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Abstract

The investment return rates of an asset portfolio can be fitted and analyzed by one uni-

variate Ornstein-Uhlenbeck (O-U) process (global model), several univariate O-U processes

(univariate model) or one multivariate O-U process (multivariate model). The expected

values, variances and covariance of the instantaneous and accumulated return rates of dif-

ferent asset portfolios are calculated from the three models and compared. Furthermore, we

price for annuity products, optimize asset allocation strategy and compare the results. The

multivariate model is the most comprehensive and complete of the three models in term of

fully capturing the correlation among the assets in a single portfolio.

Keywords: Asset Allocation Strategy; Asset Portfolio; Investment Return Rate; Multi-

variate Ornstein-Uhlenbeck (O-U) Process
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Chapter 1

Introduction

In actuarial science and finance, the present value of future cash flows is obtained by dis-

counting the cash flows with appropriate discount factors which are reciprocals of the ac-

cumulated rate of return. Therefore, how to deal with the investment risk caused by the

random nature of the rate of return has been the subject of many publications. Because

the investment risk normally cannot be diversified by selling a large number of policies, it

could be more important than the mortality risk.

Pollard (1971) allows the rate of return as well as the age at death to vary stochastically

and determines premium loadings for non-profit assurances. By modeling annual rates of

return as white noise (identically and independently distributed), Boyle (1976) derives the

first three moments of interest discount functions and further applied them to traditional

actuarial life contingency functions. Following that, Waters (1978) uses an autoregressive

model of order one for rates of return, and finds the moments of the present value of the

benefit payable under certain types of assurance policies.

Panjer and Bellhouse (1980, 1981) develop a more general theory including continuous and

discrete models. They look at moments of assurance and annuity functions when the rates

of return are assumed to follow first and second order autoregressive models. Stationary

processes are used in their first paper, while conditional processes were used in their second

paper.

Giaccotto (1986) develops an algorithm for evaluating actuarial functions when the rates of

1



CHAPTER 1. INTRODUCTION 2

return are assumed to follow an ARIMA (p, 0, q) or an ARIMA (p, 1, q) process. Dhaene

(1989) develops a more efficient method for computing moments of insurance functions when

the rates of return are assumed to follow an ARIMA (p,d,q) process.

Beekman and Fuelling (1990, 1991)) derive the first two moments of life annuity functions

by modeling the accumulation function of the rates of return with an O-U or Wiener process.

Parker (1993, 1994a, 1994b) provides methods for calculating the first three moments of

the present value of future cash flows (P) for a portfolio of insurances or annuities when

the rates of return are assumed to be white noise, an O-U process or a Wiener process.

Furthermore, he suggests a useful method for approximating the cumulative distribution

function of P. In Parker (1995), the first three moments of annuity functions are calculated

when the rates of return are modeled by a second order stochastic differential equation.

In all these publications, the authors focus on the rates of return of one asset. In these

cases, one univariate process is sufficient for modeling the rates of return. For a portfolio

of assets, not only do the rates of return of each asset have their own process, but also

the rates of returns of different assets are correlated. Both a single univariate process and

several separate univariate processes are inappropriate for describing the rates of return of

the entire asset portfolio. Therefore, a multivariate process is essential in evaluating the

rates of return of the total asset portfolio. However, the multivariate process is much more

complicated.

Wan (2010) models the return rates of asset portfolio as a multivariate O-U process. The

aim of this project is to find a numerical method to calculate the first two moments of

certain types of assurance and annuity functions when the rates of return are modeled by a

multivariate process. With the moments, we can find the expected value and the variance

of the net single premium of those products. The results can be compared with those cal-

culated from one or several univariate processes.

In Chapter 2, properties and related formulas of AR(1) and O-U processes and the con-

version from an AR(1) to an O-U process is reviewed. Chapter 3 displays the calculations

under three investment models for the expected values, variances and covariance of the
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instantaneous rates of return and accumulation function of the rates of return of asset port-

folios. In Chapter 4, we fit three investment models into historical data and compare the

results. Chapter 5 discusses some practical applications of the three investment models. We

do some annuity pricing and asset allocation strategy optimization with the three models in

this chapter. Finally, Chapter 6 presents the conclusions and suggestions for future work.



Chapter 2

Review of the AR(1) and O-U

Processes

In this project, we use the Vasicek model to estimate future rates of investment return of the

assets. The Vasicek model (Vasicek (1977)) is one of the earliest non-arbitrage interest rate

models. It remains one of the most common models in financial and insurance industries

to model investment return with some obvious advantages. Vasicek’s model is a continuous

interest rate model that manages to capture “mean reversion”, an essential characteristic

of the investment return rate. Additionally, Vasicek’s model is a “one-factor” model that

provides explicit and simple formulae for calculating yield curves and pricing derivatives.

In the Vasicek model, the interest rate is assumed to be driven by a well-known Ornstein-

Uhlenbeck (O-U) process, which is a Gaussian process with a bounded variance and admits

a stationary probability distribution under certain conditions on the parameter α. The

first-order autoregressive process (AR(1)) is frequently proposed for analyzing discrete-time

series and can be considered as a discrete time analogue of the continuous O-U process. In

reality, all historical data on investment return rates are collected at a certain frequency in a

discrete-time frame. Therefore, an AR(1) process is first fitted the data. The AR(1) process

is then converted to an equivalent O-U process for studying the investment rate in different

time intervals. In the following sections of this chapter, basic properties of the AR(1) and

O-U processes will be reviewed. The formulae in this chapter are coming from Pandit and

Wu (1983) and Wan (2010).

4



CHAPTER 2. REVIEW OF THE AR(1) AND O-U PROCESSES 5

2.1 One-Dimensional AR(1) Process

An AR(1) process is a stochastic process of the form

Xt − µ = φ(Xt−1 − µ) + at, t = 1, 2, . . . (2.1)

where µ and φ are constants, at is a random error term. Normally, µ is the mean of the

observations. We assume the at’s, are independent and follow identical normal distributions,

i.e. at ∼ N(0, σ2
a). If φ = 1, the process is a random walk; if φ = 0, Xt is white noise. If

0 < φ < 1, the process is said to be mean-reverting and stationary, which can be converted

to a continuous O-U process. All the following properties and equations for an AR(1) are

derived assuming that 0 < φ < 1.

Suppose that the system starts at a given value X0. For t = 1, 2 . . ., we have

Xt − µ = φt(X0 − µ) +
t−1∑
j=0

φjat−j . (2.2)

Therefore,

E(Xt|X0) = φt(X0 − µ) + µ, (2.3)

V ar(Xt|X0) =
1− φ2t

1− φ2
σ2

a (2.4)

and

Cov(Xs, Xt|X0) = φ|t−s|

(
1− φ2min(t,s)

1− φ2

)
σ2

a. (2.5)

When t goes to infinite,

lim
t→∞

E[Xt|X0] = µ (2.6)

and

lim
t→∞

V ar(Xt|X0) =
σ2

a

1− φ2
. (2.7)

2.2 One-dimensional Ornstein-Uhlenbeck process

2.2.1 Ornstein-Uhlenbeck velocity process

The O-U process is a continuous analogue of the AR(1) process and given by the following

stochastic differential equation (SDE)
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dXt = −α(Xt − µ)dt + σdWt, , t ≥ 0 (2.8)

where α, µ and σ are non-negative constants. In the Vasicek model, Xt is the current level

of the investment return rate, and µ is the long-term mean of the rate of investment return.

Parameter α measures the market force pushing the rate toward its long-term mean and

describes how fast the current investment return rate reverts to its long-run norm, while

parameter σ determines the instantaneous volatility of the investment return rate. Wt is a

standard Brownian motion. Solving SDE(2.8), we get

Xt − µ = e−αt(X0 − µ) + σ

∫ t

0
e−α(t−s)dWs, t ≥ 0 (2.9)

where the initial value X0 is the rate of return at time 0. Given the initial value X0, Xt is

a Gaussian process and we have

E(Xt|X0) = e−αt(X0 − µ) + µ, (2.10)

V ar(Xt|X0) =
1− e−2αt

2α
σ2 (2.11)

and

Cov(Xs, Xt|X0) = e−α(t+s)

(
e2αmin(s,t) − 1

2α

)
σ2. (2.12)

When t goes to infinite,

lim
t→∞

E(Xt|X0) = µ, (2.13)

and

lim
t→∞

V ar(Xt|X0) =
σ2

2α
. (2.14)

2.2.2 Ornstein-Uhlenbeck position process

It is convenient to obtain a closed and simple formula to describe the accumulation function

of the instantaneous rate of investment return (Yt) in the O-U process. The O-U position

process, Yt, is obtained by integrating the process Xt. So

Yt = Y0 +
∫ t

0
Xsds. (2.15)
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In the financial world, Y0 is normally 0 and X0 is a known constant, implying that Yt is a

Gaussian process. Therefore, we get

E(Yt|X0) =
1− e−αt

α
(X0 − µ) + µt, (2.16)

V ar(Yt|X0) =
σ2

α2
t +

σ2

2α3

(
−3 + 4e−αt − e−2αt

)
(2.17)

and

Cov(Ys, Yt|X0) =
σ2

α2
min(s, t) +

σ2

2α3

[
−2 + 2e−αt + 2e−αs − e−α|t−s| − e−α(t+s)

]
. (2.18)

2.3 Converting a one-dimensional AR(1) process to an O-U

process

Due to the discreteness of the past observations of the return rate and the great advantage

of using a continuous process to study future return rates, conversion from an AR(1) process

to an O-U process by the principle of covariance equivalence (Pandit and Wu. (1983)) is an

important and necessary step in our project.

Suppose the system is sampled at 0,∆, 2∆, 3∆ . . .. The conditional covariance between

the observations at time t∆ and k intervals earlier for an O-U process can be obtained from

Equation (2.12)

Cov(Xt∆, Xt∆−k∆|X0) = e−αk∆(
1− e−2α(t∆−k∆)

2α
)σ2, (2.19)

The autocovariance function of a conditional AR(1) with a time period of k units is obtained

from Equation (2.5)

Cov(Xt, Xt−k|X0) = φk(
1− φ−2(t−k)

1− φ2
)σ2. (2.20)

By matching the time of observation t in Equation (2.20) with time t∆ in Equation (2.19),

the two covariance functions above are assumed to have the same values for any positive

integers t and k in the covariance equivalent principle. By matching the coefficients, we

have

α =
− lnφ

∆
or φ = e−α∆, (2.21)

and
σ2

a

1− φ2
=

σ2

2α
. (2.22)
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From Equation (2.21), it can be seen that every uniformly sampled O-U process has an

corresponding AR(1) expression. However, not every AR(1) process can be written as a

continuous and stationary O-U process. This can happen only when 0 < φ < 1. Notethat

σ, σa, α, and φ in Equation (2.22) must be defined for the same time unit.

2.4 Multivariate AR(1) process

Compared to a combination of several univariate AR(1) processes, a multi-dimensional

AR(1) process can not only display some autocorrelation within each time series but can

also display the correlations that exist among the series. By expressing every component

in Equation (2.1) in vector or matrix form, we get the following describing a group of time

series as a multivariate AR(1) process

Xt − µ = Φ(Xt−1 − µ) + at t = 1, 2, . . . (2.23)

or 
X1,t − µ1

X2,t − µ2

...

Xn,t − µn

 =


φ11 φ12 . . . φ1n

φ21 φ22 . . . φ2n

...
... . . .

...

φn1 φn2 . . . φnn

 ·


X1,t−1 − µ1

X2,t−1 − µ2

...

Xn,t−1 − µn

+


a1,t

a2,t

...

an,t


where Φ is an n × n constant matrix describing the relationships between each Xk,t and

Xs,t−1 (t ≥ 1). Vectorat follows a multivariate normal distribution with mean 0 and covari-

ance matrix Σa.

Suppose that the system starts at a given vector X0. For t = 1, 2 . . . ,

Xt − µ = Φt(X0 − µ) +
t−1∑
j=0

Φjat−j . (2.24)

Therefore,

E(Xt|X0) = Φt(X0 − µ) + µ, (2.25)

V ar(Xt|X0) =
t−1∑
i=0

ΦiΣa(Φ
i)T (2.26)

and

Cov(Xt, Xt−k|X0) =
t−k−1∑

i=0

Φk+iΣa(Φ
i)T . (2.27)

where (Φi)T denotes the transpose of matrix Φi.
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2.5 Multivariate O-U process

2.5.1 Multivariate O-U Velocity process

For a multidimensional O-U velocity process,

dXt = A(Xt − µ)dt + σdW t, t ≥ 0 (2.28)

or

d


X1,t

X2,t

...

Xn,t

 =


α11 α12 . . . α1n

α21 α22 . . . α2n

...
... . . .

...

αn1 αn2 . . . αnn

·


X1,t − µ1

X2,t − µ2

...

Xn,t − µn

 dt+


σ11 σ12 . . . σ1n

σ21 σ22 . . . σ2n

...
... . . .

...

σn1 σn2 . . . σnn

·d


W1,t

W2,t

...

Wn,t


where A is an n× n constant matrix which describes how the instantaneous change of each

series depends on both its current status and the statuses of other series. Matrix σ is the

n × n diffusion matrix and W t is a vector of n independent standard Brownian Motions.

Given X0, the solution of the stochastic differential equation (2.28) is

Xt − µ = eAt(X0 − µ) +
∫ t

0
eA(t−s)σdW s t ≥ 0. (2.29)

The conditional expected value of Xt, given an initial value X0, is

E(Xt|X0) = eAt(X0 − µ) + µ. (2.30)

Matrix calculation yields the variance and covariance functions of Xs and Xt

V ar(Xt|X0) = eAt

[∫ t

0
(eAu)−1ΣOU ((eAu)−1)T du

]
(eAt)T , (2.31)

and

Cov(Xs, Xt|X0) = eAs

[∫ min(s,t)

0
(eAu)−1ΣOU ((eAu)−1)T du

]
(eAt)T (2.32)

where ΣOU = σ · σT .

2.5.2 Multivariate O-U position process

The multidimensional O-U position process, Y t, is obtained by integrating the process, Xt.

So

Y t = Y 0 +
∫ t

0
Xsds. (2.33)
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We could also consider the system of SDE

d

[
Xt

Y t

]
= B ·

[
Xt − µ

Y t − µt

]
dt + σY d

[
W t

W t

]
(2.34)

where B =

[
A 0

E 0

]
, E is an n-dimensional identity matrix and σY =

[
σ 0

0 0

]
. By solving

the SDE (2.34), we get[
Xt − µ

Y t − µt

]
= eBt

[
X0 − µ

Y 0

]
+
∫ t

0
eB(t−s)σY dWs. (2.35)

In the financial world, normally Y 0 is 0.

2.6 Converting a Multivariate AR(1) Process to an O-U Pro-

cess

In practice, we fit an AR(1) process to the observations and obtain parameters Φ and Σa

first. To covert an AR(1) to an O-U process, the covariance equivalence principle is applied

to yield the parameters A, ΣOU of the corresponding O-U process. To satisfy the principle

of covariance equivalence, the first and second moments of the AR(1) process and the O-U

process must be equival for any integer unit time t. Therefore, from Equations (2.25) and

(2.30), we have

E(Xt|X0) = Φt(X0 − µ) + µ = eAt(X0 − µ) + µ, (2.36)

which implies that

eA = Φ. (2.37)

Since Xt is a Gaussian process, the covariance function between these two processes will be

equal at any time points if they are equal at one time point. Therefore, we can solve for

ΣOU by matching the conditional variance of X1 for the multivariate AR(1) process and

the one for the O-U process. Letting t = s = 1 and k = 0 in Equations (2.27) and (2.31),

we then have the V ar(X1|X0) for both the AR(1) process and the O-U process

V ar(X1|X0) = Σa = eA

[∫ 1

0
(eAu)−1ΣOU ((eAu)−1)T du

]
(eA)T . (2.38)

By matching all the n2 matrix elements of the two sides of the equation, the n× n matrix

of ΣOU can be solved. Since ΣOU= σ · σT , there are multiple solutions for σ if a solution
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exists. To simplify later calculations, we define σ as a lower triangular matrix such that σ

can be determined from ΣOU through Cholesky decomposition.

Although the mathematical expressions for the multivariate process are similar to those for

the univariate process, the computational problem is much more challenging when the num-

ber of series in vector Xt is increased. For example, obtaining A from Φ by Equation (2.37)

and the explicit expression for eAt at any continuous t are more difficult when A is expanded

from one dimension to multiple dimensions. To determine A, we first find the eigenvalues

(λ1, λ2, . . . , λn) and the corresponding eigenvectors ([v11, v21, . . . , 1]T , [v12, v22, . . . , 1]T , . . . ,

[v1n, v2n, . . . , 1]T ) of the n×n matrix Φ. Since eA = Φ, the eigenvalues of A are µ1, µ2, ..., µn

with µi = ln(λi) for i = 1, 2, . . . , n, and the corresponding eigenvectors are the same as Φ.

The definitions of the eigenvalue and eigenvector can generate a system of linear equations

µv = Av (2.39)

where µ is one of the eigenvalues of A and v is the corresponding eigenvector. A is then

expressed as

A = V M V −1 (2.40)

where M is a diagonal matrix made by eigenvalues of A and each column in the n×n matrix

V is the corresponding eigenvector. Additionally, to get a stationary O-U process, all the

eigenvalues of Φ must lie in the interval between 0 and 1.

The explicit expression of eAt is also obtained from the eigenvalues and the eigenvectors

of A. If we have the eigenvalues (µ1, µ2, . . . , µn) and the eigenvector matrix (V ) of A, then

E(Xt|X0) = eAtX0 =


v11 v12 . . . v1n

v21 v22 . . . v2n

...
... . . .

...

1 1 . . . 1

 ·


c1e
µ1t

c2e
µ2t

...

cneµnt

 (2.41)

where c1, c2, . . . , cn are constants. When t = 0, we have

E(Xt|X0) = X0 =


v11 v12 . . . v1n

v21 v22 . . . v2n

...
... . . .

...

1 1 . . . 1

 ·


c1

c2

...

cn

 . (2.42)
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From Equation (2.42), we have c = V −1X0. By plugging c into Equation (2.41) and match-

ing the coefficients of X0 for all rows on both sides of the matrices, we obtain an explicit

expression of eAt. Detailed instructions for solving a 3 × 3 will be presented in the next

chapter.

The procedures involved in solving for matrices A and eAt demonstrate that there are many

more computational complexities in the multi-dimensional O-U process, although it shares

similarities with the formulae described for the one-dimensional O-U process. In the next

chapter, we will discuss in details how to derive the three-dimensional O-U velocity process

from the AR(1), as well as how to develop explicit expressions for the moments of the O-U

position process.



Chapter 3

Investment Models

In this chapter, three different models for analyzing a portfolio of various assets are dis-

cussed. The first one is a univariate model, which models the rate of return for each one of

the assets by a univariate process. The second one, that we call the global model, calculates

the total return of the asset portfolio with a preassigned weight on each asset, and then uses

a one dimensional stochastic process to model the portfolio’s global return. The third one is

the multivariate model, which fits a multivariate process to the rates of return of the assets.

Of the three, the multivariate model is the most complex and has been studied the least so

far. On the other hand, it is the most comprehensive and complete model because it takes

into consideration all the correlations between the assets in one portfolio. This chapter will

cover in details how to estimate the parameters of a multivariate model. Furthermore, a

deterministic method is developed for computing the first and second moments of the ac-

cumulation function of the return rate for the portfolio under the multivariate model. The

accumulation function of the rate of return is crucial for calculating the present value or

future value of the asset portfolio and pricing insurance products. Our approach avoids the

time-consuming simulation procedures and provides an efficient way to evaluate the risk of

insurance products under this model. In this project, asset portfolios including three dif-

ferent asset components are introduced. In reality, a portfolio with more asset components

can be studied by using the same principle and method, although it may present greater

computation at challenges.

In this project, each of the assets in the portfolio is set at a certain proportion of the

13
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entire portfolio at the start time point (t = 0) and maintains at a fixed percentage through-

out the investment period. In other words, the assets are rebalanced so frequently that the

ratios of their accumulated value to the whole portfolio at any time remain constant. We

assume the transaction cost is zero. Therefore, the total investment return rate over any

investment time frame t for the whole assets is Σn
i=1ωi

∫ t
0 δi,sds, where ωi is the proportion

of each asset in the portfolio. Three models are explored to fit and study the rate of return

of these frequently rebalanced portfolios.

3.1 Univariate Model

Among these three models, the univariate model is the most straightforward and intuitive.

In this model, each of the different assets is estimated as a separate process, and the rate of

return of each asset is calculated and evaluated based on these individual models. Then for

any time t, the total return rate of the portfolio is calculated by summation of each asset

return rate with its corresponding weight in the asset portfolio.

Here we assume that there are three assets in the portfolios and their proportions are fixed.

The time series of each asset return rate is modeled by an AR(1) process and transferred

to a continuous O-U process as described in Chapter 2. In this way, we obtain three O-U

processes to describe three series of return rates of assets

Xi,t − µi = e−αit(Xi,0 − µi) + σi

∫ t

0
e−αi(t−s)ds, i = 1, 2, 3 (3.1)

where Xi,t is the instantaneous rate of return of Asset i at time t; Xi,0 is the instantaneous

rate of return of Asset i at initial time 0; αi and σi are the parameters of the one-dimensional

O-U process to describe the behavior of the return rate of Asset i.

In the next step, the total rate of return of the portfolio is described as a combination

of three asset return rates by their corresponding proportional weights, that is

XP,t = p1 ·X1,t + p2 ·X2,t + p3 ·X3,t (3.2)

where p1, p2, p3 are the proportions of three assets in the portfolio, and p1 + p2 + p3 = 1.

XP,t is the instantaneous rate of return of the portfolio.
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Furthermore, for any time t, we have

E(XP,t) = p1 · E(X1,t) + p2 · E(X2,t) + p3 · E(X3,t)

= p1 · (e−α1tX ′
1,0 + µ1) + p2 · (e−α2tX ′

2,0 + µ2) + p3 · (e−α3tX ′
3,0 + µ3), (3.3)

V ar(XP,t) = p2
1 · V ar(X1,t) + p2

2 · V ar(X2,t) + p2
3 · V ar(X3,t) (3.4)

and

Cov(XP,t, XP,s) = p2
1 · Cov(X1,t, X1,s) + p2

2 · Cov(X2,t, X2,s) + p2
3 · Cov(X3,t, X3,s) (3.5)

where X ′
n,0 = Xn,0 − µn.

In this model, it is assumed that there is no correlation between the rates of return of

these three assets. Hence, the covariances between each pair of Xt,1, Xt,2 and Xt,3 are all

zero in Equation 3.5. Because the accumulation function of Xt, Y t, equals Y 0 +
∫ t
0 Xsds,

we can also derive the formulae for the accumulation function of the return rate (YP,t) for

the portfolio in the univariate model

YP,t = p1 · Y1,t + p2 · Y2,t + p3 · Y3,t, (3.6)

E(YP,t) = p1 · E(Y1,t) + p2 · E(Y2,t) + p3 · E(Y3,t), (3.7)

V ar(YP,t) = p2
1 · V ar(Y1,t) + p2

2 · V ar(Y2,t) + p2
3 · V ar(Y3,t) (3.8)

and

Cov(YP,t, YP,s) = p2
1 · Cov(Y1,t, Y1,s) + p2

2 · Cov(Y2,t, Y2,s) + p2
3 · Cov(Y3,t, Y3,s). (3.9)

where Yi,t = Yi,0 +
∫ t
0 Xi,sds for i= 1, 2, 3. Explicit expressions for conditional variances and

covariances involving Xt,n and Yt,n can be obtained from Equations (2.11), (2.12), (2.17)

and (2.18) since the instantaneous rate of return for each asset is fitted by a simple one-

dimensional O-U process.

The univariate model is easy to understand and simple to calculate, but it has appar-

ent disadvantages. The model completely ignores the correlation between assets. In today’s

financial world there are plenty of chances that the assets in one portfolio are highly corre-

lated. In those cases, such correlations can have a significant impact on predicting return

rates of the portfolio.
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3.2 Global Model

Recognizing the limitations associated with a failure to estimate the correlation among

assets, a global model is introduced in this project. Instead of creating a separate process

for each asset from past observations of its return rate, the return rates of different assets at

each time point are combined based on the proportions of the corresponding assets. Then

the combined rates are considered as the past return rates of the portfolio from which a

one-dimensional stochastic process can be estimated to model the return rate of the total

portfolio. In this project, the historical return rate of the whole portfolio is determined by

aggregating the rates of return of three asset components with their weights in the portfolio.

The historical return rate of the portfolio is used to build a one-dimensional AR(1) process

which is then converted to a one-dimensional O-U process. Once having the estimated σP

and αP of the O-U process, we have

XP,t − µP = e−αP t(XP,0 − µP ) + σP

∫ t

0
e−α(t−s)dWs. (3.10)

The closed-form formulae for the first and second moments of XP,t and YP,t can be obtained

as described in Chapter 2 since we know XP,t follows an O-U process.

The global model is also simple to understand and calculate. Moreover, unlike the uni-

variate model, it takes into consideration the correlations between the assets. However,

the model’s simplicity makes it difficult to fully capture all the relationships. It is almost

impossible to describe the rates of return of the assets clear in a model with only two

parameters.

3.3 Multivariate Model

To fully disclose the dependence among the different assets, a multivariate model is intro-

duced. In this model, a multi-dimensional O-U process are fitted by the rates of return of

all the assets. Now the rate of return of each asset is related not only to past observations

of that particular asset, but also to past observations of the return rates of other assets.

Therefore, the model allows the process to have a more precise estimation of the rates of

return of each asset and the asset portfolio. On the other hand, the model has much greater

computational complexity than the univariate and global models.
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In this project, a three-dimension AR(1) process is applied to model the return rate of

the portfolio including three assets. Then, the AR(1) process is converted into an equiv-

alent three-dimensional O-U process. The three-dimensional stochastic O-U process has

a 3 × 3 matrix A to describe the correlation among the drifts of the three series and a

3 × 3 matrix σ to describe jointly the correlation among the stochastic variations of these

series. From the three-dimensional O-U process, we can get the first and second moments

of Xt to estimate the expected present value and riskiness of the assets. The formulae and

methods are basically following Wan(2010). Furthermore, we will display the mathematical

derivations of the first and second moments of Y t step by step in the last several paragraphs.

3.3.1 Estimation of the Model Parameters

In the first step, we have a three-dimensional AR(1) based on the past observations of the

return rates of each asset to describe the instantaneous rate Xt:
X1,t

X2,t

X3,t

 =


φ̂11 φ̂12 φ̂13

φ̂21 φ̂22 φ̂23

φ̂31 φ̂32 φ̂33

 ·


X1,t−1

X2,t−1

X3,t−1

+


â1,t

â2,t

â3,t

 , t = 1, 2, . . . (3.11)

where ât follows a multivariate normal distribution with mean 0 and a 3 × 3 covariance

matrix Σa. Note that Xi,t (i = 1, 2, 3) has been centered at 0 by subtracting each mean

from its corresponding series. Given the initial values of X0 at time t = 0, we further have
X1,t

X2,t

X3,t

 =


φ̂11 φ̂12 φ̂13

φ̂21 φ̂22 φ̂23

φ̂31 φ̂32 φ̂33


t

·


X1,0

X2,0

X3,0

+
t−1∑
j=0


φ̂11 φ̂12 φ̂13

φ̂21 φ̂22 φ̂23

φ̂31 φ̂32 φ̂33


j

·


â1,t−j

â2,t−j

â3,t−j

 . (3.12)

In the second step, the parameter A of the corresponding three-dimensional O-U process is

calculated from the AR(1) process. An explicit expression for eAt is also derived in this step.

The eigenvalues (λ1, λ2, λ3) and the corresponding eigenvectors ([v11, v21, 1]T , [v12, v22, 1]T ,

[v13, v23, 1]T ) of matrix Φ̂ can be solved numerically. From Section (2.6) and Equation (2.37),

the eigenvalues of A are known as µ1 = ln(λ1), µ2 = ln(λ2) and µ3 = ln(λ3). Additionally,

A and Φ share the same eigenvectors. Therefore, matrix A can be solved from Equation
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(2.40):

A = V M V −1 =


v11 v12 v13

v21 v22 v23

1 1 1

 ·


ln(λ1) 0 0

0 ln(λ2) 0

0 0 ln(λ3)

 ·


v11 v12 v13

v21 v22 v23

1 1 1


−1

. (3.13)

An explicit expression for eAt can also be obtained from the eigenvalues and eigenvectors of

A through the following steps. From Equation (2.41), the conditional means of the series

are

E(Xt|X0) = eAtX0 =


v11 v12 v13

v21 v22 v23

1 1 1

 ·


c1e
µ1t

c2e
µ2t

c3e
µ3t

 =


v11 v12 v13

v21 v22 v23

1 1 1

 ·


c1λ
t
1

c2λ
t
2

c3λ
t
3

 (3.14)

where c1, c2, c3 are constants. When t = 0, we have

X0 =


X1,0

X2,0

X3,0

 =


v11 v12 v13

v21 v22 v23

1 1 1

 ·


c1

c2

c3

 (3.15)

c = V −1 ·X0. (3.16)

Therefore, c1, c2, c3 can be expressed in term of X0 and V

c1 =
(v22 − v23)X1,0 + (v13 − v12)X2,0 + (v12v23 − v13v22)X3,0

(v11v22 − v12v21)− (v11v23 − v13v21) + (v12v23 − v13v22)
, (3.17)

c2 =
(v23 − v21)X1,0 + (v11 − v13)X2,0 + (v13v21 − v11v23)X3,0

(v11v22 − v12v21)− (v11v23 − v13v21) + (v12v23 − v13v22)
, (3.18)

c3 =
(v21 − v22)X1,0 + (v12 − v11)X2,0 + (v11v22 − v12v21)X3,0

(v11v22 − v12v21)− (v11v23 − v13v21) + (v12v23 − v13v22)
. (3.19)

To simplify the expression, we let β denote the denominator of c. In fact, β is equal to the

determinant of the eigenvector matrix V . By plugging c into Equation (3.14) and matching

the coefficients of X0 for each row on both sides of the matrices, we obtain the following

expression for eAt

eAt =


ω11(t, 0) ω12(t, 0) ω13(t, 0)

ω21(t, 0) ω22(t, 0) ω23(t, 0)

ω31(t, 0) ω32(t, 0) ω33(t, 0)

 (3.20)
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where ω(t, s) are a series of functions depending on time t and s

ω11(t, s) =
1
β

[v11(v22 − v23)λ
(t−s)
1 − v12(v21 − v23)λ

(t−s)
2 + v13(v21 − v22)λ

(t−s)
3 ],

ω21(t, s) =
1
β

[v21(v22 − v23)λ
(t−s)
1 − v22(v21 − v23)λ

(t−s)
2 + v23(v21 − v22)λ

(t−s)
3 ],

ω31(t, s) =
1
β

[(v22 − v23)λ
(t−s)
1 − (v21 − v23)λ

(t−s)
2 + (v21 − v22)λ

(t−s)
3 ],

ω12(t, s) =
1
β

[v11(v13 − v12)λ
(t−s)
1 − v12(v12 − v13)λ

(t−s)
2 + v13(v12 − v11)λ

(t−s)
3 ],

ω22(t, s) =
1
β

[v21(v13 − v12)λ
(t−s)
1 − v22(v12 − v13)λ

(t−s)
2 + v23(v12 − v11)λ

(t−s)
3 ],

ω32(t, s) =
1
β

[(v13 − v12)λ
(t−s)
1 − (v12 − v13)λ

(t−s)
2 + (v12 − v11)λ

(t−s)
3 ],

ω13(t, s) =
1
β

[v11(v12v23 − v22v13)λ
(t−s)
1 − v12(v11v23 − v21v13)λ

(t−s)
2

+ v13(v11v22 − v21v12)λ
(t−s)
3 ],

ω23(t, s) =
1
β

[v21(v12v23 − v22v13)λ
(t−s)
1 − v22(v11v23 − v21v13)λ

(t−s)
2

+ v23(v11v22 − v21v12)λ
(t−s)
3 ],

ω33(t, s) =
1
β

[(v12v23 − v22v13)λ
(t−s)
1 − (v11v23 − v21v13)λ

(t−s)
2

+ (v11v22 − v21v12)λ
(t−s)
3 ] (3.21)

and

β = (v11v22 − v12v21)− (v11v23 − v13v21) + (v12v23 − v13v22).

From the formulae above, we obtain an expression for eAt which is fixed and explicit once t

is given.

Having explicit expressions for matrics A and eAt, we are ready to solve for matrix σ

as the third step. The covariance equivalent principle is used in the multivariate model as

well. From Equations (2.31) and (2.32), we know that the conditional variance and auto-

covariance of Xt in a multidimensional O-U process is directly dependent on ΣOU (ΣOU =

σ · σT ) instead of σ itself. Given ΣOU , there are multiple solutions for σ if a solution exists.
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Without loss of generality we arbitrarily let σ be a lower triangular 3× 3 matrix

σ =


σ11 0 0

σ21 σ22 0

σ31 σ32 σ33

 .

With a lower triangular matrix σ, we can reduce our calculations for eA(t−s) · σ. Letting

matrix Ω(t, s) denote the product result, we have

Ω(t, s) =


ω11(t, s) ω12(t, s) ω13(t, s)

ω21(t, s) ω22(t, s) ω23(t, s)

ω31(t, s) ω32(t, s) ω33(t, s)

 ·


σ11 0 0

σ21 σ22 0

σ31 σ32 σ33

 . (3.22)

and its elements can be obtained as

Ω11(t, s) = σ11 · ω11(t, s) + σ21 · ω12(t, s) + σ31 · ω13(t, s),

Ω12(t, s) = σ22 · ω12(t, s) + σ32 · ω13(t, s),

Ω13(t, s) = σ33 · ω13(t, s),

Ω21(t, s) = σ11 · ω21(t, s) + σ21 · ω22(t, s) + σ31 · ω23(t, s),

Ω22(t, s) = σ22 · ω22(t, s) + σ32 · ω23(t, s),

Ω23(t, s) = σ33 · ω23(t, s),

Ω31(t, s) = σ11 · ω31(t, s) + σ21 · ω32(t, s) + σ31 · ω33(t, s),

Ω32(t, s) = σ22 · ω32(t, s) + σ32 · ω33(t, s),

Ω33(t, s) = σ33 · ω33(t, s). (3.23)

Therefore, we can write

∫ t

0
eA(t−s) · σdW s =


∫ t
0 Ω11(t, s)dW1,s +

∫ t
0 Ω12(t, s)dW2,s +

∫ t
0 Ω13(t, s)dW3,s∫ t

0 Ω21(t, s)dW1,s +
∫ t
0 Ω22(t, s)dW2,s +

∫ t
0 Ω23(t, s)dW3,s∫ t

0 Ω31(t, s)dW1,s +
∫ t
0 Ω32(t, s)dW2,s +

∫ t
0 Ω33(1, s)dW3,s

 . (3.24)

By the variance equivalent principle V ar(X1) equals Cov(
∫ 1
0 eA(1−s)σdW s,

∫ 1
0 eA(1−s)σdW s)

in a multi-dimensional O-U process, we can further expand the expression for each element

of V ar(X1) with Ito formula

V ar(X1|X0) = Cov

[∫ 1

0
Ω(1, s)dW s,

∫ 1

0
Ω(1, s)dW s

]
,

[V ar(X1|X0)]ij =
∫ 1

0
[Ωi1(1, s)Ωj1(1, s) + Ωi2(1, s)Ωj2(1, s) + Ωi3(1, s)Ωj3(1, s)]ds (3.25)
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where 1 ≤ i ≤ j ≤ 3. Given the symmetric property of the covariance matrix, we have

[V ar(X1|X0)]21 = [V ar(X1|X0)]12, [V ar(X1|X0)]31 = [V ar(X1|X0)]13, [V ar(X1|X0)]32 =

[V ar(X1|X0)]23. From Equations (3.23) and (3.25), we know that all the integrations in

the elements of V ar(X1) for this O-U process can be solved numerically to be a linear com-

bination of σij · σi′j′ , (i, j, i′, j′ = 1, 2, 3). From Equations (2.26) and (2.38), V ar(X1) of the

three-dimensional AR(1) process equals Σa whose elements have known numerical values.

Using the equivalence between each elements of V ar(X1) of the AR(1) and O-U processes,

six equations are established with six unknown variables σ11, σ21, σ22, σ31, σ32, σ33. In most

cases, a numerical solution may be obtained by solving these equations. Therefore, a lower

triangular matrix σ can be obtained.

With Equation (3.24), the expression of Cov(Xt, Xs) (t > s) can be expanded as

Cov(Xt, Xs|X0) = Cov(
∫ t

0
Ω(t, u)dW u,

∫ s

0
Ω(s, r)dW r),

[Cov(Xt, Xs)|X0]ij =
∫ s

0
[Ωi1(t, r)Ωj1(s, r) + Ωi2(t, r)Ωj2(s, r) + Ωi3(t, r)Ωj3(s, r)]dr

(3.26)

where i, j = 1, 2, 3. Since we have solved the ΣOU (σ · σT ), a fixed numerical value is

assigned to each element of the covariance matrix by solving the integrations in Equation

(3.26).

3.3.2 Model Calculation

After estimating the model parameters, numerical values for A, σ and an explicit expression

for eAt over t periods were determined in Section (3.3.1). From that, we can study the return

rate of the whole portfolio. Assuming the weights of assets in the portfolio are p1, p2, p3,

the instantaneous rate of return of the portfolio, XP,t is

XP,t = p1 ·X1,t + p2 ·X2,t + p3 ·X3,t (3.27)

where Xi,t (i = 1, 2, 3) denotes the ith row of Xt, which is a three-dimensional vector defined

by the O-U process in our multivariate model. Furthermore, we have the conditional mean,

variance and covariance functions of the instantaneous return rate for the portfolio at time
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t

E(XP,t) =p1E(X1,t) + p2E(X2,t) + p3E(X3,t), (3.28)

V ar(XP,t) =p2
1[V ar(Xt)]11 + p2

2[V ar(Xt)]22 + p2
3[V ar(Xt)]33

+ 2p1p2[V ar(Xt)]12 + 2p1p3[V ar(Xt)]13 + 2p2p3[V ar(Xt)]23 (3.29)

and

Cov(XP,t, XP,s) = p2
1[Cov(Xt, Xs)]11 + p2

2[Cov(Xt, Xs)]22 + p2
3[Cov(Xt, Xs)]]33

+ p1p2([Cov(Xt, Xs)]12 + [Cov(Xt, Xs)]21)

+ p1p3([Cov(Xt, Xs)]13 + [Cov(Xt, Xs)]31)

+ p2p3([Cov(Xt, Xs)]23 + [Cov(Xt, Xs)]32) (3.30)

where E(Xi,t|Xi,0) (i = 1, 2, 3) is the ith row of three-dimensional vector [E(Xt|X0)].

E(Xt|X0) equals eAtX0 by Equation (2.30). [V ar(Xt|X0)]ij is the element in row i and

column j of the 3 × 3 matrix V ar(Xt|X0). And [Cov(Xt, Xs|X0)]ij is the element in row

i and column j of the 3 × 3 matrix Cov(Xt, Xs|X0). Here V ar(Xt|X0) can be solved ei-

ther by
∑t−1

i=0 ΦiΣa(Φ
i)T in Equation (2.26) of the AR(1) process or by Equation (3.25) of

the O-U process. In the same way, the conditional covariance between Xt and Xs can be

solved using Equation (2.27) of in the AR(1) process or Equation (2.32) for the O-U process.

It appears more convenient to use the equations in the AR(1) process to compute the condi-

tional expected value and variance of the instantaneous return rate for the entire portfolio.

However, the position process which is more interesting in practice has to be calculated

from the O-U process. This is primarily because we assume that the investment rate is ac-

cumulated in a continuous way. Given matrices A and σ solved earlier, we set B =

[
A 0

E 0

]

and σY =

[
σ 0

0 0

]
. Here 0 and E are 3 × 3 matrices, and hence both B and σY are 6 × 6
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matrices. Based on Equation (2.35), we have

X1,t − µ1

X2,t − µ2

X3,t − µ3

Y1,t −−µ1t

Y2,t −−µ2t

Y3,t − µ3t


= eBt



X1,0 − µ1

X2,0 − µ2

X3,0 − µ3

0

0

0


+
∫ t

0
eB(t−s) ·



σ11 0 0 0 0 0

σ21 σ22 0 0 0 0

σ31 σ32 σ33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


d



W1,s

W2,s

W3,s

W4,s

W5,s

W6,s


.

(3.31)

From the buildup of matrix B, the eigenvalues of B are known as 0, 0, 0, µ1, µ2, µ3, where

µ1, µ2, µ3 are the same eigenvalues as those for matrix A. Hence, the eigenvalues of eB are

1, 1, 1, λ1, λ2, and λ3 (λ1=eµ1 ,λ2=eµ2 ,λ3=eµ3). The corresponding eigenvectors of matrix

eB are



0 0 0 γ11 γ12 γ13

0 0 0 γ21 γ22 γ23

0 0 0 γ31 γ32 γ33

1 0 0 γ41 γ42 γ43

0 1 0 γ51 γ52 γ53

0 0 1 1 1 1


.

In fact,


γ41 γ42 γ43

γ51 γ52 γ53

1 1 1

 is also the eigenvector matrix of eA. By using the method for solv-

ing eAt described in Section (3.3.1) , eBt can be solved with more patience. For convenience,
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the following notation is used for the determinants

D1 =

∣∣∣∣∣ γ22 γ23

γ32 γ33

∣∣∣∣∣ = γ22γ33 − γ23γ32, D2 =

∣∣∣∣∣ γ21 γ23

γ31 γ33

∣∣∣∣∣ = γ21γ33 − γ23γ31,

D3 =

∣∣∣∣∣ γ22 γ21

γ32 γ31

∣∣∣∣∣ = γ22γ31 − γ21γ32, D4 =

∣∣∣∣∣ γ12 γ13

γ32 γ33

∣∣∣∣∣ = γ12γ33 − γ13γ32,

D5 =

∣∣∣∣∣ γ11 γ13

γ31 γ33

∣∣∣∣∣ = γ11γ33 − γ13γ31, D6 =

∣∣∣∣∣ γ11 γ12

γ31 γ32

∣∣∣∣∣ = γ11γ32 − γ12γ31,

D7 =

∣∣∣∣∣ γ13 γ12

γ23 γ22

∣∣∣∣∣ = γ13γ22 − γ12γ23, D8 =

∣∣∣∣∣ γ11 γ13

γ21 γ23

∣∣∣∣∣ = γ11γ23 − γ13γ21,

D9 =

∣∣∣∣∣ γ11 γ12

γ21 γ22

∣∣∣∣∣ = γ11γ22 − γ12γ21

and

D10 =

∣∣∣∣∣∣∣∣
γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33

∣∣∣∣∣∣∣∣ = γ11γ22γ33−γ11γ23γ32+γ21γ32γ13−γ21γ12γ33+γ31γ12γ23−γ31γ22γ13.

Then eBt can be expressed as

eBt =



ω11(t, 0) ω12(t, 0) ω13(t, 0) 0 0 0

ω21(t, 0) ω22(t, 0) ω23(t, 0) 0 0 0

ω31(t, 0) ω32(t, 0) ω33(t, 0) 0 0 0

θ41(t, 0) θ42(t, 0) θ43(t, 0) 1 0 0

θ51(t, 0) θ52(t, 0) θ53(t, 0) 0 1 0

θ61(t, 0) θ62(t, 0) θ63(t, 0) 0 0 1


(3.32)
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where ω(t, s) are the same series of functions used in Equation (3.20) to express eAt, and

θ(t, s) are the series of functions described below

θ41(t, s) =
1

D10

[
D1γ41(λ

(t−s)
1 − 1)−D2γ42(λ

(t−s)
2 − 1)−D3γ43(λ

(t−s)
3 − 1)

]
,

θ51(t, s) =
1

D10

[
D1γ51(λ

(t−s)
1 − 1)−D2γ52(λ

(t−s)
2 − 1)−D3γ53(λ

(t−s)
3 − 1)

]
,

θ61(t, s) =
1

D10

[
D1(λ

(t−s)
1 − 1)−D2(λ

(t−s)
2 − 1)−D3(λ

(t−s)
3 − 1)

]
,

θ42(t, s) =
1

D10

[
−D4γ41(λ

(t−s)
1 − 1) + D5γ42(λ

(t−s)
2 − 1)−D6γ43(λ

(t−s)
3 − 1)

]
,

θ52(t, s) =
1

D10

[
−D4γ51(λ

(t−s)
1 − 1) + D5γ52(λ

(t−s)
2 − 1)−D6γ53(λ

(t−s)
3 − 1)

]
,

θ62(t, s) =
1

D10

[
−D4(λ

(t−s)
1 − 1) + D5(λ

(t−s)
2 − 1)−D6(λ

(t−s)
3 − 1)

]
,

θ43(t, s) =
1

D10

[
−D7γ41(λ

(t−s)
1 − 1)−D8γ42(λ

(t−s)
2 − 1) + D9γ43(λ

(t−s)
3 − 1)

]
,

θ53(t, s) =
1

D10

[
−D7γ51(λ

(t−s)
1 − 1)−D8γ52(λ

(t−s)
2 − 1) + D9γ53(λ

(t−s)
3 − 1)

]
,

θ63(t, s) =
1

D10

[
−D7(λ

(t−s)
1 − 1)−D8(λ

(t−s)
2 − 1) + D9(λ

(t−s)
3 − 1)

]
.

Having an expression for eB(t−s), Θ(t, s) = eB(t−s)σY can be written as

Θ(t, s) =



ω11(t, s) ω12(t, s) ω13(t, s) 0 0 0

ω21(t, s) ω22(t, s) ω23(t, s) 0 0 0

ω31(t, s) ω32(t, s) ω33(t, s) 0 0 0

θ41(t, s) θ42(t, s) θ43(t, s) 1 0 0

θ51(t, s) θ52(t, s) θ53(t, s) 0 1 0

θ61(t, s) θ62(t, s) θ63(t, s) 0 0 1


·



σ11 0 0 0 0 0

σ21 σ22 0 0 0 0

σ31 σ32 σ33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (3.33)
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Therefore,

Θ11(t, s) = Ω11(t, s) = σ11 · ω11(t, s) + σ21 · ω12(t, s) + σ31 · ω13(t, s),

Θ12(t, s) = Ω12(t, s) = σ22 · ω12(t, s) + σ32 · ω13(t, s),

Θ13(t, s) = Ω13(t, s) = σ33 · ω13(t, s),

Θ21(t, s) = Ω21(t, s) = σ11 · ω21(t, s) + σ21 · ω22(t, s) + σ31 · ω23(t, s),

Θ22(t, s) = Ω22(t, s) = σ22 · ω22(t, s) + σ32 · ω23(t, s),

Θ23(t, s) = Ω23(t, s) = σ33 · ω23(t, s),

Θ31(t, s) = Ω31(t, s) = σ11 · ω31(t, s) + σ21 · ω32(t, s) + σ31 · ω33(t, s),

Θ32(t, s) = Ω32(t, s) = σ22 · ω32(t, s) + σ32 · ω33(t, s),

Θ33(t, s) = Ω33(t, s) = σ33 · ω33(t, s),

Θ41(t, s) = σ11 · θ41(t, s) + σ21 · θ42(t, s) + σ31 · θ43(t, s),

Θ42(t, s) = σ22 · θ42(t, s) + σ32 · θ43(t, s),

Θ43(t, s) = σ33 · θ43(t, s),

Θ51(t, s) = σ11 · θ51(t, s) + σ21 · θ52(t, s) + σ31 · θ53(t, s),

Θ52(t, s) = σ22 · θ52(t, s) + σ32 · θ53(t, s),

Θ53(t, s) = σ33 · θ53(t, s),

Θ61(t, s) = σ11 · θ61(t, s) + σ21 · θ62(t, s) + σ31 · θ63(t, s),

Θ62(t, s) = σ22 · θ62(t, s) + σ32 · θ63(t, s),

Θ63(t, s) = σ33 · θ63(t, s). (3.34)

The elements in the last three columns of Θ(t, s) are all 0. The series of Ω(t, s) functions in

the above equations are the same as those used to express eA(t−s).

Therefore, we can write

∫ t

0
eB(t−s) ·σY dW s =



∫ t
0 Ω11(t, s)dW1,s +

∫ t
0 Ω12(t, s)dW2,s +

∫ t
0 Ω13(t, s)dW3,s∫ t

0 Ω21(t, s)dW1,s +
∫ t
0 Ω22(t, s)dW2,s +

∫ t
0 Ω23(t, s)dW3,s∫ t

0 Ω31(t, s)dW1,s +
∫ t
0 Ω32(t, s)dW2,s +

∫ t
0 Ω33(1, s)dW3,s∫ t

0 Θ41(t, s)dW1,s +
∫ t
0 Θ42(t, s)dW2,s +

∫ t
0 Θ43(t, s)dW3,s∫ t

0 Θ51(t, s)dW1,s +
∫ t
0 Θ52(t, s)dW2,s +

∫ t
0 Θ53(t, s)dW3,s∫ t

0 Θ61(t, s)dW1,s +
∫ t
0 Θ62(t, s)dW2,s +

∫ t
0 Θ63(1, s)dW3,s


(3.35)
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In Equation (3.35), the first three rows illustrate the stochastic variate Xt, which is exactly

the same as that obtained in Equation (3.24) with Xt only. The last three rows illustrate the

stochastic variate Y t. Because the uncertainty in Y t comes entirely from the randomness of

Xt, three Brownian Motions are sufficient to characterize the random movements of both Xt

and Y t. Since

[
Xt

Y t

]
= eBt

[
X0

0

]
+
∫ t
0 eB(t−s) ·σY dWs, the mean of Y t can be calculated

as

E


Y1,t|X0

Y2,t|X0

Y3,t|X0

 =


θ41(t, 0)X1,0 + θ42(t, 0)X2,0 + θ43(t, 0)X3,0

θ51(t, 0)X1,0 + θ52(t, 0)X2,0 + θ53(t, 0)X3,0

θ61(t, 0)X1,0 + θ62(t, 0)X2,0 + θ63(t, 0)X3,0

 . (3.36)

With Equation (3.35) and Ito formula, the matrix of Cov(Y t, Y s) (t > s) can be expanded

as

Cov(Y t, Y s|X0) = Cov

[∫ t

0
Θ(t, u)dW u,

∫ s

0
Θ(s, r)dW r

]
,

[Cov(Y t, Y s|X0)]11 =
∫ s

0
[Θ41(t, r)Θ41(s, r) + Θ42(t, r)Θ42(s, r) + Θ43(t, r)Θ43(s, r)]dr,

[Cov(Y t, Y s|X0)]12 =
∫ s

0
[Θ41(t, r)Θ51(s, r) + Θ42(t, r)Θ52(s, r) + Θ43(t, r)Θ53(s, r)]dr,

[Cov(Y t, Y s|X0)]13 =
∫ s

0
[Θ41(t, r)Θ61(s, r) + Θ42(t, r)Θ62(s, r) + Θ43(t, r)Θ63(s, r)]dr,

[Cov(Y t, Y s|X0)]21 =
∫ s

0
[Θ51(t, r)Θ41(s, r) + Θ52(t, r)Θ42(s, r) + Θ53(t, r)Θ43(s, r)]dr,

[Cov(Y t, Y s|X0)]22 =
∫ s

0
[Θ51(t, r)Θ51(s, r) + Θ52(t, r)Θ52(s, r) + Θ53(t, r)Θ53(s, r)]dr,

[Cov(Y t, Y s|X0)]23 =
∫ s

0
[Θ51(t, r)Θ61(s, r) + Θ52(t, r)Θ62(s, r) + Θ53(t, r)Θ63(s, r)]dr,

[Cov(Y t, Y s|X0)]31 =
∫ s

0
[Θ61(t, r)Θ41(s, r) + Θ62(t, r)Θ42(s, r) + Θ63(t, r)Θ43(s, r)]dr,

[Cov(Y t, Y s|X0)]32 =
∫ s

0
[Θ61(t, r)Θ51(s, r) + Θ62(t, r)Θ52(s, r) + Θ63(t, r)Θ53(s, r)]dr,

[Cov(Y t, Y s|X0)]33 =
∫ s

0
[Θ61(t, r)Θ61(s, r) + Θ62(t, r)Θ62(s, r) + Ω63(t, r)Ω63(s, r)]dr.

(3.37)

This expression for the covariance matrix of Y t looks cumbersome. However, all the param-

eters (σ, the eigenvalues and eigenvectors of B) in the expression have been determined to

be fixed numbers for any particular estimated model. The integrations shown above can be

solved numerically in a short time once t and s are given. Therefore, we have provided a
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way of calculating the conditional variance and covariance of the accumulated function of

the return rate in a short time scale which avoids using simulations.

Finally, expressions for the conditional expected value, variance and covariance functions of

YP,t, the accumulated function of the rate of the return for the whole asset portfolio, can be

derived as

E(YP,t|X0) =p1E(Y1,t|X0) + p2E(Y2,t|X0) + p3E(Y3,t|X0), (3.38)

V ar(YP,t|X0) =p2
1[V ar(Y t|X0)]11 + p2

2[V ar(Y t|X0)]22 + p2
3[V ar(Y t|X0)]33

+ 2p1p2[V ar(Y t|X0)]12 + 2p1p3[V ar(Y t|X0)]13 + 2p2p3[V ar(Y t|X0)]23
(3.39)

and

Cov(YP,t, YP,s|X0) =p2
1[Cov(Y t, Y s|X0)]11 + p2

2[Cov(Y t, Y s|X0)]22 + p2
3[Cov(Y t, Y s|X0)]]33

+ p1p2([Cov(Y t, Y s|X0)]12 + [Cov(Y t, Y s|X0)]21)

+ p1p3([Cov(Y t, Y s|X0)]13 + [Cov(Y t, Y s|X0)]31)

+ p2p3([Cov(Y t, Y s|X0)]23 + [Cov(Y t, Y s|X0)]32) (3.40)

In Equations (3.39) and (3.40), the correlations among the assets are fully considered.

In this chapter, we havepresented an approach that can be used to analyze a three-asset port-

folio by symbolic and numerical calculations. Theoretically, this method can be extended to

a portfolio containing more assets but with greater complexity and more computation time.

Occasionally, round-off errors present a significant problem. In practice, symbolic calcula-

tions and simplification should be performed before plugging in any numerical values.



Chapter 4

Fitting and Comparing Investment

Models

In this chapter, three asset portfolios, which are assumed to be composed of a long-term

bond, a short-term Treasury bill and an equity, are used as examples for calculations and

illustrations. Among them, Asset Portfolio 1 is assumed to be 60% long-term bond, 30%

short-term Treasury bill and 10 % equity. Asset Portfolio 2 is assumed to be 60% long-term

bond, 10% short-term Treasury bill and 30% equity. As an extreme case, Asset Portfolio 3

is assumed to be a high-risk package which is 30% long-term bond, 10% short-term Trea-

sury bill and 60% equity. The parameters of the models are estimated from historical data

for each asset. Moreover, the conditional means and variances of Xt and Yt of the entire

portfolio are calculated and compared under these three models.

4.1 Fitting the Models

The parameter estimates of a financial model can be greatly dependent on the time interval

and the period over which historical data is collected. How to select proper data to estimate

a model is a highly debatable topic in the insurance and financial fields. This project focuses

on the analysis of different mathematical models rather than data selection methods. In

this project, the past observations of the rates of return on ten-year Constant Maturity

Treasury Bills, three-month Treasury Bills and the S&P 500 Index in the US market are

29
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Figure 4.1: The Historical Return Rates of Three Assets

taken as proxies for the return rates of the long-term bond, the short-term Treasury bill and

the equity in the portfolio, respectively. Daily return rates (shown in Figure 4.1) for these

three financial instruments from 01/02/1974 to 12/31/2007 were obtained Federal Reserve

Statistical Release and Yahoo Finance. All the univariate and multivariate processes in

the three invest models are fitted to these data by R Package with ordinary least squares

method. We then compare the features of these three models.
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4.1.1 Testing the Models

The first step is to fit AR(1) processes to historical data. Therefore, we plot the autocorre-

lation functions (ACFs) and partial autocorrelation functions (PACFs) for the daily return

rates of these three assets to determine whether an AR(1) process is appropriate (Figure

4.2). Additionally, the ACF and PACF of the daily return rate of Portfolio 1 are plotted

to test the feasibility of applying the global model. In Figure 4.2, the ACFs of the data for

the long-term bond and short-term Treasury bill yield a very slow decay, and the strong

correlations exist even after a 40-day lag. The PACFs of these two time series quickly decay

to 0 after lag 1. Therefore, the ACFs and PACFs suggest that AR(1) models should be used

to fit the daily return rates of the long-term bond and short-term bill. Both the ACF and

PACF of the daily return rate of the equity are close to 0 for lags more than one day. The

weak correlations among the time series indicate that the daily return rate for the equity has

a very weak daily relationship and almost approaches white noise. Surprisingly, the ACF

and PACF of the daily return rate of Portfolio 1 are nearly 0 for lags more than one day,

which means the process of the daily return rate of the portfolio should also be modeled as

white noise. However, only 10% of the portfolio is equity which is close to white noise. The

other 90% is invested in long-term bonds and short-term Treasury bills, which have strong

daily relationships. From Figure 4.1, we can see that there is a much higher daily volatil-

ity for the equity than for the long-term bond and short-term bill. Statistic calculations

show that the daily volatility of the equity is more than 100 times higher than that of the

long-term bond and short-term bill. As a result, the noise of the 10% equity overwhelms all

the relationship among the assets and makes the return rate of the whole portfolio behave

like white noise. Due to the high volatility and weak correlation of the return rate of the

equity, it is difficult to approximate the φ of the AR(1) processes for the daily return rate

of the equity or the daily return rate of Portfolio 1 calculated in the global model. It is also

difficult to characterize the relationship between the equity and the other assets. Therefore,

an “Annual Method” is used to reduce the noise in the rate for the equity. In the Annual

Method, instead of modeling the AR(1) processes directly from the daily data (which is

called “Daily Method” in this project), the daily data in each year is summarized into be

an annual rate and then all the past annual rates are used to model the AR(1) process.

The results for these two methods are shown in Table 4.1. To make the results comparable,

all the parameters obtained by the Daily Method are converted into annual unit. The φ
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Figure 4.2: Autocorrelation Function and Partial Autocorrelation Function of the Daily
Return Rates
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and σa of the AR(1) processes for the rates of the long-term bond and short-term Treasury

bill are very close for these two methods (0.929 vs 0.931 and 0.857 vs 0.852). Since there

is a high correlation in the daily data of each of these two assets, the annual volatilities

(σ) obtained from the Daily Method are only slightly higher than those obtained directly

from the Annual Method. Most of the noise cannot be canceled by summing the daily rates

for these two assets. However, by using the Annual Method, the φ of the AR(1) process

modeling the annual rate of the equity increases from 0 to 0.06, and the φ of the AR(1)

process modeling the annual rate of the portfolio under the global model greatly increases

from 0 to 0.766. The annual volatilities for the rates of both the equity and the portfolio

decrease more than tenfold in the Annual Method. Since the daily rates of the equity are

almost independent, the summation of the daily data into annual data effectively reduces

the total variation and make it easier to identify the correlations between the equity and

other assets. The ACFs and PACFs of the rates collected by the Annual Method are

Table 4.1: Comparison of Daily Method and Annual Method
Daily Method Annual Method

Long1 Short2 Equity3 Portfolio4 Long Short Equity Portfolio
φ 0.929 0.859 0 0 0.932 0.852 0.06 0.766
σa 0.011 0.015 2.535 0.255 0.010 .014 0.129 0.0175

1 Long = the rate of the long-term bond
2 Short = the rate of the short-term Treasury bill
3 Equity = the rate of the equity
4 Portfolio = the rate of the portfolio under the global model

calculated and shown in Figure 4.3. The time series of the annual rate of the equity remains

close to white noise since its ACF and PACF is around 0 for all lags after lag 0. The ACFs

of the rates of the long-term bond, the short-term Treasury bill and the portfolio under the

global model yield a slow geometric decay, and the PACFs quickly decreases after one-year

lag. Therefore, it is reasonable to fit AR(1) processes in our model.

4.1.2 Fitting the Univariate Model

In the univariate model, the three assets in the portfolio are modeled by three separate

AR(1) processes. By fitting the data with the Annual Method, we have:
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Figure 4.3: Autocorrelation Function and Partial Autocorrelation Function of the Annual
Return Rates
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• the AR(1) process for the ten-year long-term bond

XL,t − 0.07263607 = 0.9316741(XL,t−1 − 0.07263607) + aL,t (4.1)

where 0.07263607 is the long-term mean of the annual return rate for the long-term

bond, and the random error term aL,t ∼ N(0, 9.398E − 05);

• the AR(1) process for the three-month short-term Treasury bill

XS,t − 0.05735164 = 0.851751(XS,t−1 − 0.05735164) + aS,t (4.2)

where 0.05735164 is the long-term mean of the annual return rate for the short-term

Treasury bill, and the random error term aS,t ∼ N(0, 1.923E − 04); and,

• the AR(1) process for the equity

XE,t − 0.08146797 = 0.06291437(XE,t−1 − 0.08146797) + aE,t (4.3)

where 0.08146797 is the long-term mean of the annual return rate for the equity, and

the random error term aE,t ∼ N(0, 0.01673).

Among these three assets, the short-term Treasury bill has the lowest average return rate

(5.74%) in the long term, while the equity has the highest average return rate (8.15%) in

long term. As described in Section 4.1.1, the annual rates of the long-term bond and short-

term Treasury bill follow the AR(1) processes with their φ quite close to 1, which indicates

a strong correlation between the rates of the current year and the previous year. The AR(1)

process for the equity has a φ close to 0 and it is meaningless to estimate the return rate of

the equity this year from the rate of the past year.

The φ for all the assets are between 0 and 1. Therefore, the AR(1) processes can be con-

verted to their corresponding O-U processes. From Equations (2.21) and (2.22), we know

that α = − ln(φ)
∆ and σ =

√
2ασ2

a
1−φ2 . Hence, we have the following covariance equivalent O-U

processes:

• the O-U process for the ten-year long-term bond

XL,t − 0.07263607 = e−αLt(XL,0 − 0.07263607) + σL

∫ t

0
e−αL(t−s)dWs (4.4)

where αL and σL in this equation equal 0.07077217 and 0.01003915, respectively.
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• the O-U process for the three-month short-term Treasury bill

XS,t − 0.05735164 = e−αSt(XS,t−1 − 0.05735164) + σS

∫ t

0
e−αS(t−s)dWs (4.5)

where αS and σS in this equation equal 0.1604602 and 0.01499311, respectively.

• the O-U process for the equity

XE,t − 0.08146797 = e−αEt(XE,t−1 − 0.08146797) + σE

∫ t

0
e−αE(t−s)dWs (4.6)

where αE and σE in this equation equal 2.765981 and 0.3047845, respectively.

Note that α is the market force bringing the rate of return to its long-term mean. It will take

1/α units of time to reduce the distance that the rate is away from its long-term mean by

63.2% (on average). As a result, it takes about 42, 19 and 1 year for the conational expected

values of long-term bond, short-term Treasury bill, and equity respectively to get 95 % closer

to their long-term equilibrium (i.e. reducing the distance away from the long-term mean by

95 %).

4.1.3 Fitting the Multivariate Model

The three assets can be also modeled by a multidimensional AR(1) process in the multi-

variate model, given by
XL,t − 0.0726

XS,t − 0.0574

XE,t − 0.0815

 = Φ ·


XL,t−1 − 0.0726

XS,t−1 − 0.0574

XE,t−1 − 0.0815

+


âL,t

âS,t

âE,t

 (4.7)

where Φ =


0.56671187 0.3501652 −0.004155868

−0.04221515 0.8784722 0.014827817

2.20449749 −0.8540416 0.040385848

, and [âL,t, âS,t, âL,t]T follows a

multivariate normal distribution with mean 0 and 3×3 covariance matrix

Σa=


7.950197e− 05 9.764117e− 05 −0.0002809399

9.764117e− 05 1.884875e− 04 −0.0001513304

−2.809399e− 04 −1.513304e− 04 0.0157239355

.

To identify the relationships among the assets clearly, every two assets of these three assets

are fitted separately by an two-dimensional AR(1) process. We obtain three two-dimensional

AR(1) processes:



CHAPTER 4. FITTING AND COMPARING INVESTMENT MODELS 37

• the AR(1) process for the ten-year long-term bond and three-month Treasury bill[
XL,t − 0.0726

XS,t − 0.0574

]
=

[
0.5650 0.3496

−0.03609 0.8805

][
XL,t−1 − 0.0726

XS,t−1 − 0.0574

]
+

[
âL,t

âS,t

]
(4.8)

where [âL,t, âS,t]
T follows a multivariate normal distribution with a covariance matrix[

7.979e− 05 9.661e− 05

9.661e− 05 1.922e− 4

]
;

• the AR(1) process for the ten-year long-term bond and equity[
XL,t − 0.0726

XE,t − 0.0815

]
=

[
0.9338 −0.003817

1.3092 0.039560

][
XL,t−1 − 0.0726

XE,t−1 − 0.0815

]
+
[

âL,t, âE,t

]
(4.9)

where [âL,t, âE,t]
T has the covariance matrix

[
9.373e− 05 −3.156e− 4

−3.156e− 04 0.0158086

]
; and

• the AR(1) process for the three-month short-term Treasury bill and equity[
XS,t − 0.0574

XE,t − 0.0815

]
=

[
0.8448 0.01474

0.9022 0.04517

][
XS,t−1 − 0.0574

XE,t−1 − 0.0815

]
+

[
âS,t

âE,t

]
(4.10)

where [âS,tâE,t]
T has the covariance matrix

[
1.886e− 04 −1.595e− 4

−1.595e− 04 0.0161525

]
.

Based on the two-dimensional AR(1) process described in Equation (4.8), the return rate of

the long-term bond depends on 56.5% of the return rate of the long-term bond last year and

35% of the return rate of short-term Treasury bill last year. On the other hand, the return

rate of the short-term Treasury bill is mainly dependent on the rate of the short-term Trea-

sury bill last year (88%), with almost no dependence on the rate of the long-term bond last

year (only -3.6%). This is reasonable since the short-term interest rate is an important con-

sideration in determining the long-term interest rate. However, the short-term interest rate

is influenced by a number of other short term economic factors and is not directly affected

by the long-term interest rate. The AR(1) processes described in Equations (4.9) and (4.10)

show that the return rate of the equity is greatly dependent on the past long- or short-term

interest rates but not on the past return rate of the equity itself. On the other hand, the

past return rate of the equity has almost no impact on the long- and short-term interest

rates. By comparing Equations (4.8), (4.9) and (4.10) which describe the two-dimensional
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AR(1) processes to Equation (4.7) describing the three-dimensional AR(1) process, we find

that the three-dimensional AR(1) process in Equation (4.7) precisely defines the same rela-

tionship between the return rates of the long-term bond and the short-term Treasury bill.

However, it suggests different parameters for characterizing the relationships between equity

and the other assets. Due to the correlation between the return rates of the long-term bond

and the short-term Treasury bill, the dependence of the rate of the equity can be described

as a series of different combinations of the past return rates of the long-term bond and the

short-term Treasury bill. Therefore, it is difficult to determine the relationship of the equity

with the long-term bond and short-term Treasury bill directly from the three-dimensional

AR(1) process. However, all these different combinations generate similiar results for the

return rate of the equity.

As described in Section 3.3.1, the multivariate AR(1) process can be converted into a co-

variance equivalent three-dimensional O-U process. Here, we have the equation
XL,t − 0.0726

XS,t − 0.0574

XE,t − 0.0815

 = eAt


XL,0 − 0.0726

XS,0 − 0.0574

XE,0 − 0.0815

+
∫ t

0
eA(t−s)σdWs (4.11)

where A =


−0.4664490 0.43537486 −0.03252307

−0.1564092 −0.05791841 0.04284787

8.4957912 −4.92206720 −2.52848895

,

and σ =
0.007739484 0 0

0.011560909 0.009628814 0

−0.059952797 −0.031578778 0.2800872

.

To obtain a closed-form expression for eAt in Equation (3.20), the eigenvalues (µ1, µ2 and

µ3) and the corresponding eigenvectors of A are calculated. We have

µ1 = −0.1504782, µ2 = −0.6546244, µ3 = −2.2477537, (4.12)

and 
v11 v21 1

v12 v22 1

v13 v23 1

 =


0.5576568 0.4794176 1

0.21100548 −0.01649836 1

0.02264505 −0.01794929 1

 . (4.13)
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µ1, µ2, and µ3 are all negative values in Equation (4.12), so the three-dimensional O-U pro-

cess is stationary.

To calculate the first and second moments of Y t, we need to construct the matrices B

and σY are constructed from matricesA and σ. We have

B =

[
A 0

E 0

]
=



−0.4664490 0.43537486 −0.03252307 0 0 0

−0.1564092 −0.05791841 0.04284787 0 0 0

8.4957912 −4.92206720 −2.52848895 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


, (4.14)

and

σY =

[
σ 0

0 0

]
=



0.007739484 0 0 0 0 0

0.011560909 0.009628814 0 0 0 0

−0.059952797 −0.031578778 0.2800872 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (4.15)

As explained in Section 3.3.2, we also need the eigenvalues and corresponding eigenvectors

of eB to find the conditional expected value and covariance function of Y t. The eigenvalues

of eB are 1, 1, 1, 0.8602965, 0.5196372 and 0.1056362. The corresponding eigenvectors are

0 0 0 γ11 γ12 γ13

0 0 0 γ21 γ22 γ23

0 0 0 γ31 γ32 γ33

1 0 0 γ41 γ42 γ43

0 1 0 γ51 γ52 γ53

0 0 1 1 1 1


=



0 0 0 −0.0839152 −0.1381293 −0.0509005

0 0 0 −0.0721419 0.0108002 0.0403456

0 0 0 −0.1504782 −0.6546245 −2.2477537

1 0 0 0.5576569 0.211005 0.0226451

0 1 0 0.4794176 −0.0164984 −0.0179493

0 0 1 1 1 1


(4.16)

4.1.4 Fitting the Global Model

In the global model, the rate of return of the combined the assets is fitted by a one-

dimensional AR(1) model.
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We obtained the following AR(1) process to describe the rate of return of Asset Portfo-

lio 1 (60% of long-term bond, 30% of short-term Treasury bill and 10% of equity):

XP1,t − 0.0689 = 0.766(XP1,0 − 0.0689) + a1,t (4.17)

where a1,t ∼ N(0, 3.06e− 4).

The AR(1) process that describes the rate of return of Asset Portfolio 2 (60% long-term

bond, 10% short-term Treasury bill and 30% equity) is

XP2,t − 0.0738 = 0.286172(XP2,0 − 0.0738) + a2,t (4.18)

where a2,t ∼ N(0, 0.001784).

We obtained the following AR(1) process to describe the rate of return of Asset Portfo-

lio 3 (30% long-term bond, 10% short-term Treasury bill and 60% equity)

XP3,t − 0.0764 = 0.1114623(XP3,0 − 0.0764) + a3,t (4.19)

where a3,t ∼ N(0, 0.006235).

The average rate of return of the asset portfolio increases with the proportion of the port-

folio invested in equity. The volatility of the portfolio also increases when the portfolio has

more equity. The correlation between the rate of return at time t and the rate of return at

time t-1 is weaker when more equity is included in the portfolio.

These AR(1) processes can be converted to the following O-U processes since they are

stationary and mean-reverting (0 < φ < 1):

• the O-U process for Portfolio 1

XP1,t − 0.0689 = e−αP1
t(XP1,0 − 0.0689) + σP1

∫ t

0
e−αP1

(t−s)dWs (4.20)

where αP1 and σP1 in this equation equal 0.2671052 and 0.01988492, respectively.

• the O-U process for Portfolio 2

XP2,t − 0.0738 = e−αP2
t(XP2,t−1 − 0.0738) + σP2

∫ t

0
e−αP2

(t−s)dWs (4.21)

where αP2 and σP2 in this equation equal 1.251162 and 0.06974145, respectively.
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• the O-U process for Portfolio 3

XP3,t − 0.0764 = e−αP3
t(XP3,0 − 0.0764) + σP3

∫ t

0
e−αP3

(t−s)dWs (4.22)

where αP3 and σP3 in this equation equal 2.194069 and 0.1664489, respectively.

4.2 Comparing the Models

In Chapters 2 and 3, the expression used to calculate the first and second moments of

Xt, Yt of the asset portfolios under each model were presented in detail. By plugging the

numerical values of the parameters obtained in Section 4.1 into those equations in Sections

3.1 and 3.2, the calculations for the univariate model and global model become simple and

straightforward. The multivariate model can be calculated as well, although it may be more

arduous and time-consuming.

4.2.1 Comparing the Instantaneous Return Rates

To better understand the movement of the rate of return of the portfolios, the conditional

expected value and variance of Xt for each asset in the portfolio are studied first. By using

the annual return rates of year 2007 as the starting value, x0, the conditional expected

values of the instantaneous return rate (E(Xt|X0)) for each asset, under the univariate and

multivariate models, are shown in Figure 4.4, and the conditional variances (V ar(Xt|X0))

are shown in Figure 4.5.

In the first graph of Figure 4.4, the interest rate of the long-term bond needs more than

40 years to asymptotically approach its long-term mean in the univariate model, while it

needs less than 20 years to approach the same long-term mean in the multivariate model.

The difference is attributed to the different dependence of the long-term bond interest rate

described in the two models. In the univariate model, it depends on 93.2% of the long-term

interest rate last year, so it has very high correlation with the past data and reverts very

slowly. In contrast, the long-term bond interest rate in the multivariate model depends on

56.5% of the long-term interest rate of last year and 35% of the short-term interest rate

of last year. The interest rate of the short-term Treasury bill has a larger reverting speed

coefficient (α = 0.16) than that of the long-term bond interest rate c (α = 0.07). Therefore,

the interest rate of the long-term bond approaches its long-term stationarity more quickly
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Figure 4.4: E(Xt|X0) for Each Asset
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Figure 4.5: V (Xt|X0) for Each Asset
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in the multivariate model. Because the interest rate of the short-term Treasury bill depends

mainly on the short-term Treasury bill of last year in both the univariate and multivariate

models, the conditional expected values of the short-term Treasury bill interest rate match

well between the univariate model and the multivariate model shown in the second graph of

Figure 4.4. Compared to the long-term bond and short-term Treasury bill, the rate of return

of the equity are the most different between the univariate and multivariate models (shown

in the third graph of Figure 4.4). In the univariate model, the rate of return of the equity

is described as an O-U process with a large α (2.77). In the multivariate model, the rate of

return of the equity is modeled as a process heavily dependent on the past interest rates of

both the long-term bond and the short-term Treasury bill. Since the interest rates of both

the long-term bond and the short-term Treasury bill have a slow mean reverting speed, the

rate of return of the equity in the multivariate model has a slow reverting speed as well. As

a result, the rate reverts to its long-term mean much more quickly in the univariate model

than in the multivariate model.

The conditional variances of the instantaneous rates of return for the long-term bond and

equity are different in the univariate and multivariate models as well (shown in Figure

4.5). The stationary variance of the long-term bond calculated in the multivariate model is

smaller than the one calculated in the univariate model due to the smaller covariance among

the series estimated by the multivariate model (shown in the first graph of Figure 4.5). In

contrast, the stationary variance of the instantaneous return rate of the equity calculated in

the multivariate model is larger than the one in the univariate model, because the covariance

between the time series calculated from the multivariate model is larger. Additionally, the

conditional variance of the rate of the equity reaches stationarity much more slowly in the

multivariate model (about 15 years) than in the univariate model (around one year). Both

the third and fourth graphs in Figure 4.5 display the conditional variance of the equity over

time. The scale of the Y-axis in the third graph is 0-0.02 and the scale of the Y-axis in the

fourth graph is 0.016-0.0175. The third graph shows that the conditional variance of Xt of

the equity is much larger than the conditional variances of Xt of the long-term bond and

short-term Treasury bill. The fourth graph shows the difference of Xt of the equity between

the univariate and multivariate models.

Having studied and compared the conditional expected values and variances of Xt for each
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asset between the univariate and multivariate models, we can further work on the rates of

the return of the entire asset portfolios. In the portfolios, the covariances among the assets

need to be considered as well. By using the annual return rates of 2007 as the starting

value, x0, the conditional expected values (E(Xt|X0)) of the instantaneous return rate for

Portfolio 1 (60% long-term bond, 30% short-term Treasury bill and 10% equity), Portfolio 2

(60% long-term bond, 10% short-term Treasury bill and 30% equity) and Portfolio 3 (30%

long-term bond, 10% short-term Treasury bill and 60% equity) are shown in Figure 4.6. The

conditional variances (Var(Xt|X0)) of the instantaneous return rates for these portfolios are

shown in Figure 4.7.

The curves of both E(Xt|X0) and Var(Xt|X0) are quite different among these three mod-

els in short-term (shown in Figures 4.6 and 4.7). When the proportion of equity is about

10%, the curves of E(Xt|X0) and Var(Xt|X0) calculated from the multivariate model are

close to the curves calculated from the global model. As the percentage of equity increases,

the reverting speed in the global model becomes higher than the reverting speed for the

multivariate model due to the rapidly increasing of α in the global model. The conditional

expected values and variances calculated from the univariate model have a jump in the

first year due to the equity component. They then revert to their long-term means slowly,

depending on the long-term bond and short-term Treasury bill components. Therefore, the

curves calculated from the univariate model are always initially above the curves in the

multivariate model, and eventually drop below the curves for the multivariate model.

For each portfolio, the conditional expected value of Xt calculated in all three models asymp-

totically approach the same stationary value (shown in Figure 4.6). And this stationary value

increases as the proportion of equity in the portfolio increases. The conditional variances

of Xt in three models approach different stationary values. In long term, the covariance

among the rates of return of the assets are much greater than the variance difference of

the long-term bond return rate between the univariate model and the multivariate model.

Hence, in all three asset portfolios, the stationary value of Var(Xt|X0) calculated from the

univariate model is smaller than those calculated from the multivariate and global models.

In contrast, the global model takes those correlation into consideration and can be a good

and quick way to estimate the variance of Xt calculated under the multivariate model.
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Figure 4.6: E(Xt|X0) for Each Portfolio, Starting in 2007, Using Annual Return Rates
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Figure 4.7: V ar(Xt|X0) for Each Portfolio, Starting in 2007, Using Annual Return Rates
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4.2.2 Comparing the Accumulated Return Rates

We are also interested in the accumulation function of the rate of return, since it is essential

for calculating the present or future value of the portfolio. The conditional expected values

of Yt for the portfolios determined by the different models are shown in Figure 4.8.

The conditional expected values of Yt of each portfolio calculated from the three models

are very close, because the integration of the difference of E(Xt|X0) among the three mod-

els is small. The result obtained from the global model is always slightly greater than the

one obtained from the univariate model due to the fact that the long-term bond and short-

term Treasury bill asset components are combined with the equity in the global model and

assumed to have higher mean reverting speeds from their low starting values. E(Yt|X0)

increases more quickly with the proportion of equity in the portfolio in the univariate and

global models than in the multivariate model. In the multivariate model, the rate of return

for the equity is assumed to be dependent on the rates of return for both long-term bond

and short-term Treasury bill, and reverts to its long-term mean slowly from its low starting

value. In the univariate and global models, the rates of return of the equity are assumed

to approach their long-term means more quickly. Hence, E(Yt|X0) is more sensitive to an

increase in the proportion of equity under the univariate and global models than under the

multivariate model.

The variances of Yt (V ar(Yt|X0)) of each portfolio from the three models are shown in

Figure 4.9. Unlike E(Yt|X0), V ar(Yt|X0) are quite different among the three models. Due

to the accumulation of the covariance, V ar(Yt|X0) of all the portfolios calculated from the

multivariate model exceed those calculated from the global and univariate models after a

certain period (less than 15 years) and increase much more quickly after that. As the eq-

uity proportions increase in the portfolios, the difference caused by the covariance becomes

more obvious, because the multivariate model is the only model that can fully consider

the correlations between the equity and other assets. The curves for the V ar(Yt|X0) under

the global model increases most quickly at the beginning, but it may be outpaced by the

curves calculated from both the multivariate and univariate models in the long run. The

global model includes all the variance and covariance in the assets with one univariate O-

U process. Also, it underestimates the covariance and overestimates the variance for our
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three asset portfolios. As a result, V ar(Yt|X0) estimated from the global model is initially

greater than those estimated from the other two models, and smaller in later period when

more covariance terms are included in the calculation. Figure 4.10 presents the first 40-year

V ar(Yt|X0) of the portfolios calculated from the different models. The curve calculated

from the global model is close to the curve from the multivariate model in the first 15 years

when the proportion of equity is 10%. In fact, the global curve will be closer to the curve

of the multivariate model in the first 20 years when the proportion of equity is less (data

not shown here).
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Figure 4.8: E(Yt|X0) for Each Portfolio, Starting in 2007, Using Annual Return Rates
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Figure 4.9: V ar(Yt|X0) for Each Portfolio, Starting in 2007, Using Annual Return Rates
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Figure 4.10: V ar(Yt|X0) for Each Portfolio for the First Forty Years, Starting in 2007, Using
Annual Return Rates



Chapter 5

Applications

In Chapter 4, the parameters of the multivariate, univariate and global models were es-

timated from historical data for ten-year Constant Maturity Treasury Bills, three-month

Treasury Bills and the S&P 500 Index. Furthermore, the conditional expected value and

variance of Yt for the portfolios were calculated using these three models. In this chapter,

we will illustrate how to use the calculated results to price annuity products and optimize

asset investment strategies.

5.1 Annuity Pricing

The discount factor for any future payment to be received at time t is e−Yt . Since Yt has a

normal distribution, e−Yt has a lognormal distribution. Therefore, the expected value and

variance of the present value of any future payment can be obtained by using the following

equations

E(e−Yt) = e−E(Yt)+0.5V ar(Yt), (5.1)

V ar(e−Yt) = e−2E(Yt)+V ar(Yt)(eV ar(Yt) − 1) (5.2)

and

Cov(e−Yt , e−Ys) = e−E(Yt)−E(Ys)+0.5[V ar(Yt)+V ar(Ys)](eCov(Yt,Ys) − 1) (5.3)

where E(Yt), V ar(Yt) and Cov(Yt, Ys) were derived in Chapters 3 and 4.

53
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5.1.1 Pricing n-Year Certain Annuity-Immediate Products

An n-year certain annuity-immediate product is an insurance product that does not involve

mortality risk. Only the interest risk needs to be considered in the product pricing. The

present values of the future payments (Z) of an n-year certain annuity-immediate can be

expressed as

Z =
n∑

i=1

e−Yi (5.4)

where Yi is the accumulated interest rate at time i. Therefore, we have

E(Z) =
n∑

i=1

E(e−Yi) =
n∑

i=1

e−E(Yi)+0.5V ar(Yi), (5.5)

E(Z2) =
n∑

i=1

n∑
j=1

E(e−Yi−Yj )

=
n∑

i=1

n∑
j=1

e−E(Yi)−E(Yj)+0.5[V ar(Yi)+V ar(Yj)+2Cov(Yi,Yj)] (5.6)

(5.7)

and

V ar(Z) = E(Z2)− [E(Z)]2. (5.8)

E(Z), the net single premium of the certain annuity-immediate, is normally denoted by

an . To reduce computation time, E(Z) and E(Z2) can also be obtained from the following

recursive equations

En(Z) = En−1(Z) + e−E(Yn)+0.5V ar(Yn) (5.9)

and

En(Z2) = En−1(Z2)+2
n−1∑
i=1

e−E(Yi)−E(Yn)+0.5[V ar(Yi)+V ar(Yn)+2Cov(Yi,Yn)] + e−2E(Yn)+2V ar(Yn)

(5.10)

where E1(Z) = e−E(Y1)+0.5V ar(Y1) and E1(Z2) = e−2E(Y1)+2V ar(Y1). The expected values,

standard deviations and coefficients of variation of Z calculated with the three models are

summarized in Table 5.1. This table illustrates some salient properties of the three models

in pricing n-year certain annuity. First, the net single premiums (E(Z)) of a certain annuity

calculated from the univariate and global models always decrease as the proportion of equity
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Table 5.1: Mean, Standard Deviation and Coefficient of Variation of Z of an n-Year Certain
Annuity-Immediate

Portfolio 11 Portfolio 22 Portfolio 33

n Mlt4 Uni5 Glb6 Mlt Uni Glb Mlt Uni Glb
E(Z) 1 0.9561 0.9542 0.9568 0.9600 0.9512 0.9487 0.9687 0.9479 0.9452
sd(Z)7 1 0.0077 0.0085 0.0100 0.0210 0.0225 0.0251 0.0435 0.0445 0.0462
CV (Z)8 1 0.0081 0.0089 0.0104 0.0219 0.0237 0.0265 0.0450 0.0469 0.0489
E(Z) 5 4.309 4.312 4.303 4.327 4.248 4.149 4.396 4.171 4.108
sd(Z) 5 0.123 0.105 0.180 0.179 0.196 0.262 0.339 0.360 0.392
CV (Z) 5 0.029 0.024 0.042 0.041 0.046 0.063 0.077 0.086 0.096
E(Z) 10 7.524 7.586 7.491 7.516 7.382 7.047 7.655 7.144 6.954
sd(Z) 10 0.460 0.346 0.570 0.533 0.499 0.624 0.838 0.826 0.890
CV (Z) 10 0.061 0.046 0.076 0.071 0.068 0.089 0.109 0.116 0.128
E(Z) 25 12.84 13.14 12.65 12.62 12.47 11.45 12.86 11.74 11.23
sd(Z) 25 1.73 1.29 1.70 1.83 1.43 1.42 2.45 1.89 1.96
CV (Z) 25 0.135 0.0983 0.135 0.145 0.115 0.124 0.190 0.161 0.175

1 Portfolio 1 = 60% long-term bond, 30% short-term Treasury bill and 10% equity
2 Portfolio 2 = 60% long-term bond, 10% short-term Treasury bill and 30% equity
3 Portfolio 3 = 30% long-term bond, 10% short-term Treasury bill and 60% equity
4 Mlt = Multivariate Model
5 Uni = Univariate Model
6 Glb = Global Model
7 sd(Z) = standard deviation of Z
8 CV(Z) = coefficient of variation of Z
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in the portfolio increases. However, E(Z) calculated from the multivariate model can go ei-

ther direction as the proportion of equity increases. Under the univariate and global models,

the rates of return of the equity asymptotically converge to their long-term means quickly

from their low starting values. In contrast, in the multivariate model, the return rate for

the equity reverts to its long-term mean slowly due to its dependence on the rates of return

of both long-term bond and short-term Treasury bill. Therefore, the increment of E(Yt|X0)

calculated from the univariate and global models is greater than the one calculated from

the multivariate model for the one-unit increase of the proportion of equity. Additionally,

in the univariate and global models, the increment of V ar(Yt|X0) caused by increasing the

proportion of equity is smaller due to the underestimation of the variance of the equity and

the covariance of the equity with other assets. Therefore, under the univariate and global

models, the increment of E(Yt|X0) is always greater than the increment of the V ar(Yt|X0)

caused as more equity components are added in the portfolio. As a result, E(Z) calculated

from these two models decreases as the proportion of equity increases. In the multivariate

model, the increment of E(Yt|X0) may not counteract the increment of the V ar(Yt|X0),

so E(Z) may even increase when more equity is included in the portfolio. Secondly, as n

increases in the annuity contract, the standard deviation of Z (sd(Z)) calculated from the

multivariate model increases more quickly than those calculated from the univariate and

global models. This is because the multivariate model considers more covariance among the

assets, which becomes larger as the payment duration increases. Thirdly, for an annuity

with a short payment period, Var(Z) calculated from the global model is greater than Var(Z)

calculated from the other two models. With the elongation of the payment period, Var(Z)

calculated from the global model is exceeded by the one calculated from the multivariate

model relatively more quickly (compared to the univariate model). Var(Z) calculated from

the univariate model approaches Var(Z) calculated from the global model at a lower speed,

which can be reduced further by increasing the proportion of equity in the portfolio. This

can be explained by the behavior of V ar(Yt|X0) (Figure 4.10). The underestimation of

the covariance and overestimation of the variance in the global model results in a larger

V ar(Yt|X0) over a short period, but smaller V ar(Yt|X0) over a long period.

In fact, all the results in Table 5.1 can be reasonably explained by Figures 4.8 and 4.9

in Chapter 4, which illustrate E(Yt|X0) and V ar(Yt|X0), because E(Z) and Var(Z) are

calculated based on conditional expected value, variance and covariance of Yt.
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5.1.2 Pricing Whole-Life Annuity Products

Knowing E(Z) and Var(Z) for an n-year certain annuity-immediate, we can calculate the

expected value and variance of the present value of future benefit payments for a whole-life

annuity-immediate product by using the following equations

E(Z) = ax =
ω−x−1∑

k=1

kpxe−Yk =
ω−x−1∑

k=1

k|qxE(ak ), (5.11)

E(Z2) = E(E(Z2|K)] =
ω−x−1∑

k=1

k|qxE(ak
2) (5.12)

and

V ar(Z) = E(Z2)− [E(Z)]2, (5.13)

where E(ak ) denotes the expected value of the present value of future benefit payments of a

k-year certain annuity-immediate. E(ak
2) denotes the second moment of the present value

of future benefit payments of a k-year certain annuity-immediate. Mortality Table UP-94

is used for the calculation.

Figure 5.1 illustrates the expected value of Z of whole-life annuities for males over ages.

In Figure 5.1, E(Z) calculated from all three models always decreases as the age at issue

increases. For a whole-life annuity, increasing the age at issue usually increases the prob-

ability of early death during the contract (with some exceptions between ages 20 and 30),

but also shortens every contract duration. These two effects make the expected value of Z

decrease as the age at issue increases. Due to the decreasing of E(Z), the difference between

the E(Z) values calculated from the three models also decreases as the age at issue increases.

Similar to the net single premium of an n-year certain annuity-immediate, E(Z) calculated

from the multivariate model is much less sensitive to increases in the proportion of equity

in the portfolio than that of the other two models. Under the univariate and global models,

E(Z) can be reduced quickly by increasing the proportion of equity. On the contrary, E(Z)

calculated from the multivariate model decreases slowly or may even increase (depending

on the payment period and the proportions of the three asset types in the portfolio) as the

proportion of equity increases.

The variance of Z for whole-life annuities for a male is displayed over different ages
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Figure 5.1: E(Z) for a Whole-Life Annuity
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Figure 5.2: Var(Z) for a Whole-Life Annuity
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Figure 5.3: CV(Z) for a Whole-Life Annuity
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in Figure 5.2. The interest risk always decreases as the age at issue increases, due to fewer

payments and a shorter payment period. Since most death occurs between ages 70 and 90,

the mortality risk increases as the age at issue approaches 70 and quickly decreases after

that. Therefore, the graph of Var(Z) for each of the three models has a hump around age 70

when the mortality risk is dominant. For the univariate and global models, the uncertainty

due to mortality is much greater than the uncertainty due to the force of interest. For this

reason, the shapes of Var(Z) tend to be given by the uncertainty due to mortality under the

univariate and global models. Because the multivariate model gives more consideration to

the autocovariance and covariance of equity, the investment risk calculated from the mul-

tivariate model is larger than that calculated from the other models when the age at issue

is small. In the multivariate model, Var(Z) is more dominated by the interest risk when

the age at issue is small. So the curve of Var(Z) calculated from the multivariate model

decreases when the age at issue is small. When the age at issue is greater than 50, the

mortality risk becomes more influential and determines the shape of Var(Z). As a result,

there is a large difference in the Var(Z) between the multivariate model and the other two

models when the age at issue is small. The difference becomes much more significant when

the proportion of equity is high (as shown in Asset Portfolio 3).

As for the coefficient of variation of Z, in all three models, it increases rapidly with the

age at issue when the age at issue is large and more slowly when the age at issue is small

(shown in Figure 5.3). For a fixed age at issue, it also increases more quickly with the

proportion of equity under the multivariate model than the other two models.

5.2 Optimal Asset Allocation Strategy

If the asset proportions in a portfolio are known and fixed, the actuarial present value of

future annuity payment can be estimated from the three models. In this section, we as-

sume that the asset proportions in the portfolio are undetermined and need to be optimized

to maximize the profit for a whole-life policy sold to a 65-year-old male. For simplicity,

we assume that only three kinds of assets are available in the market: ten-year long-term

bonds, three-month short-term Treasury bills and equity. Additionally, the three assets are

re-balanced frequently and their proportions in the portfolio remain equal to their starting

values. The return rates of portfolios in year 2007 are assumed to be the starting values.
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The asset portfolio which has the lowest net single premium can yield the maximum aver-

age profit if other expenses are ignored. Intuitively, the asset allocation with the lowest net

single premium can be considered as one of the optimal asset allocation strategies. E(Z)

for investment portfolios composed of three assets with various proportions are calculated

and shown in Figure 5.4. In these three-dimensional graphs, the proportions invested in

the long-term bond and short-term Treasury bill are displayed on the two horizontal axes

and E(Z) is displayed on the vertical axis. The rest of the portfolio is invested in equity,

which is not displayed directly on the graphs. The sum of the proportions invested in the

three assets is always 100%. Area where sum of proportion invested in long -term bond

and short-term Treasury bill would exceed 100% are left blank in the graphs. Consistent

with ealier results, when the proportion of equity increases, E(Z) decreases quickly in the

univariate and global models, but not in the multivariate model (shown as black surfaces

in the graphs). Therefore, as summarized in Table 5.2, the minimum E(Z) calculated from

the univariate and global models occurs with 100% asset allocation in the equity. However,

E(Z) calculated from the multivariate model reaches its minimal value when the portfolio

has 100% allocation in the long-term bond. As mentioned before, the univariate and global

models underestimate the variance and covariance of the equity in the asset portfolio and

overestimate the speed at which the rate of return of the equity reverts to its long-term

mean from the low starting value. As a result, the univariate and global models yield differ-

ent optimal asset allocation strategy from the multivariate model. Based on the net single

premium criteria, the multivariate model suggests investing 100% of assets in long-term

bonds while the other two models suggest investing 100% of assets in equities. Note that

our conclusions for all three models are based on the return rate starting at the 2007 value

which is below the long-term average. If the starting value is changed, the models may make

completely different suggestions. For example, assuming that the starting return rates of

the asset portfolios are twice as high as the long-term mean, we re-calculated E(Z) under

the three models. These results are shown in Figure 5.5. With a higher starting value, the

multivariate model suggests investing 100% of assets in equities while the other two models

suggest investing 100% of assets in long-term bonds.

Reducing risk is another criteria that can be based to optimize the asset allocation strategy.
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Figure 5.4: E(Z) for a Whole-Life Annuity Sold to Male, Age 65, Starting with Rate of
Return in 2007
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Figure 5.5: E(Z) for a Whole-Life Annuity Sold to Male, Age 65, Starting with High Return
Rate
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Var(Z) for investment portfolios of three assets with various proportions are shown in Fig-

ure 5.6. In the graphs, Var(Z) calculated from the multivariate model reaches its minimal

value when the portfolio is invested 100% in long-term bonds. Var(Z) calculated from the

univariate model reaches its minimal value when the portfolio is invested 37% in long-term

bonds, 4% in short-term Treasury bills and 59% in equities. The optimal asset allocation

strategy calculated from the global model to minimize the Var(Z) lies between these two

models: the global model shows that the portfolio with minimal Var(Z) is invested 69%

in long-term bonds and 31% in short-term Treasury bills (summarized in Table 5.2). The

behavior of Var(Z) can be explained by the same reasons used to explain the behavior of

E(Z).

Table 5.2: Asset Portfolios with Minimum and Maximum E(Z) and Var(Z), Starting with
Rate of Return in 2007

E(Z) Var(Z)
Models Minimum Maximum Minimum Maximum

Mlt 100% Long-Term1 100% Short-Term 2 100% Long-Term 100% Equity
Uni 100% Equity 100% Short-Term 37% Long-Term 100% Short-Term

4% Short-Term
59% Equity

Glb 100% Equity 98% Short-Term 69% Long-Term 100% Short-Term
2% Equity 31% Equity

1 Long-Term = Long-Term Bond
2 Short-Term = Short-Term Treasury Bill



CHAPTER 5. APPLICATIONS 66

Figure 5.6: Var(Z) for a Whole-Life Annuity Sold to Male, Age 65, Starting with Rate of
Return in 2007
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Conclusions

In this project, rates of return of asset portfolios are modeled by three different models: the

univariate model, the global model and the multivariate model. Furthermore, a deterministic

method is developed in our project for computing the first and second moments of the

accumulation function of the return rates of the asset portfolio from the multivariate model.

Therefore, the conditional expected values, variances and covariances of the instantaneous

and accumulated return rates for different asset portfolios are calculated for the three models.

Additionally, the expected value and variance of the net single premium for certain types

of annuities are calculated. All the results are compared among the three models. With

more parameters, the multivariate model takes full consideration of the correlation between

the assets in one portfolio and provides a more precise estimate of the rates of return of

the asset portfolios. The univariate model completely ignores the correlation between the

assets in one portfolio which may lead to incorrect estimate of the return rates of the asset

portfolios. In the global model, although the variances and covariances information are

included, the estimate of the rates of return of the portfolio is imprecise due to the limited

parameters used in the model. In most cases, the difference between the multivariate model

and the other two models will have a huge impact on the estimate of the rates of return

of the asset portfolio. Therefore, in practice, the multivariate model should be applied in

order to obtain a more appropriate evaluation of the rates of investment return.

67
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6.1 Comparing the Models

In our project, the asset portfolios are assumed to include three assets: the long-term bond,

the short-term Treasury bill and the equity. In the univariate model, the current interest

rate of the long-term bond is highly dependent on the interest rate of the previous year. In

the multivariate model, the current interest rate of the long-term bond depends on 56.5%

of the long-term bond interest rate of the previous year and 35% of the short-term Treasury

bill interest rate of the previous year. The interest rate of the short-term Treasury bill

depends mainly on the short-term Treasury bill of last year in both the univariate and mul-

tivariate models. The greatest difference between the univariate and multivariate models

lies in their descriptions of the dependence of equity. The equity is described as a process

close to white noise in the univariate model, while it greatly depends on the past interest

rates of both the long-term bond and the short-term Treasury bill in the multivariate model.

The global model combines all three assets and describes the rates of investment return as

a one-dimensional O-U process in which it is difficult to identify the dependence of each

individual asset of the portfolio. As the proportion of equity in the portfolio increases, the

estimate from the global model becomes more like to that from the univariate model.

Because the three models describe the dependence of the assets in quite different ways,

they give different estimates of the rates of return of the asset portfolio. First, E(Yt|X0),

the conditional expected value of the accumulated return rate of the portfolio, is more sen-

sitive to an increase in the proportion of equity under the univariate and global models

than under the multivariate model. As the starting value is lower than the long-term mean,

E(Yt|X0) increases more quickly with the proportion of equity under the univariate and

global models than under the multivariate model due to the higher mean-reverting speed

of the equity in the univariate and global models. For each asset portfolio, due to large co-

variances, Var(Yt|X0) calculated from the multivariate model exceeds that calculated from

the global and univariate models after a certain period (less than 15 years) and increases

much more quickly after that. The global model includes all the variance and covariance in

the assets with one univariate O-U process. In our three asset portfolios, the global model

underestimates the covariance and overestimates the variance. As a result, Var(Yt|X0) es-

timated from the global model is initially greater than that estimated from the other two

models, and smaller in the long-term when more covariance needs to be included in the
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calculation.

6.2 Annuity Pricing and Asset Allocation Optimization

In application, the different models lead to different conclusions as well. The univariate and

global models suggest the net single premium of the annuity product can be greatly reduced

by increasing the proportion of equity in the asset portfolio if the starting return rate is

lower than its long-term mean. The multivariate model suggests the net single premium can

go either direction as the proportion of equity in the asset portfolio increases. Additionally,

the multivariate model indicates the variance of Z increases rapidly with the proportion of

equity, while the univariate and global models indicate Var(Z) does not always increase with

the proportion of equity.

The multivariate model supports a totally different optimal asset allocation strategy for

a whole-life annuity from that supported by the univariate and global models. When the

starting return rate is lower, the multivariate model suggests investing 100% of the asset

in long-term bonds to get a minimum net single premium. In contrast, both the univariate

and global models suggest investing 100% of the asset in equities.

6.3 Future Work

There are many opportunities for future work. For instance, our project focuses on one

single policy. In the future, we could expand our application of the investment models to a

portfolio of policies that share a global investment asset portfolio. To be more ambitious,

we could further analyze the portfolio of policies containing groups of policies with different

asset portfolios. Here, the asset portfolio for each group of policies may include different

proportions of assets. In this project, we assume the mortality rate is deterministic, but

this may not be the case in reality. So it would also be interesting to combine the stochastic

interest rate and stochastic mortality rate in future work. Finally, we use ten-year Constant

Maturity Treasury Bills, three-month Treasury Bills and the S&P 500 Index to represent

three assets in the asset portfolio. Researchers may replace these with other mutual funds

or commonly used investment instruments in the insurance industry and then analyze the
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results.
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