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Abstract

Guaranteed minimum maturity benefit and guaranteed minimum death benefit offered by

a single premium segregated fund contract are priced. A dynamic hedging approach is used

to determine the value of these guarantees. Cash flow projections are used to analyze the

loss or profit to the insurance company. Optimally exercised reset options are priced by the

Crank-Nicolson method. Reset options, assuming they are exercised only when the funds

exceed a given threshold, are priced using simulations. Finally, we study the distribution of

the loss or profit for segregated funds with reset option under a dynamic hedging strategy

with an allowance for transaction costs.

Keywords: Guaranteed Minimum Maturity Benefit, Guaranteed Minimum Death Benefit,

Charge Rate, Black-Scholes European Put Option, Dynamic Hedging, Hedge Error, Trans-

action Cost, Transaction Costs Adjusted Hedge Volatility, Reset Option, Crank-Nicolson
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Chapter 1

Introduction

A segregated fund is a type of equity-linked insurance contract commonly sold in Canada.

Policyholders are usually offered a broad selection of investment choices and these funds are

fully separated from the company’s general investment funds (Wikipedia, http://en.wikiped-

ia.org/wiki/Segregated fund). The segregated fund normally provides a guaranteed mini-

mum maturity benefit (GMMB) and a guaranteed minimum death benefit (GMDB). The

benefit guarantee is 75% or higher percentage of the initial fund value (Moodys Looks At

Guaranteed Segregated Funds In Canada & Their Risks, August 2001). In case of death

within the term of the contract or at maturity, the benefit amount is the maximum of the

accumulated fund value and the guarantee.

Segregated fund guarantees are financial guarantees. In most cases the payoffs of the

benefits are zero, while due to some poor investment a considerable amount of additional

money is needed to compensate the gap between the fund value and the guarantee level.

The risk arisen by the highly skewed payoff distribution cannot be diversified by pooling

segregated fund contracts with the same maturity date.

One approach commonly used in practice is called dynamic hedging which considers the

segregated fund as a special type of European put option (Great-West Life Segregated Fund

Policies Information Folder, May 2010). Many issues of this approach have been discussed

in mathematical finance such as Leland (1985) and Toft (1996), and was applied to the

segregated fund by Boyle and Hardy (1997) and Hardy (2000, 2001, 2002). A hedging

portfolio consisting of some risk-free bond and risky asset is held at the beginning of the

contract term and the segregated fund is several times before it matures. Leland (1985)

introduced the transaction costs adjusted hedge volatility (Leland ’s volatility) with which

1



CHAPTER 1. INTRODUCTION 2

the hedge errors net of transaction costs tends to zero as the hedge interval decreases. Toft

(1996) derived expressions for the mean and variance of the hedge error and transaction cost.

In Boyle and Hardy (1997) and Hardy (2000, 2002) dynamic hedging was used to hedge

a segregated fund contract. The results derived were based on simulation and Leland ’s

volatility was not adopted.

Segregated fund contract lasts for at least 10 years (Moodys Looks At Guaranteed Seg-

regated Funds In Canada & Their Risks, August 2001). Within the contract term, policy-

holders are given the option to reset the contract several times within some period (usually

one or two times per year). Upon reset, the GMMB and GMDB would be reset to the

guarantee levels of the current fund value, and the contract lasts for another 10 years from

the time of reset. This feature adds more complexity to the valuation of the segregated fund.

In Armstrong (2001) some techniques for the optimal reset decisions to a simplified segre-

gated fund contract were discussed. Windcliff, Forsyth and Vetzal (2001a, 2001b and 2002)

discussed the valuation of segregated funds with reset options by employing finite difference

methods; one of which, commonly used by financial engineers, is call the Crank-Nicolson

method. This method requires some discretization techniques and optimality assumptions

to approximately solve a collection of partial differential equations (PDE) backwards for the

price of the contract. The uncertainties of the contract duration and the guarantee benefits

add more volatility to the risks of the segregated fund.

The main focus of this project is to discuss some risk issues arisen by the features of

the segregated fund and apply dynamic hedging approach to both no-reset-allowed (stan-

dard) and reset-allowed (extendable) segregated fund contracts. For simplicity, no lapse is

assumed. Two types of the segregated fund contracts are considered. Type I offers 100%

GMMB level and 75% GMDB level and Type II offers 75% GMMB level and 100% GMDB

level. We use the traditional geometric Brownian motion to model the risky asset value

that the premium of the segregated fund is invested into. We also assume that the capital

set by dynamic hedging approach is put into a zero-coupon bond which offers a constant

risk-free interest rate. Note that all the analysis in this project do not consider either model

risk or parameter risk. In different time period or other situations, the model employed and

the parameters estimated in this project might not be accurate. The idea is to provide a

convenient way to focus on the main purpose of this project.

The remainder of the project is organized as follows: in Chapter 2, the model is intro-

duced and the standard segregated fund is priced. Chapter 3 discusses dynamic hedging
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approach and the corresponding cash flows. In the following chapter, the reset option is

priced and discussed, and the distribution of the loss or profit for segregated funds with

reset option under a dynamic hedging strategy is studied.



Chapter 2

The model

2.1 The model for the asset

We assume that the market price of the asset in which the segregated fund is invested follows

a geometric Brownian motion. That is, if St is the asset price at time t, then

dSt = µStdt + σStdBt, (2.1)

where µ is the drift rate, σ is the volatility and Bt stands for a standard Brownian motion.

This implies that the return on asset over discrete time intervals follows an independent

normal distribution. That is,

log
St2

St1

∼ N

(
(µ − 1

2
σ2)(t2 − t1), σ

2(t2 − t1)

)
,

where t2 > t1 ≥ 0 and N(a, b) stands for a normal distribution with mean a and variance b.

We also assume that the fund premium is invested in S&P/TSX Composite Index (the

name was TSE 300 before May 1, 2002). Based on the monthly data from 2000 to 2009 (Data

source: Yahoo! Finance, http://finance.yahoo.com), the estimated values of the parameters

in Equation (2.1) are µ = 0.04 and σ = 0.16.

Figure 2.1 shows four types of asset price sample paths for 10 years based on the esti-

mated parameters. The dashed and dotted parallel lines represent the 100% and 75% levels

of the initial asset value. Figure 2.1 (a) and (b) give two opposite price path trends, while

Figure 2.1 (c) and (d) show the price paths that fluctuate around the 100% guarantee level,

the difference being that (c) ends up at the safe zone (above both parallel lines) and (d) is

subject to the 100% guarantee risk.

4



CHAPTER 2. THE MODEL 5

0 2 4 6 8 10

0.5
1.0

1.5
2.0

2.5
(a)

Time

St
oc

k p
ric

e

0 2 4 6 8 10

0.5
1.0

1.5
2.0

2.5

(b)

Time

St
oc

k p
ric

e

0 2 4 6 8 10

0.5
1.0

1.5
2.0

2.5

(c)

Time

St
oc

k p
ric

e

0 2 4 6 8 10

0.5
1.0

1.5
2.0

2.5

(d)

Time

St
oc

k p
ric

e
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2.2 Pricing the segregated fund guarantees

The fees are charged periodically from policyholders and made up of two components. The

first includes surplus margins, management charge to cover operation cost of the fund, etc.

The second is the insurance charge to cover the benefit protection in the guarantees. In this

project, the first charge is assumed to be zero and we assume the fees are deducted from

the fund annually. For further analysis, we define the loss function of the segregated fund

at the payoff time t as

L(G, t) = max(G − St(1 − m)t, 0)

or

L(G, t) = max(G − Ste
−fmt, 0)

for a given guarantee G , the annual charge rate m (or the equivalent instantaneous charge

rate fm) and t = 0, 1, . . . , T . This definition shows that the loss occurs when the performance

of the asset is so poor that the asset amount after charge deductions is below the guarantee.

In this project we follow the indifference principle which suggests that the expected total
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insurance charges should at least cover the expected future costs. Then in traditional

actuarial notations we have
∫ T

0
fmE[St]e

−t(fm+r)
tpxdt

= T pxE[L(Gm, T )]e−Tr +

∫ T

0
E[L(Gd, t)]e

−trµ(x + t)tpxdt, (2.2)

where T is the term of the segregated fund contract (for the standard segregated fund

contracts, T is 10 years), x is the age of the policyholder when the policy is written, Gd

and Gm are the GMDB and GMMB guarantees respectively, and r, the risk-free force of

interest, is assumed to be 2.25% (Data source: TD Canada Trust prime rate effective on

April 22, 2009, http://www.tdcanadatrust.com) in this project. The two terms of the right

hand side of Equation (2.2) can be viewed as the expected costs for GMMB and GMDB

respectively. The left hand side can be considered as the total expected charges during T

years. Assuming a constant force of mortality µx for the mortality decrements in fraction

year x (Bowers, Gerber and etc 1997) and under the actuarial method which states that

the asset price accumulates with drift µ, Equation (2.2) becomes

T−1∑

k=0

∫ 1

0
fmS0e

−(k+s)(fm+r−µ)
kpxe

−sµx+kds

= T pxE[L(Gm, T )]e−Tr +
T−1∑

k=0

∫ 1

0
E[L(Gd, k + s)]e−(k+s)r

kpxµx+ke
−sµx+kds,

where

E[L(G, t)] = GΦ

(
log( G

S0
) − (µ − fm − 1

2σ2)t

σ
√

t

)

−S0e
(µ−fm)tΦ

(
log( G

S0
) − (µ − fm + 1

2σ2)t

σ
√

t

)
.

with a normal cumulative density function Φ(·). Under the risk-neutral method which

replaces drift µ with r, Equation (2.2) becomes

T−1∑

k=0

∫ 1

0
fmS0e

−(k+s)fm
kpxe

−sµx+kds

= T pxP (S0e
−Tfm , Gm, 0, T ) +

T−1∑

k=0

∫ 1

0
P (S0e

−(k+s)fm , Gd, 0, k + s)kpxµx+ke
−sµx+kds,
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where P (·, ·, ·, ·) represents the Black-Scholes European put option formula which is defined

as

P (St0 ,K, t0, T ) = Ke−r(T−t0)Φ (−d2(t0)) − St0Φ (−d1(t0)) , (2.3)

where St0 is the asset price at time t0, K is the strike, T is the maturity date,

d1(t0) =
log

St0

K + (r + 1
2σ2)(T − t0)

σ
√

T − t0
,

and

d2(t0) = d1(t0) − σ
√

T − t0.

Figure 2.2 shows the instantaneous charge rates with respect to different ages under both

actuarial and risk-neutral approaches (The mortality data is from Complete Life Table,

Canada, 2000 to 2002: males, Statistics Canada.). We can see that the charge rates are

relatively insensitive to ages unless the policyholder gets relatively old (e.g. age 60). It

shows that Type I contract requires higher charge rates than Type II contract when the

policyholder is aged below 78 since GMMB dominates the cost. On the other hand, however,

the Type II contract seems more sensitive to mortality risk when the policyholder gets older.

It should be also noted that the charge rates under the actuarial method are in general lower

than those under risk-neutral method. This is due to the higher asset drift than risk-free

force of interest rate, which would in turn affect the expected values of asset price.

Figure 2.3 helps us understand the evolution of the charge rate with age. The shaded

areas represent the parts to cover the GMMB. And the areas between upper line and the

shaded areas represent the charges for the GMDB. As we can see, the charge for the GMMB

dominates the total charge for the segregated fund when the policyholder is relatively young

while the GMDB part of the cost would increase with age. On the other hand, the GMDB

charge increment with age is greater for Type II contract than Type I contract, which

explains sharper changes of the charge rate for Type II contract.



Chapter 3

Dynamic hedging approach

3.1 Discrete time hedging strategy

The spirit of the Black-Scholes model is the possibility to set up a portfolio consisting of

risky asset and risk-free bond that replicates the payoff of the derivative. The market is free

of friction and the portfolio is assumed to be continuously adjusted. Leland (1985) showed

that the change of the derivative price and the change of the value of replicating portfolio

during some time interval are different. The difference is called hedge error.

Dynamic hedging is a strategy that adjusts the hedging portfolio several times before

maturity. Suppose we intend to hedge a European put option. The value of the hedging

portfolio is given by Equation (2.3). The Black-Scholes formula indicates that the initial

hedging portfolio should consist of Φ (−d2(t0)) units of risk-free bond and a short position

of Φ (−d1(t0)) shares of risky asset.

Suppose at the first hedge time t1, The required hedging portfolio, H+, is given by

H+ = Ke−r(T−t1)Φ (−d2(t1)) − St1Φ (−d1(t1)) .

On the other hand, the holding position of the hedging portfolio cannot be self-adjusted.

The accumulated hedging portfolio from t0 to t1, H−, is given by

H− = Ke−r(T−t1)Φ (−d2(t0)) − St1Φ (−d1(t0)) .

9



CHAPTER 3. DYNAMIC HEDGING APPROACH 10

The hedge error at time t1, N(t1) is then shown as

H(t1) = H− − H+

= Ke−r(T−t1) [Φ (−d2(t0)) − Φ (−d2(t1))]

−St1 [Φ (−d1(t0)) − Φ (−d1(t1))] . (3.1)

The transaction cost is defined as the fees to trade the risky asset. Let TC(t1) denote the

transaction cost at t1, then

TC(t1) = kSt1 |Φ (−d1(t1)) − Φ (−d1(t0))| , (3.2)

where k is the one-way transaction cost rate. Toft (1996) derived the expressions for the

means of the hedge errors and transaction costs if the price of the asset follows Equation

(2.1). In general, let tj−1 and tj denote the two consecutive hedge times before maturity,

where T ≥ tj−1 > tj ≥ t0. The hedge interval ∆t is equal to tj − tj−1. Following Toft ’s

derivation and assuming that the hedge errors and transaction costs are discounted at the

risk-free rate r, the respective expected present values of the hedge error and transaction

cost at time tj , given St0 , are

E[H(tj, T )|St0 ] = Ke−r(T−t0) [Φ (−d∗2(t0, tj−1)) − Φ (−d∗2(t0, tj))]

−S0e
(µ−r)(tj−t0) [Φ (−d∗1(t0, tj−1)) − Φ (−d∗1(t0, tj))] , (3.3)

and

E[TC(tj, T )|St0 ] = kS0e
(µ−r)(tj−t0) {2Φ (Υ,−d∗1(t0, tj), κ1) − Φ (−d∗1(t0, tj))

+Φ (−d∗1(t0, tj−1)) − 2Φ (−d∗1(t0, tj−1),Υ, κ2) } , (3.4)
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where

d∗1(tj−1, tj) =
log

Stj−1

K + (r + 1
2σ2)(T − tj) + (µ + 1

2σ2)∆t

σ
√

T − tj−1

,

d∗2(tj−1, tj) = d∗1(tj−1, tj) − σ
√

T − tj−1,

Υ = d∗1(t0, tj−1)

√
(T − t0)(T − tj)

t∗
− d∗1(t0, tj)

√
(T − t0)(T − tj−1)

t∗
,

κ1 =
(tj − t0)

√
T − tj−1 − (tj−1 − t0)

√
T − tj√

(T − t0)t∗
,

κ2 =
(tj−1 − t0)

√
T − tj−1 − (tj−1 − t0)

√
T − tj√

(T − t0)t∗
,

t∗ = (T − tj−1)(tj − t0) + (T − tj)(tj−1 − t0)

−2(tj−1 − t0)
√

(T − tj)(T − tj−1),

and Φ(·, ·, ρ) denotes the bivariate standard normal distribution with correlation coefficient

ρ. The derivation of Equations (3.3) and (3.4) are shown in Appendix A. Further, the

expected present value of total hedge errors net of transaction costs during the lifetime of

the option is denoted by Ψ(t0, T ), where

Ψ(t0, T ) =

$∑

j=1

{E[H(tj , T )|St0 ] − E[TC(tj, T )|St0 ]} (3.5)

and $ stands for the total hedge times during T − t0. Note that in this project we only con-

sider the time-based hedging strategy, i.e., ∆t is constant during the term of the derivative.

3.2 Transaction costs adjusted hedge volatility

The value of the hedge errors net of transaction costs depends on the hedge interval. If

the interval is too large, the transaction costs are small but the hedge errors are large.

On the other hand, if the interval gets relatively small, the hedge errors decrease but the

transaction costs tend to be high. Leland (1985) introduced a modified hedge volatility

for which the modified hedge errors, net of transaction costs, are almost surely zero as the

hedge interval width tends to zero. If we let σ̂2 denote Leland ’s volatility, then with the

one-way transaction cost rate k,

σ̂2 = σ2


1 +

2k
√

2
π

σ
√

∆t


 .
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With Leland ’s volatility we can get the expected present values of hedge error and transac-

tion cost similar to Equations (3.3) and (3.4), that is

E[Ĥ(tj, T )|St0 ] = Ke−r(T−t0)
[
Φ
(
−d̂2

∗
(t0, tj−1)

)
− Φ

(
−d̂2

∗
(t0, tj)

)]

−S0e
(µ−r)(tj−t0)

[
Φ
(
−d̂1

∗
(t0, tj−1)

)
− Φ

(
−d̂1

∗
(t0, tj)

)]
, (3.6)

E[T̂C(tj , T )|St0 ] = kS0e
(µ−r)(tj−t0)

{
2Φ
(
Υ̂,−d̂1

∗
(t0, tj), κ̂1

)
− Φ

(
−d̂1

∗
(t0, tj)

)

+Φ
(
−d̂1

∗
(t0, tj−1)

)
− 2Φ

(
−d̂1

∗
(t0, tj−1), Υ̂, κ̂2

)}
, (3.7)

where

d̂1
∗
(tj−1, tj) =

log
Stj−1

K + (r + 1
2 σ̂2)(T − tj) + (µ + 1

2σ2)∆t√
σ̂2(T − tj) + σ2(tj − tj−1)

,

d̂2
∗
(tj−1, tj) = d̂1

∗
(tj−1, tj) −

√
σ̂2(T − tj) + σ2(tj − tj−1),

Υ̂ = d̂1
∗
(t0, tj−1)

√
(T − tj)(σ̂2(T − tj−1) + σ2(tj−1 − t0))

σ
√

t∗

−d̂1
∗
(t0, tj)

√
(T − tj−1)(σ̂2(T − tj) + σ2(tj − t0))

t∗
,

κ̂1 =
σ((tj − t0)

√
T − tj−1 − (tj−1 − t0)

√
T − tj)√

(σ̂2(T − tj) + σ2(tj − t0))t∗
,

κ̂2 =
σ((tj−1 − t0)

√
T − tj−1 − (tj−1 − t0)

√
T − tj)√

(σ̂2(T − tj−1) + σ2(tj−1 − t0))t∗
,

and the expected present value of total hedge errors net of transaction costs can be written

as

Ψ̂(t0, T ) =

$∑

j=1

{
E[Ĥ(tm, T )|St0 ] − E[T̂C(tm, T )|St0 ]

}
. (3.8)

In the following part of the project k is assumed to be 0.005. Tables 3.1 and 3.2 show

the hedge costs based on different hedge strategies. We assume a 10-year at-the-money

European put option with S0 = $100. As expected, the initial costs with Leland ’s volatility

are higher than those in Table 3.1 as long as the positive transaction costs are charged. The

hedge errors in Table 3.2 which turn out to be positive (negative values of the hedge errors

(net of the transaction costs) mean extra asset should be bought, while positive ones mean

the selling of the asset), along with the transaction costs, make the hedge errors net of the
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Table 3.1: The hedge costs with σ

Put price Hedge Transaction Hedge errors net of Total
errors costs transaction costs costs

Annually 13.5872 -0.0803 0.4268 -0.5071 14.0943
Monthly 13.5872 -0.0066 1.3778 -1.3844 14.9716
Weekly 13.5872 -0.0015 2.8485 -2.8501 16.4373

Daily 13.5872 -0.0002 7.5312 -7.5314 21.1186

Table 3.2: The hedge costs with σ̂

Put price Hedge Transaction Hedge errors net of Total
errors costs transaction costs costs

Annually 13.9850 0.3101 0.4242 -0.1141 14.0991
Monthly 14.9340 1.3180 1.3387 -0.0208 14.9548
Weekly 16.3015 2.6740 2.6842 -0.0102 16.3117

Daily 20.1631 6.5188 6.5240 -0.0052 20.1683

transaction costs relatively small. Specifically, under daily hedge strategy, the hedge errors

net of the transaction costs are almost zero using Leland ’s volatility, while the costs reach

a relatively high level with σ.

Figure 3.1 shows the hedge errors net of the transaction costs at each hedge time based

on annual, monthly, weekly and daily hedge strategies, respectively. The solid lines represent

the costs based on σ and the dotted lines correspond with Leland ’s volatility. The same put

option as above is assumed. The costs are lower for Leland ’s volatility and are almost zero

for the monthly hedge. The sharp changes at the end of the term reflect the relatively large

amount of the traded asset shares.

Note that for a segregated fund contract, annual charges may make the total hedge errors

net of transaction costs not strictly decreasing as the hedge frequency increases. However,

Table 3.3: The hedge errors net of the transaction costs with σ. The annual charge is
deducted

Annual charge rate Annually Monthly Weekly Daily

1% -0.5726 -1.5372 -3.1628 -8.3571
2% -0.6310 -1.7188 -3.5372 -9.3461
3% -0.6708 -1.8519 -3.8120 -10.0721
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Table 3.4: The hedge errors net of the transaction costs with σ̂. The annual charge is
deducted

Annual charge rate Annually Monthly Weekly Daily

1% -0.1776 -0.1637 -0.2917 -0.6780
2% -0.2300 -0.3237 -0.6081 -1.4257
3% -0.2789 -0.4875 -0.9335 -2.1970
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Figure 3.1: The hedge errors net of the transaction costs at each hedge time
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Leland ’s volatility still has a positive effect on the hedge costs. As shown in Tables 3.3 and

3.4, from annual to daily hedge, the total hedge errors net of the transaction costs with σ

increase up to about fifteen times, while they only increase by three times for 1% of the

annual charge rate and seven times for 3% of the annual charge rate under the effect of

Leland ’s volatility.

3.3 Hedging for the segregated fund contract

3.3.1 The initial hedge cost

The hedge cost for the segregated fund contract includes two parts: the cost to set up the

hedging portfolio (HP cost) and the hedge error net of the transaction cost (H&T) reserve.

The HP cost is determined by the modified Black-Scholes European put option formula

incorporating Leland ’s volatility. Assuming deaths can only occur at the end of the year,

the formula for the HP cost is

MP =

T−1∑

j=0

P̂ (S0(1 − m)T , Gd, 0, j + 1) · j|qx

+P̂ (S0(1 − m)T , Gm, 0, T ) · T px, (3.9)

where Gm and Gd represent the GMMB and GMDB guarantees, respectively, and MP de-

notes the initial hedge cost for the $Gm GMMB and $Gd GMDB contract for a policyholder

aged x at time 0 with asset price S0. Equation (3.9) states that the HP cost for the seg-

regated fund contract consists of a collection of hedging portfolios whose initial values are

defined in Equation (2.3) incorporating Leland ’s volatility with different durations. There-

fore, to fund the H&T reserve, we should calculate the expected present value of total hedge

errors net of the transaction costs for each of those hedge portfolios. Let 0V
(H&T )
T denote

the H&T reserve for a T-year contract at time 0, then

0V
(H&T )
T =

T−1∑

j=0

Ψ̂(0, j + 1) · j|qx + Ψ̂(0, T ) · T px. (3.10)

When applying Equation (3.10) the charges should be taken into account. That is, the

annual charge should be deducted from the segregated fund before the hedging portfolio is

modified at each integer year. Figures 3.2, 3.3 and 3.4 show some numerical results based

on annual, monthly and weekly hedge strategies, respectively, for a ten-year contract with a
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Figure 3.2: The initial hedge costs for the annually hedging strategy
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Figure 3.3: The initial hedge costs for the monthly hedging strategy
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Figure 3.4: The initial hedge costs for the weekly hedging strategy
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single premium $100. The graphs on the left hand side are for Type I contracts and those on

the right hand side for Type II contracts. We first note that for Type I contracts the initial

hedge costs for the GMMB dominate the total hedge costs for relatively young policyholders.

In the case of Type II contracts the initial hedge costs for the GMDB dominate the total

hedge costs when the policyholder is relatively old, which leads to relatively high total hedge

costs for the contracts. Second, for Type I contracts the change of the charges has much

effect on the total hedge cost for relatively young policyholders. This is mainly because of

the 100% GMMB offered by Type I contracts. The charge deduction could be considered

as a negative return on the segregated fund. As the charge increases, it is more likely that

the fund at maturity stays below the initial deposit. The increasing chance of the positive

payoff calls for higher hedge costs from the insurance company.

3.3.2 Re-balancing the hedging portfolio

As we mentioned earlier, after the initial hedge cost is calculated, periodical re-balancing

of the hedging portfolio is needed until the contract matures. The balancing frequency

depends on the hedge strategy. Given a hedge time tj, where T ≥ tj > 0, based on newly

gathered information at time tj , denoted by Itj (i.e. the asset price Stj and policyholders

who are still alive lx+tj ), the revised HP cost and H&T reserve for the revised portfolio at

time t1 are

MP |Itj =

T−tj−1∑

J=0

P̂ (Stj (1 − m)T , Gd, tj, tj + J + 1) · J |qx+tj · lx+tj

+P̂ (Stj (1 − m)T , Gm, tj , T ) · T−tjpx+tj · lx+tj (3.11)

and

tjV
(H&T )
T |Itj =

T−tj−1∑

J=0

Ψ̂(tj , tj + J + 1) · J |qx+tj · lx+t1

+Ψ̂(tj , T ) · T−tjpx+tj · lx+tj . (3.12)

respectively.

Results of the hedge cost movement during the lifetime of the contracts from Equations

(3.11) and (3.12) are shown From Figures 3.5 to 3.10. The simulated asset prices used are

from four types of asset price paths in Figure 2.1. We assume that the annual charge rate

m = 1% and a pool of 100 insureds whose ages are all 30, 60 and 80 respectively with $1 put
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Figure 3.5: Type I, Age 30, $100 single premium
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Figure 3.6: Type I, Age 60, $100 single premium
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Figure 3.7: Type I, Age 80, $100 single premium



CHAPTER 3. DYNAMIC HEDGING APPROACH 23

0 2 4 6 8 10

0
10

20
30

40
50

60
70

Age 30
Time

H
ed

ge
 c

os
t

0 2 4 6 8 10

0
10

20
30

40
50

60
70

Age 30
Time

H
ed

ge
 c

os
t

0 2 4 6 8 10

0
10

20
30

40
50

60
70

Age 30
Time

H
ed

ge
 c

os
t

0 2 4 6 8 10

0
10

20
30

40
50

60
70

Age 30
Time

H
ed

ge
 c

os
t

Figure 3.8: Type II, Age 30, $100 single premium
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Figure 3.9: Type II, Age 60, $100 single premium
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Figure 3.10: Type II, Age 80, $100 single premium
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into Type I or Type II segregated fund contracts. The solid lines represent the results from

monthly hedge strategy; the dashed lines represent weekly hedge results and the dotted lines

are for the annual ones. In general, The hedge cost is reduce when the asset price raises and

increased for the drop of the asset price. For example, in graphs at the top left, the asset

price increases to a relatively high level after year 6. As a result, the hedge cost is gradually

reduced to zero. For another example, the poor investment in the top right graphs makes

the segregated fund deep in the money. In turn, a relatively high hedge cost is required. It

should also be noted that under the annual hedge strategy the hedge portfolio is adjusted

only at the end of each year. It ignores many details of the asset price fluctuation within

each year. As a result, we would expect relatively large cash flow volatility.

3.4 The cash flows

To analyze the effect of the dynamic hedging approach on the segregated, the loss or profit

of the insurance company needs to be studied. cash flows are projected based on the incomes

and outgoes from the company. For the segregated fund, the cash flows include the charge

incomes and benefit payments. Under the dynamic hedging approach, it also involves cost

for the hedge errors and transaction costs. Assuming that each policyholder puts $1 into

the segregated fund, at the beginning of the 10-year contract, the net cash flow is the initial

hedge cost net of the initial charge. Let CFt denote the net cash flow at time t, then,

CF0 = lx

(
m − MP − 0V

(H&T )
10

)
.

During the lifetime of the contract, the net cash flows are a bit complicated. The composition

of the cash flows for year t = 1, 2, . . . , 9 can be seen in Table 3.5. For further analysis, we

decompose the cash flows into four parts for year t = 1, 2, . . . , 9. The first part is the annual

charge applicable to policyholders who are still alive at the beginning of year t+1. The

income of the second part is the projection of the initial hedge cost from year t-1 to t,

denoted by

MP (p)|It−1 =

10−t∑

j=0

H−(Gd, t − 1, t + j) · j|qx+t−1 · lx+t−1

+H−(Gm, 11 − t, T ) · 11−tpx+t−1 · lx+t−1,

where

H−(G, τ1, τ2) = Ge−r(τ2−τ1−1)Φ(−d̂2(G, τ1, τ2)) − Sτ1+1Φ(−d̂1(G, τ1, τ2))
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Table 3.5: The cash flows in the mid-years

Part Income Outgo Net cash flow

A lx+tSt · (1 − m)t · m lx+tSt · (1 − m)t · m

B MP (p)|It−1 MP |It

(lx+t−1 − lx+t)L(Gd, t) HE(act)
t

C HT (act)
t −HT (act)

t

D
(

t−1V
(H&T )
10 |It−1

)
er

tV
(H&T )
10 |It RE t

d̂1(G, τ1, τ2) =
log

Sj(1−m)τ2

G + (r + 1
2 σ̂2)(τ2 − τ1)

σ̂
√

τ2 − τ1
,

and

d̂2(G, τ1, τ2) = d̂1(G, τ1, τ2) − σ̂
√

τ2 − τ1

for τ2 = τ1 + 1, . . . , 10. The outgoes of the second part consist of two components: one is

the revised initial hedge cost based on the information at year t, MP |It; the other is the

payoff of the GMDB from the actually terminated contracts at the end of year t. Then the

net cash flow (defined as the actual hedge error) occurring at the end of year t is denoted

by

HE(act)
t = MP (p)|It−1 − MP |It − (lx+t−1 − lx+t)L(Gd, t).

For the third part, we recognize the hedging transaction costs for both terminated and valid

contracts at the end of year t as

HT (act)
t = 0.005 × St

{
|Φ(−d̂1(Gd, t, t)) − Φ(−d̂1(Gd, t − 1, t))| · (lx+t−1 − lx+t)

+
9−t∑

j=0

|Φ(−d̂1(Gd, t, t + j + 1)) − Φ(−d̂1(Gd, t − 1, t + j + 1))| · j|qx+t · lx+t

+ |Φ(−d̂1(Gm, t, 10)) − Φ(−d̂1(Gm, t − 1, 10))| · 10−tpx+t · lx+t

}
.

The last part is defined as H&T reserve error at year t, RE t. It is the difference between the

projection of H&T reserve from year t-1 to t,
(

t−1V
(H&T )
10 |It−1

)
er, and the H&T reserve
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needed at year t, tV
(H&T )
10 |It.

To sum up, we write the net cash flow at the end of year t (t = 1, 2, . . . , 9) as

CFt = lx+tSt · (1 − m)t · m + HE(act)
t −HT (act)

t + RE t.

Similarly, the cash flow at the end of the last year is

CF10 = MP (p)|I9 − (lx+t−1 − lx+t)L(Gd, 10) − lx+tL(Gm, 10) −HT (act)
10 .

It should be noted for the monthly and weekly hedging strategies, net cash flows at fraction

year need to be considered. They are similar to those at integer year. The difference is:

Part A in Table 3.5 is zero since charge is deducted at the beginning of each year; based on

the assumption of GMDB is payable at the end of the year, there is no GMDB payoff or

transaction costs for GMDB payoff.

Figures 3.11 to 3.16 show the net cash flows generated by the dynamic hedging ap-

proach, corresponding to the asset price paths in Figure 2.1. For monthly and weekly hedge

strategies those outstanding positive cash flows at the integer years are partially or mostly

attributed to the annual charges. Under the annual hedge strategy, the hedging portfolio is

adjusted only at the end of each year, which general relatively large net cash flows at each

hedge time. On the other hand, portfolio adjustments are also needed within each year.

This leads to relatively smooth cash flows. Specifically, look at the third column in Figure

3.11 which corresponds to graph (c) in Figure 2.1 and the bottom left one in Figure 3.5.

From year 7 to year 8, there is a relatively large return on the fund investment. In turn, the

cash for the hedge cost is released at the end of year 7. However, the large hedging portfolio

adjustment also causes relatively high transaction costs. As a result, a relatively large loss

is generated at the end of year 7 under the annual hedge strategy. On the other hand,

the segregated fund is gradually hedged from year 7 to year 8 under monthly or weekly

strategy. The outstanding loss at the end of year 7 under annual hedge strategy is replaced

with monthly or weekly cash flows within year 7.

The amount of the net cash flow in each year is an important issue. The speed at which

the cash is being released back to the company is another critical issue. The net present

value (NPV) of the cash flows provides a good basis for the analysis of the dynamic hedging

approach. Under the dynamic hedging approach, the NPV of the cash flows can be expressed

as

NPV =

T/∆t∑

j=0

CFj(1 + id)
−j∆t,
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Figure 3.11: Net Cash flows of Type I contract, Age 30
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Figure 3.12: Net Cash flows of Type I contract, Age 60
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Figure 3.13: Net Cash flows of Type I contract, Age 80
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Figure 3.14: Net Cash flows of Type II contract, Age 30
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Figure 3.15: Net Cash flows of Type II contract, Age 60



CHAPTER 3. DYNAMIC HEDGING APPROACH 34

0 2 4 6 8 10

−
1

5
−

1
0

−
5

0

Annually
Time

N
e

t 
ca

sh
 f
lo

w

0 2 4 6 8 10

−
1

5
−

1
0

−
5

0

Annually
Time

N
e

t 
ca

sh
 f
lo

w

0 2 4 6 8 10

−
1

5
−

1
0

−
5

0

Annually
Time

N
e

t 
ca

sh
 f
lo

w

0 2 4 6 8 10

−
1

5
−

1
0

−
5

0

Annually
Time

N
e

t 
ca

sh
 f
lo

w
0 2 4 6 8 10

−
1

5
−

1
0

−
5

0

Monthly
Time

N
e

t 
ca

sh
 f
lo

w

0 2 4 6 8 10

−
1

5
−

1
0

−
5

0

Monthly
Time

N
e

t 
ca

sh
 f
lo

w

0 2 4 6 8 10

−
1

5
−

1
0

−
5

0

Monthly
Time

N
e

t 
ca

sh
 f
lo

w

0 2 4 6 8 10

−
1

5
−

1
0

−
5

0
Monthly

Time

N
e

t 
ca

sh
 f
lo

w

0 2 4 6 8 10

−
1

5
−

1
0

−
5

0

Weekly
Time

N
e

t 
ca

sh
 f
lo

w

0 2 4 6 8 10

−
1

5
−

1
0

−
5

0

Weekly
Time

N
e

t 
ca

sh
 f
lo

w

0 2 4 6 8 10

−
1

5
−

1
0

−
5

0

Weekly
Time

N
e

t 
ca

sh
 f
lo

w

0 2 4 6 8 10

−
1

5
−

1
0

−
5

0

Weekly
Time

N
e

t 
ca

sh
 f
lo

w

Figure 3.16: Net Cash flows of Type II contract, Age 80
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where id is the annual interest rate to discount the cash flows.

The mean and standard deviation of the simulated NPV of the cash flows are shown in

Figure 3.17. A Policyholder aged 30 with $100 single premium Type I contract is chosen.

Under the dynamic hedging approach, the NPV of the cash flows with higher annual charge

and lower discount rate are subject to greater mean and standard deviation. On the other

hand, however, with the help of the dynamic hedging, the NPV of the cash flows is rela-

tively insensitive to both interest rate and charge rate. Specifically, monthly hedge strategy

generates relatively small standard deviation, which indicates better effect on controlling

the risk volatility as more asset price details are captured.

To help further analyze the dynamic hedging approach, the simulated distribution and

the percentiles of the NPV of the cash flows are shown in Figures 3.18 and 3.19. Type I

contract is chosen. Annual charge rate and interest rate for discount are assumed to be 1%

and r respectively. The solid line represents the one without dynamic hedging which has a

long left tail. The segregated fund has a positive mean (1.9922) and a standard deviation

of 15.4465. As derived in Chapter Two, the actuarial solution of the annual charge is about

0.75%. The 0.25% surcharge in our example may be attributed to the average surplus of

the segregated fund. The curve for the dynamic hedging approach, on the other hand, is

more concentrated. The mean and standard deviation are -3.7828 and 3.2641 respectively.

In Figure 3.19, we can see that without a dynamic hedging approach, there is a 20% chance

of generating quite poor NPV of the cash flows, while for most of the time the NPV of the

cash flows ends up within the range from 0 to -20 under monthly hedging strategy. For

the dynamic hedge approach, both figures do not indicate a high chance of getting positive

NPV since transaction costs are involved in the hedge strategy and 1% per year may be

not sufficient enough to cover both guarantees and transaction costs. However, they reveal

that dynamic hedging approach is in favor of reducing the left tail and volatility of the

distribution.
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Figure 3.17: The mean and standard deviation of the NPV of the cash flows. Type I, Age
30 and $100 single premium contract is used
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Chapter 4

Valuation of the reset option

Segregated funds may have reset options allowing the policyholders to lock in the investment

gains several times per year (http://www.segfundscanada.ca). Once the contract gets reset,

the guarantee levels are based on the current fund level and the term of the contract is

extended to another 10 years. The reset option adds some complications to the valuation

of the segregated fund since both the guarantees and the maturity date are uncertain.

Windcliff, Forsyth and Vetzal (2001a, 2001b) discussed a approach to price extendable

segregated fund by employing some finite difference methods. In this project, we do not go

that far since it needs both a large amount of time and some high speed computer. We only

borrow the spirit of this approach and use a simplified case to demonstrate the main idea

and further price the added value of the reset option.

4.1 Introduction of Crank-Nicolson method

4.1.1 Discretization techniques

Crank-Nicolson method is one of the implicit finite difference methods solving Black-Scholes

PDE numerically for the price of the derivative securities (Back (2005)). For simplicity, we

use short notations S and P to represent the asset price at time t and the European put

price at time t with asset price S, respectively. The PDE is shown by

∂P

∂t
+

1

2
σ2S2 ∂2P

∂S2
+ rS

∂P

∂S
− rP = 0, (4.1)

where 0 ≤ t ≤ T and 0 ≤ S ≤ ∞. The price of the European put option P is a continuous

function of t and S, denoted by V (S, t) (i.e. P = V (S, t)). If ∂t ≈ ∆t and ∂S ≈ ∆S for

38
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some infinitesimal values of ∆t and ∆S as shown in Figure 4.1, the approximate value of P

is denoted by

Vi,n = V (i∆S, n∆t) .

Crank-Nicolson method assumes the existence of the value of P between two grid points

(n∆t, i∆S) and ((n + 1)∆t, i∆S) (Back (2005)). Let V ′
i,n denote the Crank-Nicolson value

of P , then

P ≈ V ′
i,n =

Vi,n + Vi,n+1

2
.

The derivatives in Equation (4.1) are approximately written as

∂P

∂S
≈

V ′
i+1,n − V ′

i−1,n

2∆S

=
Vi+1,n − Vi−1,n + Vi+1,n+1 − Vi−1,n+1

4∆S
,

∂2P

∂S2
≈

(
V ′

i+1,n − V ′
i,n

)
−
(
V ′

i,n − V ′
i−1,n

)

(∆S)2

=
Vi+1,n − 2Vi,n + Vi−1,n + Vi+1,n+1 − 2Vi,n+1 + Vi−1,n

2(∆S)2

and

Pt ≈
Pi,n+1 − Pi,n

∆t
.

If we let g = ∆t and h = ∆S, Equation (4.1) can be approximately written as

a(i)Pi+1,n + b(i)Pi,n + c(i)Pi−1,n = d(i), (4.2)

where

a(i) = −σ2S(i)2

4h2
− rS(i)

4h
,

b(i) =
1

g
+

σ2S(i)2

2h2
+

r

2
,

c(i) =
rS(i)

4h
− σ2S(i)2

4h2
,

d(i) = −a(i)Pi+1,n+1 +

(
1

g
− σ2S(i)2

2h2
− r

2

)
Pi,n+1 − c(i)Pi−1,n+1,

and S(i) denotes the value of S at point i∆S.
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4.1.2 Solving the PDE

As long as we know the values of Pi+1,n+1, Pi,n+1 and Pi−1,n+1, the value of Pi+1,n, Pi,n and

Pi−1,n can be implicitly derived. As shown in Figure 4.1, assuming a relatively large value

Smax to represent the case S → ∞, we discretize S from 0 to Smax to get N intervals such

that Smax = N∆S. Similarly, we disretize t to M intervals such that T = M∆t. At each

time step, N + 1 equations similar to Equation (4.2) (with N + 1 discretized asset price

from 0 to Smax) could be used to solve backward for a collection of P values at those grid

points (i.e., P0,n, P1,n, . . . , PN,n). Repeating this algorithm M times gives the price of the

European put option at time 0 with the desirable asset price, say S∗.

To make this recursive algorithm work, firstly, we need to set the initial values of P ’s at

maturity time T at which the payoffs of the options are made. That is

Pi,M = max (K − S(i), 0) ,

where K is the strike and i = 0, 1, . . . , N .

Secondly, The first and the last of the N +1 equations approximately represent the cases

S → 0 and S → ∞. Plugging the boundary values of S into equation (4.1), we get

Pt =

{
rP, if S → 0;

0, if S → ∞.

This gives us the frist equation

(
1

k
+

r

2

)
Pi,n =

(
1

k
− r

2

)
Pi,n+1

with S = 0, and

Pi,n = Pi,n+1

with S = Smax.

The value of ∆S and ∆t are quite critical. It also matters to choose the value Smax to be

far away enough from the desirable asset price. As shown in Table 4.1, for the at-the-money

European put option with the strike equal to $100, setting Smax four times as large as the

strike, together with at least 3000 asset grids, the values derived via the Crank-Nicolson

method converge quite well.
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Figure 4.1: Discretization of the Black-Scholes pde

Table 4.1: Solving for European put options with 1000 time grids

S grids
Black-Scholes 1000 3000 3500

Smax = 400 10.05832 10.05818 10.05830 10.05831
Smax = 300 10.05832 10.07221 10.05822 10.08268
Smax = 200 10.05832 10.01914 10.01897 10.01870
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4.2 Pricing the segregated fund with reset option

As mentioned in Chapter 2, the present value of future charges can be modeled via an

indifference principle. However, reset option makes this approach inapplicable due to the

uncertainties of the benefit amount and maturity date. Following the Black-Scholes PDE,

a more flexible method can be employed. First we make the following assumptions:

• The value of segregated fund is assumed to follows the stochastic differential equation

dSt = (µ − fm)Stdt + σStdBt;

• The value of the segregated fund is a function of the asset price S at time t, guarantee

G, maturity date T and current time t, i.e., P (St, G, t, T );

• The values of G and T upon reset are denoted by G∗ and T ∗, respectively, where

G∗ = αS

and

T ∗ = min(T + 10, Tmax).

α is either 100% or 75%, and Tmax is the maximum maturity date of the segregated

fund. No reset is allowed in the last ten years of Tmax. For simplicity, we only consider

the case that only one reset is allowed per year;

• Upon reset, the value of the segregated fund is denoted by P ∗(St, G, t, T ), where

P ∗(St, G, t, T ) =

{
P (St, G

∗, t, T ∗), if reset is allowed;

−∞, otherwise.

4.2.1 Optimality statement

When we solve the equations for the value of the segregated fund with certain value of fm,

we need to compare P with P ∗ at each grid point. From this point of view, the segregated

fund can be considered as a collection of American-type options with different strikes and

maturity dates. Following the standard statements in Wilmott, Dewynne and Howison

(1993), the value of the segregated fund must satisfy

Pt + (r − fm)SPS +
1

2
σ2S2PSS − rP + D(t)max(Gd − S, 0) − R(t)fmS ≤ 0, (4.3)
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and

P ∗ ≤ P, (4.4)

where one of inequalities (4.3) and (4.4) holds with equality and Gd is the GMDB guarantee.

These two inequalities assume that the policyholders exercise the reset options optimally

without arbitrage and P ∗ can be viewed as the lower bound of P ((4.3) states that the return

from the segregated fund is not greater than the return on the investment to the risk-free

bound. If reset is optimal, (4.4) holds with equality and (4.3) holds with inequality, or vice

versa.). D(t) is defined such that the proportion of the policyholders who die between t and

t + dt is denoted as D(t)dt. R(t) is the proportion of the policyholders who are still alive

at time t, i.e. R(t) = 1 −
∫ t
0 D(t)dt. In the following, we use a constant force of mortality

in fraction year.

At the end of each year, the number of the used reset is set to zero. The non-arbitrage

statement requires the jump condition

P (St−i
, G, t−i , T ) = P (St+i

, G, t+i , T ),

where t−i and t+i represent the moment immediately at the end of the ith year and the

beginning of the i + 1th year, respectively.

4.2.2 Boundary values

The terminal values representing the intrinsic values at time T are

Pi,M = R(T )max (Gm − S(i), 0) , i = 0, 1, . . . , N

where Gm is the GMMB guarantee. The asymptotic condition which reflects the fact that

the asset price goes to 0 or ∞ can be written as

Pt =

{
rP − D(t)max(Gd − S, 0), if S → 0;

−D(t)max(Gd − S, 0), if S → ∞.

4.2.3 Implementation

The inequalities (4.3) and (4.4) are three-dimensional (i.e., S, K and T) and time-dependent,

which need very complex computational work. To further programming, we make the
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following simplifications. First, if we let Xi = logS(i), equality (4.3) can be discretized

as

a · Pi+1,n + b · Pi,n + c · Pi−1,n = Z(i), (4.5)

where

a = − σ2

4h2
− r − 1

2σ2

4h
,

b =
1

k
+

σ2

2h2
+

r

2
,

c =
r − 1

2σ2

4h
− σ2

4h2
,

Z(i) = −aPi+1,n+1 +

(
1

k
− σ2

2h2
− r

2

)
Pi,n+1 − cPi−1,n+1

+D(t)max
(
K2 − eXi , 0

)
− R(t)fmeXi ,

and i = 1, 2, . . . , N .

The convenience of Equation (4.5) is that all of the N equations except for the first and

the last ones have the same coefficients a, b and c which are independent with Xi. Second,

the maturity date T varies from 10 to 30. Since the length of the contract can only be

extended to anther 10 years upon reset, the possible values of T are constrained by

max(t, 10) ≤ T ≤ min(t + 10, Tmax)

for t from 0 to Tmax. To start the programming, we need to define a three-dimensional

array, say P [DX ][DG][DT ], to represent the collection of American-type options. We set

1001 grids for both S and K dimensions so that h = Smax

1001 = Kmax

1001 , where Smax = Gmax

(Gmax is the maximum guarantee that can be reset to). To avoid interpolation complication,

we set the interval of T as the same as time step ∆t, i.e. g = 1
12 . Therefore, the maximum

number of the values of T is 120. For the last ten years of contract, the segregated fund

contract is simply a European put option. At time t = Tmax, the number of T is one (i.e., T

can only be Tmax). The number of T’s increases as we solve Equation (4.5) backward until

t = Tmax − 10 where the number of T’s reaches the maximum (i.e. 120).

For 10 ≤ t ≤ Tmax − 10, the number of T’s remains 120. For each time step, we need to

compare the value of P with P ∗. That is,

P [DX ][DG][DT ] = max(P [DX ][DG][DT ], P [DX ][DX ][0])
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for DX = 0, 1, . . . , 1000, DK = 0, 1, . . . , 1000 and DT = 0, 1, . . . , 119. DG = DX means that

GMMB is reset to the current fund value. DT = 0 represents T = 10, DT = 1 represents

T = 10+ 1
2 and so on. For the first 10 years of the contract, the number of T’s decreases by

one at each time step until t = 0 where the value of T is equal to one which represents the

case that T = 10. At this point, we get the present value of the segregated fund contract

with desirable initial fund value, initial guarantee and initial term of 10 years.

4.2.4 The solution of the charge rate

We choose certain value of fm to solve inequality (4.3) for P at time 0 with initial guarantee

and desirable premium. We can try different fm’s to solve Inequality (4.3) until P approaches

zero so that the instantaneous charge rate fm is obtained. However since the computation

is quite time-consuming, we can alternatively use the linear interpolation method which is

illustrated in Figure 4.2. Some numerical results are displayed in Tables 4.2 and 4.3.

Table 4.2: Instantaneous charge rates of Type I contracts

Equation (2.2) Crank-Nicolson
Actuarial Risk-neutral Standard Extendable

Age 30 0.7400% 1.5400% 1.5231% 4.4751%
Age 60 0.6900% 1.4100% 1.3876% 3.5356%

Table 4.3: Instantaneous charge rates of Type II contracts

Equation (2.2) Crank-Nicolson
Actuarial Risk-neutral Standard Extendable

Age 30 0.2000% 0.4100% 0.3993% 1.1255%
Age 60 0.2800% 0.5400% 0.5280% 2.7609%

From the second and the third columns of those two tables, we can see that the analyt-

ical solutions of instantaneous charge rates based on Equation (2.2) are close to the numer-

ical ones based on Crank-Nicolson method, which confirms the feasibility of this numerical

method. The slight differences may be due to the convergence errors and the interpolation

errors. Comparing the values in the last two columns, we can see that segregated fund

contracts with the reset options are more than twice as valuable as those without the re-

set options. Particularly, more dramatic increase occurs to Type II policyholders aged 60.
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Figure 4.2: The solution of instantaneous charge rate
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As been pointed out in Chapter 2, Type II contracts are very sensitive to the mortality

risk. The reset options call for longer duration of the contracts, which in turn increase the

mortality risk and make this type of contracts relatively expensive.

4.2.5 Further analysis of the charge rate

One of the assumptions the approach above made is that the policyholders optimally exercise

their reset options. In practice, however, this situation barely happens. In general, the

chance that the rest option is exercised is more or less correlated to the premium level

(With higher premium level, the rest options are more frequently used). But the exercise

of the reset option is also affected by other factors such as investment preferences (One

may only want to hold a segregated fund contract for 10 years so that reset option will

not be used) and time issue (When the investment return hits a historical high level, a

position at year one is more likely to trigger a reset than that at year nine). The charge

rates for the extendable segregated fund contracts in Table 4.2 and 4.3 could be considered

as extreme values (Since in reality people do not reset as frequently as they do in optimal

case, reset option may not be as valuable as those considered above). In the following we

use simulation to further analyze the charge rate for the reset option. In practice a lot

of factors and strategies are involved to consider the exercise of the reset option. In this

project, however, for simplicity we introduce a constant return threshold to trigger the reset

options. Once the return on the premium net of the annual charges goes above the threshold

since the beginning of the contracts or last time the reset option is executed, the reset option

will be exercised if it is still applicable during that period. For the purpose of illustration,

we arbitrarily choose 10% annually compounding (or 0.09531 continuously compounding)

as the threshold and only Type I contracts with reset option are considered. Some more

assumptions are addressed below:

• The instantaneous returns on the premium are simulated monthly by a normal gener-

ator under risk-neutral world (This is to be consistent with the risk-neutral analysis

above). If we let log( Sm

Sm−1
) denote the monthly return, then

log

(
Sm

Sm−1

)
∼ N

(
1

12

(
r − 1

2
σ2

)
,

1

12
σ2

)
.

• The maximum duration of the contract is 30 years with no rest option allowed during

the last ten years. Only one rest option could be exercised during each year.
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• To take mortality effect into account, a pool of 100 30-year-old policyholders with $1

single premium is considered so that the portfolio is worth $100 before the charge

deduction. The force of interest rate for discount is equal to r. GMDB is payable only

at the end of each month. Mortality decrement in faction year is uniformly distributed.

Three cases with annual charge rates 1.5%, 3.0% and 4.5% respectively are tested based

on a 10,000-run simulation. In Figure 4.3 and Table 4.4 the fund value and GMMB payoff at

the time when the contract matures are examined. The fund value represents the segregated

fund investment performance (net of the charges). Since the annual charge rate could

be considered as the negative annual return rate, increasing the charge rate pulls down

the segregated fund level, which in turn thins the right tail of the distribution and shifts

the distribution leftwards. The GMMB payoff is the cost of the insurance company to

compensate the difference between the fund value and the guarantee if the fund value is

less than the guarantee. The high frequency at value 0 corresponds to the part of the fund

distribution where the fund value is beyond 100. It is consistent with the evolution of the

fund value. With increasing the charge rate, the chance that the fund value ends up less than

100 is increased and the chance that no GMMB payoff is needed is reduced. In Table 4.4

both the mean and standard deviation of the fund value decrease with charge rate from 1.5%

to 4.5%. The mean of the GMMB payoff is around 51 for all three cases. On the other hand,

however, there is a significant drop of the standard deviation, which is due to the exercise

of the reset option. The GMMB payoff varies between 0 and the guarantee. Without reset

option, it is capped with 100. But for the extendable segregated fund contract, the cap is

increased every time upon reset. For the large charge rate like 4.5%, the fund return (net of

the charges) is less likely hit the 10% threshold and the fund is less frequently reset, which

explains the decreasing trend of the standard deviation of the GMMB payoff.

Figure 4.4 and Table 4.5 give further proof that the chance of resetting the fund reduces

with charge rate increasing. The duration stands for the time that the contract matures

and the maturity guarantee is the accumulative GMMB guarantee at the maturity of the

contract. The frequency of the 10-year duration goes up with charge rate increasing. This

corresponds with the frequency of the $100 maturity guarantee. With charge rate 4.5%, it

suggests that the about 38% of the contracts do not reset the fund while the proportion drops

to about 24% if 1.5% is charged annually. Additionally, the distribution of the duration with

charge rate 1.5% displays that some contracts might last up to 30 years while for the 4.5%
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Figure 4.3: The simulated density distributions of the fund value and GMMB payoff at
maturity

Table 4.4: The sample mean and standard deviation of the fund value and GMMB payoff
at maturity

m=1.5% Fund GMMB payoff

Mean 112.4231 51.7606
Standard deviation 105.6241 43.7160

m=3.0% Fund GMMB payoff

Mean 87.2771 50.1704
Standard deviation 67.3597 34.5005

m=4.5% Fund GMMB payoff

Mean 71.6099 51.5752
Standard deviation 45.7719 29.3519
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Figure 4.4: The simulated density distributions of the duration and maturity guarantee

Table 4.5: The sample mean and standard deviation of the duration and maturity guarantee

m=1.5% Duration Maturity guarantee

Mean 14.9766 159.6207
Standard deviation 5.3272 95.7484

m=3.0% Duration Maturity guarantee

Mean 13.4161 135.9271
Standard deviation 4.1863 60.1120

m=4.5% Duration Maturity guarantee

Mean 12.3631 122.8358
Standard deviation 3.2954 40.2140
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case most of the contracts last around 10 to 15 years. This means that the charge rate 4.5%

leads to a less frequency of reset comparing to the case with charge rate 1.5%. Even for

those contracts which are reset, a large proportion only gets reset at early times within the

first 10 years.

In Figure 4.5 and Table 4.6, The maturity payment is the summation of the fund value

and GMMB payoff, and the yield is given by

Yield =

(
Maturity payment

100

) 1

Duration

− 1.

The higher the charge rate is, the more likely the fund value is below the guarantee, and

the less likely the reset option is used, which leads to a high chance that the fund matures

with $100 and 0% yield. With a threshold 10%, the illustration above shows that when

the charge rate 1.5%, the fund value ends up with $12 higher than GMMB guarantee in

average. The average payment at maturity is $64 larger than the initial fund value. And the

average yield indicates a annual return of 2.14%. When the charge rate increases to 4.5%, in

average, the fund value at maturity goes below GMMB guarantee by $30 and the maturity

payment drops to $123, which yields an average annual return 1.18%. The result is that

large charge rate sharply offsets the positive return of the fund investment and deteriorates

the fund value when the return is negative. With annual charge deduction of 1.5%, the reset

option might be valuable. However, an annual charge rate of 4.5% significantly pulls down

the fund value and the value of the reset option is decreased.

Table 4.6: The sample mean and standard deviation of the total payment and yield at
maturity

m=1.5% Maturity payement Yield at maturity

Mean 164.1838 0.0214
Standard deviation 111.8120 0.0193

m=3.0% Maturity payement Yield at maturity

Mean 137.4475 0.0160
Standard deviation 67.4705 0.0166

m=4.5% Maturity payement Yield at maturity

Mean 123.1850 0.0118
Standard deviation 43.2121 0.0143
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Figure 4.5: The simulated density distributions of the total payment and yield at maturity
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Figure 4.6: The simulated density distributions of the NPV of the cash flows

Figure 4.6 and Table 4.7 show some statistics of the NPV of the cash flows with different

charge rates. In the sense of pricing, a negative NPV of the cash flow suggests that 1.5%

might not be sufficient while the fund with 4.5% annual charge rate might be deducted

(4.5% might be a reasonable charge rate in the case that reset option is treated optimally

since the segregated fund is frequently reset). The linear interpolation between 2.9% and

3% gives a charge rate of 2.941% which approximately generates a 0 NPV of the cash flows.

In the optimality case that reset frequently occurs, a large charge of 4.5% from the

segregated fund is annually deducted. In the 10%-threshold case, the charge rate is lower,

but the reset strategy is still aggressive and the policy is still expensive. Situations in our

example might not happen in practice. Nevertheless, for the following illustration, 2.94%

is considered as a proper annual charge rate for the segregated fund contract with reset

option.

Table 4.7: The sample mean and standard deviation of the NPV of the cash flows

m=1.5% m=3.0% m=4.5%

Mean -13.0757 0.4222 7.608783
Standard deviation 29.8358 33.4193 34.46849
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4.3 Hedging the segregated fund with reset option

Reset option may increase the variation of the benefit payoff and add more risk on the

segregated fund. Due to the uncertainty of the length of the contract and the guarantees,

the GMMB and GMDB payoffs may be significantly increased. Based on the simulation

assumption above, Figure 4.7 displays the distributions and percentiles of both standard and

extendable segregated fund contracts, and their means and standard deviations are shown

in Table 4.8. For the segregated fund without reset option, we use the same assumption

as in Figure 3.18 except we generate the asset price using r instead of µ. From Figure 2.2

the proper charge rate is about 1.5% under risk-neutral method. And the negative mean is

due to the insufficiency of 1% of the annual deduction. For the segregated fund with reset

option, the slightly positive mean may stem from the interpolation and sample error (since

we expect a zero mean).

From the distributions of those two types of contracts, the two side tails from the stan-

dard contract are fatter and longer than those from the extendable contract. Specifically, the

extreme loss of the extendable contract could be up to $200. Along with the larger standard

deviation from the extendable contract, it is evident that reset option adds considerable risk

to the segregated fund.

Table 4.8: The mean and standard deviation of the NPV of the cash flows

Standard extendable

Mean -3.3226 0.0658
Standard deviation 18.3270 33.3381

In the following we will illustrate the risk diversification effect of the dynamic hedging

approach. The monthly hedging strategy is employed. At the beginning of the contract, the

hedging strategy is set assuming a standard 10-year segregated fund contract. The hedging

re-balancing mentioned in Chapters Three is used. Every time upon reset, the previous

hedging strategy is terminated. At that point of time, the new capital is established to

support another assumed 10-year hedging processes. Note that we do not hedge the reset

option. The consideration of hedging the reset option is beyond the scope of this project.

Figure 4.8 gives the simulated results of the extendable segregated fund contracts with

or without hedging. The solid lines represent the distribution of the segregated fund without

hedging and the dashed lines represent the distribution of the segregated fund under monthly
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Figure 4.7: The density distributions and percentiles of the NPV of the cash flows

Table 4.9: The mean and standard deviation of the NPV of the cash flows with and without
hedging

Segregated fund Monthly hedging

Mean 0.0658 15.7677
Standard deviation 33.3381 23.2407
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Figure 4.8: The density distributions and percentiles of the NPV of the cash flows with and
without hedging

hedging strategy. Comparing their distributions, we can see that the one under monthly

hedging strategy is more concentrated with a relatively high density around zero. More

importantly, Monthly hedging strategy helps cut off the left tail which caps those extremely

bad NPV around $20. Based on their percentiles, selling the extendable segregated fund

contract could generate a poor NPV of the cash flows up to $200. However,under the hedging

approach, the NPV’s are quite stable for most percentages (from 0% to 90%). Table 4.9

shows the respective means and standard deviations. With annual charge 2.941%, selling

segregated fund with reset option is supposed to get a zero NPV of the cash flows in average.

Under monthly hedging strategy, a surplus of $15.77 is generated. And the volatility of the

cash flows is controlled by reduce the standard deviation by 30%.



Chapter 5

Conclusion

Segregated fund is a type of equity-linked insurance contract which offers some financial

guarantees. Compared to GMDB, GMMB dominates the risk while the situation might

reverse for the relatively old policyholders.

Dynamic hedging approach with an allowance for transaction costs utilizes the Black-

Scholes formula to replicate the value of the segregated fund. The H&T reserve is hold to

cover the hedge errors net of transaction costs and is assumed to be invested into the zero-

coupon bond which provides risk-free interest rate. The hedge errors net of the transaction

costs is reduced by incorporating Leland ’s volatility. Three hedging strategies with their

respective re-balancing costs were examined. Under annually hedging strategy the hedging

cost is re-balanced only at end of each year, while monthly and weekly hedging strategies

capture the details of the asset price movement. Along with the cash flow comparison, it

indicated that the NPV of the cash flows under annually hedging approach had greater

volatility than the one under monthly hedging approach. Dynamic hedging approach is

in favor of risk diversification. In our simulation illustration, Applying monthly hedging

approach to the standard segregated fund shortened the left tail of the distribution of the

NVP of the cash flows and reduced the cash flow variation.

Extendable segregated fund contracts offer reset options. The reset option adds more

complexity to the valuation of the segregated fund due to the uncertainties of the guarantees

and maturity date. A simplified form of an finite difference method was used to illustrate the

considerable value added by the reset option. The simulation was used to further analyze

the value of the reset option. Reset options bring more volatility to the cash flows of the

segregated fund. Our example showed that dynamic hedging still had positive effect on
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controlling the risk.

For the sake of convenience this project made some assumptions to illustrate our points,

which leaves much room for future study. For example, we used the Black-Scholes formula

to model the asset price. The parameters and interest rate are constant, which is unrealistic

for the segregated fund, the term of which is up to ten years or more. Stochastic models such

as regime-switching could be employed. Additionally, different approaches could be used to

model the reset option. Determining a more realistic reset strategy is another interest of

research.



Appendix A

Some proofs

To prove Equations (3.3) and (3.4), a couple of lemmas will be employs. The proofs of those

lemmas can be found in Toft (1996). To simplify the proofs, some notations are introduced

as

µ̃(t1, t2) = (µ − 1

2
σ2)(t2 − t1),

µ̄(t1, t2) = (r − 1

2
σ2)(t2 − t1),

and

σ̃(t1, t2) = σ
√

t2 − t1.

There are some lemmas which will be used:

LEMMA 1 for some constants A, B, C, D and E,

∫ ∞

−∞
exp

(
−1

2

(
Ax2 + Bx + C

))
Φ (Dx + E) dx

=

√
2π√
A

exp

(
−1

2

(
C − B2

4A

))
Φ

(√
A

A + D2

(
E − BD

2A

))
.

LEMMA 2 for some constants A, B, C, D and E,

59
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∫ x̄

−∞
exp

(
−1

2

(
Ax2 + Bx + C

))
Φ (Dx + E) dx

=

√
2π√
A

exp

(
−1

2

(
C − B2

4A

))
Φ

(
x̄
√

A +
B

2
√

A
,

√
A

A + D2

(
E − BD

2A

)
,− D√

A + D2

)
.

LEMMA 3 for some constants A, B, C, D, E, F , G and ρ,

∫ ∞

−∞
exp

(
−1

2

(
Ax2 + Bx + C

))
Φ (Dx + E,Fx + G, ρ) dx

=

√
2π√
A

exp

(
−1

2

(
C − B2

4A

))

×Φ

(√
A

A + D2

(
E − BD

2A

)
,

√
A

A + F 2

(
G − BF

2A

)
),

DF + Aρ√
(A + D2)(A + F 2)

)
.

A.1 The proof of Equation (3.3)

We begin with taking the conditional expectation on Equation (3.1),

E[H(t2)|St1 ] = Ke−r(T−t2)Φ (−d2(t1))

−Ke−r(T−t2)
E[Φ (−d2(t2)) |St1 ]

−E[St2 |St1 ]Φ (−d1(t1))

−E[St2Φ (−d1(t2)) |St1 ]. (A.1)

First,

E[St2 |St1 ] = St1e
µ(t2−t1). (A.2)

Second, using Lemma 1 and taking some transformation,
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E[Φ (−d2(t2)) |St1 ]

=

∫ ∞

−∞

1

xσ̃(t1, t2)
√

2π
exp


−

(
log x

St1
− µ̃(t1, t2)

)2

2σ̃(t1, t2)2


Φ

(
− log x

K + µ̄(t2, T )

σ̃(t2, T )

)
dx

=
1

σ̃(t1, t2)
√

2π

∫ ∞

−∞
exp

(
z2 − 2µ̃(t1, t2) + µ̃(t1, t2)

2

σ̃(t1, t2)2

)
Φ

(
−z − logK + µ̄(t2, T )

2σ̃(t2, T )

)
dz

= Φ

(
− log

St1

K + µ̄(t2, T ) + µ̃(t1, t2)

σ̃(t1, T )

)
, (A.3)

and

E[St2Φ (−d1(t2)) |St1 ]

=
1

σ̃(t1, t2)
√

2π

∫ ∞

−∞
exp

(
−z2 − 2(µ̃(t1, t2) + σ̃(t1, t2)

2)z + µ̃(t1, t2)
2

2σ̃(t1, t2)2

)

×Φ

(
−z − logK + µ̄(t2, T )

σ̃(t2, T )

)
dz

= St1e
µ(t2−t1)Φ

(
− log

St1

K + µ̃(t1, t2) + µ̄(t2, T )

σ̃(t1, T )

)
. (A.4)

Then substituting (A.2) (A.3) and (A.4) into (A.1) gives

E[H(t2)|St1 ] = Ke−r(T−t2) [Φ(−d2(t1)) − Φ(−d∗2(t1, t2))]

−St1e
µ(t2−t1) [Φ(−d1(t1)) − Φ(−d∗1(t1, t2))] . (A.5)

Taking the conditional expectation on (A.5) given St0 and discounting it back to t0 reaches

Equation (3.3).

A.2 The proof of Equation (3.4)

Taking the conditional expectation on Equation (3.2), we get
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E[TC(t2)|St1 ] =

∫ ∞

0

k

σ̃(t1, t2)
√

2π
exp


−

(
log x

St1
− µ̃(t1, t2)

)2

2σ̃(t1, t2)2




×|Φ(−d1(t2)) − Φ(−d1(t1))|dx

=

∫ ∞

−∞

k

σ̃(t1, t2)
√

2π
exp

(
z − (z − µ̃(t1, t2))

2

2σ̃(t1, t2)2

)

×|Φ(−d1(t2)) − Φ(−d1(t1))|dz

=

∫ z̄

−∞

k

σ̃(t1, t2)
√

2π
exp

(
z − (z − µ̃(t1, t2))

2

2σ̃(t1, t2)2

)

×|Φ(−d1(t2)) − Φ(−d1(t1))|dz

+

∫ ∞

z̄

k

σ̃(t1, t2)
√

2π
exp

(
z − (z − µ̃(t1, t2))

2

2σ̃(t1, t2)2

)

×|Φ(−d1(t1)) − Φ(−d1(t2))|dz, (A.6)

where

z̄ = σ̃(t2, T )d1(t1) − µ̄(t2, T ) − σ̃(t2, T )2 + logK.

Using Lemma 2, we get a closed form of the solution to Equation (A.6). Now taking the

expectation on Equation (A.6) given St0 and discounting it back to t0, and with the help of

Lemma 3, Equation (3.2) is proved.
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