7 Memory configuration for transform operation ... 51

Figure 3.8 The three kernels for first stage POT on a rectangular image 52

Figure 4.1 The x, y, and z axis of the accelerometer relative to the cellphone............ 61

Figure 4.2 Fluctuations in accelerometer value when the phone is resting still........... 62

Figure 4.3 Accelerometer values after filtering to reduce fluctuations 63

Figure 4.4 Accelerometer data for a rotate right motion ... 64

Figure 4.5 Change in gravitational acceleration when the phone is tilted 65

Figure 4.6 Accelerometer data for a rotate up motion .. 66

Figure 4.7 An example for the detection of rotational motion 67

Figure 4.8 The accelerometer reading for a typical shaking motion 68

Figure 4.9 The accelerometer reading when flipping the phone upside down 70

Figure 4.10 The accelerometer reading when rotating the phone twice
horizontally ... 70

Figure 4.11 The accelerometer reading when raising the phone upward 71

Figure 4.12 A pre-recorded data for the flipping phone upside down motion 71

Figure 4.13 Links between various parts of the cellphone-to-web content
communication.. 74

Figure 4.14 Links between server application and web content using windows
API, COM, and OLE (Internet Explorer implementation) 78

Figure 4.15 Detail for the execution of scripts in embedded browser window............... 78

Figure 4.16 Links between server application and web content using browser
plugin (Firefox implementation) ... 79

Figure 4.17 Diagram of the Veaver system .. 83

Figure 4.18 The interface for the Veaver application .. 84

Figure 4.19 The interface for the Turbo Street View application 86

Figure 4.20 Illustration of navigation links of a Street View bubble 87

 ix

LIST OF TABLES

Table 2.1 Comparison of memory types ... 12

Table 2.2 Maximum available resource on device .. 13

Table 2.3 Comparison of different thread block dimension 25

Table 2.4 Execution time measured by shell for a 256x256 Lena image 35

Table 2.5 Execution time measured by CUDA for a 256x256 Lena image 36

Table 2.6 Execution time measured by CUDA for larger image 36

Table 3.1 Evaluation of the trade-offs between register and local memory use 48

Table 3.2 Options to assign pixels per thread during transform operations 50

Table 3.3 Comparison between CPU and GPU processing time for various
blocks for the JPEG XR encoder .. 55

Table 3.4 Comparison between CPU and GPU processing time for various
types of images – to quantization only .. 56

Table 3.5 Comparison between CPU and GPU processing time for various
types of images – full encoder .. 57

Table 3.6 Comparison between CPU and GPU processing time for various
sizes of images – to quantization only ... 58

Table 3.7 Comparison between CPU and GPU processing time for various
sizes of images – full encoder ... 58

Table 4.1 Default key configuration for each command .. 63

Table 4.2 Default threshold values used for rotational motions 68

Table 4.3 The content of the 10-bytes packets used for the Bluetooth link 75

Table 4.4 The command codes .. 76

Table 4.5 List of commands and the corresponding JavaScript function 80

Table 4.6 List of commands implemented in the TiltShow application....................... 81

Table 4.7 List of commands implemented in the Veaver application 85

Table 4.8 List of commands implemented in the Turbo Street View application 88

Table 4.9 Comparison of Street View panorama loading time with or without
prefetching .. 90

Table 4.10 Comparison of Street View panorama loading time with different test
environments .. 91

Table 4.11 List of commands implemented in the cellphone aided web browser 92

 x

Table 5.1 Maximum available resource on device .. 96

Table 5.2 Maximum available memory resource per thread 96

Table 5.3 Proposed prefetch order based on the previous command 100

 1

CHAPTER 1: INTRODUCTION

1.1 Introduction

Technology has changed our life dramatically ever since the late 20th

century. Computer, network, and multimedia entertainment system now play a

major role in our daily life as they govern how we work, play, and communicate

with each other. As technology continues to evolve, new ideas and inventions

are constantly developed to increase user interaction and improve user

experience. Inputs are no longer limited to keyboard and buttons. Instead, new

devices can now capture voices, movements, and gestures. Users are no longer

required to sit beside the system or a device attached to the system, as the input

can now be sent wirelessly using various technologies such as Bluetooth and

Infrared. Inputs from mice and pointing devices are no longer confined to a 2D

plane, as new devices with 3D tracking capability now available. A prime

example in the recent years would the Wii console system developed by

Nintendo. Wii remote, replacing the game controllers, is now able to track

movements in a 3D space using its built-in accelerometer and send the data

back to the console using Bluetooth technology [1]. Instead of just pushing

buttons, users can enjoy the game as if they are physically in the game world.

 2

With the help of this new idea and technology, gaming experience increased

tremendously.

The improving technology also reduces the cost of multimedia production

and increases the demand of higher quality content. As the cost of camera and

other capturing device reduces, building a multi-camera system becomes more

feasible. As a result, there has been an increasing interest in studying multi-

camera and multi-view image and video systems in the recent years. There are

many new applications emerging, including 3DTV, where multiple cameras are

used to capture multiple views of a scene to offer 3D depth impression [2, 3].

Another application of this system is free viewpoint video, where the user is able

to freely switching between different viewpoints captured by different cameras, as

if they are navigating in a 3D world [3]. An implementation of this system

includes Microsoft PhotoSynth, where many photos of the same object at

different viewpoints are stitched together to create a 3D scene where user can

freely navigate [4]. Similarly, Google Street View captures panoramic imagery of

streets using camera arrays mounted at the roof of a car to create an

environment where user can navigate as if they are walking on the street [5].

With the increase of viewpoints, the amount of data such multimedia

system required to process also increases exponentially. As bandwidth and

storage space are at a premium, image/video compression and downsampling

are often used to reduce the bitrate and lower the cost of such system. This

greatly increases the need of processing power as multiple images or videos are

processed simultaneously.

 3

In the recent years, computer processors are moving away from single

core single threaded design into a system that contains multiple cores and is able

to process multiple threads at once. The GPU (Graphics Processing Unit) was

traditionally designed solely to offload graphics processing off the central

processing unit (CPU). It is powerful as its Single Instruction Multiple Data

(SIMD) architecture can process an array of data in parallel by executing a single

instruction. Originally, the GPU does not support integer and scattered memory

operations, which makes it difficult for adaptation in general computing. With the

recent introduction of the CUDA (Compute Unified Device Architecture)

framework developed by NVIDIA, the GPU has evolved into a powerful highly

parallel, multithreaded, and manycore co-processor. The CUDA framework

greatly simplifies GPU programming, and enables the GPU to solve complex

computing problems with large set of data to be processed in parallel. This

property makes it suitable for image and video processing.

1.2 Main Contribution

The works in this thesis are parts of an interactive multimedia

manipulation system. The system involves the display of multi-view images

and/or videos simultaneously on screen that allows user to navigate freely,

similar to Microsoft PhotoSynth and Google Street View. One main drawback of

both PhotoSynth and Street View systems is that the navigation involves a large

amount of mouse clicking or dragging, which is often tedious, time consuming,

 4

and greatly degrade the user experience. We solve this issue by implementing a

remote controller using cell phone and communicate with the computer using

Bluetooth, similar to a Wii remote.

Typical multimedia applications involving images and videos require

hardware with high computational power. Multiview system and the ease of

navigation introduced by the remote controller further increase this burden, due

to the higher data rate and more frequent command inputs. To ensure that the

system is able to keep up with commands and capable of decoding the multiview

image and/or video in real-time, GPU-based image and video processing is used

as it provides higher image and video processing capabilities than CPU. This

complements the cell phone remote controller in making the system faster, more

interactive, and more responsive to user commands. A diagram illustrate the

components in our system is shown in Figure 1.1.

Figure 1.1 Illustration of the interactive multimedia manipulation system

Bluetooth Communication

Data could be
processed in GPU

using CUDA technology
User input using

cell phone

Multi-view image
and video display

 5

1.3 Thesis Outline

This thesis contains detailed descriptions for three of the components in

the multimedia manipulation system. Chapter 2 describes the fundamental of

CUDA and GPU programming and discusses about the implementation of an

image/video upsampling algorithm using CUDA. This implementation allows

processing of video in real-time, which can be useful in the system when user

choose to zoom in on an image or video without the need for additional

bandwidth for the larger image or video content. The result for this part of the

thesis has been published in [6].

Chapter 3 discusses about speeding up image compression, and

describes an implementation of a JPEG-XR image encoder using CUDA. The

implementation focuses on the first few stages of the process – colour space

conversion, downsampling, transform, and quantization. With the similarities

between image and video encoding and decoding, the benefit of image encoding

using GPU can also be applied to video decoding. This component can be used

in the multimedia system to ensure that the system is capable of decoding

multiple videos in real-time when the user switches view. The result for this part

of the thesis has been published in [7].

Chapter 4 presents the controller and interactive component of the

system. The first part of the chapter discusses about the use of accelerometer

on the cell phone to capture movements and the algorithm to correctly identify

the motion. The second part describes the use of Bluetooth to establish a

communication link between the phone and the application on the computer, so

 6

the cellphone input command can be received and processed. The final part of

the chapter describes the implementation of four different applications developed

using this system.

 7

CHAPTER 2: GPU IMPLEMENTATION OF IMAGE
RESOLUTION UPSAMPLING

2.1 Background in GPU Programming

Graphic processing unit (GPU) is a dedicated device for manipulating and

displaying computer graphics. Originally developed solely for graphic

processing, it has now evolved into a highly parallel, multithreaded co-processor

of the CPU. GPU programming is mostly software based, which gives an

advantage over some hardware-based implementations, such as FPGA. GPU

implementation is much faster to develop and implement as no VHDL and

hardware knowledge is required. Given the same cost, it also provides better

capabilities compared to hardware implementations. Compared to multi-core

CPUs, GPU implementation is also more desirable for highly data parallel

application as the GPU scales much faster. In the past few years, NVIDIA GPU

had improved from 8 to 512 cores while CPU cores only increased from 1 to 8 [7].

The latest GPU now has close to 10 times as much computation power and

memory bandwidth as compared to CPU [7].

This section of the report will describe the fundamentals of programming

with CUDA, and discuss the requirement to achieve high speed and efficiency.

 8

2.1.1 GPU Architecture and General-Purpose GPU Programming

The computation power of GPU comes from its Single Instruction Multiple

Data (SIMD) architecture, where an array of data can be processed with a single

instruction. Compare to the CPU architecture where each instruction can only

process a single byte of data, the SIMD architecture is much more efficient in

applications where there is a large set of data, such as image and video

processing. Figure 2.1 shows the different between CPU and GPU architecture,

where the GPU devotes more transistors to data processing (ALU units) rather

than flow control (control and cache).

Figure 2.1 The difference between CPU and GPU architecture

To use the computation power of GPU in non-graphics applications,

General-Purpose computation on Graphics Processing Units (GPGPU) was

developed in 2002, which was a mechanism that used GPU to speed up the

critical path of the application [9]. This approach, however, utilizes graphics API

that does not support integer operations and scatter memory writes, which make

implementation quite difficult [10]. In 2007, NVIDIA released Compute Unified

DRAM

Cache

Control

ALU

ALU ALU

ALU

CPU Architecture

DRAM

A L U

GPU Architecture

 9

Device Architecture (CUDA) – a GPGPU technology programmable in C

language that effectively turns GPU into a co-processor of the CPU. The C

language extension along with the new support for integer operations and scatter

writes makes it much easier to develop general-purpose, non-graphical GPU

applications that can exploit the SIMD architecture of GPU to its full potential.

2.1.2 Fundamentals of CUDA Programming

In the CUDA framework, each GPU consists of an array of streaming

multiprocessor (SM) and each multiprocessor consists of many scalar processors

(SP). Each multiprocessor can process multiple blocks of threads

simultaneously – up to 768 threads for older model and 1024 for the newer ones.

Their power comes from the SIMD architecture, where the light-weighted threads

executes the same instruction in parallel on an array of data, with each element

of the array handled by a different thread. CUDA uses heterogeneous

programming model, where only the parallel code segments are executed on the

device (GPU) while the rest of the program are executed on the host (CPU) in

serial. The code segments to be executed on the device, known as kernel

functions, are called and spawn from the host function. Figure 2.2 shows an

example of the heterogeneous programming model, where the program

alternates between single-threaded host functions on CPU and multi-threaded

kernel functions on GPU.

 10

Figure 2.2 Heterogeneous programming model

Threads in the kernel function are ordered into blocks, and blocks are

ordered into a grid, as shown in Figure 2.3. A kernel function is executed as a

grid of thread blocks, and the total number of threads in the function is

determined by the dimension of blocks and grid. In each thread block, a group of

32 threads forms a warp, and each half-warp, consists of 16 threads, is executed

together under the same instruction.

Host (CPU code)

Device (Kernel Function)

Host (CPU code)

Device (Kernel Function)

P
rogram

 Flow

 11

Figure 2.3 A kernel launch with threads organized into grids and blocks

There are six different types of memory available on GPU: global,

constant, local, shared, texture, and registers. Most data are stored in global

memory as it has the lifetime of the application and can be read and write by both

host and kernel functions. However, the memory is off-chip, which means long

access time from the kernel function. Both shared memory and registers are on-

chip with fast access time but only has the lifetime of the kernel function. Thus

they are used mostly for manipulations and calculations within a thread or a block

of threads. Both constant and texture memories are off-chip read-only memory.

However, fast memory access can be obtained as part of their content is cached

onto an on-chip memory upon thread initialization. Figure 2.4 shows the

hardware memory model for streaming multiprocessors [7]. The device memory

Host Device

Kernel
Function

Grid

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Kernel
Function

Grid

Block (0, 0) Block (1, 0)

Block (0, 1) Block (1, 1)

Block (2, 1)

 12

on the figure consists of global, local, constant, and texture memories. Table 2.1

compares and summarizes the features and constraints of the different memory

types.

Figure 2.4 Memory architecture of a CUDA GPU

Table 2.1 Comparison of memory types

Type Scope Lifetime On-
Chip Cached Access Size Host

Write
Device
Write

Global Grid App. Slow - √ √

Constant Grid App. √ Fast 8 KB √

Local Thread Thread Slow - √

Shared Block Thread √ Fast 16 KB √

Texture Grid App. √ Fast 6~8 KB √

Register Thread Thread √ Fast 8192 √

Streaming Multiprocessor

Host
Memory

Scalar

Processor

Register

Scalar
Processor

Register

Scalar
Processor

Register

… …

Shared Memory

Constant Cache

Texture Cache

Device Memory

 13

The number of threads that can be executed parallel by a multiprocessor

is limited by both hardware resource and memory usage. Table 2.2 shows the

maximum resource on a multiprocessor for different generations of GPU [7].

Table 2.2 Maximum available resource on device

Item
Maximum for Compute Capability

1.0, 1.1 1.2, 1.3

Threads per multiprocessor 768 1024

Threads per block 512 512

Block dimension (x, y, z) 512, 512, 64 512, 512, 64

Grid dimension (x, y) 65535, 65535 65535, 65535

Active blocks per multiprocessor 8 8

Active warp per multiprocessor 24 32

Register per multiprocessor 8192 16384

Shared memory per multiprocessor 16 KB 16 KB

Local memory per thread 16 KB 16 KB

Constant memory 64 KB 64 KB

2.1.3 Performance Guideline

For a GPU application to effectively use all available resources and

achieve maximum performance, we must make sure that it can [7]:

1. Maximize parallel execution.

2. Optimize instruction usage to achieve maximum instruction throughput.

 14

3. Optimize memory usage to achieve maximum memory bandwidth.

To maximize parallel execution, dimension of block and grid should be

chosen so that all available threads on the streaming multiprocessor are put to

use. Since a warp of 32 threads is executed together on the streaming

processor, the block size should be set to a multiple of 32 to prevent under-

populated warp. However, larger block sizes are used to ensure the scalability of

the program on future GPU devices with possibly larger number of threads

supported per processor. Generally, block size of 192 or 256 yields the best

result [7].

Memory use poses another constraint on numbers of parallel executions.

In order to achieve full occupancy and obtain maximum performance, each

thread within a block can use at most 10 registers and 16 bytes of shared

memory space. If the function requires more than 10 registers, local memory

may be used to ensure full thread occupancy.

To achieve higher instruction throughput, functions that takes large

amount of clock cycles to execute should be avoided. Examples of such

functions are integer division and modulo. Also, CUDA and NVIDIA GPU

currently only have native support for int, long, and float data types, other

data types such as char and double should not be used [7].

 15

Under SIMD architecture, each thread under the same warp or half-warp

must execute the same instruction. Therefore, full efficiency can only be

achieved if all threads within the warp agree on their execution path. If the warp

diverges in a conditional branch, then both branches must be executed with

some threads disabled in each run. To reduce the possibility of diverging warp,

branch and loop functions such as if, switch, for, do, and while should be

avoided as much as possible unless it is sure that all threads under the warp will

follow the same path [7].

To optimize memory access for higher bandwidth, faster memory such

as texture, shared, constant memory and registers should be used more often

while access to global and local memory should be minimized. Also, memory

transfer between host and device should be limited to start and end of the

program only. With newer version of CUDA, memory transfer can be performed

asynchronously. Asynchronous memory transfer runs in parallel with kernel

function, which saves execution time [7].

Figure 2.5 shows a flowchart of memory access for a typical GPU

application. Note that after each memory access inside the kernel function,

thread synchronization is used to make sure that all memory operations are

completed before the next access and prevent read after write and write after

read hazards. However, unnecessary memory synchronization will also slow

down program execution.

 16

Figure 2.5 Flow chart of memory access for a typical GPU program

In order to reduce memory access time, all global (device) memory access

needs to be coalesced. This means that only one memory transaction is

required for loading data into all 16 threads inside a half warp. Coalesced

memory access can be achieved when each thread reads and writes 32, 64, or

128 bit words that lie in the same continuous memory segment [7]. If this

Memory transfer from host to global memory

Start

Memory transfer from global to shared memory

Start of the kernel function

Synchronize threads

Synchronize threads

Process data in shared memory and registers

Exit kernel function; shared memory erased

More kernel functions?

Memory transfer from global to host memory

End

No

Yes

Memory transfer from shared to global memory

 17

requirement is not met, the memory access will become serialized and the

computation speed will likely be 16 times slower. Similar situation applies to

shared memory access, where the memory divides into 16 banks numbered

sequentially for each 32 bytes of memory address. In order to avoid conflict and

achieve high memory throughput, each of the 16 threads in a half-warp should

read from or write to a different bank during a memory access [7]. Conflict-free

memory access can also achieved when all threads read from the same memory

location. More detail about memory access issue will be discussed in the

implementation section of both Chapter 2 and 3.

2.2 Directional Image/Video Spatial Resolution Upconversion

The challenge of image/video spatial resolution upconversion is to

preserve and reconstruct fine and sharp spatial details in the enlarged

image/video while maintaining low computational complexity. Existing

interpolation methods such as linear, cubic spline, and cubic convolution has low

computational complexity, but cannot reserve edge well [11], [12]. This problem

was solved by edge-guided interpolation techniques developed in the recent

years [13], [14], [15], but they involve complex interpolation methods and are not

suitable for real-time use.

In this chapter, we present a highly parallelized version of the algorithm in

[14,15] using CUDA-based GPU computing. Our version is suitable for real-time

resolution upconversion.

 18

We first briefly explain the algorithm in [14, 15]. The image interpolation is

carried out in two steps as shown in Figure 2.6. The left hand side of the figure

shows the first pass, where the algorithm generates a quincunx image by

interpolating the missing pixels (as marked by gray circles) with four available

diagonal neighbours (black circles). The right hand side shows the second pass,

where the missing pixels in the quincunx image (white and dark grey circles) are

then interpolated using the horizontal and vertical neighbours.

Figure 2.6 Two-pass interpolation process

Each pass of the algorithm involves a three steps process for generating

the value of a missing pixel:

1. Multiple interpolation of each missing pixel using different interpolators.

2. Validity verification of each interpolator to determine its accuracy.

3. Select winning interpolator or fusing multiple estimates.

 19

For interpolating the missing pixels, multiple interpolators are used to

estimate an unknown pixel Y. For this implementation of the algorithm, cubic

interpolations from two diagonals in the 45 and 135 degrees directions are used,

as illustrated in Figure 2.7.

Figure 2.7 Diagonal cubic interpolation for both 35 and 135 degrees

The equation for the 45-degrees interpolation, Y+, from known pixels, X, is

 4321 16
1

16
9

16
9

16
1 XXXXY . (2.1)

Similarly, the equation for the 135-degrees interpolation, Y-, from the known

pixels, X’, is

 4321 '
16
1'

16
9'

16
9'

16
1 XXXXY . (2.2)

The coefficients of the 4-tap filter used in the interpolation are given by [8].

 20

To determine the accuracy of the interpolation, the same equations are

applied. However, the known pixels X, are now being estimated by using the

interpolated pixels Y,

 4321 16
1

16
9

16
9

16
1ˆ YYYYX , (2.3)

 4321 16
1

16
9

16
9

16
1ˆ YYYYX . (2.4)

The process is illustrated in Figure 2.8.

Figure 2.8 Verification for both 45 and 135 degrees interpolators

The error),(jiek of interpolation can then be determined by the total

mean square error of nearby reconstructed pixels

 21 ,),(ˆ),(),(
2

),(),(

knmXnmXjie kk
jiWnm

k , (2.5)

 21

where),(nmX are the original pixel values and),(ˆ nmX are the interpolated

pixel values, and W(i,j) is the window around (m,n) where the mean square error

is to be evaluated, as shown in Figure 2.9.

Figure 2.9 Error interpolation window W for the 135 degrees interpolator

The final step of the algorithm is to select the best interpolator, based

on the errors),(1 jie and),(2 jie determined from the previous step. The final

value Y of the interpolation is selected by [14],

.),,(
,0),(),(),,(
,),(),(),,(
,),(),(),,(

),(
21

21

12

otherwisejiY
jiejiejiY
jiejiejiY
jiejiejiY

jiY

fuse

 (2.6)

where is a predefined threshold and Yfuse is a combination of both

interpolations, given by the equation

 22

),(
),(),(

),(),(
),(),(

),(),(
21

1

21

2 jiY
jiejie

jiejiY
jiejie

jiejiYfuse

 . (2.7)

Given the results of the first pass, the second pass of the interpolation

algorithm is carried out with two interpolators applied horizontally and vertically.

Accordingly, the estimation errors of the horizontal and vertical neighbours are

collected in the verification step. The illustration of this process is the same as

rotating Figure 2.7, Figure 2.8, and Figure 2.9 by 45 degrees.

Despite the simplicity of this algorithm, the performance is significantly

better than the cubic method in term of preservation and reconstruction of image

details. Furthermore, this algorithm also using local image information, which is

suitable for parallel computing and implementation, which will be described in the

next section.

2.3 CUDA Implementation of the Directional Interpolation
Algorithm

Since GPU is massively threaded parallel processor, to achieve fastest

processing speed, all calculations and interpolations are to be done on the GPU.

Each GPU thread is designed to process only a single pixel to effectively use all

available resources. In this way, up to 768 pixels (or 1024 pixels for the newer

generations) can be processed simultaneously. Due to the dependencies of the

pixel values generated by each stage of the algorithm, each kernel function only

 23

performs a single stage of the calculation, as the value generated would be

required for the next kernel function. The general flow diagram of the GPU

implementation is shown in Figure 2.10.

Figure 2.10 General program flow for GPU implementation of the interpolation
algorithm

Host (CPU) Device (GPU)

Read image from disk

Memory allocation and transfer

Determine kernel execute

Global memory

First pass - Interpolation

First pass - Verification

First pass – Selection/fusing

Second pass - Interpolation

Second pass - Verification

Second pass – Selection/fusing

Memory transfer and cleaning

Save final image to disk

Start

End

Kernel

Kernel

Kernel

Kernel

Kernel

Kernel

 24

In the figure, bold box indicates functions to be executed on the GPU, and

the yellow arrows and box indicate the location of interpolation data, including

two memory transfers between host and device – from CPU to GPU and from

GPU to CPU. Each of the subsection below describes the changes made to the

original algorithm for GPU implementation.

2.3.1 Branch and Loop Replacement

Section 2.1.3 stated that all branches and loops should be best avoided in

GPU coding to prevent divergent among the threads within the same warp. One

of the possible replacements is the branch for clipping and clamping a value

within a certain range, which can be done by using min and max functions. For

instance, the clamping of a pixel value x within 0 and 255 becomes

 min(max(x, 0), 255), (2.8)

and the flipping of image pixels for boundary condition can be

 min(max(x, -x), 2w - x - 2), (2.9)

where w is the width of the image.

The other branch in the algorithm occurs during the selection of the

interpolator. However, as the branch conditions are generated from mean

square error calculation using Equations 2.6 and 2.7, it is independent on thread

configuration so divergent warp cannot be avoided.

The main loops for processing each pixel are replaced indirectly by

threads and blocks. The loops for accessing the known pixels of each

 25

interpolator, on the other hand, are unrolled and the calculation would be done

linearly. There is no other loop inside the kernel function.

2.3.2 Thread Configuration

Another way to avoid diverging warp is to align the thread dimensions to

the size of the warp, so for a branch with condition set by the x and y location of

the pixel, all threads within the warp will most likely branch in the same way.

Therefore, the size of 32 is chosen for the x dimension of the thread block. The

most logical choices for the y dimension of the block are 8, 12, or 16, and these

choices are compared in Table 2.

Table 2.3 Comparison of different thread block dimension

Block Size Threads Blocks per
SM (old)

Blocks per
SM (new)

Relative
Speed

32 x 8 256 3 4 100.0%

32 x 12 384 2 2.66 91.8%

32 x 16 512 1.5 2 95.7%

The test results show that using y dimension of 8 and a total of 256

threads per block yields the fastest running time by about 5~10%. Also, using

this value ensures that all available threads on the multiprocessor gets utilized

regardless of older (768 threads) or newer (1024 threads) GPU generations.

This choice is also consistent with the goal of increasing the number of blocks for

scalability on future devices mentioned in section 2.1.3 of this report as this is

one of their recommended values.

 26

2.3.3 Float Data Type

Each memory access from the GPU will load 32 bits of data; therefore, to

increase efficiency and produce coalesced memory access, it is better to change

the data format from unsigned char (8 bits) to float (32 bits) in order to align

memory with the boundary. Using floating point operation also mean that

computation may be faster as there is no longer the need for rounding and the

data type is natively supported by the GPU. Moreover, the cutLoadPGMf

function from the cutil library can simplify the image loading process. More

discussion about improving memory efficiency can be found in the next two

sections.

2.3.4 Four Sub-Images

The CPU implementation of the algorithm allocates and generates a blank

high resolution output image right at the very first step. All computations are

performed on this allocated memory area, as shown in Figure 2.11. Although

this implementation is more memory conserving, it is not possible to obtain

coalesced memory access. Figure 2.12 shows the first 10 threads of a memory

access, where each thread must skip over a slot in memory; therefore, the

memory access is not continuous and is uncoalesced.

 27

Figure 2.11 Original CPU memory allocation

Figure 2.12 Uncoalesced memory access produced with original CPU
implementation

In order to achieve coalesced memory access, a new implementation with

four sub-images is used. All computations are performed on the sub-images,

which are labelled from im1 to im4, with im1 representing the original low-

resolution image. After the first pass, im2 is generated from im1, where the two

images together represent the quincunx image from the original implementation.

After second pass, im3 and im4 are generated, and then the four images merge

to form the high-resolution output. Figure 2.13 shows a single pixel split into

 28

pixels in four different sub-images, and how they are labelled relative to each

other. Figure 2.14 gives an illustration of the implementation under GPU.

Figure 2.13 Position of pixels on each sub-image relative to the original pixel

Figure 2.14 GPU memory allocation

With this new method, memory access is now continuous and coalesced

for each computation performed on each of the sub-image, as shown in Figure

2.15. This method, however, does not solve all problems with uncoalesced

memory access. At the last step of the process where four sub-images merge to

form a high-resolution image, serialized write will still be in place because

memory access on the output image is still not continuous.

 29

Figure 2.15 Coalesced memory access produced with new GPU implementation

2.3.5 Using Shared Memory

The analysis in Table 2.1 shows that access to global memory is slow

because it is located off-chip. There is a need to cache the data into a faster

memory before each computation to reduce memory access time. Both texture

and shared memory are considered to be a good candidate because of their fast

access speed. Since each kernel may require up to two cached images and

each multiprocessor can process 768 pixels at once, the minimum space

requirement is calculated to be

 768 pixels × 4 bytes/pixel × 2 (images) = 6 kilobytes. (2.10)

Additional memory space is required for boundary pixels lying outside the

cached image, which is not included in the calculation. Since there are only 6 to

8 kilobytes of texture cache per multiprocessor available [7], it might not be large

enough for this application. A further complication is that texture memory is read-

 30

only inside the kernel function, so interpolation output would still have to be

stored in shared memory. As a result, texture memory is not used.

Shared memory access is less restrictive than global memory – as stated

in Section 2.1.3, memory access will be coalesced as long as each thread in the

warp access the same or different bank. However, to transfer the data from

global to shared memory still requires sequential memory read and write.

Because the algorithm require reading the value of up to 2 pixels outside of the

block in both x (column) and y (row) direction for the boundary situations, one to

one mapping between global and shared memory cannot be used. In order to

cache all the pixels needed for processing, a caching mechanism is developed

that will read and cache a few pixels beyond block boundary. Figure 2.16 shows

the size of the cached data compared to block size of 32 x 8. An extra 16 pixels

on each side in the x-direction and 2 pixels on each size in the y-direction are

stored in the memory, resulting in a cached block size of 64 x 12.

Figure 2.16 Size of cached data in shared memory compared to block size

The mechanism to cache the pixels in x-direction requires each thread to

cache 2 pixels – 16 pixels (the size of a half-warp) to the left and right of current

 31

position, as illustrated in Figure 2.17. Although this method caches more data

than what is required, it can be done without slowing the entire process, as there

is no net increase of memory access from the minimum of two required, and all

memory access are coalesced.

Figure 2.17 Global to shared memory transfer mechanism

Caching in y-direction outside of the block is done by letting the first and

last row of the block to process three rows each – the row itself and the two rows

above or below. This method does not negatively affect the performance, as

there is no branching within the warp. After the entire caching process is done,

the pixel in the shared memory can now be accessed by

 (x, y) = (threadIdx.x + 16, threadIdx.y + 2). (2.11)

This caching method does not work well near the edge of the image.

Because the edge of the block is also the edge of the image, the algorithm may

try to access pixels outside the allocated image and cause the driver to crash. In

the CPU implementation, the pixels are flipped around the edge to form a mirror.

However, applying this method directly in the x-direction during caching will

 32

cause bank conflict on shared memory access. This scenario is illustrated in

Figure 2.18, where bank conflict (shown with red arrow) occurs when reading

and writing in bank #1 and #2. Flipping the data around the edge in y-direction

while loading the pixels into shared memory will not create any problem as each

pixel is processed in different warp.

Figure 2.18 Bank conflict occurs when flipping pixels around image boundary

In order to avoid bank conflict when flipping data around the edge of the

image in x-direction, we developed a two-pass system. The first pass loads the

pixels from global memory into shared memory, while skipping all inaccessible

pixels using a conditional branch. This does not add extra memory access to the

caching function. The second pass is performed for edge blocks only, where it

flips the 16 pixels closest to the edge around the vertical edge of the image within

the shared memory. This process is shown in Figure 17, which proves that this

is conflict-free because there is only one memory read in each of the 16 banks of

shared memory.

 33

Figure 2.19 Conflict-free memory access when flipping pixels around image
edge

2.4 Experimental Result

To evaluate the interpolation algorithm on CUDA, we setup a system with

the following environment:

 GPU System: NVIDIA Quadro FX 1700 GPU (512MB SDRAM, 4 SMs)

 CPU System: Intel Core 2 Duo E8400 CPU at 3.0 GHz

 Operating System: Microsoft Windows XP SP3

 Compiler: Microsoft Visual Studio 2005, CUDA Toolkit and SDK v2.0

 NVIDIA Driver for Microsoft Windows XP with CUDA support (v178.24)

 34

2.4.1 Interpolation Performance

In Figure 2.20, we compare the interpolation performance of the popular

bicubic interpolation (left) in [12] and the GPU-aided directional upconversion

algorithm (right). It can be seen that the result of the proposed method is visually

more pleasing than the bicubic interpolation, with edges faithfully reconstructed

without any jaggy.

Figure 2.20 Comparison of different interpolation methods

2.4.2 Speed Performance

The execution time for processing a single image is shown in Table 2.4.

This measurement is done externally using a shell command, which includes the

time between the initialization of the executable to the point where the program

exits and returns to the shell.

 35

Table 2.4 Execution time measured by shell for a 256x256 Lena image

Code Version Running Time Improvement

Original 80 ms -

Original compiled with CUDA 280 ms -

CUDA optimized code 210 ms +33%

At the first glance, it does not seem like CUDA is providing any

performance improvement. However, notice that after compiling and linking the

program with CUDA library, there is a 200 millisecond overhead added to the

execution time. This overhead may be attributed by the initialization of the CUDA

runtime dynamic link library and/or the graphic card driver, which was not

required if the program was compiled with CPU-only code. Despite the fact that

the final version still require longer execution time compared to the original, it can

be seen that CUDA optimization results in a 33% improvement of total running

time. Note that the time increase from loading CUDA is insignificant when

processing video files, which the loss in speed is offset by the large gain from

faster computation for each frame.

A better measurement method is to use the CUDA timer function to

determine only the time spent on image processing. This ignores the program

loading/initialization and image file reading/saving parts as they are more or less

limited by the speed of the hard drive and operating system. In a way, this

measurement is treated as if image file reading, video decoding, and/or output

file saving are done on a different CPU thread. The result in Table 2.5 shows

that CUDA optimized multi-threaded computation is close to 4 times as fast as

 36

the original implementation. For video processing, memory on the device can be

reused for each frame; therefore memory allocation is only needed for the first

frame. If we ignore the overhead on memory allocation on the device, the speed

of the GPU-aided algorithm is almost five times of the original speed.

Table 2.5 Execution time measured by CUDA for a 256x256 Lena image

Code Version Running Time Relative Speed

Original 41.6 ms 1.00x

CUDA Optimized 11.2 ms 3.71x

Optimized without malloc/free 8.5 ms 4.89x

Table 2.6 shows the result with larger, video-sized images. Without the

cost of memory allocation, the CUDA optimized code is close to 5.2 times the

speed of original implementation for each test case.

Table 2.6 Execution time measured by CUDA for larger image

Video size
640 x 480 720 x 480 1280 x 960

Time Speed Time Speed Time Speed

Original 187 ms 1.00x 213 ms 1.00x 763 ms 1.00x

CUDA Optimized 40 ms 4.68x 44 ms 4.84x 152 ms 5.02x

Optimized without
malloc/free 37 ms 5.05x 41 ms 5.20x 148 ms 5.16x

The first case of the result shows a regular 4:3 DVD-sized video frame

input. The processing time of 37 milliseconds per frame corresponds to around

27 frames per seconds, assuming the video decoding is done on a co-processor

such as the CPU or another graphics card. For the widescreen DVD video in the

 37

second case, the system can process at around 24 frames per seconds. This

result shows that real-time processing of DVD video input is quite possible if the

code can be slightly optimized or the hardware can be upgraded. This

represents a significant improvement over the original CPU implementation,

which it can barely handle even 6 frames per seconds.

Note that the graphics card used for the testing only contains 4 streaming

multiprocessors supporting 768 threads, whereas the newer generation of

NVIDIA display card offers up to 30 processors that can handle 1024 threads

each. Significant speedup can be further obtained using these newer graphic

cards.

 38

CHAPTER 3: GPU IMPLEMENTATION OF JPEG-XR

3.1 Background of Image/Video Coding and JPEG-XR

In the field of multimedia, image and video are important mean of

communication. As bandwidth and storage space are at a premium, image and

video compression technology is essential for multimedia applications and

consumer electronics to reduce cost and hardware requirement. The aim is to

produce higher image and video quality at a lower bitrates with better bitstream

flexibility; however, this usually involves in a trade-off with computational

complexity as better compression ratio usually requires additional computation

resources.

Figure 3.1 shows a block diagram of a typical video encoder. For image

encoder, only transform, quantization, and entropy coding are required,

represented within the dashed rectangular box in the figure.

 39

Figure 3.1 Block diagram for image and video coding

3.1.1 Overview of JPEG-XR

In the recent years, image compression technology has been developing

at a rapid pace. The JPEG2000 provides better compression performance and

higher code stream flexibilities than the JPEG standard. However, the

JPEG2000 is high in computational complexity, whose compression speed is

more than four times slower than JPEG [16]. This drawback limits its

applications in many scenarios.

JPEG XR, originally proposed to the JPEG committee in 2007 by

Microsoft based on its Windows Media Photo or HD Photo format, is the latest

image-coding standard. It was approved in 2009 as a new international

standard, ISO/IEC 29199-2. The JPEG-XR standard provides competitive

Transform +

Inverse
Transform

Quantization

Motion
Prediction

m
otion vectors

+

Entropy Coding

Inverse
Quantization

+
+

+

–

 40

compression efficiency comparable to JPEG2000, but the implementation of both

encoder and the decoder involves lower computational complexity. The basic

building block of the encoder consists of [17]:

1. Pre-scaling

2. Colour conversion

3. Downsampling

4. Transform

a. Outer Photo Overlap Transform (POT)

b. Outer Photo Core Transform (PCT)

c. Inner Photo Overlap Transform (POT)

d. Inner Photo Core Transform (PCT)

5. Quantization

6. Coefficient Scanning

7. Entropy Coding

8. Interleaving

The key feature of the codec includes the use of lapped biorthogonal

transform (LBT) and advanced coefficient coding [17], [18]. The LBT, consists of

the four POT and PCT sub-steps, is a high-performance reversible integer

transform with low complexity, which also enables lossless coding. Advanced

 41

coefficient coding enables the codec to achieve high compression ratio and

encoding flexibility. These features include [17], [18]:

 Independent coding of three levels of transform bands

 Flexible quantization

 Inter-block prediction

 Layered coding

 Adaptive coefficient scanning

 Context adaptive entropy coding with VLC table switching

Details about some of these features are discussed in the implementation

section of this chapter.

3.2 CUDA Implementation of JPEG-XR Encoder

The JPEG-XR codec consists of building blocks that are similar to

traditional image codec, as described in section 3.1.1. This section will describe

the modifications to the Microsoft’s CPU implementation of JPEG-XR encoder

from [19] into a CUDA-optimized version.

In the original CPU implementation, these processes are iterated by rows

of macroblock, with one row of compressed stream written to disk before loading

the next row from the input stream. This method minimized the memory

 42

requirement for compression since only two subimages with a height of 16 are

present in memory at all time. However, GPU implementation requires parallel

processing of the entire image. As a result, the entire image must be loaded into

the memory at once, which greatly increases the memory requirement. In order

for both implementations to be compatible, the image planes loaded in the GPU

memory are partitioned into rows of macroblock with pointers pointing to the

correct partitions, as shown in Figure 3.2. This memory arrangement ensures

the seamless transfer of processed data from GPU back to CPU at later stage of

the codec.

Figure 3.2 Comparison between memory arrangements of CPU and GPU
implementations

The implementation of each building block of the codec is described in

each section below.

3.2.1 Input and Colour Space Conversion

JPEG XR uses YUV as the internal colour format for data processing;

therefore, all other external formats must be converted accordingly [20]. For this

step, each thread is assigned to process a single image pixel, and blocks of

Previous
Macroblock Row

Current
Macroblock Row

CPU
Implementation

GPU
Implementation

 43

16x16 threads are used, with each representing a macroblock defined by the

JPEG XR/HD Photo specification [20]. The dimension of the kernel block grid is

thus the same as the grid of macroblock in the image. According to Table 2.2,

this will have virtually no limit to the dimension of the input image.

For each pixel, multiple bytes of data are read from the input stream, with

the size depends on the input format. The data are processed and then write

back to memory as three separate image planes – one each for Y, U, and V

components. The requirement of reading multiple bytes per thread poses a

problem for GPU memory access, as the threads in a warp does not access

continuous memory space, resulting in a serialized memory read operation. This

issue is illustrated in Figure 3.3 for the RGB input format, with the memory read

of the red pixel in a stride of three.

Figure 3.3 Memory access pattern of RGB input stream from global memory

One way to solve this issue is to cache the input stream into shared

memory, with each thread reads and writes one byte of input data. Figure 3.4

shows that for RGB input, each colour now automatically lies in a different

R G B R G B R G B R G B R G B R G B

Y
U
V

Y
U
V

Y
U
V

Y
U
V

Y
U
V

Y
U
V

R G B

Y
U
V

…

…

RGB Input

Colour space

Output Y-Plane
Output U-Plane
Output V-Plane

Y
U
V

Y
U
V

Y
U
V

Y
U
V

Y
U
V

Y
U
V

Y
U
V

Y
U
V

Y
U
V

A warp of 16 threads

 44

memory bank, which enables parallel memory access without bank conflict. The

drawback for this mechanism is that different algorithms are required for different

pixel strides. For instance, RGBA input with pixel stride of four will require a

padding of an empty memory spot every 16 bytes.

Figure 3.4 Memory access pattern of RGB input stream from after memory
caching using shared memory

Since there is no need to write data back to the input stream, using texture

memory is another approach for solving the memory access issue, which allows

scattered memory read with relatively little cost compared to global memory.

Experimental results show that the speed of loading using texture memory is

approximately the same as the shared memory approach, but the implementation

is much simpler and the same code can be use regardless of the pixel stride.

Therefore, this approach is selected and implemented.

In order to increase the efficiency of the transform code block, a special

mapping is used during encoding to rearrange the order of pixels when writing

R G B R G B R G B R G B R G B R

Y
U
V

Y
U
V

Y
U
V

Y
U
V

Y
U
V

Y
U
V

Y
U
V

…

…

RGB Input stream
in shared memory

Colour space
conversion

Output Y-Plane
Output U-Plane
Output V-Plane

Y
U
V

Y
U
V

Y
U
V

Y
U
V

Y
U
V

Y
U
V

Y
U
V

Y
U
V

Y
U
V

A warp of 16 threads

G B R G B G B R G B R G B R G
B

R
R G B R G B R G B R G B R G B

 45

them onto the Y, U, V image planes. In the Microsoft implementation of HD

Photo codec, a mapping table is used for this purpose [19]. It is possible to load

the table into constant memory and perform mapping on the GPU as well.

However, since each thread will read from a different constant memory space,

memory access will be serialized. This issue can be solved by converting the

mapping table

 idx = {0, 1, 5, 4, 2, 3, 7, 6, 10, 11, 15, 14, 8, 9, 13, 12} (3.1)

into the equation

 idx(x) =)()(248 012313 xxxxxx , (3.2)

where x3, x2, x1, and x0 are the most, second, third, and least significant bits of

the value x, respectively. The extra complexity of introducing the additional

computation is easily offset by the faster memory access time.

After colour space conversion, pixel data cannot be written back directly to

global memory with coalesced memory access, as the pixels are no longer in

order. This issue is resolved by caching the data first into shared memory, as the

swapping does not create any bank conflict.

This implementation of colour space conversion only requires eight

registers and 4 bytes of shared memory per thread. Therefore, 100% thread

occupancy can be achieved on both older and newer version of the GPUs.

 46

3.2.2 Downsampling

Downsampling by calculating the weighted average of near-by pixels are

performed in the chroma (U and V) planes only when the output format is

specified to be YUV422 and YUV420. In order to maximize the performance,

each thread is mapped to each output pixel, and each block consists of 16x16

threads. This means that for YUV422, where only horizontal downsampling is

required, a thread block processes 1x2 macroblocks; for YUV420, where both

horizontal and vertical downsampling are required, a thread block processes 2x2

macroblocks.

Figure 3.5 The downsampling process

Due to the mapping performed in the previous step, memory access for

downsampling becomes quite complex as the pixels are out of order. It is not

possible to have a coalesced memory access when reading from and writing into

the global memory directly. Similar to the colour conversion block, texture

memory is used for scattered read. Because the texture memory is read-only

inside a kernel, the processed data cannot be written back to the original memory

Horizontal
Downsampling

YUV444

Vertical
Downsampling

YUV422 YUV420

 47

position. This is not an issue for the processing of YUV422 format, as it involves

only horizontal downsampling. For YUV420, additional temporary storage space

and memory transfer are required between the horizontal and vertical

downsampling steps.

The downsampling kernel requires a total of 19 and 20 registers for the

horizontal and vertical cases respectively. This is much more than the ideal case

of 10, as described in section 2. As shown in Table 3.1, using 20 registers for

each thread will reduce the number of active thread per multiprocessor in older

device to 256, or 1 thread block, which yields only 33% occupancy rate. It is

possible to reduce the number of threads per block from 16x16 to 8x16 or 16x8

so that up to 384 threads can be executed concurrently on older devices. But in

order to have the configuration of 8x16, the half-warps will be broken up, which

results in a higher chance of bank conflicts and diverging branches. Similarly, the

configuration of 16x8 separates a macroblock into two different thread blocks in

the horizontal downsampling case, which would result in a much higher coding

complexity.

Fortunately, the CUDA compiler provides a –maxrregcount option that

allows the user to predefine the maximum number of registers to use in a kernel

[21]. When the limit is reach, local memory is used in place of registers.

Although local memory is slow and seems to be undesirable, sometimes it is

beneficial to unload some of the register onto local memory to increase

occupancy of the multiprocessor. Three different options are tested in this

 48

project, as shown in Table 3.1. It is determined that using 16 registers and up to

4x32 bit local memory yield the fastest running time.

Table 3.1 Evaluation of the trade-offs between register and local memory use

Register
Usage

Local
Memory
Usage

Maximum Threads for Compute Capability

1.0, 1.1 1.2, 1.3

20 0 256 (1 block) 768 (3 blocks)

16 4 512 (2 blocks) 1024 (4 blocks)

10 10 768 (3 blocks) 1024 (4 blocks)

3.2.3 Transform

Transform for the JPEG-XR is divided into four steps consisting of two

stages of Photo Overlap Transform (POT) and Photo Core Transform (PCT).

The POT involves the processing of a 4x4 region that consists of a quarter of four

neighbouring blocks, while the PCT applies to the 4x4 blocks. The block

boundary for both transforms is shown in Figure 3.6. The first stage of the

transform processes all pixels within a macroblock, while the second stage only

deals with the 16 DC coefficients in each macroblock. These together forms a

two-stage lapped biorthogonal transform (LBT); however, each of the POT

stages are free to be turned on or off [17], [18], [20].

 49

Figure 3.6 The block boundary for PCT and POT

One of the challenges to parallelize transform operation is to determine

how much data is to be processed by a single GPU thread. Table 3.2 shows the

various options we considered. Since the pixels are dependent upon each other

during transform, assigning one pixel per thread would require memory

synchronization after almost every lifting operation, which is highly inefficient. On

the other hand, assigning each thread per block would make the implementation

much easier, but there is not enough shared memory cache on the device,

capping the maximum thread per multiprocessor to 256, or 25% occupancy.

Since each transform operator involves either 2 or 4 pixels, it is possible to

assign 4 pixels per thread, with each responsible for a single operator. This

method allows the maximum use of GPU resource while having the most

macroblocks being processed in parallel.

 50

Table 3.2 Options to assign pixels per thread during transform operations

Pixels
per

Thread

Threads
per

Macroblock

Minimum
Shared
Memory

per
Thread

Maximum Threads
per Multiprocessor

Maximum
Macroblocks

per
Multiprocessor

1 256 4 bytes 4096 1024 or 768 4 or 3

4 64 16 bytes 1024 or 768 16 or 12

16 16 64 bytes 256 16

The maximum number of parallel threads can be executed on a

multiprocessor is further limited by registers; therefore, the block dimension of

16x4 is chosen, as it is aligned to macroblocks of the image. When loading the

pixels into shared memory, x-index represents one of the 16 pixels in the block

while y-index represents a group of 4 blocks. This ensures coalesced and

conflict-free memory access during caching since each block is stored in the

global memory as a 1x16 strip. To compute the transformation, x-index of the

thread block now represent each block in the macroblock, while y-index are used

to identify each of the 4 threads assigned to each block. This would eliminate the

possibility of divergent warp, because the instructions would have to be the same

when processing same pixel in different block. To avoid bank conflict in both

dimensions, shared memory is allocated as a 17x16 array [22].

Figure 3.7 shows the detail of this implementation. The image data for the

macroblock is located within the thick bounding box of 16x16. Each row within

the box represents a single image block, and each colour of the grid represents

 51

different memory bank. This example shows the access of pixel 0, 4, 8, 12 for

each of the 16 blocks.

Figure 3.7 Memory configuration for transform operation

The POT consists of 4x4 pre-filter for each block of data, as well as 4-

point pre-filter for the boundary pixels. To avoid branching inside a kernel, the

POT operation is divided into three kernels, shown in Figure 3.8 – Kernel 1

process the interior blocks, kernel 2 processes the upper and lower boundary,

and kernel 3 processes the left and right boundary. The four corners of the

image are not processed [17].

POT blocks and macroblocks are offset by two pixels in both x and y

direction, so the data for the POT block are scattered onto four different

macroblocks. Each block would require 4 memory accesses for caching, and

each memory access would cache 4 different blocks. PCT are more

straightforward, as the image blocks are aligned to the thread block and there are

Macroblock data boundary y = 0

Shared Memory

…

Thread x-index

y = 1 y = 2 y = 3

Block rows

 52

no boundary cases to consider. Memory reading and caching is always one-to-

one.

Figure 3.8 The three kernels for first stage POT on a rectangular image

After first stage PCT, a sub-image containing only the DC coefficients is

created and is sent back to the POT and PCT kernels for the second stage

transform. This method ensures a continuous global memory access instead of

having a stride of 4 from selecting only the DC coefficients.

After second stage PCT, each DC coefficient from the sub-image replaces

the original value on the full images to complete the transform process.

3.2.4 Quantization

In JPEG XR, the quantization is split into DC (first coefficient of a

macroblock), low-pass (first coefficient of other blocks in a macroblock), and

high-pass (all other coefficients). Porting the quantization to CUDA is much

easier than previous sections as each pixel is independent of each other.

Since the computation can be performed regardless of the state of other

pixels, quantization is processed directly after the last step of transform, before

Kernel #3

Kernel #1

Kernel #2

Kernel #3

Kernel #2

 53

the data being written back to global memory. Thus for high-pass coefficient,

quantization is performed after the first stage PCT; for DC and low-pass, it is

preformed after the second stage PCT, before the coefficient being merged back

into the full image. This way, the number of global memory access can be

reduced by two.

3.2.5 DCAC Prediction, Coefficient Scanning, and Entropy Coding

The last three building blocks of the JPEG-XR encoder are challenging for

CUDA implementation because the process is adaptive and dependent upon

previous results. For the DC and low-pass prediction, the process is dependent

on the prediction from previous macroblock; therefore, the process has to be

serialized. The high-pass prediction, on the other hand, can be parallelized to

some extents, but it would result in only 12 active threads per macroblock. Due

to memory constraint, most of the available computing resources on the GPU

would be wasted.

Coefficient scanning process in JPEG XR is adaptive, where the order of

the scan can change in the course of the tile [17]. If the scanning is done in

parallel, it is impossible to predict the location of the order change before the

scan, thus the scanning would most likely to be done incorrectly. There are also

not enough tiles in a regular-sized to be scanned efficiently if tile is processed by

a thread.

Similar problems apply to the entropy coding, where the process is

adaptive in the course of tile and there is not enough tile to justify parallel

 54

processing. The entropy coding also deals heavily with disk I/O, which can only

be done in CPU. These challenges make CUDA implementation undesirable.

3.3 Experimental Result

In this section, the execution time of our GPU implementation of the JPEG

XR encoder is compared to the CPU version using the Microsoft HD Photo

source code [19]. The test environment contains:

 GPU System: NVIDIA Quadro FX 1700 GPU (512MB SDRAM, 4 SMs)

 CPU System: Intel Core 2 Duo T8300 CPU at 3.0 GHz

 Operating System: Microsoft Windows Vista SP2

 Compiler: Microsoft Visual Studio 2005

 CUDA Toolkit and SDK v2.3

 NVIDIA Driver for Microsoft Windows XP with CUDA support (v178.24)

3.3.1 Speed Performance for Each Code Segment

Table 3.3 compares the execution time of each GPU code block and/or

kernel function with the original CPU implementation. The results for all blocks

are taken from a lossless compression test with input image size of 1024x768.

An exception is for downsampling, which uses another test case that produce a

YUV422 output image.

 55

Table 3.3 Comparison between CPU and GPU processing time for various blocks
for the JPEG XR encoder

Blocks
CPU

Processing
Time

GPU
Processing

Time
Relative
Speed

GPU Memory Allocation - 2.77 ms -

Memory Transfer to GPU - 1.85 ms -

Color Space Conversion 6.71 ms 3.05 ms 220%

Downsampling 7.21 ms 5.19 ms 139%

First Stage Photo Overlap
Transform 19.39 ms 13.73 ms 141%

First Stage Photo Core
Transform 7.97 ms 3.70 ms 215%

Second Stage Transforms 2.15 ms 1.02 ms 211%

Quantization 9.63 ms 0.97 ms 993%

Memory Transfer to CPU - 11.85 ms -

The results show that in all cases, the GPU implementation yields better

performance, with an average relative speed of about 215%. For the kernel that

involves complicated memory access and mapping – downsampling and first

stage POT – the speed up is less significant. On the other hand, the segment

that does not require any memory access, namely quantization, can achieve a

speed up of almost 9 times. This observation shows that the main bottleneck of

the GPU implementation is memory bandwidth. If quantization were to be

implemented as a separate kernel, an additional 3 milliseconds is required for

memory access, so the relative speed would fall back to the 215% range.

The use of texture memory instead of global memory speeds up the color

space conversion kernel by approximately 10 milliseconds. The use of

 56

computational equation rather than constant mapping table further increase the

speed by 4 milliseconds, allowing it to surpass the speed of CPU implementation.

Using texture memory for downsampling also increases the speed by 5

milliseconds, whereas the cost of providing a temporary space for data storage

between the horizontal and vertical downsampling is less than 1 millisecond.

3.3.2 Speed Performance for Different Output Types

Table 3.4 and Table 3.5 compare the processing time for different output

formats. The results show that GPU kernels are close to twice as fast as the

CPU counterpart (up to quantization only). However, with the addition of entropy

coding and memory allocation/transfer time, there is only a 2~7% benefit.

Note that for the lossless, YUV, and grayscale cases, a 1024x768 input

image is tested. For the alpha cases, an 800x800 image is used instead.

Table 3.4 Comparison between CPU and GPU processing time for various types
of images – to quantization only

Output Format
CPU

Processing
Time

GPU
Processing

Time
Relative
Speed

Lossless 41.53 ms 22.54 ms 184%

YUV422 38.45 ms 21.55 ms 178%

YUV420 36.43 ms 21.94 ms 166%

Grayscale 19.76 ms 9.55 ms 207%

Planar Alpha 48.62 ms 26.36 ms 184%

Interleave Alpha 48.71 ms 26.26 ms 185%

 57

Table 3.5 Comparison between CPU and GPU processing time for various types
of images – full encoder

Output Format
CPU

Processing
Time

GPU
Processing

Time

GPU
Memory
Transfer

Relative
Speed

Lossless 118.60 ms 99.58 ms 16.34 ms 102%

YUV422 101.41 ms 84.52 ms 13.92 ms 103%

YUV420 84.66 ms 70.15 ms 11.69 ms 103%

Grayscale 49.89 ms 39.67 ms 7.03 ms 107%

Planar Alpha 92.18 ms 69.88 ms 20.61 ms 102%

Interleave Alpha 95.51 ms 73.06 ms 17.04 ms 106%

3.3.3 Speed Performance for Different Image Sizes

Table 3.6 and Table 3.7 show the processing time of lossless

compression on various sized input images. It indicates that the GPU

implementation is more beneficial for larger image than smaller ones. In fact, for

small images, it is faster to run the entire encoder on CPU and ignores the GPU

completely. Even for very large images, there is only a modest 11% speed up if

memory allocation time were to be included.

As mentioned above, the bottleneck for the GPU implementation of the

JPEG XR codec is memory bandwidth. It seems that any time saved from

computation would be lost to memory transfers. But one may not take this

observation for granted as both CPU and GPU hardware used for this test are

not the latest offers from Intel and NVIDIA, and they are both 2 to 3 years old.

For instance, the newest graphics card offers 5 to 10 times the memory

bandwidth and more than 5 times the amount of processors compared to the

 58

Quadro FX 1700 used in this test [23]. This would provide tremendous help in

speeding up the codec.

Table 3.6 Comparison between CPU and GPU processing time for various sizes
of images – to quantization only

Output Size
CPU

Processing
Time

GPU
Processing

Time
Relative
Speed

256 x 256 3.53 ms 2.66 ms 133%

512 x 512 13.86 ms 8.07 ms 172%

1024 x 1024 56.41 ms 31.87 ms 177%

2048 x 2048 223.04 ms 115.62 ms 193%

4096 x 4096 917.47 ms 462.92 ms 198%

Table 3.7 Comparison between CPU and GPU processing time for various sizes
of images – full encoder

Output Size
CPU

Processing
Time

GPU
Processing

Time

GPU
Memory
Transfer

Relative
Speed

256 x 256 7.37 ms 6.50 ms 1.85 ms 88%

512 x 512 27.50 ms 21.71 ms 6.56 ms 97%

1024 x 1024 109.96 ms 85.42 ms 20.60 ms 104%

2048 x 2048 418.60 ms 311.18 ms 76.60 ms 108%

4096 x 4096 1631.03 ms 1176.48 ms 294.73 ms 111%

 59

CHAPTER 4: CELLPHONE AIDED MULTIMEDIA
PROCESSING

4.1 Introduction

As technology improves, new ideas are constantly developed to improve

user experience and interaction. This chapter describes a system that used

cellphone as an input device, with signal sent wirelessly to the computer using

Bluetooth technology. The phone allows user to send commands remotely

without the need to be physically beside their computer. This section represents

the right-hand-side of the system illustrated in Figure 1.1.

Remote input device is not a new idea, however. Beside the Nintendo Wii

system described in Section 1.1, numerous other systems such as [24] and [25]

use cellphone as an input device. Most of these systems use raw data from the

cell phone, where the user can position mouse pointer based on the movement,

position, and orientation of the phone. Mouse clicks and key presses can be

emulated using buttons on the cell phone. As a result, the cellphone now acts as

an input device that replaces mouse, keyboard, and even joystick on a computer.

It allows the user to obtain full control of the system.

In contrast, our system is command-based, which can reduce the amount

of data transmitted between the cell phone and the computer. The user performs

 60

a specific movement using the cellphone, and the movement is matched in the

phone against a predefined command list to identify the action and execute the

corresponding command. The command list includes, but not limited to:

 Play and pause toggle

 Stop

 Mute and unmute toggle

 Pan or rotate in up, down, left, or right directions

 Snap to the next view in top, down, left, or right directions

 Zoom in or zoom out

The functions of these commands are slightly different and are defined

separately by the applications. This will be described in detail in the

implementation in Section 4.4.

4.2 Cellphone as Input Device

For the system, we use Nokia’s N-series cellphone as an input device,

which runs on Symbian S60 platform. The current implementation supports the

third edition, feature pack 2 (Symbian OS v9.3) version. There are currently two

different types of inputs supported in our system:

 Key press – by capturing the code of the input key

 61

 Phone movement

The phone movement can be further divided into rotation, shaking, and

other more complex motion matching. The phone motion is captured by the built-

in accelerometer in Nokia cellphones using its Sensor API and R&D Plugin [26].

The sensor provides readings in all x-, y-, and z-axis, in the way illustrated in

Figure 4.1. The rectangular box in the figure represents the cellphone with front

facing upward and top going into the page [27].

Figure 4.1 The x, y, and z axis of the accelerometer relative to the cellphone

When the cellphone is resting on the table, reading from the

accelerometer is approximately (0, 0, -350). This value is not zero due to the

normal force acting on the z-direction. This turns out to be a nice property that

makes motion tracking much easier, which will be discussed in detail in the

following sections.

The accelerometer in the Nokia phone is quite sensitive. Even when the

phone lying still on a table, the reading can still fluctuate up to 10 values, as

shown in Figure 4.2 with 300 samples of x and y values. The noise is

X

Z

Y

 62

undesirable for motion detection as it may cause some algorithms to fail. To

rectify this issue, a smoothing filter is used on the data. Instead using the values

directly, up to 16 samples are saved, and the output now becomes the rolling

average of the last 16 samples. Figure 4.3 shows the accelerometer values after

filtering and smoothing, where the fluctuations reduced dramatically and is now

limited to 3 or 4 values.

Figure 4.2 Fluctuations in accelerometer value when the phone is resting still

 63

Figure 4.3 Accelerometer values after filtering to reduce fluctuations

Table 4.1 shows the default detection configuration for each of the

command listed in Section 4.1. The user is free to modify this configuration to

use any other detection algorithms for any of the command using the PC server

application. Details about these detection algorithms are described in upcoming

sub-sections.

Table 4.1 Default key configuration for each command

Command Type Value

Play/Pause Toggle Key press Right key

Stop Key press Left key

Mute/Unmute Toggle Not defined –

Pan/Turn Up Rotate Up movement

Pan/Turn Down Rotate Down movement

Pan/Turn Left Rotate Left movement

Pan/Turn Right Rotate Right movement

Snap Upward Rotate + Key Up movement

Snap Downward Rotate + Key Down movement

Snap to the Left Rotate + Key Left movement

Snap to the Right Rotate + Key Right movement

Zoom In Key press Up key

Zoom Out Key press Down key

 64

4.2.1 Rotations

Rotation movement is the easiest action to perform and understand by the

users. Therefore, it is the most commonly used action in our system and are the

defaults for all directional commands, as shown in Table 4.1. A reliable detection

algorithm is essential for this kind of movement.

Figure 4.4 shows the change in the acceleration data values when the

phone is rotated to the right. The graph shows that the values in y-direction

decreased and the values in z-direction increase dramatically, while the values

for x remain relatively unchanged. Rotating the phone to the left produces similar

result, where the values for y and z both increase while the values for x stay

unchanged.

Figure 4.4 Accelerometer data for a rotate right motion

This observation can be explained by the normal force countering the

force of gravity. As described in Section 4.2, the phone experienced acceleration

 65

in z-direction while lying in a level position due to gravity. When the phone is

tilted at an angle, the acceleration is shared between both y and z directions, as

shown in Figure 4.5 (right). Therefore, acceleration in z-direction decreases

while a change is experienced in y-direction.

Figure 4.5 Change in gravitational acceleration when the phone is tilted

Similarly, when the phone is rotated upward or downward, the normal

force is now shared between x and z. Figure 4.6 shows the accelerometer value

when the phone is rotated upward, where the values in x decrease, z increase,

and y remain relatively unchanged. When the phone is rotated downward,

values for both x and z increased.

g g

gz

gy

 66

Figure 4.6 Accelerometer data for a rotate up motion

From the observations mentioned above, the accelerometer reading for

rotational motion can be described with the following properties:

 The values are almost the same when the phone is in a level position

 The amount of change in value is proportional to the angle of the tilt

 The change in values for x and y is different for each direction of tilt

From these properties, it can be concluded that a threshold can be used to

accurately identify the motion. When the user tilts the phone past a specific

angle that is large enough for the accelerometer reading to pass the threshold, a

rotation action is triggered. The algorithm ignores a specific amount of samples

after the triggered action; however, if the user does not return the phone back

into a level position during this time and still tilting the phone at an angle, another

action will be triggered.

 67

Figure 4.7 shows an example of the detection of rotational motion. The

example represents a tilting of the phone to the right for an extended amount of

time. For this action, the threshold is set to y < -110, represented with the

dashed line labelled “T” in the figure. Once the user tilt the phone past the

threshold, a “rotate right” action is triggered, and some samples after it are

ignored. The user, however, does not return the phone back into a level position

before the end of the ignored frame. As a result, two more “rotate right” actions

are triggered.

Figure 4.7 An example for the detection of rotational motion

Table 4.2 shows the default threshold value for each of the rotational

motion. These values are not fixed, as the user is free to adjust any of them with

the PC server application. The difference in the value for up and down motions

is due to the assumption that users would normally hold the phone at a slight

angle upward. Therefore, upward motion requires a larger tilt angle compared to

the downward motion.

 68

Table 4.2 Default threshold values used for rotational motions

Direction X Y Z

Up < -180 Don’t care Don’t care

Down > 25 Don’t care Don’t care

Left Don’t care > 110 Don’t care

Right Don’t care < -110 Don’t care

4.2.2 Shaking Movements

Another type of simple motion that can be easily performed by the user is

shaking. Figure 4.8 shows an example of the accelerometer reading when

shaking the phone in all directions. It shows the values are oscillating heavily in

the direction of the motion.

Figure 4.8 The accelerometer reading for a typical shaking motion

A simple way to identify this type of motion is to set a threshold on the

range of the reading, using the equation

 69

 max(y) – min(y) > threshold, (4.1)

where y is an array of values over a fixed amount of samples (the default value is

set to 50), whose range would be higher for harder motions. Equation 4.1

detects the shaking motion in the y directions, or left and right movements. To

detect up/down shaking motion, calculation is performed in the z-direction.

Similarly, x-direction is used for shaking motion toward and away from the user,

as illustrated in Figure 4.1.

In order to have proper detection of this action, it should be performed

before or independent of the rotational movement detection described in Section

4.2.1. Moreover, detections of harder shaking motions should be performed

before the lighter ones.

4.2.3 Motion Matching

Although the rotation and shaking motion detection algorithms described

in the previous section are very reliable, they only cover a very limited amount of

motions that user can perform with their phone. Figure 4.9, Figure 4.10, and

Figure 4.11 shows the accelerometer readings for three motions that cannot be

accurately characterized by the previous detection algorithms. A different

algorithm is required for these types of motions.

 70

Figure 4.9 The accelerometer reading when flipping the phone upside down

Figure 4.10 The accelerometer reading when rotating the phone twice
horizontally

 71

Figure 4.11 The accelerometer reading when raising the phone upward

A simple algorithm for the detection of these motions is to pre-record the

readings for the motions and compare them, in real-time, with live data obtained

from the accelerometer. For instance, input values from Figure 4.9 would be

matched against the pre-recorded data shown in Figure 4.12.

Figure 4.12 A pre-recorded data for the flipping phone upside down motion

 72

The comparison is done by computing the mean square error (MSE)

between the two values. We use MSE instead of some simpler mechanisms

such as absolute error or MAD because it has higher penalty for values with

larger errors, which is essential in this case to obtain higher accuracy. MSE is

also simple enough to enable the comparison to be done in real-time. The

algorithm uses only the derivation from the initial value, that is,

 KkXXX kk 2 ,' 1 , (4.2)

where Xk are the accelerometer readings in the x-direction, X’ represents the

adjusted values, and K represent the numbers of samples to be compared. The

number of sample used in the matching process depends on the recorded

motion, with the maximum value of 50 and minimum value of 2. The adjusted

values for the y and z readings are computed similarly. The final equations for

computing the MSE becomes

 KkZZYYXX
K kkkkkk

k

 2 ,Threshold)'ˆ'()ˆ'()'ˆ'(
1

1 222 . (4.3)

In order to simplify the calculation, the mean is not computed; instead, the

threshold value increases with the amount of sample. The threshold is set to be

1000 per axis per sample, that is,

 Threshold = 1000 × 3 × K. (4.4)

For a typical motion with 50 samples, this gives a threshold of 150,000.

 73

4.3 Communication with PC

The second component is to establish a link between the cell phone and

the application that displays the multimedia content. For our system, we choose

to link the PC with phone using Bluetooth communication, and display the

content as a web-based application. However, since none of HTML, JavaScript,

Flash, and Silverlight has built-in Bluetooth support, we need to establish the link

on our own. This is done by writing a stand-alone Windows Bluetooth server

application, which effectively breaks this communication link into two

independent parts:

 Link between the remote device and Windows server application via

Bluetooth protocol.

 Link between the windows server application, web browser and the

web-based application via Windows or browser APIs, JavaScript, etc.

Figure 4.13 shows a diagram of the links between the different parts of the

system. The Bluetooth link between the phone and server application will be

described in detail in Section 4.3.1, while the other parts will be discussed in

Section 4.3.2.

 74

Figure 4.13 Links between various parts of the cellphone-to-web content
communication

4.3.1 Bluetooth Communication between Phone and PC Server

Bluetooth is a short-ranged wireless communication technology that is

intended to replace cable connection between devices. It is capable of

transmitting data within the range of 10 metres and up to a data rate of 1~3 Mbps

[28]. The network relationship is service based, where a service discovery

protocol (SDP) is used. Using the protocol, the client device broadcasts service

requests to all Bluetooth server devices in range [29]. The connection is

established if any matching service, identify by a unique service ID, found in one

or more server [29].

For our application, the PC acts as a Bluetooth server while the cellphone

acts as a client that tries to establish the communication. As per Bluetooth

protocol, it first discovers all available devices, checks for available services, and

then tries to connect to the first service found. This link uses socket

Cellphone

Server Application

Web Browser

Content (HTML, Flash, Silverlight)

Bluetooth

Windows / browser APIs

JavaScript

 75

implementation of Bluetooth, which utilized the Winsock library on the Windows

server and Symbian Bluetooth API on the phone client [30].

Once the link is established, the cellphone and PC communicate with 10-

bytes data packets using the Bluetooth RFCOMM protocol. The content of the

packet is shown in Table 4.3. This is a one-way communication, as the PC

server does not send any packet back to the cellphone.

Table 4.3 The content of the 10-bytes packets used for the Bluetooth link

Byte Item

1 Packet ID

2 Cellphone ID

3 Command ID

4 ~ 5 Value 1

6 ~ 7 Value 2

8 ~ 9 Value 3

10 Error checking code

The Packet ID is a value between 0 and 255 that increments with every

packet sent by the phone (and reset back to zero once 255 is reached). This

identifies each packet and check if there is any packet loss during the

communication.

Cellphone ID is a one-byte value that identifies the type of cellphone used

as the remote device. It is essential for the PC server to know which cellphone it

tries to communicate with since the accelerometer readings and key code might

be different across platforms, which requires different values in the detection

 76

algorithm. The current implementation consist of only one type of platform –

Symbian S60 3rd FP1, which is identified by the byte 0x01.

Command ID is a one-byte value that identifies the type of data the

packet contains. Table 4.4 shows a list of currently implemented commands.

Although codes higher than 0x0100 are used internally in the Windows server

application to identify detection algorithm such as motion matching, they are not

used in the Bluetooth link.

Table 4.4 The command codes

Code Type

0x00 System commands

0x01 Key press

0x02 Accelerometer reading

0x03 Accelerometer reading, when OK key is pressed

The system command is currently only used right after the communication

link is established, for the correct identification of the type of phone.

The three values field represents the data payload of the packet. The

data differs with different command:

 For phone type-identifying system command, all value fields are zero.

 For key press command, value 1 contains the key code of the pressed

key, and the rest are zeros.

 For both accelerometer readings commands, the values represent the

readings for the x, y, and z direction respectively.

 77

The error checking code is a one-byte field that ensures the validity of

the received packets. This is performed by computing the XOR of the nine

proceeding bits. If the value computed by the server application does not match

the value specified in the packet, the packet would be marked invalid and

dropped.

4.3.2 Communication between Bluetooth Server and Web Content

Once the Windows server application received the packet, it runs them

through the detection algorithms described in Section 4.2. Once an input

command is identified, the corresponding JavaScript function will be executed on

the webpage. This link is implemented using two different methods:

 Embedded Browser (with Internet Explorer)

 Browser Plugin (with Firefox)

The embedded browser implementation uses Component Object Model

(COM) and Object Linking and Embedding (OLE) technology to place the

Internet Explorer browser inside the server application [31], where scripts on the

webpage can be executed directly using the APIs. Figure 4.14 shows a diagram

of this implementation and Figure 4.15 presents the detail for the execution of

script inside embedded browser window.

 78

Figure 4.14 Links between server application and web content using windows
API, COM, and OLE (Internet Explorer implementation)

Figure 4.15 Detail for the execution of scripts in embedded browser window

Application (Browser Control)

IOleObject (Browser Object)

IWebBrowser2 (Browser Object)

IDispatch (Document Dispatch)

(stored pointer)

QueryInterface()

get_document()

IHTMLDocument2 (Document Object)

IHTMLWindow2 (Browser Window Object)

QueryInterface()

get_parentWindow()

Script

execScript()

Server Application Windows APIs, COM,
and OLE

JavaScript
Web Browser

Content (HTML, Flash, Silverlight)

 79

The second method is to implement a browser plugin so that the system

can be used directly inside a browser. We built this system as a Firefox

extension, which is illustrated in Figure 4.16.

Figure 4.16 Links between server application and web content using browser
plugin (Firefox implementation)

The figure shows two independent applications, where the Firefox browser

launches the Bluetooth server application in background when the extension is

executed. The two separate applications communicate with each other through

either Cross Platform Component Object Model (XPCOM) architecture [33] or

simple file I/O. Although XPCOM is the proper method, file I/O is used for our

prototype due to the faster implementation. The input commands are written to

file after they are identified, and the browser extension reads the file and execute

the script on the webpage.

Table 4.5 shows a list of commands and the corresponding JavaScript

functions that will be executed when the command is identified. If the target

webpage does not implement the function, the system will execute the default

command function, which will be described in more detail in Section 4.4.4.

Server Application

XPCOM or file I/O

JavaScript
Web Browser

Content (HTML, Flash, Silverlight)

 80

Table 4.5 List of commands and the corresponding JavaScript function

Command Function

Play/Pause Toggle Play_Pause()

Stop Stop()

Mute/Unmute Toggle Mute()

Pan/Turn Up Turn_Up()

Pan/Turn Down Turn_Down()

Pan/Turn Left Turn_Left()

Pan/Turn Right Turn_Right()

Snap Upward Snap_Up()

Snap Downward Snap_Down()

Snap to the Left Snap_Left()

Snap to the Right Snap_Right()

Zoom In Zoom_In()

Zoom Out Zoom_Out()

4.4 Implementations and Results

As a part of this thesis, the cellphone-based remote control module

developed in this chapter has been integrated into four separate applications,

which consist of parts or all of the system described in Sections 4.2 and 4.3:

 TileShow – a cellphone image viewer that allows user to browse the

images based on actions

 Veaver – a cellphone-aided multiview video viewer that uses the phone

to control the viewpoint

 81

 Turbo Street View – an improvement on the Google Street View using

cellphone as input device

 Cellphone-aided web browser – default application for all webpages

without the JavaScript interface implemented

4.4.1 TiltShow

TileShow is a motion-controlled image slideshow application we

developed on the cellphone. With a user-defined list of images on the phone, the

application changes the image display when the user rotates the phone to the left

or right. There is no PC component required for this application; hence, no

Bluetooth communication is involved. Table 4.6 shows a list of implemented

commands.

Table 4.6 List of commands implemented in the TiltShow application

Command Function

Pan/Turn Left Load and display the previous image

Pan/Turn Right Load and display the next image

Although this application is simple, the idea can be expanded into a

generic mobile image viewer that automatically find and load all images within a

directory. This system potentially creates a faster and easier way for browsing

images without the need of clicking buttons; thus improves the user experience

tremendously.

 82

4.4.2 Veaver

Veaver is a 3D modeling system that captures multiview videos of a scene

and allows the user to explore the 3D scene formed by these videos. The

system is developed by another student in our group. It is similar to the system

developed by Carnegie Mellon University in 2001, which was a real-time

multiview video system with 30 cameras for capturing the Super Bowl game [34].

However, this system is expensive to construct and maintain, thus it is difficult to

expand it into a wider range of applications. In contrast, Veaver is a low-cost

user-driven system that utilizes user-uploaded videos captured by cellphone or

consumer cameras. Figure 4.17 shows an illustration of this system during a

football game, in which many users can capture and upload videos using their

cellphones [35]. Since each user has a different seat and thus different

viewpoint, an ad-hoc multiview system is formed.

 83

Figure 4.17 Diagram of the Veaver system

This system is similar to Microsoft PhotoSynth [4] with video replaces

image as the media content. As shown in Figure 4.17, it consists of a client

cellphone application that allows users to capture videos and upload them to a

central server. The upload should also contain location and time information to

identify which scene it belongs. The server groups the videos into scenes and

analyzes them to determine the 3D position and point of view for each video

within the scene. From there, a client application is used to allow the user to

browse the 3D scene generated by the multiview videos. Figure 4.18 shows a

screen capture of this user interface.

 internet

Multiview video acquisition Multiview video sharing

Multiview video
3D modelling,
Object tracking

server

 84

Figure 4.18 The interface for the Veaver application

The interface is developed using Microsoft Silverlight, which was chosen

due to its cross-platform compatibility and the easiness of video display and

transformations. User can navigate and explore the 3D video scene through the

Silverlight-based interface. The cellphone remote control developed in this

chapter is also integrated in this system. The remote provides a better user

experience in which the user controls the point of view by performing similar

motions. Table 4.7 shows a list of commands implemented for this application.

 85

Table 4.7 List of commands implemented in the Veaver application

Command Function

Play/Pause Toggle Play or pause the focused video

Stop Stop the current playing video

Mute/Unmute Toggle Enable or disable the sound of current playing video

Pan/Turn Up Rotate the current point of view slightly upward

Pan/Turn Down Rotate the current point of view slightly downward

Pan/Turn Left Rotate the current point of view slightly to the left

Pan/Turn Right Rotate the current point of view slightly to the right

Snap Upward Focus and rotate to the next view above

Snap Downward Focus and rotate to the next view below

Snap to the Left Focus and rotate to the next view to the left

Snap to the Right Focus and rotate to the next view to the right

Zoom In Decrease the field of view

Zoom Out Increase the field of view

4.4.3 Turbo Street View

Turbo Street View is an application we developed that aims at improving

the user experience of Google Street View. It is both faster and easier to use.

The application is developed using version 3 of the Google Map’s JavaScript API

[36]. Figure 4.19 shows the user interface of this application running within the

embedded web browser.

 86

Figure 4.19 The interface for the Turbo Street View application

In Google Street View, user can only navigate using a series of mouse

clicks or key presses and have to wait for the transitions and the image loading

time – both are often slow and tedious. Turbo Street View solves these issues

by proposing two improvements:

 Uses cellphone as remote input device for easier navigation.

 Pre-fetch images to provide faster transition.

In Google Map API, each scene or location that contains the Street View

panorama is called a bubble. Each bubble contains information required for

 87

locating the next closest bubble in different directions. This information is called

navigation links, and it contains the location and heading towards the next

bubble. Figure 4.20 shows an example of the navigation links of a bubble with

forward, backward, and right links available. Note that the road is at a slight

curve, so the heading toward the next bubble forward differs slightly from the

heading (point of view) of the current bubble.

Figure 4.20 Illustration of navigation links of a Street View bubble

Using cellphone as remote input device allows user to move between

bubbles or explore the panorama of current bubble by performing similar

motions. The user can simulate car driving using the remote control. Table 4.8

shows a list of command implemented in this application. Play, Stop, and Mute

commands are not used. If a link is unavailable in the target direction, the

Current bubble & heading

Next bubble forward

Next bubble to the right

Heading toward the next bubble

Next bubble backward

 88

snapping commands will be ignored. There is currently no command for making

a U-turn in this application, as the move backward command does not turn the

point of view 180 degrees toward the back.

Table 4.8 List of commands implemented in the Turbo Street View application

Command Function

Pan/Turn Up Rotate the current POV 1 degree upward

Pan/Turn Down Rotate the current POV 1 degree downward

Pan/Turn Left Rotate the current POV 1 degree to the left

Pan/Turn Right Rotate the current POV 1 degree to the right

Snap Upward
Move forward (if link is available):
Jump to next bubble with less than 45˚ turn, and rotate
the POV to match link heading

Snap Downward
Move backward (if link is available):
Jump to next bubble whose heading is 135˚ ~ 225˚ away,
and rotate the POV to the opposite of link heading

Snap to the Left
Turn left (if link is available):
Jump to next bubble that is 45˚ to 135˚ to the left, and
rotate the POV to match link heading

Snap to the Right
Turn right (if link is available):
Jump to next bubble that is 45˚ to 135˚ to the right, and
rotate the POV to match link heading

Zoom In Increase the zoom level by one, to a maximum of 5.

Zoom Out Decrease the zoom level by one, to a minimum of 0.

 For easier navigation, it is desirable to disable upward and downward

turning commands to prevent current POV from going into the ground or toward

the sky. It is also desirable to assign an easy action to the upward snapping

command, as it is most common in this application. For instance, it can be set to

 89

let the application trigger the move forward command when holding the phone in

the upright position.

Cellphone remote provides faster and easier control, which increases the

demand for faster transition to improve the overall navigation speed. To

decrease the transition time, we developed a prefetching algorithm. As users

are most likely to move forward while exploring a street, the algorithm preloads

images in the next bubble forward that has the same POV and zoom level as the

current ones. Preloading is triggered by rotations, turnings, and forward

movements, and it is performed right after the application has finished loading

the current view.

Table 4.9 compares the loading time of street view panorama with or

without prefetching algorithm, when performing a forward movement. The test

environment consists of:

 Embedded browser application (using Internet Explorer 8)

 Intel Core 2 Duo T8300 running Windows Vista SP2

 2 Mbps ADSL internet connection

 800x600 resolution for Street View images with zoom level of 1

 10 bubbles per location

 1 to 2 seconds delay between bubbles

 90

Table 4.9 Comparison of Street View panorama loading time with or without
prefetching

Location Images
Average Load Time (ms) Max Load Time (ms)

Without
Prefetch

With
Prefetch % Without

Prefetch
With

Prefetch %

Straight #1 60 1092 344 32% 1535 460 30%

Straight #2 60 1067 331 31% 1526 472 31%

Small Curve 60 1026 327 32% 1570 445 28%

Large Curve 108 1036 366 35% 1544 1100 71%

Hairpins 120 1695 703 41% 3105 2398 77%

Locations:
Straight #1 – Gaglardi Way going down SFU (49.267˚N, 122.916˚W)
Straight #2 – East Hastings at Sperling Avenue (49.280˚N, 122.968˚W)
Small Curve – Burnaby Mountain Parkway East (49.272˚N, 122.914˚W)
Large Curve – Clarke Road going up Snake Hill (49.274˚N, 122.871˚W)
Hairpins – Dewdney Trunk Road E. of Stave Lake Dam (49.235˚N, 122.354˚W)

Measurement is done by capturing the onload DOM event for each

image using JavaScript, and record the time in each call-back function. Result

shows that with prefetching enabled, load time of the panorama decreased

considerably. Transition is approximately three times faster when the images are

pre-loaded. Further speed improvement can be observed as the Google API

does not provide the transition animation that is available in Google Street View.

The improvement is most noticeable on a straight or slightly curved road,

where the algorithm is able to prefetch all required images for the next bubble. If

the road contains large curves, the algorithm may miss some images. This can

be observed from the increased amount of images required in Table 4.9. In this

 91

case, the loading time would increases; however, since the algorithm still

managed to preload some bubbles partially or even completely, it still provides

faster performance.

As a nature of webpage-based applications, performance and experience

can vary drastically from user to user due to factors such as network connection

and the type of browser used. Table 4.10 shows the performance of Turbo

Street View running the “Straight #1” scenario, tested under different

environments:

 Faster network (100Mbps instead of 2Mbps)

 Higher screen resolution (1280x800 instead of 800x600)

 Different browser (Firefox 3.6 extension instead of embedded IE8).

Table 4.10 Comparison of Street View panorama loading time with different test
environments

Configuration
Average Load Time (ms) Max Load Time (ms)

Without
Prefetch

With
Prefetch % Without

Prefetch
With

Prefetch %

Default Configuration 1092 344 32% 1535 460 30%

Faster Network 532 313 59% 682 426 62%

Higher Resolution 1794 724 40% 3106 1281 41%

Firefox Extension 525 130 25% 733 180 25%

Turbo Street View achieves better performance in all scenarios, although

the improvement is more noticeable with slower network. Higher screen

resolution, where there are 15 images per scene instead of six, also slightly

 92

reduces the speed improvement gained from prefetching. Note that the faster

image load time under Firefox may due to the difference in browser architecture

and/or the slightly different implementation of JavaScript timer for each browser.

4.4.4 Cellphone Aided Web Browser

For webpages that does not implement the command functions listed in

Table 4.5, a default set of functions is used. The use of these functions not only

aids users in web browsing, but also prevents JavaScript errors for undefined

functions. Table 4.11 shows a list of these functions.

Table 4.11 List of commands implemented in the cellphone aided web browser

Command Function

Play/Pause Toggle Do nothing, only to prevent JavaScript error

Stop Do nothing, only to prevent JavaScript error

Mute/Unmute Toggle Do nothing, only to prevent JavaScript error

Pan/Turn Up Scroll page up by 40 pixels

Pan/Turn Down Scroll page down by 40 pixels

Pan/Turn Left Scroll page to the left by 40 pixels

Pan/Turn Right Scroll page to the right by 40 pixels

Snap Upward Jump to the upper-left corner of the webpage

Snap Downward Jump to the lower-left corner of the webpage

Snap to the Left Jump to the upper-left corner of the webpage

Snap to the Right Jump to the upper-right corner of the webpage

Zoom In Increase the page font size by 1

Zoom Out Decrease the page font size by 1

 93

CHAPTER 5: CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, we proposed a GPU and cellphone-aided multimedia

processing system that provides both faster processing speed and better user

experience. Three components of the system were discussed: a GPU-based

image interpolation algorithm, a GPU-based image encoder, and a system that

uses cellphone as remote controller.

GPU is a powerful parallel processor; its SIMD architecture can process a

large array of data simultaneously under the same instruction. This architecture

benefits computation intensive tasks such as multimedia applications, where

each thread inside a streaming processor is responsible for one pixel, thus the

thousands of thread in the processor can process thousands of pixels at once.

The release of CUDA greatly simplifies GPU programming and unveils the power

of GPU to general computing.

The implementation of image resolution upconversion and restoration

algorithm on GPU takes the full advantage of this highly parallel nature of the

processor, and the result is a 5.2 times speed increase compared to the original

CPU implementation. With GPU implementation, real time processing of DVD-

sized video may soon to become a reality as a speed of up to 27 fps was

 94

obtained from the initial testing. GPU implementation of JPEG-XR encoder using

CUDA enjoys similar speed boost. Experimental results show that the GPU-

based codec is almost twice as fast compared to the original CPU-based version.

The entire codec, including memory transfer and entropy coding components that

are not ported to the GPU, also experiences a modest speed improvement.

Cell phone-aided multimedia processing involves the use of the phone as

a remote controller. User motions are captured by the phone’s internal

accelerometer, and the data values are transmitted to PC via Bluetooth protocol.

The reading are then analyzed and matched against a list of predefined actions

to determine the user’s input command.

Applications developed with the phone remote control system, such as

Veaver and Turbo Street View, execute commands that correspond and

resemble to the input motion. This poses a fast learning curve, greatly simplifies

an otherwise slow and tedious process of exploring multiview images/video, and

greatly improves user experience. The system can be further developed into an

interactive application that uses motion input to simulate an environment.

5.2 Future Work

This thesis presents three different components of an interactive

multimedia manipulation system. These are the preliminary works toward this

project; further improvements and system integrations are required. The newest

version of Microsoft Silverlight introduces COM support, which makes it possible

 95

to process Silverlight media content using CUDA technology [40]. System that

focuses on faster, easier control and improved user experience will mostly

require much more processing power. As a result, it is essential to offload some

tasks such as video decoding and zooming to the GPU in order to minimize delay

and ensure the system is capable of operating in real-time.

Beside system integration, many improvements can be made to various

component of the system to further improve usability and performance. Some of

which will be described in this section.

5.2.1 GPU Programming Component

The CUDA codes discussed in Chapter 2 and 3 are written for the GPUs

that were released before 2010. GPU and CUDA technology has improved

rapidly during the past two years, and the code has yet to be updated and

optimized for the latest releases. Some concerns described in Section 2.1, 2.3,

and 3.2 are no longer an issue with the newest release [8], [22]. For instance,

the slow transfer between host and device memories can be partially solved by

creating page-locked host memory, where the transfer can be run concurrently

as a kernel function. The resource available on the GPU has also been

improved greatly with the newest card. Table 5.1 compares the three

generations of graphic cards and Table 5.2 shows the memory resource

available per active thread [8]. The applications described in this thesis are

optimized for compute capability 1.2 and 1.3 devices.

 96

Table 5.1 Maximum available resource on device

Item
Compute Capability

1.0, 1.1 1.2, 1.3 2.0

Threads per multiprocessor 768 1024 1536

Threads per block 512 512 1024

Active warp per multiprocessor 24 32 48

Register per multiprocessor 8,192 16,384 32,768

Shared memory per multiprocessor 16 KB 16 KB 48 KB

Shared memory banks 16 16 32

Local memory per thread 16 KB 16 KB 512 KB

Constant memory 64 KB 64 KB 64 KB

Table 5.2 Maximum available memory resource per thread

Type
Compute Capability Improvement

1.3 to 2.0 1.0, 1.1 1.2, 1.3 2.0

Register 10 16 21 1.3x

Shared 21 bytes 16 bytes 32 bytes 2.0x

Local 64 KB 64 KB 512 KB 8.0x

Table 5.2 shows the much higher memory resource available per thread in

the newer device. Some changes to the code can be made to fully exploit these

additional resources and improve performance. For instance, additional register

helps in the downsample kernel described in Section 3.2.2, as register usage is

no longer required to be confined to 16. Another example is the doubling of

shared memory, which simplifies the caching mechanism in various kernel

functions and reduces the length of code and the possibility of branching. With

the possibility of even faster performance achievable with newer CUDA driver

 97

and GPU devices, it might be worthwhile to take a closer look at the DCAC

prediction, coefficient scanning, and entropy coding components of the JPEG-XR

codec to see if GPU implementations are now feasible in any of these areas.

5.2.2 Motion Detection and Bluetooth Communication Component

The current prototype is implemented using Nokia’s Sensor R&D plugin,

which supports only three types of phones – N82, N93i, and N95 [26]. It is

desirable to rewrite the cell phone client application using sensor framework to

extend the support to all new Symbian smartphones. It is also desirable to port

the application to different platforms such as Microsoft’s Windows Mobile,

Apples’ iPhone and Google’s Android.

The Bluetooth communication component also has limited hardware

support. The current implementation of the server application uses Windows

Socket API, which only supports the hardware devices that uses Microsoft

Windows Bluetooth protocol stack. Due to incompatibility, the application will not

work on the device that uses Broadcom’s Widcomm stack without modifying the

driver, which is both dangerous and difficult for average user [38]. It is desirable

to implement Broadcom’s API given in [39] to extend the support to most

Bluetooth devices.

The motion detection algorithm also contains many rooms for

improvements. This includes the modification of rotation detection algorithm

discussed in Section 4.2.1 so it reset when the reading drops below a certain

value instead of ignoring the readings for a fixed interval. This way, the algorithm

 98

can be easily applied to more cases other than rotations. The motion matching

algorithm can also be modified so it becomes independent of time and speed of

the action. More reliable algorithms can also be developed to improve the

accuracy of the detection.

As mentioned in Section 4.4, the orientation of the phone will affect the

accelerometer reading, which would also affect the reliability of the motion

detection algorithm. Having to hold the phone in a predefined orientation creates

a major inconvenience to the user and also make the system less reliable. This

issue can be solved by developing a calibration mechanism that either

automatically or manually determines the starting position and orientation of the

phone. After the initial values are identified, the detection algorithms can be

updated accordingly to ensure a correct motion detection result.

5.2.3 Google Street View Component

The current prefetching algorithm used in Turbo Street View works well

when the user is moving forward on a straight road. However, as Table 4.9

shows, the performance degrades severely in curvy mountainous roads. The

algorithm also fails when the user choose to turn left or right instead of moving

forward. This is due to the fact that prefetching applies only to the few images in

next bubble forward that has the same point of view as the current one. Even

when the user stays in the same bubble for prolonged period of time, the system

remains idle and no more images are downloaded.

 99

Miss rate of prefetching can be reduced dramatically with the trade-off of

bandwidth. The algorithm can be modified to download as many images as time

allows before the next command is received. The images can be grouped into

six categories based on possible actions, as listed below:

1. Forward movement – if forward link is available, all images in next

bubble forward that match the forward link heading (instead of the

current point of view)

2. Turning (left/right) action – if left or right links are available, all

images that has the same heading as the left and right link in the

current

3. Panning action – all images that surrounds the images that are

currently displayed for the current viewpoint

4. Zooming (in/out) action – if available, all images in the next (zoom in)

and previous (zoom out) level for the current viewpoint

5. The rest of the images in the panorama

The processing order can be determined by either studying the user

behaviour while exploring street view or using a training mechanism. It is

intuitive to assume that the user is more likely to repeat the previous command,

more likely to pan than zoom, and also more likely to zoom in than out at the

default zoom level. With these assumptions, the desired prefetch order after

different commands is listed in Table 5.3. The implementation of this algorithm is

 100

not straightforward, however, as there is no API available to obtain the street

view images address directly, and Google also provides no documentation for

manual retrieval.

Table 5.3 Proposed prefetch order based on the previous command

Previous Command Prefetch Order Note

Move forward 1 2 3 4 5

Panning 4 1 2 3 5

Turn left or right 1 2 3 4 5 1

Move backward 2 3 4 5 2

Zoom in or out 4 3 1 2 5 3

Notes:
1: Assume the user is more likely to move forward than turning twice in a

row, which either equals to a U-turn or going back to original heading
(already cached)

2: For Turbo Street View only; forward images in the next bubble are already
cached

3: Image required for zooming in should be processed first, unless the
current view is at the lowest zoom level

Recently, Microsoft has released Bing Streetside to compete with Google

Street View [40]. However, only a few cities are currently supported as it is still in

the Beta phase. In the future, the Turbo Street View can be modified to support

Bing Map as its coverage expands and the API becomes available.

 101

REFERENCE LIST

[1] Nintendo Europe, “Technical Details,”
http://www.nintendo.co.uk/NOE/en_GB/systems/technical_details_1072.html

[2] A. Smolic, K. Müller, P. Merkle, C. Fehn, P. Kauff, P. Eisert, and T.
Wiegand, “3D Video and Free Viewpoint Video – Technologies,
Applications and MPEG Standards,” IEEE International Conference on
Multimedia and Expo (ICME), Toronto, Canada, pp.2161-2164, July 2006.

[3] R. Hartley and A. Zisserman, "Multiple View Geometry in Computer
Vision," 2nd edition, Cambridge University Press, 2004.

[4] Microsoft PhotoSynth. http://photosynth.net/

[5] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon, A. Ogale, L.
Vincent, J. Weaver, "Google Street View: Capturing the World at Street
Level," Computer, vol.43, no.6, pp. 32-38, June 2010.

[6] J. Cao, M.-C. Che, X. Wu, and J. Liang, "GPU-aided Directional
Image/Video Interpolation for Real Time Resolution Upconversion," IEEE
International Workshop on Multimedia Signal Processing (MMSP), Rio de
Janeiro, Brazil, Oct. 2009.

[7] M.-C. Che, and Jie Liang, "GPU Implementation of JPEG XR," Proc. 2010
SPIE Visual Information Processing and Communication Conference, San
Jose, CA, USA, vol.7543, no.1, Jan. 2010.

[8] NVIDIA CUDA C Programming Guide, 2010.
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVID
IA_CUDA_C_ProgrammingGuide_3.1.pdf

[9] General-Purpose Computation on Graphics Hardware, 2009.
http://www.gpgpu.org/

[10] D. Kirk, W. Hwu. Programming Massively Parallel Processors, Spring
2010. http://courses.engr.illinois.edu/ece498/al/Syllabus.html

[11] H. Hou and H. Andrews, “Cubic splines for image interpolation and digital
filtering,” IEEE Transactions on Acoustics, Speech and Signal Processing,
vol. 26, no. 6, pp. 508–517, Dec. 1978.

[12] R. Keys, “Cubic convolution interpolation for digital image processing,”
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 29,
no. 6, pp. 1153–1160, Dec. 1981.

 102

[13] X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE Trans.
Image Processing, vol. 10, no. 10, pp. 1521–1527, Oct. 2001.

[14] L. Zhang and X. Wu, “An edge-guided image interpolation algorithm via
directional filtering and data fusion,” IEEE Trans. Image Processing, vol.
15, no. 8, pp. 2226–2238, Aug. 2006.

[15] X. Zhang and X. Wu, “Image interpolation by adaptive 2-D autoregressive
modeling and soft-decision estimation,” IEEE Trans. Image Processing,
vol. 17, no. 6, pp. 887–896, Jun. 2008.

[16] Santa-Cruz, D., Ebrahimi, T., Askelof, J., Larsson, M., Christopoulos, C.,
“JPEG 2000 still image coding versus other standards,” Proc. SPIE 4115,
446-454 (2000).

[17] Srinivasan, S., Tu, C., Regunathan, S., Sullivan, G., “HD Photo: A new
image coding technology for digital photography,” Proc. SPIE 6696 (2007).

[18] Srinivasan, S., Tu, C., Zhou, Z., Ray, D., Regunathan, S., Sullivan, G., “An
Introduction to the HD Photo Technical Design,” (2007).

[19] HD Photo Device Porting Kit 1.0.
http://www.microsoft.com/whdc/xps/hdphotodpk.mspx

[20] Microsoft Corporation, HD Photo Bitstream Specification, Version 1.0,
November 2006.

[21] The CUDA Compiler Driver NVCC (2009).

[22] NVIDIA CUDA C Programming Best Practice Guide (2009).
http://developer.download.nvidia.com/compute/
cuda/2_3/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide_2.3.pdf

[23] NVIDIA Quadro – Product Comparison.
http://www.nvidia.com/object/IO_11761.html

[24] NeeMee – Nokia2MovingExperience by Asier Arranz (A2Jsoft).
http://www.niime.com/index.htm

[25] WeeWheel. http://www.weewheel.com/

[26] Forum Nokia, “Nokia Sensor APIs.”
http://wiki.forum.nokia.com/index.php/Nokia_Sensor_APIs

[27] STMicroelectronics, “MEMS motion sensor. 3-axis - ± 2g/± 8g smart digital
output piccolo accelerometer.”
http://www.st.com/stonline/products/literature/ds/12726/lis302dl.pdf

[28] Bluetooth SIG, “Bluetooth High Speed – V3.0 + HS Data Sheet.”
http://www.bluetooth.com/SiteCollectionDocuments/HS_Doc_Web.pdf

 103

[29] Bluetooth SIG, “Core Specification v2.0 + EDR.”
http://www.bluetooth.com/Specification%20Documents/Core_v210_EDR.zip

[30] Microsoft Developer Network (MSDN), “Bluetooth Programming with
Windows Socket.” http://msdn.microsoft.com/en-
us/library/aa362928%28v=VS.85%29.aspx

[31] Microsoft Developer Network (MSDN), “Component Object Model (COM).”
http://msdn.microsoft.com/en-us/library/ms680573%28v=VS.85%29.aspx

[32] Microsoft Support, “OLE Concepts and Requirements Overview.”
http://support.microsoft.com/kb/86008

[33] Mozilla Developer Centre, “XPCOM.”
https://developer.mozilla.org/en/XPCOM

[34] Carnegie Mellon goes to the Super Bowl.
http://www.ri.cmu.edu/events/sb35/tksuperbowl.html

[35] J. Liang, “VSynTube: A Multiview Video Acquisition, Sharing and 3D
Modelling System Using Nokia Phones.”

[36] Google Map JavaScript API V3.
http://code.google.com/apis/maps/documentation/javascript/

[37] Planet Marshall, “Silverlight and CUDA interop.”
http://www.planetmarshall.co.uk/2010/01/silverlight-and-cuda-interop/

[38] Using the Microsoft Bluetooth Stack (instead of WIDCOMM) on Windows
XP with SP2. http://www.shootingsoftware.com/Widcomm.htm

[39] Broadcom, “Development Kit Download.”
http://www.broadcom.com/support/bluetooth/sdk.php

[40] Bing Map Blog, “Bing Maps Adds Streetside, Enhanced Bird’s Eye,
Photosynth and More.”
http://www.bing.com/community/Site_Blogs/b/maps/archive/2009/12/02/bi
ng-maps-adds-streetside-enhanced-bird-s-eye-photosynth-and-more.aspx

