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ABSTRACT 

Thiamet-G inhibits the activity of N-acetyl-β-glucosaminidase, a glycoside 

hydrolase known as OGA.  A validated bioanalytical method has been developed to 

enable pharmacokinetic studies of Thiamet-G and its related analogues.  The bioanalysis 

was carried out using high performance liquid chromatography (HPLC) coupled to a 

tandem mass spectrometer (MS/MS). In the MS/MS, multiple reaction monitoring 

(MRM) was used to monitor the transition of analyte parent ions to diagnostic daughter 

ions.  The validated method utilized the Hypercarb SPE cartridge as the cleanup tool and 

the ZIC-HILIC column as the suitable stationary phase.  The method was validated for 

linearity, specificity, accuracy, precision, recovery, matrix effect, stability, and 

sensitivity.  Pharmacokinetic samples obtained from rats treated by oral gavage with 

Thiamet-G were subjected to analysis using the validated method.  Thiamet-G was found 

to be absorbed with a Cmax of 370 ± 20 ng / mL and showed a tmax of 2 h.   
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CHAPTER 1: INTRODUCTION 

1.1 Carbohydrates and the O-GlcNAc Modification 

 The central dogma of molecular biology was a theory originally established in 

1958.  It describes the transcription process, in which genetic information encoded in the 

chains of DNA are converted into messenger RNA.  Following transcription, the 

messenger RNA is translated into protein.  The resulting proteins are either used for 

various functions inside the cell or secreted out of the cell.  Many proteins interact with 

each other to enable functioning of a cell, which is the smallest dividing unit of all living 

things[1]. 

In addition to proteins and lipids, carbohydrates are important biomolecules that 

act as signalling molecules and structural components[1-3].  Carbohydrates also play a 

role as crucial intermediates in generating energy within cells[1].  Carbohydrates often 

exist on the surface of proteins as glycans, which are covalently linked sugar chains of 

varying structures and sizes[4].  These glycoproteins act to enable cells and their 

surroundings to interact and therefore enable construction of complex muticellular organs 

and organisms[1].   

The exact functions of glycans in vivo are difficult to define, but they have been 

found to be important for the development, growth, functioning, and survival of the 

organism that synthesizes them[1].  The biological roles of glycans can be separated into 

three main categories.  First, glycans function in the maintenance of cellular structure and 
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to modulate cell-cell interactions[2].  Second, glycans regulate the proper folding of the 

newly synthesized polypeptides in the endoplasmic reticulum (ER) and Golgi apparatus.  

Proper glycosylation within the secretory pathway helps to maintain protein stability and 

conformation.  If proteins are not properly glycosylated and / or they fail to fold properly, 

they are removed from the ER and subjected to proteolysis [2].  The other key biological 

function of glycans is their role as targets for recognition by other molecules[2], which 

can influence the localization of the glycans and glycoproteins. 

1.1.1 Monosaccharides, the Basic Components for all  Carbohydrates 

The basic component for all carbohydrates is monosaccharides.  Monosaccharides 

contain multiple hydroxyl groups and exist predominantly as either a six- or five-

membered ring.  There are two classes of monosaccharides, aldoses and ketoses (Figure 

1.1).  An aldose has an aldehyde function whereas a ketose contains a ketone group[5].  

Many aldoses and ketoses exist in either an open chain form and a cyclic form[5].  The 

cyclic form of many 6-carbon and 5-carbon sugars is formed by the nucleophilic attack of 

the hydroxyl group, typically the stereogenic centre furthest from the carbonyl group, on 

the open chain sugar[5].  A pyranose, a 6-membered ring, or a furanose, a 5-membered 

ring are the most common cyclic species formed in carbohydrates[5].   
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Figure 1.1. Examples of an Aldose, Glucose (A), and  a Ketose, Fructose (B).  
The structures on the left hand side are the open chain forms of the sugars shown in 
Fisher projection while the structures on the right hand side are in the ring forms 
illustrated in modern projection. 

One of the two anomers, α and β, can be generated during formation of the ring.  

The open chain forms of glucose and fructose are shown in the middle of Figure 1.2 (A) 

and (B) respectively.  Anomers for D-glucopyranose and D-fructofuranose are illustrated 

in Fischer projection on the left hand side (α-anomer) and the right hand side (β-anomer) 

of the figure.  In an α-anomer, the hydroxyl group attached to the anomeric carbon is on 

the same side of the carbon backbone, as drawn in Fischer projection, as is the oxygen 

atom attached to the highest numbered stereogenic centre.  On the other hand, when the 

two substituents are on opposite sides of the carbon background in the Fischer projection, 

the configuration is β[5]. 
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Figure 1.2. Formation of Two Different Anomers Resu lting from the Cyclisation of 
Carbohydrates. 
(A) Glucose and (B) ketose are shown in the figure as examples of an aldose and 
ketose respectively.  All structures are illustrated in Fischer projection format.  The 
order of the structures from left to right in the figure are the α-anomer (left), the open 
chain forms (middle), and the β-anomer (right).  After the formation of the ring, when 
the nucleophilic oxygen is on the same side as the hydroxyl group attached to the 
anomeric carbon, the configuration is α  When the substituents are on the opposite side, 
the configuration is β. 

There are several forms of monosaccharides, some of the most commonly found 

forms in nature are hexoses and hexosamines.  A hexose is composed of six carbons and 

an example is glucose.  A hexosamine has the same structure as hexose, except that an 

amino group replaces a particular hydroxyl group substituent.  N-acetylglucosamine 

(GlcNAc) and N-acetylgalactosamine (GalNAc) are examples of hexosamines (Figure 

1.3) [1, 5]. 
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Figure 1.3. N-acetylglucosamine (GlcNAc) is Example of a Hexosam ine with a 2-
Acetamido Group Replacing the 2-Hydroxyl Group of G lucose. 

In eukaryotic cells, proteins and lipids are commonly modified by glycosylation.  In order 

for chains of monosaccharides to become covalently linked or to become linked to 

another molecule (whether it be another saccharide, protein, or lipid), they need to be 

attached via glycosidic linkages, which are usually formed through the hydroxyl group of 

the anomeric centre.  The formation of a glycosidic bond is initiated by the nucleophilic 

attack of the oxygen of a hydroxyl group to the anomeric carbon.  In Figure 1.4, the 

nucleophilic oxygen is part of the hydroxyl group of R′OH while the anomeric carbon is 

carbon 1 of D-glucopyranose.  Each monosaccharide can form an α- or a β-glycosidic 

linkage when attached to another molecule[5].  Due to the fact that there are numerous 

possible positions on a monosaccharide which can attach to another molecule to form a 

glycosidic linkage, the study of glycobiology can be very challenging.  Luckily, the 

possible combinations of glycosidic linkages that exist in natural biological 

macromolecules are limited.  However, the diversity of different glycan structures in 

nature is still large because the hydroxyl groups can also be modified by phosphorylation, 

sulfation, methylation, O-acetylation, or fatty acid acylation[1, 5].  This thesis involves a 

particular type of O-linked glycosylation on proteins, the O-GlcNAc modification, which 

is the focus of further discussion. 
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Figure 1.4 The Reaction Mechanism for Acid Catalyze d Glycosidic Bond Formation. 
A hemiacetal has reacted with R′OH to yield an acetal group with a β-configured 
glycosidic bond. 

1.1.2 The O-GlcNAc Modification 

β-O-linked N-acetylglucosamine, abbreviated as O-GlcNAc, is produced by an 

enzymatic transfer of the monosaccharide N-acetyl glucosamine (GlcNAc) to the 

hydroxyl group of certain serine and threonine residues of eukaryotic proteins.  Different 

from other characterised glycosylations, this type of glycosylation happens in the nucleus 

and cytoplasm and consists of the addition of just a single GlcNAc unit[6].  The O-

GlcNAc modification was discovered more than two decades ago[7].  During studies of 

the O-GlcNAc modification in rat hepatocytes, it was found to dominantly occupy the 

nuclear envelope and the chromatin, especially at the nuclear pore complex[8].  

Researchers also discovered O-GlcNAc on many cytoplasmic proteins, including 

cytoskeletal proteins[9].  The O-GlcNAc modification is one of the most common post-

translational modifications found on proteins[10-12].  Approximately 500 proteins have 

been classified as O-GlcNAc modified proteins to date, and these proteins are involved in 

a number of roles[10, 12], including stress responses[13, 14], transcription[15-18], 

translation[19], and cellular signalling[20].  A number of O-GlcNAc modified proteins 

are part of the cytoskeleton, and regulate the assembly of microtubules and the bridging 

of actins[21-24].  Research has suggested that this modification of proteins is involved in 
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type II diabetes[25, 26], Alzheimer’s disease[25, 26], and cancer[17]; however, their 

exact roles are unclear and are contentious[27, 28]. 

The cycling of O-GlcNAc relies on two enzymes (Figure 1.5).  Uridine 

diphospho-N-acetylglucosamine:polypeptide β-N-acetylglucosaminyltransferase (OGT), 

a glycosyltransferase, transfers the sugar moiety from the donor sugar substrate, uridine 

diphosphate (UDP)-GlcNAc, onto target proteins[29, 30].  In the reverse process, β-N-

acetylglucosaminidase (OGA) removes the O-GlcNAc moiety from proteins[26, 31].  As 

a result, O-GlcNAc is a dynamic process in which the addition and removal of the moiety 

can happen numerous times during the lifespan of a protein[12]. 

 

Figure 1.5. The Cycling of the O-GlcNAc Modificatio n.   
 OGT, a Glycosyltransferase, Transfers the Sugar Moiety from the Donor Sugar 

Substrate, UDP-GlcNAc, onto Target Proteins.  In the Reverse Process, OGA 
Removes the O-GlcNAc Moiety from Proteins. 

Researchers have found that disruption of the gene encoding for the OGT is lethal 

at the single cell level and is essential for mouse embryogenesis[32].  Furthermore, when 

the genes encoding for either the O-GlcNAc transferase or the hydrolase, OGA, were 

knocked out in Caenorhabditis elegans, defects were detected in dauer larvae formation 
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and in the regulation of macronutrient storage[33, 34].  To date, gene deletion of OGA 

has not been done in mammals, although evidence suggests that O-GlcNAc cycling is 

important for development[33, 34].   

Analogous to phosphorylation, the O-GlcNAc modification appears to play a key 

role in regulating the activity of target proteins[35].  The O-GlcNAc modification has 

some analogies to phosphorylation (Figure 1.6).  For the O-GlcNAc modification, a 

transferase, and for a phosphorylation, a kinase, is responsible for putting the moiety onto 

the hydroxyl group of certain serine and threonine residues of eukaryotic proteins[36].  

Similarly, for phosphorylation, a phosphatase, and for the O-GlcNAc modification, a 

hydrolase, removes the moiety from the modification site[37].   

 

Figure 1.6. Cycling of O-GlcNAc and O-phosphate on the Same Amino Acid Residue of a 
Protein Molecule. 

As illustrated in Figure 1.6, O-phosphate and O-GlcNAc can occur on the same or 

nearby residues[38, 39].  In the case of the C-terminal domain of RNA polymerase II, 

competitive cycling was observed for the O-GlcNAc modification and 

phosphorylation[40].  Studies of oestrogen receptor-β suggested that two types of 

modification at the same site might function in regulating the activity and the turn over of 
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the receptor[41].  There are some cases where the O-GlcNAc modification modulates a 

nearby phosphorylation site[35, 42].  Historical evidence suggests that the O-GlcNAc 

modification alters phosphorylation and protein expression in crucial signalling 

pathways[43]. 

1.1.3 Methods to Modulate Levels of O-GlcNAc 

Altering O-GlcNAc levels in cells either in vivo or in vitro helps to provide a 

better understanding of the functions of the post-translational modifications on proteins.  

Researchers have tried various techniques to modulate the levels of O-GlcNAc.  

Upregulation can be done by elevating the concentrations of UDP-GlcNAc[44, 45] and 

increasing the expression of OGT[46].   

One can elevate the concentration of UDP-GlcNAc by increasing the 

concentration of glucose or glucosamine, which are metabolic precursors[47].  However, 

when introducing glucosamine, various other effects at the cellular level are observed, 

which complicates the study of the upregulation of UDP-GlcNAc[48-50].  Aside from 

OGT, other enzymes also transfer UDP-GlcNAc to proteins or other molecules during 

other types of glycosylation processes[51, 52].  Thus, methods to elevate levels of UDP-

GlcNAc for purposes of defining the role of O-GlcNAc by feeding metabolic precursors 

to increase the levels of the modification is ambiguous because these other glycosylation 

pathways are also affected[53]. 

 Another common approach is to overexpress OGT in cultured cells[30] or in 

animals[54].  Consistent with OGT being a large multidomain macromolecule, it has 

been found to interact with many other proteins.  Slawson et al. found that 
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overexpression of OGT actually disturbs the progression of the cell cycle[55].  Although 

the non-catalytic roles of OGT have not been defined, these data suggest that OGT may 

have functions other than just cycling O-GlcNAc.  Overexpression of OGT can induce 

other unavoidable effects due to the non-catalytic activities or interactions of OGT with 

other proteins[56-58].  Furthermore, OGT overexpression usually only results in small 

increases in O-GlcNAc levels. 

Another method for increasing the levels of O-GlcNAc modified proteins is to use 

inhibitors to block the activity of the enzyme responsible for removing O-GlcNAc from 

target proteins.  Haltiwanger et al. first showed that the inhibition of OGA can 

significantly increase the levels of O-GlcNAc in cells[59].  In order to understand the 

background about inhibitors currently used for OGA, some general information regarding 

OGA will first be discussed in the following section. 

1.1.4 OGA 

Many glycosyltransferases and glycoside hydrolases found in nature are 

responsible for the post-translational modification of proteins with sugar units.  Enzymes 

that have been identified from gene sequencing are classified in the CAZy database[60] 

according to their amino acid sequence and structural information where available[61].  

OGA is a member of family 84 of glycoside hydrolases (GH84).   

Aside from OGA, there are other enzymes found in the lysosome that are also 

capable of cleaving terminal N-acetylglucosamine residues off from glycoconjugates[62].  

They are called β-hexosaminidase A (HexA) and B (HexB).  These enzymes are 

members of family 20 of glycoside hydrolases (GH20)[62].  The substrates of these 
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enzymes are mainly gangliosides such as ganglioside GM2 which is directed to the 

lysosome for degradation[63].  These enzymes share no apparent sequence similarity to 

OGA[62].  A good inhibitor for use in cells or in vivo should be highly specific for OGA 

over the functionally related HexA and HexB so as to avoid concomitant inhibition of all 

three enzymes. 

Human OGA is composed of two domains, a C-terminal domain, which was 

proposed to have an acetyltransferase[64] and an N-terminal domain which has the 

glycoside hydrolase activity[64].  Some bacterial enzymes share high sequence similarity 

to the N-terminal domain of eukaryotic OGAs, and have been grouped into GH84[65].  A 

close homolog of human OGAs from Bacteroides thetaiotaomicron (BtGH84) is able to 

cleave O-GlcNAc from proteins and uses the same catalytic mechanism[66].  The crystal 

structure of human OGA has never been solved but that of BtGH84 is known[66] as is the 

structure of two other bacterial homologues[67, 68].  These structures have provided a 

good model of the human OGA to enable studies of inhibitors of OGA[69]. 

The substrate-assisted catalytic mechanism used by human OGA is shown in 

Figure 1.7.  In this double replacement retaining mechanism, the 2-acetamido group of 

the substrate acts a nucleophile[62].  The catalytic residues, two aspartate residues, in the 

active site of the human OGAs are involved in catalysis.  One residue polarises the 2-

acetamido group, which increases its nucleophilicity and assists its attack at the anomeric 

centre.  It most likely acts as a general base in the first step of the reaction.  The second 

residue acts as a general acid during the first step of the reaction, aiding the departure of 

the leaving group and leading to formation of an oxazoline intermediate.  During the 
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second step, the first residue acts as a general acid and the second residue now acts as a 

general base, aiding the attack of a molecule of water at the anomeric centre. 

 

Figure 1.7. The Retaining Mechanism for OGA.   
Amino Acid Residues are Labelled Based on the Numbering of the Human OGA[62]. 

1.1.5 Small Molecule Inhibitors 

Small molecule inhibitors are crucial for understanding the functional roles of 

many enzymes.  Using a cell permeable small molecule inhibitor to increase the O-

GlcNAc levels in cells through inhibition of OGA is in many ways more advantageous 

than genetic methods or altering the nutrient flux[70].  Given that not all the cells are 

capable of undergoing transfection employing a cell permeable small molecule inhibitor 

is more convenient[71].  The level of dosing can be easily adjusted and if necessary, the 

inhibitor can be removed to observe the effect on the cells[70].  Furthermore, the levels 

of the proteins themselves are not directly perturbed.  Hence, inhibition of OGA is often 

performed in cultured cells[20, 27], and tissues both in vitro[72, 73] and in vivo[74, 75] 

for studying the effects of increasing levels of O-GlcNAc.  One drawback of using 

inhibitors is that they are not all able to penetrate into all tissues types, and some 
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inhibitors are not selective for OGA, which can lead to some unanticipated results[62].  

Several inhibitors for OGA are known and these are summarised briefly below. 

PUGNAc and Streptozotocin 

O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)-amino-N-phenylcarbamate 

(PUGNAc) is both an inhibitor of mammalian OGA (KI = 52 nM) and the functionally 

related lysosomal β-hexosaminidase (KI = 52 nM)[76].  By treating cells with PUGNAc, 

some off-target effects were observed that resulted from inadvertant inhibition or 

alteration of enzymes or processes, other than OGA[28, 50, 77, 78].  Since PUGNAc 

inhibits the function of the lysosomal β-hexosaminidases, which are important for 

recycling glycosphingolipids, levels of the ganglioside GM2 in cultured neuron cells 

increase after PUGNAc treatment[77].  PUGNAc treatment, which causes an increase in 

O-GlcNAc levels, has been shown to cause insulin resistance.  But this effect could be 

due to an off-target activity and not solely by inhibition of OGA[28, 78].  An additional 

important factor which makes PUGNAc a poor candidate inhibitor is that it is not able to 

cross the blood brain barrier[75].  The structure of PUGNAc is shown in Figure 1.8 

Structure A. 

Streptozotocin (STZ) has poor potency towards OGAs (KI = 2 mM)[79, 80].  

Many disastrous effects, such as the death of β-cells that ultimately leads to an insulin-

dependent diabetic phenotype in rodents, were observed following treatment with 

STZ[81-83].  Two studies support that these complications do not arise from the 

inhibition of OGA by STZ, but instead from off-target effects[84, 85].  These 

complications indicate that both PUGNAc and STZ (Figure 1.8 Structure B) are poor 

tools for investigating the functional role of O-GlcNAc. 
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Figure 1.8. Structures of (A) PUGNAc and (B) Strept ozotocin. 

NAG-thiazoline, NButGT and Thiamet-G 

1,2-Dideoxy-2′-methyl-α-D-glucopyranoso-[2,1-d]-∆ 2′-thiazoline (NAG-

thiazoline) was first synthesized by Knapp et al[86].  This compound has since been 

shown to be a good inhibitor of both OGA (KI = 0.07 µM) and lysosomal β-

hexosaminidases (KI = 0.07 µM) but shows no selectivity[62].  Figure 1.9 shows the 

structures of NAG-thiazoline (A) and its derivative that possesses a butyl chain, NButGT 

(B). 

 

Figure 1.9. Structures of (A) NAG-thiazoline, (B) N ButGT and (C) Thiamet-G.  

 The active site on the structure of OGA (or a bacterial homologue) was not known 

when the structure of lysosomal HexB was crystallized[71].  The active site of HexB, an 

enzyme known to be similar in function to OGA, has been shown to bind the 2-acetamido 
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group of inhibitors[87].  However, since the pocket surrounding this group is very small, 

lengthening the 2-acetamido group by adding larger substituents should weaken the 

binding of the inhibitor towards HexB.  A series of NAG-thiazoline derivatives with 

extending chains at the 2-acetamido group were therefore synthesized[62].  One of the 

derivatives, NButGT, was identified to be highly selective (700-fold) for OGA (KI = 

0.230 µM) over HexB (KI = 340 µM) with good potency[62].  The crystal structure of 

NButGT which possesses a butyl chain, in complex with BtGH84 supported the proposal 

that there is indeed a deep pocket able to accommodate substituents where the 2-

acetamido group of substrates are bound to OGA and its homologues[69]. 

Research studies have shown that Asp174 (Asp242 in BtGH84) located in the active 

site of OGA is a crucial catalytic residue having a pKa of 5.2[88, 89], making it 

deprotonated and anionic at physiological pH.  It has been found that the protonated form 

of NButGT has a pKa of 3.4[74].  These findings suggest that the majority of NButGT in 

solution would not be protonated at a physiological pH of 7.4 and, therefore, a favourable 

ionic pair interaction with Asp174 cannot be formed[71].  

In the crystal structure of BtGH84 in complex with NAG-thiazoline[66] or 

NButGT[69] (Figure 1.10), the endocyclic nitrogen of the thiazoline is within hydrogen 

bonding distance of the side chain of Asp174.  In order to generate a favourable ionic pair 

with Asp174, a new series of compounds, Thiamet-G (Figure 1.8 Structure C) and its 

analogues, were made by increasing the basicity of the endocyclic nitrogen of the 

thiazoline ring of NButGT[74].  The first methylene unit of the alkyl chain was replaced 

with an amine[74].  This change makes Thiamet-G much more basic (pKa = 8).  As a 

result it shows selectivity for OGA over HexB (37,000-fold) and the binding potency to 
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OGA is increased by 30-fold (KI = 21 nM at pH 7.4)[74].  Thiamet-G was also shown to 

be able to increase the O-GlcNAc levels in both cultured cells and in vivo in the rat 

brain[74]. 

 

Figure 1.10. The Crystal Structures of BtGH84 Glycoside Hydrolase Active Centre in 
Complex with either, (A) NButGT or (B) Thiamet-G.    
Adapted from [74].  

1.2 Pharmacokinetics 

Pharmacokinetics (PK) is the study of the relationship between doses of 

administered drugs and the measurable drug concentration in the blood in a quantitative 

fashion[90].  PK investigates how a drug behaves in the body after administration 

whereas pharmacodynamics investigates the relationship between the concentration of a 

drug at the site of receptors and the corresponding efficacy of the drug[91].  The focus of 

this thesis will be on PK. 

The LADME (Liberation, Absorption, Distribution, Metabolism, Excretion) 

processes are illustrated in Figure 1.11.  The abbreviation L stands for liberation of the 

drug from its dosage form while A stands for absorption of the drug from the site of 

dosage into the blood circulation.  The letter D represents distribution of the drug by 
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diffusion or active transporters transferring from the intravascular space into the body 

tissues while M represents metabolism of the drug transforming into metabolite.  Finally, 

E symbolizes excretion of the unchanged drug and / or metabolites from the body[92]. 

 

Figure 1.11. LADME Processes that Take Place after Drug Administration 
Adapted from [93]. 

PK is the study of LADME processes of a drug by determining the drug 

concentration during a time course in body fluids[91].  LADME or pharmacokinetic 

processes rely on the physical and chemical properties as well as the amount of drug 

administered into the body[92].  The LADME processes are generally considered to 

happen simultaneously.  For example, the liberation process does not need to be 

completed in order to initiate the absorption process. 

 One important factor to consider while administering drugs into a body is the 

process which occurs to transfer drugs across cell membranes.  Cellular membranes are 

composed of phospholipid bilayers with apolar hydrocarbon chains facing inward and the 

polar head groups facing outward[94].  Proteins are located in between the membranes 
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and form small gaps or pores[95], which permit flow of polar substances or drugs into 

cells[94].  Non-polar drugs usually enter the cells by diffusion through the hydrocarbon 

barriers located between the phospholipid bilayers[96].  Many factors influence the 

transport of a drug across cell membranes including the size, shape, solubility, and the 

degree of ionisation of the drug[94].  Some drugs might strongly bind to plasma or tissues 

in the body[94].  Consequently, only the free form of the drug is able to pass through the 

membranes[94].  At the steady state, the concentration of the unbound drugs is the same 

on both sides of the membrane[94].  pH differences across membranes also play a role in 

drug transfer only if the compounds are ionisable under physiological conditions[94].  

For ionisable drugs, their transfer relies upon the pKa of the drug and the pH 

gradient[94]. 

1.2.1 Basic Understandings of the LADME System 

Liberation of the drug is important for all drug products administrated via routes 

other than the intravenous route[92].  The main reasons for formulating drugs inside 

tablets are to protect the perishable drugs from decomposition, to minimize odour, and to 

smoothen the progress of swallowing[97].  The drug is released from its formulation 

during liberation and this process determines the rates of absorption and the 

bioavailability of the drug, and it is governed by the properties of the drug within the 

tablet[97]. 

By definition, absorption is the act of taking the drug from the site of 

administration into the bloodstream of the body.  The absorption site depends on the 

route of administration and the most common forms are oral and intravenous.  Other 

factors that affect the rate of absorption are the physical state of the drug, concentration 
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of the drug, the circulation at the absorption site, and the area of the absorbing surface.  

Among the various routes of administration, intravenous administration inputs the drug 

directly into the venous bloodstream, thereby eliminating the process of absorption[94].  

After the drug is in the circulation system, the process of distribution takes place 

from the bloodstream into the body tissues, to the site of action.  The rate of the process is 

dependent on the blood flow and the diffusion of the drug across cell membranes of a 

variety of tissues and organs in the body.  Only the unbound fraction of the drug is 

available for transfer and the distribution of this fraction of drug is governed by the 

binding to proteins or uptaken by cells in the body.  When drugs tend to bind to protein in 

the plasma, the amount of drug reaching into tissues is limited.  Hence, the distribution of 

the drug depends on the physicochemical properties of the drug and several physiological 

factors[94].   

Metabolism, sometimes referred to as biotransformation, is the bio-chemical 

alteration of a drug in the body prior to elimination.  To avoid the build up of foreign 

substances, the body uses enzymes to chemically convert lipophilic compounds into more 

water-soluble metabolites.  The processes of biotransformation are divided into Phase I 

and Phase II reactions.  In the Phase I reaction, a polar group is added to the drug to 

increase its water solubility.  These reactions are generally either oxidative or hydrolytic.  

Phase II reactions involve formation of a covalent bond(s) with endogenous substances.  

The liver is known as the primary location of metabolism.  Processes of metabolism 

generally modify the drug into a substance which is inactive or less active than the parent 

compound[94]. 
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After the drug has undergone metabolism, it is ready to be eliminated from the 

body.  Among the various excretory organs, the most important organ is the kidney as the 

majority of drugs are excreted in the urine[92].  Substances in the feces are typically 

either unabsorbed drugs or compounds removed into the bile[94].  A portion of both non-

ionised and ionised drugs may be passively reabsorbed by the kidney[94]. 

The efficacy of a given drug is largely governed by the concentration of the drug 

in the body.  To measure efficacy, the ideal location for measuring the concentration of 

the drug is at the receptor, which is the site of action of the drug.  Practically, however, 

drug concentrations are usually measured in whole blood or other body fluids, such as 

plasma, saliva, urine, or cerebrospinal fluid.  The drug content in these fluids is believed 

to be in steady-state with the amount of drug at the receptor.  The measured drug 

concentration in these fluids is often referred to as the drug level, which is the free 

fraction of drug in equilibrium within the body[91]. 

1.2.2 Compartmental Modelling 

 For purposes of PK, a body consists of more than one compartment.  The input 

and output of drug from the body, and the transfer of the drug content between the 

compartments of the body are represented by rate constants.  PK models are often used to 

describe how a drug behaves in a biological system after administration.  The models that 

have been well classified are the one-compartment, two-compartment, and 

multicompartment models[98].   

 In a one-compartment model, all the tissues of the body are considered to be 

homogenous.  The drug is assumed to distribute instantly throughout the body upon 
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administration and hence the drug is instantaneously at steady state.  However, the drug 

concentration in plasma is not equal to the drug concentration in tissues.  In this model, 

the changes in the plasma concentration are proportional to the changes in the tissues.  As 

a result, a monophasic response or a monoexponential curve is observed when the drug 

concentration in plasma is plotted against time (Figure 1.12 A).  The plot of the log of 

concentration of drug in plasma versus time graph will show a linear relationship (Figure 

1.11 B) [98]. 

 

Figure 1.12. Plots that Exhibit a One-compartment M odel.   
(A) Concentration of drug in plasma versus time plot, (B) the log of concentration of 
drug in plasma versus time plot.  In both plots, the data is for intravenous 
administration.   

 In a two-compartment model, the tissues of the body are not simply a 

homogenous unit.  In this model, the body is composed of a central compartment and a 

peripheral compartment.  The central compartment is considered to be the organs 

including the heart, lungs, kidneys, liver, and brain.  The peripheral compartment is 

mainly the muscle, fat, and skin of the body.  It is assumed that the central compartment 

has tissues that are highly perfused whereas the peripheral compartment is less perfused.  

In this model, when drug is administered into the central compartment, equilibration is 

not achieved instantly between the two compartments due to the differences in the rate of 
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drug distribution.  A biphasic response is demonstrated when the concentration of drug in 

plasma is plotted against time (Figure 1.13 A).  When one takes the log of the 

concentration of drug in plasma and plots it against time, a plot consisting of two distinct 

lines is obtained (Figure 1.13 B) [98]. 

 

Figure 1.13. Plots that Exhibit a Two-compartment M odel.   
(A) Concentration of drug in plasma versus time plot, (B) the log of concentration of 
drug in plasma versus time plot.  In both plots, the data is for intravenous 
administration.   

The last model is called the multicompartment model.  As the name suggests, the 

model takes into account the presence of an additional compartment in the body system 

into which the drug will distribute.  In a plot of the concentration of drug in the plasma 

versus time, one would expect more than a single exponential decay.  Differences are also 

expected in the log of concentration of drug in the plasma versus time curve[98].  Consult 

Appendix A 1.1 for a description of the fundamental parameters for PK. 

1.3 Analytical Issues in PK 

1.3.1 Complexity of Biological Samples 

Biological samples are highly complex due to the influence of many endogenous 

substances.  Quantitation of administered drugs in biological fluids can also be a 
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challenge because of the low quantity of the target analytes.  In blood fluids, such as 

serum and plasma, there are often proteins and phospholipids present along with the 

target analytes.  Plasma is about 55 % of the total blood volume.  Roughly, 90 % of the 

plasma is water.  The other 10 % is comprised of many dissolved substances, such as 

fibrinogen, proteins, nutrients, hormones, and inorganic mineral salts.  Plasma serves an 

important role as a storage and transport medium for blood clotting factors[99]. 

The ideal analytical method to monitor the concentration of a compound in 

plasma would enable isolation of the analytes from the matrix in a fast, simple, 

inexpensive, and reproducible way, while yielding high recoveries and avoiding 

degradation of the analytes[100].   

1.3.2 Sample Preparation Processes 

1.3.2.1 Deproteinisation before LC-MS/MS Analysis 

After the collection of plasma from a body, the samples have to undergo some 

extraction and clean up processes before the instrumental analysis by LC-MS.  This step 

is essential to ensure that the mass spectrometer is not contaminated and that it remains 

operational.  One of the common processes is deproteinisation by protein precipitation.  

Sometimes protein precipitation is followed by some form of solid phase extraction to 

further clean up the extracts[101, 102].  In the protein precipitation method, the plasma 

extract is treated with a common organic solvent or low pH aqueous solution to denature 

the proteins.  After centrifugation, the analyte remains in the supernatant while the 

proteins present in the plasma will aggregate and be concentrated in the pellet[102].  

Another method uses ultrafilters to trap proteins present in the plasma extracts followed 

by HPLC using a configuration in which an ion exchange column is placed in front of the 
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analytical column enabling further online purification of the target analytes[103].  In 

2001, Chou and Cheng described a method involving deproteinisation with acetonitrile 

followed by extraction of the polar analytes from the supernatant using dichloromethane 

and water[104].  This procedure is a liquid-liquid extraction (LLE) that can remove 

various contaminants present in the supernatant after organic deproteinisation.   

1.3.2.2 Further Cleanup of Plasma Extracts before L C-MS/MS Analysis 

Plasma extracts contain abundant salts, lipids, proteins, and surfactants[105].  All 

of these compounds can be a cause of ion suppression during ESI–MS/MS bioanalysis, 

but it is generally thought that phospholipids are the major cause of ion suppression[105].  

Lipids can also build up on the analytical column over time and lead to analytical 

complications[105]. 

Using protein precipitation alone in the sample preparation process will lead to a 

significant amount of ion suppression and therefore the removal of lipids is also an 

important step for achieving reliable drug quantification.  Accordingly, further treatment 

of samples after deproteinisation enables the depletion of many of the remaining matrix 

ions, contributing to improved reproducibility of peak shapes in the chromatograms[105]. 

1.3.2.3 Common Sample Cleanup Techniques 

Among the various cleanup processes, solid phase extraction (SPE) is a common 

technique adopted for isolating analytes of interest from a wide variety of matrices 

including urine and blood[106]. SPE can be useful for removing matrix interference but it 

does require considerable method development and optimization.  Many different 

commercially available stationary phases can trap analytes and remove contaminants 
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from the matrices or vice versa.  Other than SPE, usage of an online trap column before 

the actual stationary phase can also help to remove matrix interference[107]. 

1.3.3 HPLC Chromatography for Separation of Polar C ompounds  

1.3.3.1 Column Separation Challenges Encountered fo r the Thiamet-G analogues  

As commented by Li X. et al., “The physicochemical characteristics of a 

monosaccharide, such as low molecular weight and high hydrophilicity pose a significant 

analytical challenge[108].”   Due to the sugar-like structure of the compounds of interest, 

the analogues are very polar and highly soluble in water.  As a result of these hydrophilic 

properties, they cannot easily be retained using typical reverse stationary phases, 

including those which are silica-based and organic polymer-based[109].  The compounds 

are also hard to analyse due to their poor volatility and the fact that they have low UV 

absorption[110].   Although ion exchange chromatography is generally used for 

separation of polar compounds, it is also not a good choice when carrying out LC-

MS/MS bioanalysis since the use of high salt containing mobile phases is not compatible 

to the ion sources of mass spectrometers.  A normal phase column is more suitable for 

hydrophilic compounds, however, the solvents for normal phase, such as 

dichloromethane, hexane, toluene, and other hydrocarbons, are not suitable for ESI-

MS[111].  This incompatibility arises because ESI requires the use of a polar mobile 

phase for ionisation[111].  None of the traditional chromatography methods therefore are 

ideal for separating highly polar compounds. 
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1.3.3.2 Alternative Phases for HPLC Chromatography:  HILIC Stationary Phase  

There are some techniques reported that can enable online separation of polar 

compounds coupled with ESI-MS.  In 1990, Alpert explained the mechanism of 

hydrophilic interaction liquid chromatography (HILIC), a variant form of normal-phase 

chromatography using aqueous solvent[112].  HILIC is compatible with polar organic 

mobile phase solvents despite the hydrophilic stationary phase[113].  The addition of 

small amounts of water in the mobile phase creates an aqueous layer on the surface of the 

stationary phase and this essentially leads to the generation within the column of a liquid-

liquid extraction system[113].  The analyte of interest then partitions between the mobile 

phase and the aqueous layer present on the stationary phase[113].  The polar functional 

groups of the analytes form hydrogen bonds with the polar groups of the stationary 

phase[113].  Lastly, the elution of analytes is governed by the polarity of the eluent as 

well as the solubility of the sample in the mobile phase[113]. 

1.3.3.3 Alternative Phases for HPLC Chromatography:  PGC Phase 

Another attractive alternative for the analysis of carbohydrate-like molecules 

involves the use of a porous graphite carbon (PGC) column that can be coupled online to 

ESI-MS[114].  PGC columns enable the retention of very polar compounds using 

standard reversed phase chromatography eluents[114].  The retention of polar solutes 

onto this chemically stable and super-hydrophobic stationary phase is believed to be 

driven by hydrophobic interactions and the polarisability of the surface[114].  The PGC 

column is made up of flat sheets of hexagonally arranged carbon atoms, graphite[114].  

In 2002, Jackson and Carr were able to show that the presence of any functional group 

inducing polarization of a benzene ring, such as an electron-donor or electron-acceptor, 
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will lead to greater retention of the molecule[115].  The binding of the analyte is due to 

interactions between the hybridized orbitals of the carbon surface and analyte.  The result 

suggests that there are dipole-type and electron lone pair donor-acceptor interactions, and 

that graphite can donate as well as accept electrons[116].  Compared to other packing 

materials, a porous graphite column often offers better retention and selectivity of polar 

compounds[116].  The material can in some cases discriminate between compounds that 

differ only by a single methylene unit[116].  Möckel et al.[117] and Tanaka et al.[118] 

have both shown that graphite offers better separation of various analogues than either 

C18-silica or pyrenylethyl-silica. 

1.3.3.4 Mobile Phase Optimization 

There are a great variety of columns available for use, so selection and 

optimization of a column for separating analogues of interest is the crucial step for 

development of an appropriate HPLC method.  Other than column choice, the next most 

important factor is the optimization of the mobile phase which is important because both 

the polar sample and the solvent molecules may interact strongly with the column 

surface[119].  As commented by Strege, the use of buffered mobile phases is important 

for maintaining repeatability in the separation of charged species between 

chromatography runs because the electrostatic interactions between the analyte and the 

stationary phase are strongly influenced by the buffer[120]. Strege found that increased 

salt concentrations in the mobile phase reduced the retaining capacity of HILIC 

columns[120].  However, removal of buffer from the mobile phase resulted in the pH and 

ionic strength of the prepared samples having a strong influence on the results[120].  
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Accordingly, some balance between ionic strength and buffering capacity should be 

aimed for. 

1.4 Liquid Chromatography Coupled with Mass Spectro metry  

 In this thesis, liquid chromatography (LC) coupled with mass spectrometry was 

chosen as the platform to develop an analytical method.  The mass spectrometer (MS) is a 

tandem quadrupole-linear ion trap MS and electrospray ionisation (ESI) is the technique 

used for ion production. 

Analysis Using LC-MS 

In general, the LC method is started by pumping mobile phase from the solvent 

reservoirs.  Once the sample is injected into the sample loop of the autosampler, the 

solvent in the system pushes the sample from the injection port into the analytical column 

where chromatographic separation of the analyte takes place.  The analytical column 

outlet is connected to the ionisation source, where the ions are produced and then 

detected using the MS[121]. 

The mass spectrometer is composed of five components, an ion source, vacuum 

system, mass analyser, detector, and computer system for acquiring the digitalised data.  

For this thesis, the ion source is electrospray (ESI), the mass analyser is a tandem 

quadrupole / linear ion trap, and the detector is an electron multiplier.  Two pumps are 

responsible for creating the vacuum inside the mass spectrometer.  They are the rotatory 

vane and the turbomolecular pump.  In the following section, a brief introduction about 

the ion source, mass analyser, and the different scan modes is provided.  The positive ion 

mode is used throughout the project. 
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ESI 

The ionisation technique of ESI (Figure 1.13) occurs in three steps, droplet 

formation, shrinkage of the droplet, and formation of the gaseous ion[122].  The sample 

from the column outlet passes through the electrospray needle, which has a high positive 

voltage of 4 to 5 kV applied to it[121].  A downward electrical potential and pressure 

gradient is set from the electrospray needle towards the counter electrode at the entrance 

of the first mass analyser of the mass spectrometer[123].  The high electric field at the 

electrospray needle leads to partial separation of charges in the solution delivered to the 

end of the electrospray needle.  In the positive ion-mode, the cations present in the 

solution gather at the tip of the electrospray needle travelling towards the counter 

electrode whereas the anions inside the needle move away from the tip[124].  The mutual 

repulsion at the end of the needle tip increases due to the accumulation of charges[125].  

When the repulsion of the positive ions at the surface tension and the attraction of these 

ions toward the counter electrode overcomes the surface tension of the liquid, the liquid 

at the meniscus will deform into a cone, the Taylor cone, just outside the electrospray 

tip[124, 126, 127].  After the formation of the cone, a fine stream of liquid is 

instantaneously ejected out from the tip of the cone towards the counter electrode[124, 

128].  The liquid becomes unstable and breaks down into positively charged 

droplets[124].  The droplets reduce in diameter through evaporation of the solvent as they 

are drawn toward the counter electrode[123].  During the process, the charges inside the 

droplets remain the same[127].  As a result, the charge density on the surface of the 

droplets continuously rises[127].  The droplets become unstable when the charge density 

reaches the Rayleigh stability limit[127, 129].  When the electrostatic repulsion has 
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exceeded the surface tension, which is holding the droplets in place, the droplets 

disintegrates into smaller droplets[127].  Droplet-jet fission[127] splits the droplets into 

smaller and irregularly shaped droplets[130].  During the process, the microdroplets do 

not explode.  However, smaller microdroplets eject from the elongated end of the parent 

droplets[130].  Solvent evaporates continuously from the successive droplets that have 

been relieved from the coulombic stress through jet fission[127].  These droplets 

eventually reach the Rayleigh stability limit and undergo another jet fission[127]. 

There are two schools of thought regarding the formation of gas-phase ions from 

the small and highly charged droplets.  The charged residue model suggests that the 

smallest droplets will contain an analyte with one charge remaining.  When the remaining 

solvent is removed from the droplet by the process of evaporation, an ion is formed.  On 

the other hand, the ion evaporation model suggests that when the radii of the droplets 

decreases to a particular size, an ion can be directly ejected from the droplet.  In order for 

an ion to form, the mutual repulsive force experienced by the escaping ion has to exceed 

the attraction between the escaping ion and the droplet[127]. 
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Figure 1.14. Features of the ESI Interface of the A tmospheric Pressure Region. 
In the positive-ion mode, electrochemical oxidation takes place at the metal capillary 
while reduction occurs at the counter-electrode.  The imposed electric field causes 
accumulation of positive ions at the tip of the electrospray needle.  When the charge 
repulsion and electric field overcome the surface tension of the liquid at the tip, the 
liquid will expand into a Taylor cone.  The fine jet of liquid immediately ejects out 
from the tip of the cone.  The liquid becomes unstable and breaks down into 
positively charged droplets.  Through solvent evaporation and the process of 
droplet-jet fission, the droplets shrink in size and ultimately form gaseous ions.  TDC 
stands for total droplet current, I[124]. 

Once the ions are accelerated out of the ion source, they enter into the vacuum 

interface leading to the quadrupole mass analyser[121].  A quadrupole mass analyzer 

uses a stable trajectory in the oscillating electric field to separate ions according to their 

mass-charge-ratios[125].  It consists of four parallel rods arranged symmetrically in a 

square array, with opposite rods connected to each other electrically[121].  Separation of 

ions are achieved by applying a direct current (DC) and a time-dependent radio frequency 

(RF) potential on these rods[131].  Rods adjacent to each other have voltages of opposite 
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polarity applied to them[123].  Positive DC potential is applied to two opposite rods in 

the X-Z plane whereas negative DC potential is applied to the rods in the Y-Z plane[131].  

The superimposed RF potential, V cos wt, is also applied on both pairs of rods with V, w, 

and t representing the amplitude of the applied RF voltage, angular frequency, and time 

respectively[123].  The magnitude of the RF potential is the same for both pairs of rods, 

but the polarity is opposite from each other[131].  The RF potential rapidly changes back 

and forth from a positive charge to negative one in a cyclic manner[123].  The trajectory 

of the ions is affected by the total electric field made up of the applied potentials on the 

rods[123].  The forces cause the ions to oscillate between the four rods[123].  If the 

oscillation is unstable, the ion trajectory is unstable and the ion will strike a rod and 

therefore fail to reach the detector[123].  The rods applied with positive DC act as a high-

pass filter for the heavier ions while the rods with a negative DC act as the low-pass filter 

for the lighter ions[123].  Only ions with particular mass-to-charge ratios can pass 

through the quadrupole along the z-axis in between the four rods while other ions cannot 

reach the detector[123].  Consult Figure 1.15 for an expanded depiction of a quadrupole. 

Tandem mass spectrometers in space 

A tandem quadrupole mass spectrometer is composed of four quadrupoles.   

The second quadrupole (Q1) and fourth quadrupole (Q3) of the instrument are both 

operated with DC and RF voltages as discussed above.  The first quadrupole (Q0) and the 

third quadrupole (q2) are RF only.  Q0 is for focusing the ions before they enter Q1.  For 

q2, collision gas is introduced so that an ion entering the quadrupole will undergo one or 

more collisions.  Within the RF-quadrupole, when an ion collides with a neutral gas 

molecule, a fraction of the kinetic energy of the ion converts into internal energy[124].  
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This process can cause the ion to fragment in a process known as collisionally induced 

dissociation (CID).   

 The components of the tandem mass spectrometer are illustrated in Figure 1.14.  

As one can see, the potential energy gradually decreases from the counter electrode (1000 

V) to Q3 (-33V).  The electric field draws the ions across the z-axis from the entrance of 

the mass spectrometer towards the detector.  The Decluster potential (DP) is referred to 

as the voltage applied to the orifice relative to ground.  The orifice plate is located 

between the counter electrode and the skimmer.  The DP energy is applied on the ions at 

the orifice plate in order to eliminate the solvent cluster and reduce the chemical noise in 

the final spectrum.  The potential energy at q2 is more negative when compared to Q1.  

The purpose is to increase the kinetic energy of the ions significantly so that CID can take 

place[132]. 
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Figure 1.15. Schematic Cross-section View of the Ma ss Spectrometer Used for this Work. 
The mass spectrometer is composed of four quadrupoles (Q0, Q1, q2, and Q3) and 
a detector.  An electric field with decreasing potential draws the ions across the z-
axis towards the detector.  An expanded version of the Q1 quadrupole is illustrated 
in the circle.  (DP = declustering potential applied on the ions at the orifice plate, IQ1 
= Q1 entrance lens, IQ2 = collision cell entrance lens, IQ3 = Q3 entrance lens, EXB 
= exit lens for linear ion trap mode, DET = detector, DF = deflector)[132]. 

Several scan modes that are frequently used in tandem mass spectrometry are 

described below (Table 1.1). 

 Q1 scan: The first quadrupole is set to scan simultaneously.  All the ions within a 

preset range of m/z would pass through Q1 and be detected in the detector.  This scan 

mode is useful for identifying a wide range of components within a mixture. 

Product-ion scan: Ions with a particular mass-to-charge ratio are chosen in the 

first quadrupole.  In the RF-only quadrupole, these ions collide with gas molecules to 

undergo CID fragmentation.  Q3 is set to scan and analyse the entire set of fragments, 
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which are known as product ions  The product-ion scan mode is commonly used for 

structure elucidation of an analyte of interest[123]. 

Precursor-ion scan: The third analyser is set to detect only the product ion of 

interest.  At the same time, Q1 is scanning for a certain mass range to transmit only 

precursor ions that could yield the product ions of interest through CID fragmentation.  

Only precursor ions that generate the product ions of interest will be detected in the 

resulting mass spectrum.  This scan mode is useful for identifying classes of compounds 

having similar polarities and structures within a mixture[123]. 

Neutral-loss scan: Both Q1 and Q3 are set to scan simultaneously and at the same 

rate so that all the ions pass through Q1 but only those species that fragment to give a 

product ion with a fixed mass offset pass through both mass analysers and are detected.  

Similar to the precursor-ion scan, this scan mode is useful for identifying structurally 

related classes of compounds in a mixture[123]. 

Multiple-reaction monitoring (MRM): The MRM experiment is carried out by 

specifying the parent mass of the compound for fragmentation in the first quadrupole and 

then specifically monitoring for a particular product ion in the third quadrupole.  MRM is 

useful for quantitative measurements of analytes present in complex samples.  The name 

also indicates that under this scan mode, more than one reaction can be monitored 

simultaneously[123].  Also, the duty cycle, the time allocated to monitoring the ions, is 

much lower when performing a MRM experiment as compared to many other 

experiments. 
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Table 1.1. The Five Common Scan Modes for Tandem MS  with Quadrupole Analysers. 

 Scan Mode # Operation of Q 1 Operation of q 2 Operation of Q 3 

1 Q1 
Scan desired 

range N / A N / A 

2 
Product-ion, 

define m1 
No scan, select m1 CID 

Scan up to m1 to 
collect its fragment 

3 
Precursor-ion, 

define m2 

Scan from m2 
upwards to cover 

potential 
precursors 

CID No scan, select m2 

4 
Neutral-loss, 

define ∆m 
Scan desired 

range CID 
Scan range shifted by 
∆m to low mass 

5 
Multiple-reaction 

Monitoring, 
define m1 and m2 

No scan, select m1 CID No scan, select m2 

Table was adapted from [124]. 

#Masses for reaction m1 = m2 +n, except for 1) Q1 scan. 

m1 and m2 are any mass of interest chosen by the user whereas n is equivalent to the difference 
between m1 and m2. 

1.5 Research Interest 

Both glycosylation with O-GlcNAc and phosphorylation, are post-translational 

modifications found on the microtubule-associated protein tau (MAPT).  The levels of 

these two post-translational modifications on tau have been found to vary reciprocally.  

This is thought to be due to the fact that they both occur on either the same or nearby 

hydroxyl groups of certain serine and threonine residues.  It has long been proposed that 

hyperphosphorylation of tau leads to its aggregation, which in turn generates paired 

helical filaments, and leads to the eventual formation of neurofibrillary tangles, a 

distinctive feature of Alzheimer’s disease.  Therefore, by increasing the level of O-

GlcNAc modification on tau, it may be possible to prevent or slow its 
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hyperphosphorylation, thus altering progression of disease in patients suffering from 

tauopathies, which include Alzheimer’s disease[74].   

Thiamet-G inhibits the activity of the glycoside hydrolase, OGA.  OGA is the 

enzyme responsible for removing the O-GlcNAc modification from tau.  When OGA 

function is impaired, the levels of O-GlcNAc will increase at all sites of modification but, 

most relevantly for tau, at sites that are either potential targets for phosphorylation or 

adjacent to such sites, thus helping to prevent the formation of neurofibrillary tangles.  

Thiamet-G is able to cross the blood brain barrier, and it has been demonstrated that this 

inhibitor can decrease the phosphorylation of tau in vivo.  An animal pharmacodynamic 

study, which reveals what the drug does to the body, has been recently carried out using 

Thiamet-G.  However, no pharmacokinetics for Thiamet-G have been described nor is 

there a published bioanalytical method for characterizing its pharmacokinetics 

behaviour[74].   

As discussed earlier, the PK of a molecule describes how it is liberated, absorbed, 

distributed, metabolized, and excreted from a body[133].  In an animal study, scientific 

investigation of how fast the drug is being distributed and eliminated from the body is of 

importance since this is a key factor in designing safe and effective therapeutics[133].  

After administration of a drug, one way to quantitate remaining drug in the body is by 

monitoring its concentration in plasma over time[133].  The development of a highly 

sensitive and reproducible bioanalytical method for quantifying and characterizing the 

drug present in the plasma of an animal is therefore a critical step in establishing its PK. 
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Figure 1.16. Structures of Thiambu-G (R = NHBu), Th iampro-G (R = HNPr), Thiamet-G (R = 
NHEt), Thiamme-G (R = HNMe), and ThiamH-G (R = NH 2). 

Five analogues shown in Figure 1.15, Thiambu-G (R = NHBu), Thiampro-G (R = 

HNPr), Thiamet-G (R = NHEt)[74], Thiamme-G (R = HNMe), and ThiamH-G (R = 

NH2), were developed in the Vocadlo laboratory.  Progress toward developing a 

bioanalytical method for use in PK studies of the analogues is described in Chapter 2 of 

this thesis.  The bioanalysis was carried out using high performance liquid 

chromatography (HPLC) coupled to a tandem mass spectrometer.  In the MS/MS, MRM 

was used to monitor the transition of parent ions of the compounds to diagnostic product 

ions, which are generated by collision induced dissociation.  A validated bioanalytical 

method was developed so that rat PK parameters from oral and intravenous 

administration of Thiamet-G, Thiampro-G, and Thiamme-G, can be determined and is 

described in Chapter 3.  Optimization of the bioanalytical method cycled among the 

following areas until a reliable and reproducible method was realized:  1) MS 

optimization, 2) HPLC separation of the analytes, and 3) sample cleanup of samples 

mimicking genuine PK samples.  With the PK data and an effective bioanalytical method, 

important parameters, such as the therapeutic effective concentration range of the 

compounds and the half-life of these molecules in vivo can be determined. 
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CHAPTER 2: METHOD DEVELOPMENT 

2.1 Scope of Work 

The work was directed toward devising a sensitive and reproducible bioanalytical 

method optimized in three areas: 1) MS analysis, 2) HPLC separation of the analogues, 

and 3) sample cleanup.  The process of method development cycled among these three 

areas until a well polished method had evolved. 

2.2 Optimization of MS for Quantitation 

The system used was a Dionex Ultimate 3000 HPLC system coupled to an 

Applied Biosystems Sciex 4000 QTRAP quadrupole linear ion trap tandem mass 

spectrometer equipped with a turbo ion spray ion source.  Analyst 1.4.2 software was 

used for data acquisition and processing.  A less sensitive mass spectrometer, the AB 

Sciex API 2000 triple quadrupole tandem mass spectrometer was also employed in 

various studies.  The API 2000 was coupled to a PerkinElmer Series 200 HPLC system.  

Unless mentioned specifically, the work presented was performed using the API 4000 

QTRAP. 

2.2.1 Establishment of the MRM Transitions for the Analytes 

The first step in developing the LC-MS/MS method was to determine the polarity 

of ionisation to be used for detection of Thiamet-G, Thiampro-G, Thiamme-G, and 

Thiambu-G[134].  The type of ionisation used was based on which mode gave a higher 

ion count.  Simultaneously, the ESI operating parameters were optimized during the 
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infusion of a standard of mixed analogues, Thiamet-G, Thiampro-G, Thiamme-G, and 

Thiambu-G.  Parameters were optimized to give high signal intensity of both molecular 

and fragments ions.  This allowed the parameters for the MRM scan analysis to be 

determined concurrently for all four analogues.  

2.2.1.1 Polarity of Ionisation 

A mixture of the compounds was infused directly into the MS with an external 

pump for the Q1 scan analysis.  The total ion chromatogram (TIC) that was generated is a 

type of Q1 chromatogram that depicts the signal intensity over the entire range of all m/z 

plotted against time.  The extracted ion chromatogram (XIC) for each corresponding 

compound was generated by extracting the ion of interest from the TIC.  The XIC is the 

chromatogram with the signal of just one single ion plotted against time.  Determination 

of the fragmentation pattern of the compounds was elucidated after consolidating the 

preferred instrumental parameters for ionizing the ions.  See Method 1 for the 

experimental details (Section 2.5.1). 

Results 

All the analytes were observed when positive ionisation was chosen in the 

acquisition method during the Q1 scan analysis.  The positive ions characterized in the 

chromatograms are shown in Table 2.1, and the spectra obtained for Q1 scan analysis is 

shown in Figure 2.1 (I).  The consistent signal in the XIC supported the fact that the 

compounds were constantly infused into the MS and could readily be detected 

simultaneously.  An attempt was made to detect the compounds using negative ionisation, 

but no predicted negative ions for the corresponding compounds were observed.   Table 

2.1 also shows the predicted molecular ions that were expected if negative ionisation was 
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chosen in the acquisition method of the MS.  The XIC for these ions was extracted 

independently as shown in Figure 2.1 (II), but lack of signal suggested that these 

compounds did not ionise to yield the predicted negative ions. 

Table 2.1. Determination of the Ionisation Polarity  of the Analogues. 

Analogue Ion (m/z) Acquired 
with Positive Polarity 

Ion (m/z) Expected to 
be Observed with 
Negative Polarity 

Thiamet-G 249 247 

Thiambu-G 277 275 

Thiampro-G 263 261 

Thiamme-G 235 233 
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Figure 2.1. Q1 scans in Positive and Negative Ionis ation Modes for Thiamet-G and its 

Analogues. 
A mixture of the analogues was infused directly into the MS using an external pump 
after the acquisition was started.  (I) Positive ionisation mode: (A) The TIC for all the 
expected molecular ions (B – E) and the XIC for each analogue; (B) Thiamet-G, (C) 
Thiambu-G, (D) Thiampro-G, and (E) Thiamme-G.  The consistent signal in the XIC 
indicates the compounds were constantly infused into the MS and are being 
detected simultaneously.  Repeat (II) Negative ionisation mode: In all the XIC 
collected (B – E), the signal intensity of the negative ions was much lower than the 
signal intensity of the TIC (A).  This suggests that the predicted negative molecular 
ions were not detected. 

2.2.1.2 Fragmentation Pattern of the Analogues 

Product-ion scans have to be determined individually for each compound in order 

to determine the most representative or intense product ion that results after fragmenting 

the analogue precursor ion.  The specificity of the analytical method can be vastly 

increased by monitoring a distinct fragmentation process for each compound in order to 

realize absolute quantitation.  The MRM scan mode has been adopted for this purpose in 

this thesis.  

Thiamet-G and its analogues were infused into the MS for the product-ion scan 

analysis.  The precursor ion of each compound was selected for fragmentation with the 

optimized collision energy (CE) to generate a series of MS/MS chromatograms, which 

are plots of the signal intensity against the m/z of the remaining precursor ions and the 

resulting daughter ions.  See Method 2 for the experimental details (Section 2.5.2). 
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Results 

The precursor ion for each compound as reported in Table 2.1 was independently 

selected for product-ion scan analysis.  The MS/MS spectra of these analogues are shown 

in Figure 2.2.   

 

 

 

 



 

 44 

  

Figure 2.2. MS/MS Spectra for Thiamet-G and its Ana logues. 
Collision-induced dissociation mass spectra of each compound were generated by 
using the product-ion scan mode with positive ionisation chosen as the acquisition 
method.  A mixture of the analogues was infused into the MS.  The MS/MS 
chromatograms are (A) Thiamet-G, (B) Thiambu-G, (C) Thiampro-G, and (D) 
Thiamme-G. 

 As shown in the MS/MS spectra, fragmentation of the precursor ion of each 

compound generated two daughter ions both having high intensities.  For each analogue, 

one of the two daughter ions was chosen for the MRM analysis.  The pair of ions, 

precursor ion, and the selected daughter ion for all the analogues are tabulated in Table 

2.2.   
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Table 2.2. The MRM transitions of the Analytes usin g Positive Polarity. 

Analogue Precursor Ion 
(m/z) 

Daughter Ion with 
the Highest 

Intensity (m/z) 

Thiamet-G 249.00 171.00 

Thiambu-G 277.00 199.00 

Thiampro-G 263.00 185.00 

Thiamme-G 235.00 157.00 

2.2.2 Optimization of the MS Parameters for each An alytical Column 

The ideal method for use with each analytical column studied was optimized by 

using a mixing tee with two inlet ports and one outlet port, which connects to the turbo 

ion spray ion source on the MS.  Optimization of each column method was achieved by 

infusing the mixture of standards into one inlet port by using an external pump (at a flow 

rate of 10 µL / min) and, at the same time, pumping the mobile phase into the other inlet 

port using the HPLC pump at the flow rate that was going to be used during the 

subsequent experiments.  Consult Figure 2.3 for an illustration of the configuration. 
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Figure 2.3. The Setup of the MS Using a Mixing T fo r Optimization of the System 
Parameters for Column.   
The delivery rate of the mobile phase from the HPLC is set to 300 µL / min as an 
example.  A column does not have to be incorporated in the configuration. 

Results 

MS parameters for two analytical columns, TSKgel and ZIC-HILIC, were subject 

to optimization. The optimized methods are summarised in Method 3 and Method 4 for 

TSKgel (Section 2.5.3) and ZIC–HILIC (Section 2.5.4) respectively. 

2.3 Column Phase Selection for HPLC Separation 

A stationary phase is compatible with the MS when solvent passed through it 

produces a low background signal in the MRM chromatogram since this indicates that the 

column is not bleeding materials into the MS.  The column of choice should separate 
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analytes of interest with high resolution and enable their sensitive detection.  Therefore, 

when comparing different stationary phases, sharp and tall peaks for the target analytes in 

the resulting chromatograms are preferred.   

Reverse phase columns have been reported to be suitable for compounds with a 

variety of properties.  The first column investigated was a reverse phase column.  Two 

other types of columns, hydrophilic interaction (HILIC) and porous graphite carbon 

(PGC) were also tested.  Table 2.3 summarises the properties of the different stationary 

phases. 

Table 2.3. Properties of the Tested Stationary Phas es. 

 

2.3.1 Ranking the Stationary Phases 

A mixture containing the analogues was injected into each of the different 

columns and the performance of each column was evaluated by examining the resulting 

MRM chromatograms.  The protocols used for each column were initially based on those 

established in the literature. 
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Table 2.4. Literature Methods for Columns of Intere st. 

Column Reference 

Synergi Fusion-RP 

C18 reverse phase - alternated with hydrophobic and polar 
embedded groups on a silica surface 

[135, 136] 

Agilent Zorbax Eclipse XDB 

C18 reverse phase – alkyl chains on a silica surface 

[137] 

TSKgel Amide-80 

HILIC - carbamoyl group covalently linked to a silica gel matrix 

[120, 138-
140] 

ZIC-HILIC 

HILIC - zwitterionic functional groups covalently attached on a 
porous silica surface 

[134, 141, 
142] 

Hypercarb 

PGC – flat sheets of hexagonally arranged carbon atoms, porous 

[114, 116] 

The performance of each column was evaluated based on: 1) its ability to retain 

the polar compounds on the stationary phase, 2) the level of background in the 

chromatogram, 3) the peak shapes of the analytes, and 4) integration of the signal 

corresponding to each analyte. 

2.3.2 Optimization of Retention and Analyte Resolut ion of the Column(s) 

Optimum conditions were established to enable a column to adequately retain all 

the analytes.  The ideal capacity factor for the analytes (also called the retention factor) is 

greater than 0.5 and less than 10[143].  Optimization of various compositions of mobile 

phase was carried out to improve the resolution of the peaks.  The aim was to identify a 

mixture of ACN / H2O where the compounds were retained on the stationary phase yet 

elution did not take overly long.  Adjustment of the pH and the addition of ion pairing 

reagents also affected the retention time of the analytes.  Since there were multiple 
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analytes in the matrix, separating the analytes from each other and also from the matrix 

was desirable. 

2.3.2.1 Results Obtained by Separating the Analytes  with Different Types of 
Stationary Phases 

A mixture of the analogues was injected into the LC-MS system for MRM 

analysis using the MRM transitions tabulated in Table 2.2.  Chromatographic separation 

was carried out using the different columns so that separation and retention of the 

compounds can be evaluated for each stationary phase.  Only the data obtained using the 

HILIC columns are shown in this chapter.  The data obtained using other columns are 

shown in Appendix A 3.1 and A 3.2. 

HILIC Columns 

2.3.3.1 TOSOH Bioscience TSKgel Amide-80, 3 µm (TSK gel column) 

TSKgel was the first HILIC column tested.  The stationary phase has a carbamoyl 

group covalently linked to a silica gel matrix.  This group is non-ionic (Figure 2.4).   

 

Figure 2.4. Functional Group on the TSKgel column. 

Figure 2.5 shows the MRM chromatogram of the analogues and reveals that all 

the ion peaks afford a Gaussian peak shape.  The column volume of the empty TSKgel 

column (CVempty) was 503 µL.  In general, the void volume (V0) is assumed to be 60-70 
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% of the empty column, and 30-40% is assumed to be the space taken up by the packing 

material[144]. 

V0 = 0.65 x CVempty (1) 

T0 = V0 / flow rate (2) 

The void time (T0) was calculated to be 1.63 min.  It is recommended that analytes of 

interest are eluted with at least 1.5 void volumes in order to provide sufficient time for 

the analytes to interact with the stationary phase[111].  Hence, the time recommended for 

eluting the least retained analogue (Trecommended) is 2.45 min.   

 
Figure 2.5. Separation of the Four Analytes Using t he TSKgel column.   

Concentration of the mixture of analytes was 210 ng / mL.  (Column: 2.0 mm x 15 
cm; guard: 2.0 mm x 1.0 cm, flow rate: 200 µL / min, elution with: 0.1 % FA + 80 % 
ACN / H2O)  

The TSKgel column provided retention as well as separation of the compounds.  

In contrast to the reverse phase column, the least polar compound, Thiambu-G, eluted 

first while the most polar compound, Thiamme-G, was retained on the stationary phase 

for the longest time.  Thiambu-G eluted at about 5.0 min, hence analytes were retained 

sufficiently on this column.  In this thesis, the term background is defined as chemical 

noise which arises from the signals corresponding to species other than the analytes 
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present in the analytical system[145].  The term noise refers to electronic signal produced 

by the analytical instrumentation[146] and is defined as the change in detector response 

over a specified time period without the introduction of solvent or samples[145].  

Notably, the documented maximum S / N of the instrument used in this thesis is less than 

20.  As a result, the instrument noise is insignificant when compared to the background 

noise. 

The level of background noise in the chromatogram of Figure 2.4 was generally 

lower than 200 cps.  Compared to the intensity of the analogues, the background level 

was a thousand times lower.  In Table 2.5, the minimum S / B measured is reported in 

Table 2.5 and is greater than 6000.  Thus, the column provides suitable sensitivity. 

Table 2.5. S / B Ratios for the Separation and Dete ction of Thiamet-G and its Analogues 
on a TSKgel Column. 

Analyte S / B 
Intensity of 

Analyte 
(cps) 

Maximum Levels of 
Background (cps) 

Thiamet-G 1.1 x 104 1.8 x 106 2.8 x 102 

Thiambu-G 2.8 x 104 2.7 x 106 1.6 x 102 

Thiampro-G 2.7 x 104 2.4 x 106 1.7 x 102 

Thiamme-G 6.2 x 103 1.2 x 106 3.1 x 102 

Levels of background were measured from 0 to 0.5 min. 

Separation as shown in Figure 2.5. 

As shown in Table 2.6, the retention factors, k′, for all the analytes ranged from 

1.92 to 3.26 and were within the range (0.5-15) suggested by the literature[143].  The 

peaks were separated as shown in Figure 2.5.  The measured resolution values confirm 

that there is an excellent separation between the peaks. 
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Table 2.6. Calculation of the k' Values and the Chr omatographic Resolution of the 
TSKgel Column. 

Analyte RT (min) k'A Selectivity  Half Peak 
Width (min) Nt Resolution  

Thiambu-G 4.90 2.01  0.14 3.0 x 103  

Thiampro-G 5.88 2.61 1.30 0.15 4.3 x 103 3.0 

Thiamet-G 7.19 3.41 1.31 0.17 5.7 x 103 3.8 

Thiamme-G 9.00 4.52 1.33 0.22 6.5 x 103 4.5 

Separation as shown in Figure 2.5. 

Stability of the TSKgel Column 

A standard solution containing the four analytes at a concentration of 210 ng / mL 

each was analysed using the TSKgel column at the beginning and at the end of each set 

of analyses.  In between analyses of these two sets of standard solutions, samples 

containing plasma were separated using the column and analysed by MRM using the 

MS/MS.  Table 2.7 tabulates the peak area counts and retention times of the standard 

solutions.  Within a group of samples containing 62 individual samples (about 11 h of 

analysis time), the drifting of the retention time for the analytes was less than 4%.  The 

peak area counts of the two standard samples were very similar with less than 5 % 

difference in all cases.  The data demonstrates that the TSKgel column is stable based on 

the reported retention times and peak area counts. 
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Table 2.7. Comparison of the Peak Area Counts of th e Samples Analysed over the 
Course of 11 h. 

Analyte 

Standard 

(Sample 
3) 

(min) 

Standard 

(Sample 
63) 

(min) 

% 
Change 

in RT 

Peak Area 
of 

Standard 

(Sample 3) 

(cps) 

Peak Area 
of 

Standard 

(Sample 
63) 

(cps) 

% 
Change 
in Peak 

Area 

Thiamet-G 5.87 5.64 3.92 6.39 x 106 6.61 x 106 3.44 

Thiambu-G 4.13 3.99 3.39 7.85e x 106 8.33 x 106 6.11 

Thiampro-G 4.88 4.71 3.48 7.30e x 106 7.68 x 106 5.21 

Thiamme-G 7.29 7.05 3.29 5.12e x 106 5.25 x 106 2.54 

% shift in X (peak area or RT) = (|X of Sample 3 - X of Sample 63| / X of Sample 3) x 100 %. 

2.3.3.2 Merck SeQuant ZIC-HILIC, 5 µm 200Å PEEK wit h PEEK frits (ZIC-HILIC column) 

ZIC-HILIC is another type of HILIC column that is similar to the TSKgel 

column.  It has a stationary phase covalently bonded with zwitterionic functional groups 

on the surface (Figure 2.6).  Due to the overall neutral charge state of the functional 

group, a charged analyte will have weak electrostatic interactions with the stationary 

phase.   

 

Figure 2.6. Functional Group on the ZIC-HILIC Colum n. 

All analytes showed Gaussian peak shapes in the chromatogram.  Based on the 

column volume, the minimum time required to elute the least retained analyte is 1.35 
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min.  The least polar compound, Thiambu-G, took 3.45 min to elute.  The chromatogram 

is reported in Figure 2.7. 

 

Figure 2.7. Separation of the Four Analytes Using t he ZIC-HILIC Column. 
Concentration of the mixture of analytes was 210 ng / mL.  (Column: 2.1 x 100 mm; 
guard: 2.1 x 20 mm, flow rate: 300 µL / min; elution with: 0.1 % FA + 85 % ACN / 
H2O) 

The levels of background in the chromatogram were generally lower than 200 

cps.  The numerical data shown in Table 2.8 demonstrates the signal of the analytes was 

well above the background noise. 
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Table 2.8. S / B Ratios for the Separation of Thiam et-G and its Analogues Using a ZIC-
HILIC Column. 

Analyte S / B 

Intensity of 
Analyte 

(cps) 

 

Maximum Levels of 
Background (cps) 

Thiamet-G 3.80 x 103 3.20 x 105 9.50 x 101 

Thiambu-G 4.51 x 103 4.30 x 105 1.10 x 102 

Thiampro-G 6.60 x 103 4.30 x 105 7.00 x 101 

Thiamme-G 1.17 x 103 1.80 x 105 2.60 x 102 

Levels of background were measured from 0.5 to 1 min. 

Separation as shown in Figure 2.7. 

Based on equation 1, T0 was determined to be 0.90 min.  As shown in Table 2.9, 

the retention factors, k′, for all the analytes were within the range (0.5-15) as suggested 

by the article, “HPLC Method Development and Validation for Pharmaceutical 

Analysis”[143].  The peaks were greater than 2.5 as shown in Figure 2.7.  The suitable 

resolution confirmed that there was an excellent separation between the peaks. 

Table 2.9. Calculation of the k ′ Values and the Chromatographic Resolution of the Z IC-
HILIC Column. 

Analyte RT (min) k'A Selectivity  
Half Peak 

Width (min) N t Resolution  

Thiambu-G 3.44 2.82  0.21 7.8 x 102  

Thiampro-G 4.57 4.08 1.44 0.26 1.14 x 103 2.4 

Thiamet-G 6.41 6.12 1.50 0.33 1.52 x 103 3.3 

Thiamme-G 9.46 9.51 1.55 0.46 1.96 x 103 4.3 

Separation as shown in Figure 2.7. 

A standard solution, containing the four analytes at a concentration of 210 ng / 

mL, was analysed on the ZIC-HILIC column at the beginning and at the end of analysis.  

Plasma samples were analysed during the period in between collecting data on these two 
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sets of standards.  Table 2.10 tabulates the peak area counts and retention times of the 

samples.  An increase in peak area response was observed for sample 63.  The apparent 

increase in concentration might be due to evaporation of the ACN in the sample vial 

although this effect was not observed when using the TSKgel column.  With a time gap 

of more than 11h, the shifting of the retention time for the analytes was significant; the 

smallest shift in retention time for the analogues was found to be over 20 %.  A possible 

reason that could account for this effect is that left over matrix ions present inside the 

column may not be completely washed out prior to the injection of the next sample.  The 

matrix ions might adhere onto the stationary phase and thereby alter the properties of the 

column.  Consult the experimental data in Appendix A4.3.4 for further investigations 

regarding the stability of the ZIC-HLIC column.   

Table 2.10. Stability of the ZIC-HILIC Column. 

Analyte 

Standard 

(Sample 
3) 

(min) 

Standard 

(Sample 
63) 

(min) 

% 
Change 

In RT 

Peak Area of 

Standard 

(Sample 3) 

(cps) 

Peak Area of 

Standard 

(Sample 63) 

(cps) 

% 
Change 
in Peak 

Area 

Thiamet-G 3.45 4.32 25.2 5.25 x 106 5.88 x 106 12.0 

Thiambu-G 2.16 2.61 20.8 6.11 x 106 6.92 x 106 13.3 

Thiampro-G 2.64 3.28 24.2 5.69 x 106 6.21 x 106 9.14 

Thiamme-G 4.81 6.10 26.8 4.58 x 106 5.18 x 106 13.1 

% shift in X (peak area or RT) = (|X of Sample 3 - X of Sample 63| / X of Sample 3) x 100 %. 

Discussion 

As discussed in Section 2.3.1, a suitable stationary phase was chosen for the 

analytical method based on its ability to retain the polar analogues, the level of 

background signal in the chromatogram, the peak shapes of the analytes, and the intensity 
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of the signal corresponding to each analyte.  Both the TSKgel and ZIC-HILIC columns 

show an ability to fulfill the above criteria.  Although for both columns, there were 

difference in peak area responses among the compounds, the relative peak area responses 

for the compounds were consistent among all the chromatograms.  These two columns 

were therefore considered as possible candidates for future use.  Further optimization of 

the sample cleanup procedure is discussed below. 

2.4 Sample Cleanup of Model Samples 

As described in Section 1.3.2, samples containing a biological matrix, such as rat 

plasma, have to undergo some kind of cleanup process before being injected into an 

analytical system for analysis.  The higher the extent of interference from the matrix, the 

lower the efficiency of the ionisation of the analytes.  Thus, the removal of matrix 

interference required optimization of sample cleanup procedures. 

Various types of samples were prepared to mimic PK samples and these contained 

a known concentration of a mixture of the analogues.  These samples were used to assess 

each of the sample cleanup processes tested.  The blank rat plasma was purchased from a 

commercial supplier with sodium heparin as the anticoagulant. 

Sample preparation: types of samples. 

1. Standard: Thiamet-G and its analogues diluted from stock solution into ACN / 

H2O mixture (composition dependent on experimental setup). 

2. Control sample (positive control): Thiamet-G and its analogues were spiked in 

water. 

3. Blank sample (negative control): plasma spiked in water. 
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4. Plasma sample: Thiamet-G and its analogues were spiked into plasma diluted 

with water. 

All the samples went through the sample cleanup processes except for the standard. 

2.4.1 Assessment of each Sample Preparation Process  During Method 
Development 

a) % Recovery = (sample peak area / standard peak area) x 100 % 

The comparison of peak area response between the sample and the standard 

yielded the percent ratio of the recovery of the analytes.  This value provides an estimate 

of the loss of analytes during the sample cleanup process.  The desired % recovery is 

above 80 %. 

b) % Matrix suppression = (plasma sample peak area / control sample peak 
area) x 100 % 

Suppression of the analogue ions is caused by matrix ions coeluting with the 

target analytes.  The percent ratio of matrix suppression reflects the influence of matrix 

ions present in the rat plasma on the analyte signal intensity.  A percent ratio of less than 

100 % indicates that matrix present in the sample is suppressing ionisation and detection 

of the analyte.  A percent ratio of over 100 % could be caused by an ionisation 

enhancement effect, in which analyte is lost in the absence of matrix during 

analysis[147]. 

c) % RSD = (standard deviation of x / average of x) x 100 %  

 x = either the peak area response or retention time of the analytes 

The percent ratio of relative standard deviation (RSD) measures the repeatability of 

the peak area or retention time (RT) during repeated sample runs of the analytes within 
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the same batch.  The desired % RSD for the peak area is less than 10 % and the desired % 

RSD for the RT is less than 2 %. 

d) Q1 scan (Scanning with the second quadrupole) 

Comparison of the Q1 scan of the control sample and plasma sample reveals the 

matrix ions present in the plasma sample. 

2.4.2 Results with Different Sample Preparation Pro cedures 

 Several sample cleanup procedures were attempted in order to remove proteins 

and other matrix components that were present in the model samples so that these 

samples could be ionised efficiently for the MS analysis.  Through the comparison of the 

chromatograms between the control and plasma samples, ion suppression was observed 

for Thiamet-G and Thiamme-G, in particular, in the absence of sample clean up.  This is 

evident from the high % matrix suppression and the distortion of peak shapes of the 

analytes in the chromatograms of the plasma sample (Appendix Section A 4).  As 

discussed in Appendix Section A4.3.2, one set of samples was prepared using procedure 

4 and was analysed using the ZIC-HILIC column.  Although ion suppression was not 

observed for the analytes, using this sample preparation procedure yielded poor % 

recovery for both the control and plasma samples.  All the detailed experimental results 

are summarised in Table 2.11 and are reported in greater detail in Appendix A4. 
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Table 2.11. Preliminary Methods for Sample Preparat ion and other Types of Method 
Development.  

 Sample 
Cleanup 
Procedure 

Description Result 

1 Protein 
Precipitation 

Experimented with 
different organic 
solvents for 
precipitating the 
protein from plasma 
extracts. 

 

Phospholipids and salts remained and caused ion 
suppression. 

2 Different 
eluents as 
mobile 
phase 

 

1. Combination of 
ACN / H2O + 0.1 % 
FA. 

2. Combination of 
MeOH / H2O + 0.1 
% FA. 

2: The compounds were not retained on the 
stationary phase likely due to interactions between 
the compounds and the eluent.  

3 Ultrafiltration Obtained the filtrate 
using an ultra 
filtration device 
while removing the 
proteins in the 
filtrand. 

Salts and other components remained and caused 
ion suppression. 

Phospholipids were removed. 

4 Ultrafiltration 
+ LLE 

 

Extracted out the 
non polar matrix 
ions present in the 
filtrate that can 
interfere with 
analysis. 

Salts were present resulting in ion suppression. 

Phospholipids were removed. 

 

See Appendix A4 for full details. 

In Table 2.12, results obtained from sample cleanup procedures involving solid phase 

extraction devices have been summarised.  None of the procedures yielded good results 

except for the Hypercarb offline 1 mL SPE cartridge.  In the following section the results 

obtained from using this particular cartridge are discussed in more detail.  The detailed 

results for procedures 1, 3, 4 are reported in Appendix A5.  Since Thiamme-G and 

Thiampro-G were not retained on the Supelclean ENVI-Carb SPE tube when washing the 

cartridge with 100 % water, procedure 2 was not pursued further.  All these experiments 

were performed using a ZIC-HILIC column because only minor suppression was 
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observed for the analytes when using this column.  In contrast, when using the TSKgel 

column, detection of the analytes suffered from severe matrix suppression.   

Table 2.12. Sample Preparation Using Solid Phase Ex traction Devices. 

 Sample 
cleanup 
procedure 

Description Result 

1 Ultrafiltration + 
ZiptipC18 

Filtrate collected from the 
ultrafilter was further cleaned 
up by the C18 cartridge in the 
ziptip. 

Analytes were lost in the 
ZiptipC18. 

2 Supelclean 
ENVI-Carb 1 
mL SPE tube 

Nonporous graphite cartridge 
(NPGC) used after 
ultrafiltration. 

Compounds eluted out at 
100% water limiting 
usefulness. 

3 Sigma Hybrid 
SPE 1 mL 

Lipid remover was used after 
protein precipitation. 

Lipids were removed but 
salts were still present. 

4 Captiva NDlipid Lipid remover was used after 
protein precipitation. 

Lipids were present in the 
final samples.  The 
cartridge was not 
compatible with solvent 
composed of high organic 
composition. 

5 Hypercarb 
offline 1 mL 
SPE cartridge 

Porous graphite cartridge 
(PGC). 

Analogues were obtained 
with low carryover of 
matrix. 

See Appendix A5 for full details. 

Hypercarb SPE Cartridge 

Figure 2.8 shows the analyses of the samples using the ZIC-HILIC column after 

they have undergone the sample cleanup process using the Hypercarb SPE cartridges.  As 

shown in Figure 2.8, Gaussian shapes were observed for the analytes.  The plasma 

sample was analysed followed by nine samples, standards, and other plasma samples, 

before analysis of the control sample.  The peak area counts of the analytes from both 

chromatograms were very similar. 
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Figure 2.8. Use of Hypercarb SPE Cartridge for Samp le Cleanup on Plasma Samples 
Containing Thiamet-G and its Analogues. 
Chromatogram (A) and (B) were the control and the plasma samples respectively.  
These samples were separated using a ZIC-HILIC column after sample cleanup.  
Separation conditions: Step 1) 0 - 10 min, 300 µL / mL, 84 % B, Step 2) 10.5 – 13 
min, 600 µL / mL, 30 % B, Step 3) 13.5 – 16 min, 600 µL / mL, 84 % B, Step 4) 16.5 
- 18 min, 300 µL / mL, 84 % B (A = 0.5 % FA + 5 % ACN + H2O, B = 0.1 % FA + 
ACN). 

To evaluate the % matrix suppression following sample clean up, analogues were 

added into both the control and plasma samples prior to the sample cleanup process.  The 

% matrix suppression was calculated based on the chromatographic separation as shown 

in Figure 2.8.  The percent ratio close to 100 % demonstrated that no matrix suppression 

occurred for any of the analytes when contained in the plasma sample and cleaned up by 

Hypercarb SPE (Table 2.13).  As indicated in the chromatograms, any changes in 

retention time were small.   
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Table 2.13. Comparison of the Peak Area Counts of T hiamet-G and its Analogues 
Prepared in Water versus Plasma.  

Analyte 
Control 
Sample 

(cps) 

Plasma 
Sample 

(cps) 
% Matrix 

Suppression  

Thiambu-G 2.08 x 105 2.31 x 105 111 

Thiamet-G 2.24 x 105 2.36 x 105 105% 

Thiampro-G 2.40 x 105 2.60 x 105 108% 

Thiamme-G 1.86 x 105 1.96 x 105 105% 

% Matrix suppression = peak area counts of (plasma /control) x 100 %. 

Separation as shown in Figure 2.8. 

A % recovery experiment was carried out, and the results are reported in Table 

2.14.  The peak area counts were compared between the plasma sample and a blank 

sample that was spiked with the compounds at the same concentration as the plasma 

sample that had undergone the sample cleanup process.  The purpose of this comparison 

was to test the efficiency of the sample extraction process.  As shown in Table 2.14, the 

% recovery ranged from 93.4 to 98.0 %.  A % recovery of close to 100 % suggests that 

the extraction process was efficient.   
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Table 2.14. % Recovery of the Analogues. 

Analyte  

Plasma 

Sample (cps) 

Plasma 

Spike (cps) 
% Recovery 

Thiambu-G 
2.31 x 105 2.39 x 105 96.6 % 

Thiamet-G 
2.36 x 105 2.53 x 105 93.4 % 

Thiampro-G 
2.60 x 105 2.66 x 105 97.6 % 

Thiamme-G 1.96 x 105 2.00 x 105 98.0 % 

Separation as shown in Figure 2.8. 

Stability of the ZIC-HILIC Column 

In Figure 2.8, the elution time of Thiamme-G in chromatogram (A) was different 

when compared to chromatogram (B).  The retention times for the other three compound 

ions in both chromatograms were similar.  From experience in using the ZIC-HILIC 

column, changing in retention times of analytes were observed throughout the time it 

took to analyse one batch of samples.  However, the deviation of the retention time for 

Thiamme-G was often the greatest.  A possible explanation is that some matrix ions were 

still present in the column even though a wash cycle was incorporated in the run.  As a 

result, the elution time of the analytes, particularly Thiamme-G, might be affected by the 

co-eluted matrix ions.  Another possible reason was that the stationary phase might 

become more polar due to frequent exposure to the polar matrix ions.  As described in 

Section A4.1.2, a similar observation was seen for other experiments carried out using a 

ZIC-HILIC column. 
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During method development, it was not known whether the samples needed to 

undergo deproteinisation prior to loading onto the cartridge or not.  Analytes present in 

the samples that were directly applied onto the Hypercarb SPE cartridges were better 

retained on the bulk material and did not elute out during washing with 100 % water (data 

not shown).  When proteins were first removed from the samples by protein precipitation, 

elution of Thiamme-G occurred when the cartridge was washed with water using 6.5 

times of the bulk material volume.  Thiamet-G also eluted out when the cartridge was 

washed with water using 8.5 times the bulk material volume.  When the samples were 

first passed through an ultrafilter, elution of Thiamme-G occurred when the cartridge was 

washed with 8.5 times of the bulk material of 100 % water.  Interestingly, when directly 

applied to the column, the analytes were still able to bind on the cartridge when washing 

with 100 % water using 20 times of the bulk material volume.  Nevertheless, in Q1 scan 

analysis, the same matrix ions co-eluting with the analytes were observed regardless of 

which of the three sample cleanup processes (protein precipitation, ultrafiltration, direct 

application to cartridge) was employed.  Based on these data it was decided to use 

Hypercarb SPE alone for sample clean up since this was rapid and enabled a good 

balance between retention of the analytes and ease of elution from the cartridge.  Further, 

this approach to clean up, along with use of the ZIC-HILIC column, showed little matrix 

suppression and demonstrated good run to run reproducibility.   

2.4.3 The Optimized Method 

An optimized analytical method was developed.  The optimized method used 

Hypercarb SPE cartridges as the cleanup tool and a ZIC-HILIC column as a compatible 

stationary phase.  The analytical system for LC–MS/MS analysis consisted of a Dionex 
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Ultimate 3000 HPLC system coupled with an AB Sciex 4000 QTRAP quadrupole linear 

ion trap tandem mass spectrometer equipped with a turbo ion spray ion source. 

2.5 Method Section 

2.5.1 Method 1: Generic Method for the 2000 QTRAP L C/MS system 

Chemicals and reagents.  HPLC grade acetonitrile and HPLC grade or LC-MS 

grade water were purchased from Caledon Laboratories Ltd. (Georgetown, Canada) and 

Mallinckrodt Baker, Inc. (Phillipsburg, USA) respectively while reagent grade formic 

acid was purchased from Fluka, Sigma-Aldrich Canada Ltd. (Oakville, Canada).  The 

compounds, Thiamet-G (batch JJ-37)[74], Thiambu-G (batch JJ-1-28), Thiampro-G 

(batch JJ-1-47), and Thiamme-G (batch JJ-1-42) were synthesized previously in the 

Vocadlo lab (Simon Fraser University, Burnaby, BC). 

 Instrumentation.  The 2000 QTRAP LC/MS system consisted of the 2000 

QTRAP mass spectrometer (Applied Biosystems, Life Technologies Corporation, Foster 

City, USA) interfaced with a Perkin Elmer Series 200 high performance liquid 

chromatography (HPLC) system (Perkin Elmer Inc, Massachusetts, USA).  The control 

software for data acquisition was Analyst version 1.4.2 (Applied Biosystems).  The LC 

system was composed of a binary LC pump, a vacuum degasser, controlled autosampler, 

and a column compartment without temperature control.  No analytical column was 

installed in the system.  The mobile phase, 0.1% FA + 85% ACN + H2O, was pumped at 

a flow rate of 300 µL / min. 

Preparation of Standards.  7.00 mg of each analogue was weighed out 

individually with a five decimal place analytical balance (Fisher Scientific Company, 
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Ottawa, Canada) for preparation of stock solutions.  Stock solutions (conc. = 70000 ng / 

mL) consisting of Thiamet-G, Thiambu-G, Thiampro-G, and Thiamme-G, were prepared 

by dissolving the compounds in water and making the volume to 100 mL using glass 

volumetric flasks.  These stock solutions were stored at 4 oC in an amber glass bottle.  

Mixed compound standard solution A (conc. = 1400 ng / mL) was prepared by adding 

200 µL from each stock solution to 8.5 mL ACN and making the volume to 10 mL with 

water using a glass volumetric flask.  This solution, standard solution A1, was stored at 4 

oC in a HPLC vial until analysis. 

Analytical Procedure.  Standard solution A was analysed using the MS in both 

positive ion and negative ionisation modes by continuously infusing the standard using a 

Harvard syringe pump at a flow rate of 10 µL / min into the turbo ion spray ion source of 

the MS.  Through a mixing tee, 300 µL / min of the mobile phase was concurrently 

delivered into the turbo ion spray ion source using the HPLC pump.  Q1 scan analysis 

was the selected acquisition method.  The scanning range of the mass range was set from 

230.00 amu to 280.00 amu, and the dwell time was set to 0.500 sec.  The resolution of Q1 

was set to be 1 unit mass resolution.  In positive ionisation mode set, the set parameters 

were CUR (25.00 psi), IS (4500.00 V), TEM (100.00 °C), GS1 (55.00 psi), GS2 (40.00 

psi), DP (42.50 V) FP (200.00 V), and EP (7.00 V).  In negative ionisation mode set in 

the acquisition method, the set parameters were CUR (25.00 psi), ISP (- 4500.00 V), 

TEM (100.00 °C), GS1 (55.00 psi), GS2 (40.00 psi), DP (- 42.50 V), FP (- 200.00 V) and 

EP (- 7.00 V). 
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2.5.2 Method 2: Generic Method for the 4000 QTRAP L C/MS system 

Chemicals and reagents.  See Method 1 (Section 2.5.1). 

Instrumentation.  The 4000 QTRAP LC-MS/MS system consisted of the 4000 

QTRAP mass spectrometer (Applied Biosystems) and the Ultimate 3000 HPLC system 

(Dionex Corporation, Bannockburn, USA).  The LC system was composed of a binary 

LC pump, a vacuum degasser, a temperature controlled autosampler, and a thermostated 

column compartment set at 40 oC.  The control software for data acquisition was Analyst 

version 1.4.2, Dionex Chromatography Mass Spectrometry Link software version 

2.0.0.2315, and Chromeleon version 6.80 SP2 (Dionex Corporation).  The mobile phase, 

0.1% FA + 85% ACN + H2O, was pumped at a flow rate of 300 µL / min. 

Preparation of Standards.  7.00 mg of compounds were weighed out separately 

with a five decimal place analytical balance for preparation of stock solutions.  Stock 

solutions (conc. = 70000 ng / mL) containing Thiamet-G, Thiambu-G, Thiampro-G, and 

Thiamme-G were prepared by dissolving the compounds in water and making the volume 

up to 100 mL using volumetric flasks.  These stock solutions were stored at 4 oC.  Mixed 

compound standard solution B (conc. = 1400 ng / mL) was prepared by adding 200 µL 

from each of the stock solutions into a 10 mL glass volumetric flask and making the 

volume up with water.  Standard solution B was stored at 4 oC in a glass vial.  Mixed 

compound standard solution C (conc. = 10 ng / mL) was prepared by transferring 10 µL 

of solution B into a HPLC vial.  To this vial, 980 µL of ACN and 410 µL H2O were 

added to yield solution C with a final composition of 70 % ACN / H2O.  Standard 

solution C was stored at 4 oC in a HPLC vial prior to analysis. 
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Analytical Procedure.  10 µL of standard solution C was injected by the 

autosampler of the HPLC system.  Using the HPLC pump to provide the mobile phase, 

sample was delivered into the turbo ions pray ion source.  The software began the 

acquisition prior to the injection of the sample.  The same solution was repeatedly 

injected into the autosampler for the product-ion scan analysis of all the compounds.  Q1 

scan analysis was selected in the acquisition method.  The scanning range of the mass 

spectrum was from 100.00 amu to 500.00 amu.  The dwell time was 4.00 sec.  The 

resolution of Q1 was unit and Q3 was low.  In positive ionisation mode set in the 

acquisition method, the other parameters were CUR (30.00 psi), ISP (4500.00 V), TEM 

(200.00 oC), GS1 (20.00 psi), GS2 (20.00 psi), DP (65.00 V), CAD (7.00 psi), EP (8.00 

V), and CXP (10.00 V).  The settings for CE were 32, 33, 30, and 32 eV for Thiamet-G, 

Thiambu-G, Thiampro-G, and Thiamme-G respectively.  

2.5.3 Method 3: Generic method for TSKgel-MS-Analys is 

The method was similar to the generic method for the 4000 QTRAP LC/MS 

system (See Section 2.5.2) with the following changes:   

Instrumentation.  The analytical column for the analysis, TOSOH Bioscience 

TSKgel Amide-80 (South San Francisco, USA) (3 µm, 2.0 x 150 mm ID), was protected 

by a guard column (3 µm, 2.0 x 10 mm ID).  The mobile phase, 0.1 % FA + 80 % ACN / 

H2O, was pumped at a flow rate of 200 µL / min.  The operating pressure of the column 

was approximately 47 bar. 

Preparation of Standards.  Mixed compound standard solution F (conc. = 1400 

ng / mL) was prepared by adding 200 µL of the analogue stock solutions, prepared in 
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Method 2 (Section 2.5.2), into a 10 mL glass volumetric flask containing 7 mL of ACN 

and making the volume up with water.  The standard solution F vial was stored at 4 oC in 

a HPLC vial prior to analysis.   

Analytical Procedure.  2 µL of standard solution F was injected by the 

autosampler of the LC / MS system.  Using the HPLC pump to provide the mobile phase, 

2 µL of the sample was delivered to the turbo ion spray ion source.  The MRM transitions 

were set according to Table 2.2, and the dwell time was set as 200.00 µsec.  The 

resolution of Q1 and Q3 was set to be 1 mass unit resolution.  In the positive ionisation 

mode, the other parameters were CUR (30.00 psi), ISP (4500.00 V), TEM (200.00 oC), 

GS1 (20.00 psi), GS2 (20.00 psi), DP (56.00 V), CAD (7.00 psi), EP (9.00 V), CE (31.00 

eV), and CXP (10.00 V). 

2.5.4 Method 4: Generic Method for ZIC-HILIC-MS-Ana lysis 

The method was similar to the generic method for the 4000 QTRAP LC-MS/MS 

system (See Section 2.5.2) with the following changes:   

Instrumentation.  The analytical column used for the analyses, Merck SeQuant 

ZIC-HILIC column (Umeå, Sweden) (5 µm, 2.1 x 100 mm ID), was protected by a guard 

column (5 µm, 2.1 x 20 mm ID).  The mobile phase, 0.1 % FA + 85 % ACN / H2O, was 

pumped at a flow rate of 300 µL / min. 

Preparation of Standards.  Mixed compound standard solution G (conc. = 210 

ng / mL) was prepared by adding 30 µL of the stock solutions of the analogues, prepared 

as in Method 2 (See Section 2.5.2), into a 10 mL glass volumetric flask containing 7 mL 



 

 71 

of ACN and making the volume up with water.  The standard solution G was stored at 4 

oC in a HPLC vial prior to analysis.   

Analytical Procedure.  5 µL of solution G was injected by the autosampler of 

the LC-MS/MS system.  Using the HPLC pump to provide the mobile phase, the sample 

was delivered to the turbo ion spray ion source.  The MRM transitions were set according 

to Table 2.2 and the dwell time was set as 200.00 µsec.  The resolution of Q1 and Q3 was 

set to be 1 unit mass resolution.  In the positive ionisation mode, the other parameters 

were CUR (30.00 psi), ISP (4500.00 V), TEM (200.00 oC), GS1 (20.00 psi), GS2 (20.00 

psi), DP (56.00 V), CAD (7.00 psi), EP (8.00 V), CE (31.00 eV), and CXP (10.00 V). 

2.5.5 Method 5: Generic Method for Hypercarb SPE Cl eanup and LC-MS/MS 
Analysis 

The method was similar to the method for validation (See Section 3.7) with the 

following changes:   

Preparation of Samples: One stock solution containing Thiamet-G, Thiampro-

G, and Thiamme-G (conc. = 10000 ng / mL) was prepared by dissolving 1.0 ± 0.1 mg of 

each standard in water and making up the volume in a 100 mL volumetric flask.  A mixed 

standard containing 100 ng / mL of each compound was prepared by serial dilution.  A 

separate 100 ng / mL internal standard was prepared the same way by preparing a stock 

solution containing only Thiambu-G (conc. = 10000 ng / mL).   

To generate the plasma sample 11 µL of the 100 ng / mL mixed standard and 11 

µL of the 100 ng / mL internal standard were transferred into a centrifuge tube.  In 

addition, two portions of 11 µL of the control rat plasma and 110 µL of water were added 

into the tube to give a total final volume of 154 µL.  After the tube was capped and 
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vortexed for 30 sec, it was centrifuged at 10000 rpm for 1 min at room temperature.  The 

control sample was prepared the same way except that the rat plasma was replaced with 

water.  A blank sample was also prepared using the same sample preparation procedure 

as the plasma sample except that the mixed standard was replaced with water.  To a blank 

sample, after undergoing the sample cleanup process, was added 11 µL of the 100 ng / 

mL mixed standard and 11 µL of the 100 ng / mL internal standard.  This sample was 

called the plasma spike sample.  These samples were cleaned up using the Hypercarb 

SPE cartridge following the procedure described in the validation method (See Section 

3.7).  The peak area counts of the analytes reported in Table 2.14 were corrected using 

equation 3 to make the peak area counts equivalent to what should be observed for a 

blank sample spiked with 10 µL of the standards. 

Analytical Procedure.  4 µL of the plasma sample was injected by the 

autosampler of the LC-MS/MS system after analysis of the control sample (injection 

volume = 4 µL) had finished.  Nine samples were analysed in the time between the 

control and the plasma sample analyses.  The plasma spike, 4 µL injection volume, was 

then analysed after the plasma samples. 
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CHAPTER 3: METHOD VALIDATION 

 A highly selective, sensitive, and reproducible method is needed for quantifying 

potential therapeutics and their metabolites within biological samples for 

biopharmaceutical studies.  The main objective of validating the current method is to 

demonstrate a bioanalytical method suitable for quantifying Thiamet-G and its analogues 

in rat plasma.  From this quantification, a PK curve can be generated for each of the 

compounds that were dosed into rats by either oral administration or intravenous 

administration.  According to the industrial guidance for bioanalytical method validation, 

the fundamental parameters for validation consist of linearity, ,specificity, accuracy, 

precision, recovery, matrix effect, stability, and sensitivity [148].  Limit of detection 

(LOD) and limit of quantitation (LOQ) are critical factors that need to be 

determined[148].  The method created here (See 2.5.5 Method 5) was tested to ensure 

that it met these general criteria. 

Specific samples were prepared for validation purposes.  The same amount of internal 

standard (10 µL of 100 ng / mL), Thiambu-G, was spiked into all three types of solutions. 

1) Control standard solution (CSS): Thiamet-G, Thiampro-G, and Thiamme-G were 

spiked into neat solvent (70 % ACN / H2O).  This solution did not go through the 

sample extraction process and serves as a positive control. 

2) Blank plasma solution:  Plasma (diluted with water) that has undergone the 

sample extraction process.  This solution serves as a negative control. 
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3) Working calibration standard solution (WCSS): Thiamet-G, Thiampro-G, and 

Thiamme-G were spiked into plasma diluted with water.  The solution went 

through the sample clean up process. 

3.1 Selectivity/Specificity, General Considerations  

 A method is selective when it can be used to quantify the analyte in the sample in 

the presence of other components[148].  It is important to maintain selectivity at the 

lower limit of the quantification (LLOQ)[148].  Specificity is crucial for identifying the 

correct analytes.  For this project, compounds of closely related structures were present in 

certain mixtures.  The method being developed and used should enable monitoring the 

response of one analyte and its specific detection over other analytes, providing that 

representative chromatograms are available for each analyte.  Bioanalytical validation 

practices recommend that analyses of blank samples collected from biological matrices 

should be obtained from at least six sources[148].  However, other sources state that a 

single source of matrix may be used when the bioanalytical method is able to maintain its 

selectivity[147].  A single matrix source was used here since the method was being 

developed for plasma. 

3.1.1 Results 

As discussed earlier, a QTRAP tandem mass spectrometer was the chosen 

analytical technique for analysis of Thiamet-G and its analogues.  The use of a tandem 

mass spectrometer (MS/MS) enables the use of MRM.  The analytical method was 

readily able to discriminate between compounds of closely related structures by using the 

MRM scan mode.  Chromatograms (A), (B), and (C) in Figure 3.1 were obtained using 
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LC-MS/MS analysis of the following solutions, the CSS, the blank, and the WCSS.  The 

blank sample was used to determine any interference present in the blank plasma 

solution.  Supporting data shows a positive peak response when a mixture of compounds 

was separated (chromatogram A), and no response when analysing samples that did not 

contain the analytes (chromatogram B).  The spectra demonstrated the specificity of the 

analytical method in the presence of the matrix ions present within the samples 

(chromatogram C). 
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Figure 3.1. Thiamet-G, Thiampro-G, and Thiamme-G we re Easily Separated in the 
Presence of the Matrix Plasma.   

 Chromatogram (A) was obtained using the CSS sample.  Chromatogram (B) and (C) 
were blank samples containing the internal standard (Thiambu-G) and the WCSS 
sample, respectively.  A1, B1, and C1 are the expanded version of the 
corresponding chromatograms.  In all cases, the large off scale peak is Thiambu-G 
which was used as an internal standard. 

3.2 Linearity 

The linearity of the method is the ability of the procedure to relate the signal 

responses obtained during analysis directly to the concentration of analytes in the samples 

in a proportional manner within a specified range.  A calibration curve relates the 

detector response with a series of known concentrations of the analyte of interest.  A 

calibration curve is constructed from a blank sample lacking the internal standard, a zero 

sample containing the internal standard, and at least six standards covering the analyte of 
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concentration range expected to be present in the experiments to be analysed.  All 

standards used for the calibration curve should be prepared in the same biological matrix 

as the actual samples.  The concentrations of the working calibration standards are based 

on the concentration ranges used in the actual study. 

Linearity is assessed by visual inspection of a plot of signal response against the 

concentration of analytes and more quantitatively by taking the data from the regression 

line and determining the degree of linearity[148].  The Pearson product moment 

correlation coefficient, r, is often used during linear regression analysis to relate a 

dependent variable to an independent variable[149].  For a set of data points, linear 

regression generates a formula for the trend line that most closely matches those points.  

It also gives an r value to demonstrate how much of the variability of the dependent 

variable is explained by the independent variable.  A r value close to 1 indicates the 

signals are well correlated with the actual concentration of the analytes[149].  The 

acceptable r value for this method is above 0.99. 

3.2.1 Results 

Calibration standard solutions (CSSs), composed of Thiamet-G, Thiampro-G, and 

Thiamme-G, were diluted from a stock solution, stockmixed, by serial dilution.  A set of 

WCSS samples with a final concentration of 0.5, 1, 10, 100, 500, and 1000 ng / mL of the 

analytes were prepared using the CSSs.  As mentioned earlier, WCSS samples were 

spiked into blank rat plasma using a constant amount of the internal standard in order to 

offset the variation of instrumental responses due to the instability of the system. 
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Out of the various possible weighting factors commonly used, 1/y2 yielded the 

best fitting WCSS curves and this weighting was used for all analytes.  The plots below 

show the peak area ratio versus concentration plot, the working curve, for each 

compound.   
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Figure 3.2. Working Curves.  Plots of Peak Area Rat ios versus Concentration of the 
WCSS Samples for (A) Thiamet-G, (B) Thiampro-G, and  (C) Thiamme-G. 

The r value was greater than 0.99 in all cases.  The data suggested that the 

recorded signals can be well correlated with the actual concentration of the analogues, 

and one can directly predict the concentration of the analytes from the curve over a 
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concentration range of the analyte ranging from 0.5 to 1000 ng / mL. 

One observation in the working curves is that there appears to be curvature at the 

higher end (Figure 3.2), which results in systematic underestimation of the concentration 

at the higher concentrations.  The sample at 1000 ng / mL noticeably deviates from the 

line and it is possible that the response from the MS detector is becoming saturated at 

higher concentrations.  Since data for QC at high concentrations (QCH = 800 ng / mL) are 

accurate (Section 3.4.1) and precise (Section 3.4.2), the results suggest that the working 

curves are still maintaining linearity at around 800 ng / mL.  Further, the expected range 

of analytes should be less than 800 ng / mL.  Therefore, we felt that these working curves 

were adequate for our analyses. 

3.3 Limits of the Method 

3.3.1 Lower Limit of Detection (LOD) 

LOD is the minimum concentration of analyte that is detectable using the 

analytical system being employed.  However, at the LOD, the signal does not have to be 

quantifiable.  In equation 4, Cm is the concentration at the detection limit[146].  ¯ Sbl is 

the mean background signal obtained by averaging the peak height of a blank sample in 

multiple mass spectra.  Sbl is the calculated standard deviation of the peak height 

responses recorded in the mass spectra.  Sm in equation 4 is the minimum distinguishable 

analytical signal and the m in equation 5 is the slope of the calibration curve. 

Sm = ¯ Sbl + (k x sbl), where k = variation of blank due to random errors (4) 

Cm = (Sm - ¯ Sbl) / m (5) 

By substituting equation 4 into equation 5, one obtains: 



 

 81 

Cm = (k x sbl) / m, where k = 3.3 [146]  (6) 

Confirmation of the LOD can be done by using statistical techniques along with 

the signal-to-background ratio (S / B) [150].  Equation 7 shows the relationship that one 

can practically draw between % RSD (introduced in Section 2.4.1) and S / B.  The 

commonly accepted S / B ratio for the LOD is between 2 to 3[151].   

% RSD = 50 / (S / B) (7) 

By inputting the numerical value 3 for S / B in equation 7, the % RSD is about 17 

%.  This means that by injecting six replicates of a sample at the LOD, if the calculated % 

RSD for peak height is around 17 %, then the samples prepared were approximately at 

the LOD[150]. 

3.3.2 Limit of Quantification (LOQ) 

LOQ is the minimum concentration of analyte that is quantifiable.  In principle, 

the theoretical value of LOQ can be calculated with equation 8[150]. 

LOQ = (10 x sbl) / m (8) 

The signal response at the LOQ should be at least five times higher than a blank 

response[148].  Analyses of replicates at this concentration level should yield quantifiable 

results with precision and accuracy[148].  In practice however, the commonly accepted S 

/ B ratio for the LOQ is 10-20[151].  By inputting the numerical value 10 for S / B in 

equation 6, the % RSD obtained is about 5 %.  In other words, the % RSD of six injected 

replicates should be less than 5 % at the LOQ.   

LOD and LOQ are illustrated in Figure 3.3.  Bioanalytical validation 

recommendations and the actual data for LOQ are discussed in the Result sections of 
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accuracy and precision (See Section 3.4.1.1 and 3.4.2.1).  According to the guidance, % 

accuracy for LOQ should not deviate from the nominal concentration by more than 20 % 

and the precision data for LOQ should be within 20 %[148]. 

 

Figure 3.3. Limit of Detection and Limit of Quantit ation Expressed in Signal-to-
Background Ratios. 
Adapted from [151]. 

LOQ is also the lowest working calibration standard for constructing the 

calibration curve[148].  For this project, the desired LOQ in the plasma is less than or 

equal to 2.5 ng / mL, since this is the lowest concentration at which most therapeutics are 

useful.  The lowest calibration standard for constructing the working calibration curve is 

0.5 ng / mL.  The concentration is equivalent to 1.25 ng / mL in the undiluted rat plasma. 

3.3.2.1 Result 

The background level (¯ Sbl) measured from the blank mass spectra was 1 x 101 

cps while the standard deviation of the background levels (sbl) was 1 x 101 cps.  The 

calculated LOD and LOQ are summarised in Table 3.1.  The LOD from the experimental 

result is found to be 0.05 ng / mL for all three compounds.  The working curves used to 

quantify the respective analytes are shown in Figure 3.2. 
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Table 3.1. The Calculated LOD and LOQ. 

Analyte LOD (ng / mL) LOQ (ng / mL) 

Thiamet-G 0.0210 0.0700 

Thiampro-G 0.0175 0.0585 

Thiamme-G 0.0307 0.1025 

3.4 Accuracy, Precision, Recovery, and Range 

The accuracy, precision, recovery, and the range of the method are determined 

based on the quality control (QC) samples.  A minimum of five replicates of QC samples 

(n = 5 for 3 different concentrations) are recommended to be included in each batch of 

runs[152].  A group of samples that are analysed within the same run is called a batch.  

Each sample is analysed one after the other with no machine idle time in between.   

During validation, the QC samples were prepared as follows:  The lowest 

concentration level of QC samples (QCL, conc. = 1 ng / mL) was prepared at a 

concentration level close to the LOQ.  The medium concentration level (QCM, conc. = 

400 ng / mL) was at the midrange of the calibration curve.  Lastly, the high QC sample 

(QCH, conc. = 800 ng / mL) was at a concentration close to the upper level of 

quantification (ULOQ).  During validation, six replicates of QC samples were run 

throughout the batch along with a freshly prepared WCSS.  The concentrations of the QC 

samples were determined by interpolating from the working curves.  The QC samples and 

the WCSS samples were freshly prepared for each batch analysed. 

3.4.1 Quantification of QC Samples 

Four batches of samples were analysed.  Tables 3.2 through 3.5 summarise the 

resulting data after quantifying the QC samples for each batch of analysis.  The reported 
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information are the nominal concentration of the analytes, the mean concentration of the 

replicates, and the SD of the concentration of the replicates.  The nominal concentration 

was the theoretical concentration of the QC samples, which was determined by the 

weight of the analyte added to the stock solution and the dilution factors.  The mean 

concentrations of the analytes at three different levels were determined to be close to the 

nominal concentration in all four batches of samples.  Some QC samples were not 

included the calculations due to verifiable injection failures. 

Table 3.2. Mean Concentration and SD of QC Samples for Thiamet-G and its Analogues 
in Sample Batch #1. 

 
QC samples were cleaned up using Hypercarb SPE cartridges.  These samples were then 
analysed using a LC equipped with a ZIC-HILIC column coupled with the MS.  Separation 
conditions: Step 1) 0 - 10 min, 300 µL / mL, 84 % B, Step 2) 10.5 – 13 min, 600 µL / mL, 30 % B, 
Step 3) 13.5 – 16 min, 600 µL / mL, 84 % B, Step 4) 16.5 - 18 min, 300 µL / mL, 84 % B (A = 0.5 
% FA + 5 % ACN + H2O, B = 0.1 % FA + ACN).  See the Methods for Validation (Section 3.7) for 
details. 

Table 3.3. Mean Concentration and SD of QC Samples for Thiamet-G and its Analogues 
in Sample Batch #2. 

 
Same conditions as described for sample batch #1 above. 
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Table 3.4. Mean Concentration and SD of QC Samples for Thiamet-G and its Analogues 
in Sample Batch #3. 

 
Same conditions as described for sample batch #1 above. 

Table 3.5. Mean Concentration and SD of QC Samples for Thiamet-G and its Analogues 
in Sample Batch #4.  

 
Same conditions as described for sample batch #1 above. 

3.4.1 Accuracy 

The accuracy of a method describes the deviation of the mean test results from the 

true concentration of the analyte[148].  Using a calibration curve constructed with freshly 

prepared standards, one can determine the measured concentrations of the QC samples (n 

= 6).  The mean measured concentrations of the QC samples were compared to the 

nominal concentrations to determine the % accuracy.   

% accuracy = (mean measured conc. of the replicates / nominal conc.) x 100 %

 (9) 

3.4.1.1 Results 

Four batches of samples were analysed.  Six replicates of QC samples for three 

concentration levels, 1, 400, and 800 ng / mL were acquired for each batch.  Each batch 

of samples was freshly prepared prior to analysis.  The accuracy data for Thiamet-G (Et), 

Thiampro-G (Pro), and Thiamme-G (Me) that were obtained from the four batches of QC 



 

 86 

samples ranged from 86.5 % to 113 % (Table 3.6). 

Table 3.6. Accuracy Data for QC Samples of Thiamet- G and its Analogues.  

 

According to the FDA guidance, % accuracy for all the concentration levels is 

suggested to be within 15 % of the nominal concentration, and the LOQ is suggested to 

not deviate from the nominal concentration by more than 20 %[148].  As shown in Table 

3.6, the analytical method developed here provides an accurate means of quantifying 

Thiamet-G and its analogues that is consistent with FDA guidances. 

During the collection of data for the second batch of samples, the run was 

interrupted due to a setup error.  The run was resumed by acquiring data for six aliquots 

of system suitability (SS) samples to ensure the instrument was stable, and the data that 

were obtained after the analyses of the SS samples were labelled SS2.  SS1 were obtained 

in the same way as SS2, but they were collected at the beginning of the run prior to 

interruption.  SS was a solution composed of all the analogues including the internal 

standard with the same solvent compositions as the QC samples (70 % ACN / H2O), 

except that SS was not treated with plasma.  The main purpose of analysing SS samples 

is to monitor the stability of the instrumentation within a run.  The data for SS2 were 

compared with the data of SS1 as shown in Table 3.7.  The precision data for both sets of 

CV are less than 2 %.  The average signal response data for SS1 and SS2 also are very 
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similar.  The percent ratio tabulated in the last column shows that the average peak area 

responses for each compound deviates by no more than 7 % between the two sets of data.  

As a result, the instrument was shown to be stable throughout the entire period spanning 

the interruption.  Furthermore, no outlier was detected for the replicates of the QC 

samples as evaluated by performing the Grubbs' Outlier Test.   

Table 3.7. Comparison of the Data of SS 1 and SS 2 for QC Samples of Thiamet-G and its 
Analogues.  

Analyte 
Average 

Peak Area 
(cps) 

SD CV  
% (Peak Area of SS 1/ 

Peak Area of SS 2) 

SS1 Thiamet-G 2.35 x 105 0.03 x 105 1 % 94.2% 

Thiampro-G 1.99 x 105 0.04 x 105 2% 93.4% 

Thiamme-G 2.04 x 105 0.04 x 105 2% 94.1% 

Thiambu-G 
(IS) 

2.26 x 105 0.04 x 105 2% 93.9% 

     

SS2 Thiamet-G 2.50 x 105 0.03 x 105 1%  

Thiampro-G 2.13 x 105 0.03 x 105 1%  

Thiamme-G 2.16 x 105 0.02 x 105 1%  

Thiambu-G 
(IS) 

2.41 x 105 0.02 x 105 1%  

3.4.2 Precision 

The precision of a method demonstrates the deviation in measurements of the 

analyte when it is at a known constant concentration[148].  Precision is expressed as the 

percentage of relative standard deviation, % RSD, or coefficient of variation, CV. 

CV = (SD of measured conc. / mean measured conc.) x 100 % (10) 
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Validation of precision can be further classified as intra-batch (within-run) and inter-

batch (between-run). 

The intra-batch analysis involves the measurement of a group of samples under 

the same operating conditions for a short period of time, or samples within the same 

batch.  The QC samples being analysed are prepared separately for each run.  The 

purpose of the intra-batch analysis is to determine the repeatability of the sample 

preparation procedure through comparison of the precision of the QC samples within 

batches.  The inter-batch analysis involves varying the analytical method while assessing 

the precision of the QC samples during the run.  Differences in the analysts, equipment, 

and day of analysis all contribute to variation[148].  A minimum of three batches of 

samples are recommended for carrying out the inter-batch analyses[152]. 

3.4.2.1 Results 

Precision for a Single Run 

A total of four batches of samples were run.  In each batch run, QC samples (n = 6) 

at three different concentration levels were analysed.  Since these QC samples were 

extracted individually, the precision measurement took into account possible human 

errors and any sources of deviations that could arise during the sample preparation 

procedures.   

The resulting precision data are shown in Table 3.8.  According to the guidances, 

the % RSD for all the concentration levels should be within 15 % and the LOQ should be 

within 20 %[148].  A low percentage indicates the deviation among the QC replicates 

was low.  In the data, all CV values are below 10 %.  The data suggests that by following 
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the sample preparation procedure, the analytical method was able to reliably produce 

precise data that is consistent with the FDA guidances. 

Table 3.8. Precision Data for QC Samples of Thiamet -G and its Analogues.  

 

Intermediate Precision 

Two types of analyses were performed to validate for intermediate precision.  One 

was called the day-to-day analysis, and the other one was called the column-to-column 

analysis. 

Day-to-day Analysis 

The numerical data that were obtained on different days of analysis are reported 

in Table 3.9.  For each day of the analysis, samples were freshly prepared and analysed 

using the LC-MS/MS as an individual batch.  Since these batches of samples were all 

analysed with column # 1 installed in the system, the parameter that was monitored was 

the repeatability of the sample preparation process.  The mean accuracy data, calculated 

by averaging the % accuracy of the QC samples from the four batches of analyses, are 

close to 100 %.  The results for the QC samples are similar for all three compounds at 

three different concentration levels.  The precision data show a CV below 10 %.  These 

results demonstrate the sample extraction process was highly reproducible over different 

days. 
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Table 3.9. Precision Data for QC Samples of Thiamet -G and its Analogues in Different 
Batches of Samples over Different Days. 

% Accy 

QC Samples 
Batch 

# 1 
Batch 

# 2 
Batch 

# 3 
Batch 

# 4 

Mean 

% Accy 

(%) 

SD CV 

QCL(Thiamet-G) 113% 96.7% 101% 102% 103% 0.07 7% 

QCL(Thiampro-G) 107% 108% 104% 107% 107% 0.02 2% 

QCL(Thiamme-G) 112% 93.9% 104% 98.0% 102% 0.08 8% 

    

QCM(Thiamet-G) 97.6% 99.6% 100% 97.2% 98.7% 0.02 2% 

QCM(Thiampro-G) 94.5% 108% 95.6% 97.6% 98.8% 0.06 6% 

QCM(Thiamme-G) 96.6% 95.6% 105% 99.1% 99.1% 0.04 4% 

    

QCH(Thiamet-G) 93.8% 96.8% 93.0% 94.9% 94.6% 0.02 2% 

QCH(Thiampro-G) 91.8% 102% 86.8% 92.4% 93.2% 0.06 7% 

QCH(Thiamme-G) 94.5% 93.6% 99.4% 97.4% 96.2% 0.03 3% 

Column–to–column Analysis  

In the column–to–column analysis, the same batch of QC samples were analysed 

with different lots of the same stationary phase.  Each sample in batch #4 was divided 

into two HPLC vials before the LC-MS/MS analysis.  One set of samples were analysed 

using column # 1 (column # SB80414) installed on the analytical system and interfaced 

with the MS/MS.  After the completion of the analysis, the other set of samples were 

analysed in the same way but using column # 2 (column # SB81229) installed on the 

analytical system.  The purpose of this experiment was to see whether the analyses of the 
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same samples using different lots of the same stationary phase would lead to differences 

in accuracy and precision.  The data are reported in Table 3.10.  On both days of 

analyses, the accuracy data were close to 100 %.  The CV values for all concentration 

levels of the analytes were within 10 %.  The recorded data therefore suggests that using 

different lots of columns did not produce differences in the data. 

Table 3.10. Precision Data for QC Samples of Thiame t-G and its Analogues with Different 
Lots of Stationary Phase. 

% Accy 

QC Samples 
Column 

#1 
Column 

#2 

Mean % Accy SD CV 

QCL(Thiamet-G) 102% 107% 105% 0.04 4 x 100 % 

QCL(Thiampro-G) 107% 112% 110% 0.03 3 x 100 % 

QCL(Thiamme-G) 98.0% 111% 105% 0.09 9 x 100 % 

      

QCM(Thiamet-G) 97.3% 106% 102% 0.06 6 x 100 % 

QCM(Thiampro-G) 97.6% 102% 99.9% 0.03 3 x 100 % 

QCM(Thiamme-G) 99.1% 111% 105% 0.08 8 x 100 % 

      

QCH(Thiamet-G) 94.9% 110% 102% 0.1 1 x 101 % 

QCH(Thiampro-G) 92.4% 99.7% 96.0% 0.05 5 x 100 % 

QCH(Thiamme-G) 97.4% 111% 104% 0.09 9 x 100 % 

Stability of the ZIC-HILIC Column 

 20 SS samples were injected into the analytical system using a newly installed 

ZIC-HILIC column (Column #2).  The peak area responses and retention times of these 

analogues are summarised in Table 3.11.  Although the CV values for the peak area ratios 
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for Thiamet-G and Thiampro-G were low, suggesting that the system was reproducible, 

for Thiamme-G, the CV value was somewhat high.  This indicates that the behaviour of 

Thiamme-G on this column is to some extent less stable.  The retention time ratio for all 

three compounds had a small CV value indicating the retention times were constant when 

no plasma was present in the sample. 

Table 3.11. Consistency of Peak Area and RT Ratio o f Thiamet-G and its Analogues over 
19 h of Analysis Time.  

Peak Area Ratio RT Ratio 
Analyte 

Average SD CV Average SD CV 

Thiamet-G 0.94 0.04 4% 1.8 0.005 0.3% 

Thiampro-G 0.88 0.02 2% 1.3 0.005 0.4% 

Thiamme-G 0.72 0.06 8% 2.6 0.009 0.3% 

A separate experiment was carried out to demonstrate the behaviour of a new 

ZIC-HILIC column (column # 2) when it was first exposed to WCSS samples.  Five QC 

samples were prepared in triplicate in plasma at 0.5, 1, 10, 100, and 1000 ng / mL.  When 

these QC samples were first exposed to the new column, the elution times of all three 

compound ions changed.  The trend of the elution time could not be tracked during these 

experiments.  This same batch of samples were also analysed using column # 1, and the 

results indicated all three analytes had stable retention times on column # 1.  It was found 

that after analysing at least two batches of samples on column #2, the precision and 

accuracy improved to acceptable levels, suggesting that the column requires a period of 

conditioning of approximately 70 QC samples before reproducible results are obtained. 
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3.4.3 Recovery 

Recovery describes the comparison of the detector response for analytes added to 

and then extracted from the biological matrix to the detector response for samples of 

authentic analytes of known concentration.  The recovery of analytes and the internal 

standard should be both consistent and reproducible[148].   

An experimental design was proposed by Chambers et al[153].  Recovery was 

expressed in % recovery.   

% Recovery = (signal response of sample spiked before extraction / signal 

response of sample spiked after extraction) x 100 %  

 (11) 

The FDA guidances suggest that % recovery does not need to be 100%, but the 

ability of the method to maintain consistency, precision, and reproducibility is the main 

objective[148].  For this analytical method, the expected range for % recovery was 80 to 

120 %.   

3.4.3.1 Results 

Samples at two different concentration levels (low and high) were measured.  The 

obtained data for the WCSS samples were compared with blank samples that were spiked 

with the same amount of analytes as the plasma samples.  The recovery data are reported 

in Table 3.12.  The results are within the expected range.  We are able to demonstrate the 

sample extraction process is efficient as only minimal sample is lost during the process.  

Consequently, the method yields good recovery. 
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Table 3.12. Recovery Data for QC Samples of Thiamet -G and its Analogues.  

Analyte QCL QCH 

Thiamet-G 83.8% 97.4% 

Thiampro-G 85.1% 83.4% 

Thiamme-G 86.3% 100% 

Thiambu-G (IS) 95.0% 105% 

3.4.4 Range 

The range of a method is the concentration of the analytes that can be detected 

with a suitable level of precision, accuracy, and linearity.  The range of a method is 

defined as the region between the upper and lower concentration levels[151].  The 

minimum specified ranges for assaying drug product is from 80 to 120 % of the test 

concentration[154].   

3.4.4.1 Results 

In the concentration range of 0.5 to 1000 ng / mL for Thiamet-G and its 

analogues, all the fundamental parameters for validation, such as precision, accuracy, and 

linearity, are expected to meet the guidance suggestions given the levels of analytes 

dosed to animals.  In the analysis of the actual PK samples for Thiamet-G (Section 3.8), 

most of the concentrations ranged from 50 to 420 ng / mL.  The lowest concentration 

detected was 2.8 ng / mL.  80 and 120 % of 2.8 ng / mL are 2.24 and 3.36 ng / mL 

respectively.  As a result, the linear dynamic range, 0.5 to 1000 ng / mL, is acceptable for 

detecting the concentrations of the actual PK samples.  
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3.5 Matrix Effect 

This experiment assesses the ionization efficiency of the analytes in MS-based 

analysis.  One generic observation for MS-based analysis is that ions are either 

suppressed or enhanced with the presence of matrix components in the biological 

samples[147].   

An experimental design was proposed by Chambers et al. 

% Matrix effect = (signal response of sample spiked in plasma /  

signal response of sample spiked in 70 % ACN / H2O) x 100 %  

 (12) 

A percent ratio of 100 % suggest that there is no effects.  When the value is low, there is 

signal suppression; when the value is high, there is ionization enhancement. 

For this analytical method, we expected the % matrix effect to be within the range of 70 

to 110 %[153]. 

3.5.1 Results 

Samples at two different concentration levels (low and high) were measured.  The 

obtained data for the WCSS samples were compared with the CSS samples that were 

spiked with the same amount of analytes as the plasma samples.  Data for the internal 

standard-normalized matrix effect are reported in Table 3.13.  The results are close to the 

preset range.  The data suggest that there were matrix ions suppressing the ionization of 

the analytes but the level of suppression was minor.  As a result, the method is not 

affected by the matrix to any extent causing complications. 
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Table 3.13. Matrix Effect Data for QC Samples of Th iamet-G and its Analogues.  

Analyte QCL QCH 

Thiamet-G 84.0% 79.6% 

Thiampro-G 85.3% 92.3% 

Thiamme-G 77.9% 77.9% 

3.6 Stability 

Short and long-term compound stability experiments can also be carried out.  

Short-term stability tests should include 3 freeze / thaw cycles, bench top, and 

refrigerated stability.  Short-term stability measurements are best carried out during 

method validation.  Long-term measurements are started prior to validation and should be 

completed after validation[155].  The stability of analytes is dependent on the storage 

conditions, chemical properties of the analytes, the biological matrix, and the container 

used.  In this work the following stability studies were carried out: stock solution, freeze-

thaw, bench top, refrigerated stability, and the stability of the samples at the -20 oC prior 

to reconstitution.  Some of the actual PK samples were stored at – 80 oC.  Under different 

storage conditions, it is generally accepted that the sample matrix will have variable 

stability.  Therefore, determination of the stability of the compounds in plasma at – 80 oC 

was also carried out[155]. 

3.6.1 Stock Solution Stability 

The stability of both the analyte and internal standard in the stock solutions is 

required for evaluation at room temperature for at least 6 h.  Stock solutions of analytes 

for the stability evaluation should be prepared in an appropriate solvent at known 

concentrations.  Fresh stock solutions are prepared from the reference material for 
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determination of the stability of the compounds in the stock solution and the stock 

solutions that were refrigerated[152]. 

3.6.1.1 Results 

For this method, the stock solutions were prepared in water.  One fresh stock 

solution, Stockmixed, was prepared for Thiamet-G, Thiampro-G, and Thiamme-G.  The 

other stock solution, StockIS, was prepared for the internal standard, Thiambu-G.  These 

fresh stock solutions were prepared from reference material to determine both the 

stability of analytes and the stability of the older stock solution (4 months old).   

The response of a fresh stock solution at time zero, T0, was compared with the 

response of the same stock solution that has been sitting at room temperature in the 

autosampler for 6 h, T6hrs.  The analysis of the stock stability was carried out individually 

for StockIS and Stockmixed.  A percent ratio can be obtained by the following formula 

where Tn stands for any time point: 

% Ratio = (Peak Area Response of Tn / Peak Area Response of T0) x 100 % 

 (13) 

In first row of Table 3.14, the percent ratios are tabulated for the analytes in 

Stockmixed.  With deviations of less than 5%, the compounds were shown to be stable 

within a time frame of 6 h at room temperature.  In the second row of the table, the 

percent ratios for comparing the signal response of an older Stockmixed with the signal 

response of the T0 sample are tabulated.  The response of the older stock solution should 

be within 5 to 7 % of the response of the fresh stock solution[152].  The data indicates the 

compounds are stable for 4 months when stored at 4 oC. 
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Table 3.14. Stability Test for Stock mixed . 

% Peak Area Thiamet-G Thiampro-G Thiamme-G 

%(T6hrs / T0) 105% 105% 103% 

%(T4 months old / T0) 99.0% 100% 95.5% 

 A similar experiment was performed using Thiambu-G in StockIS.  In Table 3.15, 

Thiambu-G was shown to be stable within a time frame of 6 h because the recorded 

percent ratio in the first row is close to 100 %.  The recorded percent ratios in the second 

and the last rows are similar, except that in the last row, the recorded signal response at 

each time point is divided by the measured weight of Thiambu-G.  A 17 % deviation is 

observed in the second percent ratio in the table.  The reason was that the nominal 

concentration of the T4 months old sample was slightly higher than T0.  Nominal 

concentration is determined by the weight of the analyte and the volume of the stock 

solution.  Therefore, a 10 % deviation is seen after the correction is made.  For the 

purpose of this project, a 10 % deviation is acceptable. 

Table 3.15. Stability Test for Stock IS. 

% Peak Area Response Thiambu-G 

%(T6hrs / T0) 102% 

%(T4 months old / T0)
1 110% 

1These samples have been corrected for the differences in their nominal concentrations. 

% Peak Area Response calculated based on equation 11. 

Three sets of system suitability (SS) samples were run at the beginning, in the 

middle, and at the end of the batch analysis of the stability samples.  The precision data 

of the three sets of SS are reported in Table 3.16.  The precision data are less than 5 %, 

and this indicates that the system was stable during the analysis. 
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Table 3.16. Stability of the Analytical System Dete rmined by System Suitability Samples. 

Peak Area Relative RT 

 
Average 

(cps) SD CV Average 
(min) SD % RSD 

SSThiamet-G 1.83 x 105 0.07 x 105 4% 4.82 0.05 1 

SSThiampro-G 1.55 x 105 0.07 x 105 5% 3.53 0.04 1 

SSThiamme-G 1.63 x 105 0.06 x 105 4% 7.03 0.09 1 

SSIS 1.88 x 105 0.09 x 105 5% 2.76 0.02 1 

For the rest of the stability experiments including freeze-thaw, bench top, 

refrigerated stability, and the stability of the samples at -20 oC prior to reconstitution, a 

set of samples freshly prepared from the stock solution of analytes in an appropriate 

analyte-free, interference-free biological matrix were used.  The replicate aliquots of 

stability samples were analysed along with a set of freshly prepared working calibration 

standard solutions (WCSS).  Two concentration levels of QC samples, QCL and QCH, are 

recommended to be used in the stability experiments and we followed this 

guideline[155]. 

3.6.2 Long-term Stability Experiment 

For long-term stability studies, the storage time of the QC samples should be long 

enough to account for the storage time of the sample analytes.  At least three aliquots of 

QC samples were stored at the storage conditions used for the eventual sample analyses.  

The volumes of the stability samples are large enough such that there is adequate sample 

for three separate analyses.  Periodic analyses of the stored samples help to monitor the 

stability of the compounds in plasma.  The concentrations of the stability samples are 

calculated from the calibration curve constructed with a set of freshly prepared WCSS.  
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Concentrations of all the stability samples analysed on different days are compared to the 

mean of the samples analysed on day 1.  The day 1 analysis took place within 24 h after 

the samples were prepared.  It is recommended that two consecutive assessments be 

carried out on two successive days to determine whether the analyte has become unstable 

due to its storage conditions[155]. 

3.6.2.1 Results for QC H 

 A large volume of QCH was freshly prepared and aliquoted into several portions.  

Three aliquots were analysed in batch # 1.  The resulting data from analysis of these three 

aliquots were labelled as the day 1 analysis, and they are tabulated in the first row of 

Table 3.17.  Half of the remaining aliquots were stored at – 20 oC and the other half were 

stored at – 80 oC. 

In the day 1 analysis, the accuracy data were calculated by comparing the mean 

concentration of the replicates to the nominal concentration of the QC samples.  All 

samples have % accuracy ranging from 90 to 99 %.  The precision data demonstrated that 

the concentrations of the replicates were very close to each other.  The bioanalytical 

validation guidelines generally suggest that the result of the day 1 analysis should not 

deviate from the nominal concentration by more than 5 to 7 %[155].  For this project, we 

have accepted the data to deviate from the nominal concentration by 10 %.

Analysis of QCH samples that have been stored at –20 oC and –80 oC for 10 days 

and 6 months are also shown in Table 3.17.  The precision data that are lower than 5 % 

showed that the replicates have only minor differences from each other.  The accuracy 

data were calculated by comparing the mean concentration of the replicates to the 
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concentration obtained from the day 1 analysis.  The accuracy data are mostly within 15 

% of the nominal concentration.  The result suggests that Thiamet-G and Thiamme-G at a 

high concentration level were stable in the plasma at the corresponding storage conditions.  

Further stability experiments should demonstrate whether Thiampro-G is unstable under 

these conditions since the recorded accuracy data deviated from the concentration of the 

day 1 analysis by more than 15 %. 

Table 3.17. Long-Term Analyte Stability of QC H for Thiamet-G and its Analogues 

1Replicates of QCH was prepared and analysed on day 1.  The other data are for replicates of 
QCH that were stored at -20 oC and - 80 oC for 10 days and 6 months before analysis. 

3.6.2.2 Results for QC L 

In the case of QCL, the data for the day 1 analysis show high accuracy (Table 

3.18).  The precision data demonstrate that the concentrations of the replicates were very 

close to each other.  The mean concentration obtained from the samples of the day 1 

analysis was used for calculating accuracy data for the further long-term stability 

experiments. 
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Analysis of QCL samples that have been stored at –20 oC and –80 oC for 10 days 

and 6 months are also shown in Table 3.18.  The precision data that are lower than 7 % 

demonstrated that the replicates have only minor differences from each other.  The 

accuracy data are mostly within 15 % of the nominal concentration.  The result suggests 

that Thiamme-G at a high concentration level is stable in the plasma under the 

corresponding storage conditions.  Further stability experiments should demonstrate 

whether Thiamet-G and Thiampro-G are unstable under these conditions since some of 

the recorded accuracy data deviated from the concentration of the day 1 analysis by more 

than 15 %. 

Table 3.18. Long-Term Analyte Stability of QC L for Thiamet-G and its Analogues 

1Replicates of QCL were prepared and analysed on day 1.  The other data are for replicates of 
QCL that were stored at -20 oC and - 80 oC for 10 days and 6 months before the analyses. 

3.6.3 Freeze-Thaw Stability 

The stability of the analyte was determined after three freeze - thaw cycles.  Three 

aliquots of QC samples were frozen at their storage temperature for 24 h and thawed at 

room temperature.  Once the samples were completely thawed, the samples were frozen 

again for at least 12 h under the same storage conditions.  The freeze - thaw cycle was 

repeated two more times.  After the last freeze - thaw cycle, the stability samples were 
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analysed using the LC-MS/MS along with a set of samples that had undergone only one 

freeze - thaw cycle. 

3.6.3.1 Results 

Aliquots of QC samples were stored at –20 oC and –80 oC.  Three aliquots of QC 

samples were removed from each of the storage conditions and were thawed at room 

temperature.  Then, these samples were returned back to their original storage conditions.  

This cycle was repeated a total of three times.  On the day of the analysis, three aliquots 

of QC samples that have been thawed only once (1 FT) were extracted and analysed 

along with the samples that had gone through the freeze-thaw cycles three times (3 FT).  

These samples were analysed along with a set of WCSS from batch #2.  

The accuracy data for each type of freeze – thaw samples were calculated by 

comparing the mean concentration of the replicates to the nominal concentration of the 

QC samples.  The accuracy data of close to 100 % suggests that the concentration of the 

replicates were very close to their actual values (Table 3.19).  Variation in precision of 

less than 5 % further suggests that there were minimal differences between replicates. 
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Table 3.19. Freeze-thaw (FT) Stability of QC H for Thiamet-G and its Analogues. 

 
Replicates of QCH were prepared and stored at -20 oC and - 80 oC.  3FT QC samples were 
subjected to three freeze-thaw cycles while the 1FT samples were subjected to only one freeze-
thaw cycle. 

In Table 3.20, the accuracy data of samples that were thawed only once are 

compared with the accuracy data of samples that have gone through the freeze-thaw cycle 

three times.  The difference in percentage is in all cases less than 11 %.  The numerical 

data showed that the compounds in plasma were stable after going through the three 

freeze-thaw cycles. 

Table 3.20. Comparison of the Accuracy Data of QC H for FT Samples. 

Storage  Thiamet-G Thiampro-G Thiamme-G  

-20 
o
 C 3.0% 3% 5.7% 

-80 
o
 C 1.6% 2% 10% 

Percent values = |% accuracy of 3FT - % accuracy of 1FT| 

 For the stability analyses for QCL, the accuracy data for all the compounds, except 

for Thiampro-G, are high (Table 3.21).  The percent values for all the samples being 
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close to 100 % suggests that the FT samples had minor deviations from the nominal 

concentration that were not problematic. 

Table 3.21. Freeze-thaw (FT) Stability of QC L for Thiamet-G and its Analogues. 

 
Replicates of QCL were prepared and stored at -20 oC and - 80 oC.  QC samples for 3FT were 
subjected to three freeze-thaw cycles while the 1FT samples were subjected to only one freeze-
thaw cycle. 

In Table 3.22, the accuracy data for QCL samples that have undergone three 

freeze-thaw cycles compared with samples that have undergone only one freeze-thaw 

cycle.  The results suggest that Thiamet-G and Thiamme-G were stable in plasma after 

three freeze-thaw cycles at the low concentration.  For Thiampro-G, the FT samples that 

were stored at – 20 oC had accuracy values close to 100 %.  In the FT samples that were 

stored at – 80 oC, 1FT and 3FT had a % accuracy of less than 80 %.  The precision data 

suggest that the measurements of the replicates were very close to each other.  A possible 

reason for the observed result is that Thiampro-G might precipitate out when stored at  
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– 80 oC and then it might take additional time for Thiampro-G to redissolve at room 

temperature.  This is a possibility that will need to be investigated further. 

Table 3.22. Comparison of the Accuracy Data of QC L for FT Samples. 

Storage Thiamet-G Thiampro-G Thiamme-G  

-20 oC 4.4% 2.3% 3.6% 

-80 oC 1.5% 0.4% 1.6% 

Percent values = |% accuracy of 3FT - % accuracy of 1FT| 

3.6.4 Short-term Stability Experiment 

This experiment ensures that the analyte does not degrade during the sample 

cleanup process prior to analyses.  Three aliquots of QC samples were removed from the 

storage conditions, thawed, and then maintained at room temperature for the period of 

time that the samples will be at room temperature during the proposed analytical method.  

The typical time for analysis is between 4 and 24 h.  For this project, 24 h is used to be on 

the safe side since the batch analysis can take 7 h.  After 24 h, another set of stability 

samples was removed from storage and thawed.  When the second set of samples had 

thawed, a WCSS standard was freshly prepared and analysed along together with the two 

sets of samples.  The accuracy data were calculated by comparing the mean concentration 

of the replicates to the nominal concentration of the QC samples.   

Results 

Three aliquots of QCH samples were removed from each of the storage conditions 

and were thawed and then maintained at room temperature for 24 h.  On the day of the 

analysis, three aliquots of QC samples were removed from the storage conditions and 

thawed.  These freshly removed samples (1 FT) were extracted and analysed along with 
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the samples that had been at room temperature for 24 h (ST).  These samples were 

analysed with a set of WCSS from batch #2. 

The data for the short-term stability experiment for QCH are reported in Table 

3.23.  The % accuracy and the precision data are shown to be close to 100 % and below 4 

% respectively.  The % accuracy of these two sets of stability samples should be within 

15 % of the nominal concentration.  The CV of the three replicates should be less than 15 

%[155].  These data indicate the measured concentrations were close to the nominal 

concentrations and measurements of the replicates were in agreement with each other. 

Table 3.23. Stability of QC H for Thiamet-G and its Analogues at Room Temperatur e for 24 
h. 

 
Replicates of QCH were prepared and stored at -20 oC and - 80 oC.  QC samples for ST were 
thawed and held at room temperature for 24 h while the 1FT samples were thawed and analysed 
immediately afterward. 

In Table 3.24, accuracy data of the samples that have thawed right away are 

compared with the samples that were at room temperature for 24 h.  The difference in 

percentage is less than 7 % suggesting that the compounds in plasma were stable after 

sitting at room temperature for 24 h. 
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Table 3.24. Comparison of the Accuracy Data of QC H for Short-term Stability Samples. 

Storage Thiamet-G Thiampro-G Thiamme-G 

- 20 
oC 2.0% 2% 7% 

- 80 
oC 1.2% 3% 7% 

Percent values = |% accuracy of ST - % accuracy of 1FT| 

Aliquots of QCL samples were removed from the storage conditions, were thawed 

and maintained at 24 h, and labelled as ST.  After 24 h, aliquots of freshly removed 

samples (1 FT) were extracted along with the ST samples that had been at room 

temperature for 24 h.  These samples were analysed as batch # 4. 

The short-term stability data for QCL are reported in Table 3.25.  For samples that 

were stored at -20 oC, the accuracy data for both the ST and 1 FT samples are close to 

100 %, which suggests that the reported data have only minor deviations from the 

nominal concentration.  The calculated CV values that are less than 5% indicating that 

the concentrations of the replicates were in agreement with each other.  The data shows 

that the compounds were stable in plasma for 24 h at room temperature.  The only 

exception was the samples containing Thiampro-G that was stored at – 80 oC. 
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Table 3.25. Stability of QC L for Thiamet-G and its Analogues at Room Temperatur e for 24 
h. 

 
Replicates of QCL were prepared and stored at -20 oC and - 80 oC.  QC samples for ST were 
thawed at room temperature for 24 h while the 1FT samples were thawed and analysed right 
away. 

In the case of Thiampro-G, the FT samples stored at – 80 oC are shown to have low 

accuracy.  The samples that underwent both one and three freeze thaw cycles were 

observed to have the same variation.  However, the ST samples that were stored at – 80 

oC still maintained high accuracy.  This could be because, when thawing a sample stored 

at – 80 oC, Thiampro-G needs more time to be redissolved at room temperature.  This 

idea will need to be tested in the future.  See Table 3.26 for the comparison between the 

accuracy data of 1 FT and ST samples. 
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Table 3.26. Comparison of the Accuracy Data of QC L for Short-term Stability Samples. 

Storage Thiamet-G Thiampro-G Thiamme-G 

- 20 
oC 3.3% 3.0% 3.7% 

- 80 
oC 6% 21% 2.0% 

Percent values = |% accuracy of ST - % accuracy of 1FT| 

3.6.5 Post-Preparative Stability 

There are two types of post-preparative stability experiments, on-instrument and 

extraction stability.  For the on-instrument experiment, QCstability samples analysed at the 

beginning of the run were compared against QCstability samples analysed in between or at 

the end of the run[155].  For the extraction stability experiment, the stored QCstability 

samples are compared with replicates of QCstability samples that are prepared fresh.  This 

evaluation is not part of the routine validation process[155].  For this project, only the on-

instrument stability experiment was performed.   

3.6.5.1 Results 

 Replicates of extracted QC samples were pooled together and aliquoted into six 

portions.  They are referred to as the QCstability samples, and two concentration levels were 

prepared, a low concentration QCLstability and a high concentration QCHstability were 

prepared.  These aliquots of samples were run through out the batch.  The number of 

replicates was six.  Since they were pooled together after the extraction process, the 

resulting data should yield a low CV.  There were pooled together to eliminate the 

differences in concentrations during sample preparation. 

 In the longest on-instrument stability experiment, the time of the analysis between 

the first and the last QCstability samples was 79 h.  The accuracy data were close to 100 % 
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(Table 3.27).  The precision data were less than 8 %.  All three compounds were 

therefore stable in the autosampler at 10 oC for 79 h. 

Table 3.27. On-Instrument Stability of QC stability  for Thiamet-G and its Analogues for 27 h. 

 

3.7 Sensitivity 

 Sensitivity is the assessment of the lowest concentration that can be measured 

using the method with acceptable accuracy and precision[152].  For this method, the 

LOQ is set at 0.5 ng / mL.   

3.7.1 Results 

Six replicates of QC samples at the concentration of LOQ were prepared.  They 

were injected into the system one after another.  The accuracy and precision data are 

reported in Table 3.28.  The accuracy data for all three analytes are within 85 to 115 % 

whereas the precision data are lower than 5 %.  The data support the fact that method is 

able to detect the lowest concentration at 0.5 ng / mL.   
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Table 3.28. Sensitivity Data for Thiamet-G and its Analogues. 

 
Expected 

Conc. 
(ng / mL) 

Mean 
(ng / mL) SD CV % Accy 

Thiamet-G 0.506 0.47 0.02 4% 92.5% 

Thiampro-G 0.497 0.432 0.008 2% 86.9% 

Thiamme-G 0.502 0.44 0.01 3% 86.7% 

3.8 Analyses of PK Samples 

After completing of the validation procedure, the PK samples for Thiamet-G were 

analysed using the same protocol.  Three rats were treated by with100 mg / kg of 

Thiamet-G were fed into three rats by oral gavage.  Aliquots of rat plasma were collected 

from the animals throughout a time period extending up to 24 h.  These samples were 

prepared as described above and analysed by LC-MS/MS.  Two separate analyses were 

carried out for each sample.  The mean concentrations and standard deviation obtained 

for each time point are tabulated in Table 3.29. 

From the experimental results, we could determine the maximum concentration of 

Thiamet-G that can be absorbed into the bloodstream, Cmax, and the time point for Cmax.  

As seen in table, Cmax and tmax are determined to be 370 ± 20 ng / mL and 2 h 

respectively.   
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Table 3.29. Concentration of Thiamet-G in the Pharm acokinetic Samples  

 

 The total amount of compound that is absorbed into the body system can be 

determined by plotting the average concentrations of Thiamet-G in Table 3.29 against the 

range of time points for collecting the plasma samples.  The result, which is a typical 

pharmacokinetic graph, is shown in Figure 3.4.  The area under the curve (AUC) 

represents the average amount of Thiamet-G absorbed by the rats.  The AUC was 2263 

ng / mL by oral administration.  In the future, additional information, such as the 

bioavailability, can be determined by using this data along with a pharmacokinetic study 

using intravenous administration.   
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Figure 3.4. The Total Amount of Thiamet-G that was Absorbed by Rats. 
Concentrations of Thiamet-G were plotted against the time points of collection.  The 
AUC was 2263 ng / mL. 

 PK compartment models are often used to describe how a compound behaves in a 

biological system after administration.  The behaviour of Thiamet-G in rat can be 

examined by plotting the log of concentrations of Thiamet-G versus time points.  In the 

logarithmic graph of Figure 3.5, it exhibits an absorption phase, a distribution phase and 

an elimination phase are all observed.  In oral administration as compared to IV injection, 

the compound in the blood is slower to reach Cmax because of the absorptive processes of 

the GI tract[94].  Since the experiment was performed using oral gavage, these phases are 

not distinctive in the graph.  Nevertheless, most of the points lie on the trendline.  The 

shape of the graph resembles the curve expected for a one compartment model (Figure 

1.12 B).  The actual determination of the type of compartment model should be 

determined by administration via the intravenous route. 
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Figure 3.5. An Apparent One Compartment Model is Ex emplified in the Log of 
Concentrations of Thiamet-G versus Time Graph. 
The behaviour of Thiamet-G in the body of rat can be determined by compartment 
modeling.  In an one compartment model, the body is considered as one unit.  Once 
the compound reaches the body system, the compound immediately distributes 
throughout the body and maintain steady state between tissues.  The black line is 
the actual data and the red line is the trendline. 

The elimination rate constant, k, can be determined by plotting the natural log of the 

concentrations of Thiamet-G in the elimination phase versus time.  The graph is shown in 

Figure 3.6.  A minimum of three points are required for determining k[91].  A linear 

relationship was drawn between concentration and time with a coefficient of regression 

of 0.998.  The plot supports the fact that the compound is eliminated from the body by a 

first order kinetic process.  The apparent k can be estimated from the negative slope of 

the line representing the elimination phase of the graph (Figure 3.6).  Hence, the apparent 

k is 0.201 ± 0.009.  Using equation 14, the apparent half life, t1/2, can be determined as 

well that is the time it takes for the initial concentration of the compound in the plasma to 

decrease to 50 %.   

t1/2 = 0.693 / k (14) 
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In this study, t1/2 is 4.977 ± 0.222 h.  The t1/2 suggests that Thiamet-G indeed partitions 

between the plasma and the tissues in the body and it is well absorbed by the body 

system.   

 

Figure 3.6. The Apparent Elimination Rate Constant can be Determined from the Natural 
Log of Concentrations of Thiamet-G versus Time Grap h. 
k is equal to the negative slope of the plot.  t1/2 can be determined once k is known. k 
and t1/2 are 0.201 ± 0.009 and 5.0 ± 0.2 h respectively. 

3.9 Conclusion 

We have developed a LC-MS/MS method for supporting the pharmacokinetic 

analyses for Thiamet-G, Thiampro-G, and Thiamme-G.  During method development, 

samples were prepared by spiking compounds in rat plasma that mimicked the make up 

of the actual pharmacokinetic plasma samples.  Thiambu-G acted as the internal standard.  

The method utilized the Hypercarb offline cartridge as the sample extraction tool and the 

ZIC-HILIC column as the stationary phase.  The instrumental settings for the 

bioanalytical method are summarised in Table 3.30. 
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Table 3.30. Summary of Validated Instrumental Setti ngs 

LC Ultimate 3000 HPLC system (Dionex Corporation, 
Bannockburn, USA 

MS 4000 QTRAP mass spectrometer (Applied Biosystems Life 
Technologies Corporation, Foster City, USA) 

Column 
Merck SeQuant ZIC-HILIC column (Umeå, Sweden) (5 µm, 2.1 
x 100 mm ID), was protected by a guard column (5 µm, 2.1 x 20 

mm ID). 

Separation conditions 

Step 1) 0 - 10 min, 300 µL / mL, 84 % B, Step 2) 10.5 – 13 min, 
600 µL / mL, 30 % B, Step 3) 13.5 – 16 min, 600 µL / mL, 84 % 
B, Step 4) 16.5 - 18 min, 300 µL / mL, 84 % B (A = 0.5 % FA + 

5 % ACN + H2O, B = 0.1 % FA + ACN). 

Dwell time 200.00 µsec 

CUR 30.00 psi 

ISP 4500.00 V 

TEM 200.00 oC 

GS1 20.00 psi 

GS2 20.00 psi 

DP 56.00 V 

CAD 7.00 psi 

EP 8.00 V 

CE 31.00 eV 

CXP 10.00 V 

We have successfully validated the method specifically for supporting the 

pharmacokinetic analyses for Thiamet-G, Thiampro-G, and Thiamme-G.  The method 

has been proven to be linear, specific, accurate, precise, sensitive, with good recovery, 

and not affected by matrix effect.  The compounds were found to be generally stable with 

some exceptions at their storage conditions, - 20 oC and -80 oC.  The experimental LOD 
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was determined to be 0.05 ng / mL for all three compounds.  Precision and accuracy were 

maintained at the LOQ, 0.05 ng / mL.  The linear dynamic range ranged from 0.05 to 

1000 ng / mL.   

As shown in Section 3.8, the method proved useful for analysis of the actual 

pharmacokinetic samples.  The study was carried out by feeding Thiamet-G to rats by 

oral gavage.  Thiamet-G was found to be absorbed with a Cmax of 370 ± 20 ng / mL and a 

tmax of 2 h.  The AUC was 2263 ng / mL.  From the analysis, the apparent k and t1/2 were 

determined to be 0.201 ± 0.009 and 5.0 ± 0.2 h respectively.  We were conclusively able 

to demonstrate that the method was capable of quantifying the analytes in rat plasma 

from pharmacokinetic studies. 

3.10 Future Plans 

PK samples for other compounds and samples that were collected from 

intravenous administration will be analysed using the same protocol.  The method can be 

expanded to analyse other plasma types and tissues.  It should be possible to make 

improvements to the current sample extraction method and the chromatographic 

conditions.  For example, the manual extraction process can be adapted to an automatic 

format, which will help to shorten the time required to perform the overall analysis.   

3.11 Methods for Validation 

Chemicals and reagents.  HPLC grade acetonitrile was purchased from 

Caledon Laboratories Ltd.  LC-MS grade or HPLC grade water was purchased from 
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Mallinckrodt Baker, Inc, while reagent grade formic acid was purchased from Fluka, 

Sigma-Aldrich.  Reagent grade glacial acetic acid was purchased from Anachemia.   

Control rat plasma was obtained from the animal facility of Valley Biochemical, Inc. 

(Winchester, USA). 

Instrumentation.  The 4000 QTRAP LC-MS/MS system consisted of the 4000 

QTRAP mass spectrometer interfaced with an Ultimate 3000 HPLC system.  The HPLC 

system was composed of a binary LC pump, a vacuum degasser, a temperature controlled 

autosampler and a thermostated column compartment set at 40 oC.  The control software 

for data acquisition was Analyst version 1.4.2, Dionex Chromatography Mass 

Spectrometry Link software version 2.0.0.2315 and Chromeleon version 6.80 SP2.  The 

analytical column for the analysis, Merck SeQuant ZIC-HILIC column (5 µm, 2.1 x 100 

mm ID), was protected by a guard column (5 µm, 2.1 x 20 mm ID).  The mobile phase, 

0.1 % FA + 85 % ACN / H2O, was pumped initially at a flow rate of 300 µL / min.  A 

gradient method was setup for the run as tabulated in Table 3.30. 

 

 

 

 

 

 



 

 120 

Table 3.31. LC Gradient Program Gradient Method for  the ZIC-HILIC Column. 

Time (min) % B Flow Rate (µL) 

0 84 300 

10 84 300 

10.5 30 600 

13 30 600 

13.5 84 600 

16 84 600 

16.5 84 300 

18 84 300 

Mobile phase A was 0.1 % FA + 5 % ACN + H2O and mobile phase B is 0.1 % FA + ACN.   

Preparation of Standards.  One stock solution, Stockmixed, containing Thiamet-

G, Thiampro-G, and Thiamme-G (conc = 100000 ng / mL), was prepared by dissolving 

10 ± 0.1 mg of each standard in water and making the volume up to 100 mL in a 

volumetric flask.  The stock solution of internal standard, StockIS (conc = 10000 ng / 

mL), was prepared by dissolving 1 ± 0.1 mg of Thiambu-G in water and making the 

volume up to 100 mL in a volumetric flask.  The stock solutions were stored at 4 oC.  The 

actual weights of compounds for preparing the stocks solutions and the procedures for 

preparing the Calibration Standards (CS) are described in Appendix Section A2. 

Preparation of Working Calibration Standard Solutions (WCSS) 

11 µL of each calibration standard solution (CS) and 11 µL of a 100 ng / mL 

internal standard solution were transferred into a centrifuge tube.  In addition, two 

portions of 11 µL of the control rat plasma and 110 µL of water were added into each 
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tube to give a final total volume of 154 µL.  After the tubes were capped and vortexed for 

30 sec, they were centrifuged at 10000 rpm for 1 min at room temperature. 

Equilibration of the Cartridges 

1 mL Hypercarb cartridges were loaded onto the vacuum manifold holder, which 

was placed on top of a reversible manifold lid.  When a vacuum was applied to the 

assembly, the liquid solutions present inside the cartridges were drawn into the waste 

container.  The steps for equilibration of the cartridges were as follows: a) 1 mL of 0.5 M 

ammonium hydroxide, b) 2 x 1 mL of HPLC grade water, c) 30% acetic acid, d) 1 mL of 

HPLC grade water, e) 1 mL of 70% ACN / H2O (premixed earlier), f) 5 x 1 mL of HPLC 

grade water 

During the equilibration process, the solutions present in the cartridges were kept 

no lower than the top edge of the manifold holder, which was located immediately above 

the bed level of the cartridge.  Effort was made to avoid trapping air bubbles inside the 

column bed.  The vacuum pressure reading was maintained so that it was no higher than 

7 mm Hg.  The next equilibration solution was loaded when the level of the previous 

solution present in the cartridge has just reached the top edge of the holder.  Just prior to 

loading the next solution, the vacuum was released. 

Application of the Samples 

140 µL of the sample was individually loaded onto the 1 mL Hypercarb SPE cartridge 

using an adjustable pipette.  The vacuum pressure was maintained below mm Hg until the 

sample had entered into the cartridge bed.   
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Washes 

Five washes each being 720 µL in volume of water were applied into the cartridges.  The 

cartridges were dried completely after both the fourth and fifth wash.  When drying the 

cartridges, a vacuum was drawn through the assembly for 30 sec at 8 mm Hg.  

Elution 

Two portions of 180 µL of a 70% ACN / H2O solution (premixed earlier) were 

applied into the cartridge.  The collection tubes were placed underneath the reversible 

manifold lid, so the eluted fractions were collected.  In between the two elution 

processes, the cartridges were dried completely at 8 mm Hg.  When initially passing the 

eluent into the cartridges, the vacuum reading was kept at 2 mm Hg.  The two eluted 

fractions were pooled into one collection tube.  The eluent was dried down completely 

under vacuum at 55°C. 

Preparation of the Test Article 

100 µL of a premixed 70% acetonitrile/water solution was transferred into 

collection tubes to reconstitute the samples.  The tubes were capped and vortexed for 30 

sec.  After 5 min of sonication, the tubes were centrifuged at 10000 rpm for 6 min at 

room temperature.  Hence, the WCSS are five times more dilute than the CS.  7 µL of 

each sample were transferred into separate HPLC vials containing inserts.  All samples 

were capped.  One set of samples were used for LC–MS/MS analysis and other samples 

were stored either in the 4°C refrigerator or in the -20°C freezer. 
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Preparation of the QC Samples 

Three QC stocks for compounds with high (QCH = 800 ng / mL), medium (QCM = 

400 ng / mL), and low (QCL = 1 ng / mL) concentrations of analytes were prepared from 

the Stockmixed.  Please see Appendix Section A2 for the procedure used to prepare these 

QC spiking stocks.  These QC stocks were added separately into six aliquots of plasma.  

Eventually, six replicates of QC samples for three different concentration levels were 

prepared.  11 µL of a QC stock solution and 11 µL of 100 ng / mL internal standard 

solution were transferred into a centrifuge tube.  In addition, two portions of 11 µL of the 

control rat plasma and 110 µL of water were added into each tube, total volume of 154 

µL.  After the tubes were capped and vortexed for 30 sec, they were centrifuged at 10000 

rpm for 1 min at room temperature.  140 µL of the QC sample was loaded onto a 

Hypercarb cartridge for sample cleanup.  The procedure for sample cleanup was the same 

as the sample cleanup for the WCSS samples as described above. 

Preparation of the QCstability Samples 

Six QC samples containing analytes at the same concentration underwent the 

sample extraction processes.  These samples were pooled together and aliquoted into six 

portions of QCstability samples.  These six stability samples should have identical 

concentrations because the possible causes of deviation have been eliminated. 

Analytical Procedure.  4 µL of sample was injected by the autosampler into the 

4000 QTRAP LC-MS/MS system.  With the HPLC pump pumping the mobile phase, the 

4 µL of the sample was delivered into the turbo ion spray ion source.  During acquisition, 

the MRM transitions were set according to Table 2.2 and the dwell time was set as 

200.00 msec.  The resolution of Q1 and Q3 was set to be 1 unit mass resolution.  With 



 

 124 

positive ionisation mode set in the acquisition method, the other parameters were CUR 

(30.00 psi), ISP (4500.00 V), TEM (200.00 oC), GS1 (20.00 psi), GS2 (20.00 psi), DP 

(56.00 V), CAD (7.00 psi), EP (8.00 V), CE (31.00 eV), and CXP (10.00 V).
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APPENDICES 

Appendix A1 PK Parameters 

Volume of distribution (Vd): Vd represents the apparent volume of plasma needed to 

dissolve the compound so that the resulting concentration would give the concentration of 

compound in plasma[98].  In the equation below, Cp is the drug concentration in plasma, 

X is the amount of compound and t is the time[98]. 

Vd(t) = X / Cp(t) (15) 

 For a bolus injection, the initial plasma concentration, Cp(0), is equal to the dose 

divided by the Vd[91]. 

Cpt = Cp(0) x exp (- kt) (16) 

Equation 14 above describes the plasma concentration when the compound content in the 

plasma undergoes exponential decay[98].  When the equation is converted into the linear 

form, the equation becomes 

ln Cpt = ln Cp(0) – kt, (17) 

where k is the elimination rate constant and the y intercept is ln Cp(0)[98].   

Half-life: Half life is the time needed to reduce the plasma concentration of the 

compound to half of its original concentration[91].  The equation for defining half-life is  

t1/2 = 0.693 / k (14) 
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Bioavailability (F): Bioavailability refers to the fraction of the dose which gets into the 

circulatory system[94].  This parameter strongly depends on the rate of absorption at the 

site of administration[94].  By the intravenous route, 100 % of the dose is considered to 

be in the bloodstream[94].  A common way to determine the bioavailability of the other 

routes is by comparing the area under the curve (AUC) obtained from the intravenous 

route and the other route[91].   

Bioavailability = AUCother route / AUCIV (18) 

Salt factor (S): 

Salt factor, S is the active form of the compound as a salt or an ester.  If there is a 

compound with a salt factor of 0.8, it indicates 1 gram of the salt form of the compound is 

equal to 800 mg of the active compound[98]. 

Area under the Curve (AUC): AUC is found by plotting the concentration of plasma 

against a period of time[91]. 

Clearance (CL):  In general, clearance is a theoretical term, which relates the rates of 

elimination to the compound concentration in plasma at the site of measurement[91]. 

CL = Elimination rate of drug from the entire body / concentration 

From the physiological perspective, CL is the apparent volume of plasma present in the 

system, cleared of the compound per unit time by metabolic and elimination 

processes[91].  In multicompartmental models, the volume of distribution at steady state 

can be related to clearance by the equation 6[94].   

CLtotal = k x Vd (19) 
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Mathematically, CL is the elimination rate constant in which a portion of drug is 

constantly lost from the Vd as described in equation 6 above.  However, in most cases, 

the clearance and the volume of distribution are assumed to be independent of each 

other[94]. 

Steady State Concentration (CpSS):  A steady state is observed when multiple dosing is 

applied at a regular dosing interval, Т.  The condition is reached when the amount of 

compound applied to a body system is equivalent to the amount of compound that is 

eliminated from the system within the same time period.  By the route of intravenous 

infusion, steady state is also observable when the compound concentration in the plasma 

increases with time until it remains constant. 

Rate of compound administration = (S x F x D) / Т (20) 

Rate of compound elimination = CL x CpSS (21) 

When the two rates are equivalent, the following formula is useful for estimating 

the CpSS: 

CpSS = (S x F x D) / (CL x Т) (22) 

As a result, one could use equation 9 to calculate CpSS[98]. 

Loading Dose (LD): The dose administered at the beginning of a treatment to reach the 

desired compound concentration in the body system[98]. 

The LD can be estimated by equation 10 assuming CpSS is the desired 

concentration to be reached. 

LD = Vd x CpSS (23) 
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Since LD is increasing exponentially inside the body system, the above equation is 

modified into: 

Cp = LD x exp(-kt) / Vd (24) [98] 

Maintenance dose: A dose that is used to offset the amount of compound that is being 

eliminated from the body.  The dose is administered by intravenous infusion[98]. 
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Appendix A2 Supplementary Data for the Validated Me thod 

In Table 1A, the weights of the analogues used for making the StockIS, the stock 

of each compound, and Stockmixed solutions are tabulated.  The procedure for preparing 

these stock solutions is described in the Method of Validation (See Section 3.7).  

Stockmixed was prepared by mixing samples of Thiamet-G, Thiampro-G, and Thiamme-G 

in one vial.  StockIS was prepared with Thiambu-G. 

Table 1A. Actual Weights of Each Analogue. 

 Analogue Weight (ng) 

1 Thiamet-G 1.01220 x 107 

2 Thiampro-G 0.99446 x 107 

3 Thiamme-G 1.00440 x 107 

4 Thiambu-G (IS) 0.10180 x 107 

The six calibration standard solutions (CS) ranging from 2.5 to 5000 ng / mL 

were prepared from the Stockmixed according to Figure 1A.  The three different 

concentration levels of QC stock solutions at different concentrations (QCL = 62.5 ng / 

mL, QCM = 25000 ng / mL, and QCH = 50000 ng / mL) were also prepared from the 

stock solution.  
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Figure 1A. Dilution Scheme for Calibration standard s. 
The dilution factors are indicated in the square brackets. 

The weights of Thiamet-G, Thiampro-G, and Thiamme-G in the CSSs samples 

are reported in Table 2A.  The weights of these compounds in the QC spiking stocks are 

reported in Table 3A.   

For preparing the internal standard, 5 mL of stockIS was added into a 100 mL 

volumetric flask.  The flask was made up to volume with water.  2 mL of the water 

mixture was transferred into a 10 mL volumetric flask, and it was made up to the volume 

with water.  The concentration of the prepared internal standard was 102 ng / mL. 
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Table 2A. Calibration Standard Solutions (CSSs). 

No. [Stock 1] 
(ng / mL) 

Volume 
transferred 

from 
[stock] 

(mL) 

Final 
vol ume 

(mL) 

Final 
[Thiamet-G]  

(ng / mL) 

Final 
[Thiampro-G] 

(ng / mL) 

Final 
[Thiamme-G] 

(ng / mL) 

Std 1 1.000 x 105 5.00 100.0 5.06 x 103 4.97 x 103 5.02 x 103 
Std 2 5.00 x 103 5.00 10.0 2.53 x 103 2.49 x 103 2.51 x 103 
Std 3 2.50 x 103 2.00 10.0 506 497 502 
Std 4 250 2.00 10.0 50.6 49.7 50.2 
Std 5 125 2.00 50.00 5.06 4.97 5.02 
Std 6 5.00 5.00 10.0 2.53 2.49 2.51 

1Stock concentration is the approximate concentration of each analogue present with the stock 
solution.  For example, for std 1 it is approximately 1.012 x 105 ng / mL of Thiamet-G, 0.9945 x 
105 ng / mL of Thiampro-G, and 1.004 x 105 ng / mL of Thiamme-G. 

Table 32A. QC Stocks. 

 [Stock 1] 
(ng / mL) 

Volume 
transferred 

from 
[stock] 

(mL) 

Final 
volume 

(mL) 

Final 
[Thiamet-G]  

(ng / mL) 

Final 
[Thiampro-G] 

(ng / mL) 

Final 
[Thiamme-G]  

(ng / mL) 

QCH 1.000 x 105 5.00 10.0 5.06 x 104 4.97 x 104 5.02 x 104 
QCM 5.00 x 104 5.00 10.0 2.53 x 104 2.49 x 104 2.51 x 104 
QCL 125 5.00 10.0 63.3 62.2 62.8 

1Stock concentration is the approximate concentration of each analogue present in the stock 
solution.  For example, for the stock solution for preparing the QCH stock it is approximately 1.012 
x 105 ng / mL of Thiamet-G, 0.9945 x 105 ng / mL of Thiampro-G, and 1.004 x 105 ng / mL of 
Thiamme-G. 
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Appendix A3 Supplementary Experiments on Different Types 
of Stationary Phases 

As discussed in Section 2.3.2 and 2.4.2, the data obtained using other columns are 

shown in this section. 

A3.1 Reverse Phase Columns 

A3.11 Phenomenex Synergi 2.5 µm Fusion-RP 100 Å wit h Guard Column  

The Synergi Fusion column uses a polar embedded C18 resin with suitable 

operating pH conditions ranging from 1.5 to 10.  The timerecommended elution on the 

Synergi Fusion column was 1.86 min.  In chromatogram (A) shown in Figure 2A, none of 

the analytes were efficiently retained when using water as the mobile phase, and co-

elution was observed for Thiampro-G and Thiambu-G.  In chromatogram (B), only 

Thiambu-G was retained efficiently when using 5 % ACN / H2O as the mobile phase.  

The ability for the column to retain these polar compounds under these conditions was 

poor.  Other chromatographic conditions have been tested for this column, but none of 

the conditions demonstrated that the Synergi Fusion column was capable of retaining and 

separating the analogues (data not shown). 
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Figure 2A. Attempted Separation and Analysis of the  Analogues Using a Synergi Fusion 
Column. 
(Column: 3 x 50 mm; guard: 3 x 4 mm, flow rate: 200 µL / min, CVempty: 382 µL, 
Timerecommended: 1.86 min, sample: a mixed compound standard solution dissolved in 
water, elution with: 100 % H2O for chromatogram (A) and 5% ACN / H2O for 
chromatogram (B)). 

 The exocyclic nitrogen of the inhibitors have a pKa of 8.0[74].  At physiological 

pH or under acidic conditions, Thiamet-G and its analogues are in their protonated states.  

To favour deprotonation of the analytes, the pH of the mobile phase has to be above 

8[74].  When compounds are not in their ionised states, they become less polar and are 

likely to be more easily retained on reverse phase columns.  Nevertheless, use of an 

aqueous solution containing 100 % 10 mM CH3COONH4 at pH 8.3 as the mobile phase, 

illustrated in Figure 3A, did not improve the retention of the compounds and only 

Thiambu-G was retained on the column.  The effect of partially deprotonating the 

analogues was poor and the separation was even worse than when using the 

chromatographic conditions outlined for the data described in Figure 3A.   
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Figure 3A. Attempted Separation of the Analogues on  the Synergi Fusion Column Using 
an Aqueous Mobile Phase, pH 8.3.  
The analysis was performed using an API 2000 LC-MS/MS system, and 100 % 10 
mM CH3COONH4, pH 8.3 was used as the mobile phase.  The sample is a mixed 
compound standard solution dissolved in water.  Only Thiambu-G was retained.  
The resolution of the analogues was poor, and peak tailing was observed.   

A3.12 Agilent Zorbax Eclipse XDB 

The Zorbax Eclipse column is a normal C18 column with operating pH conditions 

ranging from 2 to 9.  In chromatogram (A) shown in Figure A4, all analytes were retained 

except for Thiamme-G.  It took more than 8 min for Thiampro-G and Thiambu-G to elute 

from the column.  In chromatogram (B), only Thiambu-G was fully retained.  The 

separation shown in Figure 4A indicated that this column was not ideal for retaining all 

these analogues.  The column was tested previously with the usual concentration of the 

analytes used in these studies (1400 ng / mL) but detection of the analogues was very 

poor when using the API 2000 LC-MS/MS.  Hence, the concentration of analytes used in 

the LC-MS analyses reported in Figure 4A was increased to 2 mg / mL in order to 

determine the performance of the column.  The use of this column was not further 

pursued. 
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Figure 4A. Attempted Use of Zorbax Eclipse XDB Colu mn for Separation of the Analytes.   

The analysis was performed using an API 2000 LC-MS/MS system.  (Column: 4.6 x 
150 mm; flow rate: 1 mL / min, CVempty: 2.49 mL, Timerecommended: 2.43 min, sample: a 
mixed compound standard solution dissolved in water, elution with: 100 % 10 mM 
CH3COONH4 at pH 8.3 for chromatogram (A) and 5% ACN / 10 mM CH3COONH4 at 
pH 8.3 for chromatogram (B)) 

A3.2 PGC Column 

A3.2.1 Thermo Scientific Hypercarb Column, 3µm, 200  Å 

The Hypercarb column is a porous graphite column (PGC).  When the 

hydrophobicity of the analytes increases, they are retained longer on a reverse phase 

column. Analytes behave similarly when using a Hypercarb column.  As shown in Figure 

5A, all four analytes were retained on the column, and they were well separated from 

each other.  Thiamme-G, being the most polar compound, was eluted first while 

Thiambu-G, being the least polar compound, was retained on the stationary phase for the 

longest time.  All four analogues have tall and narrow peak shapes.  The only concern 

was that background signals matching those for the MRM used for monitoring Thiambu-

G continued to increase after the elution of Thiambu-G.  The MS parameters were not 

optimized for this column because of the apparent instability of the column, which is 

discussed below. 
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Figure 5A. The PGC Column was able to Retain all Fo ur Analytes. 
Analytes were separated with the PGC column.  In this figure, only the first seven 
min of the chromatogram are shown.  (Column: 3 x 50 mm; guard: 3 x 4 mm, flow 
rate: 600 µL / min, CVempty: 353 µL, Timerecommended: 0.57 min, sample: a mixed 
compound standard solution dissolved in water, separation conditions: Step 1) 0 
min, 600 µL / mL, 0 % B, Step 2) 5 min, 600 µL / mL, 21.1 % B, Step 3) 5.1 – 7.1 
min, 600 µL / mL, 94.7 % B, Step 4) 7.2 – 20.1 min, 600 µL / mL, 0 % B (A = 0.5 % 
FA + 5 % ACN + H2O, B = 0.1 % FA + ACN)) 

Stability of the Hypercarb Column 

A sample that was treated with plasma was injected into the analytical system 

connected to the Hypercarb column.  The sample cleanup procedure used was 

ultrafiltration.  A control sample, acting as a positive control, was also prepared by 

replacing the plasma with water.  A standard solution was also prepared by dissolving the 

four analogues into water.   

These three samples were injected into the system to measure the repeatability of 

the retention times of the analytes.  Aliquots of each sample were consecutively injected 

(n = 5) into the autosampler for the LC-MS/MS analysis.  Five aliquots of standard were 
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analysed first, then followed by five aliquots of the control samples.  Lastly, five aliquots 

of plasma samples were analysed.  The peak area responses and retention times of the 

analyses were computed in a statistical manner and are reported in Table 4A and Table 

5A.   

Before analysing the control and plasma samples, a standard solution was run to 

determine the stability of the system.  Five injections were made with the last four 

injections showing consistency in peak area responses and retention times.  As tabulated 

in Table 4A, the % RSD of the peak area counts and retention times were in all cases less 

than 5 % and 2 % respectively.   

Table 4A. Analyses of a Standard Solution. 

Peak Area RT 

Analyte 
Average 

(cps) SD 
% RSD 

(n = 4) 
Average 

(min) SD 
% RSD 

(n = 4) 

Thiambu-G 8.0 x 104 3 x 103 4 3.02 0.02 1 

Thiampro-G 6.9 x 104 2 x 103 2 2.10 0.02 1 

Thiamet-G 5.8 x 104 2 x 103 3 1.50 0.03 2 

Thiamme-G 4.4 x 104 1 x 103 3 0.98 0.02 2 

A total of five injections of the standard solution were made.  The data obtained by the first 
injection of the standard was ignored due to the significant differences in peak area responses 
and retention times when compared with the other four injections, which suggested the column 
was likely not appropriately equilibrated. 

As mentioned in Section 2.4.1, the desired % RSD for the peak area counts is less 

than 10 %, and the desired % RSD for the RT is less than 2 %.  For the control and 

plasma samples, the % RSD for both the peak area responses and the retention times are 

higher than 10 % and 2 % respectively (Table 5A).  The data suggest that the retention 

times became unstable after the introduction of the ultrafiltrated samples.  Statistical 
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analyses confirmed that the retention times of Thiamet-G and its analogues were 

inconsistent.  In summary, the Hypercarb column in combination with ultrafiltration was 

a poor candidate for column selection and further studies using this column were 

discontinued.  In addition, the time required to equilibrate the column (30 column 

volumes) was generally unsuitable for further method development. 

Table 5A. Analyses of the Ultrafiltrated Samples. 

Peak Area RT 

Types of 
Samples 

Average 
(cps) SD 

% RSD 

(n = 5) 
Average 

(min) SD 

% RSD 

(n = 5) 

Thiambu-G  

Control 8.7 x 104 1 x 104 1 x 101 3.2 0.1 3 

Plasma 6.4 x 104 2 x 104 2 x 101 3.20 0.09 3 

Thiampro-G  

Control 9 x 104 1 x 104 1 x 101 2.26 0.09 4 

Plasma 1.00 x 105 7 x 103 7 2.24 0.08 3 

Thiamet-G  

Control 7.8 x 104 8 x 103 1 x 101 1.66 0.10 6 

Plasma 8.9 x 104 7 x 103 8 1.63 0.08 5 

Thiamme-G  

Control 6.2 x 104 8 x 103 1 x 101 1.11 0.08 7 

Plasma 6.8 x 104 5 x 103 8 1.10 0.06 6 
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Appendix A4 Supplementary Results of using Differen t 
Sample Cleanup Procedures 

As discussed in Table 2.11, the data obtained with the various clean up methods 

are reported in this section. 

A4.1 Deproteinisation by Protein Precipitation  

A4.1.1 Deproteinisation by Protein Precipitation (T SKgel column) 

A4.1.1.1 MeOH as the Precipitant 

 In the chromatograms shown in Figure 6A, MeOH was used to precipitate 

proteins that were present in the plasma sample.  The mobile phase and the test article 

contained 80 % ACN and 90 % MeOH respectively.  Since MeOH and ACN have 

polarity indexes of 5.1 and 5.8, respectively[156], ACN is slightly more polar than 

MeOH[156].  Chromatograms (A) and (B) showed a striking difference in the peak 

shapes for all the analytes.  Due to the interaction between the more polar mobile phase 

and the MeOH in the test article, it was hard to explain the differences observed in the 

chromatograms.  Thus, the organic solvent in the test article should match with the 

organic solvent in the mobile phase to produce interpretable results, yet this was not the 

case.  It is possible the analytes interact better than intended with MeOH through 

hydrogen bonding.  In any event, MeOH was abandoned as a potential precipitant. 
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Figure 6A. Attempted Separation of the Analytes Usi ng MeOH as a Precipitant for Sample 
Clean up.   
Supernatants that were collected after protein precipitation were separated with the 
TSKgel column and analysed using the MS.  Analysis of the control and the plasma 
samples are reported in chromatogram (A) and (B) respectively.   

A4.1.1.2 ACN as the Precipitant (TSKgel Column) 

In the chromatograms illustrated in Figure 7A, ACN was used to precipitate 

proteins that were present in the samples.  In chromatogram (A), Gaussian peak shapes 

was observed for the analytes in the control sample.  In chromatogram (B), suppression 

that was caused by matrix ions was seen for the peaks arising from Thiamet-G and 

Thiamme-G.   

 
Figure 7A. Attempted Separation of the Analytes usi ng ACN as a Precipitant for Sample 

Clean up. 
Supernatants, collected after precipitation, were analysed using a TSKgel column 
and analysed with the MS.  Analysis of the chromatograms of the control and the 
plasma samples are shown in (A) and (B) respectively.   

By comparing the retention times of the analyte in the two chromatograms, one can see 

that the retention time of Thiamme-G has shifted by 8 % (Figure 7A).  This result 

suggests that ions present in the plasma might interfere with the analytes and cause 

deviations in the elution time.  Severe suppression was observed for Thiamet-G and 

Thiamme-G.  In Table 6A, the suppression of analogues caused by the matrix ions is 
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reported in a percent ratio, the % matrix suppression.  The deformation of the peak 

shapes in the plasma sample is also summarised in the last column. 

Table 6A. Comparison of the Peak Characteristics fr om the Chromatograms Shown in 
Figure 7A. 

Analyte 
Control 
Sample 

(cps) 

Plasma 
Sample 

(cps) 

% Matrix 
suppression 

Peak Shape of 
the Plasma 

Sample 

Thiamet-G 1.92 x 106 *4.40 x 105 22.9 % Heavily 
suppressed 

Thiambu-G 2.05 x 106 1.99 x 106 97.1 % N/A 

Thiampro-G 2.06 x 106 1.24 x 106 60.2 % Sharpened 

Thiamme-G 1.54 x 106 *7.24 x 105 47.0 % 
Slight 

suppression 

% Matrix suppression = peak area of (plasma /control) x 100 %. 

* = manual integration was used to integrate the peak area counts. 

Q1 Scan Analyses 

Many peaks were observed in the Q1 chromatogram of the plasma sample, but 

these ions were not observable during analysis of the control sample.  The response for 

both Thiamet-G and Thiampro-G was impaired by elution along with the species giving 

rise to this same cluster of peaks, with 430.8 m/z as the representative peak.  The cluster 

as shown in Figure 8A chromatogram (A) extended from 100 m/z all the way to 2400 

m/z.  Many isotopic peaks were observed as shown in chromatogram (B).  Another 

cluster of peaks, with a representative peak at 431.1 m/z, had a pattern showing a 

repeating difference of 68 Da (chromatogram not shown).  These clusters of ions likely 

suppressed ionisation of Thiamme-G.   
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These data support the fact that there were indeed matrix ions causing the 

suppression observed for all the analytes, except for Thiambu-G.  Hence, protein 

precipitation alone was not capable of efficiently removing interfering matrix ions. 

 

Figure 8A. Ion Clusters that Appear to Interfere wi th Ionisation of Thiamet-G and 
Thiampro-G. 
Chromatogram (A) shows the pattern of an interfering cluster with 430.8 m/z as the 
representative peak.  Chromatogram (B) was the expanded version of 432.9 m/z.  
(Sample: plasma sample collected after protein precipitation, Scan type: Q1 scan). 

A4.1.2 Deproteinisation by Protein Precipitation (Z IC-HILIC column) 

A4.1.2.1 ACN as the Precipitant (Initial Experiment ) 

The protein precipitated samples, using ACN as the precipitant, were analysed 

using a ZIC-HILIC column.  In Figure 9A chromatogram (A), Gaussian peak shapes 

were observed for all analytes in the control sample.  In chromatogram (B), suppression 

caused by matrix ions was seen for the peaks corresponding to Thiamet-G and Thiamme-

G.   
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Figure 9A. Attempted Separation of the Analytes usi ng ACN as a Precipitant for Sample 
Clean up. 
Analytes were separated using a ZIC-HILIC column and analysed using the MS.  
The control and the plasma samples are reported in chromatogram (A) and (B) 
respectively.   

As reported for the % matrix suppression in Table 7A, suppression was found for 

Thiampro-G and Thiamme-G, with Thiamme-G being suppressed heavily.  Enhancement 

of ionisation was observed for Thiambu-G.  The retention times of all analytes were 

shifted earlier, with Thiamme-G shifted the most. 

Table 7A. Peak Characteristics of the Analogues fro m the Chromatograms Shown in 
Figure 9A. 

Peak Area 

Analyte Control 
Sample 

(cps) 

Plasma 
Sample 

(cps) 

% Matrix 
suppression 

Peak Shape of 
the Plasma 

Sample 

Thiamet-G 1.55 x 106 1.70 x 106 110 % Sharpened 

Thiambu-G 1.59 x 106 2.28 x 106 143 % Sharpened 

Thiampro-G 1.62 x 106 1.03 x 106 63.6% Suppressed 

Thiamme-G 1.36 x 106 6.63 x 105 48.8% Sharpened 

% Matrix suppression = peak area of (plasma /control) x 100 %. 

The analysis was carried out when the column was used for a brief period of time. 

Q1 Scan Analysis 

The same matrix ions as reported in Section A4.1.2, were observed in the plasma 

sample when the sample was analysed using a ZIC-HILIC column.  Thiamme-G was 
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found to co-elute with the clusters of ions having a representative 430.8 m/z.  Some new 

matrix ions were detected when the analysis was performed on the TSKgel column due to 

the different elution time of these matrix ions and the compounds.  The matrix ions, such 

as those having 524.4 and 496.5 m/z, were found to co-elute with Thiambu-G and 

Thiamme-G.  Based on a literature search, these ions could be phospholipids[157].  The 

protein precipitation experiment was repeated in Section A 4.1.2.2 

A 4.1.2.2 ACN as the Precipitant (Repeated Experime nt) 

Samples prepared using the same procedure as used for the samples analysed in 

Figure 9A were injected into the autosampler for LC-MS/MS analysis equipped with a 

ZIC-HILIC column.  In the experiment the column had been conditioned and this enabled 

a comparison of the effect of this conditioning on performance of this clean up method.  

In chromatogram (A) of Figure 10A, Gaussian peak shape was observed for the analytes 

in the control sample.  Based on the % matrix suppression reported in Table 8A, 

Thiambu-G and Thiamme-G were found to be suppressed, with minor suppression 

observed for Thiamme-G.   
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Figure 10A. Another Attempt of Separating the Analy tes using ACN as a Precipitant for 

Sample Clean up, Using a Conditioned ZIC-HILIC Colu mn 
The control and the plasma samples are reported in chromatogram (A) and (B) 
respectively.   

Table 8A. Peak Characteristics of the Analogues in the Chromatograms Shown in Figure 
10A (after Partial Conditioning of a ZIC-HILIC Colu mn). 

Analyte 
Control 
Sample 

(cps) 

Plasma 
Sample 

(cps) 

% Matrix 
suppression 

Peak Shape of 
the Plasma 

Sample 

Thiamet-G 1.91 x 106 2.15 x 106 113 % Sharpened 

Thiambu-G 2.08 x 106 1.26 x 106 60.6 % Sharpened 

Thiampro-G 2.03 x 106 2.09 x 106 103 % Suppressed 

Thiamme-G 1.53 x 106 1.35 x 105 88.2 % Sharpened 

% Matrix suppression = peak area of (plasma / control) x 100 % 

The analysis was carried out with the column in use for awhile. 

Behaviour of the ZIC-HILIC Column  

 There were some noticeable differences in the behaviour of the ZIC-HILIC 

column prior to conditioning (as illustrated in Figure 9A) and when it had been 

conditioned by extended use (as illustrated in Figure 10A).  In Figure 9A, the control 

sample was analysed, followed by analysis of nine samples before analysis of the plasma 

sample.  The nine samples analysed were the SS and plasma samples.  All the analytes in 

chromatogram (B) of Figure 9A eluted earlier than in chromatogram (A).  In the case of 

the chromatograms reported in Figure 10A, the control and plasma samples were 

analysed almost one after the other and after extensive conditioning of the column.  The 
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retention times of the same analytes in both chromatograms were similar.  It seems that 

when using the ZIC-column, the retention time of the analytes would shift depending on 

whether the column was conditioned.  Suppression observed in the plasma sample, 

reported in chromatogram (B) of Figure 10A, was not as severe as in the case of the 

corresponding sample reported in Figure 9A.  Severe suppression was only observable 

when the column was first being used, further suggesting that conditioning of the column 

was important. 

A4.2 Altering the Mobile Phase 

 Changing the mobile phase is a possible way to alter the elution times of the 

matrix ions and the analytes and therefore to perhaps eliminate matrix suppression.  In 

this experiment, the samples for the analysis were the protein precipitated samples using 

methanol as the precipitant.  These samples were separated using a TSKgel column and 

analysed using the MS.  The mobile phase was changed from 80 % ACN to 100 % 

MeOH.  This could also be beneficial for samples obtained using MeOH as a precipitant 

because the mobile phase and solvent containing the analyte would be similar. 

A4.2.1 MeOH as the Mobile Phase 

 The MRM chromatogram (A) of Figure 11A suggests that there was no 

interaction between the analytes and the stationary phase. With final composition of the 

sample being less polar than the mobile phase, the analytes eluted out without being 

retained on the column.  The possible reason was that MeOH in the mobile phase 

interacted with the hydroxyl groups of the ions to obstruct with the binding of the 

analytes to the stationary phase. 
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Figure 11A. Attempted Separation of the Analytes us ing the TSKgel column with MeOH as 
the Mobile Phase.   
In chromatogram (A) of Figure 11A, a standard solution that was dissolved in 90 % 
MeOH / H2O was injected into the system with 0.1% FA + 80% MeOH / H2O as the 
mobile phase.  In chromatograms (B) and (C), the control (B) and the plasma (B) 
samples were prepared with 90 % MeOH / H2O, and the mobile phase was 0.1% FA 
+ MeOH. 

As discussed in Section 2.3.3.1, the Trecommended for the TSKgel column is 2.45 

min.  In chromatogram (A), none of the analytes was retained.  In chromatogram (B), two 

of the analytes, Thiamet-G and Thiamme-G were retained while Thiampro-G was 

partially retained.  This chromatogram shows that the matrix alters the retention time of 

the analytes.  Presumably by altering the interaction between the eluent and the analytes 

or by affecting the stationary phase.  This data also indicate that the eluent might interact 

with the matrix ions, or the matrix ions might have formed a complex with the ions.  For 

either reason, the separation of the analytes has changed making this an inappropriate 

approach.  A similar observation was made when the precipitant of the samples was 

changed to ACN (data were not shown). 
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Summary of the Q1 Scan Analysis 

With the mobile phase composed of MeOH, the elution of the matrix ions in the 

plasma sample changed in comparison to using ACN in the mobile phase.  The 430.8 m/z 

cluster, which happened to interfere with Thiamet-G and Thiampro-G, was found to elute 

at the beginning of the run.  The other cluster, with 431.1 m/z as the representative peak, 

eluted at 2.154 min.  This set of ions have mass differences of 68 Da cluster was 

suppressed by the 430.8 m/z cluster, and its elution was also hastened when MeOH was 

present in the eluent.  Another matrix ion having 132.3 m/z was also apparent at the 

beginning of the run.  These matrix ions tended to elute at the middle or at the end of the 

run when ACN was used in the mobile phase.  A similar observation was made for the 

matrix ions when the precipitated samples were analysed using a ZIC-HILIC column 

(data not shown).  Since some matrix ions co-eluted with the analytes, it was crucial to 

try other sample preparation procedures before doing any further analysis on the MS. 

A4.2.2 ACN as the Mobile Phase 

In Figure 12A, 99.9 % of ACN was used as the mobile phase.  No analyte eluted 

during the run due to the absence of water in the mobile phase.  None of the analytes 

eluted in both the MRM chromatograms of the control and plasma samples (only the 

plasma sample was shown in Figure 12A.)  In the Q1 scan analysis, no other matrix ions 

were found, except for 118.2 m/z (data not shown).  This finding suggests that most of 

the matrix ions are polar.  The elution of the unretained analytes with 99.9 % MeOH as 

the mobile phase (A 4.3.1) supported the fact that MeOH interacts with the analogues. 
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Figure 12A. Attempted Separation of the Analytes us ing the TSKgel column with ACN as 
the Mobile Phase.  
Plasma sample with final composition of 90 % ACN / H2O was injected into TSKgel 
column and analysed in MS.  The mobile phase was 0.1 % FA + ACN.  A minimal 
amount of Thiamet-G eluted during the run. 

A4.3 Deproteinisation by Ultrafiltration  

A4.3.1 Deproteinisation by Ultrafiltration (TSKgel column) 

 Since protein precipitation as the sample preparation procedure resulted in test 

article that still had high levels of interference, it was important to try other 

deproteinisation processes.  Removal of protein by using a size exclusion filter is a 

common process which traps proteins in the filter while obtaining the small compounds 

in the filtrate. 

Samples were analysed using ultrafiltration.  In chromatogram (A) of Figure 13A, 

Gaussian peak shapes were observed for the analytes.  For the plasma sample, as 

illustrated in chromatogram (B), severe suppression was observed for both Thiamet-G 

and Thiamme-G.  Differences in retention times between the control and plasma samples 

were noted for Thiamet-G and Thiamme-G. 
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Figure 13A. Attempted Separation of the Ultrafiltra ted Analytes. 
Samples were cleaned up using ultrafiltration and the final solvent composition was 
90 % ACN / H2O.  Analytes were separated using a TSKgel column and analysed by 
LC-MS/MS.  The mobile phase was 0.1 % FA + 80 % ACN / H2O.  Data for the 
control and the plasma samples are reported in chromatogram (A) and (B) 
respectively.   

As indicated by the % matrix suppression shown in Table 9A, the ionisation of all the 

compounds was affected by the matrix of the plasma sample, except for Thiampro-G.   

Table 9A. Peak Characteristics of the Analogues of the Chromatograms in Figure 13A. 

Peak Area 

Analyte Control 
Sample 

(cps) 

Plasma 
Sample 

(cps) 

% Matrix 
suppression 

Peak Shape 
of the 

Plasma 
Sample 

Thiamet-G 1.20 x 106 *4.19 x 105 34.9 % 
Suppressed 

Severely 

Thiambu-G 1.46 x 106 1.25 x 106 85.6 % 

Lower 
Intensity 

than 
Thiampro-G 

Thiampro-G 1.45 x 106 1.42E x 106 97.9 % Slightly 
Sharpened 

Thiamme-G 8.93 x 105 *4.75 x 105 53.2 % 
Severely 

Suppressed  

% Matrix suppression = peak area of (plasma /control) x 100 % 

* = manual integration was used to integrate the peak area counts 

Summary of the Q1 Scan Analysis 

 Based on the analysis on the Q1 mass spectra, the major matrix ions likely 

contributing to suppression of Thiamet-G and Thiamme-G were the 430.8 m/z cluster and 
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431.1 m/z cluster respectively.  Other major matrix ions had 118.2, 132.3, and 162.3 m/z.  

Thus, the matrix affected the ionisation of some analytes, and the process of 

ultrafiltration alone was not capable of removing these matrix ions.  The use of 

ultrafiltration for clean and TSKgel column for analysis was therefore inappropriate. 

A4.3.2 Deproteinisation by Ultrafiltration (ZIC-HIL IC column)  

 As shown in Figure 14A, samples were cleaned up by passing through ultrafilters 

before analysis using the LC-MS/MS.  The chromatographic conditions were modified to 

include a wash cycle to remove matrix ions that were possibly present in the column after 

eluting the targeted analytes.  Earlier data in Section A4.2.1, confirmed that samples did 

not have stable retention times when separated using a ZIC-HILIC column.  Removal of 

the matrix ions that were left behind in the column could prevent the interference of these 

matrix ions with analytes present in the next injected sample.  An online wash cycle was 

therefore incorporated into the LC program. 
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Figure 14A. Attempted Separation of the Ultrafiltra ted Analytes Using an Online Wash 
Cycle. 
Samples analysed in chromatogram (A) and (B) were cleaned up with ultrafilters and 
analysed by LC-MS/MS.  The final sample composition was 90 % ACN / H2O and 
analytes were separated using a ZIC-HILIC column.  The mobile phase was 0.1 % 
FA + 85 % ACN / H2O.  Data for the control and the plasma samples are reported in 
chromatogram (A) and (B) respectively.   

 In chromatogram (A) of Figure 14A, Gaussian peak shapes were observed for all 

the analytes.  In chromatogram (B), suppression caused by matrix ions was seen for 

Thiamme-G.  The % matrix suppression of Thiamme-G (in Table 10A) was calculated to 

be less than 40 %.  This suggests that some substance co-eluted with this analyte and 

caused serious ion suppression despite the online wash cycle.  The difference in the 

retention times of Thiamme-G between control and plasma samples indicated that there 

was need for further sample cleanup.  It was not known why the percent peak area for 

Thiambu-G and Thiamet-G were so high, but the % matrix suppression for Thiampro-G 

was reasonable. 
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Table 10A. Peak Characteristics of the Analogues in  the Chromatograms of Figure 14A. 

Peak Area 

Analyte Control 
Sample 

(cps) 

Plasma 
Sample 

(cps) 

% Matrix 
suppression 

Deformation in 
Peak Shape of the 

Plasma Sample 

Thiamet-G 5.32 x 105 7.32E x 105 138 % Enhanced 

Thiambu-G 5.82 x 105 7.42 x 105 127 % Enhanced 

Thiampro-G 5.72 x 105 6.23 x 105 109 % N / A 

Thiamme-G 3.79 x 105 *1.30 x 105 34.3 % 
Severe 

Suppression 

% Matrix suppression = peak area of (plasma /control) x 100 % 

* = manual integration was used to integrate the peak area counts 

Q1 Scan Analysis 

Interestingly, in the Q1 scan analysis, ion clusters having representative ions with 

430.8 m/z and 431.1 m/z were not detected during the elution time frame of all the 

analytes (data not shown).  The substance that co-eluted with Thiamme-G cannot be 

detected using the Q1 scan analysis.  The results demonstrate that under these 

chromatographic conditions involving a wash cycle, some of the matrix ions were 

removed from the column prior to the injection of the next sample.  Overall, however, 

this sample clean up method still was inappropriate for further development. 
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Stability of Retention Times when Using a ZIC-HILIC Column 

 As shown in Table 11A, the % RSD of the retention times of standard, control, 

and plasma samples are summarised.  With the incorporation of a wash cycle in the run, 

the shifting of the retention times of the analytes was reduced.  The % RSD of the 

retention times was generally lower than 2 %.  The low % RSD of the retention times for 

the standard solution indicated that the column was stable.  Because Thiamet-G eluted 

earlier in the plasma sample than in the control sample, it is likely that some matrix ions 

co-elute with it.  Nevertheless, as mentioned above, a better sample preparation process is 

necessary to improve the sample analyses. 
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Table 11A. The % RSD of the RT of SS, the Control, and Plasma Samples.  

Thiambu-G  Average 
RT (min) 

% RSD Thiamet-G  Average 
RT (min) % RSD 

Control Sample 3.22 0.63 Control Sample 5.84 1.01 

Plasma 
Sample 3.23 0.99 Plasma Sample 5.85 0.96 

*SS 3.21 0.80 *SS 5.83 0.98 

^Sum 3.23 0.83 ^Sum 5.85 0.94 

  

Thiampro-G 
Average 
RT (min) % RSD Thiamme-G 

Average 
RT (min) % RSD 

Control Sample 4.20 0.73 Control Sample 8.72 1.35 

Plasma 
Sample 4.20 0.93 Plasma Sample 7.58 1.21 

*SS 4.19 0.96 *SS 8.71 1.01 

^Sum 4.20 0.80 ^Sum 8.15 7.37 

Two sets of control and plasma samples were prepared, and they were injected into the MS 
twice.   

*SS = during the run, SS was run after the analyses of every three samples.  The % RSD of the 
standard was also calculated. 

^Sum = the sum of the % RSD of the RT of the control samples and the plasma samples was 
also calculated. 

A4.4 Protein Precipitation + LLE 

A4.4.1 Ultrafiltration + LLE (TSKgel column) 

 A different approach was attempted using ultrafiltration and liquid-liquid 

extraction.  After the samples were cleaned up by ultrafiltration, the collected filtrates 

were extracted with DCM and the aqueous phase was analysed.  In chromatogram (A) of 

Figure 15A, Gaussian shapes were observed for the analytes present in a control sample 

of analogues lacking plasma.  In chromatogram (B), when matrix ions were present, 
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distortion in peak shape was observed for Thiamet-G and Thiamme-G.  In Table 12A, 

missing peak area counts are observable for Thiamet-G and Thiamme-G.  This sample 

cleanup process did not improve the ionisation of the compound ions. 

 

Figure 15A. Analysis of Samples of Analytes that we re Cleaned up by Ultrafiltration and 
LLE Using the TSKgel column. 
Samples were passed through ultrafilters and the collected filtrates were extracted 
with DCM.  The final solvent composition was 90 % ACN / H2O.  The mobile phase 
was 0.1 % FA + 80 % ACN / H2O.  Upon centrifugation, the supernatants were 
injected into the autosampler for MS analysis.  Chromatogram (A) and (B) of the 
above figure are the control and the plasma samples respectively. 

Table 12A. Peak Characteristics of the Analogues of  the Chromatograms in Figure 15A. 

Peak Area 

Analyte Control 
Sample 

(cps) 

Plasma 
Sample 

(cps) 

% Matrix 
suppression 

Peak Shape of 
the Plasma 

Sample 

Thiamet-G 1.07 x 106 *3.78 x 105 35.3 % 
Suppressed 

Severely 

Thiambu-G 1.37 x 106 1.15 x 106 83.9 % 

Lower Intensity 
than Thiampro-

G 

Thiampro-G 1.34 x 106 1.29 x 106 96.3 % N / A 

Thiamme-G 7.83 x 105 4.79 x 105 61.2 % Sharpened 

% Matrix suppression = peak area of (plasma /control) x 100 % 

* = manual integration was used to integrate the peak area counts 

A4.4.2 Ultrafiltration + LLE (ZIC-HILIC) 

In this experiment, samples were cleaned up by ultrafiltration.  Half of the filtrate 

of each sample was saved for analysis, and half of the filtrate was extracted with DCM.  



 

 157 

In chromatogram (A) of Figure 16A, Gaussian peak shapes are observed for the analytes.  

In chromatogram (B), when matrix ions were present, no distortion in peak shape was 

observed.   

 

Figure 16A. Attempted Separation of the Analytes th at were Cleaned up by Ultrafiltration 
and LLE Using the ZIC-HILIC Column. 
Samples were passed through ultrafilters and the collected filtrates were extracted 
with DCM.  The final solvent composition was 90 % ACN / H2O.  The mobile phase 
was 0.1 % FA + 85 % ACN / H2O.  Upon centrifugation, the collected water portions 
were separated with the ZIC-HILIC column and were analysed in the MS. 

However, the peak area counts for Thiamet-G and Thiamme-G were higher when 

compared to the corresponding peaks observed during analysis of the control sample.  

The comparison is reported in Table 13A.  A stable retention time was observed for all 

the analytes. 
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Table 13A. Peak Characteristics of the Analogues of  the Chromatograms in Figure 16A. 

Peak Area 

Analyte Control 
Sample 

(cps) 

Plasma 
Sample 

(cps) 

% Matrix 
suppression 

Peak 
Shape of 

the Plasma 
Sample 

Thiamet-G 3.96 x 105 5.06 x 105 128 % 
Higher in 
Intensity 

Thiambu-G 4.16 x 105 4.18 x 105 101 % N/A 

Thiampro-G 4.05 x 105 4.70 x 105 116 % 
Higher in 
Intensity 

Thiamme-G 3.54 x 105 5.65 x 105 160 % 
Higher in 
Intensity 

In Table 14A, the % recovery data are reported for both for the samples that have 

passed through the ultrafilters followed by extraction with DCM (Table a) and the 

samples that have just passed through the ultrafilters (Table b).  By using the same 

standard solution for comparison, one can observe that the peak area counts obtained for 

the control and plasma samples were lower when the extraction process was carried out 

using DCM.  Compounds are likely lost during the extraction process making this process 

inappropriate for further development. 
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Table 14A. Comparison of Response for the Analogues  in the Standard Solution, the 
Control, and the Plasma Samples. 

a) % Recovery for Samples (Ultrafiltration + LLE) 

Peak Area (cps)  % Recovery control  % Recovery plasma  

Analyte 
Standard Control 

Sample 
Plasma 
Sample 

Control Sample / 

standard 

Plasma Sample / 

standard 

Thiambu-G 6.04 x 105 4.16 x 105 4.18 x 105 68.9 % 69.2 % 

Thiampro-G 6.20 x 105 4.05 x 105 4.70 x 105 64.8 % 75.8 % 

Thiamet-G 6.58 x 105 3.96 x 105 5.06 x 105 60.2 % 76.9 % 

Thiamme-G 6.56 x 105 3.54 x 105 5.65 x 105 54.0 % 86.1 % 

b) % Recovery for Samples (Ultrafiltration) 

Peak Area (cps) % 
Recovery control  % Recovery plasma  

Analyte  

Standard 
Control 
Sample 

Plasma 
Sample 

Control Sample / 

Standard 

Plasma Sample / 

Standard 

Thiambu-G 5.59E+05 5.28 x 105 5.27 x 105 94.5 % 94.3 % 

Thiampro-G 5.68E+05 5.19 x 105 6.00 x 105 91.4 % 106 % 

Thiamet-G 5.75E+05 4.99 x 105 6.27 x 105 86.8 % 109 % 

Thiamme-G 5.48E+05 4.46 x 105 7.19 x 105 81.4 % 131 % 
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Appendix A5 Supplementary Results of using Further Sample 
Preparation Procedures in Conjunction with Differen t Columns 

A5.1 Ultrafiltration + Zip tip C18 

From a plasma sample that was cleaned up by ultrafiltration the collected filtrate 

was divided into two portions.  One portion was directly injected onto the analytical 

system for the LC-MS/MS analysis, and the other portion was further cleaned up using 

the C18 ziptip.  Chromatogram (A) in Figure 17A was produced by analysing the filtrate 

that was obtained by using only ultrafiltration.  For chromatogram (B), the samples were 

analysed using the portion of the filtrate that was further cleaned up using a ziptip. 

The two resulting samples have the same final solvent composition, and the 

analogues have the same final concentrations.  Comparing the two chromatograms side 

by side, one can easily observe that the less polar compounds, Thiambu-G, Thiampro-G, 

and Thiampro-G, are much less intense in chromatogram (B).  The purpose of cleaning 

the filtrate with ziptip was to remove the possible hydrophobic interferences present in 

the samples.  The results have demonstrated there was a poor recovery of the analytes 

after this treatment and this approach was not pursued further. 
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Figure 17A. Analysis of Zip tip Cartridge Clean up of Analyte Samples. 
The final sample composition was 90 % ACN / H2O and analytes were separated 
using a ZIC-HILIC column.  The mobile phase was 0.1 % FA + 85 % ACN / H2O.   
In chromatogram (A), the plasma sample was cleaned up by passing it through an 
ultrafilter.  In chromatogram (B), the filtrate obtained from the ultrafilter was further 
cleaned up by ziptip. 

A5.2 Protein Precipitation Followed by the Sigma Hy brid SPE 

 A set of control and plasma samples underwent protein precipitation using ACN 

and half of the supernatants from both the control and plasma samples were analysed by 

LC-MS/MS analyses using a ZIC-HILIC column.  The supernatant of the control sample 

was labeled as B1 in Table 15A whereas the supernatant of the plasma sample was 

labeled as B3.  The remainder of each supernatant was passed through Sigma Hybrid SPE 

cartridges.  This SPE cartridge is reported to be able to remove phospholipids from 

plasma samples[157].  The supernatant from the control and the plasma samples that 

were cleaned up by the SPE cartridges were labeled as B1 (II) and B3 (II), respectively. 

 The peak area responses observed for the protein precipitated samples, and the 

samples that were cleaned up with the SPE Hybrid SPE cartridges, are reported in Table 

15A.  In Table 16A, a comparison of these peak area responses are made.   
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Table 15A. Analyte Response of Protein Precipitated  Samples versus the SPE Hybrid SPE 
Cartridges.  

Peak Area (cps)  
Analyte  

Control Sample 
(B1) 

Plasma Sample 
(B3) 

Control Sample 
(B1 II) 

Plasma Sample 
(B3 II) 

Thiambu-G 5.26 x 105 6.62 x 105 6.06 x 105 4.44 x 105 

Thiampro-G 5.06 x 105 7.58 x 105 4.99 x 105 4.34 x 105 

Thiamet-G 4.87 x 105 7.54 x 105 4.66 x 105 3.99 x 105 

Thiamme-G 4.50 x 105 6.89 x 105 6.42 x 105 7.02 x 105 

In the first column of Table 16A, B1 was compared with B3 by dividing the peak 

area counts of B3 by B1.  The reported percentages provide insight into the % matrix 

effect.  These percentages, which were far from 100 %, suggest that ionisation 

enhancement is occurring as a result of the clean up procedure or, alternatively the high 

viscosity of the plasma sample caused some sampling variation in this experiment.  

Comparison between B1 (II) and B1 yields % recovery, which is a calculation of the 

efficiency of the sample extraction process.  These samples were not treated with plasma 

before the sample extraction process.  The % recovery for all the compounds were nearly 

100 %, except for Thiamme-G.  The high % recovery for Thiamme-G suggests that there 

might some leaching materials from the cartridge, which shares the same MRM transition 

as Thiamme-G.  It is possible the high % matrix effects are caused by leaching of 

materials when matrix is present and these might have similar MRM transitions.  Another 

way to calculate % recovery is to compare B3 (II) with B3.  The recoveries of the 

analogues were low.  In the last column, B3 (II) was compared with B1 (II).  By dividing 

the peak area responses of B3 (II) with the peak area responses of B1 (II) the % matrix 

effect was evaluated.  The reported percentages suggest that the ionisation of the 
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analogues was poor.  In summary, the concentrations of the analogues were high when 

using Hybrid SPE cartridges as a sample clean up tool.  This effect discouraged us from 

pursuing this approach further. 

Table 16A. The % Matrix Effect and % Recovery. 

Analyte B3 vs B1 B1 (II) vs B1 B3 (II) vs B3 B3 (II ) vs B1 (II) 

Thiambu-G 126% 115% 67.1% 73.3% 

Thiampro-G 150% 98.6% 57.3% 87.0% 

Thiamet-G 155% 95.7% 52.9% 85.6% 

Thiamme-G 153% 143% 102% 109% 

A5.3 Protein Precipitation Followed by Captiva Cart ridge Clean up 

 A different SPE method was attempted in combination with protein precipitation.   

A set of control and plasma samples was cleaned up using Captiva Cartridge after going 

through the process of protein precipitation.  A standard solution composed of 10.5 ng / 

mL was also prepared to act as a reference standard for analysing the extraction 

efficiency and the matrix suppression effect for the plasma sample.  In Table 17A, the 

peak area responses of the analogues for all three samples are tabulated.   

Table 17A. Peak Area Responses for the Analytes. 

Peak Area 

Analyte 
Control Sample 

(cps) 
Plasma Sample 

(cps) Standard (cps) 

Thiambu-G 1.52 x 105 1.48 x 105 1.71 x 105 

Thiampro-G 1.62 x 105 1.60 x 105 1.81 x 105 

Thiamet-G 1.53 x 105 1.55 x 105 1.78 x 105 

Thiamme-G 1.20 x 105 5.85 x 104 1.59 x 105 
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 The % recovery and % matrix suppression are calculated and reported in Table 

18A.  The recoveries of the analytes in the control sample are higher than 80 % with 

Thiamme-G being the exception.  For the case of the plasma sample, the recoveries of the 

analogues are similar to the control samples except with Thiamme-G which is only 37 %.  

The % matrix suppression is close to 100 % for Thiamet-G, Thiampro-G, and Thiambu-

G.  For the case of Thiamet-G, the % matrix suppression is reported to be 48.8 %.  The 

result suggests that either the ionisation of Thiamet-G was poor or the cartridge retained 

some of this compound. 

Table 18A. The % Recovery and the % Matrix Suppress ion of the Captiva Treated 
Samples.  

% Recovery 
Analyte 

Control Sample 
(cps) 

Plasma Sample 
(cps) 

% Matrix 

Suppression 

Thiambu-G 88.9% 86.5% 97.4% 

Thiampro-G 89.5% 88.4% 98.8% 

Thiamet-G 86.0% 87.1% 101% 

Thiamme-G 75.5% 36.8% 48.8% 

When analysing the samples using the Q1 scan, more problems were observed 

when using the captive cartridge as the clean up device.  Phospholipids were observed in 

the plasma sample.  Many other ions of unknown origin and identity were observed to 

elute prior to the analogues.  These observations suggest that the captive cartridge might 

not be compatible with the organic mixture, resulting in the leaching of bulk material 

from the cartridge.  This approach was ultimately abandoned in preference to the 

optimized method that was ultimately established. 
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Appendix A6 Method Section 

A6.1 Method A1: Synergi Fusion Column – 4000 QTRAP (Figure 2A) 

The method was similar to the generic method for the 4000 QTRAP LC/MS 

system (See Section 2.5.2) with the following changes:   

Instrumentation.  The analytical column for the analysis, Phenomenex Synergi 

Fusion-RP (2.5 µm, 50 x 3 mm ID), was protected by a guard column (Phenomenex 

Security Guard cartridge, 4 x 3 mm ID).  The mobile phase, 0.1% FA + H2O, was 

pumped at a flow rate of 200 µL / min for chromatogram (A) illustrated in Figure 1A.  

The mobile phase for generating chromatogram (B) was 0.1% FA + 5% ACN + H2O.   

Preparation of Standards.  Stock solutions for Thiamet-G, Thiambu-G, 

Thiampro-G, and Thiamme-G (conc. = 70000 ng / mL)* were prepared separately in 

water, 30 µL from each stock solution was added to water to yield mixed compound 

standard solution D (210 ng / mL), which was stored in an HPLC vial at 4 oC until 

required. 

Analytical Procedure.  3 µL of standard solution D was injected by the 

autosampler of the LC–MS/MS system.  With the HPLC pump pumping the mobile 

phase, the sample was delivered into the turbo ion spray ion source.  In the acquisition 

method, the MRM transitions were set according to Table 2.2, and the dwell time was set 

as 200.00 µsec.  The resolution for Q1 was set at 1 unit mass resolution and Q3 was set to 

be low mass resolution.  A positive ionisation mode was set in the acquisition method, 

the other parameters were CUR (30.00 psi), ISP (4500.00 V), TEM (150.00 oC), GS1 
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(20.00 psi), GS2 (20.00 psi), DP (50.00 eV), CAD (7.00 psi), EP (6.00 V), CE (32.00 V), 

and CXP (10.00 V). 

*The stock concentration is approximately (70000 ng / mL of each analogue).  

Throughout the methods, the stock concentration is given as approximate for the ease of 

discussion. 

A6.2 Method A2: Synergi Fusion Column – API 2000 (F igure 3A) 

The method was similar to the generic method for the API 2000 LC-MS/MS 

system (See Section 2.5.2) with the following changes:   

Chemicals and reagents.  Reagent grade glacial acetic acid was purchased 

from Anachemia.   

Instrumentation.  The analytical column was same as the one used in Method A 

1 (See Section A6.1).  The mobile phase, 10 mM CH3COONH4 adjusted to pH 8.3 with 

concentrated acetic acid, was pumped at a flow rate of 200 µL / min for analysis of the 

samples; the MRM chromatogram is shown in Figure 3A. 

Preparation of Standards.  20 µL of standard solution D, prepared as described 

in Method A1 (See Section A6.1), was injected by the autosampler of the LC-MS/MS 

system.  With the HPLC pump pumping the mobile phase, the sample was delivered into 

the turbo ion spray ion source.  The software initiated acquisition prior to the injection of 

solution D.  For the acquisition method, the MRM transitions were set according to Table 

2.2 and the dwell time was set as 200.00 µsec.  The resolution of Q1 and Q3 was set to be 

1 unit mass resolution.  A positive ionisation mode was set in the acquisition method, the 

other parameters were CUR (25.00 psi), ISP (5000.00 V), TEM (100.00 oC), GS1 (20.00 
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psi), GS2 (40.00 psi), CAD (7.00 psi), DP (31.09 V), FP (200.00 V), EP (9.00 V), CE 

(30.00 eV), and CXP (25.00 V). 

A6.3 Method A3: Zorbax Eclipse XDB Column – API 200 0 (Figure 4A) 

The method was similar to Method A 2 (Section A6.2) with the following 

changes:   

 Instrumentation.  The analytical column used for the analysis was an Agilent 

Zorbax Eclipse XDB (5 µm, 4.6 x 150 mm).  The mobile phase, 10 mM CH3COONH4, 

pH 8.3, was pumped at a flow rate of 1 mL / min to obtain the data shown in the MRM 

chromatogram in Figure 4A (A).  For the data shown in the MRM chromatogram 

illustrated in Figure 4A (B), the same flow rate was used, but the mobile phase was 5 % 

ACN / 95 % 10 mM CH3COONH4, pH 8.3. 

Preparation of Standards.  2.0 mg of each analogue was weighed out 

separately using a 4 decimal place analytical balance (Mettler-Toledo International Inc.) 

and transferred into a 2 mL HPLC vial.  1 mL of water was pipetted into the vial.  The 

vial was vortexed until the sample dissolved.  This sample, standard solution E, was 

roughly 2 mg/mL, and it was not used for exact quantitative purposes.  The vial was 

stored at 4 oC until required. 

Analytical Procedure.  1 µL of solution E was injected by the autosampler of the 

API 2000 LC-MS/MS system. 

A6.4 Method A4: Hypercarb column – 4000 QTRAP (Figu re 5A) 

The method was similar to the generic method used when using a ZIC-HILIC 

column for LC-MS/MS analysis (See Section 2.5.4) with the following changes:   
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Instrumentation.  The analytical column for the analysis was a Thermo 

Scientific Hypercarb Column (3µm, 3 x 50 mm).  The LC gradient program is reported in 

Table 19A. 

Table 19A. LC Gradient Program for Hypercarb Column . 

RT (min) Flow (µL / 
min) %B 

0 600 0 

0 600 0 

5 600 21.1 

5.1 600 94.7 

7.1 600 94.7 

7.2 600 0 

20.1 600 0 

Solvent A: 0.1% FA + 5% ACN + H2O, Solvent B: 0.1% FA + ACN 

Preparation of Standards.  Stock solutions for Thiamet-G, Thiambu-G, 

Thiampro-G, and Thiamme-G (conc. = 70000 ng / mL) were prepared separately in 

water.  200 µL from each stock solution were added to a 10 mL volumetric flask and 

made to 10 µL by adding water to yield mixed compound standard solution H (200 mM 

NH4HCO2, pH 4, conc. = 1400 ng / mL), which was stored at 4 oC.  Mixed compound 

standard solution I (final conc. = 10 ng / mL) was prepared by adding 10 µL from 

standard solution H into a 2 mL standard HPLC vial containing 1390 µL of water and 

was stored at 4 oC until required.   

Analytical Procedure.  10 µL of standard solution I was injected by the 

autosampler of the LC-MS/MS system. 
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A6.5 Method A5: MeOH as the Protein Precipitant Usi ng the TSKgel Column 
(Figure 6A) 

The method was similar to the generic method for TSKgel-MS-analysis (See 

Section 2.5.3) with the following changes:   

Chemicals and reagents.  HPLC grade MeOH was purchased from Caledon 

Laboratories Ltd.  Control rat plasma was obtained from the animal facility of Simon 

Fraser University (Burnaby, BC, Canada). 

Preparation of Samples.  The plasma sample was prepared by transferring 10 

µL of solution A (conc. = 1400 ng / mL), as prepared according to Method 1 (See Section 

2.5.1), into a centrifuge tube.  20 µL of the rat plasma and 10 µL of water were added to 

the tube.  After vortexing the tube for 30 sec, the tube was centrifuged at 5000 rpm for 1 

min at room temperature.  360 µL of MeOH was added as a precipitant, and the tube was 

vortexed for 10 to 30 sec.  The tube was centrifuged at 10000 rpm for 5 min at room 

temperature.  160 µL of the supernatant was transferred into a HPLC vial with insert and 

the HPLC vial was capped prior to LC-MS/MS analysis.  An extra sample was prepared 

by pipetting the remaining supernatant into a HPLC vial and this was stored at -20°C.  

The control sample was prepared the same way, except that the rat plasma was replaced 

with water.  A blank sample was also prepared using the same sample preparation 

procedure as the plasma sample, except that solution A was replaced with water. 

Duplicate sets of samples were prepared for both the control, blank, and plasma 

samples.  The final sample composition of the control and plasma samples was 90 % 

MeOH in H2O, and the final concentration of the samples was 35 ng / mL. 
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Analytical Procedure.  10 µL of the plasma sample was injected by the 

autosampler for the LC-MS/MS system after the analysis of the control sample has 

finished.  The 10 µL control sample was analysed first, followed by seven samples, the 

SS and plasma samples, and only then the plasma sample. 

A6.6 Method A6: ACN as the Protein Precipitant Usin g the TSKgel Column 
(Figure 7A) 

The method was similar to Method A5 (See Section A6.5) with the following 

changes:   

Preparation of Samples.  Instead of MeOH, ACN was used as the precipitant.  

As a result, the final sample composition of the control and plasma samples was 90 % 

ACN in H2O, and the final concentration of the samples was 35 ng / mL. 

Analytical Procedure.  The control sample was analysed first, followed by three 

samples, SS and blank samples, and only then the plasma sample.  Only one set of the 

duplicate samples were analysed. 

A6.7 Method A7: Q1 Scan Analyses using the TSKgel C olumn (Figure 8A) 

The method was similar to Method A6 (See Section A6.6) with the following 

changes:   

Analytical Procedure.  Instead of using the MRM scan mode, Q1 scan analysis 

was used.  The scanning range used was from 100.00 amu to 1000.00 amu.  The dwell 

time was 3.00 sec.  The resolution of Q1 was one mass unit, and the step size was 0.3 

amu.  The set parameters were the same, except that setting of the CUR, CAD, and CXP 
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were not required for this scan mode.  The control sample was analysed first, followed by 

two samples, SS and plasma blank, and only then the plasma sample. 

A6.8 Method A8: ACN as the Protein Precipitant Usin g the ZIC-HILIC 
Column (Figure 9A) 

The method was similar to the generic method for ZIC-HILIC-MS-analysis (see 

Section 2.5.4) with the following changes:   

Preparation of Samples.  The samples were the same samples that were 

prepared as described in Method A6 (See Section A6.6). 

Analytical Procedure.  The control sample was analysed first, followed by nine 

samples, SS and blank samples, and only then the plasma sample.  Only one set of the 

duplicate samples was analysed.  10 µL of samples were injected by the autosampler. 

A6.9 Method A8b: Q1 Scan Analyses using the ZIC-HIL IC Column 

The method was similar to Method A7 (See Section A6.7) with the following 

changes: 

Preparation of Samples.  The samples were the same samples prepared as 

described in Method A6 (See Section A6.6). 

Analytical Procedure.  The control sample was analysed first, followed by six 

samples, SS and blank samples, and only then the plasma sample. 

A6.10 Method A9: ACN as the Protein Precipitant wit h the ZIC-HILIC 
Column (Figure 10A) 

The method was similar to Method A8 (See Section A6.8) with the following 

changes:   
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Analytical Procedure.  The control sample was analysed first, followed by a 

plasma blank, and then the plasma sample. 

A6.11 Method A10: MeOH as Part of the Mobile Phase (Figure 11A) 

The method was similar to Method A5 (See Section A6.5) with the following 

changes:   

Preparation of Samples.  Mixed standard solution K (conc. = 10 ng / mL) was 

prepared by transferring 10 µL from mixed standard solution J (conc. = 1400 ng / mL, 

water) into a standard 2 mL HPLC vial.  To this vial, 1260 µL of MeOH and 130 µL of 

H2O were added to yield solution X with a final solvent composition of 90 % MeOH / 

H2O.  Standard solution X was stored at 4 oC prior until required.  Samples used to obtain 

chromatograms (B) and (C) of Figure 10 A were the same samples as chromatograms (A) 

and (B) in Figure 6A, respectively. 

Analytical Procedure.  4 µL of the solution X was injected by the autosampler 

for analysis while 10 µL was injected for both the control and the plasma samples.  The 

control sample was analysed first, followed by six samples, SS and blank samples, and 

only then the plasma sample.  Solution X was analysed in a different batch as the control 

and the plasma samples.  A duplicate set of samples were also analysed.   

A6.12 Method A10b: Q1 Scan Analyses using MeOH as P art of the Mobile 
Phase 

The method was the same as described in Method A7 (See Section A6.7).  



 

 173 

A6.13 Method A11: 99.9 % ACN as the Mobile Phase (F igure 12A) 

The method was similar to the generic method for TSKgel-MS-analysis column 

(See Section 2.5.3) with the following changes:   

Instrumentation.  The mobile phase was 0.1 % FA + 99.9 % ACN. 

Preparation of Samples.  The plasma sample was the same sample that was 

prepared as described in Method A6 (See Section A6.6).  10 µL of the sample was 

injected by the autosampler. 

A6.14 Method A12: Ultrafiltration Using the TSKgel Column (Figure 13A) 

The method was similar to the generic method for TSKgel-MS-analysis column 

(See Section 2.5.3) with the following changes:   

Chemicals and reagents.  Control rat plasma was obtained from the animal 

facility of Simon Fraser University (Burnaby, BC, Canada). 

Preparation of Samples.  The plasma sample was prepared by transferring 20 

µL of solution A (conc. = 1400 ng / mL), as prepared according to Method 1 (See Section 

2.5.1), into a centrifuge tube.  20 µL of the rat plasma and 40 µL of water were added to 

the tube.  After vortexing the tube for 30 sec, the tube was centrifuged at 5000 rpm for 1 

min at room temperature.  The mixture was transferred into an Ultrafree-MC 

5000NMWL (Sigma-Aldrich, USA), which is an ultrafiltration device having a 5000 Da 

cut off size.  The ultrafilter was centrifuged at 12000 x g until a minimal amount of 

residue was left (45 minutes).  28 µL of the filtrate was taken from the tube and spiked 

into 252 µL of ACN.  The final sample composition of the control and plasma samples 
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was 90 % ACN / H2O, and the final concentration of the samples was estimated to be 20 

ng / mL. 

140 µL supernatant was transferred into a HPLC vial with an insert.  The HPLC 

vial was capped and then used for the LC-MS/MS analysis.  An extra sample was 

prepared by pipetting the rest of the diluted filtrate into a HPLC vial and this was stored 

at -20 °C.  The control sample was prepared the same way, except that the rat plasma was 

replaced with water.  A blank sample was also prepared using the same sample 

preparation procedure of the plasma sample, except that solution A was replaced with 

water. 

Analytical Procedure.  10 µL of the plasma sample was injected by the 

autosampler into the LC-MS/MS system after analysis of the 10 µL of the control sample 

had finished.  A plasma blank was analysed in between the control and the plasma 

analyte samples in order to minimize RT deviations. 

A6.15 Method A12b: Q1 Scan Analysis (TSKgel Column)  

The method was similar to Method A7 (See Section A6.7) with the following 

changes:   

Preparation of Samples.  The samples were the same samples that were 

prepared in Method A12 (See Section A6.14). 

A6.16 Method A13: Ultrafiltration Using the ZIC-HIL IC Column (Figure 14A) 

The method was similar to Method A8 (See Section A6.8) with the following 

changes:   
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Instrumentation.  A gradient method was established for the run as tabulated in 

Table 20A. 

Table 20A. LC Gradient Program Gradient Method for the ZIC-HILIC Column. 

Time (min) % B Flow Rate (µL / min) 

0 84 300 

10.5 84 300 

10.8 50 800 

12.8 84 800 

16.8 84 800 

17.1 84 400 

18.1 84 400 

Mobile phase A was 0.1 % FA + 5 % ACN + H2O and mobile phase B is 0.1 % FA + ACN.   

Preparation of Samples.  The procedure for the preparation was similar to 

method A11 (See Section A6.13), except that the ultrafilter was replaced with Microcon 

Ym-3 (Sigma-Aldrich, USA), which has a cutoff size of 3000 Da.  The speed for 

centrifugation was 12000 x g.  Instead of using water, 200 mM NH4HCO2, pH 4 (buffer 

A) was used to prepare the samples.  A 10 ng / mL standard, solution M, was also 

prepared by spiking 10 µL of standard solution L (conc. = 1400 ng / mL, 92 % buffer A / 

H2O) into a mixture of solvent comprised of 1260 µL of ACN and 130 µL of buffer A.   

Analytical Procedure.  Two sets of samples were prepared separately and 

analysed using the LC-MS/MS.  The control sample was analysed first, followed by a 

blank sample, and then the plasma sample.  Solution M was run after every three 

samples.   
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A6.17 Method A13b: Q1 Scan Analysis 

The method was similar to Method A8b (See Section A6.9) with the following 

changes:   

Instrumentation.  The setup of the system was same as Method A 13 (See 

Section A6.16). 

Preparation of Samples.  The samples were the same samples that were 

prepared as described in Method A13 (See Section A6.16). 

A6.18 Method A14: Ultrafiltration + LLE Using the T SKgel Column (Figure 
15A) 

The method was similar to Method A12 (See Section A6.14) with the following 

changes:   

Preparation of Samples.  The plasma sample was prepared as described in 

Method A12 (See Section A6.14).  The mixture was transferred into the Ultrafree-MC 

5000NMWL.  The ultrafilter was centrifuged at 12000 x g until a minimal amount of 

residue was left.  30 µL of water was added into the ultrafilter and centrifugation was 

continued until a minimal amount of residue was left.  This process of recentrifugation 

was repeated one more time by adding a further 30 µL of water into the ultrafilter.  14 µL 

of the filtrate was taken from the tube and spiked into 126 µL of ACN.  The prepared 

solution was the plasma sample that was cleaned up by ultrafiltration (process # 1).  70 

µL was added to 400 µL of DCM to perform LLE.  The mixture was vortexed for 5 min.  

The tube was centrifuged at 10000 x g.  14 µL of the supernatant was spiked into 126 µL 

of ACN.  The resulting solution was the plasma sample that had been cleaned up using a 

combination of ultrafiltration and LLE (process # 2) 
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The control and a blank sample for both process # 1 and # 2 were also prepared, 

except that the rat plasma was replaced with water and solution A was replaced with 

water.  The final sample composition of the control and plasma samples was 90 % ACN 

in H2O, and the final concentration of the analogues was 20 ng / mL each. 

A6.19 Method A15: Ultrafiltration + LLE Using the Z IC-HILIC Column (Figure 
16A) 

The method was similar to Method A13 (See Section A6.16) with the following 

changes:   

Preparation of Samples.  The samples were the same samples that were 

prepared in Method A14 (See Section A6.18). 

A6.20 Method A16: Ultrafiltration + Ziptip Using th e ZIC-HILIC Column 
(Figure 17A) 

 The method was similar to Method A15 (See Section A6.19) with the following 

changes: 

Preparation of Samples.  30 µL of the filtrate that were obtained after 

ultrafiltration as described in Method A 14 (See Section A6.18) was transferred into a 

centrifuge tube.  A ziptipc18 was equilibrated with 50 % ACN / H2O three times.  The 

ziptip was then equilibrated with 0.1 % FA + H2O.  The filtrate was pipetted up and down 

slowly ten times through the ziptip.  The ziptip was then cleaned three times with a 

solution of 0.1 % FA + H2O.  The compounds that were bound onto the ziptip were 

eluted by the eluting solution composed of 30 µL of 0.1 % FA + 80 % ACN.  The elution 

was performed by pipetting the eluting solution up and down through the ziptip.  The 

eluant was dried down completely under vacuum at 35 °C.  30 µL of H2O was transferred 
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into the collection tube to reconstitute the sample.  The tube was capped and vortexed for 

30 sec.  Followed by 5 min of sonication, the tube was centrifuged at 10000 rpm for 5 

min at room temperature.  14 µL of the water mixture was spiked into 126 µL of ACN.  

The resulting solution was the plasma sample that had been cleaned up using a 

combination of ultrafiltration and ziptip.   

The control and a blank sample were also prepared the same way except that the 

rat plasma was replaced with water and solution A was replaced with water.  The final 

sample composition of the control and plasma samples was 90 % ACN into H2O, and the 

final concentration of the analogues was 20 ng / mL each. 

A6.21 Method A17: Hybrid SPE Cartridge Using the ZI C-HILIC Column 
(Table 15A and 16A) 

 The method was similar to Method A9 (See Section A6.10) with the following 

changes: 

Preparation of Samples.  6 µL of mixed standard solution J (water as solvent, 

conc. = 1400 ng / mL) was added into a centrifuge tube.  12 µL of plasma and 182 µL of 

water were also added into the tube.  The tube was centrifuged at 5000 rpm for 1 min at 

room temperature.  600 µL of ACN that had been acidified by addition of 10 µL of FA 

was added into the tube.  After vortexing the tube for 2 min, it was centrifuged at 14000 x 

g for 20 min at room temperature.  Half of the supernatant was saved for LC-MS/MS 

analyses.  The other half of the supernatant was added onto a Hybrid SPE cartridge.  

Vacuum was applied to the cartridge (10 to 15 mm Hg).  The liquid that was collected 

from the outlet of the cartridge was used for analysis.  A standard solution was also 

prepared by spiking 3 µL of solution J into a mixture composed of 97 µL of water and 
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300 µL of ACN.  A control and a blank sample were also prepared the same way except 

that the rat plasma was replaced with water and solution J was replaced with water 

respectively.  The final sample composition of the control and plasma samples was 75 % 

ACN in H2O, and the final concentration of the analogues was 10.5 ng / mL each. 

A6.22 Method A18: Captiva Cartridge Using the ZIC-H ILIC Column (Table 
17A and 18A) 

 The method was similar to Method A9 (See Section A6.10) with the following 

changes:   

Instrumentation.  The run time was extended from 10 min to 20 min. 

Preparation of Samples.  600 µL of ACN was added into a centrifuge tube, 

Tube A.  1 µL of FA was spiked into ACN.  6 µL of mixed standard solution H (200 mM 

NH4HCO2, pH 4, conc. = 1400 ng / mL), 12 µL of plasma, and 182 µL of water were 

premixed together in another centrifuge tube, Tube B.  The resulting plasma mixture was 

vortexed for 30 sec and then centrifuged at 5000 rpm for 1 min at room temperature.  The 

plasma mixture supernatant was spiked into the mixture in Tube A.  Upon vortexing the 

tube for 2 min, the tube was centrifuged at 14000 x g for 20 min at room temperature.  

Half of the supernatant was dried down under vacuum at room temperature and it was 

redissolved in 10 % 200 mM NH4HCO2, pH 4 in 90 % ACN.   

The other half of the supernatant was added to the Captiva cartridge.  Vacuum 

was applied to the cartridge (5 mm Hg).  The liquid that was collected from the outlet of 

the cartridge was used for analysis.  A standard solution was also prepared by spiking 3 

µL of solution J into a mixture composed of 97 µL of water and 300 µL of ACN.  The 

control and a blank sample were also prepared the same way, except that the rat plasma 
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was replaced with water and solution J was replaced with water, respectively.  The final 

sample composition of the control and plasma samples was 75 % ACN in H2O, and the 

final concentration of the analogues was 10.5 ng / mL each. 

Analytical Procedure.  4 µL of the plasma sample was injected by the 

autosampler into the LC-MS/MS system after the analysis of the control sample 

(injection volume = 4 µL) has finished.  The plasma blank was analysed in between the 

control and the plasma samples.  The standard solution, 4 µL injection volume, was 

analysed before the control sample and after the plasma sample. 
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