
LIVE PEER-TO-PEER STREAMING WITH SCALABLE

VIDEO CODING AND NETWORK CODING

by

Shabnam Mirshokraie

B.Sc., Ferdowsi University of Mashhad, Mashhad, Iran, 2006

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

c© Shabnam Mirshokraie 2010

SIMON FRASER UNIVERSITY

Fall 2010

All rights reserved. However, in accordance with the Copyright Act

of Canada, this work may be reproduced, without authorization, under

the conditions for Fair Dealing. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law,

particularly if cited appropriately.

APPROVAL

Name: Shabnam Mirshokraie

Degree: Master of Science

Title of Thesis: Live Peer-to-Peer Streaming with Scalable Video Coding and

Network Coding

Examining Committee: Dr. Thomas Shermer,

Professor of Computing Science

Chair

Dr. Mohamed Hefeeda

Senior Supervisor

Associate Professor of Computing Science

Dr. Joseph Peters

Supervisor

Professor of Computing Science

Dr. Jiangchuan Liu

Examiner

Associate Professor of Computing Science

Date Approved:

ii

lib m-scan11
Typewritten Text
November 30, 2010

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

Providing high-quality streaming over peer-to-peer (P2P) systems faces multiple challenges

such as limited upload capacity of peers and high heterogeneity of receivers in terms of

download bandwidth and screen resolutions. In this thesis, we present the design of a P2P

live streaming system that uses scalable video coding (SVC) as well as network coding. The

proposed design enables flexible customization of video streams to support heterogeneous

receivers, highly utilizes upload bandwidth of peers, and quickly adapts to network and peer

dynamics. The proposed design is simple and modular. Therefore, other P2P streaming

systems could also benefit from various components of the proposed design to improve their

performance. We conduct an extensive quantitative analysis to demonstrate the expected

performance gain from the proposed design.

Keywords: peer-to-peer streaming; scalable video coding; network coding; live stream-

ing;

iii

Acknowledgments

I would like to express my deepest gratitude to my senior supervisor, Dr. Mohamed Hefeeda,

for mentoring me in the past two years with his patience and knowledge. It was his guidance

and encouragement that taught me how to do research, and without his support, completion

of this thesis would not have been possible for me.

I would like to express my gratitude to Dr. Joseph Peters, my supervisor, and Dr.

Jiangchuan Liu, my thesis examiner, for being on my committee and reviewing this thesis. I

also would like to thank Dr. Thomas Shermer for taking the time to chair my thesis defense.

I am grateful to all the members at the Network Systems Lab for providing me a stim-

ulating and fun environment. A big thank-you goes to Cheng-Hsin Hsu, who has helped

me a lot for my academic work. The knowledge that I have gained through the insightful

discussions with Cheng are invaluable.

Last but certainly not least, I owe my deepest gratitude to my parents for their love

and endless support. I will never forget what I owe them, and my eternal gratitude to them

cannot be expressed by words.

iv

Contents

Approval ii

Abstract iii

Acknowledgments iv

Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Introduction . 1

1.2 Thesis Statement and Contributions . 2

1.3 Thesis Organization . 3

2 Background and Related Work 4

2.1 Overview of P2P Systems . 4

2.1.1 P2P Streaming Systems . 5

2.1.2 On-Demand and Live Streaming Systems 5

2.1.3 Tree-Based Approaches . 5

2.1.4 Data-Driven Approaches . 6

2.2 Network Coding . 6

2.3 Scalable Video Coding . 8

2.4 Related Work . 9

v

3 Proposed P2P Streaming System 12

3.1 Introduction . 12

3.2 Source Node Software Architecture and Functions 14

3.3 Peer Software Architecture and Functions . 16

3.3.1 Receiver Part . 16

3.3.2 Uploading Part . 19

3.4 Overhead Analysis . 22

3.5 Illustrative Example . 24

4 Experimental Evaluation 27

4.1 Experimental Setup . 27

4.1.1 Average Streaming Rate . 29

4.1.2 Average Streaming Quality . 31

4.1.3 Number of Streaming Requests Served 36

4.1.4 Fraction of Late Frames . 38

4.1.5 Impact of Churn Rate on Video Quality 38

4.1.6 Impact of Flash Crowd Arrivals . 40

4.1.7 Impact of Segment and Block Sizes . 42

5 Conclusions and Future Work 45

5.1 Conclusions . 45

5.2 Future Work . 46

Bibliography 47

vi

List of Tables

3.1 List of symbols used in this chapter. 15

3.2 Encoding and decoding times with 1 KB in each block. 24

3.3 Encoding and decoding times with 2 KB in each block. 24

3.4 Encoding and decoding times with 4 KB in each block. 25

4.1 Characteristics of videos used in the experiments. 28

4.2 Upload bandwidth distribution of peers. 29

vii

List of Figures

2.1 A simple example to demonstrate the potential of using network coding to

increase the throughput achieved by all nodes in the network. 7

2.2 Data block over GF (2l) is divided into l-bits symbols. Finite field operations

are done on symbols. 8

3.1 Initial buffering delay allows the receiver to skips few segments. The receiver

buffers encoded blocks from segments that are ∆ seconds after the current

playback point. 13

3.2 An example of the segmentation method used in combination of network

coding and SVC. 14

3.3 Peer software architecture. Dashed arrows denote video data, and solid ar-

rows denote control messages. 17

3.4 Example of progressive decoding with Gauss-Jordan elimination. 19

3.5 The receiver side algorithm for SVC+NC system. 20

3.6 The uploading part algorithm for SVC+NC system. 22

3.7 An illustrative comparison between SVC enabled P2P streaming protocol and

SVC+NC. In SVC+NC each layer is served by multiple peers. 26

4.1 Average streaming rate achieved using different systems. 30

4.2 Average streaming quality achieved using different systems. 32

4.3 Fluctuations in video quality for Sony Demo video using different systems. . . 33

4.4 Fluctuations in video quality for Tokyo Olympics video using different systems. 34

4.5 Fluctuations in video quality for NBC News video using different systems. . . 35

4.6 Number of served requests for different systems. 37

4.7 Fraction of late frames for different systems. 39

viii

4.8 Impact of churn rate on the average video streaming quality. 41

4.9 Impact of flash crowd on video streaming quality. 42

4.10 Impact of Segment and Block Sizes on video streaming quality. 44

ix

Chapter 1

Introduction

In this chapter, we briefly introduce peer-to-peer (P2P) streaming systems. Then, we de-

scribe the problem addressed in this thesis and summarize our contributions. The organi-

zation of this thesis is given at the end of this chapter.

1.1 Introduction

P2P live video streaming has been proposed to provide live multimedia contents at low cost

for large number of participants [1–3]. Recently, it has seen wide deployment around the

globe. Such attraction towards this technology lies in two key reasons. First, unlike Ip mul-

ticast systems, it does not require support from Internet routers and network infrastructure.

IP multicast is a technique for real-time communication over an IP infrastructure. In Ip

multicast, the nodes in the network (network switches and routers) take care of replicating

the packet to reach multiple receivers. However, in P2P streaming system, peers make a

portion of their resources, such as processing power, disk storage or network bandwidth

directly available to other network participants, without the need for central coordination

by servers or stable hosts. Peers are both suppliers and consumers of resources. Therefore,

it is cost-effective and easy to deploy [4]. Second, a participant in a live streaming session is

not only downloading a video stream, but also uploading it to other participants watching

the same video [4]. Thus, the available system resources increase with more participants,

which makes the P2P system scalable.

P2P streaming systems such as CoolStreaming [5], PPLive [6], UUSee [7], SopCast [8],

and TVAnts [9] attract numerous users every day. As more users get used to viewing

1

CHAPTER 1. INTRODUCTION 2

multimedia content online, they will demand higher and better video quality than available

on many of the current P2P streaming systems. As an indication of this demand and the

response from industry, Huang et al. [10] show that the average bit rate of videos offered

by the MSN Video Services has increased by more than 50% over a nine-month period,

and it is the likely that the bit rate will continue to increase in the future. Providing

high-quality streaming over P2P systems, however, faces multiple challenges, including: (i)

limited upload capacity of peers, (ii) high heterogeneity of receivers in terms of download

bandwidth, screen resolutions, and CPU capacity, and (iii) high churn rate as the peer

population is constantly changing. Addressing these challenges requires not only increasing

the capacity of peers and deploying additional seeding servers to make up the shortage

in resources, but also employing novel methods for encoding and distributing multimedia

content and developing algorithms and protocols to optimally utilize the available resources.

P2P streaming systems are often divided into two major categories: tree-based and

mesh-based (also known as swarm-based and data driven). In tree-based systems, peers

organize themselves into one or more multicast trees and data will be pushed along the tree

structure [11,12]. Tree-based systems incur high costs for the management and maintenance

of the tree structure, especially with high peer churn rates. Mesh-based systems allow

peers to self-organize in mesh-shaped graphs [5, 13, 14]. These systems usually yield better

performance in practice as they are more robust against high-level of peer and network

dynamics [15]. Our work focuses on mesh-based P2P streaming systems.

1.2 Thesis Statement and Contributions

In this thesis, we propose a new design for P2P live streaming systems that significantly

improves their performance. The new design strives to address many of the challenges

impeding current systems by efficiently utilizing peers’ resources, easily customizing mul-

timedia content to support receivers with diverse resources and requirements, and quickly

adapting to network and peer dynamics. The proposed design is simple and practical; we ac-

tually have implemented it. The proposed design employs scalable video coding to support

heterogeneous receivers as well as network coding to maximize the streaming throughput

and handle network dynamics. Although scalable video coding and network coding have

been individually proposed for various systems in the literature, e.g., [16–21], their integrated

use in P2P live streaming systems has not been fully explored in the literature, to the best

CHAPTER 1. INTRODUCTION 3

of our knowledge. The integration of these two technologies provides many performance

benefits beyond those offered by each of them individually, as will be shown in this thesis.

In particular, the contributions of this thesis can be summarized as follows [22]:

• We present the design of a P2P streaming system that employs both scalable video

coding and network coding. The proposed design is modular and can be used as an

improvement plug-in in other P2P streaming systems. That is, we focus on the new

components needed to handle multimedia content compressed in scalable manner and

encoded using network coding. Thus, our work and software components are readily

useful for other systems.

• We quantitatively show the expected performance gain from the proposed design using

actual scalable video traces in realistic P2P streaming environments with high churn

rates, heterogeneous peers, and flash crowd scenarios.

• We show that the proposed system can achieve: (i) significant improvement in the

visual quality perceived by peers (several dBs are observed), (ii) smoother and more

sustained streaming rates (up to 100% increase in the average streaming rate is ob-

tained), (iii) higher streaming capacity by serving more requests from peers, and (iv)

more robustness against high churn rates and flash crowd arrivals of peers compared

to systems that use only scalable video coding (SVC), only single layer streams, or

systems that employs both single layer streams and network coding.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we provide a brief background

on network coding and scalable video coding, and we summarize the previous work in the

literature. In Chapter 3, we describe the proposed system and its main components. In

Chapter 4, we evaluate the proposed system using actual video traces, and we conclude the

thesis in Chapter 5.

Chapter 2

Background and Related Work

In this chapter, we present an overview of P2P systems and in particular P2P streaming

systems. We also describe network coding and scalable video coding, which are employed

in the proposed P2P streaming systems.

More details about network coding can be found in [23–25] and the references therein.

More information about scalable video coding can be found in [26] which describes the recent

H.264/SVC standard.

2.1 Overview of P2P Systems

P2P systems are a class of distributed systems in which participants (peers) cooperate to

achieve a desired service. The P2P paradigm brings several benefits including improved

scalability, eliminating the need for having centralized servers, and cost effectiveness by

utilizing peers resources. In P2P systems, peers form an overlay network among each other.

Peers can join and leave frequently which makes the network topology highly dynamic.

Therefore, such systems should be self-organizing.

File sharing and media streaming are among the most widely deployed applications for

P2P systems. File sharing systems are used for storing and providing files to requesting

peers. Many examples of file-sharing applications are currently running such as Bittorrent

[27], and Gnutella [28]. In next section, we briefly explain P2P media streaming systems.

4

CHAPTER 2. BACKGROUND AND RELATED WORK 5

2.1.1 P2P Streaming Systems

In file-sharing P2P applications, a client download the entire file before start using it. How-

ever, in real-time streaming applications, a user starts playing out the requested movie after

a short (e.g., order of seconds) waiting period. In this section, first we provide a brief in-

troduction to two general P2P streaming types, live and on-demand streaming. Then, we

focus on two main approaches towards streaming data dissemination, namely, tree-based

and data driven.

2.1.2 On-Demand and Live Streaming Systems

P2P streaming systems are categorized into two types called live streaming and on-demand

streaming. Live video streaming refers to sending video content in real time over the Inter-

net. In a P2P live streaming system, a video is created and streamed to clients synchronously

, that is all peers watch the same part of the video at the same time. Such systems include

CoolStreaming [5] and PULSE [29]. In a P2P on-demand streaming system, media con-

tent is stored beforehand on media servers. Peers join a streaming session at any time and

start watching from any part of the video. They can also do operations like pause and roll

back. PPLive [6], PPStream [30], and UUsee [7] are examples of on-demand P2P streaming

systems.

2.1.3 Tree-Based Approaches

In this approach, peers are organized into tree structures with well-defined parent-child

relationships. Such approaches are typically push-based, meaning that when a node receives

a data packet, it forwards (pushes) copies of the packet to each of its children. It is critical to

maintain the structure as nodes join and leave the tree. If a node crashes or stops performing

adequately, all of its offspring in the tree will stop receiving packets, and the tree must be

repaired.

In tree-based approaches, the failure of nodes may disrupt the delivery of data to a

large number of users. Moreover, a majority of nodes are leaves in the tree structure.

Therefore, their outgoing bandwidth cannot be utilized. In response to these concerns,

more resilient approaches have been proposed. In particular, data-driven approaches have

gained popularity in the research community.

CHAPTER 2. BACKGROUND AND RELATED WORK 6

2.1.4 Data-Driven Approaches

Data-driven overlay designs do not maintain an explicit structure for delivering data. Unlike

tree-based approaches, they use the availablity of data to guide the data flow. In data-driven

approaches, using random push algorithms for forwarding packets may cause significant

redundancy with the high-bandwidth video. To address this problem, approaches such as

Cool-Streaming [5] and Chainsaw [31] adopt pull-based methods, that is, nodes maintain a

set of neighbors, and periodically exchange data availability information with them. The

overlay structure is resilient to failure and departure of any node since its neighbors use

other neighbors to receive data packets. Furthermore, in contrast to tree-based approaches,

the available bandwidth between peers can be fully utilized.

2.2 Network Coding

In traditional packet forwarding methods, each node simply repeats data packets destined

to other nodes in the network. In contrast, with network coding, each node combines a

number of packets it has received or created into several outgoing packets. The network

coding concept enables source and intermediate nodes to perform simple operations on

packets before forwarding them. These operations allow nodes to send partial information

to the destination. After receiving all the necessary partial information, the receiver will be

able to recover the original packet.

The principle of network coding is explained with a simple example [25] in Figure 2.1.

In this example, the source S has access to bits a and b at a rate of one bit per unit time.

It aims to communicate these bits to two sinks Y and Z so that both sinks can receive both

bits per unit time. All links capacities are one bit per unit time. If we use the traditional

store and forward method, the central link would be able to carry a or b. If a is sent through

the central link, the left destination (Y) would receive a twice, without receiving b. Sending

b results in a similar problem for the right destination (Z). Thus, as shown in Figure 2.1(a),

no routing scheme can transmit both a and b simultaneously to both destinations. Using

network coding, as shown in Figure 2.1(b), both a and b can be received by both destinations

simultaneously by sending a+b through the central link, where + denotes xor operation. At

node Y , b is recovered from a and a+ b. Similarly, a can be recovered at node Z. Therefore,

both sinks are able to receive both bits per unit time by encoding the information at the

intermediate node W . this simple example illustrates the potential of employing network

CHAPTER 2. BACKGROUND AND RELATED WORK 7

(a) Traditional method (b) Network Coding

Figure 2.1: A simple example to demonstrate the potential of using network coding to
increase the throughput achieved by all nodes in the network.

coding to increase the total amount of data that can be exchanged in the network.

Linear network coding, in general, is similar to this example. The difference is that the

xor operation is replaced by a linear combination of the data, interpreted as numbers over

a finite field.

Packing information at intermediate or source nodes is called encoding and extracting

real data from encoded ones is referred to as decoding. Encoding and decoding are linear

operations over a Galois Field of size 2l, which is denoted by GF(2l). A GF(2l), for some

integer l > 0, is a finite field with 2l elements. In GF(2l), elements can be stored using

l bits [32]. Addition, subtraction, multiplication and division are performed on strings

of l bits [24]. Addition is the standard bitwise xor operation. For multiplication, we can

represent the sequence s0, ..., sl−1 of l bits as the polynomial s0+s1X+ ...+sl−1X
l−1. Then,

we need to take a polynomial of degree l that is irreducible over GF(2). Multiplication

is obtained by calculating the product of the two polynomials, and then computing the

remainder modulo the chosen irreducible polynomial [32]. Division can be computed by the

Euclidian algorithm [24,32, 33].

Encoding is a linear combination of blocks, which is formulated as: x =
∑N

n=1
cn · bn,

where N is the total number of blocks, cns are coefficients of size l bits taken from GF (2l)

and bns are data blocks of size k bytes. As shown in Figure 2.2, each block consists of a

vector of (k × 8)/l symbols. The symbol x represents one encoded block of size k. Each

encoded block is a linear combination of the original blocks. Thus, it is uniquely identified

by the set of coefficients included in the linear combination. Multiplications and additions

are done over GF (2l).

CHAPTER 2. BACKGROUND AND RELATED WORK 8

Figure 2.2: Data block over GF (2l) is divided into l-bits symbols. Finite field operations
are done on symbols.

Assuming a node receives a set of (C1, x1), (C2, x2), . . . , (CN , xN) packets, where Cn is

the vector of coefficients (cn
1
, cn

2
, . . . , cnN) for block xn (1 ≤ n ≤ N). The decoding process is

performed by solving: xm =
∑N

n=1
cmn · y

n, (1 ≤ m ≤ N), where yns are unknowns. This is

a system of linear equations with N unknowns (the original data blocks) and N equations

(created by receiving N packets and each packet n (0 ≤ n ≤ N) carries the coefficient vector

Cn and the encoded data block xn). This system of equations can be solved by the Gaussian

elimination method.

2.3 Scalable Video Coding

In today’s multimedia systems, clients are getting quite heterogeneous in terms of connec-

tion bandwidth, processing power, and display resolution. Scalable video coding techniques

can support this heterogeneity by encoding a video stream once and extracting it in several

ways according to receiver’s capabilities. While nonscalable streams provide very limited

flexibility in supporting heterogeneous receivers, multimedia streams created using scalable

video coding techniques can support a wide range of diverse receivers and network con-

ditions. This ease of adaptation comes at a cost of reduced coding efficiency. However,

recent scalable video coding techniques have improved the coding efficiency. For example,

the scalable video coding (SVC) extension of the H.264/AVC video coding technique [34],

known as the H.264/SVC standard [26], generates highly flexible video streams at a bitrate

close to the bitrate of the corresponding nonscalable video stream.

The H.264/SVC video coding standard adds scalability to the widely used H.264/AVC

video coding technique. The H.264/SVC standard supports temporal, spatial, and quality

scalability at the same time. Temporal scalability is achieved by employing a hierarchical

prediction structure among video frames belonging to the same group of pictures (GoP), in

CHAPTER 2. BACKGROUND AND RELATED WORK 9

which frames of higher temporal layers can only be predicted from lower temporal layers.

In the spatial scalability, a spatial layer s of a frame can be predicted from the s-th spatial

layer of some other frames (in lower temporal layers), as well as lower spatial layers in its

own frame.

For providing quality scalability, there are two possibilities. The first one follows the

spatial scalability structure, but assigns the same resolution and different quantization pa-

rameters to layers. This produces a coarse-grained scalable (CGS) video with limited number

of quality layers. A finer granularity can be provided by the second possibility, which uses

medium-grained scalability (MGS) coding to divide a single CGS quality layer into multiple

sub-layers, which are referred to as MGS layers. This is done by partitioning the residual

discrete cosine transform (DCT) coefficients of a CGS layer into multiple MGS layers. A

stream can be truncated at any CGS or MGS layer. In addition, some packets of an MGS

layer can be discarded, while the remaining ones can still be decoded to improve quality.

Packet discarding can be done in arbitrary ways, depending on the bitstream extraction

process [35]. H.264/SVC allows up to 7 temporal, 8 spatial, and 16 quality layers [26].

Using scalable video coding, users with high link capacities experience better video

quality by receiving more layers, while others with lower bandwidth get quality proportional

to the number of layers they can receive.

2.4 Related Work

Most of the currently deployed P2P streaming systems, e.g., [5–9], use nonscalable video

streams. Thus, they serve a single-version of the video stream to all peers, and they have

limited support for heterogeneous peers. To address these issues, a number of works have

proposed P2P streaming systems with scalable video streams, e.g., [13, 21, 36–39]. Cui and

Nahrstedt [36] present an algorithm to decide for each peer how to request video layers

from a given set of senders. They assume layers have equal bitrate and provide equal video

quality. Liu et al. [40] propose another approach to the layered P2P streaming problem

with the goal of minimizing the resource consumption of the media server and maximizing

the streaming qualities of the receiving nodes. They formulate an optimization problem and

propose an approximation algorithm, called FABALAM, to simplify the problem. However,

FABALAM relies on static mapping of layer-to-sender and a layer is provided by only one

sender. Hefeeda and Hsu [38] study this problem for Fine-Grained Scalable (FGS) videos,

CHAPTER 2. BACKGROUND AND RELATED WORK 10

taking into account the rate-distortion model of the video for maximizing the perceived

quality.

Rejaie and Ortega [37] present a framework for layered P2P streaming, where a receiver

coordinates the transmission of video packets from multiple senders using a TCP-friendly

congestion control mechanism. Lan et al. [39] propose a scheduling algorithm for peers to

request data from senders. The allocation of seed server resources in P2P streaming systems

with scalable videos has also been considered in [21]. Magharei and Rejaie [13] introduce

PRIME to reduce bandwidth bottlenecks by choosing an efficient pattern of delivery and

proper peer connectivity. However, PRIME uses multiple description coding (MDC) while

we use SVC in our work. While the above works enable serving streams with different

qualities to peers with diverse resources, none of them employs network coding to further

enhance the utilization of peer resources.

Network coding has been shown to maximize the throughput and bring various per-

formance benefits in different environments [25, 41, 42]. For example, in wireless networks,

network coding improves the message delivery probability for ad-hoc multicast protocols [43],

and it overcomes broadcast storm problems [44]. Network coding has also been proposed

for P2P file-sharing systems. For example, in the Avalanche system [19,45], the authors use

randomized network coding to efficiently distribute files and to decrease the download time.

The authors provide a method to ensure that any piece uploaded by a peer can be useful to

other peers. However, these techniques are not applicable to P2P streaming systems, which

have strict timing constraints and packet sequence requirements.

Several works have proposed using network coding for P2P streaming applications. An-

napureddy et al. [46] show that network coding improves the video streaming quality in

video-on-demand (VoD) services. Network coding is applied on a segment of a single-layer

stream. Feng and Li [47] develop analytical models to show the benefits of using network

coding in live P2P streaming systems. Wang and Li [48, 49], address practical aspects of

using network coding in P2P streaming systems such as benefits and trade offs of apply-

ing network coding in P2P live streaming as well as the architectural design challenges in

implementing network coding. All of these works confirm the viability of network coding

in different applications. However, none of them has considered integrating network coding

with scalable video coding to support wider ranges of clients. They basically improve the

performance of single-layer P2P streaming systems.

Recently, a few works have considered both network coding and scalable video streams

CHAPTER 2. BACKGROUND AND RELATED WORK 11

[50–52]. For example, Zhao et al. [50] try to provide each end user in a multicast session with

the maximum number of layers through solving an optimization problem using a greedy al-

gorithm. While in [51], Chenguang et al. formulate an integer linear programming problem

to solve the same problem. Unlike our work, the above works target tree-based P2P stream-

ing systems, and they assume that peers know the global tree structure and this structure

is fairly static. These assumptions typically do not hold in practice. In contrast, we target

the highly dynamic mesh-based P2P streaming systems with no assumptions/constraints on

the topology. In [52], Nguyen et al. explore the feasibility of combining network coding and

SVC. They design and evaluate Chameleon, an adaptive P2P streaming protocol designed

to incorporate network coding with scalable video coding. In this work, they propose a

quality based neighbor selection method. In this algorithm, peers are classified based on

their streaming quality level. Each peer selects a neighbor whose average streaming quality

level is closest to its class. However, they do not provide extensive performance evaluation

to validate their proposed protocol. They evaluate their system based on two performance

metrics: (i) the percentage of segments skipped during playback, and (ii) the average quality

satisfaction. While our work is independant from neighbor selection algorithms, we conduct

an extensive quantitative analysis to demonstrate the expected performance gain from the

proposed design.

Finally, Nguyen et al. [53] propose hierarchical network coding (HNC) to be used with

scalable video coding. HNC performs network coding across all layers of the same video

stream to provide higher error protection to lower video layers. HNC is designed to reduce

the impact of packet losses. However, it assumes that most users are capable of or willing to

receive all video layers. For example, a limited bandwidth receiver that is interested in only

a 2-layer version of the stream may end up receiving data blocks from higher layers, although

the data cannot be used. Thus, the bandwidth of peers can be wasted. This implies that

HNC will not efficiently support heterogeneous clients. In addition, performing network

coding on all layers will increase the size of the coefficient matrix needed for network coding

operations. Since the time and space complexities of the encoding and decoding processes

depend on the size of the coefficient matrix, HNC will impose a significant overhead on

peers, which have limited-resources in the first place. Furthermore, the work in [53] did not

provide a rigorous quantitative evaluation of HNC in real dynamic P2P environments, as

we do. Our proposed system performs intra-layer network coding and is fairly efficient.

Chapter 3

Proposed P2P Streaming System

In this chapter, we describe the proposed P2P live streaming system that employs network

coding and scalable video coding. We start with a high-level overview, followed by more

details.

3.1 Introduction

We target mesh-based P2P streaming systems which have been widely used in practice

[5, 13, 14]. In our system model, there are three entities: tracker, source, and peer. The

tracker is used for coordination between all peers. It keeps a list of all currently active

peers and it performs peer matching whenever a peer asks for a list of neighbors. We use

a random peer matching algorithm. That is, the tracker randomly selects among the list

of active peers who are viewing the same video stream and returns them to the requesting

peer as potential senders. This matching results in multiple dynamic swarms in the system.

There is at least one source node in the system to introduce new streams to peers. The

source node (sometimes called seed server) also provides additional capacity in case that

peers do not have enough resources, especially in the beginning of new streaming sessions

where very few peers exist. Source nodes perform network coding operations on the scalable

video streams in order to prepare them for distribution in the system. Peers act as receiving

clients as well as share some of their upload bandwidth to serve other peers. As receivers,

peers decode network-coded data received from others and process this data to create proper

scalable video streams to ensure smooth video quality. As senders, peers encode video data

using network coding with parameters based on their own upload capacity as well as the

12

CHAPTER 3. PROPOSED P2P STREAMING SYSTEM 13

Figure 3.1: Initial buffering delay allows the receiver to skips few segments. The receiver
buffers encoded blocks from segments that are ∆ seconds after the current playback point.

characteristics of the receiving peers.

In addition to the above components, we use buffer maps in order to exchange availability

information among peers. We use two bits to represent the status of a layer. One bit, called

availability bit, is used to determine the decodability of a packet. That is, if all necessary

blocks for fully decoding a packet are successfully received, the corresponding availability bit

is set to 1 and otherwise is set to 0. Another bit, called serving bit is used to identify whether

a network-coded packet can be served to other peers or not. Meaning that, immediately

after receiving one coded block for a given packet, the serving bit for this packet is set to 1.

When a peer joins a session, it is informed about the availability information through

receiving buffer maps from its initial neighbors (assigned by tracker). It also receives the

current segment being played in the current live streaming session. Each peer maintains

segments played in near future in its playback buffer. As shown in Figure 3.1, the newly

joined peer does not start receiving encoded blocks from exactly the same segment that is

currently playing. The receiver requests to receive segments that are ∆ seconds after the

current playback point. ∆ is called initial buffering delay. This allows the peer to receive

some segments in its playback buffer before the playback starts. Therefore, it has enough

time to receive some of the encoded blocks from future segments and decode them ahead of

time.

A simplified model for the software architecture of a peer in our system is shown in

Figure. 3.3. A similar model is used for source nodes, but with some differences as elaborated

later. We do not address the design or optimization of trackers; the function of the tracker

is orthogonal to the work presented in this thesis. We also do not address other problems

in mesh-based P2P streaming systems, including neighbor selection, gossip protocols (for

CHAPTER 3. PROPOSED P2P STREAMING SYSTEM 14

Figure 3.2: An example of the segmentation method used in combination of network coding
and SVC.

exchanging data availability), incentive schemes, and overlay optimization—which all have

been heavily researched in the literature. All of the above issues are abstracted in the

Connection Manager component in Fig. 3.3, while our work is focused on the components

in the shaded box in that figure. The separation and abstraction of functions enable us

to support different P2P streaming systems with minimal changes in our design and code.

Therefore, our work is fairly general.

For quick reference, we list all symbols used in this chapter in Table 3.1.

3.2 Source Node Software Architecture and Functions

The source node prepares video streams before introducing them into the system. A video

stream is encoded into multiple layers in a scalable manner. The video stream is divided

into equal-length segments. Each segment consists of a fixed number of frames. The number

of frames is chosen to make an integer number of group of pictures (GOP), e.g., 2 GOPs.

GOP structure specifies the order in which frames are arranged. GOP is the set of pictures

between two successive pictures of the temporal base layer together with the succeeding

base layer. Each GOP contains a fixed number of video frames. For example, a segment

can contain 30 frames in a video encoded into GOPs with 15 frames each. Since we consider

scalable streams, each video frame is composed of multiple layers. We apply network coding

operations on the data contained in individual layers as follows. We divide each layer in a

segment into fixed-size blocks. Then these blocks are encoded. Notice that different layers

may contain different number of blocks, depending on the visual complexity of the video

frames contained in each segment. Figure 3.2 shows an example of the segmentation method

CHAPTER 3. PROPOSED P2P STREAMING SYSTEM 15

Table 3.1: List of symbols used in this chapter.

Symbol Description

Nl The number of blocks in layer l.

bi,l The ith block in layer l (1 ≤ i ≤ Nl).

ci,l The ith coefficient corresponding to the ith block in layer l (1 ≤
i ≤ Nl).

x One generated encoded block.

(Ci,lxi,l) The ith vector of coefficients corresponding to the ith encoded
block in layer l (1 ≤ i ≤ Nl).

(ReCoef i,l, ReBli,l) The ith vector of coefficients corresponding to the ith re-encoded
block in layer l.

ci,lj The jth element of the ith coefficient vector in layer l (1 ≤ i, j ≤
Nl).

B The block size.

L The number of layers.

P The number of potential senders.

Ps The list of potential senders.

Psp The pth sender from the list of potential senders.

S List of segments.

Sizes Size of segment s ∈ S.

Maxs,p Maximum number of encoded blocks from segment s ∈ S as-
signed to sender p ∈ Ps.

Es The number of encoded blocks generated for segment s ∈ S.

Upp The upload bandwidth of sender p ∈ Ps.

DownI The download bandwidth of receiver I.

ds The deadline of segment s ∈ S.

BufMapMsg The buffer map message.

α The communication overhead ratio.

CHAPTER 3. PROPOSED P2P STREAMING SYSTEM 16

used in combination of network coding and scalable video coding. As shown in the figure,

network coding operations are applied on different group of blocks for different layers.

The encoding process is applied at the source node by using random network coding.

On intermediate nodes, i.e., uploading peers, the blocks are re-encoded with different coef-

ficients. In both cases, the coefficients of each block are attached to the block itself during

transmission.

3.3 Peer Software Architecture and Functions

The main functions of a peer in our system are summarized in Figure 3.3. These functions

are divided into two parts: (i) receiving, and (ii) uploading. The interaction among these two

parts are coordinated through the sharing buffer. We describe the receiving and uploading

parts of the peer model in the following two subsections.

3.3.1 Receiver Part

At the receiver side, a peer interested in receiving a specific part of the video stream, deter-

mines and requests a proper number of encoded blocks through the Download Scheduler.

The Download Scheduler computes the number of required encoded blocks based on the

currently available bandwidth and the number of video layers that the receiver is interested

in. It then assigns each of the active senders in the session a number of blocks proportional

to its upload bandwidth.

Immediately after receiving any encoded block through the network, the block is for-

warded to the Progressive NC Decoder component and its coefficients are accumulated in

the coefficient matrix. The Progressive NC Decoder rearranges the coefficients and en-

coded block matrices. This is done through one round of the Gauss-Jordan elimination

method [48]. The Gauss-Jordan elimination method is a version of the Gaussian elimina-

tion method which inserts zeros above and below the pivot elements in the matrix as it goes

from the top row to the bottom one. In other words, the Gauss-Jordan elimination method

converts a matrix to its reduced row echelon form (RREF) where every leading coefficient

is 1 and it is the only nonzero element in its column.

We illustrate progressive decoding with Gauss-Jordan elimination through an example

in Figure 3.4. In this example, we consider 3 blocks with one byte of data in each of them.

CHAPTER 3. PROPOSED P2P STREAMING SYSTEM 17

Figure 3.3: Peer software architecture. Dashed arrows denote video data, and solid arrows
denote control messages.

CHAPTER 3. PROPOSED P2P STREAMING SYSTEM 18

Operations are over Galois Field of size (28). By receiving the second encoded block, Gauss-

Jordan elimination is applied on the first encoded block as well as its coding coefficients.

The result is shown in Figure 3.4(b). Similarly, in Figure 3.4(c), the receiver receives the

third encoded block, while at the same time the Gauss-Jordan elimination is applied on the

first two encoded blocks as well as their coding coefficients. As it is shown in the figure,

each iteration of Gauss-Jordan elimination partially decodes the encoded blocks by reducing

the coding coefficient matrix to the RREF form. After receiving the last encoded block, in

Figure 3.4(d), a final iteration of Gauss-Jordan elimination recovers the original data.

Using the progressive decoding allows the process of decoding to start before receiving

all linearly independent encoded blocks [48]. That is, the time of decoding process overlaps

the time needed for receiving the original block. Therefore, it is hidden from the overhead

caused by decoding time [48]. Since the encoding processes among all peers are done in-

dependently, it is difficult to ensure that encoded blocks received from different peers are

linearly dependent. Other factors such as circles in the network topology can also impact

the linear dependency. Progressive decoding enables the Progressive NC Decoder to im-

mediately remove any linearly dependent equations, as it converts all the coefficients of a

received linearly dependent row in the coefficient matrix into zeros. This signals the Pro-

gressive NC Decoder to eliminate this row from the coefficient matrix immediately after it

is received which eliminates explicit checks of linear dependencies after all required blocks

are received. The Progressive NC Decoder will then investigate the coefficients matrix. If

it is reduced to an identity matrix, the resulted encoded blocks are equal to the original

blocks without any further decoding process.

If the original data is obtained, it will be passed to the SVC Layer Manager, which

prepares the video data for the video player. After a block is successfully decoded, it will

be stored in the Sharing Buffer for potential upload to other peers.

We show the algorithm used at the receiver side in Figure 3.5. The receiver starts

requesting from the lowest layer in the current segment scheduling window. The receiver

aims at receiving the required number of encoded blocks before the deadline. Therefore,

each sender is assigned by the maximum number of encoded blocks according to its upload

capacity.

We show the algorithm used to allocate the maximum number of encoded blocks that

can be sent from each sender. The stream consists of a series of video frames at frame rate F

fps (frames per second). Each frame has a playout duration of 1/F . The deadline of the nth

CHAPTER 3. PROPOSED P2P STREAMING SYSTEM 19

(a) (b)

(c) (d)

Figure 3.4: Example of progressive decoding with Gauss-Jordan elimination.

frame from the video stream is d = (n− 1)/F . Then, the decoding deadline of segment s is

defined by ds which is the decoding deadline of the first video frame in segment s. In every

iteration, the algorithm assigns to sender p (p = 1, 2, ..., P) the maximum number of encoded

blocks which sender p can transmit within the deadline period ds. The maximum number

of encoded blocks are allocated based on two constraints: (i) the sender’s remaining upload

bandwidth Upp and size of segment s defined by Sizes, (ii) the receiver incoming bandwidth

DownI . The allocation stops when the entire download bandwidth of the receiver is used.

The receiver sends a request to each sender to upload a number of encoded blocks from

the desired layer. After receiving each encoded block, it goes through one pass of Gauss-

Jordan elimination, and it checks if the received encoded block is linearly independent from

previously received ones. After receiving all required encoded blocks, stop messages are sent

to senders notifying them that there is no need for sending more encoded blocks from this

layer.

3.3.2 Uploading Part

Next, we describe the uploading part of the peer. Network coding enables senders to provide

receivers with partial information without needing a huge buffer map to keep availability

of each partial data. The mechanism for producing such kind of partial data is as follows.

Upon receiving a request at the sender side, random network coding is performed on the

CHAPTER 3. PROPOSED P2P STREAMING SYSTEM 20

Receiver Side

1. // Ps: The list of potential senders provided by tracker
2. // Nl: The number of blocks in layer l
3. // Maxs,p: Maximum number of encoded blocks from segment s ∈ S assigned to sender
p ∈ Ps
4. // Upp: Upload bandwidth of sender p
5. // DownI : Download bandwidth of the receiver
6. // s: Segment s ∈ S
7. // ds: Deadline of segment s ∈ S
8. // Sizes: Size of segment s ∈ S
9. // B: Block size
10. // P : The number of potential senders
11. // L: The number of layers
12. rec ←− 0 // set the number of received encoded blocks to zero
13. rtotal ←− 0
14. for p = 1 to P do
15. ∆p = min(Uppds,Sizes) // Maximum number of bits allocated to sender p
16. rp = (∆p/ds) // Maximum streaming rate of sender p
17. if rtotal + ri < DownI then
18. rtotal = rtotal + rp
19. Maxs,p = ∆p/B // Maximum number of encoded blocks allocated to sender p
20. else
21. rp = DownI − rtotal
22. Maxs,p =

ds×rp
B

23. break
24. for l = 1 to L do
25. for p = 1 to P do
26. request(Psp, l, s, Maxs,p) // Request for sending a number of encoded blocks
27. while rec < Nl do
28. receive(ArrivedEnBlock) // Receive one encoded block as well as its coefficients
29. decode(ArrivedEnBlock) // Gauss-Jordan elimination
30. if linearlyIndependent() then // Check for the independent linearity
31. rec++
32. sendStopMsg(Ps) // Signal senders to stop sending further encoded blocks

Figure 3.5: The receiver side algorithm for SVC+NC system.

CHAPTER 3. PROPOSED P2P STREAMING SYSTEM 21

blocks of the requested layer. Random network coding is used because it provides robust-

ness against frequent network topology changes, and it eliminates the need for having a

centralized knowledge about the network topology [23]. Random network coding has been

shown by Ho et al. [54] to be feasible in practical settings, without deterministic code as-

signment algorithms. Deterministic code assignment requires determining node’s behaviour

in a distributed manner and knowledge of the entire network topology [23, 54]. In random

network coding, a peer independently and uniformly at random chooses coefficients from

the Galois Field. Suppose the original data in layer l on the source node is divided into Nl

blocks [b1,l, b2,l, ..., bNl,l], where each block has a fixed size of k bytes. In random network

coding, the source node chooses randomly and independently a set of Ml coding coefficients

[c1,l, c2,l, ..., cMl,l] (Ml ≤ Nl) over some Galois Field. It also chooses Ml blocks out of all

original blocks. Then, it produces one encoded block x of size k where x =
∑Ml

m=1
cm,l · bm,l.

A similar process is done on intermediate nodes through the re-encoding process. In order to

upload data to a receiving peer, the uploading peer chooses randomly Ml set of (C
m,l, xm,l),

where Cm,l is a vector of coding coefficients corresponding to an encoded block xm which

is produced from layer l. It then generates new coding coefficient vectors ReCoefm,l and

encoded blocks ReBlm,l by the following equations, where (1 ≤ m ≤Ml) and (1 ≤ n ≤ Nl):

ReCoefm,l =

Ml∑

m=1

gm · c
m,l
n (3.1a)

ReBlm =

Ml∑

m=1

gm · x
m (3.1b)

Here, gms are chosen over some Galois Field by the uploading peer. In order to minimize

linear dependency among the encoded blocks, the uploading peers select gms randomly and

independently for each of their downloading peers. The re-encoding process at intermediate

nodes is done through sparce linear coding strategy [48, 55]. This means we choose not

to perform re-encoding among all received encoded blocks, but to apply on m blocks out

of all received encoded blocks. Unlike complete linear coding, sparce linear coding doesn

not require the re-encoding process to be done on the whole coefficient matrix. Therefore it

increases the encoding rate compared to complete linear coding. It has been shown in [55,56]

that sparse linear coding results in smaller computational overhead for encoding.

It has been proved that by using random network coding even with a small Galois Field

CHAPTER 3. PROPOSED P2P STREAMING SYSTEM 22

Sender Side

1. // BufMapMsg: Buffer map message
2. // l: Layer requested by the receiver
3. // s: segment s ∈ S
4. // Maxs,i: Maximum number of encoded blocks from segment s ∈ S assigned to sender
i ∈ Ps
5. // Es: The number of encoded blocks generated so far for segment s ∈ S.
6. if peerIsActive do
7. while Es < Maxs,i do
8. if isStopMsg(BufMapMsg) then
9. break
10. else
11. EncodedBlock ←− encode(l) // Produce one encoded block
12. Es++
13. sendToReceiver(EncodedBlock)

Figure 3.6: The uploading part algorithm for SVC+NC system.

size, such as 8, the probability of selecting linearly dependent combinations is negligible [57].

In order to reduce the network coding complexity, we need to reduce the number of blocks

[58]. For this purpose, in our network coding scheme, we apply network coding operations

on blocks of each video layer separately. Furthermore, we use a Galois Field of size 8, as

larger sizes increase the complexity while improving the results only marginally.

In Figure 3.6, we show the algorithm used at the sender side. After receiving a request,

sender starts sending encoded blocks. These encoded blocks are produced by the Random

NC Encoder module continuously with regards to the meximum number of encoded blocks

requested by the receiver. It stops sending further encoded blocks upon receiving a stop

message from the receiver.

3.4 Overhead Analysis

There are two kinds of overhead imposed by the proposed streaming system: computation

and communication.

The computation overhead is imposed by the encoding and decoding processes of the

network coding scheme. These processes require quadratic number of operations in terms of

the number of blocks in a packet. These operations are on finite fields and thus are performed

CHAPTER 3. PROPOSED P2P STREAMING SYSTEM 23

as xor operations, which can be done efficiently by the processor. Therefore, most of the

current commodity PCs can handle the encoding and decoding operations. Shojania et

al. [59] show how to exploit single instruction, multiple data (SIMD) and graphics processing

units (GPUs) to accelerate network coding operations. In addition, recent works [60, 61]

show the potential of using GPUs and multicore CPUs to efficiently perform network coding

operations.

The communication overhead is due to attaching the encoding coefficients to the encoded

data blocks.

The communication overhead ratio α is given by:

α =
AdditionalBytes

DataBytes
=

NoCoefs×NoBlocks× CoefSize

NoBlocks×BlockSize
(3.2)

In Equation 3.2, AdditionaBytes is the additional bytes sent to the receiver, DataBytes

is the payload size, NoCoefs is the number of coefficients per block, NoBlocks is the number

of blocks, CoefSize is the size of each coefficient, and BlockSize is the block size. In the

proposed system, we use a Galois Field of size 256 (28). Therefore, the size of each coefficient

is one byte.

Since each encoded block is a linear combination of the original blocks, it can be identified

by its encoding coefficients. Therefore, every time a peer sends an encoded block to its

downstream peer, it embeds its encoding coefficients in the header of the encoded block.

Thus, the number of coefficients per block equals to the total number of blocks. Therefore,

the communication overhead ratio becomes:

α =
NoBlocks

BlockSize
(3.3)

To assess the expected communication overhead in real systems, we need to estimate

the appropriate values for the number of blocks and the size of each block. We performed

three experiments to investigate how the number of blocks as well as their size affect the

encoding and decoding performance. We show the results in Tables 3.2, 3.3 and 3.4 with 1

KB, 2 KB and 4 KB data in each block, respectively.

In each experiment, we vary the number of blocks from 32 to 1024 for a certain block

size. The encoding time is the time required to generate a set of coding coefficients and to

compute one encoded block. The decoding time is the time required to recover the original

data using Gauss-Jordan elimination. We observe that by segmenting into more than 128

CHAPTER 3. PROPOSED P2P STREAMING SYSTEM 24

Table 3.2: Encoding and decoding times with 1 KB in each block.

No. of Blocks 32 64 128 256 512 1024

Encoding Time (msec) 0.5 1 2 3 7 14

Decoding Time (msec) 20 50 200 1100 5020 25100

Table 3.3: Encoding and decoding times with 2 KB in each block.

No. of Blocks 32 64 128 256 512 1024

Encoding Time (msec) 0.7 1.5 3 7 14 20

Decoding Time (msec) 30 110 500 2010 9010 40000

blocks, the decoding time grows rapidly. However, the growth of encoding times is not

as considerable as decoding time. The reason is that, larger number of blocks result in

longer waiting times for receiving enough encoded blocks as well as longer decoding times

caused by the Gauss-Jordan elimination process. Furthermore, we observe that the number

of blocks has more significant role on the decoding time compared to the block size. These

results show that it is better to keep the number of blocks less than 128 to avoid introducing

latencies in recovering the original data. Based on these results, we recommend using a block

size of 1 KB and a total number of blocks equals to 64. In this case, the communication

overhead ratio α is 64/1024 ∼= 0.06, which is a small overhead.

3.5 Illustrative Example

In order to show how SVC+NC streaming system is different from a traditional layered

scalable peer-to-peer streaming system, we provide an illustrative comparison in Figure 3.7.

In this figure, we compare the quality of the received stream in each model. There are

three senders P1, P2, P3 and one receiver P0. The upload capacity of P1, P2 and P3 is

384, 64 and 128 Kbps respectively. The download capacity of P0 is 1 Mbps. Senders are

assumed to have received different portions of the stream in the past. In this example, we

show a layered scalable scheme, where the stream is divided into three layers. Each layer

has a bit rate of 192 Kbps. In Figure 3.7(a), the receiver can get up to two layers from

P1. P2 and P3 can not contribute their bandwidth due to their limited upload capacity.

CHAPTER 3. PROPOSED P2P STREAMING SYSTEM 25

Table 3.4: Encoding and decoding times with 4 KB in each block.

No. of Blocks 32 64 128 256 512 1024

Encoding Time (msec) 1 3 7 15 30 70

Decoding Time (msec) 61 210 860 4100 16020 56040

Therefore, the received video stream has a rate of 384 Kbps. As we show in Figure 3.7(a),

peers cannot collaborate with each other to serve different portions of each layer. In layered

scalable scheme, the coded video data is organized into network abstraction layer (NAL)

units. NAL units contain an integer number of bytes representing the type of the contained

data and the payload data. If one of these NAL unit packets is lost, it introduces error and

impacts the decoding of the received video stream. Therefore, peers receiving incomplete

layers cannot use them to enhance quality. Moreover, avoiding redundancy in transmitting

data and too many allocation possibilities of different portions of the stream to different

senders complicate the coordination of senders. As shown in Figure 3.7(b), in SVC+NC

model, each layer is further divided into three blocks of 64 Kb. Thus, the receiver should

receive three encoded blocks to recover the original ones. Each encoding process results in

one encoded block of 64 Kb. Furthermore, any encoded blocks produced by any sender can

be considered new and useful. The first layer is served by all three senders. The second

layer is recovered by receiving two encoded blocks from P1 and one encoded block from P3.

Finally, by leveraging the remaining 192 Kbps upload bandwidth of P1, all three encoded

blocks of the third layer are obtained from sender P1. Therefore, each layer is served by

multiple senders, results in receiving three layers of the video stream with a rate of 576

Kbps. The main reason behind such coordination between peers without exchanging any

protocol messages is exploiting random network coding. By using random linear codes, each

coded block is as useful as other coded blocks regardless of the uploading peer producing

it [48]. Therefore, if a block is lost during transmission, it is replaced by receiving from

any other neighbors. Moreover, random linear codes eliminate the problem of transmitting

redundant data as well as allocating different portion of data to senders. In this figure, we

do not show the nonscalable streaming scheme, which assumes that the stream has to be

entirely downloaded, or it is not decodable. Thus, under the nonscalable streaming scheme,

the receiver cannot get any version of the stream.

CHAPTER 3. PROPOSED P2P STREAMING SYSTEM 26

(a) SVC enabled P2P streaming (b) SVC+NC P2P streaming

Figure 3.7: An illustrative comparison between SVC enabled P2P streaming protocol and
SVC+NC. In SVC+NC each layer is served by multiple peers.

Chapter 4

Experimental Evaluation

In this chapter, we first explain the setup of our experiment and define several performance

metrics used in the evaluation. We then present our evaluation results of the proposed

SVC+NC system, and compare them with the results of current systems that use single-

layer streams and proposed systems that use either network coding alone or scalable video

coding alone.

4.1 Experimental Setup

We have implemented the proposed P2P streaming system in Java. Our implementation

performs all functions described in Chapter 3 and summarized in Figure 3.3. Our imple-

mentation was validated by using actual video streams.

To conduct rigorous quantitative analysis of the proposed system under wide range of

working conditions, we implemented a testing application to emulate the characteristics of

realistic P2P streaming systems. This testing application enables us to conduct controllable

and repeatable experiments with different parameters and large number of peers. We con-

sidered deploying our system on the PlanetLab testbed and on our own local area testbed.

However, these testbeds would not allow us to control important parameters such as peer

upload/download bandwidth, neither would they enable us to test under high churn rates,

flash crowd scenarios, and large number of heterogeneous peers.

The setup of our experiments is as follows. We use multiple scalable video traces obtained

from the Arizona State University video library [62]. In particular, the results in this thesis

are based on three video streams: a demonstration video from Sony, a clip from the Tokyo

27

CHAPTER 4. EXPERIMENTAL EVALUATION 28

Table 4.1: Characteristics of videos used in the experiments.

Sony Demo Tokyo Olympics NBC News

Frame Rate (fps) 30 30 30

Average Frame Size (bytes) 3320 1507 1090

Average PSNR (dB) 47.6 42.7 35.5

Average Bit Rate (Kbps) 850 500 325

Olympics, and a clip from NBC News. These videos are chosen because they have diverse

characteristics in their quality and bit rates. This diversity is important to assess the

performance of our system in real settings. Each video is encoded in 5 scalable layers and

has a frame rate of 30 fps. The frame size is CIF (352x288) and each group-of pictures (GoP)

has 16 frames. We use 10 minutes of each clip in our experiments. Table 4.1 summarizes

the characteristics of these video streams.

We divided each video stream into segments, where the segment size is varied. Each layer

of a segment is then encoded using network coding in a number of blocks. We use different

block sizes for evaluating the performance of network coding. But in any given experiment,

the block size is fixed for all layers in a segment and all segments in the video. This is done

to reduce the computation complexity of the network coding process, as network coding

with variable block sizes is expensive. Since the video visual contents change with time, the

number of blocks in a segment varies with the size of the video frames in that segment.

We create a highly-dynamic P2P streaming system with more than 1,000 heterogeneous

peers that are continually changing. The upload bandwidth values of peers are chosen

according to the distribution given in Table 4.2. This distribution is recommended based

on actual measurement studies performed in [63]. The contributed bandwidth of each class

of peers is also given as recommended in [63]. We note that peers do not contribute all

their bandwidth to P2P streaming, because doing so slows down other Internet applications

such as email and Web. Peers in our system can randomly fail, and they join/leave the

system following different probability distributions. Each probability distribution is chosen

to create a specific testing scenario such as flash crowd arrivals and high peer churn rates.

More details will be given in the corresponding experiments later.

We compare the proposed system (denoted by SVC+NC in the figures) against three

different systems: (i) a system that uses scalable video coding only (denoted by SVC), (ii)

CHAPTER 4. EXPERIMENTAL EVALUATION 29

Table 4.2: Upload bandwidth distribution of peers.

Fraction of Peers (%) 10.0 14.3 8.6 12.5 2.2 1.4 6.6 28.1 16.3

Total Bandwidth
(Kbps)

256 320 384 448 512 640 768 1024 > 1500

Contributed
Bandwidth (Kbps)

150 250 300 350 400 500 600 800 1000

a system that uses single layer video streams with network coding (denoted by SL+NC),

and (iii) current systems that use single-layer, nonscalable, streams (denoted by SL).

We consider several performance metrics, including: (i) average streaming rate, (ii)

average streaming quality, (iii) number of streaming requests served, and (iv) fraction of late

frames. These performance metrics are computed across all peers in the system, for diverse

video streams, under various network conditions, and different probabilistic distributions

for peer behavior. Moreover, most of these metrics are computed on a frame by frame

basis and consider each layer in every frame. Furthermore, we study the impact of different

system parameters on the performance and robustness of the proposed system. Therefore,

our experiments are comprehensive and the results are representative of real systems.

We present the results of our extensive evaluation in the following subsections. We

first present the results for the performance metrics mentioned above. Then, we present

the results of analyzing the impact of several system parameters on the performance and

robustness of the proposed system, especially in presence of high peer churn rates, flash

crowd arrivals, and when different segment and block sizes are used.

4.1.1 Average Streaming Rate

We measure the average streaming rate during live streaming sessions. We define the stream-

ing rate as the total number of bits of received video data per second. The average streaming

rate is computed across all active peers and represents a basic performance metric.

We schedule 1,000 peers to uniformly at random join the P2P streaming system during

the 10-min simulation time. We also schedule a fraction of the peers to fail or depart

the system uniformly at random during the simulation time. On overage, 10% of the peers

leave the system at random times. For each streaming session, a receiver is randomly chosen.

Then, a group of five senders that already have the requested stream are randomly chosen

CHAPTER 4. EXPERIMENTAL EVALUATION 30

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Average Streaming Rate (kbit/sec)

F
ra

ct
io

n
o
f
P
ee

rs
(C

D
F

)

SVC+NC

SVC

SL+NC

SL

(a) Sony Demo

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Average Streaming Rate (kbps)

F
ra

ct
io

n
o
f
P
ee

rs
(C

D
F

)

SVC+NC

SVC

SL+NC

SL

(b) Tokyo Olympics

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Average Streaming Rate (kbps)

F
ra

ct
io

n
of

P
ee

rs
(C

D
F

)

SVC+NC

SVC

SL+NC

SL

(c) NBC News

Figure 4.1: Average streaming rate achieved using different systems.

to serve the receiver.

We plot the results for three different video clips in Figure 4.1 as a CDF (cumulative

distribution function). The figure clearly shows that the proposed SVC+NC system outper-

forms the other three systems by a wide margin. For example, in the Sony Demo video, less

than 18% of the peers in our SVC+NC system obtain a streaming rate of 200 kbps or less,

while more than 40% of the peers in the current single-layer streaming systems receive at

that low rate. On the other hand, almost 50% of the peers in our SVC+NC system receive

a high streaming rate of at least 600 kbps, while this percentage is only about 30% in SVC

and SL+NC, and 22% in SL systems.

CHAPTER 4. EXPERIMENTAL EVALUATION 31

4.1.2 Average Streaming Quality

Next, we consider the video quality for each active peer. Unlike the average streaming rate,

which is a raw performance metric, the video quality depends on the characteristics of the

video streams being served in the system and it is closer to the actual quality perceived by

users. There are several methods for computing the video quality. We choose the Y-PSNR

(peak signal to noise ratio of the intensity component of the video) as our video quality

metric, because it is simpler to compute and interpret by readers. We acknowledge that the

Y-PSNR may not always be the most accurate quality metric for all types of videos, but it

is sufficient for the comparative study in this thesis.

We compute the quality as the Y-PSNR of the frames received on time divided by the

total number of frames. Then we take the average among all peers and plot the results in

Figure 4.2. The figure shows that the average quality in the SVC+NC system is consistently

higher than that in the SVC, SL+NC, and SL systems. For example, for the NBC News

video in Figure 4.2(c), the SVC+NC system yields up to 10 dB improvement in quality

compared to the current single-layer streaming systems. This is a substantial gain that

will definitely be felt by users and will increase their satisfaction from the P2P streaming

system. Figure 4.2(c) also shows that the proposed SVC+NC outperforms the SVC and

SL+NC systems by up to 5 dB, which is also a significant gain. The results for other videos

indicate similar gains. In addition, the results in Figure 4.2 indicate that the video quality

achieved by the SVC+NC system is more stable and smoother over time. For example, in

Figure 4.2(b), there is a dramatic drop in quality for the SL system around 200 sec of the

video because of the increased visual complexity of the video in this period. In contrast,

the SVC+NC system did not suffer a large drop in quality.

In addition to the average video quality, we measure the fluctuations in the video quality.

We show the results in Figures 4.3, 4.4 and 4.5. We quantify the fluctuations by measuring

the standard deviation of the observed quality with time. Lower quality fluctuations means

smoother streaming quality. For each peer, we divide the streaming time into several 20

seconds time period. For each time period, we measure the streaming quality 20 times at

a specific peer, and we define quality fluctuation as their standard deviation. We compute

the average standard deviation among all peers. For computing mean values, we take the

average value of the streaming quality during 20 seconds intervals among all peers. Based

on different streaming quality per 20 seconds, standard deviations are obtained. We then

CHAPTER 4. EXPERIMENTAL EVALUATION 32

100 200 300 400 500
10

15

20

25

30

35

40

45

Time (sec)

A
v
g

S
tr

ea
m

in
g

Q
u
a
li
ty

(d
B

)

SVC+NC

SVC

SL+NC

SL

(a) Sony Demo

100 200 300 400 500
20

25

30

35

40

45

Time (sec)

A
v
g

S
tr

ea
m

in
g

Q
u
a
li
ty

(d
B

)

SVC+NC

SVC

SL+NC

SL

(b) Tokyo Olympics

100 200 300 400 500
15

20

25

30

35

40

Time (sec)

A
v
g

S
tr

ea
m

in
g

Q
u
al

it
y

(d
B

)

SVC+NC

SVC

SL+NC

SL

(c) NBC News

Figure 4.2: Average streaming quality achieved using different systems.

CHAPTER 4. EXPERIMENTAL EVALUATION 33

100 200 300 400 500
30

35

40

45

50

Time (sec)

Q
u
al

it
y

F
lu

ct
u
a
ti

o
n

(d
B

)

SVC+NC

(a) SVC+NC

100 200 300 400 500
20

25

30

35

40

Time (sec)

Q
u
al

it
y

F
lu

ct
u
a
ti

o
n

(d
B

)

SVC

(b) SVC

100 200 300 400 500
20

25

30

35

40

Time (sec)

Q
u
al

it
y

F
lu

ct
u
at

io
n

(d
B

)

SL+NC

(c) SL+NC

100 200 300 400 500
15

20

25

30

35

Time (sec)

Q
u
al

it
y

F
lu

ct
u
at

io
n

(d
B

)

SL

(d) SL

Figure 4.3: Fluctuations in video quality for Sony Demo video using different systems.

CHAPTER 4. EXPERIMENTAL EVALUATION 34

100 200 300 400 500
20

25

30

35

40

45

Time (sec)

Q
u
al

it
y

F
lu

ct
u
a
ti

o
n

(d
B

)

SVC+NC

(a) SVC+NC

100 200 300 400 500
20

25

30

35

40

45

Time (sec)

Q
u
al

it
y

F
lu

ct
u
a
ti

o
n

(d
B

)

SVC

(b) SVC

100 200 300 400 500
20

25

30

35

40

45

Time (sec)

Q
u
al

it
y

F
lu

ct
u
at

io
n

(d
B

)

SL+NC

(c) SL+NC

100 200 300 400 500
15

20

25

30

35

40

Time (sec)

Q
u
al

it
y

F
lu

ct
u
at

io
n

(d
B

)

SL

(d) SL

Figure 4.4: Fluctuations in video quality for Tokyo Olympics video using different systems.

CHAPTER 4. EXPERIMENTAL EVALUATION 35

100 200 300 400 500
30

35

40

45

Time (sec)

Q
u
li
ty

F
lu

ct
u
a
ti

o
n

(d
B

)

SVC+NC

(a) SVC+NC

100 200 300 400 500
20

25

30

35

Time (sec)

Q
u
a
li
ty

F
lu

ct
u
a
ti

o
n

(d
B

)

SVC

(b) SVC

100 200 300 400 500
20

25

30

35

Time (sec)

Q
u
al

it
y

F
lu

ct
u
at

io
n

(d
B

)

SL+NC

(c) SL+NC

100 200 300 400 500
20

25

30

35

Time (sec)

Q
u
al

it
y

F
lu

ct
u
at

io
n

(d
B

)

SL

(d) SL

Figure 4.5: Fluctuations in video quality for NBC News video using different systems.

CHAPTER 4. EXPERIMENTAL EVALUATION 36

compute error bars per 20 seconds defined by three points: average quality minus one

average standard deviation, average quality, and average quality plus one average standard

deviation. Our results show that the proposed system provides much smoother quality for

peers than other systems. In particular, in the proposed SVC+NC system, the average

quality fluctuations per 20 seconds are about 100% less than the fluctuations observed in

the current single-layer streaming systems, and about 50% less than the fluctuations in the

other SL+NC and SVC systems for all three video types.

In summary, the results for the above two metrics (average streaming rate and quality)

demonstrate that the proposed SVC+NC system outperforms the other systems in both

raw as well as user-perceived performance metrics. The reasons for this better performance

can be summarized as follows. Single-layer streaming systems are not flexible in terms of

adapting the quality to the current network and peer conditions. They also do not provide

optimal throughput. Therefore, they yield the worst performance. Streaming systems that

use network coding with single-layer videos increase the system throughput, but do not

improve the flexibility of the single layer video streams. Thus, SL+NC systems improve the

performance beyond what is achievable by SL systems. On the other hand, P2P streaming

systems that use scalable video streams adapt well to network and peer dynamics, but they

may not fully utilize peer resources. Therefore, SVC systems also improve the performance

compared to SL systems. Combining scalable video streams with network coding achieves

both flexibility and increased throughput. Thus, SVC+NC systems consistently provide

superior performance compared to other systems.

4.1.3 Number of Streaming Requests Served

In Figure 4.6, we plot the fraction of served requests in different streaming systems. We

refer to a request as served when it is responded by neighbors and received on time by the

requesting peer. We obtain the fraction of served requests by computing the number of

served requests made by active peers divided by the total number of requests. We compute

this fraction every 20 seconds. The results in Figure 4.6 show that the proposed SVC+NC

system serves more requests than the other systems. For example, for the NBC News video

in Figure 4.6(c), after 200 seconds from the beginning of the streaming session, up to 30%

more requests can be served using the SVC+NC system than the SL system. Therefore, the

proposed system not only provides better video quality, but also serves more requests from

peers.

CHAPTER 4. EXPERIMENTAL EVALUATION 37

100 200 300 400 500
30

40

50

60

70

80

90

100

Time (sec)

F
ra

ct
io

n
o
f
S
er

v
ed

R
eq

u
es

ts

SVC+NC

SVC

SL+NC

SL

(a) Sony Demo

100 200 300 400 500
30

40

50

60

70

80

90

100

Time (sec)

F
ra

ct
io

n
o
f
S
er

v
ed

R
eq

u
es

ts

SVC+NC

SVC

SL+NC

SL

(b) Tokyo Olympics

100 200 300 400 500
30

40

50

60

70

80

90

100

Time (sec)

F
ra

ct
io

f
of

S
er

v
ed

R
eq

u
es

ts

SVC+NC

SVC

SL+NC

SL

(c) NBC News

Figure 4.6: Number of served requests for different systems.

CHAPTER 4. EXPERIMENTAL EVALUATION 38

4.1.4 Fraction of Late Frames

Next, we analyze the fraction of late frames for all considered streaming systems. The

fraction of late frames is obtained by dividing the number of frames that arrive after their

deadlines to the total number of requested frames. When a peer first joins the network,

it waits for a few segments of the video according to its initial buffering delay. The initial

buffering delay helps peers to receive some of the encoded blocks from future segments before

the playback starts. In all experiments, we let peers wait for two segments when they join

the system as recommended by [47].

We plot the CDF of the fraction of late frames in Figure 4.7. The figure shows that in the

SVC+NC system, more frames meet their deadlines than in the other systems. For example,

in Figure 4.7(a), in the single-layer streaming system, about 16% of the peers received more

than 80% of the frames after their deadlines. While in the proposed SVC+NC system, almost

no peer observed that high fraction of late frames. As another example, Figure 4.7(b) shows

that the SVC+NC system achieves nearly 100% improvements over other systems in terms

of the fraction of peers that observed no late frames: from about 20% of the peers in the SL,

SL+NC, and SVC systems to about 40% in the SVC+NC system. Finally, Figure 4.7(c)

shows that there is no peer with more than 30% of late frames, while this fraction is almost

18%, 25% and 35% in SVC, SL+NC and SL systems, respectively.

4.1.5 Impact of Churn Rate on Video Quality

We next study the impact of the churn rate on the streaming quality. In this scenario, we

consider a highly dynamic peer-to-peer network with frequent arrivals and departures of

peers. Maintaining a reasonable video quality in dynamic systems shows their robustness

to frequent changes in network topology. In this experiment we will show that SVC+NC

is more resilient and provides a more reliable peer-to-peer streaming system than the other

systems.

In highly dynamic peer-to-peer systems, some peers join the system, start streaming and

also contribute their resources to others. At the same time, other peers may be leaving the

system, which will result in loss of upload resources and perhaps disruption of some on-going

streaming sessions. We refer to the ratio of the total number of peers that join the streaming

system during the simulation time to the total number of peers that leave the system as the

churn rate. All arrivals and departures are scheduled according to a Poisson distribution

CHAPTER 4. EXPERIMENTAL EVALUATION 39

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of Late Frames

F
ra

ct
io

n
o
f
P
ee

rs
(C

D
F

)

SVC+NC

SVC

SL+NC

SL

(a) Sony Demo

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of Late Frames

F
ra

ct
io

n
o
f
P
ee

rs
(C

D
F

)

SVC+NC

SVC

SL+NC

SL

(b) Tokyo Olympics

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of Late Frames

F
ra

ct
io

n
of

P
ee

rs
(C

D
F

)

SVC+NC

SVC

SL+NC

SL

(c) NBC News

Figure 4.7: Fraction of late frames for different systems.

CHAPTER 4. EXPERIMENTAL EVALUATION 40

during the simulation time. We vary the churn rate between 1 and 8. For example, a churn

rate of 2 means that if x number of peers leave the system during the simulation time, 2x

new peers will arrive during that period. A robust P2P streaming system should utilize the

resources brought by the new peers as well as provide them with good quality.

We run the experiments for the three video streams in Table 4.1 and for each streaming

system: SL, SL+NC, SVC, and SVC+NC. We repeat the experiment for each considered

churn rate. We measure the average quality perceived across all peers for each churn rate.

We plot the results in Figure 4.8. The results confirm the superior and stable performance

of the proposed SVC+NC streaming system as several dBs in quality gain are observed in

all cases. The figure also shows that as more peers join, the quality for all peers improve,

which is shown for high churn rates. This is because: the proposed SVC+NC system can:

(i) increase the average throughput in the system since it uses network coding to harvest

the resources of the new peers, and (ii) improve the quality by providing more video layers,

which is enabled by the scalability nature of the video streams. We note that single-layer

streaming systems may actually suffer in presence of high churn rates, as shown in Figure 4.8.

This is because these systems take time to start effectively utilizing the resources of the new

peers and they only provide a single version of the video streams. As the figure also shows,

adding network coding to single-layer streaming systems mitigates the first problem, but

not the second: the average quality provided by SL+NC systems slightly improves as more

peers join the system.

4.1.6 Impact of Flash Crowd Arrivals

In flash crowd arrivals, peers join the network in a short period of time. In this case,

the demand for receiving the video data may become more than the available resources.

Flash crowds scenarios put a substantial stress on the P2P streaming systems that strive to

provide a reasonable and sustained video quality to peers. Addressing flash crowd arrivals

is important for practical systems as they often happen after the release of popular video

clips. We change the average number of peer arrivals per minute from 10 to 60 with an

increment of 10. Peers arrive uniformly at random during the simulation period. We allow

up to 10% of the active peers to leave during the streaming sessions, which also happen at

uniform random times. We measure the average quality in dB for all considered systems

for each peer arrival rate. The results, shown in Figure 4.9, demonstrate that while under

very high peer arrival rates the quality rendered by all systems decreases because of the

CHAPTER 4. EXPERIMENTAL EVALUATION 41

1 2 4 8
10

15

20

25

30

35

40

Churn Rate (No. arrivals/ No. departures)

Q
u
a
li
ty

in
P

S
N

R
(d

B
)

SVC+NC

SVC

SL+NC

SL

(a) Sony Demo

1 2 4 8
20

22

24

26

28

30

32

34

Churn Rate (No. of arrivals/ No. of departures)

Q
u
a
li
ty

in
P

S
N

R
(d

B
)

SVC+NC

SVC

SL+NC

SL

(b) Tokyo Olympics

1 2 4 8
20

25

30

35

Churn rate (No. arrivals/ No. departures)

Q
u
al

it
y

in
P

S
N

R
(d

B
)

SVC+NC

SVC

SL+NC

SL

(c) NBC News

Figure 4.8: Impact of churn rate on the average video streaming quality.

CHAPTER 4. EXPERIMENTAL EVALUATION 42

10 20 30 40 50 60
10

15

20

25

30

35

40

Peer Arrival Rate (per min)

Q

u
a
li
ty

in
P

S
N

R
(d

B
)

SVC+NC

SVC

SL+NC

SL

(a) Sony Demo

10 20 30 40 50 60
15

20

25

30

35

40

Peer arrival rate (per min)

Q
u
a
li
ty

in
P

S
N

R
(d

B
)

SVC+NC

SVC

SL+NC

SL

(b) Tokyo Olympics

10 20 30 40 50 60
10

15

20

25

30

35

Peers arrival rate (per min)

Q
u
al

it
y

in
P

S
N

R
(d

B
)

SVC+NC

SVC

SL+NC

SL

(c) NBC News

Figure 4.9: Impact of flash crowd on video streaming quality.

limited upload capacity, the SVC+NC system provides relatively better quality in flash

crowd scenarios than other systems. The figure shows that there is at least 2 dB quality

difference by the SVC+NC and SL systems (right lower corner of Figure 4.9(b)) and up to

7 dB (left top corner of Figure 4.9(c)).

4.1.7 Impact of Segment and Block Sizes

Finally, we investigate the effect of the segment and block sizes on the streaming quality of

the proposed SVC+NC system. We vary the segment size from 0.5 to 5 sec. For each segment

size, we vary the block size from 128 bytes to 4 kilobytes and we run the experiments for

each considered streaming system. We measure the average streaming quality and plot the

CHAPTER 4. EXPERIMENTAL EVALUATION 43

results in Figure 4.10. A few observations can be drawn from this figure. First, decreasing

the block size for network coding (up to 512 bytes) generally yields better video quality.

This is because when blocks are small, a single segment will have many blocks. This allows

multiple sending peers to cooperate and send different (non-redundant) encoded blocks. On

the other hand, decreasing the block size below 512 bytes yields marginal or no additional

benefits. The second observation is that, the ideal segment size (in sec) varies for different

video streams. This is because the videos used in the experiments have diverse average bit

rates of: 850, 500, 325 Kbps for the Sony Demo, Tokyo Olympics, and NBC News videos,

respectively. From our experiments and the results shown in Figure 4.10, we have found that

a segment should contain about 100 to 200 KB of video data. Thus, the actual segment size

(in sec) will depend on the bit rate of the video stream distributed to peers. For example,

a segment size of 1 sec yields the best performance for the Sony Demo video according to

Figure 4.10(a). Given that the Sony Demo has an average bit rate 850 Kbps, the amount

of video data in a segment is about 106 KB. Whereas a segment size of 4 sec provides the

best performance for the NBC News video according to Figure 4.10(c), which means that

the segment will contain about 4× 325/8 = 162 KB.

CHAPTER 4. EXPERIMENTAL EVALUATION 44

0 1 2 3 4 5
34

36

38

40

42

Segment Size (sec)

Q
u
a
li
ty

in
P

S
N

R
(d

B
)

128 bytes

256 bytes

512 bytes

1 KB

2 KB

4 KB

(a) Sony Demo

0 1 2 3 4 5
28

30

32

34

36

Segment Size (sec)

S
tr

ea
m

in
g

Q
u
a
li
ty

(d
B

)

128 bytes

256 bytes

512 bytes

1 KB

2 KB

4 KB

(b) Tokyo Olympics

0 1 2 4 5
24

25

26

27

28

29

30

31

Segment Size (sec)

Q
u
al

it
y

in
P

S
N

R
(d

B
)

128 bytes

256 bytes

512 bytes

1 KB

2 KB

4 KB

(c) NBC News

Figure 4.10: Impact of Segment and Block Sizes on video streaming quality.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Most of the current P2P streaming systems use nonscalable video streams and thus they

provide a single version for all receivers despite their diverse resources. These systems may

also suffer from suboptimal utilization of peer upload bandwidth. In this thesis, we showed

that designing P2P streaming systems with scalable video coding and network coding can

solve both of the above problems. We showed that the integration of the network coding and

scalable video coding techniques improves the system performance beyond what is possible in

current systems that use single-layer streams and proposed systems that use either network

coding alone or scalable video coding alone. We implemented the proposed system and

conducted extensive evaluation study in realistic settings and with actual scalable video

traces. The evaluation study confirms the significant potential performance gain. It shows

that the proposed system supports receiver heterogeneity, better utilizes the peer upload

bandwidth and is robust against network and peer dynamics.

In summary, we show that the combination of network coding and scalable video coding

in live P2P streaming systems is beneficial and it can achieve (i) significant improvement

in the visual quality perceived by peers (several dBs are observed), (ii) smoother and more

sustained streaming rates (up to 100% increase in the average streaming rate is obtained),

(iii) higher streaming capacity by serving more requests from peers, and (iv) more robustness

against high churn rates and flash crowd arrivals of peers.

45

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 46

5.2 Future Work

The work in this thesis can be extended in multiple directions. For example, we can develop

an analytical model to analyze the performance of the proposed P2P live streaming system.

We can also implement the proposed system as a plug-in library that can be used in other

streaming systems in order to enable them to benefit from scalable video streams and net-

work coding methods. Another possible extension is to investigate the interaction between

the network coding module and other parts of the P2P streaming system. For instance, we

can explore how different peer matching algorithms can affect the performace gain while we

are using network coding and scalable video coding. Finally, it is interesting to study the

feasibility and potential gain of using scalable video coding and network coding on mobile

platforms such as iPhone.

Bibliography

[1] P. Rodriguez, S. Tan, and C. Gkantsidis. On the feasibility of commercial, legal P2P
content distribution. ACM SIGCOMM Computer Communication Review (CCR’06),
36(1):75–78, January 2006.

[2] Y. Tu, J. Sun, M. Hefeeda, and S. Prabhakar. An analytical study of peer-to-peer media
streaming systems. ACM Transactions on Multimedia Computing, Communications,
and Applications, 1(4):354–376, November 2005.

[3] D. Xu, S. Kulkarni, C. Rosenberg, and H. Chai. Analysis of a CDN-P2P hybrid ar-
chitecture for cost-effective streaming media distribution. ACM/Springer Multimedia
Systems Journal, 11(4):383–399, April 2006.

[4] J. Liu, S. Rao, B. Li, and H.i Zhang. Opportunities and challenges of peer-to-peer
Internet video broadcast. Proceedings of the IEEE Special Issue on Recent Advances in
Distributed Multimedia Communications, 96(1):11–24, January 2008.

[5] X. Zhang, J. Liu, B. Li, and T. Yum. DONet/CoolStreaming: a data-driven overlay
network for live media streaming. In Proc. of IEEE INFOCOM’05, pages 2102–2111,
Miami, FL, March 2005.

[6] PPLive. http://www.pplive.com/.

[7] UUSee. http://www.uusee.com/.

[8] SopCast. http://www.sopcast.com/.

[9] TVAnts. http://www.tvants.com/.

[10] C. Huang, J. Li, and K. Ross. Can Internet video-on-demand be profitable? In Proc.
of ACM SIGCOMM’07, pages 133–144, Kyoto, Japan, August 2007.

[11] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: high bandwidth data dis-
semination using an overlay mesh. In Proc. of ACM Symposium on Operating Systems
Principles (SOSP’03), pages 282–297, Bolton Landing, NY, October 2003.

47

BIBLIOGRAPHY 48

[12] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Split-
Stream: high-bandwidth multicast in cooperative environments. In Proc. of ACM Sym-
posium on Operating Systems Principles (SOSP’03), pages 298–313, Bolton Landing,
NY, October 2003.

[13] N. Magharei and R. Rejaie. Prime: peer-to-peer receiver driven mesh-based streaming.
In Proc. of IEEE INFOCOM’07, pages 1415–1423, Anchorage, AK, May 2007.

[14] M. Zhang, L. Zhao, J. Tang, and S. Yang. A peer-to-peer network for live media
streaming using a push-pull approach. In Proc. of ACM Multimedia’05, pages 287–290,
Singapore, November 2005.

[15] N. Magharei, R. Rejaie, and Y. Guo. Mesh or multiple-tree: a comparative study of
live P2P streaming approaches. In Proc. of IEEE INFOCOM’07, pages 1424–1432,
Anchorage, AK, May 2007.

[16] C. Gkantsidis and P. Rodriguez. Cooperative security for network coding file distribu-
tion. In Proc. of IEEE INFOCOM’06, pages 1–13, Barcelona, Spain, April 2006.

[17] P. Larsson. Multicast multi-user ARQ. In Proc. of IEEE Wireless Communications
and Networking Conference (WCNC’08), pages 1985–1990, Las Vegas, NV, April 2008.

[18] D. Petrovic, K. Ramchandran, and J. Rabaey. Overcoming untuned radios in wireless
networks with network coding. IEEE Transactions on Information Theory, 52(6):2649–
2657, June 2006.

[19] C. Gkantsidis and P. Rodriguez. Network coding for large scale content distribution.
In Proc. of IEEE INFOCOM’05, pages 2235–2245, Miami, FL, March 2005.

[20] O. Hillestad, A. Perkis, V. Genc, S. Murphy, and J. Murphy. Adaptive H.264/MPEG-4
SVC video over IEEE 802.16 broadband wireless networks. In Proc. of IEEE Packet
Video Workshop (PV’07), pages 26–35, Lausanne, Switzerland, November 2007.

[21] K. Mokhtarian and M. Hefeeda. Efficient allocation of seed servers in peer-to-peer
streaming systems with scalable videos. In Proc. of IEEE International Workshop on
Quality of Service (IWQoS’09), pages 1–9, Charleston, SC, July 2009.

[22] S. Mirshokraie and M. Hefeeda. Live peer-to-peer streaming with scalable video coding
and network coding. In Proc. of ACM on Multimedia Systems conference (MMSys’10),
pages 123–132, Phoenix, AZ, February 2010.

[23] P. Chou, Y. Wu, and K. Jain. Practical network coding. In Proc. of Allerton Conference
on Communication, Control, and Computing (Allerton’03), Monticello, IL, October
2003.

[24] C. Fragouli, J. Le Boudec, and J. Widmer. Network coding: an instant primer. ACM
SIGCOMM Computer Communication Review, 36(1):63–68, January 2006.

BIBLIOGRAPHY 49

[25] R. Ahlswede, N. Cai, S. Li, and R. Yeung. Network information flow. IEEE Transac-
tions on Information Theory, 46(4):1204–1216, July 2000.

[26] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the scalable video coding extension
of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video
Technology, 17(9):1103–1120, September 2007.

[27] BitTorrent. http://www.bittorrent.com/.

[28] Gnutella. http://www.gnutella.com/.

[29] F. Pianese, J. Keller, and E. Biersack. Pulse, a flexible P2P live streaming system. In
Proc. of IEEE INFOCOM’06, pages 1–6, Barcelona, Spain, April 2006.

[30] PPStream. http://www.ppstream.com/.

[31] V. Pai, K. Tamilmani, V. Sambamurthy, K. Kumar, and A. Mohr. Chainsaw: Eliminat-
ing trees from overlay multicast. In Proc. of International Workshop on Peer-to-Peer
Systems (IPTPS’05), pages 127–140, Ithaca, NY, February 2005.

[32] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cam-
bridge University Press, 2nd edition, 1994.

[33] C. Lim and P. Lee. More flexible exponentiation with precomputation. In Proc. of
Advances in Cryptology (CRYPTO’94), pages 95–107, Santa Barbara, CA, August
1994.

[34] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the h.264/avc
video coding standard. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 13(7):560–576, July 2003.

[35] I. Amonou, N. Cammas, S. Kervadec, and S. Pateux. Optimized rate-distortion extrac-
tion with quality layers in the scalable extension of H.264/AVC. IEEE Transactions
on Circuits and Systems for Video Technology, 17(9):1186–1193, September 2007.

[36] Y. Cui and K. Nahrstedt. Layered peer-to-peer streaming. In Proc. of ACM Work-
shop on Network and Operating System Support for Digital Audio and Video (NOSS-
DAV’03), pages 162–171, Monterey, CA, June 2003.

[37] R. Rejaie and A. Ortega. PALS: peer-to-peer adaptive layered streaming. In Proc. of
ACM International Workshop on Network and Operating System Support for Digital
Audio and Video (NOSSDAV’03), pages 153–161, Monterey, CA, June 2003.

[38] M. Hefeeda and C. Hsu. Rate-distortion optimized streaming of fine-grained scalable
video sequences. ACM Transactions on Multimedia Computing, Communications and
Applications, 4(1):1–28, January 2008.

BIBLIOGRAPHY 50

[39] X. Lan, N. Zheng, J. Xue, X. Wu, and B. Gao. A peer-to-peer architecture for efficient
live scalable media streaming on Internet. In Proc. of ACM Multimedia’07, pages
783–786, Augsburg, Germany, September 2007.

[40] Y. Liu, W. Dou, and Z. Liu. Layer allocation algorithms in layered peer-to-peer stream-
ing. In Proc. of IFIP International Conference on Network and Parallel Computing
(NPC’04), pages 167–174, Wuhan, china, October 2004.

[41] S. Li, R. Yeung, and N. Cai. Linear network coding. IEEE Transactions on Information
Theory, 49(2):371, 2003.

[42] R. Koetter and M. Medard. An algebraic approach to network coding. IEEE Transac-
tions on Information Theory, 11(5):782–795, October 2003.

[43] J. Park, M. Gerla, D. Lun, Y. Yi, and M. Medard. Codecast: A network-coding-based
ad hoc multicast protocol. IEEE Wireless Communications, 13(5):76–81, October 2006.

[44] D. Nguyen, T. Nguyen, and B. Bose. Wireless broadcasting using network coding. In
Proc. of Workshop on Network Coding, Theory, and Applications (NetCod’07), pages
914–925, San Diego, CA, January 2007.

[45] C. Gkantsidis, J. Miller, and P. Rodriguez. Anatomy of a P2P content distribution sys-
tem with network coding. In Proc. of International Workshop on Peer-to-Peer Systems
(IPTPS’06), Santa Barbara, CA, February 2006.

[46] S. Annapureddy, S. Guha, and C. Gkantsidis. Is high-qality VoD feasible using P2P
swarming? In Proc. of International Conference on World Wide Web (WWW’07),
pages 903–912, Banff, Canada, May 2007.

[47] C. Feng and B. Li. On large-scale peer-to-peer streaming systems with network coding.
In Proc. of ACM Multimedia’08, pages 269–278, Vancouver, Canada, October 2008.

[48] M. Wang and B. Li. R2: Random push with random network coding in live peer-to-
peer streaming. IEEE Journal on Selected Areas in Communications, 25(9):1655–1666,
December 2007.

[49] M. Wang and B. Li. Lava: A reality check of network coding in peer-to-peer live
streaming. In Proc. of IEEE INFOCOM’07, pages 1082–1090, Anchorage, AK, May
2007.

[50] J. Zhao, F. Yang, Q. Zhang, Z. Zhang, and F. Zhang. Lion: Layered overlay multicast
with network coding. IEEE Transactions on Multimedia, 8(5):1021–1032, October 2006.

[51] X. Chenguang, X. Yinlong, Z. Cheng, W. Ruizhe, and W. Qingshan. On network coding
based multirate video streaming in directed networks. In Proc. of IEEE International
Conference on Performance, Computing and Communications (IPCCC’07), pages 332–
339, New Orleans, LA, April 2007.

BIBLIOGRAPHY 51

[52] A. Nguyen, B. Li, and F. Eliassen. Chameleon: Adaptive peer-to-peer streaming with
network coding. In Proc. of IEEE INFOCOM’10, pages 1–9, San Diego, CA, March
2010.

[53] K. Nguyen, T. Nguyen, and S. Cheung. Peer-to-peer streaming with hierarchical net-
work coding. In Proc. of IEEE International Conference on Multimedia and Expo
(ICME’07), pages 396–399, Beijing, China, July 2007.

[54] T. Ho, M. Medard, J. Shi, and M. Effros. On randomized network coding. In Proc. of
Allerton Conference on Communication, Control, and Computing (Allerton’03), Mon-
ticello, IL, October 2003.

[55] G. Ma, Y. Xu, M. Lin, and Y. Xuan. A content distribution system based on sparse
linear network coding. In Proc. of Third Workshop on Network Coding (Netcod’07),
San Diego, CA, January 2007.

[56] M. Wang and B. Li. How practical is network coding? In Proc. of IEEE International
Workshop on Quality of Service (IWQoS’06), pages 274–278, New Haven, CT, Jun
2006.

[57] Y. Wu, P. A. Chou, and K. Jain. A comparison of network coding and tree packing. In
Proc. of IEEE International Symposium on Information Theory (ISIT’04), page 143,
Chicago, IL, July 2004.

[58] P. Maymounkov, N. Harvey, and D. Lun. Methods for efficient network coding. In Proc.
of Allerton Conference on Communication, Control, and Computing (Allerton’06),
pages 482–491, Urbana, IL, September 2006.

[59] H. Shojania and B. Li. Parallelized progressive network coding with hardware accel-
eration. In Proc. of IEEE International Workshop on Quality of Service (IWQoS’07),
pages 47–55, Evanston, IL, June 2007.

[60] H. Shojania and B. Li. Pushing the envelope: Extreme network coding on the GPU.
In Proc. of International Conference on Distributed Computing Systems (ICDCS’09),
pages 490–499, Montreal, Canada, June 2009.

[61] H. Shojania, B. Li, and X. Wang. Nuclei: GPU-accelerated many-core network coding.
In Proc. of IEEE INFOCOM’09, pages 459–467, Rio de Janeiro, Brazil, April 2009.

[62] Video Traces Research Group, 2009. http://trace.eas.asu.edu/h264svc/.

[63] Z. Liu, Y. Shen, K. Ross, J. Panwar, , and Y. Wang. Substream trading: Towards an
open P2P live streaming system. In Proc. of IEEE Conference on Network Protocols
(ICNP’08), pages 94–103, Orlando, FL, October 2008.

