
ON DESIGNING INTERACTIVE SYSTEMS

THAT SUPPORT CREATIVE PROBLEM SOLVING

IN EXPERT DOMAINS

by

Christopher G. Jennings

BSc, McMaster University, 1999

MSc, McMaster University, 2002

a Thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
in the School

of
Computing Science

c© Christopher G. Jennings 2010
SIMON FRASER UNIVERSITY

Fall 2010

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.



APPROVAL

Name: Christopher G. Jennings

Degree: Doctor of Philosophy

Title of Thesis: On Designing Interactive Systems That Support Creative
Problem Solving in Expert Domains

Examining Committee:

Chair: Dr. Torsten Möller
Associate Professor, Computing Science

Dr. Arthur E. Kirkpatrick
Senior Supervisor
Associate Professor, Computing Science

Dr. Robert F. Hadley
Supervisor
Professor, Computing Science

Dr. D. Kevin O’Neill
Supervisor
Associate Professor, Education and Technology

Dr. Robert F. Woodbury
Internal Examiner
Professor, Interactive Arts and Technology

Dr. Peter Johnson
External Examiner
Professor, Computing Science, University of Bath

Date Defended/Approved: December 17, 2010

ii



Last revision: Spring 09 

 

Declaration of 
Partial Copyright Licence 
The author, whose copyright is declared on the title page of this work, has granted 
to Simon Fraser University the right to lend this thesis, project or extended essay 
to users of the Simon Fraser University Library, and to make partial or single 
copies only for such users or in response to a request from the library of any other 
university, or other educational institution, on its own behalf or for one of its users.  

The author has further granted permission to Simon Fraser University to keep or 
make a digital copy for use in its circulating collection (currently available to the 
public at the “Institutional Repository” link of the SFU Library website 
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing 
the content, to translate the thesis/project or extended essays, if technically 
possible, to any medium or format for the purpose of preservation of the digital 
work. 

The author has further agreed that permission for multiple copying of this work for 
scholarly purposes may be granted by either the author or the Dean of Graduate 
Studies.  

It is understood that copying or publication of this work for financial gain shall not 
be allowed without the author’s written permission. 

Permission for public performance, or limited permission for private scholarly use, 
of any multimedia materials forming part of this work, may have been granted by 
the author.  This information may be found on the separately catalogued 
multimedia material and in the signed Partial Copyright Licence. 

While licensing SFU to permit the above uses, the author retains copyright in the 
thesis, project or extended essays, including the right to change the work for 
subsequent purposes, including editing and publishing the work in whole or in 
part, and licensing other parties, as the author may desire.  

The original Partial Copyright Licence attesting to these terms, and signed by this 
author, may be found in the original bound copy of this work, retained in the 
Simon Fraser University Archive. 

Simon Fraser University Library 
Burnaby, BC, Canada 



 

 

 

 

STATEMENT OF 
ETHICS APPROVAL 

The author, whose name appears on the title page of this work, has 
obtained, for the research described in this work, either: 

(a) Human research ethics approval from the Simon Fraser University 
Office of Research Ethics, 

or 

(b) Advance approval of the animal care protocol from the University 
Animal Care Committee of Simon Fraser University; 

or has conducted the research  

(c) as a co-investigator, collaborator or research assistant in a 
research project approved in advance,  

or 

(d) as a member of a course approved in advance for minimal risk 
human research, by the Office of Research Ethics. 

A copy of the approval letter has been filed at the Theses Office of the 
University Library at the time of submission of this thesis or project.  

The original application for approval and letter of approval are filed with 
the relevant offices. Inquiries may be directed to those authorities.  

 
Simon Fraser University Library 

Simon Fraser University 
Burnaby, BC, Canada 

 
Last update: Spring 2010 



Abstract

Finding creative solutions to ill-structured problems is integral to the work in many expert
domains. A common flaw of software tools that support this kind of work is to support
mainly the detailed specification of a selected solution. To extend this support to the other
processes of ill-structured problem-solving, I propose ten design principles, synthesized from
results in diverse fields of research. These processes emphasize generating and comparing
many potential solutions. To evaluate the principles’ effectiveness, I built two prototypes;
quantitative and qualitative results from evaluations demonstrate benefits, including faster
task completion and the consideration of a wider variety of solutions. As there is disagree-
ment within human-computer interaction on how to conduct such broad-scoped research,
I introduce a generic framework modelled on the legal system and Thagard’s explanatory
coherence theory to structure this evidence into a compelling argument for the principles’
wider adoption.

Keywords: problem solving; creativity support; design cognition; design space explo-
ration; interaction techniques; evaluation methods
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For my own bright-eyed Athena,
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“You see what I have done?” he asked the ceiling, which
seemed to flinch slightly at being yanked so suddenly
into the conversation. “I have transformed the problem
from an intractably difficult and possibly quite insoluble
conundrum into a mere linguistic puzzle. Albeit,” he
muttered, after a long moment of silent pondering, “an
intractably difficult and possibly insoluble one.”

Dirk Gently’s Holistic Detective Agency
Douglas Adams (1952–2001)
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Preface: The Modern Hephæstus

Human beings are compelled to render their creative thoughts in physical form: to create
art and record knowledge, to design useful artifacts, and to find solutions to the problems
that face society. For some, this productive urge seems nearly as strong as the reproductive
one: creative people often say, for example, that they would practice their craft even if they
could not earn a living doing so [60, 73, 134]. The connection between these two urges is
not simple coincidence: producing art was a way for our ancestors to demonstrate their
suitability as mates [60]. Moreover, these urges both fill a similar role in our lives. Both
involve a struggle through difficulty to nurture something that is both unique and yet also
a reflection of our own qualities—and both offer the hope of a limited kind of immortality
to a species that recognizes the temporary quality of existence.

The primacy of the productive urge has been recognized since antiquity. The ancient
Greeks—widely recognized as having an astonishing list of artistic, scientific, mathematical,
social, and technical achievements [67,77,116,237]—expressed a clear understanding of the
urge in their myth of the birth of Athena, goddess of wisdom, warfare, and crafts. The
Greeks told many versions of this myth [27], but it unfolds roughly as follows:

Zeus, king of the gods, had just married his first wife, the wise Titaness Mētis, when he
was brought disturbing news. An oracle of Gæa prophesied that their second child would
grow to usurp Zeus’s throne—just as Zeus did to his own father, Cronus. Zeus, not known
for restraint, was compelled to consummate the marriage anyway; but afterwards concern
began to gnaw at him.

Zeus knew that his father Cronus had been the subject of a similar prophecy. Cronus
decided to swallow his children to prevent their ascendancy—but Cronus had been tricked.
In place of infant Zeus he was fed a swaddled stone: Zeus was hidden away, grew up in
secret, and eventually fulfilled the prophecy and seized power. Not wanting to fall for a
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similar ruse, Zeus decided that the best course of action was instead to swallow the would-
be mother, thus preventing children altogether. He called his bride to his side and offered to
play a favourite game, in which they took turns assuming different forms. But when Mētis
changed herself into a buzzing fly, Zeus gobbled her up in a single mouthful. Surprisingly,
Mētis did not resent this betrayal. She eventually lodged somewhere in Zeus’s head, where
she shared her thoughts with him.

Some time later,1 Zeus began to suffer from terrible headaches. These got progressively
worse until finally Zeus ordered Hephæstus (god of technology, among other things) to split
open his head with a double-headed axe in order to relieve the pain. Hephæstus obeyed, and
no sooner did he complete this impromptu craniectomy than out sprang wise and beautiful
Athena from Zeus’s open forehead, a grown adult wearing full battle dress and carrying
a spear! But Zeus had nothing to fear from the first born of Mētis. Prophecy averted,
bright-eyed Athena went on to become Zeus’s favourite child: the only one allowed to don
his aegis and wield the mighty thunderbolt [99, p. 29].

Now to understand this story as something other than a bizarre reversal of the black
widow archetype, a further bit of information is required. In ancient Greek, mētis (μη̃τις)
means “crafty thought”: a combination of cunning and wisdom. For the Greeks, this was a
highly prized quality [112, p. 377]: the product of mētis could be found in many forms, from
the sculptor’s art to a brilliant military stratagem. Indeed, Odysseus’s infamous perfidy
of the Trojan horse (in which Greek soldiers gain enter the city of Troy by feigning with-
drawal and then hiding within a statue that was apparently left to appease the gods), is the
canonical example of mētis. Today this kind of cleverness is often described with the trite
expression “thinking outside of the box”.

With this understanding of mētis, an interpretation of the birth of Athena as a metaphor
for the creative process emerges: Humankind, represented by Zeus, feels compelled to quench
the productive urge. By internalizing mētis, the urge can be satisfied through artistry and
craftsmanship [10,27], endeavours that draw thoughts from the mind into material existence
(Athena, grown and armoured). The process, however, is painful: determination, stamina—
and perhaps outside assistance—are required to see it through.

This description of the creative process is as relevant today as it was in antiquity. Indeed,
the Athena story contains two themes that have particular relevance to this dissertation. The

1Presumably much longer than the usual ten month term of human pregnancy, since Hephæstus is present
at Athena’s birth but is the child of Zeus and a later wife, Hera.
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first of these themes is the important role that technology, represented by Hephæstus’s axe,
can play in helping people to release their creativity productively. Much of that technology
is little changed in its essential form—while the Greeks used styli to write on wax-coated
tablets, today we use them to write on pressure-sensitive electronic displays. A notable
difference is the invention of the stored-program computer.2 The stored-program computer,
with its ability to modify its own data and behaviour, has the potential to play the role of
Hephæstus rather than the axe: software applications can be active assistants and not just
passive tools.

The second, related, theme is the importance of the long and difficult process that
comes before an artifact can appear in its finished form. The myth specifically describes
the sudden insight that may follow a period of incubation, a phenomenon that modern
scholars have been interested in since at least Poinecaré [212], although there is still no
agreement as to its precise nature [55,207,238,274]. But regardless of whether the products
of creativity are the result of insight or not, there is a tendency to overlook the difficult
early work and—like battle-ready Athena—ascribe the finished product to genius, luck,
or divine inspiration. This error has been repeated, though perhaps only by accident of
history, in the design of contemporary software applications that aim to support this kind
of work. These applications are designed for the final task of implementing the solution
rather than supporting the difficult prerequisite work of deciding which solution to pursue.
This limitation is left over from a time when memory was scarce, compute cycles were
expensive, and details had to be worked out offline. Today, computers are cheap and readily
available. By shaking off this old mindset, support systems can be designed to support the
entire process of productive work, and not just the final pangs. Who knows what progeny
of Mētis may follow?

2Astonishingly, the Greeks themselves had at least one fixed-program analog computer, the Antikythera
Mechanism [77].
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Chapter 1

Expert Work and Its Support

1.1 Introduction

Computers are powerful tools for supporting and extending human ability. In moments they
can calculate a table of values that would once have taken a lifetime of painstaking work.
Given more time, they can tirelessly plug their way through millions of possibilities to find
efficient shipping routes, schedule events, or crack enciphered messages. No human could
possibly compete with a computer at completing tasks like these, because these problems
play to the computer’s strength: the ability to manipulate a sequence of symbols according
to an unambiguous procedure, and to do so extremely quickly. But there are also many
tasks that do not play to this strength: tasks where there is no one best answer, no set way
to proceed, and where ambiguity, subjectivity, and nuance are defining features. Examples
of such tasks abound: writing a stirring song, designing an energy-efficient home, preventing
violent crime, stopping the spread of malaria in developing countries—or even just deciding
what to cook for dinner.

Computers cannot complete tasks of this second kind, but they can play an important
role by supporting people who do: a computer cannot choose the best plot for a novelist’s
next story, but the invention of word processing makes it possible to edit a manuscript as the
plot evolves without labouriously retyping each draft. Support of this kind is tremendously
valuable—and yet computers could still do more. A major limitation of most contemporary
support tools is that they are restricted to document editing, that is, editing a structure that
represents the final product of a task. This places the focus on the result of productive work
instead of on supporting the work itself, which includes the larger processes of navigating

1
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through the subjective choices that the computer cannot make. Since many important
aspects of these larger processes are not directly represented in the end product [39,188,275],
computer support systems will remain incomplete as long as this focus on final products is
maintained. By shifting support to include the larger productive processes, support tools
can play a meaningful role throughout the whole of productive work.

1.2 Expert Work

This dissertation proposes design principles for tools that include support for the larger
productive processes. The focus is on support tools for a specific group, the group engaged
in what I call creative problem solving in expert domains. By “expert domain”, I do not
mean that everyone working in the domain is an expert, but rather that the domain itself is
strongly associated with specialized knowledge (expertise). For the sake of brevity, I refer
to the tasks in these domains as expert work (or expert problem solving when emphasizing
that aspect). Also for the sake of brevity, I will often refer to the people who work in these
domains generally as “experts”, but unless this is specifically contrasted with novices it
should be understood that this refers to the type of work, not the worker.

Domains that can be described as expert work share at least these six characteristics:

1. The work is productive in the sense that it leads to the creation of artifacts.

2. The work requires specialized knowledge, typically obtained through formal education.

3. The work is intellectually challenging. It requires a broad range of intellectual skills
and involves the gathering, organizing, analyzing, and synthesizing of information.

4. The work features creative problem solving as a central activity.

5. The skills used in the work are predominantly non-recurrent [181] (as opposed to
the performance of well-practiced recurrent skills by, for example, pianists or tennis
players).

6. The product of the work is pragmatic rather than universal; the immediate goal is not
to identify an abstract truth but to answer the needs of a specific situation.

Some work categories that fit these criteria include design, engineering, writing, knowledge
work, social planning, health care, education, experimental research, and law.
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Other names have been used to describe the group I call expert workers (or essentially
the same group). The term designer, interpreted liberally, is on the mark. However, for
many people the mental image conjured by this term directs them away from the liberal
interpretation and towards a more narrow one. Thus it is often counterproductive to describe
expert work as design, unless in connection to a specific domain (“user interface design”).

Schön uses professional where I have used expert [228]. This term captures many of the
right qualities, but it can also imply ethical, legal, and remuneratory implications which do
not apply equally to all of the domains I have in mind. As well, the term is also used in
some domains, such as sport, that do not meet the criteria for expert work.

Two notable exclusions from the domains included in expert work are art and science.
(That is, art and science in the large. There are certainly aspects that qualify as expert
work; see Chapter 5 for one example.) This restriction is due mainly to the sixth of the
criteria listed above. Expert work produces a specific statement about a specific (contextu-
alized) question. In contrast, a work of art makes many different statements, all of which
are acceptable so long as they come from valid interpretations of the artifact [17]; science
produces general statements about specific observations.

Still, traditional views on the nature of art, science, and design can be questioned
(e.g., [61,63,95]). The definition given here is meant as a practical guide, not as dogma. It
is derived from the common features of the domains studied in the theoretical foundation of
this dissertation. There will be domains that match this list yet are not amenable to algo-
rithmic support for other reasons. This issue will be explored further in the coming pages.
There are also domains (like art) that overlap significantly with expert work and yet are not
a complete match for the list above. The extent to which the design principles I develop
apply to such domains ultimately depends on how closely they follow the processes used in
expert work (see Chapter 2), because it is those processes which are being supported.

1.3 Contemporary Support for Expert Work

Since the goal of this dissertation is to improve computer support for expert work, it is
first necessary to understand the nature and limitations of current support. Contemporary
experts in creative problem-solving domains have a number of powerful software tools at
their disposal to support their work. Web browsers and search tools help them to discover
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relevant information from an immense range of sources. Databases, spreadsheets and sta-
tistical packages support the tasks of managing and analyzing data. Word processors and
presentation packages help present recommendations to others. Although these tools are of
proven utility, in their current forms they share a flaw that limits their potential. All of these
tools focus on end products rather than process. While the products are important, expert
work consists of more than executing the detailed steps needed to produce a work product.
The most challenging problems appear in the larger processes of choosing and sequencing
those steps. Current software provides little support for these higher-level processes.

A useful taxonomy of expert work processes is provided by Jones [129], who describes
three types of activities: divergence (the generation of possibilities, mainly to define the
limits of the problem), transformation (the reuse or cross-pollination of partial solutions),
and convergence (refining a solution into its final form). Contemporary applications typi-
cally lack good support for divergence and transformation. However, they do provide strong
support for convergence in the form of an accumulation of small, precise edits to a repre-
sentation of the end product combined with error-correction mechanisms such as undo and
spelling checks.

However, the problems solved by experts are usually poorly defined, and for this reason
divergence focuses on generating alternatives as a way of defining the bounds of a problem
and identifying potential issues. The advent of the Web and powerful search tools has
brought some support for divergence by providing a way for experts to generate seed alter-
natives. But experts also need to collect, compare, and combine these alternatives. Web
browsers, which largely view documents as unrelated entities, provide little explicit support
for these tasks. (They do provide some support for collection, by allowing the user to create
bookmarks and open a link in a separate window—although the trend towards organizing
documents as tabs with mutually exclusive visibility makes them more difficult to compare
than the juxtaposition of windows.)

Like divergence, the activity of transformation centres around alternative solutions. But
whereas the goal of divergence is to define the bounds of the solution space, the goal of
transformation is to generate, compare, combine, and build on partial solutions within
those bounds in order to find the form that the eventual solution will take. Managing and
navigating this set of partial solutions, and finding ways to express elements of one partial
solution in another, are both challenging aspects of expert work, and contemporary appli-
cations provide almost no support for these tasks because they only model a single solution.
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For example, while undo/redo does allow some movement between solution states, it is not
an effective tool for collecting, comparing and combining alternatives. One limitation is
that it restricts movement to a single dimension of time: one cannot create a branch in the
undo history without losing some alternatives. Another limitation is that, since only one
alternative is accessible at a time, the burden for storing and retrieving the relevant points
of comparison is left to the user. Finally, because it is intended for error correction, the
granularity of the undo/redo command is based on edits and not partial solutions. It may
take many applications of the command to move between two relevant states, and it is the
user’s responsibility to recognize when a relevant state is reached.

1.4 A Historical Overview of Expert Support Systems

Although current support does not routinely encompass all of the processes of expert work,
the historical trend has been an expanding role for computer support. Indeed, supporting
domain experts has always been a primary aim of computer technology (although recent
years have also seen a surge of interest in facilitating social relationships). The earliest
support systems targeted a limited set of domains: primarily science, mathematics, and
military applications. The support they gave was equally limited, coming mainly in the form
of the direct computation of specific results that would become part of a larger product.

This limited level of support persisted until the 1960s, due in large part to hardware lim-
itations. For example, computing pioneer Alan Turing’s last article [263], published in 1952,
proposed1 the reaction-diffusion model to describe how patterns like those seen in animal
coats could arise naturally from homogenous conditions. As part of the paper, Turing used
a Ferranti Mark I computer to solve the differential equations needed to generate an illustra-
tion of a sample coat pattern. Figure 1.1 shows such an illustration, but Turing’s illustration
was based on far fewer samples owing to memory constraints. With the modern equivalent
of 1.25 KiB of primary storage, computers of this era were simply not sophisticated enough
to provide broader support for expert work.

If the hardware was not up to the task, human imagination was, and some visionaries
already foresaw the potential for an expanded role for computer support of expert work. In
1945, Vannevar Bush wrote a popular article in which he described a hypothetical device to

1It was finally verified in 2006 that Turing’s reaction-diffusion morphogenesis actually occurs in na-
ture [236].
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Figure 1.1: A simulated animal coat pattern. This was created using a modern implemen-
tation [122] of Turing’s reaction-diffusion model of morphogenesis.

augment the human mind [33] (Figure 1.2). The device, called the Memex (thought to be a
portmanteau of memory index [281]), was essentially a desktop-sized personal information
processing system that could store books, personal communications, and other records,
and organize them with “a mesh of associative trails” [33] analogous to what is now called
hypertext. In 1960, J. C. R. Licklider [161] proposed that humans and computers combine
their strengths in a real-time symbiotic partnership that would involve computers in every
stage of expert work, not just data processing.
Important steps towards Licklider’s vision were already being realized by 1963 in the

form of Sutherland’s Sketchpad [130,251] interactive drawing application. Sketchpad marked
a transition from text-based interfaces to graphical ones, from batch processing to real-time
interactive systems, and from tools that compute numerical results to tools that can repre-
sent the entire product of expert work. At about the same time, Englebart was establishing
a research program to investigate ways that computers could support knowledge workers.
This program culminated in the system known as NLS, which featured full-screen interac-
tivity (as opposed to line-oriented—or none), Englebart’s mouse as input device, and the
first use of trees to represent the outline of a body of text [128].
While Sketchpad would eventually lead to modern drawing and drafting applications, the

Star Information System [128] (see Figure 1.3) adapted the contributions of Sketchpad and
NLS to produce a revolutionary system aimed at supporting knowledge workers generally.
The Star was designed to be understood and used directly by domain experts without
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Figure 1.2: The Memex desktop. Notes and documents are microfilmed by placing them on
a glass plate (left). Material is filed and recalled using code numbers entered with the control
pad (right). Slanted viewers magnify stored microfilm records for display (top-centre). An
associative link can be created between two documents displayed side-by-side. Additional
microfilm reels are stored in drawers (bottom).

Figure 1.3: The Xerox 8010 Star Information System. Note: Courtesy of Xerox Corporation.
Reprinted with permission.
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requiring an intermediary or specialized training as a computer operator. Prominent support
features include the use of domain-appropriate metaphors; generic commands; real-time
interactivity; full-screen editing using the What You See Is What You Get (WYSIWYG)
principle to allow the user to precisely visualize work products; integrated applications that
support data sharing; and using distributed computing to support collaboration.

The Star had a pervasive and lasting impact on the computing industry generally and on
the applications used by knowledge workers specifically. The most popular commercial word
processing application today, Microsoft Word, is a direct descendant of the word processors
of the Star and its experimental predecessor, the Alto [128]. However, while commercial
applications have greatly expanded on the functionality of their predecessors in the Star
and elsewhere, little has been done to extend the scope of their support beyond the stepwise
implementation of a work product.

1.5 Improving Support for Expert Work

Although supporting the wider range of expert work processes has been largely neglected
by commercial vendors, HCI researchers have taken steps to address this issue. To date,
however, this has not produced a revolutionary shift similar to the one that marked the
transition between computing specific results and constructing work products. Researchers
have generally opted to limit their focus to the translation of a single concept or perspective
from the literature on expert work processes into software support. For example, of the
projects that have emphasized alternatives, some have focused on supporting the generation
or discovery of alternatives [141,245], while others have focused on collecting and navigating
alternatives [137], and still others have focused on comparing, selecting, and combining
alternatives [254]. Although this piecemeal approach has been productive, it is hard to
generalize from these individual results to the best overall strategies for the successful design
of expert support systems.

The work presented here directly addresses this gap by considering a more holistic view
of expert support. This begins with a survey of important perspectives on problem-solving
and expert work in Chapter 2, including the psychology of problem cognition, strategies em-
ployed by experts in their work, and creativity research. An important purpose of this survey
is to examine in more detail the processes of divergence and transformation which have tra-
ditionally received less attention than convergence. The results highlight the considerable
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gulf between these two processes and the convergent process in terms of the cognitive styles
used and the activities performed. That these should be distinct is not surprising considering
that divergence and transformation involve primarily creative processes while convergence is
largely analytical. These are qualitatively different modes of thought, although the popular
media has exaggerated and mythologized some of the surrounding science, such as brain
hemisphere differences [110,223].

The review reveals several patterns and commonalities that could be exploited to support
expert work, including the need to juggle many versions of a solution as it develops, the
need to explore and experiment freely with ideas, the need to reconsider the problem as
well as the solution, and the importance of context. In Chapter 3, these are weaved back
together into a set of design principles to aid the construction of support systems. These
principles should aid designers in thinking about, designing, and communicating systems
that better support expert work. The rest of the dissertation is an investigation into how
well the principles meet this goal. Chapter 4 considers the best way to evaluate this claim.
In particular, it argues that the evaluation methods that are most readily acceptable to the
HCI community are not an effective way to evaluate the kinds of broad claims made by this
dissertation. Instead, it suggests an alternative framework based in part on how evidence is
evaluated in legal proceedings.

Chapters 5 through 9 put this framework into practice, developing evidence to support
the effectiveness of the principles. The argument is built around two systems designed in
accordance with the principles. These two systems (XDS and Strange Eons) complement
each other: they deal with different domains and implement the various principles to dif-
ferent degrees using different approaches. At the same time, the second system serves to
strengthen and clarify some results from the evaluation of the first system by generalizing
and reapplying one of that system’s major features, consequence displays.

Applying the principles to the design of these systems led to the development of new
interaction techniques for supporting expert work—notably halo menus and consequence
displays. Moreover, small studies confirm that the systems yield benefits for users. In
particular, users were found to explore more alternatives and to produce better overall
outcomes as a result of using the systems. Taken together, the success of these two cases
provides convincing evidence that the principles offer fruitful, effective guidance for the
design of expert support systems, and that the resulting systems provide benefits to their
users beyond those that could be achieved by more traditional designs.
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Finally, Chapter 10 returns from particular implementations to the larger goal of help-
ing system designers take the next step in the historic progression of supporting expert
work. Some open problems are revisited, and some of the possible limitations of putting the
principles into practice are discussed. Still, the overall conclusion is that designing support
systems based on the principles developed here helps designers extend support for expert
work from assembling a final product to helping them discover what that product will be.



Chapter 2

Divergence:
Theoretical Background

2.1 Introduction

Many research areas touch on subjects related to expert work. This review focuses on work
recommended by at least one of two factors: that it is a promising target for possible software
support, or that it is relevant to supporting the processes of divergence and transformation.

The discussion is divided into three major topics: the psychology of problem-solving,
the methods used by expert workers in practice, and results from the related field of cre-
ativity support. To a large degree, expert work involves creative problem-solving, and in
particular with solving problems where both the criteria and the goals are poorly defined.
An understanding of the psychology surrounding this kind of problem solving establishes
limits and helps to identify areas where support may be most welcome. Looking at the
methods already employed by experts provides insight into how these limitations can be
worked within and around. Taken together, the result is a firm theoretical foundation for
understanding and supporting expert work.

2.2 Ill-structured Problems

One of the most challenging aspects of expert work is solving problems that fall in the class
known as ill-structured [219] or wicked [222]. Ill-structured problems are characterized by
ambiguity, incomplete information, and multiple solutions. The other class of problems,
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called well-structured or tame, is characterized by problems that are puzzle-like: they have
well-defined goals and rules and they can be solved (at least in principle) by exhaustive
search. Rittel and Webber [222] described ill-structured problems in the context of social
planning. They identified four general features shared by problems in this class:

1. There is no single goal state.
Ill-structured problems are defined by both hard (non-negotiable) and soft (negotiable) con-
straints. While a problem such as a block puzzle has only one solution state, because of
soft constraints ill-structured problems have multiple acceptable solutions. Soft constraints
cannot be simultaneously optimal (one cannot have maximum freedom and maximum se-
curity). The task is therefore not to find the solution, but to compare solutions and choose
the best compromise.

2. There are no objective, universal metrics for the constraints.
Stakeholders do not agree on the relative importance of competing constraints. Comparing
solutions is necessary to make a selection, yet the attributes of interest cannot be objectively
measured. How can we measure attributes such as happiness, quality, fairness or safety?
If we could measure them, how would we agree upon how much is “enough”? The answer
depends not just on objective facts, but on one’s social values and the influence of others.

3. The problem cannot be effectively isolated or decomposed.
Ill-structured problems are never lonely: each can be considered the symptom of another ill-
structured problem. For example, rather than design an experiment around a small budget,
we might instead question the priorities of the budget itself. This problem-symptom duality
is a consequence of soft constraints. A problem with only hard constraints has no ambiguity
and is therefore well-structured: either all of the hard constraints can be met, or they cannot.
Soft constraints, on the other hand, are necessarily subjective and ambiguous: choosing the
best value for the constraint becomes its own ill-structured problem. The result is a web
of problems that form complex feedback loops. Choosing a solution for problem A changes
the constraints on its neighbours B and C. Adapting C to meet the new constraints has
implications for its neighbours, including A. It also implies that ill-structured problems
cannot be broken down into simpler (well-structured) subproblems. Any decomposition
must include at least one ill-structured subproblem. Problem-solving strategies which rely
on recursive decomposition into subproblems cannot work for ill-structured problems. Even
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worse, by considering the problem in the context of its neighbours, it is possible to recursively
grow the problem to include an arbitrary number of related problems.

4. Each problem instance is unique.
The resources available to a problem, and therefore the constraints placed upon it, vary
with the context in which an ill-structured problem occurs, as do the states of the inter-
connected problems. Every ill-structured problem is therefore unique. Solutions are not
repeatable. One can distinguish general patterns, and collect useful strategies [5] and con-
crete examples [228], but—unlike well-structured problems—ill-structured problems do not
have a definitive answer.

Since ill-structured problems are so important to expert work, much of this dissertation
is devoted to discussing them, either explicitly or implicitly. For example, the taxonomy
of expert processes introduced in Chapter 1 can be used equally well as a classification
scheme for ill structured problem-solving techniques [129]. This does not mean that well-
structured problems do not occur in expert work, or that they are necessarily easy to
solve. However, techniques for solving well-structured problems are already familiar to most
computer scientists: any book on algorithm design will discuss them. Techniques for solving
ill-structured problems are less likely to be familiar. Moreover, while typical techniques for
solving well-structured problems are ineffective for solving ill-structured ones [222], tech-
niques for solving ill-structured problems can be applied effectively to well-structured ones
as well [149,259,265]. So while the focus may be on ill-structured problems, the presence of
well-structured problems in expert work is neither forgotten nor excluded.

2.3 Factors That Influence Problem Solving

Both well- and ill-structured problem solving have been extensively studied by psychologists,
and a number of factors that can affect the problem-solving process and its outcomes have
been identified from their work. Many of these factors can be grouped together under the
general category of problem representation. Both internal and external representations of a
problem can dramatically affect its difficulty and the solutions that are discoverable [30,139,
211]. This is illustrated by a well-known topographical puzzle dating back to at least the
early 1900s [170,261]. In its most general form, the puzzle consists of an n×n grid of points,
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and the goal is to connect all of the points with as few straight lines as possible, without
lifting the pencil. Figure 2.1 shows the puzzle and a solution for the most common n = 3
form. The puzzle’s difficulty arises from the fact that most people incorrectly assume that
the lines must intersect at one of the points, as if the points were squares on a game board.
It is impossible to discover the minimal solution of 2n− 2 lines using this representation of
the problem.

It is unclear why people misrepresent the problem in this way, although a number of
explanations have been offered. Some versions of the puzzle, such as the one from which the
illustration in Figure 2.2 was taken, intentionally prime the solver with the wrong strategy,
but this is unnecessary. Even without priming, most people are unable to solve the problem
in less than ten minutes, if at all [32,272]. A common alternative to the priming explanation
argues for a perceptual origin (the solver fixates on the boundary of the square induced by
the law of prägnanz) [226]; evidence of a cognitive explanation has also been put forth [272].

While priming may not be be a factor in the difficulty of the nine points puzzle, there
is a tendency for representations and strategies to persist from one situation to the next.
Persistence effects can be both helpful and harmful. Appropriate transfer can make problem
solving more efficient, but inappropriate transfer can make problem solving less efficient,
lead to low quality solutions, or even prevent solving the problem at all.

This dual nature is illustrated by the phenomenon of entrenchment, also called persis-
tence of set or the Einstellung effect, in which earlier problem solving sets the approach to
future problems. Luchins studied this phenomenon extensively using problems that asked
participants to measure a quantity X of water using three jars of differing volumes A, B,
and C [173]. He broke participants into two groups: an experimental group that was given
a series of “practice” problems whose only solution was X = B − A − 2C, and a control
group that did not receive these problems. When participants in the experimental group
were subsequently given a problem that allowed both X = B − A − 2C and the simpler
solution X = A + C, they quickly but mechanistically reproduced the more complex solu-
tion. In contrast, virtually all participants in the control group produced the simpler A+C

solution. The phenomenon appears to be easily manipulated. For example, Luchins found
that when the experimental group was given the simple warning “don’t be blind”, it reduced
the incidence of the suboptimal solution by more than half. Support tool designers might
exploit this by making the user more aware of alternatives, either by reminding them of their
possibility or by explicitly pointing them out, and thereby reduce the risk of entrenchment.
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Figure 2.1: A problem whose solution depends upon appropriate representation. The nine
points problem (left), and a solution (middle). A three line solution is also possible if the
dots are treated as discs rather than points (right).

Figure 2.2: In Puzzleland: Christopher Columbus Shows Some Egg Tricks, Sam Loyd, pub-
lished 1914. Black-and-white etching. This illustration accompanies Loyd’s presentation of
the nine points puzzle [170, p. 301]. It primes the reader with an incorrect representation in
an effort to make the problem harder to solve. Note: From S. Loyd’s Cyclopedia of Puzzles
(The Lamb Publishing Company, 1914). Public domain.
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Related to entrenchment is another source of interference due to prior experience called
functional fixedness [59]. This refers to the tendency to fixate on one function of an object
while ignoring less obvious uses. The result is an incomplete problem representation. For
example, a number of verbal puzzles turn on the ambiguous use of words with multiple
meanings where an incorrect meaning is more salient than the correct alternative. Here is
a characteristic example (pause after reading it if you want to give it a try):

A woman married ten different men from her home town. She has never been
divorced, and all of the men are still living, yet she has never broken any laws.
Explain how this is possible.

As is often the case with problems involving functional fixedness, this example is insoluble
as long as the fixation holds (in this case, on the most salient meaning of married), but it
is obvious once the fixation is broken.

Like entrenchment, functional fixedness is sensitive to context. In one set of experiments,
simple changes to the verbal label used to describe an object (e.g., “tacks” versus “box of
tacks”) significantly increased the number of solutions discovered by participants when the
label suggested relevant functions [85, 86]. This suggests that support systems should take
care that the affordances offered by their objects are easily perceived [83,84,201] (see p. 22).
This may be difficult, however, since ill-structured problem solving often involves finding
unexpected applications for resources. Alternatively, designers might seek to avoid making
restrictive affordances preferentially salient.

Another factor of problem difficulty related to representation is the ability to detect
isomorphisms. Problems that are isomorphic have a common underlying structure but
different representations. As a result, a solution for one problem can be adapted into a
solution for any of its isomorphs if the common structure is recognized. For example,
in computing science the members of the well-known class of NP-complete problems [81]
are conjectured to be polynomial-time isomorphic to each other [18, 104]. While there is
no practical (sub-exponential time) algorithm that can solve NP-complete problems, if a
practical algorithm could be found for just one of them, the conjecture states that for any
of the other problems there exists a polynomial-time conversion for the input that would
allow the second problem to be solved using the more efficient algorithm.

Rigorous isomorphism is a characteristic of well-structured problems. However, ill-
structured problems may have partial isomorphs, and the analogical transfer of solutions
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between partial isomorphs can still be successful as long as the partial isomorphs have
at least as much structural overlap as structural difference [227]. This is not that tall a
hurdle, so it is not surprising that analogical transfer is also an important component of
ill-structured problem solving [271].

Isomorphism and analogical transfer are of interest because even modest changes in the
representation of a problem can dramatically change its difficulty [139]: difficult problems
may be solved indirectly through easier (partial) isomorphs. In practice, though, it is also
difficult to recognize the common structure linking isomorphic problems [216, 217], so the
problem may be no easier to solve overall.

Papert [206] and Kay [130,131] suggest that the key to successful problem representation
is to provide a context in which the most salient representations are also the most relevant.
They respectively link problem representation to Piaget’s [211] and Bruner’s [29,30] theories
of cognitive development.

Jean Piaget developed a comprehensive theory of human intelligence, but he is known
primarily for his four-staged theory of cognitive development [211]: The sensorimotor stage
lasts from birth to about eighteen months. In this stage, infants construct an understanding
of the world by coordinating sensory input with physical action. By the end they understand
that there are objects separate from themselves and that objects have permanence (that is,
they continue to exist even when they cannot be seen). The sensorimotor stage is followed
by the preoperational stage, which lasts until about age seven. The child begins speaking,
and learns to represent objects using images and words. Rudimentary reasoning develops,
but the child makes many logical errors, such as centration (incorrectly focusing on one
aspect of a problem to the exclusion of others) and transductive reasoning (for example,
fearing that because water is sucked down a bathtub drain, they will be as well). The next
stage is the concrete operational stage, which lasts until about age 11. During this stage,
the child learns to make appropriate use of logic, but can still only reason about concrete
objects. Entry into the last stage, the formal operational stage, is marked by the acquisition
of abstract reasoning.

For Papert, Piaget emphasizes that children can only construct new kinds of reasoning
using the kinds of reasoning currently available to them [206, pp. 156–176]. The key to
teaching a “difficult” concept is thus not to wait until a child has reached an appropriate
developmental stage, but rather to represent the concept in a manner accessible to the
child’s current developmental stage. For example, Papert discusses how young children can
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apply their understanding of their own body motion to draw a circle using turtle graphics
in his LOGO programming language, and through this process learn about the differential
equations which underlie calculus [206, pp. 63–66].

Kay, one of the researchers behind the Star Information System (see p. 6), also considers
the link between difficulty, representation, and cognitive development, but he emphasizes
the range of representations used by experts. For his starting point, Kay prefers Bruner
over Piaget. Bruner confirmed and extended Piaget’s cognitive development experiments,
but in place of Piaget’s stages he proposed three sequentially-developing modes of represen-
tation: enactive (action-based), iconic (image-based), and symbolic (language-based) [29].
Following Bruner, Kay emphasizes that moving into a new stage adds new modes of repre-
sentation rather than replacing old ones [130], and he connects this to Hadamard’s work on
mathematical discovery.

Hadamard [97] surveyed famous mathematicians and physicists, asking them to intro-
spect on the processes they employed in their work. Analyzing the results, Hadamard
noted that very few reported working directly with symbolic structures such as sentences
or equations. Instead, most worked primarily visually, while a few also reported using
kinesthetic methods. Like Hadamard, Kay is particularly interested in Albert Einstein’s
reply [97, pp. 142–143], which alludes to all three of Bruner’s representational modes:

Words or the language, as they are written or spoken, do not seem to play
any role in my mechanism of thought. The psychical entities which seem to
serve as elements in thought are certain signs and more or less clear images
which can be “voluntarily” reproduced and combined . . . . There is, of course,
a certain connection between those elements and relevant logical concepts. It is
also clear that the desire to arrive finally at logically connected concepts is the
emotional basis of this rather vague play with the above mentioned elements.
But . . . this combinatory play seems to be the essential feature in productive
thought—before there is any connection with logical construction . . . which can
be communicated to others . . . . The above mentioned elements are, in my case,
of visual and some of muscular type. Conventional words or other signs have
to be sought for laboriously only in a secondary stage, when the mentioned
associative play is sufficiently established and can be reproduced at will . . . . In
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a stage when words intervene at all, they are, in my case, purely auditive, but
they interfere only in a secondary stage as already mentioned.

From these sources, Kay concludes that computer applications should support working
with all three representational modes [130]. The design of the Star put this into practice
in the form of the mouse (kinesthetic), the graphical user interface (visual), and end-user
programming (symbolic, and using Kay, Ingalls, and Goldberg’s Smalltalk [87] programming
language) [130,131]. Despite decades of tinkering, these three modalities are still represented
in the modern graphical user interface in much the same way as in the Star : while the success
of these interfaces cannot be ascribed to any one idea, this does suggest that Kay has hit
upon a fundamental aspect of how people work.

Kay does not consider whether Hadamard’s study of mathematicians and physicists
generalizes to practitioners in other fields, but there is some evidence to support this. The
extensive use of sketching by many experts can be explained in part by the need to external-
ize visual representations as an aid to memory (see Section 2.5.3 later in this chapter). And
in author Stephen King’s introduction to Skeleton Crew [135], King reports using primarily
visual representations in the early stages of writing fiction. Written in King’s conversational
style, his introduction makes for a curious but congruent juxtaposition with Einstein’s letter
to Hadamard.

Although Kay focuses on modalities, it is also notable that Einstein’s reply makes explicit
reference to different work processes. His description of an early stage involving “combina-
torial play” with “visual” and “muscular” signs followed by a secondary stage in which ideas
are refined into communicable language is consistent with Jones’s divergent and transforma-
tional processes being followed by a final convergent process (see p. 4). This suggests that
not only are Bruner’s representational modes significant to expert work, but that visual,
and to a lesser extent kinesthetic, representations may be most important during divergence
and transformation, while symbolic representations are more important during convergence.

2.4 Theoretical Approaches to Human Problem Solving

Besides studying individual factors that affect problem solving, a number of researchers
have contributed to broader theories of the problem-solving process. Two approaches that
have been particularly influential are Newell and Simon’s symbolic cognition theory [194–
197] and Suchman’s situated action model [246]. There is a long-standing debate between
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proponents of the symbolic view of cognition and proponents of situated action (e.g., [46,74,
93, 247, 268–270, 273]), and more generally with other dynamic systems explanations, such
as connectionism (e.g., [6, 75, 175, 198]). While this debate is of critical importance when
trying to explain or replicate human intelligence, here it is of secondary interest because
both views have practical applications that do not rely on their strict correctness.

2.4.1 Symbol Systems and Problem Spaces

The first theory, Newell and Simon’s, developed from laboratory experiments using well-
structured problems, such as Édouard Lucas’s Tower of Hanoi [171, 172]. It codeveloped
with the classical view of artificial intelligence, which emphasizes symbol processing using
list structures and the recursive subdivision of plans. Accordingly, both of these are central
features of the theory.

Newell and Simon proposed two central hypotheses [197]. The first of these, the physical
symbol system hypothesis, claims that symbolic processing is both necessary and sufficient
for general intelligent action. Here, a symbol is a physical pattern that can act as a reference
to some object, while a physical symbol system consists of symbols formed into structures
using a set of relations [268]. Inputs to the system must be encoded as symbols, creating a
separation layer between the processes of intelligence and the outside world [214,273]. Newell
and Simon state [194,197] that physical symbol systems are universal Turing machines [209,
262] (and specifically compare them to interpreters for the Lisp [177,241] symbol-processing
language [197]). The implication is that computers are capable of intelligent action, and
that all intelligent action is the result of computational processes.

The second of Newell and Simon’s hypotheses, called the problem space hypothesis,
describes problem solving as a planning process in which an actor searches a space of
problem states that are generated by applying operators. The selection of operators is
guided by heuristics such as alternating between working backward from the goal state and
forwards from the start state. The forward chaining heuristic allows experts to move di-
rectly towards the goal using knowledge gained through experience [145]. When stuck, the
generate-and-test heuristic is used, meaning that moves are tried (essentially at random)
and the results tested to see if the state has changed in a useful way. The most important
of Newell and Simon’s heuristics is means-ends analysis, in which actions are chosen by
identifying differences between the current and goal states and then choosing actions that
reduce those differences. If a chosen action cannot be performed from the current state,
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then a subproblem is introduced with the goal of transforming the current state into one
where the action does apply.

Although the physical symbol system hypothesis is the more significant—and certainly
the more controversial—of the claims, it is the second which has had the most direct influence
on expert problem solving. Problem solving as a search in a space of problem states has been
widely adopted as a useful metaphor to visualize and discuss problem solving as a process.
Moreover, an entire class of support systems, design space explorers, are distinguished by
their use of explicit computational models of problem spaces [277]. (Design space explorers
are discussed in more detail in Section 5.6; see p. 63.)

Although the metaphor is useful, the search mechanisms suggested by Newell and Simon
reflect the theory’s basis in well-structured problem solving. In particular, the reliance on
means-ends analysis is not a good fit with ill-structured problems since it requires a specific
solution state. Ill-structured problems do not have a single solution, or even a fixed number
of solutions: there is no goal to climb towards or work back from. Solving ill-structured
problems requires finding destinations as well as finding paths.

A more general problem for computer representations of problem spaces is that human
problem solvers sometimes respond to a lack of progress by reframing the problem. This
could mean choosing an easier partial isomorph, or attempting to solve a metaproblem such
as proving that no solution is possible. (The latter technique is especially important to
the resolution of paradoxes [111, pp. 196–7].) While the programs constructed by Newell
and Simon were given a problem space definition already known to be sufficient to solve
the problem, a general intelligent actor needs to be able to define its own problem spaces.
However, creating programs that exhibit this kind of transformational creativity remains a
challenge for researchers (see Section 2.6 later in this chapter).

2.4.2 Situated Action

Situated action offers an anthropological perspective on how humans deal with problem
solving in an unpredictable and incompletely specified world. Suchman coined the term
to emphasize that action and context are inseparable aspects of how human behaviour is
coordinated; action is constructed dynamically through interaction with the environment
and society [246]. In a sense, situated action views the entire notion of action as illusory;
the actor and the environment are simply reacting to each other continuously and simul-
taneously. Within situated action, forming plans is accepted as a possible part of, not a
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precursor to, taking action [246, p. 50]. However, while plans may guide future action,
they are descriptive rather than prescriptive: subsequent action must respond to the actual
situation as it unfolds.

Situated action is not viewed as a kind of human action; rather, the term situated
describes the nature of all human action. Indeed, Clancey [46] argues that situatedness is a
consequence of human neuropsychology. As one example of this, he points to the dynamic
nature of memory. A large body of experimental work suggests that memory is not fixed
during an experience, but that it is reconstructed when needed, and that these reconstruc-
tions are distorted by the context surrounding both formation and reconstruction [225]. As
Clancey notes, Gero [82] observes that recall is therefore an essentially interpretive act. Gero
describes such interpretations as dynamic systems arising from the interaction between two
parallel processes: one which “pushes” the reconstructed memory and one which “pulls” the
result to bias it towards the current situation.

Proponents of situated action often point to Gibson’s concept of affordances [83, 84]1

to distinguish it from Newell and Simon’s physical symbol systems [273]. For Gibson,
affordance is a relation between an animal and its environment describing those things that
the environment offers the animal. For example, if a rock is shaped such that it is physically
possible for a person to sit on it, then the rock affords sitting for that person. Affordances
link the animal and the environment into an inseparable pair [84, p. 127]: perception and
action form a dynamic system in which perception guides action and the result of that action
is new perceptual information [151,152].

Gibson argues that affordances are perceived directly, without internal mediation. This
does not mean that the input from perceptual receptors is not processed [84, p. 251], but
rather that percepts are formed spontaneously from environmental cues without unconscious
inference (such as symbolic processing). In problem-solving terms, affordances fill the same
role as analogical transfer, but they do not necessarily require that the actor have a prior
experience to transfer.

Whether or not situated action follows from biology, it remains important as a descrip-
tion of actual problem-solving behaviour. While Suchman focused on what might be called
“everyday problem solving”, this is precisely why situated action describes expert work.

1Most HCI practitioners are introduced to the term affordance through Norman [201, p. 9], but Gibson’s
original conception of affordances differs from Norman’s in subtle ways [201, p. 219]. McGrenere and Ho [179]
give a detailed comparison of both interpretations.



CHAPTER 2. DIVERGENCE: THEORETICAL BACKGROUND 23

Everyday problems are ill-structured by their nature because they take place in the larger
world, where the number of possible operations is huge and the rules far removed from the
actual problem. How many times has the idea of tightening a screw with a coin, butter
knife, folded paper, or similar object been rediscovered? Situatedness allows more formal
approaches to problem-solving while at the same time explaining how animals are able to
quickly deal with the incomplete knowledge and combinatorial complexity of less constrained
situations. Where recursive planning systems might analyze deep trees of moves, planning
several steps ahead to predict the best course of action, animals that delay action in order to
process information for a significant length of time would be less likely to survive. Since the
routine problems encountered by animals in the environment are ill-structured, solutions do
not need to be precise or optimal, and many different approaches are likely to lead to an
acceptable result. Intricate planning is less important than continuous action because one
may hit on a successful approach in any number of ways, but a lengthy investigation of the
wrong approach involves a potentially deadly delay.

The combinatorial possibilities of action in the world are huge, but situated action, and
particularly the notion of affordances, explains how actors avoid being overwhelmed by
choices. Although a huge number of actions is possible, only the actions that are perceived
to be afforded by the environment are relevant. The affordances perceived at any moment
may not lead to a solution, but these change constantly. Behaviourally, this may appear
very similar to the generate and test heuristic used by Newell and Simon. However, the
selection of actions is neither random nor systematic, but is driven by the most salient
perceived affordances at any given moment.

The situated action view is especially suited to ill-structured problem solving. It simulta-
neously deals with the additional complexity and uncertainty inherent in ill-structured prob-
lems, while also relying on the presence of multiple solutions when progress must be made
quickly. Since ill-structured problem solving is also a core component of expert work, one
would expect to see evidence of behaviours consistent with situated action in the problem-
solving strategies used in expert work. As the next section demonstrates, the processes
used by experts are consistent with situated action, perhaps most strikingly in the dialectic
process observed by various researchers. (During this process, the expert poses a series of
partial solutions, each of which becomes a resource in the new situation that their intro-
duction creates.) While physical symbol systems and situated action may be at odds with
each other as models of cognition, both are useful in guiding the design of expert support



CHAPTER 2. DIVERGENCE: THEORETICAL BACKGROUND 24

systems: one as an aid to building computational models, and one for its description of
human behaviour in practice.

2.5 Strategies Used by Professionals

While theoretical views provide an abstract account of problem-solving processes, this sec-
tion considers how experts perform problem-solving in practice. Three aspects of profes-
sional practice are highlighted. The first two aspects are the processes of problem definition
and the generation of solutions (essentially, Jones’s divergence and transformation activi-
ties). The third aspect to be considered is the special role that pictorial representations
play in many kinds of expert work.

2.5.1 Problem Definition

A dubious approach to problem solving is to start by gaining a complete understanding
of the problem, then leveraging that knowledge to find a solution. Situated action argues
that people tend not to behave this way in practice, but regardless of human behaviour
a distinct problem-then-solution approach cannot be expected to work for ill-structured
problems. Their ambiguity and interconnectedness makes it impractical to identify, let
alone operationally define, every relevant variable.

Experimental results reflect this. In a study that compared the performance of first year
and final year engineering students, Atman et al. found that students that spent a large
proportion of their time on problem definition failed to produce high quality solutions [11].
These students tended to get trapped exploring the problem space and so failed to move on
to generating solutions. A separate study indicates that students with an intermediate level
of skill are most likely to fall into this trap [45]: less skilled students quickly run out of new
criteria and move from a simple problem definition to a simple solution. The students who
were the most successful were those that moved quickly to generating partial solutions.

By moving quickly to solution generation, problem-solvers do not have to identify every
relevant aspect of the problem in order to find solutions. Rather, the understanding of the
problem changes as the problem is investigated and new aspects come to light. Problem
and solution are developed in tandem, by exploring the problem space and the resulting
solution spaces together. Problem-solvers can learn to do this through education and expe-
rience [11, 45, 149, 154, 164]. This is good news not just for educators but also for designers
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of support systems: the tools they build may play a positive role in shaping this education
by emphasizing and supporting this approach.

Although experience is an important factor, there is also evidence that some people are
predisposed to develop the problem and solution together rather than separately. In studies
of children learning to program computers, Turkle [264, pp 106–115] observed that some
children—mainly the males—prided themselves on mastering the details of the programming
system. They were not satisfied until a program was both technically correct and elegant,
suggesting an emphasis on searching for the optimal solution. A second group of children
approached the computer as a negotiation partner. These children were not concerned that
a program be technically correct in all cases, but that it work well enough to achieve the
desired outcome. When errors were present that did not interfere with the overall goal, they
tended to be allowed to the computer as personal idiosyncrasies, and even to be appreciated
as such. When one student’s program had to be told twice that the user wanted to quit
before it would actually terminate, she left it in. Although she recognized that this was
technically an error, she liked the fact that the computer exhibited quirky behaviour by
“not [taking] no for an answer.” Turkle emphasizes that the children in the second group
worked with the computer through the prism of a personal relationship. What is also clear
is that the children in this group had no qualms about changing the problem description to
better suit a solution—even by redefining a typically hard constraint (“no bugs”) as soft.

Experienced ill-structured problem solvers develop the problem and solution together in
part because they use partial solutions to create anchor points from which to explore both
the problem and the possible solutions [50,164]. Cross and Dorst [50] use the nomenclature
of problem spaces to describe this process as undertaken by industrial engineers:

1. The designers explore the problem space until they find or recognize a partial structure.
Choosing this anchor also provides a partial structuring of the solution space.

2. Considering the implications of the partial structure in the solution space allows them
to generate initial ideas about the form of the design, which extends the partial struc-
ture in the solution space.

3. This structure is transformed back into the problem space, where the implications are
then used to extend the partial structure of the problem space.

4. The process is repeated until a matched pairing of problem and solution are found.
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2.5.2 Solution Generation

Simply generating more solutions is no guarantee of finding a better result. If one starts
from a bad idea, no number of incremental improvements is likely to beat a solution that
was developed from a better starting point. Problem-solvers are more likely to find good
starting points by exploring a breadth of approaches. Indeed, some people build celebrated
careers on finding promising ideas in the unsampled regions of the space, championing those
ideas when they are unpopular, and ultimately winning over detractors to establish the idea
as a norm [242].

The possibility of creative breakthroughs notwithstanding, an overbroad exploration
may be just as detrimental as one that is too narrow. Fricke [78] found that too much and
too little breadth exploration were both suboptimal strategies in his studies of engineering
students. While students that explored only one or two approaches were too focused on
producing concrete results, those that expanded the solution space too broadly expended
time and cognitive resources on organizing solutions rather than comparing and developing
them. This suggests that support tools might be able to help experts effectively explore a
broader range of alternatives by automating the management of generated alternatives.

Akin [3] found that architects learn to adopt a more balanced search strategy as they
gain expertise: Novice architects tend to employ a depth-first search of the design space.
They hit on an approach, and then follow through with it as far as they can. It is only
when an approach reaches an impasse that they go back to look for alternatives. Over
time, expert architects adopt a different strategy, neither breadth-first nor depth-first but
rather a mixed strategy that considers alternative approaches and develops each in parallel,
borrowing ideas from some to apply to others. So, while everyone could benefit from tools
that support exploring a broader range of approaches, novices could benefit particularly
from systems that encourage broader exploration.

Schön [228] describes the process of solution generation based on observations of expert
practitioners from a range of disciplines. He identifies two key activities that are used
together in a dialectic process. Both are responses to the fluid, experienced work that
makes use of tacit knowledge—what Schön calls “knowledge-in-action”—being interrupted
by surprises. When practitioners encounter a surprise, they enter one of two reflective
processes: reflection-in-action or reflection-on-action.

During reflection-in-action, the practitioner is thinking about what is being done while
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actually doing it, with the dual goals of better understanding the surprising phenomenon
and influencing the outcome of the process. The practitioner’s actions become a cycle of
proposing and testing hypotheses about the nature of the phenomenon and how to change
it in desired ways. Emerging states “talk back” to the practitioner, while the practitioner
responds in turn by changing to a new state.

During reflection-on-action, practitioners stop and think back over what has been done
and how it informs their own understanding of the problem and their practice. Reflection-
on-action is a reflection on the already explored paths: unlike reflection-in-action, no new
paths are explored. This leaves the practitioner free to explore other questions—for example,
to consider their own behaviour and motivations, or to reconsider the nature of the problem
being solved.

Schön sees the use of repertoires—collections of examples, actions, images and ideas—as
essential to the reflection process. The practitioner’s repertoire forms a basis of experi-
ence and knowledge through which new phenomena are understood [228, p. 138] and pro-
vides starting points to jumpstart the process of generating solutions when starting on a
problem [36].

Nakakoji et al. present an approach to supporting reflective practice in linear domains
such as writing, programming, and video editing [193]. Their Amplifying Representational
Talkback (ART ) prototype system assists writers by introducing a new interaction technique
to traditional word processing. It allows breaking text up into rectangular chunks that can
then be positioned in a two-dimensional space. (A one-dimensional view of the document is
implied by the order of the chunks on the y-axis.) During the process of spatially positioning
the chunks, the dynamically emerging representations of the text “talk back” to the author,
engaging reflection-in-action [193]. When an arrangement is (at least momentarily) settled
upon, the author can interpret the representation to obtain information about the state of
the design and its rationale, thus enabling reflection-on-action [193,279].

2.5.3 Use of Diagrams and Sketches

A common aid when solving problems is the use of external representations. External rep-
resentations are a supplement to working memory [69, 146, 150, 218], but they have other
advantages as well [31, 218, 283]. External representations allow the use of different knowl-
edge and skills that are not available from internal representations (as when one writes down
two potential spellings of a word to see which one “looks right”), and external representations
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may use attention differently than internal ones [218].
The use of graphical representations is common in problem solving [146], but it is a

particularly important practice in expert work [69,88,150,229,252]. The form of an external
representation is significant, as it determines the information that is perceived and the
mental processes that are activated by attending to the representation [283]. The pervasive
use of graphical representations in expert work therefore suggests that these representations
have properties that make them particularly well-suited to the needs of expert workers.

Larkin and Simon [146] compared the use of sentential representations and diagram-
matic representations in well-structured problem-solving. They argued that diagrams are
distinct from sentential representations because sentential representations are sequential
while diagrammatic ones are indexed in two dimensions. By grouping related information,
problem-solvers reduce search time, which leads to better performance overall. However,
when Cheng [44] expanded one of Larkin and Simon’s tasks to include a tabular represen-
tation, he found that the diagrammatic representation of the problem was up to six times
easier to solve than the sentential representation, while the tabular representation (which
also allows two-dimensional indexing) was not significantly better than the sentential one.
Hence, locational indexing alone does not explain the value of diagrams in solving prob-
lems. Cheng suggests that the representational structure may cause the participants to use
different problem-solving strategies.

While Larkin and Simon used well-structured problems in their work, other researchers
have looked at the use of graphical representations in ill-structured problem solving. This
work has focused on the use of sketches, a less rigorous representation form than the diagrams
studied by Larkin and Simon. The imprecision found in sketches has long been recognized
as beneficial to the early stages of design and engineering, where sketching is a common
practice: Leonardo da Vinci advocated the use of intentional ambiguity and untidiness
when developing compositions in order to stimulate visual creativity [69]. The preliminary
sketches da Vinci prepared for monuments he was commissioned to build (e.g., [156, 157])
illustrate this technique well (see Figure 2.3).

Suwa, Gero, and Purcell [252] found that sketches can provide visual cues to non-visual
information. They also note that creating an arrangement of items—whether intentionally
or as an accident of the sketching process—hypothesizes relationships between those items,
and that this helps to generate or refine ideas.

Sketches also play an important role in the dialectic process [69, 88, 229, 252]. Schön
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Figure 2.3: A Study for an Equestrian Monument, Leonardo da Vinci, c. 1485–90. Metal-
point on prepared paper (Royal Library, Windsor Castle, RL 12358r). This is one of many
pages of sketches made by da Vinci while planning a monument to Francesco Sforza. This
early version features a rearing pose supported by a cowering figure; by the final version,
which was modelled in clay but not completed, da Vinci had switched to a simpler pose.
Note the use of repeated lines, imprecision, and overlaid poses, all of which emphasize the
tentativeness and ambiguity of the sketch. Note: Courtesy of The Royal Collection c© 2010,
Her Majesty Queen Elizabeth II. Reprinted with permission.
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and Wiggins [229] describe sketches as the medium through which designers engage in a
conversation with the materials through the cycle of sketching, reflecting on the sketches,
and then using the result to drive the development of new sketches. Goldschmidt [88]
argues that the ambiguity of sketches is a substantial component of creativity in the design
process. In protocol studies, she observed that architects switch rapidly between two modes
of reasoning while sketching. In the first mode, which she calls “seeing as”, the architects
used analogical reasoning to infer new meaning from the sketch. In the second mode, “seeing
that”, the architect recognizes the design consequences of the newly added meaning.

Fish and Scrivener [69] also discuss sketching as a cyclical process involving rapid mode
shifts. Like Goldschmidt, they focus on the cognitive processes that are engaged by the
sketching conversation. In sketches they see properties that mediate the translation between
abstract information that is descriptive and propositional and more concrete information
that is depictive and spatial. The sketcher begins with descriptive knowledge, creates a
sketch, scans the sketch using attentional processes that extract new descriptive information,
and use that to drive new depictions. They also view sketching as a tool for forseeing the
results of an operation without actually performing it.

HCI researchers have developed some tools to support exploration through sketching.
Silk [143] and Denim [163] both support the design of interactive systems through sketching
screens and storyboards. Both systems are designed to increase the interactivity possible
with hand-drawn interfaces, allowing sketches to serve as higher-fidelity prototypes than
would normally be possible with traditional paper prototyping [178].

Working in the other direction, the Napkin Look and Feel [9] aims to reduce the apparent
visual fidelity of interactive prototypes. Napkin Look and Feel is a pluggable extension for
the Java Swing user interface toolkit that renders interface elements in a rough, sketch-
like form. Lowering apparent visual fidelity can be useful when testing prototypes because
prototypes with high visual fidelity tend to elicit comments about specific visual attributes
rather than about fundamental usability issues [178].

Another research direction with potential is sketch-based image retrieval [76, 79, 119],
which could be used to help generate additional interpretations of a sketch. An application
of this work that may initially seem misguided is the Magic Canvas [232] system, which
converts a sketch into a three-dimensional scene by matching parts of the sketch against a
database of models and automatically determining an appropriate location and orientation.
Automatically choosing a single model necessarily eliminates the ambiguity that is one of
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the sketch’s most beneficial features. However, this system focuses on domains such as
animation where the rearrangement of a fixed set of objects is an important subproblem.
The design of those objects is thus often a detail to be filled in during convergence rather
than a problem feature whose final form is unknown.

2.6 Creativity Research

The need to generate and consider alternative approaches is vital to expert work processes.
To effectively generate these alternatives requires creativity, the ability to produce ideas
which are both novel and appropriate [243, p. 3]. A support system for expert work must
therefore also be a support system for creativity. This section discusses creativity from two
perspectives: studies of the creative process undertaken by psychologists, and studies of
support tools taken from HCI research in the related field of creativity support.

Csíkszentmihályi [51,52] introduces the term flow to describe the ideal mental state for
creative work. The principal requirement for entering the state of flow is to balance a high
level of challenge and a high level of skill. Other factors that contribute include a sense
of control, an activity that the individual finds intrinsically rewarding, an environment
conducive to intense concentration, and immediate feedback. When engaged in flow, an
individual’s cognitive resources are so completely devoted to the task at hand that their sense
of time is altered and they lose awareness of their own consciousness. Thus, entering a state
of flow also requires that an individual have facility with his or her tools. A consequence
of this for experimental work is that users cannot be expected to enter flow when using
prototype systems without being given extensive practice time.

A critical requirement for entering flow is finding the Goldilocks zone where skill and
difficulty are both high and balanced. Because support tools can profoundly reduce the
difficulty of subproblems that can be solved algorithmically, they can create situations where
the users of the tool may be able to enter flow when it would otherwise be impossible given
their skill level. Woodbury and Burrow [277] suggest one way that support tools might do
this: by assuming responsibility for some or all of the convergence process and working out
the mundane details of a solution automatically. This would allow experts to remain focused
on the more engaging task of exploring alternatives, while at the same time alleviating
novices of the need to be fully skilled in the domain. In either case, the net result is that it
is more likely that the user will be able to enter flow.
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De Bono [57] coined the term lateral thinking to describe a kind of problem-solving that
emphasizes novel solutions. His writing presents a number of practical techniques designed
to facilitate this mode of thought. The techniques are based on the following ideas:

• Acknowledging the views that dominate the perception of the problem, then searching
for alternatives.

• Avoiding critical or dogmatic reactions when generating new ideas, for example, by
interjecting the nonsense word po to suggest an alternative idea in a non-threatening
way.

• The use of randomness to stimulate ideas, for example, by picking a random noun
from a dictionary and associating it with the problem.

Many of de Bono’s techniques are aimed at group settings. One way to apply these
to support systems could be to give the system the role of group member, adapting the
technique to suit the strengths of computing technology. For example, search tools might
be used to identify both dominant and outlier views, as well as serving as a catalyst for
generating new ideas based on ambiguous or random queries [141].

Although de Bono’s ideas about enhancing creativity have gained broad acceptance
culturally, it would be irresponsible to fail to point out that they have not been subjected
to rigorous scientific testing. Sternberg and Lubart go so far as to dismiss de Bono’s work
as “equally damaging to the scientific study of creativity [as mystical beliefs]” [243, p. 5].
Whether or not such a strong reaction is justified, it is clear that overreliance on de Bono’s
work entails some risk.

Drawing on results from creativity and design research, Candy and Edmonds [36] argue
that creativity support systems should enable users to:

• View problems holistically—for example, by providing multiple representations.

• Support parallel channels of exploration by supporting rapid, fluent task switching.

• Modify constraints.

Resnick et al. [220] similarly review existing work on creativity support tools and present
a unified list of design principles. Their work combines and extends principles previously
proposed by a number of scholars [108, 191, 221, 231, 234, 278]. Their first principle calls
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for supporting and encouraging exploration by, for example, allowing any attribute of the
problem state to be changed, supporting the comparison of results, and providing history
manipulation (backtracking/undo) capabilities. In subsequent work, Shneiderman [235]
recommends that history manipulation should include the logging, editing, and replaying of
histories with different parameters.

Several of Resnick et al.’s principles emphasize the importance of selecting fundamental
building units at an appropriate level of abstraction and complexity. They argue that by
favouring simple elements and features that can be combined in a number of ways over
more complex limited-purpose components, support systems can support a wider range and
diversity of outcomes. They also point out that the level at which elements become black
boxes determines the ideas that the system can be used to explore.

Resnick et al. also argue that creativity support systems should embody epistemological
pluralism [265]. This is an appeal to treat all of the cognitive styles along the spectrum
from soft (holistic, concrete, nonhierarchical, negotiational approach, focused on relations)
to hard (abstract, hierarchical, focused on attributes) [264, 265] as equally valid. The soft
and hard styles are biased for both profession [149,220,265] and gender [264,265]. However,
a mixture of both approaches can be found in any group. (The magnitude and universality
of gender differences especially has been exaggerated by popular media [65,118].)

Finally, Resnick et al. point out that creative projects often require coordinating more
than one tool. For this reason, they argue that tools should support data interchange
features such as importing and exporting data as extensible markup language (XML), or
the provision of plug-in architectures or remote procedure call mechanisms that allow third-
parties to extend the tool’s feature set.

Boden [21] distinguishes two classes of creativity based on whether they are applied
within or upon the problem space. The first class, exploratory creativity, is limited to those
points that can be reached by exploring within a space, that is, all of the valid combinations
that can be generated from the initial state. The second class, transformational creativity,
occurs when the creative act is performed upon the space itself, thereby creating a new
space of possibilities.

Modeling transformational creativity has long proven elusive for artificial intelligence
(AI) researchers [21]. This was seen earlier in the chapter during the discussion of the
problem space hypothesis: reframing and considering the metaproblem are kinds of trans-
formational creativity. For AI researchers, the dilemma is that a model is either limited to a
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fixed set of configurable elements or else that it presupposes the existence of a creative agent
that is able to invent new elements. Builders of support systems can assume the presence of
the agent, but are left with the problem of representing that agent’s transformations to the
space. As the space representation is made more flexible, tools must become more abstract
and general, while support strategies become less focused on the original domain.

Designers of support systems are probably better off using a fixed, widely-accepted
problem space. Three arguments support this view: First, transformational creativity seems
most likely when the practitioner is actively considering the metaspace, such as when reflect-
ing on the shortcomings of a number of previously discovered solutions. Choosing a space
is therefore best treated as a distinct but related problem. Second, working in a familiar
space lets experts work more efficiently by enabling space-dependent techniques like forward
chaining [145]. Because transformational creativity is rare, the productivity cost of losing
access to familiar techniques is not justifiable. Finally, support for space transformations
will either be limited, in which case it is unlikely to support the kinds of transformations
that are useful in practice, or else it will be reduced to a programming environment that is
decoupled from any particular problem domain.

2.7 Summary

Solving ill-structured problems is an integral component of expert work. Though many
everyday problems are also ill-structured, the problems in expert work are generally harder,
more complex, and will have broader and more lasting consequences. Solving these problems
presents a particular kind of challenge as one must not only discover an acceptable solution,
but also find ways to frame the question so that a solution can be discovered. The problem
solver must negotiate—even embrace—the immense possibilities presented by the problem’s
ambiguity and from this extract a final, precise form. This requires extraordinary flexibility:
with the assumed constraints, with the problem representation, and with the solver’s own
processes and approaches. Extending the support offered by typical applications to include
these processes will demand just as much flexibility and creativity, but it will also require a
common language and starting point; a framework for comparing approaches and evaluating
outcomes. The next chapter provides this starting point in the form of design principles
that synthesize and extend the background presented here into a more practical format for
interface design work.



Chapter 3

Transformation:
Deriving the Principles

3.1 E Pluribus Decem

The previous chapter demonstrated that many research perspectives are relevant to an
understanding of expert work. While most HCI work on supporting experts has focused
on only one such perspective at a time, there are many benefits of considering several
perspectives together. One benefit is that independently discovered results that are common
between perspectives have in effect been tested more rigorously. Noting observations that
recur across many domains also suggests which kinds of support will be the most effective
and will apply the most broadly. Noting differences between analogous results helps identify
which aspects of successful expert practice are necessary, and which are coincidental. A
broader understanding of a phenomenon may demonstrate multiple ways that a particular
need can be supported. This in turn can lead to more elegant HCI designs since it may
be possible to reduce the number of features required without impairing usability. Finally,
by noting gaps in knowledge, discontinuities, or areas that seem to defy obvious transfer to
software form, it is possible to identify open problems in need of further study.

3.2 The Principles

To reap the above benefits, and to convert the results of the previous chapter into a form that
can be applied more readily to support tool design, I have derived the following ten design
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principles from the broad theoretical background found in Chapter 2. The principles express
the common requirements and processes of expert workers across a variety of domains and
theoretical perspectives, and focus particularly on supporting the activities of divergence and
transformation, and on helping the expert to generate, manage, and evaluate alternatives—
the primary distinction between the task requirements of divergence and transformation
and the contemporary emphasis on refining a single final product.

3.2.1 Make Partial Solutions First-class Entities

The early stages of ill-structured problem-solving consist of generating and comparing a
variety of candidate solutions. These are not fully detailed, but incomplete, prototypical,
abstract, and illustrative. Only later will one of these partial solutions be fully reified into a
completed form. Yet typical applications present the user with a workspace that is limited to
representing a single solution at a time. The tools available are geared towards entering the
details of an already chosen solution, not towards brushing a number of solutions in broad
strokes. While this is appropriate during convergence, when the user must finally commit to
all of the details, it is at best awkward during the early stages of problem solving. Users of
such applications end up repeatedly redoing work at a fine level of detail as new approaches
occur to them, or else they may use ad hoc methods such as creating a separate file for each
partial solution using the Save As command.

Support systems should treat solutions as first-class entities that can be composed,
arranged, and transformed with an ease at least comparable to the manipulation of sen-
tences in a word processor. This means making alternatives accessible, either explicitly
(e.g., side-by-side windows) or implicitly (e.g., with parametric models). Support systems
must represent a mixture of precision and ambiguity, completeness and incompleteness,
placeholders and final forms, all within the same solution set. Internal representations and
algorithms must handle missing or approximate data gracefully, without distracting error
messages but also without misleading the user as to the solution’s completeness.

3.2.2 Support Problem and Solution Matching

Finding a solution to an ill-structured problem requires that one also find the right problem.
Experienced ill-structured problem solvers explore the problem and solution spaces simulta-
neously until they produce a matched pairing. In order to find this match, problem solvers
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must be able to evaluate how well a given solution fits a given problem specification. An
important aspect of the problem representation is the set of hard and soft constraints. The
manipulation of perceived constraints helps establish the criteria used to evaluate candidate
solutions and drive the exploration of the space [36].

Support systems should explicitly represent important aspects of the problem (including
the set of constraints) and allow them to be manipulated. They should also assist problem
solvers with the task of evaluating solutions against problems, for example, by computing
and presenting metrics that describe the quality of the fit.

3.2.3 Allow Subjectivity and Ambiguity

Ill-structured problems are characterized by soft constraints that lack objective measures.
Moreover, experienced ill-structured problem solvers often choose to treat hard constraints
as if they were soft. Support systems should therefore allow fluid, subjective metrics and
be flexible in how they present and evaluate constraints. One way to do this may be to
support soft representations, such as choosing visualizations over (or in addition to) raw
data. Visualizations help people to see unexpected relations, but they may also have an
additional benefit here. People tend to work in the medium and mode that they are given. If
they are presented with hard numbers, then they will probably make their judgements and
set their limits and expectations in terms of hard numbers. Likewise, if they are presented
with pictures, they will likely make their judgements and set their limits and expectations
in terms of what “looks good”.

Precision and concreteness may be necessary to bring a solution to its final form, but
these qualities also project a sense of finality that is inappropriate until that final form is
ready for expression. Countering precision is ambiguity, and one of the major benefits of
using sketches is their ability to capture and project this quality. Like soft constraints, ambi-
guity opens a door to reinterpretation and the opportunity to find more creative approaches.
Support systems should capture, embrace, and even amplify ambiguity. Since computers
are inherently precise in their internal representations, support systems must find ways to
hide that precision through visualization, clever presentation forms, the use of imprecise
input methods, fuzzy systems [138,280,282], or other techniques.
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3.2.4 Prefer General, Flexible Actions and Representations

In any kind of design there is a trade-off between the specificity of the task the tool is
designed for, how directly that task is supported, and how this impacts other uses. It
is harder to write a screenplay with a word processor than with an application designed
specifically for that task. A professional screenplay writer will invest in learning the more
specific tool because they must perform this task often. The front-end effort needed to learn
to use a dedicated tool effectively is worth the future benefits to productivity. On the other
hand, a Grade 5 teacher appointed to write this year’s school play will probably make do
with the word processor. It is familiar, readily available, and flexible enough to get the
job done. At the same time, the increased flexibility also allows the freedom to create a
script with an unorthodox format—such as one better suited to the needs of nervous grade
schoolers than production studios.

Expert support systems face a similar dilemma. The domains that experts work in are so
different that each tool is likely to be highly specialized. At the same time, within a domain
the system must allow the user the freedom to access a broad space of possibilities. The
fundamental uniqueness of ill-structured problems demands the ability to produce unortho-
dox solutions. Operations and representations that are too specific will be of use in only
a narrow range of cases, limiting both the problems that can be tackled and the solutions
that can be found. A smaller set of simpler tools or operations that apply generally can
enable more creative outcomes than a larger set of powerful but less flexible ones.

This does not mean that more specific functionality must be entirely eschewed, but it
should be a secondary focus and it should answer a distinct need. The core operations and
representations must be chosen to enable a wide range of outcomes. This done, there are
likely to be common cases that cannot be conveniently expressed with simpler operations.
These are likely to benefit from dedicated support.

Alternatively, and especially if there is little commonality across different practitioners,
it may be more effective to provide a general and flexible (but perhaps less accessible) core
for others to build more specialized layers upon. In particular, this approach seems the most
plausible route to supporting transformational creativity.
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3.2.5 Engage Multiple Ways of Doing and Thinking

There is no recipe that can be followed step-by-step to solve an ill-structured problem.
Individuals, too, are predisposed to approach ill-structured problem-solving using different
mixtures of cognitive styles. Support systems should not support one style of cognition
or problem-solving to the exclusion of others. In particular, they should not assume that
either a soft or hard cognitive style is required by a problem. In fields that have traditionally
favoured one approach over another, further study may be required to better understand
the techniques employed by experts who use other approaches. This may be especially true
in fields that traditionally employ the hard style, as soft practitioners in these fields may be
pressured to drop or conceal use of the soft style [265].

Instead of being limited to one mode or approach, support systems should be able to
engage different methods at different times. For some individuals, visual methods will
be preferable during divergence and transformation, while symbolic methods may become
necessary during convergence; others may work best when engaging the somatosensory
system, and so on. Aside from matching a user’s personal style, using different styles of
reasoning can also change a given solution’s discoverability, and can radically change a
problem’s difficulty [130].

Special efforts should be made to incorporate some of the benefits of sketching, such
as arrangement and juxtaposition, surveying the explored space, acting as a catalyst for
reification, and engaging the perceptual system to assist in problem solving. Although
the benefits of sketching are not completely understood, it is clear that sketches play an
important and complex role in the work of many experts. Additional research will help to
expand and refine this understanding. In particular, experimental support systems could
help us to better understand which benefits of sketching are the most important, which
aspects might be automated without losing their potency, and which sketching benefits
might be transferred to less visual domains.

Another aspect of this principle is that difficult or unusual problems may call for the use
of a combination of tools, or for custom tailoring a tool to better suit the needs of a particular
problem or user. Systems should therefore support features such as data interchange between
tools and end-user development. (I use the term development in part because the idea
that programming is too hard for non-specialists has taken root since the late 1980s [221].
Consequently, some have proposed replacing programming with more accessible alternatives,
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such as programming by example [162]. Contrary to this trend, however, there is ample
evidence that non-specialist adults and even children are capable of creating short but
effective programs [130, 206, 221, 264]. The principle limitations on end-user programming
are the choice of programming language, the length of the program—about one page for
children, five pages for adults—and the need for basic computer literacy [130].)

3.2.6 Support Forming and Testing Hypotheses

Although an ill-structured problem is never completely understood, the user’s understanding
of a problem changes as they explore it. This can be seen clearly in the dialectic process,
which can be viewed as a cycle of posing and immediately testing hypotheses about the
nature of the problem space. The hypotheses are necessary because the user is manipulating
the state of the problem, but wants to create outcomes that arise from interactions between
elements of the state or between elements of the state and external factors: “I need to draw
attention to this part. Maybe if I make it darker? Mmmm. . . yeah, that works. . . but now
it doesn’t feel as cheery.” These interactions are typically complex, hard to predict, and
incompletely understood. Pulling at one corner of a solution to better satisfy one constraint
may be found to affect other constraints in unanticipated ways.

It is necessary to shape both the solution state and the resultant implications in order to
satisfy the problem constraints, yet only the problem state may be immediately accessible.
Other implications may be important to the outcome, yet the user may be oblivious to their
significance. Therefore, support tools should:

• Help the user to identify relevant implications.

• Allow the user to temporarily suspend the current activity to try operations that might
manipulate the solution in desired ways.

• Help the user interpret the results of those trials.

In cases where an implication is sufficiently understood and formalizable it may be
possible to invert causality, allowing the user to manipulate the implication and let the
computer solve for one or more variables in the state.
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3.2.7 Encourage Parallel Exploration of Breadth and Depth

There is a sweet spot between exploring too many alternatives and exploring too few. A
common pitfall for novices is moving to concrete solutions too quickly. More experienced
hands will explore a breadth and depth of solutions in parallel, switching between the two
and moving between different approaches.

The ideal amount of exploration is unknown. It may vary by domain or from problem to
problem. Furthermore, since the main problem that was identified with the exploration of
too many solutions was that too much time was spent managing solutions instead of refining
one of them, the right computer support could significantly change the optimum value.
Keeping aware of the possibility of unexplored alternatives is also important in preventing
entrenchment and the mindless reproduction of old solutions. Until better information is
available, designers of support systems should err on the side of more exploration. Since
novices tend to be the ones that explore too little, they will gain the most from such
encouragement; more experienced problem solvers will be better judges of when to ignore
the support system and stop exploring.

Support tools might provide feedback on the number and variety of alternatives that have
been considered, or organize and display alternatives as a tree or other linked structure to
give a visual indication of the relative breadth and depth of exploration.

3.2.8 Provide Rich History Mechanisms

Problem-solvers must review and reflect on the history of actions taken so far. When they
reach a dead end, they must be able to back up to a previous state. Since they explore
multiple lines in parallel, a more elaborate structure than the linear stack of traditional
undo or a Web browser history is called for. Extending a historical move should not cause
subsequent events in the history to be forgotten.

Rich histories help the user reapply ideas. If one approach peters out, concepts may still
be borrowed from it and reapplied. Histories must not only be revisitable, but editable and
repeatable [235]. It should be possible to “go back in time” and insert new operations with-
out manually recreating subsequent events. Support tools should support rapid switching
between multiple solutions. They should help the user to keep the thread of how solutions
are related, and help them to distinguish their current location on this thread.
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3.2.9 Assist the Construction and Use of Repertoires

Repertoires are collections of examples that help the problem-solver to understand new
situations and provide the initial jumping-off points needed to bootstrap a solution for a
new problem. Repertoires have traditionally been collections of physical artifacts, although
this might not be a necessary condition. For example, design patterns [5,80] are abstractions
of previous designs that play a comparable role to repertoires in some domains.

Specialized search tools may be a way to establish a new repertoire [141] or augment
an existing one. Another way to build a repertoire would be to extend a tool’s history
mechanisms to span multiple sessions. To be most effective, tools for annotating, classifying,
filtering, and browsing records should be provided so that examples are readily available
when needed.

As with sketches, a better empirical understanding of the subconscious processes that
are involved in the use of repertoires would be useful to predict how support systems could
best augment or replace them. For example, it seems that one role of repertoires may be
to serve as “starting sketches.” That is, like sketches, it seems that concrete aspects of the
repertoire artifact prompt the expert to identify new considerations and relationships in the
current situation. If this is the primary role of repertoires, then searches would seem to be
a good software analogue for them. On the other hand, perhaps a more important aspect of
repertoires is to cue the expert to recall previously internalized knowledge associated with
the repertoire artifacts. In this case a repertoire that is built on demand from search results
is unlikely to work as well as one that has been personally collected by the expert, as there
is no previous association between the artifacts and the expert’s existing knowledge.

3.2.10 Create an Effective Environment

Cognitive psychology is rife with experiments showing that various environmental factors
can impact cognition. As one example, a recent study found that the presence of the colour
blue enhances performance on cognitive tasks that require creativity, while red enhances
performance on detail-oriented tasks [180]. Situated action, too, predicts that environment
plays a crucial role in determining the outcome of problem-solving. It shapes not only how a
given solution develops, but even which solutions are discoverable. Observations of experts
at work also make it clear that their environment is an important part of their process. They
surround themselves with sketches and other artifacts that they have collected, and they
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generate and array before them new sketches and artifacts as they work on new problems.
Although support tools are unlikely to have much control over the wider environment

in which they are used, they can maximize the control that they do have. The difficulty of
expert work suggests that a more rigorous, even aggressive approach may be warranted than
is usual for an application. For example, a number of studies have verified that randomly-
timed interruptions interfere with task performance [16, 53, 147, 205]. We also know that
problem-solving is most effective when the expert can engage the state of flow, which requires
an environment that is free from distraction and interruption. Expert support tools might
temporarily suspend screen savers, audio cues for email, software update notices, and similar
non-essential interruptions that the computer normally generates. A more advanced imple-
mentation would recognize that interruptions may vary in importance: critical events may
require immediate interruption, unimportant ones may be suppressed, and those in between
might be scheduled for moments when mental workload is reduced [184]. Ideal interruption
times could be estimated using a cognitive model that predicts subtask completion [15,184],
or by measuring pupil dilation (which can be done with eye-tracking hardware) [15].

3.3 Next Steps

These ten principles capture the common requirements and processes of expert workers
across a variety of domains, and from many theoretical perspectives. It is therefore rea-
sonable to expect that systems that successfully embody these principles will better fit the
expert’s workflow than contemporary applications that do not. Yet beyond verifying this
assumption, several questions remain: Are the principles of practical utility? Do they help
expert support system designers think about, communicate about, and implement new in-
teraction techniques or support systems? If the resulting techniques or systems alter the
performance of the experts who use them, in what ways and how much? In particular, does
implementing a given principle produce a predicted effect? Are there unintended conse-
quences? To what extent are the principles independent? Is it necessary to implement all of
them, or will a modest subset suffice? Which of the principles, if any, are the most effective?
The following chapters will begin to answer these questions, but only after a brief detour to
address an important metaproblem—namely, how to go about answering the questions in
the first place.



Chapter 4

The Knot of Evaluation

4.1 Introduction

Before deciding on the value of this—or any—set of design principles, it is first necessary to
decide what makes a set of design principles “good”, or at least promising. It is clear that
the primary determinant of good design principles is that we can apply them to the design
of something, and the resulting design will produce positive outcomes (or avoid negative
ones). This requirement actually poses two related tests: first, that the principles can be
meaningfully applied to a problem, and second, that the application has a measurable effect
that is explained by (predictable from) the principles.

If these two tests are the only criteria, then there would seem to be little value in deriving
principles. After all, directly applying the unfiltered results (from Chapter 2) should produce
similar effects if the principles correctly interpret the source material. But beyond simple
effectiveness, design principles should have three immediate benefits compared to the original
sources. First, derived principles simplify the body of work by combining repeated results
and concepts and eliminating extraneous ones. This reduces the time and effort required
to apply the principles to a design problem. Second, derived principles reorient the results
from statements about facts and relationships to statements about the constraints on design
problems and how to manipulate them. This renders them in a form more readily applicable
to design, making it easier to evaluate their applicability and to actually apply them. Finally,
derived principles provide a common language that facilitates thinking and communicating
about designs, just as it is easier to discuss a problem involving multiplication if one has
internalized the concept, so that it no longer needs to be expressed as repeated addition.

44
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These benefits are immediate because they follow almost automatically from the process
of deriving the principles: these benefits are essentially a description of what a thoughtful
derivation process would entail: the harmonization of similar concepts, wording the descrip-
tions for an audience of designers, and so on. In addition to these immediate benefits, there
are additional, less tangible qualities that good design principles should exhibit. First, good
design principles should open the door to further research and innovation. For example,
they may lead to the development of new interaction techniques that can be reapplied in
many design contexts. Second, good design principles should help to identify open prob-
lems and gaps in current understanding. Third, good design principles should be a solid
framework for understanding the domain in which they apply. That is, a designer should
be able to discuss and critique projects by comparison to the principles, and to understand
and integrate new but related concepts in terms of analogy, contrast, or subsumption.

The minimal test of acceptability, along with the additional criteria above, suggest a
basic approach for evaluating the design principles. This can be sketched out as follows (a
more detailed outline can be found in Section 4.4 starting on page 50). The primary goal
of the evaluation is to establish that the principles are at least promising (worthy of further
study). This is done by furnishing an existence proof: building an expert support system
in line with the principles and showing that it produces some benefits. Building on this
foundation, additional evidence can then make a case for the stronger claim that there is
not just one such system, but that using the principles to design expert support systems
can in general be expected to lead to good designs. Adding further support, evidence for
the three secondary criteria listed above will also be provided. Some examples of the first
of these criteria (that the principles should inspire further innovation) will become major
topics. As for the second criterion, a number of open problems and questions were already
identified when the principles were defined.

4.2 Evaluation in HCI

With the overall goals and approach now understood, the actual form of the evaluation
process can be addressed. Unfortunately, the question of how to best conduct and evaluate
HCI research generally, let alone in the area of expert support systems, is an unsettled
one [39,92,275]. A source of contention is that HCI practitioners come from a diverse range
of backgrounds (primarily computing science, design, ergonomics, and psychology), each of
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which has different methods and criteria for the acceptance of ideas. Despite this multi-
cultural background, results grounded in the methods of psychology (especially usability
evaluations [92]) have generally dominated publication venues. One reason for this is that
psychologists played key roles in HCI’s founding. The field’s seminal works [37, 202] are
strongly rooted in basic cognitive psychology research, and psychologists have had a cor-
respondingly large influence on research methods in HCI. Another reason may be a desire
on the part of the HCI community to be taken seriously as a discipline, as quantitative
results provide a veneer of scientific rigour. Psychology went through a similar (though
more profound) period during the first half of the 20th century [182, pp. 5–49].

Whatever the reasons, HCI publications exhibit undue preference for objective empirical
results, with quantitative results further preferred over qualitative [92, 275]. Quantitative
results have their place, but there is a trade-off between the precision of a result and its
scope [109]. The bias persists even when it means settling for scientifically weak research
questions that are narrow in scope and make few testable predictions [92].

Like a jar of cookies, weak questions can offer comfort but little substance. By fitting
their work to what is publishable, researchers miss opportunities to discover valuable design
innovations, which often fall outside the scope of the methods preferred by reviewers [92].
In response, several researchers have called on the HCI community to follow the example
of other design disciplines—ones with a better record of innovation than HCI [92]—and
place at least equal value on qualitative evidence, such as arguments from design rationale,
expert opinion, and reflection [92, 188, 249, 250, 275]. These voices argue that quantitative
data and the scientific method are not the only, nor necessarily the most appropriate, bases
for evaluation in HCI [275].

If HCI is to be more receptive to evidence from a broader range of sources, it must
address the need to combine evidence from different sources and with different standards
of acceptance. One approach is suggested by Miller and Miller [183], who have similarly
argued for accepting a broader range of evidence in medicine. Their concern was the growing
import of evidence-based medicine in medical practice, which places primary importance on
epidemiological (i.e., statistical) evidence.1 They contrast the use of evidence in medicine
with its use in the legal system. The legal system begins by setting an appropriate standard

1It appears that arguments like Miller and Miller’s have been successful, as medical practice now empha-
sizes evidence-informed medicine, which uses epidemiological evidence as a guide to decision-making rather
than an arbiter.
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of proof, such as “more likely than not” or “beyond a reasonable doubt”. Lawyers then try
to meet (or deny) this standard by organizing evidence into a factual matrix where pieces
of information corroborate each other to present a set of consistent facts. Different kinds
of evidence may be weighted differently, and the reliability of both the information and its
source are considered.

In legal proceedings, the standard of proof is based on risk [183]. For example, criminal
proceedings use a higher standard than civil ones because of the correspondingly harsher
penalties that would be unjustly applied after an incorrect verdict. At the other end of the
risk spectrum, the precautionary principle allows lawmakers to enact restrictive legislation
based on possible causes of harm without conclusive evidence that the risk of harm is
real [7, 183]. The standards also acknowledge that false negatives are less damaging than
false positives [20, p. 352], a principle that also guides the design of experiments [187, p. 35].

Interpreting this in an HCI context suggests that broad-scoped research should, at least
initially, have a lighter standard of proof due to the risk of culling a promising line of inquiry
before it can properly mature [92]. As the research matures, a factual matrix will gradually
develop as different elements are investigated using a variety of methods—and hence, a
variety of scopes, degrees of precision, and strengths. While legal cases have a fixed end,
research can continue indefinitely, so its evidence continues to change over time.

What properties lend strength to a factual matrix, making it more convincing than alter-
native explanations? Philosophers describe the process by which one explanatory hypothesis
wins out over competitors as inference to the best explanation [102]. Informally, the best
explanation is often characterized as the one that is the simplest according to criteria such as
Ockham’s razor. Thagard’s explanatory coherence theory [256] expands on and formalizes
this notion. Thagard has implemented explanatory coherence as a computational model
which can successfully predict the acceptance of explanations in a number of domains, in-
cluding science, law, and medicine [256, 257]. Thagard argues that, over time, explanatory
coherence yields progressive approximations of truth [258].

According to Thagard, explanations are selected primarily by two criteria, consilience
and simplicity, of which consilience is the more important [255]. Consilience captures how
completely a theory describes the phenomena being explained. One theory is more consilient
than another if it explains more classes of facts. Simply explaining more facts is not as
powerful as explaining facts from different domains. For example, a theory of light that
explains one case of reflection and one case of refraction would be more convincing than one
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that explains refraction in two different media. What constitutes a class of facts cannot be
formally defined, but it is generally agreed upon within a field [255].

Thagard’s simplicity acts as a constraint on arbitrarily increasing consilience through the
simple accumulation of ad hoc hypotheses [255].2 An ad hoc hypothesis is one introduced
specifically to explain a special case that does not fit the main hypotheses (i.e., those that
explain many facts). Simpler explanations require fewer ad hoc hypotheses, but simplicity
also has a temporal aspect. Any hypothesis might be seen as ad hoc when it is first intro-
duced. Therefore, it is important to observe whether that hypothesis is used to explain a
growing body of facts over time.

For research like that presented here—broad-scoped research for which generalizability
is a key goal—two points stand out from Thagard’s theory. The first point is that attempts
to demonstrate generalization by evaluating different prototypes or examples will be much
more convincing if the examples are chosen to maximize consilience. The second point
is that, like the application of risk in legal proceedings, the temporal aspect of simplicity
argues against rejecting ideas too early.

4.3 Approaches to Generalization in HCI

A central goal of the evaluation is to argue that the principles will generalize to the design of
all, or at least a large class, of expert support systems. A common approach in computing
science, where empirical inquiry often begins with a concrete implementation [40,197,224],
would be to build a system using the principles, and then show that it yields benefits. By
itself this provides only an existence proof, showing that it is possible to build at least one
good system based on the principles. At best, this provides weak evidence for causality or
generalizability.

Some HCI researchers have argued for the use of claims analysis [39] as a basis for
creating reusable knowledge from individual implementations [249, 250]. A claim describes
the trade-offs and HCI knowledge that led to a particular design aspect of an artifact. By
classifying and generalizing the knowledge in a set of claims associated with an artifact, their
scope for reuse is generalized beyond that artifact [249, 250]. This promotes an existence
proof into arguments and falsifiable hypotheses about the conditions under which a claim

2Ockham’s razor is different from this definition of simplicity since it also applies to the number of
postulates, which Thagard does not consider relevant [255].
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generalizes to other situations, and what effects it should produce. While such arguments
are, in a sense, already embodied in the artifact [39], making them explicit makes them
more accessible for replication studies or incorporation into larger arguments.

A more widely known way to produce generalized HCI knowledge is through cognitive
modelling. Cognitive modelling uses psychological theory and quantitative results to build
predictive models of human cognitive performance. These models are a good example of the
scope-precision trade-off. They are narrow in scope [249] (e.g., predicting postprocedural
errors [34], menu label comprehension [136]), but within that scope they can have excellent
predictive power. For example, a detailed GOMS (Goals, Operators, Methods, Selection
rules) [37, 127, 133] analysis correctly predicted that a system designed to save a telephone
company millions of dollars a year by cutting a few seconds from operator assisted call times
would instead actually increase times by one second [91]. Cognitive modelling is undoubtedly
useful when a design problem intersects with the specific variables predicted by the model.
However, a narrow scope implies a small impact when evaluating broadly-scoped research.

Generalizability can also be demonstrated by extending an existence proof into an induc-
tive argument by building and testing multiple systems. Positive test results offer additional
support for the embodied claims, while negative results not otherwise explainable weaken
or falsify them [92, 224, 250]. This process is comparable to, although not as well defined
as, the use of meta-analysis to strengthen claims based on statistical evidence. How much
successful replication is needed to be convincing? There is no definitive answer. As with
all inductive arguments (including those made using the scientific method), no number of
positive results can prove that a claim is true [213]. On the other hand, as already noted,
a single test case can be sufficient in the early stages of promising work of broad scope,
although this should ideally be followed with additional tests as the research develops.

As a notable example, it is worth considering Norman’s set of interaction design prin-
ciples, based upon his seven stages of action [201]. In his book, Norman considers dozens
of everyday examples that break his principles, and argues that they can be improved by
redesigning them accordingly. Norman has an important advantage: he can build an ar-
gument from any artifact he comes across, because he considers how well its design serves
its primary function, whatever that happens to be. When, as in this dissertation, there are
few or no suitable extant examples to draw upon, it becomes necessary to build suitable
prototypes. Unless substantial resources are available, this will severely limit the number
of examples that can reasonably be considered. In this case, it is all the more important to
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Figure 4.1: The major components of the factual matrix. The broad theoretical background
informs the derivation of the design principles. These are embodied to varying degrees by
multiple prototype systems. The prototypes are evaluated through a combination of design
rationale, claims analysis, and quantitative and qualitative studies. This evaluation serves
to reinforce confidence in the principles. Open problems may be identified anywhere, but
this occurs primarily during the survey and derivation of principles. Investigating these
open problems represents future work that will further expand the understanding of expert
work (indicated with a dotted line).

choose prototypes that will increase the consilience of the argument.

4.4 Outline of the Factual Matrix

At the start of this chapter, three overall goals were presented for the evaluation of the
design principles. Here they are presented as hypotheses:

1. There is at least one expert support system designed in accordance with the principles
which has a positive impact on expert work.

2. In general, expert support systems designed in accordance with the principles will
have positive impacts on expert work.
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3. The design principles meet at least some of the additional criteria for “good” design
principles listed on page 45.

Hypotheses (2) and (3) both depend upon the hypothesis (1), but are independent of each
other. (Hypothesis (3) could in principle be satisfied even if hypothesis (1) was false, but
such an achievement would have little value.)

Subsequent chapters will build an argument in favour of these hypotheses by marshalling
the evidence into a factual matrix. The first element of this matrix is the broad theoretical
and empirical background from which the principles are ultimately derived: the act of
derivation implicitly appeals to their authority in support of hypotheses (1) and (2). The
survey, along with the presentation of the principles, also provides instances of open problems
and concept integration that are evidence for accepting hypothesis (3).

At the heart of the matrix are three prototype systems designed in accordance with
the principles. I built and evaluated two of the prototypes; these are presented along with
detailed design rationales. The third prototype was built and evaluated independently by a
colleague and is presented in summary form in the context of other discussion.

The first system, XDS [124, 125], considers what is possible when designing a support
system from scratch. XDS is a support tool for experimental design. It implements all of
the principles to a degree, and provides strong support for many. Moreover, the principles
are implemented mainly through a small set of tightly interwoven techniques, demonstrating
that the principles can be implemented in an elegant way without sacrificing usability or
aesthetics. XDS addresses not only the particular needs of the experimental design domain,
but also the specific needs of the population that works in this domain. For example, most
experiment designers have little formal training in ill-structured problem solving, so special
attention is paid to coaxing these users out of less effective work habits. A study confirms
that users of XDS try more alternatives, are able to improve on designs, and are encouraged
to try a broader range of design choices.

XDS implements the principles as an elegant gestalt. It can serve as an inspiration
to support system designers by providing a glimpse of what is possible with a diligent
application. Although this generally supports hypothesis (3), it makes a thorough, controlled
evaluation untenable due to the psychological overdetermination and interdependence of
design elements. Instead, claims analysis is used to generalize specific XDS features, with
a focusing on halo menus and consequence displays. The use of claims analysis strengthens
evidence for the generality of these techniques, which supports hypothesis (3) while also
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providing additional corroboration of the principles that these techniques embody.
In the case of halo menus, the claims analysis is done formally by presenting arguments

about the technique’s generalizabilty, its limitations and trade-offs, and a discussion of
possible design variations. In the case of consequence displays, the claims analysis is informal
and concrete: this technique provides the primary means of novel expert support in the
second support tool, Strange Eons.

Strange Eons [121] supports content creation for board, card, role-playing, and other
games. The gap between the domains is broad enough that very different strategies must
be employed to implement the principles. ANOVA experimental design has enough formal
structure that the entire design space can be modelled by the computer. Games, on the other
hand, form individual subspaces through conventions and constraints created by existing
components and the game’s rules. The choice of Strange Eons as a second case greatly
enhances the consilience of the factual matrix.

Strange Eons provides generic support for the creation of components (cards, tokens,
boards and board spaces, booklets, fold-up tuck boxes, and so on). A degree of expert sup-
port is included for all component types through this generic support structure. However,
primary support comes as consequence displays that are tailored to each component type’s
design space. For this reason, the evaluation of Strange Eons focuses on a particular com-
ponent type for a particular game.

Unlike XDS, Strange Eons provides direct support for only a handful of the principles.
This serves two purposes. First, it shows how the principles might be used to incrementally
improve existing applications without the kind of radical design change posed by XDS.
Second, it narrows the scope of support, enabling a more controlled evaluation. Two studies
suggest that the consequence display in Strange Eons allows users to produce better designs
in less time than they otherwise would. This result is made more compelling by the fact
that the consequence displays in Strange Eons feature distinctly weaker consequences than
those in XDS.

Since Strange Eons implements only a subset of the principles, it supports the generality
of only that subset. This is addressed by briefly considering a third system, Treesta [125,186],
which implements a largely complementary subset of the principles in yet another domain,
lending further support to hypothesis (2). When combined with the other cases, Treesta
also demonstrates that the principles have at least a minimal degree of independence.
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Overall, the factual matrix outlined above—including the design rationale and evaluation
for two novel systems and a combination of quantitative and qualitative studies and claims
analysis—provides a much firmer basis for drawing conclusions about the quality of the
design principles than a simple existence proof. Moreover, the use of a factual matrix (and
other unusual methods, such as claims analysis) represents a test case that will advance the
issue of appropriate research methods for HCI, a discussion with implications beyond the
principles themselves.



Chapter 5

XDS: A Broad Implementation of
the Principles

5.1 Introduction

A first step towards validating the principles is to build and evaluate a prototype system
that embodies them. If the system produces benefits that can be explained by the effect of
the principles, then the prototype constitutes an existence proof that indicates that further
evaluation is warranted. On the other hand, if the system does not produce benefits, and
if this failure cannot be explained by other factors, then this argues strongly against the
effectiveness of the principles [224].

This chapter introduces such a prototype, XDS, an expert support system for plan-
ning experiments that use ANOVA statistical models. Designing ANOVA experiments is
a challenging problem that is grappled with by experts in many domains. XDS supports
this work using a small set of powerful, integrated techniques that together provide very
broad coverage of the principles, making it an excellent candidate to establish an existence
proof. This chapter introduces the problem and presents the design of XDS along with that
design’s rationale, which not only incorporates the principles but also demonstrates the im-
portance of applying them alongside traditional HCI design knowledge. While this chapter
presents the design of XDS in general terms, the next chapter completes the existence proof
by connecting the design back to the principles and presenting a qualitative evaluation.

54
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5.2 The Design of XDS

The design of XDS was especially driven by three goals that respond to weaknesses identified
in the the processes used by typical experiment designers: First, many experiment designers
use a flawed design process that tends not to consider a breadth or depth of alternative
solutions. The inadequate exploration is explained by inexperience: for most researchers,
experiment design is not their primary field of practice.

Second, experiment designers tend to construct new designs by retrofitting familiar de-
signs that have worked in the past, rather than seeking a new design that is better fitted to
the specific research question. Experimental design courses often emphasize this approach.

The third weakness arises from how experts evaluate alternatives, especially when work-
ing with ill-structured problems. Problem solving is a process of choosing options, and
these options often involve making trade-offs between competing interests. The expert may
choose to relax one constraint on the solution, but only at the cost of tightening others.
The dialectic process that Schön and others observed in various fields (see page 26) is one
method for navigating this process. It can be generalized to a two-step procedure in which
a new candidate design is first derived and then evaluated in terms of project goals. This
process is usually done informally, and the steps involved are not explicit. This informality
allows problem solving to be more fluid, but it may also carry costs. One cost is that experts
may begin to work from habit, making small modifications to stock solutions. This limits
the region of the solution space that can be explored; the result is a faster problem-solving
process, but a mediocre solution only loosely matches the problem. On a wider scale, this
may lead to stagnation of the field.

To address these weaknesses, the design of XDS was driven by three goals (these are
precursors to the current design principles; the principles and XDS were codeveloped and
both have undergone multiple iterations):

1. Keep the user aware of available options for transforming the design. This makes it
easier to try more alternatives, and therefore increases the likelihood of more explo-
ration.

2. Explicitly represent the structure of the connections between alternative designs. This
helps the user manage the alternatives that they generate, and makes it easier to jump
from one alternative to another, which encourages a mixed exploration strategy.
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3. Provide fast, accurate feedback on the consequences of design choices. Helping the
user to predict important consequences of design choices neutralizes the benefit of
working from habit, giving the user confidence in the reliability of newly explored
alternatives.

5.3 The Domain of Experimental Design

XDS models the problem space of classical experimental design for ANOVA (Analysis of
Variance) designs [70,167]. A review of basic experimental and statistical methods will put
this in context.

Researchers are interested in understanding the relationships between the variables in a
model. This can be done by comparing different groups where the values of one set of vari-
ables (called independent) is fixed for the members of each group but different between the
groups, and then observing how the groups differ in terms of another set of variables (called
dependent). For example, by giving two different groups different levels of a Vitamin A
supplement and then testing and comparing the eyesight of these groups, a researcher may
hope to find a positive correlation between Vitamin A intake and visual acuity.

In any comparison of this kind, there will be some noise in the data due to experimenter
error, limitations of the measurement instruments, and variations within the groups due
to factors not considered by the experiment. Therefore, there is always some uncertainty
as to whether an apparent difference between the groups (or lack thereof) is an accurate
description of the effects of the independent variables, or if the true effects of the variables are
being masked by noise. Statistical analysis allows researchers to quantify this uncertainty so
that it can be constrained to fall within acceptable limits. This in turn allows the researcher
to be reasonably confident in the accuracy of her conclusions.

A commonly used statistical technique is the t-test [90]. This test is used when comparing
the mean value of a dependent variable between two groups, given certain assumptions about
the distributions and variances of the populations and the sampling method. The researcher
decides upon the acceptable levels of uncertainty by choosing values for α (the probability
that the conclusion is falsely positive) and β (the probability that the conclusion is falsely
negative). The researcher then performs the t-test on the collected data, and concludes either
that the observed difference between the means of the dependent variable is statistically
significant, or it is not. If it is statistically significant, then the researcher can be confident,
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within the limits set by α and β, that the difference between the groups is genuinely due
to the effect of the independent variable. If it is not statistically significant, then there is
too much noise to conclude whether the difference is due to the effect of the independent
variables or is a result of random chance.

The t-test is only applicable to experiments that compare two independent groups. This
covers a large number of research scenarios, including the canonical experimental design
that compares a treatment group with a control or placebo group, but there are also many
important research questions that do not conform to this requirement. The introduction
of ANOVA models lets researchers answer more of these questions by opening a space of
experimental design possibilities. In its simplest form, called one-way ANOVA, ANOVA
generalizes the t-test to more than two groups. Using more complex ANOVA models, it is
possible to, for example, test more than one independent variable, or to construct designs
that use repeated measures (in which the different treatment levels are applied to the same
subjects).

The full array of ANOVA models greatly increases the flexibility with which researchers
can pose a research question while also turning a fairly straightforward process for planning
experiments into an ill-structured problem that must balance the the research question,
resource costs, the generality of any conclusions, and other factors. While the presence of
an ill-structured problem hints that ANOVA experimental design may be a candidate for
expert support, five features particularly recommend it:

First, this domain has a substantial impact on expert work. ANOVA designs are widely
used in the basic, behavioural and clinical sciences, as well as in industry and government.

Second, many practitioners of ANOVA design are amateurs in the sense that their pri-
mary training and background is in their particular research domain, not in statistics. Such
amateur practitioners seem particularly likely to benefit from a tool that supports what is
likely the weaker of their two skill sets. Less experienced practitioners are prone to certain
common mistakes, such as engaging in a depth-first exploration strategy rather than con-
sidering alternative approaches (see page 26). A good expert support tool may help to more
quickly wean novices off of suboptimal strategies.

Third, ANOVA experimental design is a difficult problem, both subtle and risky. To
design an experiment correctly the expert must bridge the gap between the research domain
and the statistical domain by identifying the statistically relevant features of the research
question and the context in which the research is performed, and expressing these in terms
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of the statistical domain. Small changes to a design can require surprisingly large changes
to the analysis method, while evaluating designs requires the expert to make assumptions
about the outcome of the experiment before the data can be collected. The wrong design
may waste time and money conducting an experiment that does not accurately address the
research question, and may result in false or misleading conclusions. Such mistakes endanger
the reputation of the practitioner and may incur health, safety, or legal repercussions.

Fourth, the design consequences that must be balanced by the designer are generally
difficult to compute by hand and hard to informally estimate. However, many can be
effectively computed or estimated by machine.

Fifth, many practitioners are not aware of the full flexibility of ANOVA designs. The
advent of a general model of ANOVA designs that allows it to be treated as a space of designs
is relatively recent [167]. As a result, many researchers were taught to perform experimental
design in terms of a small number of islands within the space that have come to be preferred
largely through historical precedent and their suitability for manual calculation. Helping
researchers to discover a broader design space could have a tremendous positive impact on
their design process.

5.4 Examining Typical Design Processes

An informal interview with a statistical consultant helped establish typical design practice in
experimental design. His personal experiences were later confirmed during detailed process
interviews that I conducted as part of a user study of XDS (see Chapter 6). Observations
from both initial and subsequent interviews depict experimental design processes that fit
the general patterns for expert work processes described in Chapters 1 and 2.

Researchers tend not to consider many alternative designs for their experiments. Inex-
perienced designers reported considering very few designs: typically only one or perhaps
two. However, even experienced designers considered at most a few more. The interviews
revealed five principal reasons for this pattern:

First, many researchers neglect experimental design. They either leave it to the last
minute, or even start collecting data without performing any design. The order of data
collection is a critical component of an experiment’s design, so collecting data effectively
sets the design; little change is possible afterwards.



CHAPTER 5. A BROAD IMPLEMENTATION OF THE PRINCIPLES 59

Second, as discussed previously, many researchers are trained to design experiments by
choosing the closest match from a set list. Once this is done, all that remains is a final
convergence of the design.

Third, even experienced designers prefer to use rules of thumb to guide design decisions,
and to avoid comparing multiple designs. Substantial work is needed to accurately estimate
the effects of design decisions, and few tools are available to help.

Fourth, in some domains, such as the physical sciences, the research context places so
many constraints on the designer that only a few choices are available. Experts in these
domains may benefit less from being able to explore a range of designs since the space in
question has few dimensions. On the other hand, having that fine grained control over
the restricted space available to them might better help them to make optimal use of the
remaining options. In either case, like other researchers, they might benefit from more
accurate estimates of the consequences of their design decisions. For example, cost estimates
may help them to allocate a sufficient budget for the experiment.

Finally, although researchers usually have some training in the elements of experimental
design, few are trained in design process. Instead, designs are developed largely using trial
and error. Even experienced designers use a hodge-podge of techniques. A typical approach
starts with a design that worked in the past and that has similar features, adjusts it based
on rules of thumb, and then—sometimes—ends with an estimate of the statistical power.
(Statistical power refers to 1−β, the probability that a conclusion is not falsely negative. It
is related to the sensitivity of the design, that is, the minimum magnitude of the difference
between groups that a design can reliably detect.)

Although all of the experiment designers interviewed reported that they tend to consider
a small number of total designs, more experienced designers considered more designs overall,
as well as a broader variety of designs. This matches the patterns observed for novice and
experienced designers in Chapter 2, and agrees with the prediction that many researchers
are not expert experiment designers.

Overall, the interviews revealed four key areas where novices could most benefit from
support. First, novice designers showed a lack of awareness of the full set of design op-
tions. Being more aware of these options might encourage them to try a broader variety
of approaches. Second, like novices in other ill-structured domains, novice experiment de-
signers tend to execute depth-first explorations of the problem space rather than consider
a variety of approaches. This can waste time working on a dead end and lead to a lower
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quality design. Third, the information available to designers when comparing designs or
considering an alternative approach is limited because they rely upon informal estimates of
the effects of design choices. More accurate estimates would allow designers to make more
informed decisions, and to better determine whether developing additional designs is likely
to be worthwhile. Fourth, the lack of a design process means designers may have no tools
to fall back on when encountering novel or difficult situations outside of their experience,
which may lead them to ignore potentially serious problems with a design. Providing a
more structured approach would help them to consider the possibilities more thoroughly
and to experience less stress in novel situations. Among other benefits, this could increase
the likelihood of engaging flow.

Although these areas for support are derived in large part from the behaviours reported
by novice designers, experts also reported considering a relatively small number of designs.
This may be due to the lack of a design process, or due to the fact that the coarse information
they glean is not useful enough to warrant more detailed exploration. In either of these cases,
the same supports that are indicated for novices above would also benefit experts.

The areas outlined above represent the strongest needs for experiment designers. Once
they are satisfied, others are likely to be revealed. For example, once the designers start
exploring more of the design space, they will need to manage the history of that exploration.
Thus, while the particular weaknesses discovered during the interviews should be vigorously
supported, a good support system design must still consider all of the principles.

5.5 Trade-offs and Consequences

All ill-structured problems require striking a balance between opposing trade-offs. Under-
standing how a candidate solution balances the various trade-offs in a problem is critical to
being able to meaningfully compare alternatives. Support system designers must consider
carefully how the state of partial solutions will be represented. In a given representation, a
trade-off may be explicitly represented in the representation’s state, it may arise indirectly
in the way aspects of the state interact with each other or the problem context, or it may be
unrepresented. A trade-off that is explicitly represented can be directly manipulated by the
user. If the trade-off is indirectly represented, the user can still estimate it by examining the
externalized solution state provided by the support system. For unrepresented trade-offs,
the burden for recognizing, evaluating, and comparing the trade-off falls on the user.



CHAPTER 5. A BROAD IMPLEMENTATION OF THE PRINCIPLES 61

Because they arise from the problem state but are not directly described by it, I call
indirect and unrepresented trade-offs hidden consequences. It is largely the need to ma-
nipulate hidden consequences (while being unable to do so directly) that gives rise to the
hypothesis-testing aspect of the dialectic process: the problem-solver must manipulate the
problem state in order to observe the effect on the hidden consequences.

While indirect trade-offs can in principle be evaluated from an examination of state
information, it is often difficult or cumbersome to do so. This may discourage the problem-
solver from considering hidden consequences with due care, or to consider fewer alternative
solutions due to the work involved in properly evaluating them. A support system can help
by computing the consequence estimates itself and displaying them to the user. Ideally,
these should be available not only as raw values but in a graphical form that can access
the benefits of pictorial representations. (Indeed, a well-designed visualization may help the
user to evaluate even directly represented trade-offs more effectively. I therefore dispense
with the hidden adjective from here on, although support system designers are likely to
find that supporting hidden consequences will be both harder than, yet also more beneficial
than, supporting visible ones.)

Although the consequences that are most relevant to a given situation will vary, it is
often possible to identify consequences that are common across many problem instances.
For example, authors are often limited to a certain page count. When preparing such
documents for submission, the author must make decisions about what material to keep,
which sections can be expanded upon, and so forth. Authors could benefit from a better
understanding of how potential changes will impact document length, and document length
is a consequence of the document state. It depends not just on the words used, but on their
order (this affects line and page breaks), the location of chapters, sections, and paragraphs,
the size and location of figures and tables, typographic style choices, and so on. A simple
consequence display might show a bar that includes the current length, the page limit
constraint, and an indicator of how the length would change after actions such as pasting
the clipboard contents (see Figure 5.1). Other support features could greatly enhance the
usefulness of such a display. For example, being able to to select multiple text blocks or (as
in the ART system discussed on page 27) having a separate area that text blocks could be
moved to nondestructively on a contingent basis.

Returning to the experimental design domain supported by XDS, there are six principal
kinds of trade-offs:
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Figure 5.1: A hypothetical document length consequence display. The author is considering
pasting text into the document, taking it from seven and a half pages to more than eight
(eight is the page limit). If text was also selected within the document, additional indicators
could show the effect of deleting the selection or replacing it with the clipboard content.

1. The risk of drawing an incorrect conclusion. This is represented in the statistical
model by α and β.

2. The range of effect magnitudes which can be reliably detected (sensitivity). As the
difference between two groups gets smaller, the designer must sacrifice other goals
(such as low cost) to be able to find a statistically significant difference. Estimating the
smallest effect magnitude that a design can reliably detect is called power analysis [47].

3. The generalizability of the results. The designer can make gains in other trade-offs by
sacrificing how widely the results apply. Sometimes, the designer can argue separately
that the results still generalize to a larger population using expert knowledge of the
research domain.

4. The resource costs of running the experiment. This is a significant concern in most
research domains. A typical application of power analysis is to determine the minimum
sample size needed to find a difference of the expected magnitude. This ensures that
resources are not wasted taking unneeded measurements.

5. The complexity of the experiment. Complex designs have implications beyond the
cost of taking the measurements. For example, with a more complex structure, the
probability of accidentally—or intentionally—violating the data gathering protocol
increases.

6. How directly the phenomena tested by the design relate to the true phenomenon of
interest.

In XDS, trade-off (1) is part of the design state, while trade-offs (2)–(6) are hidden con-
sequences of the design. XDS provides visualizations for trade-offs (2)–(4) in each design’s
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summary representation (these are described in Section 5.9). Trade-off (5) is not presented
directly, although it can be rapidly gauged by inspecting the design’s detailed state repre-
sentation. The interpretation of trade-off (6) is relative to the research question, so it cannot
be computed automatically. However, designers can assess trade-off (6) by comparing the
tests available from the design with their research question. In addition, a constraint sys-
tem (also described in Section 5.9) allows designers to make statements about which tests
are relevant to their research. Constraint satisfaction is also presented to the designer as a
consequence display.

5.6 Design Space Explorers

XDS is in the family of applications known as design space explorers [277]. Design space
explorers are derived from Newell and Simon’s work on problem spaces (see p. 19) and
Stiny’s work on shape grammars [244]. They model the design process as the traversal of a
space of designs, exploring possibilities by moving directly from one point (candidate design)
to another. This point-to-point movement is accomplished by using design-level operators
that directly transform one design into another design without moving through intermediate
edit states.

From an HCI perspective, the design space explorer literature can be divided into two
classes. The first class emphasizes the application of artificial intelligence and optimization
methods to perform an autonomous exploration of the target space. Human participation
in these systems is limited to supplying the input and applying the output of the explo-
ration process. These systems are typically limited in scope, addressing one specific aspect
of a larger problem and covering only a subset of the processes in Jones’s taxonomy (see
page 4). Indeed, they may fail to meet the above strict definition of a design space explorer,
due to limitations in their model of the selected space. Example domains include machine
code optimization [58], optimal system-on-a-chip configuration [105,160], adaptive hardware
implementation [22], and aspects of aerospace engineering such as powerplant design [185].
Systems in this class are typically used in one of two ways. The first application is to
automate part or all of the final convergence phase of a design: the system is presented
with a high-level representation of the design which it completes by filling in implementa-
tion details. Systems of this kind are generally used to automate combinatorially vast but
well-structured subproblems that are required to complete a design but tedious to execute



CHAPTER 5. A BROAD IMPLEMENTATION OF THE PRINCIPLES 64

manually. These subproblems can be effectively tackled with standard algorithmic tech-
niques. For example, given a description of the electronic systems in an aircraft design, the
explorer might complete the design by finding a cost-effective but code-compliant way to
wire the systems together. The second application of explorers in this class is to automate
the transformation process by automatically exploring a subspace based on a fixed set of
design variables. These systems use the model of the design space to simulate the effects
of different combinations of the chosen variables. The results of this kind of exploration
can be used, for example, to build a repertoire of useful starting points for more specific
design problems, or to identify some of the broad alternatives in a problem and gain an
understanding of the advantages and disadvantages. The statistical technique known as
response surface methodology [24,25], which uses a series of experiments to build an approx-
imate mathematical model of a black box system, could also be viewed as design space
exploration in this vein.

The second class of design space explorer emphasizes a partnership between the user and
the system. Systems in this class, including XDS, come from the tradition of Licklider [161],
and of Fischer and Nakakoji [68]: they seek to empower users by leveraging the computer’s
complementary strengths rather than replacing users with autonomous actors. Examples in
this class have previously focused on the design of objects in space, such as solid shapes [106]
and room layouts [101]. This class of design space explorer is of particular interest as a basis
for providing expert support, as the subjectivity found in ill-structured problems demands
a high degree of human involvement. Of Jones’s three processes, they provide the most
direct support for transformation and convergence, but they can potentially support the
user during all three processes. As well, their support for divergence can be bolstered with
independent techniques, such as electronic repertoires or a representation of the problem
space (in addition to the solution space).

Since previous design space explorers in this class have focused on the design of phys-
ical objects, their displays have featured the spatial arrangement of design elements. The
abstract operators and constraints generating the design have typically remained implicit,
without graphical representation. XDS extends previous design space explorer work by
displaying the explored design space rather than the current design. It displays the track
of all past designs, together with the design moves connecting them, and it arranges them
according to their similarity to an initial design state. This approach explicitly presents the
designer’s task as one of trying alternate sequences of design moves, taken from an explicit,



CHAPTER 5. A BROAD IMPLEMENTATION OF THE PRINCIPLES 65

finite set of such moves. The designs themselves are displayed, in full or summarized form,
as points in the space. These summaries characterize important consequences of the design
rather than providing a summary of the design state or, as in an approach used by Stump,
Yukish, Simpson and Harris [245], abstract indicators of the design state.

Stump et. al. [245] proposed a design by shopping exploration model: the designer chooses
designs that they like, and the system attempts to find optimal combinations of features.
Optimization of this kind is in general not possible for experimental design. Changes to the
design imply new assumptions about the research domain, and only an expert in that domain
can determine which assumptions are valid for the research question. Similarly, other ill-
structured problems are likely to have unique aspects that are important to a particular
problem instance but which are not or cannot be represented in a computer model.

Previous design explorers emphasize reducing the relative cost of computing generative
details, letting the designer focus on making broader changes [277]. How a circuit is laid
out is unimportant so long as it is functionally correct and reasonably efficient. While XDS
does compute generative details of this kind, the focus is on reducing the cost of another
kind of design activity, namely that of balancing trade-offs through design evaluation and
hypothesis testing in order to help the user explore more confidently and effectively.

5.7 Other Related Work

I have previously argued that the key drawback of most contemporary applications is a
lack of support for divergence and transformation, two activities that revolve around the
generation of alternatives. Other HCI researchers have considered the problem of supporting
multiple alternatives and designer choice:

Terry, Mynatt, Nakakoji, and Yamamoto [254] present an alternative approach to sup-
porting multiple simultaneous solutions to a design problem. Their system focuses on designs
that cannot be well-described in terms of generative operators. Hence, they emphasize dis-
playing multiple designs, which can be modified individually or as a group. In contrast, the
design space in XDS has stronger structure, and I emphasize displaying the space of designs
created so far.

Design rationale systems are related to design explorers in that both focus on the design
space. These systems are used to capture the reasoning behind design decisions along with
the design changes. Providing a design rationale establishes an argument for the design that
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may be reviewed by critics or used as an aid in future design tasks [188]. In contrast, the
purpose of design explorers is to support the current design task rather than future work.
Although not a focus of this presentation, XDS allows the association of informal design
rationale annotations with both individual designs and explored spaces.

Klemmer, Thomsen, Phelps-Goodman, Lee, and Landay [137] present the Designers’
Outpost, a tool for designing Web sites. This system combines history capture with infor-
mal design rationale annotations. The design history is navigated by scrolling through a
linearized tree of thumbnails of the design state. In contrast to the history state approach,
the summaries in XDS feature consequences of the design state rather than the state itself.
In XDS, there is no notion of an active or current moment in the design history—instead,
it presents only the space of explored designs. This is supported by the design summaries,
as they are often sufficient for decision-making, but the full design state is also accessed
through this view when needed.

A common problem for systems that perform history capture is identifying which states
are meaningful enough to be of historic importance [100]. This is less of an issue in design
space explorers because they are defined in terms of higher-level operations (moves in the
space) and so rely less on the aggregate effect of long sequences of operations. Consequently,
a higher proportion of the products of operations are expected to be worth capturing. In
practice, the designer will still wish to group a few moves into a single result at times. In
XDS, this can be done easily as a side effect of the mechanism for inserting operations into
the design history.

5.8 XDS: Representing the Design Space

Most applications present a single explicit representation that changes as it is edited. In
XDS, the focus is shifted from a single incrementally developed product to a collection of
alternatives related by the designer’s choices. At all times, the interface displays the space
of explored designs on a two-dimensional grid (see Figure 5.6). Initially, the explored space
consists of only the Empty Design, which acts as an origin for the space and a starting
point for the user. New designs are generated by performing moves on existing designs,
and the resulting child designs are arranged automatically according to their similarity to
their parent and the type of move performed. This arrangement explicitly represents the
notion of design as exploring a design space. It also allows the designer to get a sense of
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how designs relate to each other structurally by observing their spatial relationship.
In addition, parent designs are linked to their children by an arrow line, with children

always placed close to parents. This creates a clear path for the designer to follow when
reviewing the design history.

To apply design moves, XDS introduces an interaction technique called the halo menu.
A halo menu encircles the design under the cursor with buttons that correspond to the
available design moves. As the user moves the cursor around the space, designs will prompt
the designer with design options, encouraging the designer to explore more alternatives.
(Halo menus are a large topic; to avoid sidetracking this chapter, a thorough treatment will
be postponed until Chapter 7.)

5.8.1 The Design Moves

The set of moves is symmetric: each move has an inverse, and the inverse move is always
located opposite the move in the halo menu. In a few cases this distinction is somewhat
artificial. For example, changing the α value is split into moves that increase and decrease
the value. However, this organization maintains the metaphor of the interface as an explicit
design space. The position of the halo menu button relative to the design determines where
the new design will appear when the button’s move is performed, so the distance between
designs provides an approximate indicator of their similarity.

Increase/Decrease Replications Replications are reruns of the experiment; performing
an experiment multiple times increases confidence in the results. Replication increases
detectability, but also increases cost.

Increase/Decrease α This allows the experimenter to declare the risk of a false positive
that they are willing to accept. As this increases, the detectability also increases—the
experimenter can show that a smaller difference is statistically significant, but this
conclusion is more likely to be wrong.

Increase/Decrease β This allows the experimenter to declare the risk of a false negative.
It is generally more acceptable to increase β then to increase α because no conclusions
are drawn when the experiment does not show a significant difference.

Add/Remove Effect Adds or removes an independent variable (main effect). Adding
additional main effects may be necessary to accurately model the research question or
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the limitations of the situation in which the experiment must be performed. However,
it decreases detectability and makes the experiment more complex and expensive.

Increase/Decrease Levels Changes the number of levels of an effect. Suppose that the
experimenter plans to test bread ovens at different temperatures in order to test if
temperature affects the amount that the loaves rise. The number of levels of the
temperature effect specifies the number of different temperatures that will be used
in the experiment. Adding more levels adds additional cost, but it also increases
detectability and, if the effect is fixed, increases the inference space (a measure of
generalizability described in the next section). Control over the number of levels may
be limited; a binary condition, for instance, can only have two levels.

Restricted Randomization/Fully Randomized Experimental results are most reliable
when the measurements are taken in random order. Randomization minimizes the
potential impact of any effects that are not included in the experiment design (either
because the experimenter did not consider them, or because they are assumed not
to significantly affect the dependent variable). Sometimes, complete randomization
is either not possible or will make the experiment harder or more expensive to run.
Building on the previous example, the experimenter knows that it takes time to change
the temperature of the oven and that each such delay will cost the bread company
money. The experimenter may therefore consider restricting the randomization of the
temperature effect. This would mean that all of the loaves that will be tested at
one temperature will be baked before switching to the next temperature. However,
loaves will still be randomly assigned to a temperature, and the loaves within each
temperature group will still be baked in random order. Restricting randomization
decreases the inference space and implies assumptions about the research domain.
When a restricted effect is significant, it is impossible to determine whether it is the
effect itself or the error introduced by the restriction (or both) that is significant.

Make Fixed/Make Random Declaring an effect either fixed or random makes a state-
ment about the generalizability of the results. When an effect is fixed, the results
apply only to the specific levels that were tested; when random, the results generalize
to all of the possible levels for that effect. If the bread company only ever bakes at
the three temperatures they will test at, then the effect can be fixed. Making an effect
fixed increases its detectability but decreases the inference space.



CHAPTER 5. A BROAD IMPLEMENTATION OF THE PRINCIPLES 69

Add/Remove Interaction Effect How two or more effects interact may be significant.
For example, there are mixed reports suggesting that sweeteners may have a synergistic
effect, tasting sweeter when used together than the sum of their sweetness when used
apart [267]. When an effect is added in XDS, all of the possible combinations of
interaction effects with the existing effects are also added by default. This allows
the most accurate possible interpretation of the results, but it also greatly decreases
detectability if more than a few effects are present. Removing interaction effects will
increase detectability, but it implies assumptions about the research domain.

Nest/Unnest Effect When one effect is nested inside another, it indicates that the levels
of that effect will be different for each level of the effect that it is nested within. Effects
can be nested in more than one effect, and can be nested more than level (effect A
can be nested in effect B, which is nested in effect C). Nesting is needed to model
certain properties of the research domain. For example, in a study about two different
teaching methods, nesting participants within the methods (using a different set of
participants for each method) would avoid the problem of learning effects. Nesting
increases the cost of an experiment since it effectively multiplies the number of levels
of the nested effect.

Not every design that can be generated as a sequence of the above moves is valid: some
combinations of moves would visit points that are outside of the design space. (A valid
design in this sense is one that can be expressed as an ANOVA model; it may or may not
represent an appropriate solution to the problem at hand.) To be valid, a design must
satisfy the following conditions:

1. A design may not contain interaction effects involving a main effect not present in the
design. (This may happen as a result of removing a main effect.)

2. No interaction effect may involve both a nested effect and a main effect that it is
directly or indirectly nested within. Since different levels of the nested effect will
be paired with the levels of the effect it is nested in, there is no basis for drawing
conclusions about their interaction.

3. The nesting of effects must be acyclic; this avoids the nonsensical possibility of an
effect being nested (directly or indirectly) in itself.
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When a move is performed that would lead to a design that breaks one of these rules,
the result can be coerced into a valid design automatically. Essentially, the new design
is snapped to the nearest valid design in the space. In the case of rules (1) and (2), this
means removing the problematic interaction effects. In the case of rule (3), this amounts
to performing a no-op. This coercion is always performed for rule (1). For rules (2) and
(3), the interface will prevent the designer from breaking the rule directly, and will coerce
designs as needed when a move is being applied deeply (see below).

5.8.2 Three Ways to Apply Moves

Once a move is selected, the designer can apply it by selecting the appropriate halo menu
button. By using modifier keys, moves can be applied in one of three different ways, called
shallow, deep, and branching. Figure 5.2 illustrates the different move types at a conceptual
level by representing designs as compositions of design moves (indicated as variables).

Shallow moves are the most common. A shallow move creates a new design by cloning
the target design and then changing it as needed to fulfil the operation. The result appears
as a new point in the explored space, connected to its parent (the target design) by an arrow
line. Shallow moves allow the rapid generation of alternatives while keeping related designs
ready-to-hand for comparison, reflection, and further development.

Deep moves do not create a new point in the space, but instead modify a branch of
the design history. Deep moves take place in two phases. First, as with a shallow move,
a new design is created by cloning the target design and applying the selected operation.
However, the result replaces the target design instead of becoming its child. Second, the
changes to the target design are recursively propagated to its children using prototype-
based inheritance [266] (the children inherit the new features that they do not themselves
override). When a deep (or branch) move is applied to a target, the arrow leading to the
target from its parent is changed from solid to dotted. This signifies visually that the design
is the product of multiple moves, and only the combined result is shown.

Deep moves serve two principal purposes. The first role is non-destructive error correc-
tion. With traditional undo, when a user undoes some actions in order to insert a missing
operation, all of the subsequent operations are lost. Deep moves let the designer modify
the design history non-destructively to insert missing or corrected operations. The target
design, and every design directly or indirectly derived from it, incorporates the correction as
if the mistake had never been made. This is illustrated in diagram (d) of Figure 5.2: After



CHAPTER 5. A BROAD IMPLEMENTATION OF THE PRINCIPLES 71

Figure 5.2: The application of design moves in XDS : (a) exploration begins with an empty
design; (b, c) applying shallow moves (S1, S2) creates new children; (d) a deep move (D) is
inserted into the history; (e) a branching move (B) is applied deeply to a clone of the target
branch.
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creating the state shown in diagram (c) using two shallow moves, the designer realizes that
he or she forgot to apply a move D after move S1 and before move S2. Performing D as a
deep move on the design E ·S1 rectifies this, inserting D into the design history as if it had
actually been performed at the correct moment.

The second role of deep moves is allowing the designer to perform moves that do not
generate visible points in the space, combining two or more moves as a single result. These
“combining” deep moves are commonly used at the start of a session to set up a suitable base
design, but they are uncommon once exploration begins in earnest. There are two reasons
for this drop in frequency. First, shallow and deep moves are performed with equal ease;
the choice of which to use is based on appropriateness rather than convenience. Second, the
design space model ensures that moves generate complete, valid new designs. This means
that moves are more likely to be worth recording (i.e., performing shallowly) than in a
traditional tool, since they can be considered as potential solutions. (Contrast this with a
word processor, in which the design moves in and out of syntactic correctness as the user
types: the invalid states are unlikely to be of future interest.)

Branching moves enable the simultaneous generation of multiple designs. The target
design is cloned along with all of its children in the design history, and the cloned branch is
added as a new sibling of the target design. Then, the selected move is applied to the new
branch as if it were a deep move. This allows the designer to quickly answer what-if questions
that compare entire lines of exploration in a single step, without manually replaying moves.

5.9 Experiment Design Representations

The design explorer’s interface is a zooming user interface (ZUI) [208] that uses two principal
representations for designs at different zoom levels. When zoomed in, designs are presented
in a table form that describes the current design state. When zoomed out, designs are
presented as summaries of their consequences.

Figure 5.3 shows the detailed design state representation (zoomed-in view) of a simple
design. In this representation, the design is split into a matrix of rectangular cells. The first
cell contains a design summary, and the remaining O(2n) cells1 (where n is the number of
main effects in the design) describe one main or interaction effect each.

1The set of effects that might be in a design is described by the power set of the set of main effects: the
empty set represents the error “effect”; other non-singletons represent interaction effects.
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Figure 5.4 shows a design summary representation (zoomed-out view). This representa-
tion consists of 7 elements, of which 3 are navigational or provide state information about
the design and 4 represent design consequences. These are arranged within a square to
maximize the number of designs that can fit on the display at any one time

Each design is assigned a serial number, labelled (b) in Figure 5.4. Serial numbers are
assigned on a design’s creation and do not change. They provide a fixed visual anchor
to aid in navigation and visual search, as well as capturing the chronological ordering of
explored designs. Designs also have a text label, labelled (g) in Figure 5.4. Initial labels are
automatically assigned to designs as they are created. These describe the move(s) that were
performed on the parent to generate the current design. The user can also edit labels to
provide more descriptive names when desired. If left unedited, the default label will update
itself to reflect the application of deep and branch moves.

When a short name is not enough to capture the information relevant to a design, it can
be annotated with arbitrary text. The intended purpose is to record design rationale [188],
but any comments deemed useful can be entered. Annotations are added through the same
window that is used to edit the label. When an annotation is present, the label area will
show a dogeared corner—see label (h) of Figure 5.4. To review an annotation, the designer
can zoom in to the detail view or click the label to open the editing window.

The remaining elements represent design consequences: cost, detectability, the inference
space, and constraint satisfaction. Each of these is described below:

For most research domains, the cost to run an experiment is important. Even when there
are ample resources available, opportunity costs must be considered. The cost of running
the experiment is estimated with a probabilistic model. To use the model, the designer
must estimate two kinds of costs for each main effect: a fixed cost that must be paid for
each experimental unit, and a change cost that is paid when one unit must be switched for
another. For example, paying each participant $10 would be a fixed cost for the participant
effect, while providing a new set of headphones every time participants change would be
a change cost. This change cost can be minimized by blocking participants (running all
trials with one participant before switching to the next participant). Displaying change
costs shows one of the consequences of such randomization restrictions; there are other,
statistical implications, which will be shown in the detectability values. If the designer does
not bother specifying costs, default values ensure that the cost display is still a useful ordinal
indicator of the required resources, though the absolute differences will be meaningless.
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Figure 5.3: The detail view of an experiment design. The upper-left cell provides a more
detailed form of the information available from the design summary, and also displays any
design rationale annotations. The remaining cells each describe an effect in the design.
While the design summary provides a constant complexity view of the design that is sufficient
for most decision-making, the complexity of the detail view varies with the complexity of
the design.
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Figure 5.4: An experiment design summary: (a) the halo menu presenting the available
moves; (b) design serial number; (c) constraint greenlight; (d) cost; (e) detectability; (f) in-
ference space; (g) design name; (h) indicator for an attached design rationale annotation.
This is the zoomed-out view of the design featured in Figure 5.3.
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Cost is indicated using a wedge, labelled (d) in Figure 5.4. The taller end indicates higher
cost. A red needle indicates the cost of the present design, relative to other explored designs.
A blue zone indicates the area where the design is deemed too expensive, as determined by
a user-defined constraint (described later).

A value called detectability [167] is used to estimate the smallest effect size that a design
can reliably detect. This is the ratio of the smallest detectable effect size (for a design’s α
and β) to the standard deviation. Compared to the standard approach to power analysis,
this has the advantage that the designer does not need estimates of the standard deviations
of the effects to use the system. However, it has the disadvantage that the designer’s
qualitative judgements about the design’s power are less precise [155]. Still, it suffices for
many purposes, and standard power analysis values are easily obtained if the user can
estimate the standard deviations.

Within a research domain, the interpretation of detectability values is non-linear. For
example, all detectabilities above 1 standard deviation may be considered equally bad, while
the difference between 0.5 and 0.75 standard deviations may be considered substantial. To
assist the designer in making fast qualitative judgements, the designer can specify a function
that maps raw detectabilities to an abstract rating from zero to four stars. An interactive
function editor and a library of built-in domain-specific functions let the designer tailor this
mapping to their research domain (see Figure 5.5). Alternatively, an arbitrary function can
be defined using script code.

The abstract detectability is represented in the design summary as a rectangle containing
four Greek crosses—see label (e) in Figure 5.4. (Using this simpler shape rather than actual
star shapes makes it easier to compare mean ratings.) A needle indicates the mean star
rating for all of the effects, while a gray region indicates the range over all effects. Individual
detectability bars for each effect are available in the zoomed-in design representation.

The inference space of a design describes how widely the results can be generalized
beyond the groups used in the experiment. A numerical estimate of the relative inference
space of each effect is computed by considering its type and number of levels. The inference
space of some effects includes every possible instance of that effect; these are assigned an
extremely large value to stand in for infinity. The logarithms of the estimates of each
effect are then combined to determine the estimate for the entire design. This measure
provides a useful estimate of the effect of moves on the inference space, although most
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Figure 5.5: The editor for detectability mappings. The subjective interpretation of de-
tectability values is changed by dragging points on the curve to define a function from raw
detectability values to star ratings.

designs have additional considerations that the model cannot account for because they arise
in the research domain.

Inference space is indicated using a stack of two squares sharing the same upper-left
corner—see label (f) in Figure 5.4. The proportion of the bottom (white) square covered by
the upper (gray) square indicates the inference space of the present design relative to the
largest inference space seen. A dotted red line indicates the best inference space that the
design could achieve without adding any more effect levels.

Some research domain-dependent consequences manifest in all research domains, yet vary
in their specifics between domains. For example, the researcher may really only be interested
in testing some of the effects in the design (with the rest necessary only to accurately model
the phenomenon of interest). I provide support for these kinds of domain-dependent trade-
offs by allowing the user to describe them as constraints for the designs to meet. A pair
of concentric circles in the upper-right corner of the design summary provides continual
feedback on how well designs are meeting the constraints—see label (c) in Figure 5.4. When
no constraints are met, neither circle is lit. If some constraints are met, the outer circle
is lit (drawn in green). Meeting all constraints lights both circles: such designs are said
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to be greenlit, from the expression “give the green light” which refers to giving a proposal
approval to proceed.

By summarizing key consequences of the design as a constant amount of information
presented in a standard layout and format, the designer’s cognitive workload will be greatly
reduced compared to working with designs in the data-heavy and variably-sized detail view.
Moreover, the design summaries provide accurate estimates of important consequences that
inform much of the decision-making during experimental design. This combination supports
the rapid creation and comparison of alternatives.

5.10 XDS in Use

To conclude this introduction to XDS, I present a small example to illustrate how the
features fit together, and in particular to show how its representation of design structure is
used to support exploration. The example is based on planning a small HCI experiment.
The final explored space is shown in Figure 5.6. In addition, videos showing XDS in use
are available online [123].

The experiment is intended to estimate the effects of integrality [120] and directness [117]
for two interaction techniques. The designs all share three effects of interest: technique,
directness, and integrality, each with two levels. There will also be an effect to represent
the human participants, with 8 levels initially. Much of the design process will consist of
varying the number and arrangement of the participants.

For the sake of brevity, the example uses only a subset of the available features of the
system. The primary goal of the session is to strike an acceptable balance between the
detectability of the design and its cost. The inference space will not change during this
particular session. Only the participants effect has the potential to change the coverage
of the inference space, since it is the only effect for which the number of levels is varied.
However, the participants are considered to be representative of all people generally (i.e.,
participants is a random effect). For the purpose of estimating the inference space, this
effect is treated as having an infinite number of levels regardless of the actual value.

To get started, we create a base design by adding the effects of interest. This is done by
performing a sequence of four deep moves (one for each effect) on the initial Empty Design
(Design 0). We add the effects using deep moves because we are setting up the space rather
than exploring. Using deep moves replaces the Empty Design with our starting design.
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Figure 5.6: An example of an XDS design session. Note: Reproduced by permission of the
Publishers from “Supporting Expert Work Processes”, in Electronic Performance Support:
Using Digital Technology to Enhance Human Ability eds. P. G. Barker and P. van Schaik
(Aldershot etc.: Gower, 2010), p. 257. Copyright c© 2010.
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To perform a move, the mouse pointer is first moved over the target design, which causes
the design to be surrounded by its halo menu of applicable moves. When a move is selected,
a small dialogue window appears over the selected halo button in which the parameters of
the move are specified. The move is then performed and the explored space is updated to
display the result.

Once we have replaced the Empty Design with our starting design using deep moves,
we are ready to begin exploring. Our main research interest is in differences between the
techniques. We want the experiment to detect differences as small as 0.5 standard deviations,
so we set a constraint that a design will only be acceptable if it can detect a value that small.
We are not as interested in the other two effects, so we set their constraints slightly higher
(0.6 standard deviations). We also set a constraint for the cost consequence that reflects
our budget.

The starting design (Design 0) meets none of the constraints, so further refinements are
necessary. We start by increasing the number of participants to 12. This is done using a
standard shallow move application, so a new design branch is created which displays the
result (Design 1).

At this point our attention is interrupted as we realize that we may have made a mistake
while setting up the experiment by forgetting to set the number of levels for one of the
effects. We momentarily zoom in to the detailed design state representation to verify this
by checking the number of levels of the effect in question. To correct the mistake, we apply
a deep move to Design 0 that changes the number of levels in the erroneous effect to the
correct number. Unlike a traditional undo mechanism, performing a deep move on Design 0
propagates the correction to Design 1 since it is a child of Design 0 and does not override
the number of effect levels. After verifying the correction, we zoom back out to the design
summary representation to resume exploration.

Getting back to our new design branch, we find that increasing to 12 participants brings
the detectability of directness and integrality to .51, so the outer rim of the green light is lit,
but the centre remains off because the constraint for technique is unsatisfied. The new design
is also more expensive, as we would expect—the cost bar clearly indicates the magnitude
of the increase. Increasing participants to 16 (Design 2) improves the detectability (and
increases cost) further. This design completely fills the green light, meaning that all of our
constraints are met. We finally have the necessary sensitivity for the technique effect.



CHAPTER 5. A BROAD IMPLEMENTATION OF THE PRINCIPLES 81

We wonder how this approach would compare to an alternative configuration that en-
gaged some collaborators to perform each level of the directness effect at a different site,
for a between-subjects design (Design 3). This requires making several concurrent changes
to the design. We perform the first of these as a shallow move to start a new branch, then
perform the remaining moves as deep moves on the new design. The dotted connecting
line to Design 3 indicates that it is a product of multiple moves. (If we wanted an exact
comparison against the existing alternatives, we could also have used a branching move.)

With only the 8 participants inherited from the base design, the detectability is substan-
tially worse than any design so far, as shown by the low range of values in the detectability
bar. We again increase the number of participants to 12 (Design 4) and then 16 (Design 5).
Neither of them has sufficient power for any of the effects. We could increase the number
of participants further, but at 16 the cost is already higher than we would like.

Instead, we decide to find out what we might gain if we accepted a higher risk of erroneous
results. Increasing α to .10 and β to .20, we find that the detectability for all effects
finally falls within the desired range. Overall, the between-subjects design seems distinctly
worse than the within-subjects design: even given 16 participants, we still have to accept
a substantially higher level of risk to get our desired detectability. As a result, we will
probably choose to abandon the between-subjects line of exploration.

Our attention returns to the original within-subjects line. The last design in that branch
has the sensitivity we want, but it is rather expensive. We wonder if we can find a way to
use the cheaper 12 participant version (Design 1). Pointing the mouse at this design, its
move halo appears. On scanning the available moves, we are reminded that we just solved a
similar problem in the between-subjects line by accepting a higher risk of erroneous results.

Operating on Design 1, we try relaxing just the β value. (Increasing β is generally less
risky than increasing α, because β is the risk that we incorrectly conclude that there is no
significant difference.) The result (Design 7) is observed to have the same detectability as
the 16 participant design, but the same cost as its parent.

This analysis allows us to make an informed trade-off of cost and risk for this design.
Whereas rules of thumb only give general directions (increasing participants always reduces
the risk), we now have estimates of how much expense we will have to pay to reduce our
level of risk a fixed amount.



Chapter 6

An Evaluation of XDS

6.1 Introduction

The design of XDS diverges widely from that of typical contemporary applications. Instead
of editing a single design, it explicitly represents the explored alternatives within the larger
problem space. Instead of leaving novice users to flounder about with an unstructured
search process, it makes the user aware of ways to transform alternatives and provides
feedback on how this exploration affects important consequences. This chapter continues
the discussion of XDS by positioning it within the overall discussion of the design principles
derived in Chapter 3. This is done first by relating the design back to those principles and
then by presenting the results of a small user study that evaluated the effect of XDS on the
experimental design process. As shown below, XDS provides some degree of support for
all of the design principles. During the study, XDS users considered more alternatives, and
a wider variety of alternatives, than in their normal practice. Taken together, these facts
form the initial existence proof needed to argue for the effectiveness of the principles, and
thus form an important supporting column of the factual matrix outlined in Chapter 4.

6.2 XDS in Light of the Principles

XDS supports the ten design principles presented in Chapter 3. This section recalls those
principles and briefly discusses how they are supported. For reference and comparison,
Table 6.1 summarizes this information by ranking the support in XDS for each of the
principles as one of none, low, moderate, or high. (Here, none means “nothing more than
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Table 6.1: Degrees of Support for the Design Principles in XDS

Design Principle Support
1. Make Partial Solutions First-class Entities high
2. Support Problem and Solution Matching moderate
3. Allow Subjectivity and Ambiguity moderate
4. Prefer General, Flexible Actions and Representations high
5. Engage Multiple Ways of Doing and Thinking high
6. Support Forming and Testing Hypotheses high
7. Encourage Parallel Exploration of Breadth and Depth high
8. Provide Rich History Mechanisms high
9. Assist the Construction and Use of Repertoires moderate
10. Create an Effective Environment low

that found in typical contemporary applications”. Since XDS supports all of the principles
to some degree, Table 6.1 makes no use of the none ranking. It is mentioned for completeness
since it will be needed later by Table 9.1. Note that these categories are not intended to be
formal; the table simply provides a useful summary of the running text.)

Although XDS does implement all of the principles to some degree, it does not implement
them all equally strongly. This is in part because the focus was on meeting the three subgoals
identified for experts in this particular domain, but more generally it reflects the fact that
interaction design is an ill-structured problem. The principles act as soft constraints on
the design, and it is unlikely that they can be simultaneously optimal. Nonetheless, XDS
provides a high degree of support for most of the principles, and a low degree of support for
only one. Moreover, it provides this level of support primarily through just a few carefully
integrated techniques. This is a clear indicator of the principles’ practicality when applied
to real design problems.

6.2.1 Make Partial Solutions First-class Entities (High)

XDS explicitly presents the space of explored designs rather than the traditional document
view. The normal application of operations creates new solutions instead of replacing a
single state. This keeps solutions available so that they can be combined, borrowed from,
and transformed at will, without the need to recreate them or to explicitly mark them
for future use (as with Save As). Although the design space exploration model constrains
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each design to a valid point in the space, it does not constrain those designs to completely
represent the design problem: for example, each space starts with the Empty Design, which
is technically valid but has no practical value.

6.2.2 Support Problem and Solution Matching (Moderate)

This is supported mainly by allowing the user to set and change constraints to describe the
problem. The support is not as complete as with solution generation, because the constraints
apply globally: the user cannot explore the problem space in the same way as the solution
space. Still, the explicit space representation does assist the user in matching the spaces.
The tremendous freedom in the solution space makes it easier to bring the problem and
solution space together than if movement was equally restricted in both spaces.

XDS only provides explicit support for aspects of the problem that can be expressed
using the provided constraints. Although these are fairly flexible (for example, the cost
system can be used to model the fatigue of human participants), there may be aspects of
the research domain that are too domain-specific to be adequately represented. In this case,
the only support in-program is to document the issues through the annotation system. A
possible extension of the system would allow the definition of scripted constraints, although
these too would be of limited use unless the script writer can also attach arbitrary data to
designs in order to encode unrepresented problem features.

6.2.3 Allow Subjectivity and Ambiguity (Moderate)

XDS allows subjective interpretation for the consequences that it explicitly supports by
presenting them visually, using indirect computations, instead of by presenting raw data
(although this is also available). The star ranking system of detectability values is particu-
larly flexible, as the user can freely define the mapping of these values.

Although the use of numeric constraints sets hard limits, these are only directly enforced
by the constraint indicator. For example, if cost exceeds its constraint, the user can judge
visually whether the magnitude of the excess is small enough to ignore.

6.2.4 Prefer General, Flexible Actions and Representations (High)

The use of a design space explorer model ensures the completeness and generality of the
representation and operations used for designs. With respect to the user, the ZUI supports a
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range of representations along a spectrum from a primarily structural/chronological overview
(low zoom), to a primarily visual interpretation of designs (moderate zoom, design summary
view), to a primarily symbolic interpretation of designs (high zoom, design state view).

6.2.5 Engage Multiple Ways of Doing and Thinking (High)

XDS makes few assumptions about methods, other than which consequences will be most
generally applicable. It simply provides a space and a set of operations. While emphasizing
visual exploration through design summaries, it does not exclude other approaches. For
example: The two design views allow the user to engage in problem solving with an emphasis
on visual or symbolic methods. The connecting arrows between designs show how the designs
are related (favours soft style); displaying the entire explored space helps the user to explore
methodically (favours hard style).

XDS also supports the technical sense of this principle. Designs can be exported to
XML, and a scripting language is available to extend the application’s functionality. For
example, one script allows the user to invert the detectability consequence by stating a
desired star rating and then automatically varying the number of levels of a chosen effect
(typically representing participants) to achieve that rating.

6.2.6 Support Forming and Testing Hypotheses (High)

XDS supports forming and testing hypotheses for three key consequences in experimental
design, as well as the extent to which a design fulfils user-defined constraints. Because of
the explicit design space, the user can suspend their current activity at any time to test a
hypothesis based on the current or any other design, and obtain immediate feedback on the
result. The design summary view, and to a lesser extent the design detail view, allow the
user to quickly interpret the outcome of such tests.

6.2.7 Encourage Parallel Exploration of Breadth and Depth (High)

In XDS, encouraging exploration starts by removing the barriers in typical applications that
serve to discourage exploration. In most applications, editing is easy but exploring takes
extra work: one must save copies of the work if exploration is to be non-destructive, and
significant effort is required to manage and compare alternatives. In XDS, the commands
that would normally be used to edit are instead used to explore. There are no extra steps
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or safety precautions, and outcomes can be immediately compared side-by-side; This allows
the user to rapidly, fearlessly, and effortlessly create alternatives.

Presenting the designs as a space promotes the user’s awareness of exploration as a
deliberate process. Combining the explicit design space with halo menus creates an envi-
ronment where each alternative continually prompts the user to consider further exploration.
Because the set of moves is complete, the user is prompted not only to make small adjust-
ments that explore a given solution more deeply, but to try out unfamiliar or more radical
approaches—to think about using moves in new and innovative ways.

6.2.8 Provide Rich History Mechanisms (High)

An explicit design space and deep moves give the user the ability not just to revisit history,
but to edit it at will. Branching moves allows the user to replay any part of the history tree
with different parameters.

6.2.9 Assist the Construction and Use of Repertoires (Moderate)

Because it captures each design that is created, XDS can be used to rapidly build up a
repertoire of designs. These designs can also be used easily as starting points, because
of a command that can take any design and use it as the Empty Design in a new space.
Additional commands make it easy to reuse designs in different contexts (for example, effects
can be renamed to suit their new purpose). It is also possible to print designs or design
spaces, which may be useful for designers that prefer to surround themselves with physical
artifacts. However, XDS does not provide direct support for repertoires. For example, it
does not come with a library of designs or directly support the collection, categorization, or
searching of previous designs or spaces.

6.2.10 Create an Effective Environment (Low)

Performance on spatial tasks is improved by the use of physically large displays, in part due
to the immersiveness such displays afford [253]. Although XDS cannot choose the display
it runs on, it is designed to maximize its coverage of the available space by creating a
window that is as large as possible and using nearly all of that area to display the explored
space. This would increase the effective size of the display relative to other applications.
In addition, the window content is at all times focused on the explored space; except for a
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small menu strip and document selector across the top, there are no other panels to distract
the user’s attention. The only other windows are dialogues that pop up to gather additional
information in response to user actions; the explored space is never completely occluded.
The large window, the ZUI, and the space exploration metaphor may all contribute to
increased immersion regardless of display size, though the effect would likely be enhanced
by the use of large displays. The lack of potentially distracting windows or panels may also
help the user enter and sustain flow. In short, XDS takes a few simple steps to get the most
it can out of one environmental variable (display size), but it does not actively enforce any
environmental conditions.

6.3 A Qualitative Study

I conducted a qualitative study to assess how XDS might affect the design process of exper-
iment designers. Considering the broadness of the goal, there was significant danger of the
instructions or the choice of activities creating bias. For example, if the instructions used
suggestive terms such as “alternative designs,” or if they focused too heavily on exploring
alternatives, participants might be prompted to spend more time generating alternatives
than they otherwise would have. To minimize this potential, I provided participants the
opportunity to use XDS with minimal instruction in a loosely structured session using a
think aloud protocol [159,240].

Although any observed usability issues were noted, the focus during these sessions was
not on usability evaluation but on observing the design process adopted by participants
while using the prototype.

6.3.1 Participants

A total of five participants took part in the study. The participants represented a wide range
of research domains and previous experimental design experience. The domains included
academic HCI research, quality control and product testing in the food industry, pharmaco-
economics, and health care research. Because participants needed specialized knowledge,
they were directly invited to take part based on recommendations from other expert workers.

Two participants were novices in experimental design using ANOVA experiments; though
they had a basic statistical background and commonly designed experiments as part of
their jobs, they had practical experience with only a small range of research problems and
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experiment designs. Two participants were highly experienced (one taught a graduate-
level experimental design course). The remaining participant was at a high-intermediate
level, having constructed many designs within his own domain but lacking the breadth of
experience of the experts.

6.3.2 Methods

Each participant took part in a single session of approximately 90 to 120 minutes length
after being given a brief summary of the procedure and signing a consent form. The sessions
consisted of three parts:

In the first part, participants were interviewed about their typical design process and
the kinds of experiments they typically perform. Information about their typical design
processes helped to establish a baseline for comparison. Information about typical experi-
ments was later used to communicate XDS concepts using familiar language, and to build
an example design. The length of the interview varied with each participant, while the
remaining two parts were alloted approximately 30 minutes each.

In the second part, participants were given basic training with the tool. I worked with
the participant to set up a basic design based on a typical problem in the participant’s
practice. During this process, I explained how to apply moves to change the design, how to
use the ZUI, and what the consequence summaries represent. The initial design was set up
using only deep moves. At the end, a single shallow move was performed to demonstrate
how the software would let them create new designs without “forgetting” older ones.

In the third part, the tool was turned over to the participants who then worked with
the system using the think aloud protocol. No particular course of action was suggested—
rather, participants were simply instructed to “try the system out.” No other details on the
theory of the prototype’s operation were provided, although additional program features
were sometimes described in response to questions or actions from the participant.

Because multiple parallel designs are such a fundamental part of the design of XDS, it
was important to observe the participants working with multiple designs. For this reason,
I was prepared to inject a prompt such as, “what do you think would happen if you tried
doing x to this design?” if participants did not generate parallel alternatives on their own
after a reasonable period of time. In practice, this was unnecessary, as all of the participants
explored the space enthusiastically without prompting.
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6.3.3 Results

Confirming the core hypothesis, the participants created many alternative designs. Three
participants extended the co-developed example for the entire session. The other two devel-
oped fresh designs, starting with an empty design space. Of the second group, one developed
a design based on an experiment they would soon be planning, while the other created an
abstract design that was used to experiment by trying various moves to discover the effects.

All of the participants developed and tested hypotheses about design consequences at
some point. Some of the typical comments made during exploration that indicated this
hypothesis testing process include: “Let’s see how much this will hurt the power.”—“I like
the power on this one, but I want to make the cost go down.”—“OK, so now if I change α,
will that affect the cost?”—“How can I get this effect to have a test?”—“It doesn’t seem to
make much difference to make something random if you only have two effects.”

All participants but one used the consequence visualizations to work on a realistic design
problem. All four of these developed a design that was closer to the trade-offs they wanted.

Once they were comfortable using the basic design moves, all but one participant asked
the interviewer to explain some of the moves that had not been demonstrated in the second
part of the session. The participant that did not ask was one of the experts, and so may
have already grasped their purpose. Typically, after asking about one of these “advanced”
moves, the participant would immediately try to find a way to apply it.

All of the participants tried most of the moves available at some point in the session,
and everyone tried at least one of the “advanced” moves. The major exception was the move
to nest an effect, which only one person tried but three people asked about. However, the
nesting move is arguably the most difficult to understand and the least widely applicable.

All but one of the participants learned to make appropriate use of deep moves to hide
interim design changes. One participant (an expert) chose shallow moves almost exclusively,
occasionally commenting, “I know I could use a deep move here, but I’m interested to see
what happens.”

All of the participants used the design consequence summaries. Only two people were
observed to refer to the inference space visualization, and two people asked the interviewer to
explain the concept again during the session. In contrast, no one asked for the detectability
or cost visualizations to be explained again, although many people asked technical questions
about how they are computed. This difference is not surprising, as the inference space is



CHAPTER 6. AN EVALUATION OF XDS 90

an abstract concept which most of the participants had never considered before. Given
additional practice, I expect that most designers could learn to use it effectively.

Although the focus of the study was on the use of moves and the consequence visualiza-
tions rather than the layout of the design space, I did notice that out of about 150 designs
that the participants collectively generated, there were only 3 instances where they appeared
visibly confused about a navigation task. I also observed several instances where the par-
ticipant appeared to quickly navigate to far off branches by first visually searching back
through the design history to locate their destination. The automatic spatial arrangement
does not appear to significantly hinder performance.

Overall, I was pleased by how many designs participants explored, and by how readily
they not only experimented with new moves, but also sought to apply the designs and
moves to actual problems of interest. Most importantly, they did not restrict themselves
to a narrow range of options, trying both a wider range of approaches and more designs
overall than they reported using in normal practice. This confirms the value of the design
principles for promoting the consideration of additional designs, enabling the discovery of
more creative designs overall.

To temper this with some caution, I note that the participants were using a novel
interface to work on hypothetical designs, and there were no consequences if they made a
mistake. They might revert to more familiar methods if they were working on real designs.
However, even within the restricted context of one hour of working with the explorer, users
learned techniques that they said might change their future work. Two users spontaneously
reported that they left the session with a better understanding of the consequences of
their design choices. In addition, one of the expert users reported that in the past he had
designed with fixed effects instead of random effects because he believed fixed effects gave
better sensitivity, although at reduced generality of the results. However, after comparing
the two approaches with the design explorer he concluded that the differences were not as
big as he thought (for designs in his domain) and that he would likely try using random
effects in his next design. These statements suggest that even this brief exposure to XDS
changed how some participants will design experiments in the future. It is likely that more
pronounced changes would occur if they were actually using the explorer when designing
their next studies.
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6.4 Discussion

XDS implements all of the design principles to at least some degree. Its design was based on
observations that experiment designers could benefit particularly from support that encour-
aged more exploration and helped them to understand important design consequences, and
consequently it emphasizes three features within those principles: make the designer aware
of the design options; provide a structured context for design; and provide fast, accurate
feedback on the design-level consequences of decisions. A study verifies that actual designers
using XDS did consider more designs, and that they were able to move design consequences
in desired directions, and improve their designs. There are two principal ways to generalize
this work: by considering its application to actual experimental design, and by applying
the principles to other domains. I also discuss potential improvements and changes to the
design based on lessons learned from the experiment and other use.

Although all but one of the participants worked on a realistic problem, it remains an
open question whether using the explorer would lead to more cost-effective experimental
designs. Generating more designs is neither necessary nor sufficient for producing better
designs. Since no algorithm exists for finding better designs, there is no way to know with
certainty whether a better design exists. Perhaps most people are already using good designs
and would not be able to find ways to improve them. This seems unlikely, however, given
that even an expert designer had his assumptions challenged by a brief encounter with XDS.

The interviews and the experimental results both indicate that experiment designers
try relatively few alternatives, and that the main reasons for this are lack of awareness of
the alternatives and the difficulty of comparing them. XDS allows the designer to quickly
generate and compare alternatives, and it focuses on presenting the kinds of measures that
the designer needs to judge the quality of the design. The reasonable conclusion is therefore
that if XDS encourages designers to make a thoughtful exploration of the design space,
they are far more likely to find a design that is better tailored to the specific problem if one
exists, or to confidently conclude that finding a significantly improved design is unlikely.

One criticism that has been aimed at previous design explorers is that they only solve
simplified toy problems [4]. By contrast, XDS is not a toy: it features a complete repre-
sentation of a design domain which (as discussed in Chapter 5) has substantial real-world
impact. That said, many interesting design domains are not well-suited to a design explorer
implementation: they may be too ambiguous to construct an effective model, or else the
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moves of interest may be too dependent on the specific task. Although XDS uses a design
exploration model as a foundation for implementing the design principles, other tools might
take another approach. Alternatively, support might be restricted to a well-defined subset
of tasks. As a practical example of the latter, consider the refactoring tools provided by
many software development environments. Although software design in general is not well-
suited to a design space representation, refactoring tools are effective at performing a classic
design explorer task: automating the generative details of a design change. They can do
this because they make small-scale, concrete design changes to a low-level but sufficiently
formal representation—they do not have or require a representation of the high-level design.

It also seems reasonable to assume that providing fast, accurate feedback on design
consequences would be effective independent of the other two principles. The Strange Eons
application, described in Chapters 8 and 9, takes this approach. Using consequences to
motivate design choices could be practical in many design domains that lack the structure
needed for an effective design space representation.

Finding good design consequences can present its own difficulties. Clearly, the appropri-
ate consequences must be evaluated separately for each domain based on the factors that
influence decision making—a tool that supports Web site design might use consequences
such as download time, word count, the reading difficulty of the text, the complexity of the
navigation graph, or its suitability for disabled persons using a screen reader.

For some domains, it may not be possible to evaluate the most useful consequences
automatically: extracting a summary of the plot of a story, for example. Sometimes it is
possible to approximate the consequence or to provide the consequence in a simplified form
that misses some details but is still useful in guiding decisions; otherwise, those consequences
must be abandoned. In the latter case, it should still be worth supporting second tier
consequences: the result is still better guidance for making design decisions.

The arrangement of small, incomplete, visually-oriented design summaries together on
a large white space is intentionally similar to sketching. Although the benefits of sketching
are incompletely understood, XDS captures some of its features, including imprecision (the
design summaries) and the juxtaposition of alternatives. The layout of designs is automatic,
but even arbitrary arrangements have the benefit of suggesting new relationships [252].
Indeed, arbitrary arrangements could be more helpful than intentional ones if progress is
being blocked by a mental set or fixation. And while unconstrained layout might offer
advantages, they would come at a cost since the arrangement in XDS presents historical
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and structural relationships between designs. This is an aid to navigation and visual search,
and assists the user in understanding the implications of changes to the design history.

The layout of the space is currently based on the type of move (determining the axis of
movement) and similarity to the Empty Design (determining whether the movement is in
the positive or negative direction). The layout of the halo buttons (see Figure 5.4) indicates
the direction of the associated move. In addition to free layout, another possibility would
be to organize the designs according to the history tree, moving in the same direction and
creating parallel lines for branch moves. This would bias the layout towards a long, straight
line rather than the fairly even coverage that tends to occur now. That could help the user
better understand the history tree, but it would be more fatiguing to navigate over many
designs, and may further inhibit the discovery of relationships.

One difficulty with using a sketchpad metaphor for the the design space is the difficulty
of representing large sheets of paper on relatively small displays. In XDS, I found it difficult
to compare designs that are far apart. Either the display must be zoomed out so far to
get both designs on the display simultaneously that there is insufficient detail to compare
the designs, or else the memory trace of the first design decays before the second can be
reached by scrolling. To address this, I added an explicit comparison command. When the
comparison button is held, it shows a selected design as a floating “paper scrap” next to the
design under the cursor. Because exploration is performed through halo menus, this is the
only exploration command that relies on the presence of a modal design selection. Alter-
natives were dragging one design to another (too cumbersome and tiring for large spaces)
or creating a window that floats over the space until dismissed. The quasimodal gesture
was selected over opening a window—which later requires closing—because comparisons are
quick, fleeting operations when design summaries are used, and because this method allows
the comparison scrap to be aligned precisely with each target, for more accurate comparison.

Another change to the design has been to add a specific command for switching between
within-subjects and between-subjects designs. Although it was possible to do this with
the existing command set, the required sequence of moves could be obscure and error-
prone. This action could have been supported through the scripting system, but given its
importance for experiments in the behavioural sciences, a dedicated command is justified.
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6.5 Summary

XDS represents a broad implementation of the design principles presented in Chapter 3.
The initial design placed special emphasis on three particular design goals based upon the
user audience (make the designer aware of the design options; provide a structured context
for design; provide fast, accurate feedback on the design-level consequences of decisions),
and this is reflected in which principles received the strongest support. XDS focuses on
these goals using a persistent “halo” of moves (described in detail in the next chapter)
that directly transform one design into another, explicit traversal of the design space, and
summarizing design states as visualizations of their consequences.

XDS represents an existence proof for the design principles. A support tool based on
them can encourage the designer to consider more designs, and a wider variety of designs
overall. This was identified as the greatest need for users in the domain of experimental
design, but there are probably many domains with a similar exploration pattern, and it is
also characteristic of novice performance. XDS also allowed me to explore the design space
created by the principles, and to develop some useful techniques for reapplication. Some of
these would likely work best in spaces that permit a design space explorer model. Others
are more easily generalized. Chapter 7 looks at one of these, halo menus, and uses claims
analysis [250] and other techniques to explore it in more detail. Chapters 8 and 9 provide a
deeper investigation of the potential benefits of consequence displays, while also considering
the value of applying a limited subset of the principles.



Chapter 7

Halo Menus

7.1 Introduction

XDS introduces a new interaction technique, the halo menu, which is designed to encourage
users to explore alternatives. This chapter provides a separate detailed presentation of
halo menus, including a discussion of how they relate to existing techniques and options to
consider when adapting them to other applications.

When designing a command selection technique, there is a trade-off between the need
to ensure that commands are easily discoverable and efficiently accessible and the need to
ensure that they are not intrusive or distracting. Existing techniques emphasize one of these
aspects at the expense of the other. They either keep commands visible (ready discovery)
but separate from their target objects (reduced access—menus, tool palettes, toolbars), or
they keep commands close to hand (ready access) but only visible when activated (reduced
discovery—context-sensitive pop-up menus). Halo menus balance these competing goals by
making a command set available around every active object but only displaying commands
when the user attends to one of these objects.

Previous work on command selection techniques has focused on improving their effi-
ciency [35, 142], and extending or specializing them for alternative input devices [96, 142].
In contrast, halo menus focus on increasing the user’s awareness of command choices and
not the efficiency with which they execute a choice once it is made. One benefit of this is to
improve the learnability of the interface. However, the primary goal of the technique is to
couple objects and actions in a way that encourages users to explore and experiment with
the available objects. In expert support systems, this can prompt the user to generate more
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Figure 7.1: Choosing a command in a halo menu. As the cursor leaves the object it was
positioned over (1), the halo menu over that object becomes invisible (2). When the cursor
enters the target object, its halo menu appears (3), allowing the user to target the desired
command (4).

alternative solutions than they might otherwise—in other words, using halo menus supports
Principle 7 (Encourage Parallel Exploration of Breadth and Depth). The usefulness of halo
menus is not limited to expert support applications, however. Any tool that is most effective
when the user is motivated to try different options and alternative paths is likely to benefit:
educational tools, children’s software, games, puzzles, museum displays, interactive artwork,
and creativity support tools are all examples.

7.2 The Halo Menu Technique

A halo menu consists of a set of command buttons arrayed along a bounding shape (typically
a rectangle or circle) of an object in an application’s edit space. A given halo menu is unique
to one object; other objects in the edit space each have their own menu. As the user moves
the cursor around the edit space, the halo menu of the object under the cursor is made
visible, while the halo menus of all other objects are made invisible (see Figure 7.1).
Selecting a command occurs in three steps. First, the user positions the cursor over the

target object and then over the button in the halo menu which corresponds to the desired
action. Finally, selection is triggered using one of any number of secondary gestures, such as
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clicking on the button, crossing out of the button, or gaze fixation. If the buttons are arrayed
on the inside edge of the target object’s bounding shape, the user can select a command
with a single positioning step once they have learnt the locations of the commands.

The design assumes that the cursor’s position approximates the user’s locus of attention.
By making menus selectively visible as the pointer reaches objects, the user is continually
presented with the commands applicable to the current object, without being distracted
by commands applicable only to other objects. At the same time, by tying visibility to
the fluid movement of the cursor, both the general capabilities of a system and the specific
capabilities of particular objects can be rapidly discovered by exploring the edit space with
the cursor. This level of discoverability is ideal for systems designed for an audience of
mainly one-time users, such as public displays.

Because each object has its own halo menu, the buttons do not require the user to select
an object. Rather, a single fluid gesture selects an object and an action simultaneously.
By continually pairing the attended object with its set of applicable commands, users are
encouraged to think in terms of object transformation. Instead of interrupting their work to
ask “what next?”, users can browse a ready list of suggested actions without changing their
locus of attention. This creates a subtle but important distinction between halo menus and
other menu techniques. Traditional interaction assumes a largely one-way flow of ideas: the
user first decides on a course of action (an intention), and then seeks an action sequence
that will implement it [201, pp. 45–53]. By contrast, the objects in halo menus continually
prompt users with possibile action sequences, some of which may catch their interest, thus
encouraging more active experimentation.

7.3 Related Work

Existing interaction techniques favour either easy discovery of commands or rapid access to
them. The classic menu bar facilitates command discovery by listing all possible commands
on any object, disabling commands that are not available in the current program state.
Complex states are set through subsidiary dialogue boxes that display additional widgets.
These techniques for supporting discovery have made computers usable by people with a
wide range of abilities.

Other techniques have emphasized rapid command access, often by bringing command
and object selection into the same locus of attention. Draggable menus and toolbars can
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be moved near the object of attention, but they must be repositioned as the user’s focus
changes to other objects. To maintain efficient access to commands, the user must manage
the widget locations. In addition, draggable widgets do not indicate which commands
apply to an object. The user may place any available set of commands near an object, even
inapplicable ones, and the command set does not change.

Context-sensitive popup menus (context menus) are displayed under the cursor when
activated. Context menus take three forms. Linear context menus, like halo menus, require
the user to place the cursor within a specific area in order to select a command. Pie, or
radial, menus are more efficient than linear menus as they only require the user to drag
the cursor in the direction of a command [35]. Marking menus [142] extend pie menus by
recognizing the cursor’s path rather than its direction, allowing gesture interpretation to
switch smoothly from menu activation to other activities, and further increasing efficiency.

The design of context menus commits to ease of access at the cost of making discovery
more difficult. Because context menus are invisible until they are activated, the user can only
determine that an object can be manipulated by trying to activate a menu. To discover
available objects and their actions, the user must attempt to activate menus at various
locations in a process of trial and error.

A third approach to juxtaposing objects and commands is the use of click-through
tools [19]. These bring the menu to the object for every command invocation, with a
button click selecting both object and command. These techniques replace the temporal
modality of separate object and action selection with a spatial modality.

Like other techniques for rapid command access, halo menus place commands close
to their associated object, but they do not require repositioning (or even allow it). Like
click-through tools, halo menus simultaneously select an object and a command, avoiding a
temporal mode. Halo menus also eliminate the spatial modes of click-through interfaces by
assigning each object-action button a unique location in the edit space.

Halo menus support the discoverability of the available commands. In particular, the
technique assists users who do not have a preconceived action in mind. The user can
discover the active objects and commands by simply moving the cursor around the display.
Available commands are displayed in context with the objects to which they apply, unlike
menus that display commands separated from any objects. The process is far more fluid
and efficient than the corresponding procedure using context menus. Yet once an active
object is discovered, its available actions can be accessed as readily as with context menus.
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Table 7.1: KLM-GOMS Analyses of Halo and Linear Menu Command Selection

Technique Gesture sequencea Time (s)
Linear context menu H ·M · P ·K ·M · P ·K ·R 5.7
Halo menu

novice H ·M · P ·M · P ·K ·R 5.5
experienced H ·M · P ·K ·R 3.0

Legend (see [37] for details)
H Time to move hand to pointing device (0.4 s).
M Time to mentally prepare for next step (1.35 s).
P Time to point at a position on the display (1.1 s).
K Time to press and release a key (0.2 s).
R Computer response time; treated as 0 s here.

aThese sequences assume that the target object is visible but not selected
or under the cursor, and that the user’s hand does not start on pointing device.

The goal of halo menus is to encourage exploration and not to maximize selection speed.
The selection time of halo menus is therefore not a concern unless it will be much longer
than with standard techniques. To ascertain the likelihood of this, I performed a simple
KLM-GOMS [37] analysis. The analysis predicts that command selection time will be
similar for both the halo and linear context menu techniques (see Table 7.1, Halo menu—
novice). Unrepresented in the analysis is the fact that the distance to the target menu item
is typically somewhat larger for halo menus. As a result, linear menus may gain a slight
edge in practice due to Fitts’s law [71]. However, this will be dampened by the fact that
halo menu buttons will typically be taller than linear menu items, and thus they will count
as larger targets [174] (also an advantage under Fitts’s law).

If halo menu command selection speed is similar to that of linear menus, it will be
significantly slower than using a pie menu or marking menu [35, 142]. While halo menus
do not maximize the efficiency gains of practiced use by using directional gestures, they
also lack the restrictions on number and placement of items that other radial arrangements
require for maximum effectiveness [114].

Experienced halo menu users may be able to improve markedly on selection time given
certain conditions. If the user can predict the placement of halo menu items (for example,
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in XDS objects are all the same size and use the same command configuration), then they
can move towards the target object and the target command in a single gesture. In this
case KLM-GOMS analysis predicts that selection time for experienced users will be nearly
half that of novice users (Table 7.1, Halo menu—experienced).

Overall, this analysis shows that command selection speed is comparable to that of linear
context menus—and may in some cases be close to that of fast radial selection techniques.
This prediction matches my practical experience with the halo menus in XDS. Command
selection time is therefore not a barrier to the use of halo menus in appropriate contexts.

7.4 Implementation Choices

The basic halo menu design is agnostic with respect to many design decisions; they might
better be thought of as an approach to designing interaction techniques rather than one
specific technique. This section discusses some of the possible variations.

One important design decision is whether command buttons should overlap an object
or surround it. If buttons overlap the object, relevant information may be obscured. If
they surround it, selecting a command may require entering a neighbouring object. In
XDS, the menu overlaps its object, but the objects include a margin that leaves space for
the menu to appear. The margin is shared with the lines that connect designs, but the
lines are not interactive so they do not compete for the cursor. In applications where this
is impractical, the gradual activation strategy described below can allow the user time to
select a command without activating neighbours, although occasional mode errors would be
inevitable. Another alternative is to arrange objects so that their edges do not intersect.

XDS takes advantage of the menu margin in another way as well. When the view is
zoomed out to a size much smaller than usual, the user is normally either moving from
one part of the space to another, or else trying to survey the explored space. At low zoom
levels, the efficiency of command selection becomes unimportant, while more legible design
representations aid navigation and comparison. To take advantage of this, the size of the
margin relative to the size of the design representation is gradually reduced as the user
zooms out further and further. While halo buttons become harder to target, the design
details retain more legibility—precisely matching the changes in the user’s needs.

Some menu techniques require a specific gesture to select a command. Classic menus
require a click. When used with a stylus, pie menus and marking menus combine object and
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action selection as bookends of a single extended gesture (a temporal mode). Click-through
tools follow one or more set up gestures with a single tap or click that instantaneously
combines object and action (a spatial mode). Crossing interfaces [2] select commands by
moving across a goal line. Because halo menus are modeless, they are neutral with respect
to these styles. The designer can choose an approach which suits the rest of the design.
XDS uses click-based selection because the commands call up dialogue boxes of traditional
click-based widgets to gather command parameters.

Halo menus can be used seamlessly with traditional techniques that require explicit
selection of a “current object”. Nothing about the design prevents explicitly selecting objects,
or from making explicit the otherwise implicit selection of choosing a halo menu command.
This allows the designer to keep the number of commands in the halo reasonably low. XDS
uses this approach to restrict the halo menu to primary commands representing moves in
the design space; these commands are most likely to prompt the user with new ideas for
alternative solutions. Secondary commands that apply to objects but do not change their
semantics were relegated to a pull-down menu. Although the user may fail to discover
these secondary commands, they do not restrict the user’s range of design choices—the
consequences of missing such commands are therefore substantially lower.

Should the halo menu only present commands that are available in the object’s current
state, or should the menu include all commands that might be applied in any state of
the object? XDS includes all possible commands, on the grounds that it helps the user
understand the full life cycle of each object, and also facilitates habituation by presenting
each command in a consistent location. The choice may be less obvious in an application
where the objects are not as homogeneous as in XDS.

Although hierarchical halo menus were not ultimately used in XDS, halo submenu tech-
niques were designed and tested as part of its implementation. The final design combined
goal crossing and the thoughtful arrangement of the submenu buttons to create a consis-
tent and efficient selection mechanism (see Figure 7.2). As each object has its own halo
menu, objects in a halo menu system are comparable to the top-level choices of a traditional
pull-down menu. Since the root halo menu is activated by crossing the edge of an object,
for consistency submenus are likewise activated by crossing the submenu’s parent button.
The submenu should remain visible until the user selects a submenu command or leaves the
bounding rectangle of the union of the parent button and all of the children—plus a rea-
sonable margin to allow for error. Crossing into a different parent button takes precedence
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Figure 7.2: A hierarchical halo menu (left). A special button shape indicates the presence
of a submenu. When the parent menu button edge is crossed, the submenu buttons (shown
with dotted outlines) are displayed around the parent in a direction away from the centre of
the target object. Although gesturally similar to traditional pop-up submenus (right), halo
submenus are more efficient because there is no sharp turn or narrow tunnel to navigate
with the cursor.

over this bounding rectangle, but ideally the menu should be designed to minimize overlap.
In the test design, a modified button shape was used to indicate that a button displays a
submenu; other methods, such as printing a special symbol on the button face, should work
equally well. A parent’s subitems are arranged around it in an arc or line to create a half
halo around the parent. The centre point of the subitem halo is the furthest point from the
centre of the target object that is on the parent item’s halo boundary shape. This point
can be adjusted for aesthetics; the key is that the submenu should appear along roughly the
same line as the one from the target object to the parent item so that the cursor can pass
through the parent item on the way to the target child with minimal steering. To maximize
selection efficiency, the most-used commands should be placed closest to this centre point.
This design is visually and procedurally analogous to the pop-up submenus used in tradi-
tional pull-down menus, but it is more efficient: the user is not required to steer through
the narrow tunnel between the parent item and the submenu [1] or make a sharp turn.

The animation of the halo’s appearance has subtle consequences. In the original design
for XDS, the visible set of controls switched immediately when the cursor moved over a
different object. Since the controls are anchored to the objects they act upon, this led to a
disorienting and distracting jitter effect when the cursor was moved between objects. As the
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cursor was moved near the edge of an object, it would often momentarily pass into another
object’s scope. As a result, the halo buttons would disappear from the object that was the
focus of the user’s gesture, flash over the second object, and then reappear over the focused
object. Users interpreted this as a single set of halo buttons that appeared to move away
and then return for no apparent reason. This effect particularly frustrated users because the
halo buttons are near the edge of an object. When pointing at a halo button, users would
often overshoot the button and end up over a nearby object. As a result, the halo buttons
appeared to jump away from the cursor just as it neared the target.

In response to this miscue, the design was changed so that an object’s halo buttons fade
in when the cursor enters the object’s scope, and fade out again when it leaves. Under
this gradual activation strategy, target buttons remain visible long enough for the user to
complete a pointing action that overshoots the target, and the simultaneous visibility of
both sets of buttons as they cross-fade clearly indicates that they are independent entities.

7.5 Supporting Evidence

Chapter 6 presents a qualitative study of XDS. The halo menu technique was not specifically
evaluated, but several results suggested a link between the use of halo menus and a pattern
of increased exploration and experimentation. A few of these are highlighted here rather
than repeating the results in detail.

All of the participants experimented enthusiastically and tried many combinations of
commands. All but one of the participants (a domain expert) asked the experimenter to
explain one or more unfamiliar commands that they had seen in the halo menu. When these
commands were explained, participants would typically roam over their previous designs
looking for an opportunity to apply the new command realistically. All of the participants
had tried most of the available commands before the end of their session.

Although the halo menu design is based on the assumption that the user’s locus of
attention is approximately represented by the cursor, the extent of this connection was
surprising. Over the course of their session, the halo menus appeared to train users to
synchronize the cursor with their locus of attention. By the end of the session looking and
pointing had become nearly synonymous for all participants, and comments about designs
nearly always referred to the design under the cursor.
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7.6 Limitations of Halo Menus

There are several limitations to this technique. Because halo menus are always active, a
halo will be visible whenever the user attends to an interactive object. When there are
many such objects, this may lead to a cluttered display. If the user wishes to focus on
objects rather than actions (perhaps due to engaging reflection-on-action), the user may be
frustrated by the difficulty of hiding the menus if there are few dead zones or their location
is not readily guessable.

Halo menus cannot be used for commands that do not work on individual objects. Some
objects also defy placing a halo around them. This includes objects such as the desktop,
which covers the entire display, as well as objects so small that they do not have enough
room around them to display the buttons. In these cases, other techniques for entering
commands have to be used.

Allowing overlapping objects is also problematic. For halo menus to be effective, the
cursor location must unambiguously identify an object. If one object can completely occlude
another, a mode must be introduced to ensure that both objects are selectable.

Although halo menus help users discover the actions possible with a given object, in
comparison with fixed drop-down menus they may make it more difficult to form an under-
standing of the system-wide command set (all the things you might ever do to any object).

Halo menus are hidden until the user moves the cursor over an object. However, this is
unlikely to be a significant detriment in practice. Users that expect the noun-verb command
paradigm common in graphical interfaces will move the cursor over the target object as a
preface to selecting it, thus making the menu visible. Based on similar reasoning, interaction
designers at the search engine company Google recently changed the design of their main
Web page to incorporate progressive disclosure. Noting that the vast majority of users visit
this page to perform a search, the page was changed to initially display only the company
logo and a search field. It is only when the user moves the cursor that links for other
services and other elements are faded in. The designers reasoned that users wanting one of
the less-accessed features would generally move the cursor anyway [176], in order to select
the relevant link.
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7.7 Summary

Halo menus are a novel interaction technique for context-aware modeless command selection.
They feature self-promoting objects that continually but unobtrusively prime users with the
actions possible at the user’s locus of attention. This is useful in situations where the user
may be unaware of the full spectrum of choices available to them, or may be reluctant to try
unfamiliar techniques. A qualitative evaluation suggests that this technique may increase
the range of distinct choices made by novice designers.

When used in an expert support system, halo menus are a simple but powerful way to
support Principle 7 (Encourage Parallel Exploration of Breadth and Depth). They should
be most effective when combined with a system that also implements Principle 4 (Prefer
General, Flexible Actions and Representations), so that exploration can be performed with
a reasonably small set of actions that fit comfortably in the halo configuration.

Halo menus make the functions of a system and its objects easier to discover and to
deliberate; however, this may come with the cost of less efficient selection compared to
techniques that focus on efficiency. This balance makes halo menus an ideal design choice
in contexts where users will spend a greater proportion of their time exploring alternatives
and considering possible actions than they will spend executing command sequences.



Chapter 8

Strange Eons: A Selective
Implementation of the Principles

8.1 Introduction

The evaluation of XDS found that an expert support system designed in line with the
principles can yield benefits for users. However, the expert domain supported by XDS
has features that suggest it may be particularly well-suited to software-based support: the
space of ANOVA designs is well-defined and can be explored using a small set of formalizable
design moves. Evaluating a second prototype provides the opportunity to test whether the
principles generalize to problem spaces where conditions are less favourable.

Strange Eons, a tool that supports end-user development of paper-based games, supports
such a space. Game design has much less formal structure than ANOVA experimental
design. Although games are constructed around rules, these only bind the player: the
designer is restricted mainly by imagination and the soft constraints that the end result be
fun, feel fair to the players, end in a reasonable amount of time, and not be too expensive
to produce. In these respects, game design has much in common with domains like writing.

Rather than implement all of the design principles as XDS does, Strange Eons focuses
on a narrow subset. This allows a more controlled evaluation, and so a more precise under-
standing of how these features affect expert work. In combination with other prototypes, it
can also be used to start teasing apart the contributions of particular principles.
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Some might argue that implementing a subset of the principles limits external validity
since the selected principles may be those most likely to produce favourable outcomes. There
are two responses to this charge. First, because the principles are essentially soft constraints,
it is perfectly reasonable to emphasize those principles most likely to produce the best
outcomes in a specific context. Second, the actual focus in Strange Eons is on adapting the
notion of consequence displays (introduced in XDS, see Section 5.5 on page 60). Because the
problem space is relatively unstructured, this is one of the harder problems that could have
been selected. An easier choice would have been to implement a feature more independent
of the problem space, such as rich history mechanisms. The result would probably be less
interesting, however, as these have been widely explored (e.g., [42,100,124,125,137,233,248,
254,276]). In addition, intentionally choosing a support feature limited to providing weaker
support makes a more compelling case if the system succeeds.

8.2 Games and Problem Spaces

Games can be classified in terms of four elements: goals, rules, actors, and resources. A
goal defines what the players of the game must achieve, or avoid, in order to win; rules
place constraints on how the goals can be accomplished. An actor is an agent that can
change the game state in a manner intended to further progress towards goals. It need not
be human—it could be programmed, for example, or it could arise from randomly selected
events. Intelligent actors, or sometimes simulations thereof, are more commonly called
players. Resources are used to represent the game state. While many traditional games use
stones, pawns, or other simple markers, modern games often use a combination of markers,
cards, and other objects. The play area (such as the board in a board game) can also be a
resource, although in many games it serves only as an external memory on which to record
the game state.

The game state can be a function of all of these elements: the actor (turn-taking), the
number and configuration of resources, the current rules (for example, if a turn is broken
down into steps or phases), and the current goals (for example, there may be a special
tie-breaking goal). Game play occurs when the actors use the resources according to the
rules to modify the game state in an attempt to satisfy the goals.

To qualify as a game, at least two actors must be in conflict, and at least one of these
must be a player. Conflict can take many forms. The actors might be competing to reach
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the same goal first, or perhaps one actor is is trying to prevent the others from reaching
their goal. If no actors are in competition, then the result is better described as a puzzle
than as a game: puzzles place passive obstacles (arising from the selection of rules and the
initial configuration of resources) between the actors and the goals. If there are actors but
no players, the result is a simulation.
Games are found in many forms: sports (games that feature recurrent skills [181] and

players as explicit resources), board games, role-playing games, card games, video games,
and more. Despite this variety, most games fall roughly into one of two clusters, which can
be called static and dynamic in reference to the malleability of their rules. In the static
cluster one finds abstract games that have fixed rules and no randomness. Chess is a classic
example. Static games stress competition, skill, and an equal opportunity for all players
to win. In these games, players generally begin the game with equivalent resources: either
identical, symmetrical, or else asymmetric but balanced. An example of the latter is the
traditional Nepalese game of Bagh Chal ( , “Moving Tigers”). In Bagh Chal, one
player controls four tigers and the other controls twenty goats. However, the tiger player
can capture goats, while the goats must be moved to hem in the tigers. The asymmetric
number of resources is balanced by the asymmetric rules, and the game is considered fair
to both sides.
Static games are primarily a competition between players. The goals are usually sym-

metric and mutually exclusive; for example, each player may need to eliminate the resources
available to other players, so that the last player to retain resources wins. Since there is no
randomness and the game is considered fair, credit for winning is ascribed mainly to the
relative skill of the players.
In contrast, dynamic games feature more concrete designs, variable rules, and the use

of randomness. These games emphasize simulation, discovery, socially-constructed stories,
and novelty of experience. Games can still be competitive, but much of the fun in playing
them is derived from these other factors. Dynamic games can also be played cooperatively.
In a cooperative game, the players work together to achieve common goals and they win or
lose as a group. Cooperative games are differentiated from puzzles in that there is an actor
(sometimes a player) working against the protagonist players.
Role-playing games, which are cooperative, are different from dynamic board games

mainly by their more extreme dynamism: they feature even more concrete, finely detailed
simulation, more variable situations, and a more intense focus on storytelling. Play varies so
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much that a fixed game board is no longer a practical aid for representing the game state. In
these games, the opposing actor is viewed more as a referee, facilitator, and storyteller than
as an opponent. This actor’s task is to interpret the results of the other player’s decisions
rather than to actively seek their defeat.

A key feature of dynamic games is that the rules are not known completely in advance,
and they change over the course of the game. This is done by mixing a fixed set of core rules
with temporary rules that enter and leave play over time. Usually the temporary rules are
attached to resources. It is generally intended that the player should not be able to know
all of the possible rules beforehand: dynamic games aspire to be ill-structured problems
(whether they actually are varies). Players tend to choose a style of play accordingly:
Players of static games can select moves based on a deep analysis of the game tree because
the principle unknown is the moves of the other players, which can be predicted. Players
of dynamic games tend to act more in reaction to the situation as it unfolds (as described
by situated action; see Section 2.4.2 starting on page 21), because there are too many
unpredictable factors to perform a detailed game tree analysis.

Temporary rules can be introduced and withdrawn in a variety of ways. In role-playing
games, it is primarily the referee’s job to manage them. In board or other tabletop games,
other strategies are employed. For example, special rules may be attached to resources that
players can acquire. Randomization is also common: the players might draw new rules from
a large deck each turn.

When a game is new, players will be unaware of some rules since they are distributed
between the rule book and the game’s resources. With repeated play, they will gradually
gain knowledge of these rules. Play becomes more predictable over time, and therefore less
interesting. One way board game designers combat this is to introduce rules via multiple
mechanisms, so that the total number of possible combinations is vastly increased. Another
is to follow the main game with expansions: optional add-ons that introduce new content
to the base game. It is in this niche that Strange Eons fits most naturally.

8.3 The Design of Strange Eons

Strange Eons supports the design of components for paper-based games. Paper-based games
include board, card, and role-playing games. Each of these is a large category. The U.S.
market for board games alone was worth US$800 million in 2008 [230].
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Strange Eons has been used by both amateur and professional game designers, and has
been used both to extend existing games and to develop entirely new games. However, its
primary purpose is to support the end-user development of new content for dynamic games.
New content adds variety to thematic elements of the game, keeping play fresh by adding
new discoveries, situations, and stories for the players to experience.

Adding content to a game is like writing a sequel to a story in that sequels must not
only work within the constraints of the broader design space of storytelling, they must also
work within the subspace defined by the original work. The sequel to a modern-day spy
thriller is not likely to be set in a forest of magical talking trees. Likewise, the new rules
and resources included with new game content must fit within the context of the original
game: new cards should have a similar design theme and illustration style; new rules should
integrate seamlessly with existing rules. Since each game implicitly defines its own design
space within the larger space of all possible games, Strange Eons mirrors this structure with
two distinct layers of support.

The first layer consists of generic tools and features that do not target particular games.
This includes the plug-in framework and integrated plug-in development tools, document
management, text layout, and generic support for creating, viewing, and printing compo-
nents such as boards, cards, tokens, boxes, and booklets. Figure 8.1 illustrates some of these
possibilities using examples created with the application.

The second support layer, built atop the first, adds support for specific games. This
consists mainly of adding new editors for that game’s various components, but nearly every
aspect of the application can be extended with specialized support.

The following subsections give brief overviews of the major components of the first layer
in order to give a sense of the normal work flow and the scope and capabilities of the
application, and to introduce features that will be needed later when discussing expert
support. A complete survey of the features in Strange Eons would be too long to include
here, but more information can be found by exploring the application itself or by consulting
the online documentation [126].

8.3.1 Document and Project Framework

Strange Eons is a complex application. In order to help users grow into this complexity
gradually, the interface design borrows from the the technique of progressive disclosure [41]—
although in this case, progressive discovery is a more appropriate term. The stages of
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Figure 8.1: Sample components created with Strange Eons: (a) A game board (actual size
is approximately 55 cm×27 cm); (b) a round gate marker leading to a strange Other World
in Arkham Horror ; (c) a page from a case book [43], a type of multi-page document; (d)
an “action card” for a popular role-playing game—the card’s designer uses Strange Eons
to allow him to play with Japanese friends because the game is not published in Japanese.
Notes: (a) Board design by Max Mayer. Used with permission. (a), (b) Contain design
elements from Arkham Horror. Arkham Horror is Copyright c Fantasy Flight Games. Used
with permission for academic purposes. (d) Card text by Stuart Gilmour; graphic design
by Ivelin Belchev. Used with permission.
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Figure 8.2: Intermediate users work with a small number of files. A simple tab strip suffices
to manage work flow; in this example, a tab is being dragged to a different position on the
strip.

Figure 8.3: Developing a plug-in within the project system. The script for a new game
component (center) is being tested. Running the script produces some console output (upper
right), and an editor which has been detached from the tab strip (lower right) to compare
against the script. The script debugger is ready for possible use in the background (lower
left). Note: Some of the card graphics are adapted from Arkham Horror. Arkham Horror
is Copyright c Fantasy Flight Games. Used with permission for academic purposes.
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disclosure are not activated by explicit selection but arise coincidentally as the user works
on larger projects and needs to manage more files simultaneously. (Each game component
is stored in a separate file.)

When new users first start the program, a single dialogue is displayed that allows users
to choose the kind of game component they wish to create. This gives novice users the
opportunity to immediately try out one of the component editors for a few minutes and
decide whether the application is likely to suit their needs.

As users become more comfortable with the application, they may eventually want to
work with more than component at a time (see Figure 8.2). At this stage, the few needed
documents can all be open simultaneously. The open documents are grouped together in
a tab strip at the top of the application. This strip allows basic management of open files
and also allows them to be “detached” into separate windows. (Detaching is useful when
comparing two or more components.)

More ambitious users may eventually need to manage more files than will fit conveniently
on the tab strip: for example, they may be making a large deck of cards. At this point,
they are probably at least intermediate users and will be able to guess from the available
commands (or will already have learned) that they should create a project. Projects are
task-oriented collections of files that can be managed using a project pane on the left side
of the window. (The project pane is hidden when no project is open.) Projects combine
high-level file management and other generic commands with task-specific commands built
around task folders.

At the deepest level of disclosure, users may decide to extend the application, perhaps
to support new component types for a game that they have invented (see Figure 8.3). This
requires managing a large number of disparate files: script code, configuration files, images,
plug-in glue, and so on. These users will create a project containing a plug-in task folder.
As plug-in task commands are performed, the application comes to resemble a modern
integrated development environment, with source editing, build tools, output console, plug-
in testing, full source-level debugger, and a host of other features.

8.3.2 Plug-in Framework

Plug-ins can be used to extend nearly every aspect of Strange Eons, including the addition of
new commands and tools, support for new locales, shapes, images, fonts, or other resources,
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and—most importantly—new games and game components. For ease of distribution, plug-
ins are packaged into special archives called plug-in bundles. Plug-in bundles include support
for versioning (e.g., automatic updates), dependency resolution (e.g., automatic installation
of required bundles), and can be compressed using a variety of compression algorithms to
reduce distribution costs.

Plug-ins are installed and updated from the application using a catalogue system. The
catalogue dialogue downloads and displays a list of available plug-ins with descriptions; the
user may then choose plug-ins to be downloaded and installed. Installed plug-ins are dy-
namically loaded at runtime, giving them full access to the Java classes and other resources
that make up the application.1

Plug-ins may be based on compiled Java [89] code, or more commonly, ECMAScript [62]
scripts (specifically, JavaScript 1.7 [62, 189, 190]). Although JavaScript has a number of
well-documented design flaws [49], it was chosen for several reasons. First, a good imple-
mentation, Mozilla Rhino [26], was readily available. Second, due to its prevalence in Web
development, nonspecialists are more likely to have previous experience with it than with
alternatives. Third, for the same reason, any number of online tutorials are available to help
beginners learn the language. Fourth, it has excellent interoperability with Java (for exam-
ple, scripts can dynamically subclass Java objects). And finally, it has features that dovetail
with the design of the plug-in architecture; for example, its support for closures [144] pro-
vides a compact way to implement the event listeners and other interfaces needed to extend
the application.

8.3.3 Game Component Framework

Game components (files) generally represent a single playing piece, such as a card, sheet,
or token. Most game components have a fixed size and are rectangular in shape, although
this is not required. For example, the token editor can create game tokens in a variety of
shapes and sizes.

User interaction with game components is usually through an editor window, which
groups the widgets needed to edit the component together on the left side and provides a
live, zoomable preview of the component on the right. The different surfaces of a component
(such as the front and back faces of a card) can be flipped through using small tab buttons.

1In Java parlance, the plug-in files are added to the classpath using a custom classloader.
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The game component framework provides a host of functionality that custom compo-
nents take advantage of automatically, such as serialization, printing, exporting as images,
and support for publishing industry features such as fold marks, crop marks, and bleed mar-
gins. It also provides a standard Spin Off command that explicitly creates an alternative
as a new document (without the interruption of choosing a new save file).

For developers, the framework’s features include automatic management of rendering
resolution (component drawing code is independent of resolution), caching mechanisms,
simplified handling of user-supplied images (called portraits), and automated binding of
widget events to variables in a game component.

8.3.4 Text Layout and Graphical Effects

Dynamic games are usually text-heavy, so Strange Eons includes a powerful text layout
engine that can render formatted text from HTML-like markup text. The markup language
is based on HTML in order to leverage any previous experience the user might have.

The layout engine supports standard text styling (font family, point size, weight, width,
posture, tracking, underline, text colour, and so on), justification and alignment, ligature
glyphs, inline graphics, bidirectional text, and other modern digital typesetting features. Of
greater interest, though, are features aimed specifically at game component design:

Text Fitting Game designers must often squeeze complex descriptions onto tiny cards, so
they learn to write economically. This is difficult for amateurs, so the layout engine
can instead fit the available text into the desired space by automatically shrinking the
line spacing and text size. (See Figure 8.4.)

Text Shaping Many components have complex layouts that make use of decorations, bor-
ders, icons, or other features that the text must wrap around. The layout engine can
adjust the margins of each line to match arbitrary curves and shapes. (See Figure 8.5.)

Variable and Conditional Text The details of a game component are often revised many
times before they are finalized. The markup parser supports variable tags that are
dynamically replaced with information taken from the component. For example, the
tag <name> inserts the component’s name or title. (While some variable tags are
predefined, end users can also define new variable tags using a macro facility.) The
parser also supports conditional text composed of two or more alternatives, one of
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Figure 8.4: Text fitting accommodates unusually long rules with ease. As the text gets
longer (from left to right), the layout engine will first reduce line spacing and then scale the
text size down. When the scale factor becomes extreme, a red warning box is displayed.

Figure 8.5: Text shaping can wrap text to fit arbitrary paths. This is necessary to match the
complex overlapping arrangements of text and graphics used by some component designs.
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which is selected based on the component state. The linked state can be anything, but
is usually gender. For example, a game character might be given a special power called
Manipulat<or/rix>, which would appear on the component as either Manipulator or
Manipulatrix, changing automatically as the character’s gender is altered.

In addition to text layout, Strange Eons also supports various graphical effects and filters
commonly used in game component design. One such effect, tinting, specifically supports
custom content creation (see Figure 8.6). Tinting allows the user to create simple variations
of a standard component by dynamically recolouring selected parts of the component’s
graphics. The user simply chooses a target colour and the component is recoloured to
match. Using tinting, it is easy to create a line of custom components that is both distinct
from but clearly in the same design family as other components from the game.

8.3.5 Deck and Board Editor

To facilitate printing on home printers, Strange Eons provides the deck editor for laying
out groups of objects together on a page. This editor has some similarity to vector-based
diagramming software, but it is specialized for the tasks of laying out sets of cards and
creating game boards.

To simplify card layout and board design, the editor makes extensive use of snapping,
which allows objects to be quickly placed into precise alignment using imprecise drag-and-
drop gestures (see Figure 8.7). Class relationships determine whether and how two objects
snap together. For example, card faces snap to each other and to grid lines on the page,
but not to any of the objects that are used to design game boards. (The user can change
an object’s default snapping behaviour and override snapping altogether if desired.)

To assist the user in assembling the printed output, publisher’s marks are automatically
generated around compatible objects (also shown in Figure 8.7). The type of mark depends
on how the object is related to any neighbouring objects that it contacts. For example, if
two different cards are placed next to each other, they will be surrounded by crop marks
(indicating where the cards should be cut). However, if the front and back face of the same
card are placed next to each other, then the mark along that edge will be converted into a
fold mark if and only if folding along that edge would produce a correctly printed card. To
avoid confusion, marks that overlap with other objects are suppressed.
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Figure 8.6: Tinting makes it easy to create variants of existing components. In this example,
the user creates a new kind of card by choosing a different tint colour (top) and centre graphic
for an existing card back (bottom left). The result is a new card back design (bottom right)
that is visually distinct from but clearly related to the original design.
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Figure 8.7: Laying out a deck of cards for printing. To create a deck, the user first chooses
the game component files to include, which are added to a list. Individual component faces
are added to the deck by dragging them from this list (not shown) to the deck page. Crop
marks (solid lines) and fold marks (dashed lines) are placed around the card automatically.
(The marks have been enlarged for clarity in this illustration.) Crop marks become fold
marks only when touching faces are compatible: the two faces in the upper left corner have
fold marks because they are the front and back face of the same card; the cards below
do not because they are both front faces. On the far right, a new face is being dragged
into position. The blue highlight indicates that the new face will snap to the right of the
highlighted face if dropped at its current location. A target face is chosen by dragging the
new face anywhere overtop of it; the location to snap the new card to is determined from
the relative positions of the centres of the faces. Snapping allows precise alignments to
be determined from coarse, rapid drag gestures: laying out a deck would be much slower
without this feature. Note: The Exhibit Item card design is from Arkham Horror. Arkham
Horror is Copyright c Fantasy Flight Games. Used with permission for academic purposes.
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8.4 A Specific Game: Arkham Horror

Since Strange Eons creates components for specific games—treating each component as a
separate design space—it can provide a second layer of support specifically tailored to each
space. The evaluation of Strange Eons as a (partial) implementation of the expert support
design principles is based thus on the support provided for a particular game, Arkham
Horror [148], and a specific component for that game, investigator cards.

Arkham Horror is a cooperative board game based on the work of H. P. Lovecraft [168],
an early 20th century author of speculative fiction. Lovecraft’s historical importance is due
less to the quality of his writing (which is notoriously prolix) than to the influence of his ideas
on other authors. Lovecraft corresponded with a large circle of literary colleagues. These
writers often borrowed settings, props, plots, names, and other elements from Lovecraft’s
stories, incorporating them into their own work. Through the years other writers picked up
and continued this practice.2 The end result of decades of filtering Lovecraft’s ideas through
the sieves of other minds is a loose accumulation of lore called the Cthulhu Mythos [103].
This background is a rich source of material for end-user development.

Arkham Horror draws on elements from this larger mythology, but remains closely
aligned with several of Lovecraft’s key themes, especially dystheism, the insignificance of
humanity in relation to the universe (cosmicism), and the dangers of forbidden knowledge.
During the game, players assume the role of amateur investigators exploring strange goings-
on in the fictional 1920s town of Arkham, Massachusetts. The goal of the game [8] is to
prevent a dangerous cult from awakening a long-dormant ancient one, one of several god-like
entities whose revival would bring destruction.

The investigators explore the town, encountering various people and situations. The
encounters may require players to decide between alternative courses of action, and often
involve a skill check, which uses dice to determine whether an attempted action succeeds.
The probability of success is determined by the difficulty of the action and by the investi-
gator’s rank in the relevant skill.

The resolution of an encounter may include a gain or loss of resources: the investigator
might find an item stuffed in a tree trunk, or win some money in a pool hall bet; or they

2Some authors go so far as to write whole new Lovecraft tales, often early in their careers. Stephen King’s
epistolary short “Jerusalem’s Lot” [134, pp. 1–35] is a good example; it reads like Lovecraft and Bram Stoker
plotted the story, and King added the characterization and dialogue.
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may end up in a fight in a seedy speakeasy and have to discard some of their Stamina tokens
(running out of Stamina tokens means a trip to the hospital). For example, an encounter
at the Bank of Arkham might read:

Wealthy landowner Alijah Billington has dropped a scrap of paper ahead of you
in line. You surreptitiously pick it up. Make a Luck (+0) check. If you
succeed, you notice strange writing on the back. Gain 1 Clue token. If you fail,
you hand back what appears to be a grocery list and he gives you his thanks.

This encounter gives the investigator the chance to gain a Clue token, one of the most
important resources that players can obtain. Clue tokens represent knowledge that can be
used to foil the growing threat. As the cultists pursue their plan, gates to strange other
worlds begin appearing in town, representing the thinning barrier between this reality and
the ancient one’s. Investigators may enter these gates, explore the other side, and—if they
make it back—use the knowledge gained from Clue tokens to seal the gate. By sealing
enough gates, the investigators can thwart the cultists and win the game, but if they act
too slowly, the ancient one will pierce the barrier between worlds and the players will lose.

A number of obstacles slow the investigators’ progress, but the main obstacle is the use
of two timing mechanisms that limit the number of turns available to stop the cult. The first
of these mechanisms is the doom track, which counts up as new gates appear and represents
the ancient one’s waxing power. When this track fills, the ancient one awakens. The second
is the terror track, which represents the breakdown of society as the town descends into
chaos. The terror track is not tied directly to the cult’s progress, but responds to indirect
evidence of their activity; for example, if news of a grisly murder is published in the local
paper or the investigators fail to control the spread of a rumour. As the terror track rises,
resources become scarce: potential allies flee town and store owners board up their shops.

A more active obstacle occurs in the form of roaming monsters. As the town is overrun
with gates, denizens from the other side find their way to our world. As the monsters
roam the streets, they hamper movement about town: to move through an occupied space,
investigators must either sneak past or fight. Either choice is risky. These otherworldly
creatures are not only physically dangerous; they are so alien that an investigator’s Sanity
is threatened just by knowledge of their existence.

Other events, unrelated to the cult’s activities, also delay progress towards the goal. At
the end of each turn, a new card is drawn that may represent newspaper reports of strange
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happenings, a change to bad weather, or other effects. Each of these introduces temporary
rules that hamper the player’s ability to plan.

8.5 The Design Space of Investigators

Each player draws a random investigator at the start of the game. Investigators are printed
on large cards that list their starting attributes (see Figure 8.8). At the top of each card is
a portrait, the investigator’s name, and their occupation. Beneath this are found:

Sanity and Stamina These are resources than can be lost as a result of mental or physical
harm; if either runs out the player is penalized.

Home This is where the investigator begins the game; it is tied to the investigator’s back
story (see below). The home is usually chosen so that the investigator is initially safe.

Fixed Possessions Resources that the investigator always starts the game with, such as
items and money.

Random Possessions General types of resources from which the player draws randomly
at the start of game. These keep play fresh by ensuring different starting resources
for each game.

Special Ability A rule unique to the investigator, tied to the back story or occupation.

Skills A set of six skills (Speed, Sneak, Fight, Will, Lore, Luck) that define the investigator’s
strengths and weaknesses. In addition to making skill checks as described earlier,
most skills also serve other roles. For example, an investigator’s speed determines how
many spaces it can move on the board each turn. Each skill has one from a range
of four possible values at any given moment. At the start of each turn, the player
is allowed to adjust skills a step at a time within this range. The skills are paired
such that increasing the value for one skill decreases its mate. For example, if the
player increases their Speed by one step, then their Sneak is decreased by one step.
Predicting how to best distribute skills is an important tactical element of the game.

Focus This value limits the total number of steps that the investigator’s skill pairs can be
adjusted per turn.



CHAPTER 8. A SELECTIVE IMPLEMENTATION OF THE PRINCIPLES 123

Fi
gu

re
8.
8:

C
ar
ol
yn

Fe
rn
,o

ne
of

th
e
in
ve
st
ig
at
or
s
in
cl
ud

ed
w
ith

A
rk
ha

m
H
or
ro
r.

Sh
ow

n
ar
e
th
e
fr
on

t
an

d
ba

ck
fa
ce
s
of

th
e
ca
rd

(le
ft

an
d
rig

ht
,r

es
pe

ct
iv
el
y)
.
O
n
th
e
fr
on

t
fa
ce
,i
n
cl
oc
kw

ise
or
de

r
fr
om

th
e
up

pe
r
le
ft
:
th
e
po

rt
ra
it,

na
m
e
an

d
oc
cu

pa
tio

n,
m
ax

im
um

Sa
ni
ty

an
d
St
am

in
a
sc
or
es
,s

pe
ci
al

ab
ili
ty
,s

ki
ll
pa

irs
,F

oc
us
,s

ta
rt
in
g
eq
ui
pm

en
t,

an
d
H
om

e.
T
he

ba
ck

fa
ce

sh
ow

s
th
e
in
ve
st
ig
at
or
’s

ba
ck

st
or
y.

N
ot
e:

A
rk
ha

m
H
or
ro
r
is

C
op

yr
ig
ht

c ©
Fa

nt
as
y
Fl
ig
ht

G
am

es
.
U
se
d
w
ith

pe
rm

iss
io
n
fo
r
ac
ad

em
ic

pu
rp
os
es
.



CHAPTER 8. A SELECTIVE IMPLEMENTATION OF THE PRINCIPLES 124

In addition to these attributes, the back face of each card provides a back story to assist
with playing the role of the investigator. A good back story gives coherence to the entire
character by implicitly explaining the various attributes and the investigator’s motivations.

8.6 The Investigator Editor

The layout of the investigator editor in Strange Eons roughly corresponds to that of inves-
tigator cards, but some sections are located on separate tabs due to the limits of window
real estate (see Figure 8.9). In addition to the attributes described in the previous section,
the editor has an additional tab labelled Comments. This is a standard feature of every
editor, and serves the same purpose as design rationale annotations in XDS (see p. 65).

Several features of the investigator editor help designers who reach an impasse. In
addition to entering a name, a random name can be generated based on the selected gender.
The names (both given and family) are selected from tables of the most common names for
babies born in the years 1880-1900 (i.e., common names for adults in the 1920’s; the tables
were derived from census data). The title (occupation) field is an editable list (combo box)
that allows designers to enter their own value or choose from over 300 built-in options. This
list includes not only typical occupations of the time, but also more fantastic options that
suit the game’s theme, such as “the Rum Runner”, “the Antiquarian”, “the Exobiologist”,
or “the Vigilante”. The tab that allows the user to edit the investigator’s special ability
includes presets for all of the special abilities that have been used by official investigators as
well as a handful of new examples. This allows designers to compare an idea with what is
already available to consider its balance and to verify its novelty. Novice or casual designers
can also simply choose the standard ability that best matches the character that they have
in mind without spending the additional time needed to develop a novel rule. (For example,
a number of people have used Strange Eons to create investigator interpretations of their
play group or of favourite book or movie characters for one-off use.)

The main support feature for investigators is its consequence display. The display shows
sentences to indicate that the design has crossed various formal and informal boundaries
in the design space. The boundaries are a combination of conventions established by the
official published investigators and additional heuristics. They have been chosen to help the
designer to know when the design may by over- or under-powered compared to the official
designs. Since the game is cooperative, the investigators do not need to be completely fair,
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Figure 8.9: The investigator editor. The upper left part of the window contains the widgets
used to edit the card. Due to the number of widgets, some are not shown but are found
on other tabs (the visible tab allows editing of the name, occupation, and basic numerical
attributes). Across from the editor is the zoomable preview window, currently showing
the card’s front face. The consequence display in the lower left corner shows how design
consequences are affected by edits. Note: Investigator card design is from Arkham Horror.
Arkham Horror is Copyright c Fantasy Flight Games. Used with permission for academic
purposes.
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but if there is too much disparity then some players are likely to be relegated to second-tier
roles. The consequences also inform the user when the design places much more emphasis
on one design consequence and ignore others. For example, if the designer selects many
more fixed possessions than random ones, the design probably favours characterization over
replayability.

While the consequence displays in XDS provided graphical visualizations of important
consequences of the design that can be computed or estimated quantitatively, the conse-
quences monitored here are essentially boolean: either a boundary is followed or it is not.
And while XDS focused on four key consequences of experimental design, in this case there
are dozens of guidelines to consider: making the user aware of these consequences requires
a distinct approach from that of XDS.

The investigator editor displays consequences as a brief report with four possible sections:
Validation, Suggestions, Cool Things, and Required Expansions. The Validation section is
reserved for a few specific cases where breaking a guideline could have especially egregious
effects on the investigator’s fairness. Being “invalid” does not prevent the investigator from
being used. It does indicate, though, that unusual effort may be required to balance the
investigator out.

The Suggestions section, which might more accurately have been called Observations,
provides feedback on the user’s location in the design space and also points out possible
complications and interactions that the designer might not be aware of. For example, the
highest value of a skill normally falls between 3 and 6 (inclusive). Having a 6 in a skill
is rare—it is listed as a Cool Thing (see below); none of the official investigators have
more than one 6. This does not mean that a design with a double 6 is wrong, but it does
mean that the designer is venturing into an untested part of the design space. The editor
does not discourage the decision—the fact that it has never been done may be exactly why
the designer decided to do it—but the editor does point out that there may be unintended
consequences: “A skill of 6 or more is rare. This investigator has 2 of them. The investigator
may be too weak in other areas.”

The entires in the Suggestions section generally fall into one of the following categories:

• The design is outside of the usual upper bounds for investigators (e.g., spent extra
money while shopping, chose unusual skill values).

• The design is outside of the usual lower bounds for investigators (e.g., has unspent
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money or skill points).

• The design may have unintended consequences: one aspect of the design may interact
with another part of the game in a way that makes the game significantly harder or
easier.

• A design choice related to one part of the investigator card will have a side effect (not
necessarily good or bad) somewhere else on the card.

• An aspect of the design requires support with a special rule (the design creates a
situation that is not consistent with the game’s usual rules).

• The design is not as cohesive as it could be; for example, the special ability requires
a Clue token to work but the investigator does not start with any.

• An aspect of the design may not make thematic sense unless it is explained by the
investigator’s occupation, back story, or other characterization. (For example, giving
an investigator a random Ally, as opposed to a specific one, may seem out of place
unless the investigator’s story explains why they would have such varied associates.)

• The design uses an “unofficial” design feature that, while supported and considered
balanced by Strange Eons, is not part of the design space defined by official compo-
nents. That is, the feature is a transformation of the design space (as established by
official published products) that has been introduced by Strange Eons. This list has
changed over time because the game designers began using Strange Eons to help de-
sign expansion products—some unofficial features subsequently became official, while
at the same time new unofficial features were introduced.

• The investigator has been given an especially powerful item; usually, players are more
engaged when such items are reserved for use as rewards [115].

The Cool Things section notes aspects of the investigator that help to differentiate it.
While every investigator has a different special ability, all of the official investigators also
have a special quality that is not explicitly stated on their card. The game’s designers
refer to these as “cool things” (Kevin Wilson, personal communication, July 24, 2009).
Cool things are generally not special by themselves, but are special in relation to other
investigators. For example, only one of the investigators is rich (the only one to start with
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$10), and only one has a pet. These are both cool things. Cool things are not always related
to the investigator’s starting equipment; any rare or unique aspect of the design can qualify.
For example, while most investigators have a special ability that only benefits themselves,
Carolyn Fern’s can be used to help her teammates (see Figure 8.8).

Finally, the Required Expansions section tells the designer if they have chosen an option
that requires a particular expansion product. This prevents novices who are unfamiliar with
all of the game’s components from creating an investigator that would require components
that they don’t actually own. This is easier to do than one might expect: the base game
has over 700 components, while the expansions published to date add nearly 2000 more.

Reading a long list of consequence sentences after each edit would soon become tedious.
To help designers focus on how the consequences change as the investigator is edited, the
list entries are formatted differently when they are new (shown in bold) and when rendered
inapplicable by the most recent edit (shown in strikethrough text). Suppose that the designer
added a new item to an investigator’s list of possessions, and Strange Eons noted that this
new item is synergistic with another (already selected) starting item in a way that could be
unfair. A new consequence would be added to the list to note this, and because it was new
it would appear in bold type. If the designer then performed some edit other than removing
one of the two conflicting items, then the consequence would be displayed in regular type
(because it is still present but no longer new). If one of the items in the synergistic pair was
removed, then the consequence would be displayed in strikethrough type (indicating it has
been “deleted”); after the next edit it would be removed from the list.

To help designers visually search the list, items in the different sections are listed in
different colours. When an edit causes the list to grow or shrink in length, possibly changing
the position of a consequence that the designer is trying to influence, these colours help the
user to rapidly reacquire the target consequence and check its new status.

The consequence display should help designers create investigators that are explore novel
areas of the design space without unbalancing play. The entries help the user to compare
their design with established examples, and to recognize if an aspect of the design is so far
from established norms that it may require compensation elsewhere. Since the consequences
are verbal, it is important to use neutral wording. The consequence display is not meant
to be a tutoring system that prefers one alternative over another. The following sentence
captures the intended tone: “I realize that you know more about this than I do, but have
you considered X?”
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The consequences provided by the investigator editor are distinctly weaker than those
in XDS. The consequences in XDS are always available, and always have some relevance to
the problem. They are closely related to important hypotheses that the experiment designer
needs to be able test in order to judge how well a possible solution fits the problem. The
consequence display in the investigator editor is backed by a simple expert system. If nothing
about the design fits part of the editor’s predetermined model, then it will have nothing to
say. The information it presents mainly provides a sense of the location of the solution in
the solution space; this has only an indirect relationship to how well the solution matches
the problem. It therefore requires more interpretation on the part of the designer, whereas
XDS allows the direct visual comparison of designs.



Chapter 9

An Evaluation of Strange Eons

9.1 Strange Eons in Light of the Principles

Describing the principles supported by Strange Eons is complicated by the layered organiz-
ation and the fact that the specific editor used for evaluation does not use all of the support
available in the lower layer. The summary in Table 9.1 describes the specific degrees of
support provided by the investigator editor, since that is the target of evaluation. Specific
games or components other than the investigator editor may have their own custom support;
this is not considered here.

9.1.1 Make Partial Solutions First-class Entities (Low)

The use of variable and conditional text (symbolic tags) allows the designer to insert place-
holders for parts of the design that are incomplete or subject to change. In the investigator
editor, the designer can use special tags to insert the investigator’s current first, last, or full
name (the first name tag parses the first name field to remove middle names and initials),
the investigator’s home location (with an appropriate article, if desired—so the Witch House
but Miskatonic University), conditional tags tied to gender (see page 117), and the user-
defined macros that are available for all mark-up text. (Figure 9.1, which shows the back
story of the investigator in Figure 8.9, shows an example of these tags in use.) Using these
tags, the designer can develop special ability rules and back stories without committing to
specific details in other parts of the design.

130
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Figure 9.1: A back story (right) that makes extensive use of symbolic tags. The markup text
(left) uses variable tags, conditional tags, and a simple macro to keep the description neutral
with respect to the investigator’s name, gender, and the name of the artifact that motivates
travelling to Arkham. Because this travel is central to the story, the designer chose not
to refer to the investigator’s home (the train station) using the symbolic <the home> tag.
Note: Investigator card design is from Arkham Horror. Arkham Horror is Copyright c
Fantasy Flight Games. Used with permission for academic purposes.
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Table 9.1: Degree of Support for the Design Principles in the Strange Eons Investigator
Editor

Design Principle Support
1. Make Partial Solutions First-class Entities low
2. Support Problem and Solution Matching moderate
3. Allow Subjectivity and Ambiguity none
4. Prefer General, Flexible Actions and Representations moderate
5. Engage Multiple Ways of Doing and Thinking moderate
6. Support Forming and Testing Hypotheses moderate
7. Encourage Parallel Exploration of Breadth and Depth none
8. Provide Rich History Mechanisms none
9. Assist the Construction and Use of Repertoires moderate
10. Create an Effective Environment none

Details like the investigator’s name are simple examples of cross-cutting concerns [132]:
elements of the design that must be weaved into other concerns (such as the wording of
rules). The provision of special markup tags allows the designer to work in terms of generic
partial solutions whose reification (the weaving) is partially automated. Unfinalized details
do not need to be updated manually at each point where they occur, a task both time
consuming and prone to error.

9.1.2 Support Problem and Solution Matching (Moderate)

The investigator designer has a characterization in mind and is trying to match this to a
combination of attributes that expresses that character while remaining fair and fun to play.
The consequence display helps the designer understand their location in the design space
relative to the limits of exemplar designs. By giving the designer a better sense of the play
balance of an alternative, he or she can focus on discovering different ways to express the
character. This is particularly helpful when the designer unknowingly strays into unexplored
territory, as adding a novel feature to one part of the design may create unintended effects
elsewhere. At the same time, the consequence display uses neutral wording to avoid scaring
the user away from new territory altogether. Game design is a flexible domain that allows a
lot of room for creative solutions. Although the display prompts the user with information
about potential issues, it does not insist upon resolving them, or how.
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9.1.3 Prefer General, Flexible Actions and Representations (Moderate)

End-user game content development is a large space, but it consists of many pocket design
spaces for particular games. A system that tried to support the entire space with a single
set of tools would amount to an illustration and page design package. Instead, Strange
Eons uses a layered approach: providing a core of features that can be used for many
games and the infrastructure needed to easily build more specific support on top. A specific
aspect of this support that also fits under this principle is tinting, which allows a single card
representation to be reinterpreted to fit a variety of design situations.

9.1.4 Engage Multiple Ways of Doing and Thinking (Moderate)

Support for end-user development, automation, and data import/export is extensive. Intra-
application support is minor: the editors are designed to avoid staged disclosure (in which a
task’s options are broken down into multiple pages, each of which is completed in sequence)
so that the different parts of a component can be edited in any order. While an investigator’s
possessions are normally edited using a shopping metaphor (where the desired items are
selected from lists and the cost of the items is tracked automatically), there is also an
option to enter this as free-form text.

9.1.5 Support Forming and Testing Hypotheses (Moderate)

Although consequence displays support the forming and testing of hypotheses, they do
not do so equally well. The consequences in XDS are always present and always provide
the same kinds of information. The consequences in Strange Eons are less predictable, as
the designer does not know in advance what information will be available. They are also
less reliable, because they are triggered by specific conditions and there may be gaps in
this database. In XDS the user can make apples-to-apples comparisons when comparing
designs, while in Strange Eons, comparisons are more subjective because entirely different
kinds of consequences may be shown for two designs.

9.1.6 Assist the Construction and Use of Repertoires (Moderate)

Strange Eons does not support the explicit construction of repertoires, but its project and
deck editing features do help to organize and collect game components created with the
program. The name and occupation databases also serve some of the functions of a repertoire
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for a few crucial aspects of an investigator design. The occupation in particular plays an
important role in helping the designer to shape an investigator’s attributes.

Overall, the design of Strange Eons reflects what one might develop by extending an
existing application to incorporate some of the principles without the cost of a radical
redesign. The application is still structured around editing a single, concrete alternative at
a time—for example, there is no explicit history mechanism, not even an undo command.
The small degree of support for partial solutions mitigates this slightly by making parts
of the design more generic. And while the application provides little support for managing
alternatives, the consequence display does help users to understand and compare them. The
rest of this chapter will evaluate the effectiveness of this support, particularly that provided
by the consequence display.

9.2 Two Studies

I conducted a pair of studies in parallel to asses the effects of using Strange Eons when
designing investigator cards for Arkham Horror. These consisted of an observational study
and a controlled experiment. There were two overall goals: to verify that the principles
(specifically, those tied to consequence displays) are effective in more than one problem
domain, and to gather more general information about the kinds of effects that consequence
displays might have on design. To this end, the following hypotheses were tested:

1. Designs will be ranked higher in overall quality when consequences are available.

2. Designs will be completed more quickly when the consequence display is available.

3. Participants will execute more design moves when the consequence display is available.

Both studies compared investigators created using Strange Eons to investigators created
without this support. The observational study used investigators uploaded to public Web
sites, while the controlled experiment recruited participants to create investigators specifi-
cally for the experiment. Due to the overlap in the kinds of data that were gathered, the
results from both studies will be presented together in a single section.
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9.2.1 Methods for Controlled Experiment

A total of 17 participants took part in the controlled experiment. Participants were recruited
by posting a brief description of the study to online forums that discussed Arkham Horror.
The post included a link to further information that obtained informed consent and an email
address used for further communication.

Before starting, participants were given a brief questionnaire intended to stratify partic-
ipants according to their experience with Arkham Horror, game design, and related applica-
tions (such as drawing software). However, stratification was not practical due to the small
number of participants and the range of responses, so participants were randomly assigned
to either the control group (no consequences) or the treatment group (consequences). Nine
participants were initially assigned to the no consequences group while eight were assigned
to the consequences group. One participant later withdrew, leaving eight participants in
each group.

Once a participant was assigned to a group, he or she was sent an email message contain-
ing a unique identifier and a link to download one of two versions of the software (depending
on the assigned group). After this information was sent, only the unique identifier was used
to refer to participants.

Participants downloaded the software at their leisure, but the time of each download
was recorded to determine time to completion. Participants were given up to two weeks to
complete an investigator design and return it. The modified copies of the application were
designed to expire after the end of the experiment to protect participant privacy, since their
save files were modified to store edit histories and other information.

Participants were asked to enter their unique identifier on first running the application.
(The identifier consisted of three randomly assigned characters plus a checksum character
for validation.) Once entered, this code was stored for future runs.

Investigators were returned by choosing a special menu command that uploaded the fin-
ished design to a secure server, tagged with the participant’s unique identifier. Participants
in the treatment group (“Consequences”) then completed a brief questionnaire of reflective
questions about their experience with the consequence display. Questionnaire results were
likewise uploaded to the server. Participation ended at this point.

To avoid bias, the portait images for all designs were deleted: portrait images vary
widely in quality since some designers create their own while others appropriate images
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produced by professional artists. The designs from both the controlled experiment and the
observational study (see below) were then combined for blind evaluation by four expert
reviewers. The reviewers were recruited from the online community of Arkham Horror
custom content developers by contacting prolific investigator designers with a reputation
for good designs. Due to the work involved, each investigator was judged by only two of
the four reviewers. Investigators were assigned to reviewers at random, but the pairings of
reviewers were restricted to distribute them as evenly as possible. (So, if reviewers 1 and
2 were paired together to evaluate the first design, they were not paired again until every
other possible pairing had also appeared exactly once.)

Each investigator was scored using a double-sided sheet that included 22 categories;
each category was scored using a 10-point rating scale (with 10 always indicating the best
score).1 Investigators were scored according to the general criteria of balance (power relative
to official investigators), characterization (how well the various attributes represent the
character suggested by the name, occupation, and back story), creativity (meaning novel
but playable ideas), replayability (as investigators are generally played more than once),
theme (how well the investigator fits the game’s setting), as well as overall impression. The
individual categories were chosen to ensure that the reviewer would consider each element
of the investigator sheet in turn before finally grading the complete design for the above
criteria. However, the purpose of this was to ensure that each investigator got similar
consideration: only the overall score for the complete design was used to compare groups.

Because of the possibility of biasing judgements to favour those factors covered by the
consequence displays, the reviewers were not trained for inter-rater reliability. However,
they were given practice investigators in order to become familiar with the scoring process
and to establish individual baselines.

While all of the investigators from both studies were evaluated by the expert reviewers,
some additional data was collected from the controlled experiment. The turnaround time for
each participant was measured. This was the duration from the time that they downloaded
the modified application to the time that the finished design was submitted. (If a participant
downloaded the application more than once, this was assumed to be due to a network error

1A 10-point scale was chosen in order to allow the reviewers to make fine distinctions if they felt the
need, and also because many popular kinds of judging contests use a similar scale and it was felt that this
familiarity might make rating easier. Ratings that use a 5-point or 7-point scale have been found to result
in slightly higher mean scores (relative to the maximum score) than a 10-point scale, but exhibit no other
statistically significant differences in their descriptive statistics [56].
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and the most recent time was used.) To allow for the vagaries of sleep, work, school, and
other interruptions, turnaround times were rounded to the nearest number of days. (The
range of return times was 5 days, with a median of 3 days.)

The modified application recorded the edit commands issued by each participant. I
subsequently analyzed these transcripts to infer the number of design moves that were
performed. The following procedure, refined by analyzing several test investigators created
by the author, was used to count moves:

A design move is inferred when the design changes from one state to another,
and the new state is constructive. To be constructive, the new state must result
in a design at least as complete as the previous state. For example, if the user
had a blank design and then entered a name, then this is constructive because
it moves the design closer to being a complete solution even though it is not
a complete solution yet. If the name was then deleted again, this would not
be constructive because it would make the design less complete than it was
previously.

When an attribute is defined verbally, moves are judged by comparing the
semantics of the content from the time that the text field gains focus (becomes
active) until it loses focus (another control is activated). If the semantics change,
then a new move may be counted. For special abilities, each separate rule is
counted as if it appeared in its own text field. Design rationale comments, along
with spelling and grammatical errors or corrections to same, are ignored.

Many numeric attributes are adjusted using step-wise controls. For example,
to increase an investigator’s Speed from 3 to 5, the skill must be increased twice.
When such an attribute is adjusted monotonically and no other control is used
between steps, this is counted as at most one move. It is assumed that the intent
was to set the attribute to the final value and that the intermediate values were
incidental.

Counting moves rather than edits yields a metric that better reflects the number of
explored alternatives. Like any attempt to infer intent from command sequences, it is
not exact. For example, it will count the initial moves that are required to set up the first
alternative as a sequence of alternatives (some of which may not be intended as such). Since
solutions are often partial during divergence and transformation, the designer may switch
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their goal to a second alternative before completing the first, and this may not be detectable
from the edit history. (Indeed, some alternatives may be considered and rejected without
the designer ever touching an input device.) There are also cases where this metric may miss
alternatives: for example, the designer may sometimes step through a numeric attribute in
order to reflect on each value in turn. These flaws notwithstanding, experience with the test
analyses indicates that it is a reasonable approximation. It is certainly more accurate than
a simple edit count, which grossly overestimates alternatives during text entry.

9.2.2 Methods for Observational Study

For the observational study, a total of 34 investigator designs were sampled to obtain two
groups of 12 (one group of investigators created with Strange Eons, and one group created
without it). The designs were collected from public Web sites and chosen from examples
posted during the same six month period shortly after Strange Eons was first available.
Thus, as nearly as reasonably determinable, all of the designs were developed at about the
same point in time, and the designs completed without Strange Eons were unlikely to have
been influenced by it. This rules out the effect of community experience as a source of
error. (It is expected that the designs produced by a community would gradually improve
in quality over time as the community members learn from each other.)

The designs were separated into two subsets depending on whether they had been created
with Strange Eons. It was possible to determine this with virtual certainty by comparing a
combination of factors: the presence of certain colour artifacts and the pixel dimensions of
the template image used for the investigator cards, the selection of fonts and colours, and
the precise positioning of the various textual elements on the card.

From each subset, 12 investigators were drawn at random, producing a control group
and a treatment group. The control group consisted of 12 investigators (from 16) that were
designed using traditional tools such as Adobe Photoshop and Microsoft Paint (“Traditional
Methods”). The treatment group consisted of 12 investigators (from 18) that were created
in the standard production version of Strange Eons available at the time, which included
a consequence display (“Strange Eons”). Each of the designs in these groups was assigned
a unique identifier using the same format as that used in the controlled experiment. The
designs were then recreated in a standard version of Strange Eons without a portrait image
so that they would be indistinguishable from other judged designs. Once the investigators
from the controlled experiment were returned, all of the designs were combined and randomly
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assigned to expert reviewers for judgement, as described above.
The remaining investigators were shuffled together, and six were selected at random.

These were supplied to the expert reviewers as practice designs.

9.3 Results and Discussion

The results of the experiments reconfirm that the use of consequence displays benefits users
of expert support systems.

Figure 9.2 is a graph of the overall scores that the reviewers assigned to the investigators
from both experiments. (Since each investigator was evaluated by two different reviewers,
there are two points for each investigator within a group.) It was intended to analyze this
data using a statistical model that would have accounted for both inter-rater reliability and
the pairing of reviewers, but it was later determined that this model was inappropriate.
Consequently, these results are presented without a detailed statistical analysis.2

However, the graph shows a clear upward trend in overall scores between both control
and treatment groups, supporting the hypothesis that the presence of the consequence
display helped the investigator designers to produce higher quality investigators. In the
observational study, the traditional methods group scores range from 3 to 8 (Mdn = 5.5)
while the Strange Eons group scores range from 5 to 10 (Mdn = 7). In the controlled
experiment, the no consequences group scores range from 4 to 9 (Mdn = 6) while the
consequences group scores range from 5 to 10 (Mdn = 8.5). Notably, both control groups
(traditional methods and Strange Eons without consequences display) ranked lower than
the worst-performing treatment group (Strange Eons).

The overall increase in scores between the two studies may be due to a number of
factors. First, the investigators in the observational study were all created at an earlier
point in time than those in the controlled experiment; the overall skill level of designers
may have risen during this time due to community experience. Second, participants in the
controlled experiment knew that their designs would be evaluated and so might have put
more effort into them. Third, the two experiments involved different versions of Strange

2A simple nonparametric test suggests the strength of this evidence, although statistical conclusions
cannot be drawn since the scores are not independent. The observational study scores have Mann-Whitney
U = 143.5 (p = .002, two-tailed), while the controlled experiment scores have U = 48 (p = .002, two-tailed).
These low p-values suggest that a redesigned experiment would likely find a significant difference in both
studies.
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Table 9.2: Time Taken to Submit a Design After Downloading the Application

Group Turnaround time (days)
No Consequences 2 3 4 4 4 5 6 6
Consequences 1 1 2 2 2 3 3 3

Table 9.3: Number of Inferred Design Moves Executed to Complete a Design

Group Inferred design moves
No Consequences 19 22 25 31 34 37 37 52
Consequences 25 34 34 37 40 43 46 49

Eons. Each used the version that was current at the time that the investigators from the
experiment were designed, so the version used in the controlled experiment was much newer.
The investigator editor has seen steady improvement to both the number of consequences it
provides and the size of the design space that it covers. Finally, the difference between the
two control groups may be explained by the fact that even though the version of Strange
Eons used in the controlled experiment lacked a consequence display, it still provided some
other support features (such as variable and conditional tags) not available to the traditional
methods group.

The turnaround times of participants in the consequences group (Mdn = 2 days; M =
2.13 days) were significantly shorter than those of participants in the no consequences group
(Mdn = 4 days; M = 4.25 days; Mann-Whitney U = 6, p = .005). Table 9.2 lists the
turnaround times for all participants. Traditionally, the time to complete a task has been
one of the most important variables in HCI evaluations. It is far less important in expert
work, where the quality of a solution is generally much more important than how long it
takes to produce. However, when an expert support system helps users craft solutions twice
as fast, that is a significant development—especially when the resulting solutions are as
good or better than those produced without that support.

The test for the number of inferred design moves was not statistically significant: t(13) =
−1.38, p = .19 (two-tailed). Table 9.3 lists the number of moves for all participants. The no
consequences group performed a mean of 32.1 moves (SD = 10.5), while the consequences
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group performed a mean of 38.5 moves (SD = 7.69). (An alpha level of .05 was used for all
statistical tests.)

These results suggest that, while consequence displays help the user to understand the
effects of different design decisions, they do not necessarily lead users to directly try more
alternatives. The user may decide that the design is off, but may not be able to think of
alternatives. Better support for Principle 7 (Encourage Parallel Exploration of Breadth and
Depth), such as halo menus, could help by suggesting possible courses of action. Alterna-
tively, the user may be limited by the need to manage alternatives. In this case, better
history support (Principle 8—Provide Rich History Mechanisms) could free up cognitive
resources by externalizing and organizing previously considered alternatives.

At least 19 moves are needed to create a complete investigator. The low minimum
and wide range in the no consequences group (range of 33 in the no consequences group,
versus 24 in the consequences group) suggests that while some participants in this group did
explore alternatives, some implemented the first alternative that they considered (typical of
novices); this does not appear to have happened in the consequences group.

The lack of significant difference in number of moves is notable given the large discrep-
ancy in return times. The participants in the no consequences group may have been less
confident in their designs due to the lack of feedback, and thus more reluctant to submit
them. These participants may also have spent more time reflecting (the long durations par-
ticularly suggest reflection-on-action): while they performed similar numbers of moves as
participants in the consequences group, it took longer to navigate these alternatives because
they had no help evaluating their consequences.

While performing some degree of exploration leads to better designs overall, not all
exploration is productive. Individuals with the soft cognitive style may meander about
the design space before settling in to solve the main problem [221]. And while experienced
workers may tend to perform more exploration, they do not necessarily choose more efficient
sequences of commands compared to less experienced users [14]. When design moves must
be inferred from command sequences, this may exaggerate the number of apparent moves
that they perform.

Participants in the consequences group were asked to reflect on their experience with the
consequence displays via a brief questionnaire after submitting their designs (see Table 9.3).
One goal of this questionnaire was to verify that the consequence display was not used
like a tutoring system and unquestioningly obeyed. Responses to the first two questions
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Table 9.4: Responses to the Consequences Group Follow-up Questions

Questiona Yes No Not sure
Did you change your investigator as a result of [the conse-
quence displays]?

8 0 0

Did you consider a change to your investigator as a result of
[the consequence displays] that you ultimately decided not to
make?

7 1 0

Did [the consequence displays] help you to design a better
investigator overall?

5 0 3

Did [the consequence displays] help you to design a more bal-
anced investigator (one that is fair compared with other in-
vestigators, neither too powerful nor too weak)?

5 0 3

Did [the consequence displays] help you to design an inves-
tigator that is more creative (one with new ideas that set it
apart from other investigators)?

4 2 2

Did [the consequence displays] help you design an investigator
with more replayability (one that can be played in several
games without becoming boring)?

5 0 3

aEmphasis added.
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clearly indicate that this did not happen, with all eight reporting that they changed their
investigator at least once due to the consequences, and all but one reporting that on at least
one occasion they chose not to act on a consequence.

The fact that all eight participants in the group reported using the consequence display
was heartening. In XDS, the consequence display is difficult to avoid because it forms the
main representation used to present designs. In Strange Eons, it is relegated to a small
window in the corner of the editor. It is easily ignored if desired, and it can be completely
hidden by dragging a splitter bar.

The remaining questions ask if the participant feels that the consequence display im-
proved their design in various ways (overall quality, balance, creativity, and replayability).
Of all 32 responses, participants answered negatively only 2 times, although about a third
of responses were “Not sure”. These participants may not have felt qualified to judge their
own designs; alternatively, they may have been unable to later recall and compare the
alternatives that they had considered.

The questionnaire features a high percentage of positive responses. This may indicate
response bias and/or acquiescence bias in the results.

Overall, it is clear from the results of the studies that using Strange Eons with its
consequence display feature benefits investigator designers. They can create designs as
good as or better than designers without this aid, in significantly less time, and without
loss of autonomy. The number of inferred moves they perform, while it does not show a
statistically significant increase, at least suggests that coverage of the design space does not
decrease.

9.4 Other Evidence

Note: I used “Other” rather than “Anecdotal” in the section heading due to the pejorative
connotation of the latter term. Borrowing again from legal practice, the evidence which
follows is essentially eye witness and expert testimony. Excluding the possibility of false
testimony, which seems unlikely in the case of unsolicited and mostly anonymous feedback,
such testimony is not fundamentally different from an existence proof.

Strange Eons has been available since November of 2006. Since then I have received many
hundreds of positive messages describing how the application has helped the correspondent
with various projects, ranging from fan-created expansions to commercial products. Many of
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these messages have specifically praised the application’s expert support features, including
the consequence displays.

One of these messages particularly stands out, as it was sent by Kevin Wilson, one of
the co-designers of Arkham Horror. He had started using Strange Eons to design content for
Arkham Horror expansion products, and asked about the possibility of creating a similar
support tool for a different game (his then-current assignment). I asked him to comment
on his use of the tool, and he replied:

Strange Eons has been great for me. Shortly after it came out, I started
prototyping the new investigators and ancient ones [for subsequently published
expansions to the base game] in it. . . . As far as the [consequences display], I’ve
found it to be pretty accurate. Obviously it can’t judge how cool a special ability
is going to be, but it’s really on the ball when it comes to more definable things
such as skill values and starting equipment. After awhile, I even used some of
your experimental costs. . . . Overall, I found Strange Eons’ assessments to be
right on the money.

(Kevin Wilson, personal communication, July 24, 2009)

I already suspected that the designers were at least familiar with the application. Shortly
after Strange Eons was first released, the first expansion to include new investigators was
published. To verify that the application’s model of the design space remained accurate, I
used it to recreate the new investigators. This revealed some false assumptions in the model,
as well as some relatively small transformations of the design space that the new designs
introduced. The model in Strange Eons was updated accordingly, and afterwards I also
began adding other small transformations to add new options for designers. (These are the
“experimental costs” mentioned above.) For example, in the base game, an investigator’s
Sanity and Stamina scores always sum to 10. I added an option to disrupt this balance,
but in order to compensate the designer pays for the extra points out of the $25 budget
normally spent on starting possessions.

When the next expansion was published and I checked these investigators against the
model, I was surprised to find that it accounted for the new investigators perfectly, including
some that used the same kinds of transformations that I had added. The one exception was
an investigator that incorporated a radical transformation that required extensive modifica-
tion to the card’s graphic design. If the designers included this design in response to effective
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competition from the amateur design community, then this was certainly an unanticipated
benefit of Strange Eons and its implementation of the design principles!

9.5 Considering Individual Effects

As a starting point, it is fine to say: “Here are some design principles for building expert
support systems. If you use them, good things will happen.” However, support system
designers will soon come back with questions like “which principle is the most important?”,
or “I only care about getting the user to consider more alternatives; which principles do
I need to support?” While it is possible to make reasonable guesses as to what effects a
principle should have, it is important to verify such assumptions before applying them to
real projects. Besides, many principles could have unexpected side effects—good or bad.
Support system designers need to be aware of these in order to find good solutions. Finding
answers to such questions would require years of work, but because Strange Eons focuses
on a smaller subset of the design principles than XDS, it does provide a place to start.

Based on the inconclusive results regarding design moves in the controlled experiment,
consequence displays (and hence Principle 6, and to a lesser extent Principles 2 and 3), may
be insufficient to get some users to explore a variety of alternatives. However, it appears
that these principles can help users find good solutions more quickly.

Since the results of the XDS study did find that users explored more alternatives, prin-
ciples supported more strongly in XDS than Strange Eons may be responsible for this dif-
ference. Likely candidates are Principle 7 (Encourage Parallel Exploration of Breadth and
Depth) and Principle 8 (Provide Rich History Mechanisms): both are strongly supported
by XDS, unsupported by Strange Eons, and relate directly to alternatives.

This assertion can be probed using Mohseni’s Treesta [125,186], an expert support system
that supports the analysis of designed experiments. (Where XDS supports experimental
design up to the point of gathering data, Treesta can be used to support the process of
analyzing data once it has been gathered.) While XDS and Strange Eons both implement
support for many principles, Treesta implements only moderate support for Principles 7 and
8. (This pattern is roughly the complement of the pattern of support provided by Strange
Eons; see Table 9.1 on page 132.)

Treesta acts as a front-end to the MATLAB statistical computing language. It records
MATLAB commands and their results in a history after forwarding them on to MATLAB
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for evaluation. The history is automatically organized into a tree of workspaces. A new
workspace is created each time the user performs an analysis, and includes all of the com-
mands and data to that point.

Unlike the simple linear command history provided by MATLAB, the representation
of each analysis as a separate workspace makes searching the command space visible, sup-
porting Principle 7 (Encourage Parallel Exploration of Breadth and Depth). It also has the
ability to display a summary view of all workspaces, allowing the user to reflect on the history
of analyses performed so far, supporting Principle 8 (Provide Rich History Mechanisms).

A qualitative study [186] with a single user confirmed the usefulness of the support
provided by Treesta. The study did not specifically consider whether the tool increased
the number of alternatives explored, but the participant’s comments strongly suggest that
it had this effect: “You think about your next step in a more structured way; you set
some goal about what you want to achieve in this workspace, and you work around until
the goal is achieved.” [186, p. 60]. This supports the hypothesis that the principles have
complementary, and probably synergistic, effects: that, for example, helping the user think
about the effects of their actions and helping the user get an overview of what those actions
have been does not produce the same benefits. While support systems that supplement
traditional application designs by supporting a few of the principles will benefit, maximum
benefit will accrue to applications that, like XDS, make broad support of the principles a
design priority.

This analysis suggests some of the effects that individual principles may contribute to
expert support, but it is neither complete nor conclusive. Much more work is needed to
achieve the depth of understanding that would allow support system designers to make
informed trade-offs.



Chapter 10

Convergence: Conclusion and
Future Work

10.1 Closing Arguments

Chapters 5–9 presented the available evidence in support of the design principles. Based on
the strength of this evidence, an initial verdict of the principles’ feasibility and effectiveness
can be made. The principles will be judged by their ability to satisfy the following hypotheses
(first presented in Chapter 4):

1. There is at least one expert support system designed in accordance with the principles
that has a positive impact on expert work.

2. In general, expert support systems designed in accordance with the principles will
have positive impacts on expert work.

3. The design principles meet at least some of the additional criteria for “good” design
principles. (These are repeated below.)

XDS is an obvious choice to satisfy hypothesis (1), since Strange Eons and Treesta
are primarily discussed as reactions to it. However, a benefit of presenting three broadly
different prototypes is that any one of these systems can potentially satisfy hypothesis (1),
even if flaws are identified in the evidence presented for the other two. Given that all three
prototypes provide evidence of positive outcomes, hypothesis (1) can be accepted as the
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best explanation of the evidence (the competing explanation being that the hypothesis is
false). Consequently, the principles meet the minimum criterion necessary to be worthy of
further investigation [92], regardless of any other outcomes.

Hypothesis (2) makes a much stronger claim. To ascribe a causal relationship between
the principles and the evaluation of a single prototype invokes an especially weak abductive
argument; further inferring that these effects generalize to the broader class of expert support
systems would be dubious indeed. A better way to bolster support for hypothesis (2) is
to perform repeated testing with multiple prototypes, but for this to be convincing the
prototypes must be chosen for consilience—especially if the number of prototypes is small.
The three systems discussed here yield highly consilient evidence: they tackle different kinds
of expert work; their problem spaces have different degrees of formalizability; they implement
different subsets of the principles; they represent different degrees of intervention compared
to contemporary application designs (from a subtle extension to typical application design
to a radical paradigm shift); and they take different approaches to modelling the problem
space, from complete (XDS), to incomplete (Treesta), to a multilayered approach that can
be extended by the end-user to support specific subspaces and transformational creativity
(Strange Eons). Even the scale of the support systems ranges from an add-on for an existing
system (Treesta, about 4 000 lines [186, p. 57]), through a small standalone application
(XDS, about 24 000 lines), to a large-scale suite of tools that itself provides extensive
support for add-ons (Strange Eons, about 250 000 lines when support for Arkham Horror
is included). Given this, and since all three systems are supported by evidence of positive
outcomes, hypothesis (2) can also be accepted as the best explanation of the evidence. An
alternative explanation competing with hypothesis (2) is that the limitations on the studies
(including those listed in Chapters 6 and 9) together account for the results. But each of
these limitations is a separate hypothesis about a single result; the competing explanation
is thus less simple (see p. 48) than the explanation given by hypothesis (2).

Satisfying hypothesis (3) is not strictly necessary. Satisfying the first two hypotheses
recommends them as guides to design; satisfying hypothesis (3) is an indicator of their
quality as principles. The additional criteria referred to by hypothesis (3) are:

1. Good design principles should inspire further research and innovation.

2. Good design design principles should help to identify open problems and gaps in
current understanding.
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3. Good design principles should prove to be a solid framework for understanding the
domain in which they apply.

If the principles are hard to apply and do not help to expand the space of design possi-
bilities that the support system designer can imagine, they probably need to be reworked. It
suggests that the principles are too restrictive, placing so many constraints on designs that
the resulting design space is too sparse to support innovation: the principles would amount
to design constraints that limit creativity rather than enhancing it. Principles that do not
satisfy this hypothesis are unlikely to have broad, long-term impact, because the narrowing
effect of their constraints means that their potential for guidance will soon be exhausted.

Evidence for all three of the qualities that make up hypothesis (3) have been presented
in this dissertation. In terms of innovation, the following major interaction techniques have
been introduced:

Explicit Traversal of Problem Spaces Explicit problem spaces allow immediate access
to history and support its replay and non-destructive editing. They support rapid com-
parison of alternatives, and they provide an overview of the coverage of the problem
space. Although the explicit space presentation in XDS makes heavy use of graphical
summaries, this is not the only viable approach. An explicit document space might
summarize the differences between states. And zooming user interfaces can help move
between structural views and full details quickly and fluently.

Notably, the explicit problem space representation in XDS is built atop a cooperative
design space explorer. Previous cooperative design space explorers have been criticized
for modelling only toy problems [4]. But XDS implements a complete model for
a domain of tremendous practical importance. It therefore establishes design space
exploration as a valid approach for at least some domains. Also notable is that XDS
models an abstract mathematical space; previous cooperative design space explorers
have focused on geometric design spaces (owing to their roots in shape grammars).

Consequence Displays Consequence displays can help the user understand their location
in a problem space, pose and test hypotheses about courses of action (supporting
reflective practice), and make explicit important causal effects that would otherwise
be hidden or need to be estimated independently. Although consequence displays can
provide the most detail when the problem space can be completely represented by the
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application and the consequences are quantifiable, most problems have at least some
significant consequences that can be represented effectively.

Halo Menus Compared to other techniques, halo menus provide a balance of discover-
ability and accessibility. They increase the user’s awareness of available options in an
effort to coax the user into trying more—and different kinds—of alternatives. While
this is particularly useful when novices are performing expert work, any task that is
enhanced by thorough experimentation could benefit from this technique. Accord-
ingly, claims analysis has been used to elevate this technique into a more general
form suitable for application in other domains, both within and without the support
of expert work. That the principles should inspire a novel command selection tech-
nique is particularly notable, because this area of HCI has already been heavily mined
(e.g., [2, 19,35,72,96,114,140,142,260]).

In addition to inspiring innovation in HCI, the design principles also fulfil the second
criterion by identifying open problems. Many of these have already been discussed, partic-
ularly in Chapters 2 and 3, but the list of problems is further discussed and expanded in
Section 10.3.

The third criterion for good design principles has the weakest support (although both the
first and second criterion could be considered special cases of the third.) There are sporadic
examples in this dissertation that use the principles to interpret, classify, and apply various
results; perhaps the clearest example is their use when evaluating Treesta at the end of
Chapter 9.

A difficulty when trying to interpret information in the framework of the principles is
that their definitions are complex and often subtle. Even I found the need to parse some
definitions carefully when using the principles this way. Future work that further clarifies the
relative roles of the principles may allow the definitions to be further limned and simplified.

While identifying this limitation early on is valuable in directing future work, in the
end it is too early to give a complete assessment of criterion (3). It can only be accurately
gauged as new results appear in the domain that could not have been anticipated when the
principles were written [255].

Although support for the third criterion for quality may not be strong, there is ample
evidence for the other two. Hypothesis (3) is well represented—though with room for
improvement. By meeting the test of all three hypotheses, the design principles have been
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shown to not only be worthy of further study, but also ready for careful application to real
production systems. (Indeed, Strange Eons is such a system.)

The form of this argument has also been a useful test case for the feasibility of accept-
ing a broader range of evidence in the HCI community, to be judged by its explanatory
coherence. Explanatory coherence theory encompasses the standards for accepting explana-
tions in science, law, and other domains—while HCI has traditionally favoured quantitative
methods adopted from psychology. By embracing this larger theory, it is possible to adapt
concepts from these other domains as well as methods from HCI that have been proposed
but are not yet widely accepted.

I have found two concepts adopted from legal proceedings to be particularly helpful in
preparing the evidence in this dissertation: the use of appropriate standards of proof and
the structuring of arguments as factual matrices of disparate supporting evidence.

The concept of different standards of proof for different kinds of research is implicitly
understood in HCI, at least in some circles, but putting a name to the concept promotes
a more thoughtful consideration: For example, while the evidence for hypothesis (2) is
stronger than that of an existence proof, should this difference be considered substantial?
The standards of proof used in law are a useful starting point for such an evaluation. These
standards of proof include, in order of increasing strength [153, 183]: the precautionary
principle; preponderance of evidence; clear and convincing evidence; beyond a reasonable
doubt; irrefutable.1

The precautionary principle, which allows legislation to be enacted even in the face of
disputed scientific evidence, is broadly comparable in strength to the existence proof. It is
also comparable to the standard for probable cause [183], which is the basis upon which
police are granted warrants to search for additional evidence—roughly analogous to the
application of existence proofs in HCI.

The next highest standard, preponderance of evidence, requires sufficient evidence to
show that something is more likely true than not. Regarding the principles, considering the
basis in prior research, the variety of the prototypes,2 and the lack of unexplained negative

1In legal parlance, irrefutable evidence refers to expert testimony that can only be refuted by another
expert witness [183].

2In systems that place the burden of proof on the accuser, similar fact evidence (evidence of similar
misconduct in the past) is considered so convincing that it is usually inadmissible unless its probative value
can be shown to exceed its potential prejudicial effects. When similar fact evidence is admitted, it alone can
establish causality at the “beyond a reasonable doubt” standard applied in criminal proceedings [183].
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results [224], it is plausible to the author that the evidence presented here does meet this
standard. As in law, however, this question can only be decided fairly by unbiased observers.

In addition to the use of standards of proof, viewing arguments as factual matrices has
been particularly helpful as an organizing structure. The factual matrix developed over
the past several chapters presents evidence from design rationale, claims analysis, expert
opinion, and reflection in conjunction with traditional empirical research. Of particular note,
halo menus were developed, evaluated, and generalized from XDS almost entirely through
argumentation. Even when evaluating their selection efficiency I chose an argumentative
method based on a simple GOMS analysis when a straightforward quantitative evaluation
technique was available. My reasoning was that the reliability of GOMS has already been
established (see p. 49, though that refers to a more accurate variant), and since selection
efficiency is not the primary goal of halo menus, the cost of obtaining a precise quantitative
result is not justified by the needs of this argument. This decision embraces the assertion
that researchers can and should choose methods based upon which questions are important
and not upon which questions are easily answered or readily published.

Overall, the success of this approach to making HCI arguments should serve as an
encouragement to others. Researchers should be open to both generating and accepting
untraditional arguments—especially when this allows the researcher to ask more valuable
research questions—as long as those arguments meet the standards of explanatory coherence.

10.2 Limitations

Expert work is an intentionally broad term that covers many domains. It is possible that
some of these domains, although they employ similar processes and face similar problems
to other expert domains, may not allow effective computer support. An important factor
in this determination is whether the value added by the support tool outweighs the cost of
using it when compared to alternative methods.

One aspect of this cost is captured by a method’s directness and commitment [193]. The
directness of a method is a function of the immediacy and degree of translation required to
use it. Sketching is a very direct activity: the sketcher simply picks up a pencil and draws
whatever comes to mind. Working through a computer is less direct than working with a
passive medium, since the user’s gestures must be digitized and interpreted before a result
can be generated. Computer tools often require the user to interrupt their work to order
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to translate their intent into indirect commands. If one wishes to place one sketch next
to another, one simply moves the hand and continues drawing. To do this in a computer
drawing application might require inserting a new sketch area, selecting it and the original
sketch, choosing a command to make the sketch areas the same size, choosing alignment
commands to place them next to each other, choosing an edit command on the new sketch
area, and then finally starting the new sketch.3

Commitment refers to the fixedness of meaning in a representation. The commitment
required by a given method is a function of its ability to accept and represent imprecision
and ambiguity: one of the major benefits of sketches is their low commitment, which allows
them to be reinterpreted as a means of generating new ideas. Typical computer applications,
however, have an inherent degree of commitment that stems from their need to represent
objects in a form that can be manipulated algorithmically. To draw a line algorithmically,
the line must have certain attributes—coordinates, thickness, colour, dash pattern, and so
on—each of which has a precise meaning and interpretation. Forcing the user to choose
these attributes ahead of time is a reversal of the dialectic process in sketching, in which the
expert first creates a representation and then perceives and interprets its attributes [193].

Most applications have low directness and high commitment compared to sketching,
but they also offer benefits in trade. For example, if the expert later wants to rearrange
sketches, or to delete some of them in order to focus on others, this can be done quickly with
software, while the pencil-and-paper sketcher might need to redraw the sketches on a fresh
page. This flexibility is a result of the directness and commitment balance in the application:
treating each sketch as a separate object requires more commitment than treating them as
marks on a page, while the availability of abstract commands (edit, delete, move, and so
on) are possible due to the computer’s indirectness. For a support tool to be attractive, the
benefits of this added flexibility must be greater than the costs of its decreased directness
and increased commitment.

While certain domains may present barriers to effective computer support, acceptance
by individual users may also be an issue. This may indicate a failure to apply Principle 5
(Engage Multiple Ways of Doing and Thinking), but there are limits to such application.
Interaction designers are admonished to study how people currently perform a task as a basis

3Such patterns of interaction are another example of how current computer tools emphasize convergence.
The interface designer implicitly expects that the user will not just want to make two nearby sketches, but
that they will need precise control over size, position, and the atomicity of the entities.
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for designing new systems, but this may be misleading when the expert uses a combination
of ad hoc methods and support tools that overemphasize convergence.

The individuals most likely to resist change are those who are the most experienced and
have the most invested in current methods. These individuals already have personal tech-
niques for interpreting and navigating the problem space. Because ill-structured problem
solving is a bringing together of a problem and a solution, their methodology determines
not just how they approach solving a problem, but also how they define and understand it.
For these experienced individuals, learning to use a support system may be more difficult
than it would be for a novice because they will hang on to the safety of familiar methods
and attempt to translate them into the features offered by the support system. I observed
this phenomenon firsthand while discussing XDS with a statistical consultant. When the
aims of XDS were described in general terms, he was highly enthusiastic about the system,
but when a prototype system was demonstrated for him, he had difficulty following the
presentation. It became apparent that this was in part because he was trying to guess the
purpose and meaning of various parts of the display based on his own experience.

A similar phenomenon was observed during the study conducted with XDS. I observed
that the most experienced participant had the hardest time using the application, while
the second-most experienced participant had the easiest. This suggests that users with
an intermediate degree of expertise will be most receptive to expert support: they will
have enough experience to understand the system’s features, but their methods are not so
rigidly ingrained that it inhibits learning a different approach. (Both of these participants
were professors in university computer science departments, so their general familiarity with
computer interfaces is unlikely to account for the difference in their learning performance.)

Whether it is a domain that resists support or a particular user, the main factor in
determining its eventual acceptance is the same. If an expert uses the support tool long
enough to get past their preconceptions of it, they will accept it if they find a significant
advantage over their usual methods. The user base of Strange Eons illustrates this effect.
The main alternative to Strange Eons is to use a graphics application. While most Strange
Eons users develop custom content with it either exclusively or in combination with other
tools, there are a small number of users who only use it to view content created by others and
who use a separate graphics application to develop custom content of their own. This choice
is easily explained in terms of a cost-benefit analysis. Like Strange Eons, once a template
has been set up for a particular type of component, it is reasonably efficient to edit that
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template to create a specific design. It is not as easy or efficient as using a dedicated tool,
but it is comparable if one has already learned the graphics application. The net result is
that, for these experienced users, Strange Eons has only a small advantage in editing time for
most components. (It has a large advantage in learnability, which is why this effect is only
seen with experienced users of graphics applications.) The critical difference is in how these
applications support transformational creativity. In the case of the graphics application,
this requires a skill that the user already has (using the graphics application), while for
Strange Eons it requires a skill that the user may not have (light programming). Thus,
these users are willing to endure a small penalty in the common case for the reassurance
that they can use familiar methods when a problem calls for transformational creativity.

It may appear that part of this cost-benefit analysis is missing, because no mention has
been made of the expert support features in Strange Eons, and particularly of consequence
displays. In fact, this distinction is critical, because the users that choose to keep using
a graphics application work almost exclusively with games for which the plug-in author
has declined to provide additional forms of expert support. Should these games add such
support in the future, these users might migrate to Strange Eons.

Another limitation is that the design principles are probably incomplete: research in this
area is ongoing and there are many gaps to fill. In this respect, it is advantageous that the
principles were derived from many sources. The success of a set of principles derived from a
single theory or model (such as Norman’s interaction design principles [201]) is tied to the
success of that theory. A set of principles derived from many sources, while possibly harder
to understand and apply, can adapt to change more readily—and as missing information is
incorporated, it can still converge to a stable form over time.

Two aspects of the principles that will become clearer in time is the degree of indepen-
dence and the relative importance of the principles in comparison to each other. At this
point there is insufficient evidence to make a compelling argument about either aspect, but
there is enough for some initial speculation.

The relative independence of principles is important because the more interdependent
the principles are, the more rapid the rate of diminishing returns as more and more are
applied. Understanding this relationship helps designers of support systems to balance
the benefit of applying the principles in conjunction with competing concerns. Although
interdependence can indicate unnecessary duplication or overlap, it can also simply indicate
that a phenomenon is complex or can only be manipulated indirectly. In such cases it is
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useful to be able to manipulate it in multiple ways while designing, since different approaches
will have different consequences for the design.

With only a handful of examples as a basis, there are only a few common points for
comparison, though a few early results are presented at the end of Chapter 9. The evidence
there suggests that good feedback and support for hypothesis testing are much more effective
when used in conjunction with a mechanism to encourage exploration of a depth and breadth
of solutions, as halo menus do.

Relative importance is difficult to assess because the different principles support different
needs of expert work, and therefore produce different outcomes. Choosing one of these
needs as more important than others is subjective, and at any rate probably depends on the
individual strengths of particular users. Instead of deciding on a single metric for comparing
the contribution of the principles, it will be more useful to support system designers to have
lists of their individual strengths and weaknesses, which will allow them to tailor tools to
the needs of particular domains and groups.

The design principles are also incomplete in another sense: they focus on extending
support to the processes of expert work, but there are other factors to consider. (This is
unavoidable: interactive system design is ill-structured problem solving; the context of its
problems can be extended arbitrarily.) One such consideration is the social dimension of
expert work, which has two relevant aspects.

The first social aspect of expert work is that many experts may contribute to a solution.
Computer-supported cooperative work [94] is a large and well-established area within HCI
that focuses on this aspect of interaction design [13]. Interested support system designers
should familiarize themselves with this research, especially when supporting a domain where
collaboration is common. While collaboration implies active contribution, an expert’s social
interactions contribute to expert performance as well. Coughlan and Johnson [48] point out
that Schön’s repertoires represent just one of the resources that influence idea generation.
All of our experiences, including social ones, form the stock of memories that are associated
to produce new ideas. Accordingly, they emphasize that the long-term development of
creative potential depends not only on collecting ideas and artifacts, but also on building
social relationships.

The second social aspect of expert work is that, while it may be performed by individuals
or small groups, its value is ultimately judged by a larger society [52,275]—for example, via
peer review. The design principles in this dissertation may help expert workers to discover
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innovative solutions to important problems, but if they can not be presented in a convincing
manner to societal gatekeepers, they will have little impact. Developing a solution and
communicating it to others are generally distinct aspects of expert work that might best be
dealt with using two or more separate support systems. Nonetheless, designers of support
systems should consider the expert’s need to communicate findings to a larger audience.
(Although not part of the implementation of the principles, both XDS and Strange Eons
do support informal design rationale annotations in recognition of the importance of critical
review to improving the quality of expert work.)

10.3 Open Problems

Each of the principles represents a broadly defined open problem: namely, finding the most
effective techniques for the principle’s implementation. In addition, the process of developing
the principles and their subsequent evaluation posed several more specific problems:

The principles focus primarily on promoting designs that are expected to enhance expert
work. An alternative is to discourage designs that might inhibit it, or to build systems
that can correct such conditions if they are unavoidable. For example, a tool that supports
writing might either avoid triggering, or else treat, the phenomenon known as writer’s block.
(Flaherty proposes some technological interventions based on a hypothesized neurological
origin for the condition [73].)

As discussed in Section 2.5.3, diagrams and sketches have been shown to have a number
of effects on problem solving. Less well understood is how these effects interact, and how
vital the act of sketching is compared to the results. The evaluation of XDS points out the
similarity between the explicit design space representation populated with design summaries
and a sketch pad (see p. 92). The discussion there speculates about the value of creating or
arranging sketch-like entities automatically, and in particular whether automatic arrange-
ments have the same juxtapositional benefits as traditional sketching. Although automated
arrangement did not appear to hinder problem solving, that is far from showing that it helps.
Future work should follow up on these suppositions, and also compare the similarity-based
organization used in XDS to alternatives like the history trees used in Treesta.

Section 2.6 introduced de Bono’s techniques for creativity enhancement. While popular,
these techniques have not been validated in scientific studies [243, p. 3]. Investigating
de Bono’s claims would place both creativity and expert support on a firmer foundation.
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During the discussion of Principle 3 (see p. 37), it was pointed out that the inherent
precision of computers could be at odds with the need for ambiguity in partial solutions.
It was further suggested that clever presentation forms, imprecise input methods, or fuzzy
systems might be examples of ways to combat this precision. Interested researchers could
pick up this thread by comparing the feasibility of these and other techniques.

The problem of supporting transformational creativity was discussed in multiple places.
When it was introduced in Section 2.6, it was suggested that it might best be avoided in
favour of more specific support. That statement notwithstanding, solutions that entail acts
of transformational creativity also have the greatest potential to revolutionize a problem
domain. Moreover, advances in modelling transformational creativity would be important
not just for expert support, but for artificial intelligence and psychology as well. Transfor-
mational creativity remains a vital topic for theoretical research, regardless of how well it
can be integrated into expert support systems.

The discussion of Principle 4 (see p. 38) suggested that one approach to supporting
transformational creativity would be to build a general, flexible core for others to build
upon. The latter is in effect what Strange Eons does; in this case, traditional end-user
development using a scripting language provides the needed flexibility. However, it is far
from clear that this is the best method, or that a well-chosen subset of more accessible
features might not provide a comparable degree of flexibility while including more users.
For example, many different component types in Strange Eons could be built using a simple
system of drag-and-drop control layout to create an editor (paired with matching operations
to draw the card face), and simple pattern-matching rules to detect relevant consequences.

Principle 5 (see p. 39) also touches on the value of end-user development, although in
the interest of making the features of a support system available to experts who need to
work with multiple tools or who want to implement customized support for their preferred
work processes. The dream of opening up vast possibilities by making programming more
accessible to the masses has been around since the development of Smalltalk for the Star
Information System and earlier [130]. It remains an important area, not just for its potential
to make transformational creativity more feasible, but for also for its ability to give expert
workers the freedom to adapt and replace the contents of their problem-solving tool kit.
As alluded to on page 39, there are two directions that this work could take: pursuing
alternative ways to create and represent programs, and defining programming structures
and idioms that allow users to express relevant programs simply and succinctly.
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The discussion of Principle 7 (see p. 41) noted that little is known about the ideal
amount of exploration when comparing alternative solutions. Too little exploration limits
discovery to weak solutions, and too much exploration bogs the expert down manging the set
of solutions—but how much is too much? Having data on the ideal amount of exploration
for different domains and problem types (and even whether this varies) would assist expert
support system researchers in answering such questions as: Can the presence of computer
support extend the number of solutions that can be explored without negative consequences?
If so, does this lead to better solutions overall? Can computer support reduce the amount
of exploration needed to reach a given quality of solution? Given enough data of this kind,
the effect on the required and possible amounts of exploration could become a standard of
comparison used to measure new support system designs.

Better support for Principle 9 (see p. 42) could be achieved with a deeper understanding
of the role of repertoires in expert work. In particular, how important is it that the expert
have seen the artifact previously? Does exposure to the artifact cue the recall of internalized
knowledge that it is associated with? Does the artifact directly prompt the identification of
consequences and relationships in the current situation as in the dialectic process? If both,
which is more important? The answers to these questions will help determine how to best
model repertoires in software.

Of all of the design principles, the prototypes evaluated so far have provided the least
support for Principle 10 (Create an Effective Environment, p. 42). This dissertation is
primarily interested in software interventions, and software has a limited ability to control
the external environment in which it runs. However, software can exert control over the
software environment in which it runs, and since the user’s attention is presumably focused
in large part on the display, this limited control might nonetheless be leveraged to great
effect. One source of ideas is the large body of experimental data from cognitive psychology
that investigates how various contextual factors affect cognition. A thorough review of these
results could provide a wealth of inspiration for support system designers. One caveat of such
a review is that psychological studies are concerned primarily with statistical significance, as
this indicates results that may be important to understanding how the mind works. Support
system designers must also be concerned with effect magnitudes, as this indicates whether
a given manipulation will have an appreciable effect in practice.

In recent years, HCI practitioners have shown an increased interest in the emotional
component of interaction design [203]. While this discussion is sometimes driven by a desire
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to increase sales, in expert work and other creative tasks there is a deeper reason to consider
emotional affect. While work is commonly seen as the opposite of fun, work can be very
enjoyable when it is interesting and challenging. Since people report a strong sense of
enjoyment when engaged in flow [51], the level of enjoyment experienced by a support tool
user is an important indicator of its capacity to support this highly productive state.

I did not ask participants if using XDS or Strange Eons was enjoyable. However, the
participants in the XDS study did appear to enjoy exploring the space and trying new
moves, and many Strange Eons users have indicated enjoyment or fun as one reason that
they use the software. When testing expert support tools, impact on emotional affect should
be a standard part of evaluation.

As mentioned earlier, a vital area of future work is to develop additional implementations
of the principles. XDS and Strange Eons, while chosen for their differences, still represent
only a handful of many possible alternatives. Applying the principles to still more domains
provides an opportunity to implement and evaluate still more approaches. If these attempts
are documented and generalized using techniques such as claims analysis, the result will be
a growing library of techniques for designers to draw on, and a growing body of evidence for
researchers to build on. For example, while explicit problem spaces are a powerful way to
capture and present histories, they may only be an option for domains where the problem
space can be formalized. In other domains, a different approach may be necessary. An
alternative for domains that feature structured information is to offer localized histories
tied to those structures. Like an explicit problem space, this adds a spatial dimension to
edit histories that is usually absent. In writing, for example, it might be possible to adapt
recent work on collaborative undo mechanisms [248] by tagging and tracking each sentence
as it moves between various document structures (paragraphs, sections, chapters) during
editing. This would allow history manipulation to be localized to a selected structure on
demand: for example, one could scan back through the history of a single paragraph while
ignoring intervening changes to other parts of the document. While not as powerful as
working directly with moves, this would still filter out many extraneous actions, allowing
the writer to focus on the structural element of interest, which should also approximate the
semantic element of interest (excepting cross-cutting concerns [132]).

Examples of adapting consequence displays to different domains have been discussed al-
ready. The introductory example of a consequence display for document length demonstrates
that one may still find useful, computable consequence even in spaces with consequences
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Figure 10.1: The consequence display for Arkham Horror monsters. The top entry
(“Ygroth”) is the monster being edited; subsequent entries are the closest official mon-
sters, in order of increasing distance. The blue label next to the monster name describes
its distance from the design using one of four categories (from “very” to “dissimilar”). The
columns summarize each monster’s attributes. By comparing a design to the most similar
monsters, the user can quickly gauge the design’s originality and in-game difficulty.

that are mostly unamenable to computer representation. This is an important lesson for
designers of expert support systems: it is better to provide weak support than none at all.
Not all spaces can be expressed as neatly as the space of ANOVA designs, and that is fine.
The goal of the support system is not to replace the expert, but to amplify their abilities [68];
rich models of the domain are not always necessary to accomplish this. Indeed, spaces that
are the hardest to support might also be those that benefit most from support.
Other spaces, even closely related ones, will call for still other approaches. For example,

the Arkham Horror monster editor in Strange Eons uses a tabular consequence display (see
Figure 10.1). The table lists the official monsters (including a summary of their attributes)
that are closest in distance to the monster being edited. The distance metric is a simple
adaptation of Levenshtein distance [158] to multiple dimensions; it is approximately equal to
the number of edits that would be required to transform the attributes of one monster into
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those of another. (The monster’s name and portrait are not considered; only the attributes
that affect how it behaves in the game participate.)

Where the investigator editor tells the user when they have crossed certain boundary
lines in the space, the monster editor tells the user where they are in relation to a set of
prototype designs. In both cases, this is tailored to the needs of the expert working in that
space: while an important consideration for investigators is fairness, the two most important
factors when judging a monster are its uniqueness and its difficulty. A monster that is similar
to existing monsters in everything but name does not add an interesting challenge to the
game; a monster’s difficulty should reflect its rank in the established pantheon of the Cthulhu
Mythos, and also helps determine how many copies should be included (harder monsters
are also rare). The monster consequence display allows users to quickly gauge both of these
consequences: originality can be gauged from how far away the most similar monsters are,
while difficulty can be gauged relative to the known difficulties of similar official monsters.
As more systems that incorporate consequence displays or similar support become available,
the use of claims analysis will make it easier to compare different display techniques and
identify the most effective techniques for different domains.

A final long-term goal is the development of one or more measurement instruments to
gauge the effectiveness of expert support systems based on the design principles, or on the
previous work from which the principles were derived. (The Creativity Support Index [38],
which serves a similar role for creativity support tools, should be a useful model for this
task.) This would allow support system designers to evaluate new prototype systems in a
standardized way that simplifies the comparison of different systems and techniques.

10.4 Concluding Remarks

The extraordinary potential of computers to support expert work has been recognized since
the early days of computing. As hardware has become more powerful, specialists have
responded by creating systems ever closer to realizing those early visions. Where once
computers were just another tool on the expert’s belt, now they are nearly indispensable to
the task of expressing, refining, and sharing the results of expert work. The next advance
is to move beyond a product-centric approach and encompass support for the earlier stages
of expert work. The result could be a shift as radical as the one from tools that support
computing artillery trajectories to tools that support editing novels.
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The design principles offered by this dissertation represent one step towards this goal, and
they have found firm ground. They have passed their inaugural evaluation, demonstrating
the potential to help experts find better, more thoroughly considered solutions, and to do
so more quickly than before. The principles have also proven hardy. Even when applied
sparingly, they can produce substantial benefits. The success of Strange Eons is a notable
example. As a hybrid that straddles the gap between contemporary support and the more
extreme support exemplified by XDS, its success means that designers can start improving
support tools today—without convincing managers of the need to redesign flagship products
from scratch. This is heartening. After all, expert workers make decisions that impact
every area of our lives, from the placement of the switches on our coffee makers to the
most sweeping government policies. Navigating the alternatives in these problem spaces is
challenging, and it is in everyone’s interest that the experts trusted with these decisions be
empowered to find the best possible solutions. Let’s take another step in the development
of this support and see where it leads.
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