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Abstract

Rich internet applications (RIA) are the next-generation of web applications that share

many characteristics of desktop applications.  In-memory OLAP brings to the user the ability to

explore the data warehouse in real-time on a powerful desktop.  Combining these two areas

together, we investigate challenges concerning development of a RIA for OLAP users.  A

functional prototype of a Web-based OLAP was built and run in a browser connected to an OLAP

server inside a SAP – BusinessObjects testing lab. The performance of this client-centric,

JavaScript-based system is compared to a version of the SAP’s traditional server-centric system.

We find that the choice of browser can significantly affect the performance of the Web-based

OLAP.  With the new graphic capabilities of HTML5, our Web-based OLAP attains a level of

data visualization beyond the capabilities of a traditional client-server system.

Keywords:  OLAP; Client-side aggregation; Partial pre-aggregation; in-memory OLAP;
data visualization; HTML 5.
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1 Introduction

1.1 An Overview of Data Warehouse and OLAP

OLAP (On-Line Analytic Processing) refers to the analysis of business data by casting

the data in a multidimensional model [1].  An excellent end-to-end overview of data warehouse

and OLAP is described by Chaudhuri and Dayal [2].  Though not limited to the retail industry,

consider a typical scenario for OLAP application of a business with several retail locations spread

across a country, or even around the globe.  Each location maintains a transactional database that

records details of daily business operations.  Periodically, transactional data is extracted,

transformed, and loaded into a centralized data warehouse or several data marts if extensive

business modelling is required to perform a global integration.  Together with data mining, this is

better known in the information industry as BI, or Business Intelligence.

An OLAP tool is an application that allows the user to explore the data warehouse at

ease.  One of the first OLAP tools was a spreadsheet system [3], such as Microsoft Excel, which

did not scale for large data sets.  For businesses that have been established for years, the database

sizes, in terms of number of records, can easily be in the order of tens of millions.  As data

volumes increased, the debate in the industry focused on whether to house the data in a relational

database system or a separate, specialized OLAP server. Over the years, separation of largely

read-only from data warehouse into OLAP server has become the norm.

Recently, 64-bit computing, rapidly declining memory prices and multi-core CPUs have

conspired to instigate a software revolution in database technology. For the first time in the long

history of main-memory Database Management System research, in-memory OLAP technology

has become the mainstream [4, 5]. The PowerPivot extension for Excel 2010 from Microsoft is

the latest example that displays the capability of a desktop application for analyzing data from a

server in real-time.  These products allow the user to explore the OLAP data cube on a powerful

desktop, and pose “what-if” questions without re-doing the entire cube.
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1.2 Web-based OLAP Client

On the other hand, OLAP clients that run in a web browser have limited flexibility as

they were introduced before various browsers competed for JavaScript execution speed.  Up to

now, the primary function of a browser-based OLAP client is to present results calculated by an

OLAP server.  In contrast to OLAP-specific applications, web applications in general have been

advancing at a hectic pace.  The specific technological advancement relevant to this research is

Rich Internet Application.  A Flex, Silverlight, or Java FX Rich Internet Application, which is

downloadable from a web server, runs as a browser plug-in but with features of a desktop

application (such as access to local file system, with elevated trust level, and a plethora of

graphical functions for data visualization).  However, these plug-ins are proprietary products.

With Adobe, Sun and Microsoft being the major vendors of these plug-in, they rely on the

collaboration between vendors to run on certain operating system and browser platforms, and the

termination of such collaboration can lead a development project to a dead end [6].

Most web developers, however, prefer to avoid such dependencies by running their web

applications on the native browser.  JavaScript has been the predominant programming language

for browsers since the nineties and naturally became the undisputed client-side language for web

browsers after the failure of the Java applet.  Consequently, browser vendors have been

continually improving their JavaScript engine speeds as W3C updates the HTML specification.

Although HTML 5 is still in the draft stage, Google, Apple, and Mozilla have already

implemented many features from the specifications in the latest versions of the browsers.  First,

on the graphics library side, both SVG and the Canvas element allow dynamic rendering of 2D

shapes directly with JavaScript in Chrome, Safari, Firefox, and Opera.  Second, every major

browser now supports session and persistent storage, albeit limited in disk quota.  Third, Chrome,

Safari, and Firefox have implemented database storage, which essentially embeds a persistent

relational database engine for a web site.  Last and not least, web workers currently implemented

by Chrome and Firefox allow long running, computationally intensive scripts to execute in

parallel with the main thread.  Being the browser with the largest user base, Internet Explorer 8

lacks most of these functionalities; however, that will change with the up and coming IE 9 [7].

Overall, these proposals promote development of complex web applications on the web platform.

In our opinion, JavaScript will remain as a strong contender in future generations of RIA, making

it a suitable client-component in OLAP architectures.



3

1.3 Problem with a Server-centric OLAP Model

The majority of OLAP systems nowadays are server-centric.  This means that the

processing of data occurs entirely on the OLAP server.  In contrast to the technological advances

to OLAP technology on the server side, the progress of client-centric OLAP technology has been

quiet.  Consider the following realistic scenario for an electronics store chain: suppose that the

OLAP server is physically located at the corporate headquarters in Toronto.  A retail store

manager in Vancouver uses an OLAP client application to connect to the OLAP server.  First,

assume that the one-way network latency, which is defined as the time from the start of packet

transmission to the start of packet reception, is approximately 60 milliseconds.  As a simplifying

assumption, let us also assume that the OLAP server is powerful enough to process any type

query in negligible time and that the query and response messages are small enough for us to take

network bandwidth out of the equation.  A typical OLAP client gives users the ability to submit a

query (for example, a cross-tab of total sales amount by product category and store location to the

server) receives the response in no less than 120 milliseconds, and present the results in a data

grid.

At first glance, there does not seem to be any problem with this example.  However,

notice there is practically zero resource utilization on the client-side, outside the presentation

layer.  Naturally this brings up a point that is not necessarily a problem in a server-centric model

but rather, an advantage of a client-centric model: scalability.  By allocating some calculations to

the client-side, the server load is eased so it can accept more requests.  This may not seem

problematic when the number of simultaneous users is small; however, in the following scenario

the impact is non-trivial.

A “thin” browser may be suitable when users do not need real-time feedback of the

queries, or the number of queries is small across time.  However, if the manager wishes to

perform further operation on the data (such as swapping row and column, viewing the total sales

of a particular store with respect to each product category, or applying a date range filter to the

data) the OLAP client must reconstruct the query and inquire the server.  A rapid succession of

such operations, which is common when a user knows the interface inside out, would make the

existence of the 120 milliseconds lag conspicuous.  The lack of smoothness is most apparent

when an analyst binds a slider, a highly interactive and desirable control in data visualization, as a

sliding window filter in a query.  For example, the query can be the top-k products sold in the past

m days or the m-day moving averages of store sales, in which the slider bar is used to adjust the

value of m and each movement can potentially affect the outcome drastically.  In this sort of case,
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it is extremely important for an analyst to investigate the reasons behind such trend deviations.  In

this application, each tick in the slider movement pounds the server, which is amplified by the

number of concurrent users.  Even if the server is capable of serving all these simultaneous

requests through software or hardware enhancements, the existence of consistent network latency,

or even worse, high packet delay variation over the Internet is beyond any organization’s control.

This variable alone contributes to the increased query response time, and limits the quality of

service of smooth data visualization.  This phenomenon motivates us to utilize client-side

resources to bridge such a gap.

Our contribution to the OLAP research community is three-fold.  First, to the best of our

knowledge, we built a direct side-by-side comparison of a traditional approach and a new

browser-based in-memory approach.  Second, we show by a proof-of-concept that the client-

centric aggregation scheme can perform better than a traditional server-centric OLAP system in

the presence of network latency.  Third, utilizing the new HTML5 features, we develop a novel

aggregation technique with the traditional scatter plot that is achievable only in a client-centric

model and the new HTML5 Canvas element.  Fourth, we compare data visualization between the

traditional server-client OLAP system and our architecture, and show that by delegating data

processing to the client-side, we eliminate network latency from the equation, facilitating smooth

data visualization.

1.4 Related Work

Researchers have extensively studied various aspects of Online Analytical Processing for

many years and have published numerous research papers on this topic [2, 8-15].  Although they

do not explicitly state that these group-by algorithms, index strategy, and cubing methods are for

an OLAP server, it can be assumed, due to the nature and size of datasets that would require

analytical processing.  On the web technology side, applications such as SAP’s server-based

browser client, Strategy Companions Analyzer, Kyubit AnalysisPortal and

Ranet.UILibrary.OLAP have been around as OLAP clients; however, these applications rely

entirely on server computation for all OLAP operations.  On the other hand, QlikView and

BusinessObjects Desktop Intelligence best exemplify client-side in-memory OLAP applications

that run in a desktop environment.

To the best of our knowledge, there has not been any published research work based on

client-side OLAP that runs in a restrictive web-based environment.  The closest work that comes

to mind is an Adobe Flex 3 AdvancedDataGrid control that mimics the functionality of client-
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side aggregation on relational data.  However, as stated by the Flex development team at the time

of this writing, the current state of AdvancedDataGrid cannot handle more than a few thousand

records even thought it runs as a compiled binary and users must explicitly define relationships

between the data sources [16].

1.5 Thesis Organization

The remainder of this thesis is organized as the following: Chapter 2 presents an

overview of key concepts in multidimensional data, details JavaScript as the runtime environment

for an OLAP application, and describes the first stage of this research where we benchmark

client-side aggregation using JavaScript against various parameters.  In the later sections of this

chapter, we describe several enhancements to the baseline JavaScript OLAP Client which, in

conjunction with the architecture in Chapter 3, overcomes many of the challenges we observed.

In Chapter 3, we propose a hybrid OLAP architecture that is different from traditional client-

server OLAP system and describe each individual component in detail.  A set of common OLAP

operators are introduced and a set of workflow sequences is devised to benchmark the

performance of our proposed architecture against a real-world OLAP system and real-life dataset

from SAP - BusinessObjects.  In Chapter 4, we take the OLAP operators a step further to

demonstrate the capability of the client-centric model by implementing several calculations

commonly used by power users.  We compare our results to a simulated server-centric model not

only on the aggregation performance aspect, but also on the client’s ability to present graphical

visualizations.  Finally, we summarize our contributions in Chapter 5 and discuss potential future

works regarding this research topic.
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2 JavaScript OLAP Client

There has been very little study on offloading server-side aggregation to client-side in

both the academic and industrial research areas.  Security and privacy issues aside, we suspect

there are several reasons for this.  First, the amount of data stored on the server is too massive for

a desktop client to withhold in memory or even on disk.  Second, delivering such data over the

network to each OLAP user is neither efficient nor cost-effective.  Third, without pre-aggregation

and heavy indexing, the client is not powerful enough to process multidimensional queries.  Due

to these reasons, most OLAP systems rely on the server to process client requests, be it an OLAP

server or an application server.

In our initial stage of research, we explore the potential of a standalone OLAP system.  In

contrast to a main-memory server-based OLAP system, this engine is written in JavaScript and

runs in a browser.  Our engine downloads dataset and metadata from a general-purpose web

server and performs aggregation locally.

In this chapter, we start with a preliminary overview of multidimensional databases, and

describe key technologies in modern web applications that are particularly critical in this

research.  We then describe the initial data structures, general architecture, and aggregation

algorithm used by the in-memory OLAP engine.  An OLAP cross-tab test is conducted with this

initial prototype using the Weather Dataset by comparing its performance in different browsers,

using datasets and queries of various sizes.  With results from the initial prototype, we enhance

several aspects of the JavaScript OLAP Client.  Together with a server component introduced in

the next chapter, they form a novel architecture to deliver a client-centric OLAP system.

2.1 Multidimensional Data and Metadata

We first provide an overview of the multidimensional data associated with OLAP

applications.  A database system, be it a small business relational database or a giant corporate

data warehouse, typically contains one or more fact tables that are related to several dimension

tables.  Figure 1 shows an example of a data set in a relation known as a star schema.
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Figure 1. A Star schema [2]

Each fact table essentially contains records with one or more measures such as sales

quantity and sales amount.  Each record also has attributes associated with it, such as customer

number, store number, and product number.

Figure 2. Example of hierarchies [2] Figure 3. A 3-Dimensional cube [2]

These attributes are known as dimensions; each dimension may contain several concept

hierarchies.  For instance, the product number dimension may contain a hierarchy based on

category and another hierarchy based on price range.  Each hierarchy consists of hierarchy

members.  Figure 2 depicts hierarchy levels for the Product, City and Date dimension and each

node in the hierarchy represents a member.  Primary members are those at the lowest granularity
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and are the attribute values recorded in each row of the fact table.  The purpose of an OLAP

server is to build, for each fact table, a multidimensional cube or cuboid that pre-aggregates

measures in the fact table with respect to various levels of the hierarchy trees of various

dimensions.

Figure 3 shows a visualization of a 3-dimensional cube: it is an aggregation of sales

quantity for every combination of product categories, city regions, and days of a week.  A

combination of members from each dimension forms a tuple.  Given an n-dimensional cube, a

tuple can consist of n-members that pinpoint a specific cell.  In the case where a tuple does not

specify a member for a particular dimension, every member in that dimension is implicitly

included.

As the number of dimensions increase in a multidimensional dataset, the number of

possible cuboids grows exponentially because a dimension may contain several hierarchies and

each hierarchy may contain different levels of granularity.  Therefore it is costly for OLAP

servers to generate excessive cubes.  However, such pre-computation mechanisms provide

responsive answers to a user query based on specific dimensions and granularity as shown in

Figure 4.

Figure 4. An example of a cross-tab
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2.2 Web Technologies and JavaScript

In our initial design, the main-memory OLAP engine works similarly to an OLAP server.

The critical difference is that it runs in a restrictive browser environment and there is no pre-

aggregation at any level.  Given the same fact table as the OLAP server, the engine takes a linear

scan approach and aggregates a cross-tab query on the fly.

As mentioned in the previous chapter, JavaScript has been under the spotlight in the past

decade, getting special treatments to support a graphically-rich, highly interactive user interface

environment that is ideal for data visualization.  However, its ability to perform OLAP operations

is not evident.  What is more daunting is the restrictive sandbox environment associated with a

web-browser in comparison to a desktop application.  A sandbox environment restricts the

application from fully accessing local file systems, which rules out caching of data on the local

disk without resorting to an external plug-in.  The browser host carries out memory management;

a JavaScript application cannot dynamically allocate more memory even if there is an abundance

of free memory available.  While a desktop application can maximize its performance through

concurrency, the current state of parallel processing in JavaScript is still limited.  The primary

function of Web Workers is to compute long running, CPU intensive tasks such as calculating

prime numbers in the background while preventing the user interface from freezing.  Since our

goal of an OLAP client is to respond to a query in sub-second, Web Workers would offer

minimal benefit at this stage, if any at all.

With the aforementioned drawbacks, there are benefits for developing our prototype on a

browser platform.  Like any other web application, any device with an internet connection and a

browser can become an OLAP client in our proposed system.  Other than installing a browser,

preferably one that has a fast JavaScript engine, the client machine is literally maintenance-free.

This implies there is no cost associated with deploying application patches onto every user

device: when users access OLAP data, he/she is running the latest code.  Another compelling

reason is the research collaboration in the area of web-based OLAP with SAP – BusinessObjects,

one of the leaders in the business intelligence industry.  SAP has developed a web-based BI

product suite.  Their tool offers a “thin” browser client that presents multidimensional data from

the OLAP server using dynamic HTML.  The current generation of web-based OLAP does not

perform any local processing of data.  Therefore, it is the common interest of both parties to

validate our test results against real-life queries and real-life datasets made available by SAP.

  Since JavaScript is the language used to write the engine code, we describe three key

web terminologies relevant to a JavaScript OLAP client: Document Object Model,
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XmlHttpRequest, and JSON.  The HyperText Markup Language (HTML) is the predominant

markup language of the Internet.  An HTML document contains tags known as HTML elements.

Web browsers display document contents based on the ordering of HTML elements, which

usually nest within one another.  This hierarchical element representation is known as the

Document Object Model (DOM).  The DOM exposes a set of functions to JavaScript to

manipulate HTML elements.  For instance, the getElementById function allows JavaScript to

retrieve an element object at runtime using the ID associated with the HTML element, a function

known as DOM Traversal.  As we shall see in the remainder of this thesis, DOM traversal plays a

critical role that contributes to the performance loss of a web application in which data

visualization is involved.

Before the era known as Web 2.0, web applications were limited in the sense that when

the client browser needed to send data or required data from the web server, form submission was

required.  When the user submitted a form, the front-end browser waited for server response

before proceeding.  This type of user interaction is no longer the case with the introduction of

XmlHttpRequest (XHR), or more commonly known as AJAX.  Essentially, XHR allows

JavaScript to communicate with a remote entity, fetch resources, or consume a web service over

the HTTP layer, asynchronously.  Being asynchronous means the interface does not lockup while

the request is in progress.  Rather, a custom event handler is bound to the XHR object so that

when the remote entity responds, JavaScript passes control to the event handler to process the

response.

JavaScript Object Notation (JSON), as the name implies, is an open standard object

declaration convention designed for data interchange.  Originating from JavaScript’s simple data

structure and object representation, it has become the standard format with parsers for almost

every programming language.  JSON provides two main methods for data interchange: stringify

and parse.  Consider the following JavaScript object in the heap:

var student = {

studentNumber: 12345,

firstName: “Jason”,

lastName: “Smith”

}

JSON.stringify(student) effectively serializes the object into a string.  The benefit of JSON is not

apparent at this point.  However, this is a powerful and efficient feature if used in conjunction
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with the XmlHttpRequest object: the server can respond to a client request by creating the object

on the server-side, serialize it with stringify, and send it to the client.  When the client receives

the XHR response, it can invoke JSON.parse and immediately instantiate the object on the client-

side, at runtime.  This eliminates manual parsing of the response content.

In addition to the above, we believe the most powerful feature of JavaScript is its

dynamic, weakly typed nature.  JavaScript objects and data structures can be easily manipulated,

and object properties/methods can be searched on, at runtime.  The downside of JavaScript is the

limited selection of primitive types.  In contrast to other languages that differentiate small and big

integers, single and double floating points, JavaScript treats all numbers as 64-bit floating points.

From a memory management perspective, large JavaScript data structures would leave a massive

footprint.

2.3 Standalone In-Memory JavaScript Engine

We begin by implementing a prototype to show the concept of client-side aggregation by

moving the entire fact table and metadata to the client and letting the client compute the

aggregation on the fly.  In contrast to disk-based and index-heavy OLAP query processing

methods [11, 13], we start with an experimental in-memory OLAP engine written in C++, which

is meant for a desktop platform [17].  Like most in-memory OLAP systems, it does not do much

pre-aggregation, nor does it keep an elaborate data structure. Queries are processed by a linear

table scan of the dataset and the ancestor-descendant relationships are determined on the fly to

answer a pivoting of two dimensions [18, 19].  Preliminary tests show that the response time is in

the order of microseconds on a laptop computer.  Given the low-cost of memory nowadays, we

expect even a faster performance if the dataset resides in memory.

This indicates that client-side OLAP is not a far-fetched idea as a desktop application;

however, as our focus is a web-based platform, we port the engine into JavaScript with the

components as shown in Figure 5.
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To simulate dataset download from a data warehouse, we encode the dataset and

metadata in JSON format and store them on a Tomcat web server.  The web server is merely a

repository for the JavaScript code, dataset, and metadata.  At the start of the web application, the

browser downloads the dataset and metadata using XmlHttpRequest, and the Tomcat web server

will not be called again.

Cube

We use JSON.parse to convert the XHR response text directly into a JavaScript object

“Cube”, an in-memory 2-dimensional Array Object that resembles the fact table.

DimInfo

The metadata is instantiated into a JavaScript object “DimInfo” that specifies:

the number of dimensions,

array of dimension names,

array of total members, total primary members, member ids and member names

for each dimension,

number of measures, array of measure names,

array of parent-child member relationships in each dimension,

Figure 5. JavaScript OLAP Engine

Query Engine

DimInfo

Cube

UI
Tomcat

Web
Server

Server Client
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and pre-compute ancestor members at every level of the hierarchy for each

primary member.  This pre-computation facilitates a constant time factor to

determine aggregation point during the query answering stage.

UI

The UI object provides a basic HTML interface allowing the user to select which dataset

and metadata to fetch from the server, displaying dimensions and members in drop down boxes,

and for rendering the output pivot table.  We integrated a slider bar from jQuery UI [20] to our

application to act as a range filter.  When the user slides the slider thumb, the query engine re-

aggregates the data and UI object redraws the pivot table.

Query Engine

The reason we called this version a prototype is because its functionality as an OLAP

client is rather limited.  At this point, the OLAP engine can process the most basic form of an

OLAP operation, a cross-tab (or pivot table).  Given a cross-tab query based on

[rowAxis].[rowNode], [columnAxis].[columnNode] and [measureIndex] similar to that of Figure 4

and a slider bound to the [SliderAxis] dimension.  We define the following:

TotalDim, total number of dimension in the dataset.

TotalMeasure, total number of measures in the dataset.

FactTable, an 2D array with n rows and (TotalDim + TotalMeasure) columns.  Each row
represents a tuple in the dataset.  The first TotalDim columns contain primary member
ids of each dimension of the tuple.  The last TotalMeasure columns contain the numeric
measure.

rowGroup, an ordered list of members that are the children of rowNode, where
|rowGroup| = r.

colGroup, an ordered list of members that are the children of colNode, where |colGroup|
= c.

As previously mentioned, the list of ancestors of a primary member is pre-determined in

DimInfo.  Thus, the function isAncestor(m1,m2) runs in dHO where dH  is the height of the

hierarchy tree d  in which m1 and m2 reside.  We compute an r x c cross-tab using the following

algorithm:
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Algorithm getMatrixAnswer (Array[][] answer)

FactTableLoop:

    //Linear Table Scan

    For i = 1 to FactTable.length

        currentTuple = FactTable[i]

        rowMember = currentTuple[rowAxis]

        colMember = currentTuple[colAxis]

        sliderMember = currentTuple[sliderAxis]

       // skip currentTuple if it does not satisfy the three conditions below

        if !isAncestor(rowNode, rowMember) Next i

        if !isAncestor(colNode, colMember) Next i

        if (sliderMember is not in slider range) Next i

       // compute the position of the ancestor of rowMember in rowGroup

        row = ancestorAtLevel(rowMember, rowNode.level) – rowNode.index

        // compute the position of the ancestor of colMember in colGroup

        col = ancestorAtLevel(colMember, colNode.level) - colNode.index

        //aggregate the tuple measure to the cell in the answer matrix

answer[row] [col] += currentTuple[measureIndex]

  End For

Figure 6. Algorithm getMatrixAnswer pseudo code

Function isAncestor (member m1, member m2)

        Return true if m1 is an ancestor of m2, false otherwise

Figure 7. isAncestor pseudo code
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Function ancestorAtLevel (member m, integer l)

        Return the ancestor member of m at level l

Figure 8. ancestorAtLevel pseudo code

In general, a tuple is determined to be part of the cross-tab if the tuple members associated

with the row and column axes are descendants of the rowNode and colNode respectively, and the

tuple member associated with the slider axis is within filter range.  The tuple is aggregated to a

cell in the answer matrix.  The cell address is determined by subtracting the index of the

associated row/column ancestors in the rowGroup/colGroup from the index of the first member

in the rowGroup/colGroup.  The indices of the members in this dataset are in sequential

descending order, allowing us to compute the offset relative to the hierarchy level easily.  This

algorithm uses a linear table scan query processing method.  Suppose

columnAxisHrowAxisHtH ,max  then the algorithm runs in tHn  time.

2.4 Evaluating the JavaScript OLAP Engine

Back in the days before the browser vendors were serious about JavaScript execution

speed, the consensus was that JavaScript lacks the speed to delivery anything valuable as an

OLAP client.  Internet Explorer, in particular, has the slowest JavaScript environment and yet it

has the largest user base.  With that in mind, the current generation of web-based OLAP clients

are built around presenting results rather than generating results, which yields the fact that web-

based OLAP aggregation is such an unexploited research area.  The experiments we perform at

this stage allow us to quantify exactly what we are dealing with, and whether client-side

aggregation on a browser can offer reasonable improvement to user interaction with the data.  We

performed testing on a desktop computer equipped with a Core 2 Duo 2.66 GHz processor, 3.25

GB memory, running 32-bit Windows XP SP2.  The Weather Dataset specified in Appendix A

was used to conduct this experiment.

First, we define three parameters used in this experiment: Dataset size refers to the

number of tuples in the fact table.  To create dataset sizes of 314,922, 508,159, 720,724, and

1,015,367 rows, we randomly sampled records from the original pool of ten million records to

prevent sparseness in the smaller datasets.  There are many browser benchmark results out there,

indicating that certain browsers dominate in applications with lots of recursive function calls,

while others succeed at computationally intensive tasks.  Therefore, browser platform is another
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interesting variable to compare the differences between browser engines from an aggregation

speed perspective.  We tested the application on the latest versions of the five most popular

browsers at the time of this writing. Query size refers to the number of cells in the output data

grid.  We selected dimension members for the row and column axes to obtain query sizes of 80,

680, 1010, and 3030 cells. Output rendering is a binary variable that dictates whether the

browser displays the data grid or not after the cross-tab aggregation is complete.  As we shall see

shortly, it has a profound impact on the performance given the number of DOM traversals

required to render a large query size.

In addition to these four parameters in the experiment, there are three important metrics

in measuring the performance of a web-application: load time, script time, and render time.  Load

time refers to the time it takes to download the html page, style sheets, images, and JavaScript

files, as well as any time spend on AJAX calls.  Script time refers to the time spent on JavaScript

execution.  Render time refers to the time for the browser to display web content in the window.

We divide the test results in two parts, first by taking output rendering into consideration, and

then by pure aggregation time.  Load time is another serious issue that we will address in a later

chapter.  All time units are measured in milliseconds.

A web-based OLAP client incurs rendering time as a cost, be it part of a client-centric or

a server-centric model.  Table 1 shows the time it takes to execute the query in Figure 12 with and

without rendering the data grid in the three fastest browsers.

B1 B2 B3

Dataset Size Script Script +
Render Script Script +

Render Script Script +
Render

314,922 45 377 99 335 373 525

508,159 79 393 160 390 580 752

720,724 111 460 193 462 603 990

1,015,367 171 509 299 585 1,112 1,390

Table 1. Browser script and render time

As seen in the table, we observe the effect of dynamic content update in a browser through DOM

traversals as the time it takes to draw 3030 table cells takes several times longer than that of pure

aggregation.
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The following four figures show the results of the experiment without considering

rendering time.  That is, the raw speed of the standalone OLAP engine to computes the cross-tab

aggregation with an in-memory fact table.

Figure 9. JavaScript OLAP engine speed on a query size of 80 cells

Figure 10. Query size of 680 cells
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Figure 11. Query size of 1010 cells

Figure 12. Query size of 3030 cells

To obtain different query sizes, the row axes and column axes of these queries are

selected from the dimensions of the Weather Dataset to form queries of different sizes.  The

number of primary members in these hierarchies in Appendix A reflects the sizes of the

hierarchies.
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From the prototyping experience and experimental results of the prototype, we draw a

strong conclusion that the performance the main-memory OLAP engine is heavily dependent on

the browser or, more accurately, the JavaScript Engine version.  In addition, we identify a number

of issues pertaining to the JavaScript in-memory OLAP engine:

Current algorithm quickly suffers performance degradation as the size of the dataset

increases.  Although query size is the second major contributor to pure aggregation time,

its impact is primarily on rendering time.  With the current approach, the size of the data

that JavaScript can process in a reasonable amount of time is rather limited.  By

reasonable amount of time, we mean the time span it takes to send the query and receive

the result from an OLAP server over network latency.  The actual amount of time differs

among actual OLAP environments.

Most real-life databases have dimensions that contain multiple hierarchies of various

depth and some hierarchies may contain tens of thousands of primary members.

2.5 Revised JavaScript OLAP Client

Other than performance bottleneck, the JavaScript OLAP prototype described in section

2.3 is not nearly a functional OLAP system.  It does not have efficient and intuitive way to handle

metadata.  The user interface is good for only cross-tab operations; it does not do common OLAP

operations such as roll-up and drill-down.  Architecturally, it lacks a visualization layer for these

UI operations.  We address each issue and describe how to overcome these drawbacks.

2.5.1 Metadata Representation

We developed the original prototype with the Weather Dataset by using array structures

to store metadata.  Part of the data structure choice has to do with properties of the Weather

Dataset, properties that are unrealistic to presume in any other dataset.  First, a dimension has

only one hierarchy.  This simplifies the aggregation process, as there is no need to determine the

actual hierarchy when a user selects a member from a dimension.  Second, members in each

hierarchy have an unsigned integer as a unique identifier in the hierarchy namespace.  This

ordered and sequential integer appears as if the primary key field is extracted from a single

dimension table with a self-referencing parent member column.  With the identifiers being

sequential, it makes it possible to compute offsets to pinpoint the row and column a measure

should aggregate to in the answer array.  Numeric identifiers provide superior advantages:

determining member equality during the aggregation process is also faster than comparing
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alphanumeric identifiers; fact tables stay compact as each tuple stores numbers for each

dimension, rather than strings.   These conditional properties of the Weather Dataset allow us to

use nested arrays to store hierarchies and use array element indexes directly as member identifiers

because they facilitate efficient member lookups, reduced aggregation time, and minimize fact

table size for transmission.

These conditions break easily in real-life datasets.  In reality, one hierarchy per

dimension is possible in a dimension with a small set of members; however, this is rarely the case

for every dimension in a database.  In contrast to self-referencing dimension tables, a hierarchy

level structure can span across multiple tables such as [Product], [Product Subcategory], and

[Product Category].  Furthermore, sequential numeric primary keys are not always accessible in

the context of a multidimensional dataset without explicit manual definition.  In a typical OLAP

server, members are unique in the context of a hierarchy namespace.  For instance, in the

[Product].[Product Categories] hierarchy the  unique alphanumeric identifiers would be

[Product].[Product Categories].&[LCD Monitor]&[166]; however, the same product in a

different hierarchy such as [Product].[By Model] has an different identifier such as [Product].[By

Model].&[C2331], even though both hierarchies belong to the same [Product] dimension.  Thus,

to generalize the metadata, we need to assume member identifiers change in different hierarchies.

In the original prototype, the user interface component to let the user create an ad hoc

query contains no more than a handful of drop down boxes for axes and measure selections.

Drop down boxes are easily bound to arrays that contain the metadata; however, they are

inconvenient as controls for exploring members nesting on each other.

We adapt a different data structure to replace the DimInfo object, which uses a set of arrays to

maintain the metadata.  The open source TreeView component from Yahoo! UI 2 [21] provides an

intuitive way to select axes from the dimensions and hierarchies.  The component complements

the JavaScript OLAP Client by providing the following: a set of API methods to instantiate a tree

data structure and tree nodes as objects, methods to access node level, children nodes, an ancestor

of a node at a particular level, ability to add custom properties to a node, and dynamic loading of

sub-tree on node expansion.  We modify the component with additional recursive functions:

retrieving leaf nodes of a given sub-tree; retrieving descendant nodes at a specific depth of a

specific node; obtaining the size of a sub-tree; and a hash map of member keys to actual node

objects.  However, the use of TreeView comes with a cost - instantiating members as document

objects rather than array elements incurs overhead associated with DOM traversal and additional
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properties maintained by the TreeView component.  We will elaborate the impact of these pros

and cons throughout this section as we discuss other changes to the JavaScript application.

The issue of single hierarchy per dimension in the Weather Dataset is non-existent in the

new JavaScript OLAP Client.  Upon selecting a cube, the JavaScript OLAP Client fetches a list of

dimensions and their hierarchies from the web service layer described in section 3.6, instantiates a

tree, a set of dimension nodes, and hierarchy nodes under each dimension node.

Figure 13 a) Before loading hierarchy content, b) [Accounts] sub-tree loaded.

Figure 13 shows an example of dimension nodes on the first level of the TreeView.  The

[Account] dimension contains four hierarchies, with the first three being flat member lists, and the

fourth hierarchy [Accounts] containing a multi-level sub-tree.  At this point, the JavaScript OLAP

Client has not loaded actual content of each hierarchy from the server.  If the client does that pre-

emptively, it will take minutes to complete depending on the size of the entire metadata.  Instead,

the TreeView component allows us to supply a self-defined loading function dynamically when

the user expands a node.  This alleviates two potentially unforeseeable problems to the JavaScript

application and the user.  The first of these is described in section 3.6.1, where a hierarchy

containing tens of thousands of leaf members can bog down the browser due to the number of

DOM traversals as each member needs to be instantiated into a node object.  When node

expansion triggers the loading function, the JavaScript OLAP Client requests a hierarchy of

acceptable height from the web service layer.  The second problem is more of a user experience

issue where the application is loading hierarchies which the user is not interested in at all.  By
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giving the user freedom of choice, both the client and server are refrained from wasting

processing cycle on irrelevant dimensions.

2.5.2 Modified getMatrixAnswer

The modified getMatrixAnswer algorithm makes use of TreeView API and our custom

functions to determine ancestor and descendant relationship between member nodes.  Hence, the

JavaScript OLAP Client no longer pre-computes the ancestors at every level of the hierarchy for

every member.  It still performs a linear table scan of the sub-cube data, but rather than returning

a |rowGroup| x |columnGroup| array as the answer, the algorithm returns an answer object with

|rowGroup| properties.  Each property is itself an object of |columnGroup| properties whose

values are the aggregated measures.  This is because member identifiers are no longer sequential

numbers and calculating offsets is not possible.  Although we lose the efficiency of offset

computation, we take advantage of the dynamic nature of the JavaScript language to augment

objects at runtime.  Therefore, by using member identifiers as object property names, quick

assignment and retrieval of values is achievable without a linear search on object properties as

seen in the following algorithm:
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Algorithm getMatrixAnswer

var answer = new Object

// initialize the answer object by adding rowGroup member names as object properties

For i = 1 to rowGroup.length

    //initialize each property to an object of colGroup members

    answer[rowGroup[i]] = new Object

    For j = 0 to colGroup.length

       answer[rowGroup[i]][colGroup[j] = 0;

    End For

End For

For i = 1 to FactTable.length

    current Tuple = FactTable[i]

    rowMember = currentTuple[rowAxis]

    colMember = currentTuple[colAxis]

    // lookup actual node in TreeView using member names

    rowMemberNode = KeyToNodeMap(rowMember)

    colMemberNode = KeyToNodeMap(colMember)

    // the aggregation point is the ancestor node at the level of the rowAxisNode + 1

    row = rowMemberNode.getAncestor(rowAxisNode.depth + 1)

    col = colMembernode.getAncestor(colAxisNode.depth + 1)

    if (row is a property of answer) AND (col is a property of answer[row])

        answer[row][col] += currentTuple[measureIndex]

End For

Figure 14. Modified getMatrixAnswer pseudo code based on TreeView

Chapter 3.6.2 introduces the notion of sub-cube fact table.  For now, imagine a sub-cube

fact table as a subset of the columns from the original fact table.  Each tuple or row in the sub-

cube fact table contains stripped down member names as unique keys in each hierarchy.  Member

names are irrelevant to the revised getMatrixAnswer algorithm: it must be able to determine the

tuple with respect to a node in the hierarchy tree in order to perform aggregation.  Although the
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TreeView API provides several methods to search for a node on the tree, there is no question that

performing such tasks for every tuple is a great performance hit.  To improve the speed, we create

a KeyToNodeMap index to obtain a quick reference to the associated node object given a

dimension, hierarchy, and member key.  Note that for the cross-tab axes nodes no lookup is

required, as we obtain the actual references to the axis nodes when the user selects them from the

TreeView interface.

2.5.3 OLAP Operators

Another major change to the JavaScript OLAP Client is to introduce additional

functionalities of an OLAP tool.  While the original prototype has the ability to compute a cross-

tab, it does not implement other major operators, which are necessary to perform empirical

experiments against a real-life web-based OLAP product.  Numerous studies on the topic of

OLAP and data warehouse have proposed a set of OLAP operators that exist in real-life OLAP

products nowadays [9, 12, 14, 15, 22].  We do not implement all the operators in the way they

work in real life systems because it is not our intention to build a fully-fledged OLAP product.

With that said, we provide the following operators:

Cross-tab

It is common in OLAP tools to perform a cross-tab with rows and columns set to the

entire hierarchy level.  The original JavaScript prototype creates a cross-tab on the children of a

rowAxisNode or columnAxisNode, which would only be a fraction of the members on a particular

hierarchy level.  To make a justified cross-tab comparison, we modified the TreeView component

with functions to retrieve nodes at a specific level, and assign those nodes as the rowGroup and

columnGroup supplied to the getMatrixAnswer algorithm.

Drill-down

In a cross-tab of [rowDim].[rowHier].[rowMember].Children and

[columnDim].[columnHier].[columnMember].Children, a drill-down operation on a cell incident

on a row member ChildrenrowMemberr .  and a column member

ChildrenercolumnMembc .  generates an embedded cross-tab where the row members are

r.Children and the column members are c.Children.  To implement this operation, we supply the

getMatrixAnswer algorithm with [rowDim].[rowHier].[r] as rowMember and

[columnDim].[columnHier].[c] as columnMember, receive an answer object, and bind it to a sub
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grid inside the original data grid.  Similarly, a drill-down operation on a row r or column c, we

supply the getMatrixAnswer algorithm with r.Children and c, or r and c.Children, respectively.

Roll-up

There are two ways to perform roll-up in the JavaScript OLAP Client.  The first is to roll-

up after a cell drill-down.  In the case of a server-centric model, the client must query the server

again to obtain original cell value.  In our case, we store the original cell value with the HTML

element.  When rolling-up a cell, we remove the sub-grid and restore that value at no additional

cost.  The other roll-up operation is to aggregate to a higher level in the hierarchy tree.  By using

the same axes but reselecting the row and/or column member levels, the getMatrixAnswer

algorithm can return a roll-up aggregation result.

Slice and Dice

Slicing refers to the selection of a subset of members from a dimension and dicing refers

to the custom selection of a subset of dimensions from the entire set.  Note that these two

operations can reduce the size of the sub-cube by several factors, and are highly desirable in a

client-based aggregation scheme.  In essence, we are performing slicing and dicing during the

sub-cube retrieval process in our architecture: we let the user select a set of hierarchies from the

dimensions and, optionally, a subset of members from those hierarchies that he/she is interested

in, and retrieve a sub-cube to the local workspace.

Pivot

The application allows pivoting the cross-tab by swapping row and column axes with each other,

or with any other hierarchy that has been part of the sub-cube retrieval.  This operation is also

supported in the sense that the user can dynamically swap current cross-tab axes with any

hierarchies retrieved in the sub-cube.
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3 Web-based OLAP Architecture

Realizing the shortcomings of our initial JavaScript OLAP prototype, we propose and

implement an end-to-end architecture to support the revised JavaScript OLAP Client in section

2.5.  This architecture leverages the power and resources of an existing OLAP server to alleviate,

if not completely resolves the issues we identified with the initial prototype in section 2.4.  We

first give a high-level description of the traditional web-based client-server OLAP architecture in

the first section.  In the remainder of the chapter, we describe our proposed architecture and detail

each component, and discuss several OLAP operations that are common in a lightweight user’s

workflow.  Finally, we present experimental results of the workflow comparison between the two

models, and the performance degradation of the JavaScript OLAP Client.

3.1 Traditional Web-based OLAP Architecture

Figure 15 depicts the current generation of web-based OLAP applications.

In this server-centric model, the “thin” browser client is merely an interface to display whatever

the backend server passes on.  In some implementations, such as xmla4js, the browser client

communicates directly to the OLAP Server through the XMLA interface without a backend

application server.

Figure 15. Server-centric OLAP Architecture
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3.2 Overview of the Proposed Architecture

Figure 16 shows the component layout in the architecture we implemented.

Message exchange between entities in the entire system is over the HTTP transport layer.

Although not explored in this research, this architecture can benefit from HTTP features such as

caching and security enforcement.

3.3 OLAP Server

Various aspects of OLAP, such as modelling multidimensional databases, aggregation

and cubing, index selection, and join optimization, have been extensively studied by researchers

for years [8-11, 13, 14].  In the business intelligence industry, there are plenty of vendors

providing OLAP server products that offer myriad options for configuration and optimization

tailored to the most frequently asked queries.  Among these, partial pre-aggregation and leaf level

optimization are two features we can leverage.

When we look back at the fact table transferred to the web-based client, we ask ourselves

the question “is every row in the fact table required to compute an answer at any given

granularity of the dimension hierarchy?”  Consider the case where a user is only interested in

exploring data on three dimensions and one measure from a fact table as shown in Figure 17.  The

reduced fact table through partial pre-aggregation is still capable of answering any query on these

Figure 16. Client-centric OLAP Architecture
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three dimensions at every level of granularity.  A take-only-what-you-need approach on the fact

table can potentially reduce a huge portion of the dataset.

Figure 17. Reduced fact table through partial pre-aggregation

Multidimensional Expressions (MDX) is a query language for OLAP databases that is

analogous to SQL, which is a query language for relational databases.  Executing an MDX query

on the OLAP server would yield such result set:

Select Descendants([Product].[All Products],, Leaves) on Axis(0),

Descendants([Store].[All Stores],,Leaves) on Axis(1),

Descendants([Purchase Date].[Date],, Leaves) on Axis(2)

From [Sales]

Where [Measures].[Amount]

Figure 18. Basic MDX query to obtain leaf level data

This query effectively creates a multidimensional result set that only contains the three pre-

aggregated dimensions at the leaf member level.  This is the first step we take to reduce the data

required by the client, by retrieving a sub-cube from the OLAP server.

In order to provide the ability to execute MDX queries from another application, e.g. a

browser, OLAP vendors have standardized an interface called XML for Analysis, or XMLA for

short.

3.4 XML for Analysis Layer

Throughout this research, we used SQL Server Analysis Service as our OLAP server.

The XMLA Application Programming Interface is not a proprietary format; it is an open standard

initiated by Microsoft for connecting any application to a multidimensional data source [23].  It is

widely adopted by all major OLAP service providers such as Oracle/Hyperion Essbase, IBM
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Infosphere Warehouse Cubing Services, Microsoft Analysis Services, and Mondrian on top of

MySQL.

The XMLA API allows application software to communicate with a data provider

through web standards: HTTP, SOAP, and XML.  XMLA is essentially a SOAP envelope with

XML content sent over the HTTP Transport Layer.  As SQL Server Analysis Service does not

listen on HTTP ports, a driver named msmdpump.dll is set up in Internet Information Server to

redirect any XMLA requests to the SQL Server Analysis Service instance [24].  In the XML

content, we can specify two types of operations: Discovery and Execute [25].

Discovery messages allow an application to retrieve metadata on the OLAP Server.  In

our case, we are able to obtain dimension, hierarchy, member, and measure metadata directly

from the OLAP server without prior knowledge of the relations or explicit manual definition.

As the name implies, Execute messages allow execution of any valid MDX query against

the OLAP server.  Typically, an OLAP client uses this method to obtain only the data required to

answer a query.  This brings us back to our original problem definition: if a user wishes to

perform other operations such as drill-down or change filter values, subsequent queries must be

sent per user action.  In our architecture, we use it to obtain the lowest level of aggregation

whenever possible.

The result of an XMLA Execute message is included in Appendix A.  XMLA response is

extremely detailed.  In addition to the partially aggregated data we need, it includes detailed axes

information associated with the result set.  Such data is an overhead as we already have such

information from Discovery messages.  Removing this portion of the response before sending the

dataset to the client minimizes transmission time and avoids the overhead for JavaScript to parse

such data.

When XMLA receives an MDX query request such as the one in Figure 18, it returns a

result set that is quite different from a traditional SQL query record set.  It uses an ordinal value

system to identify cells in a multidimension set.  Typically, when an OLAP client uses MDX to

query a cross-tab, it can use the cell ordinal to determine the row and column indices and display

the result in a 2D grid.  As the sub-cube that we retrieve has more dimensionality, and we require

a data structure closely resembling the fact table used by the JavaScript prototype in section 2.1, a

transformation process is required and explained in section 3.6.2.
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3.5 OLAP Data Access Layer

The OLAP Data Access Layer is a server vendor agnostic layer for accessing OLAP data

sources, developed by SAP – BusinessObjects.  It is a Java library, implementing the XMLA

protocol to provide methods for subsequent layers to consume XMLA without getting into the

gritty details.  The main functionality of the ODA library is to parse XMLA results and return

convenient Java objects such as Cube, Hierarchy, Hierarchy Level, Tuple, MemberSet, and

Member.  Although there is a client-side JavaScript XMLA library, xmla4js, that provides similar

functionality [26], we purposely move the XMLA processor to the server-side, to conserve

resources on the JavaScript OLAP Client.

3.6 RESTful Web Service Layer

Representational State Transfer or REST, is a coordinated set of architectural constraints

that focuses on minimizing network latency and communication and maximizing independent and

scalable component implementations [27]. A web application is said to be RESTful if it confirms

to being a: client-server, stateless, cacheable, uniformly interfaced, and layered system [28].

The RESTful Web Service (RWS) Layer is a middle tier between the JavaScript OLAP

Client and the ODA Layer.  This layer is created using jRuby, a Java implementation of Ruby.

SAP – BusinessObjects originally created this application as an example of exposing the Java

ODA library functions as web services.  Enhancing its original functionality to explore OLAP

server objects and execute MDX statements with ease, we seek to provide server side support for

the JavaScript OLAP Client on the following aspects: (i) transformation of multidimensional data

into fact tables; (ii) data caching; and (iii) dataset compression.  Together with the JavaScript

OLAP Client, they are the core of this research.  The RESTful Web Service performs four major

functions: server exploration, multidimensional data transformation, data caching, and data

compression.

3.6.1 Server Exploration

In order to provide a basic interface to submit queries, the JavaScript OLAP Client must

allow the user to explore the cubes, dimensions, hierarchies, and measures available on the OLAP

server.  The RWS Layer provides methods that are exposed to the JavaScript client in the form of

URLs.  Not limited to browsers, any client application that has the ability to send an HTTP

request is able to take advantage of our RESTful Web Service.  In the case of JavaScript, an
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XmlHttpRequest object that is available on every browser is all that is required to consume the

endpoint.

Ruby by itself is just another programming language with a different expressive syntax

than conventional programming languages.  However, by adding a Sinatra extension, it

immediately provides a server-side web application framework for developing web services.

Without the encumbering service declaration, definition and registration of web services written

in other programming languages, Sinatra allows Ruby to define HTTP request blocks that look

like the following:

GET ‘/ssas/:user\::pass@server/:catalog/:cube/:dimension’ do

Execution_block

End

When the RWS receives a request, it runs the Execution_block in which the request URL matches

a defined directive.  Once a directive is matched, it binds parameters such as catalog, cube, and

dimension to actual names in the URL path.  For example,

http://myServer/ssas/user:pass@myServer will return a list of catalogues available on myServer

and http://myServer/ssas/user:pass@myServer/Adventure Works DW will return a list of cubes in

the Adventure Works DW catalogue.  Manipulating the directive names in the JavaScript OLAP

Client allows it to send requests to the RWS.  The web service then specifies object names and

invokes ODA methods to send XMLA Discovery messages.

Because the number of catalogues, cubes, dimensions and measures in an OLAP

application is typically much less than one hundred, when the ODA Layer returns a response to

the RWS, the web service serializes the response into a JSON string, readily available for

JavaScript to parse and instantiate into Arrays.  Hierarchy trees, such as the product hierarchy of a

supermarket, may contain members in the order of tens of thousands.  This raises two issues: (i)

transferring the tree structures efficiently to the client and (ii) instantiating the products as

JavaScript document objects will crash the browser.

Concerning the first issue, the RWS generates a list of hierarchy members by taking a

pre-order traversal of the tree.  For each hierarchy member, we include the level of the member,

MemberCaption, and UniqueMemberName delimited by the vertical bar character:

0|All Products|All Products

1|Accessories|Category.4
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2|Bike Racks|Subcategory.26

3|Hitch Rack - 4-Bike|Product.483

2|Bike Stands|Subcategory.27

3|All-Purpose Bike Stand|Product.486

2|Bottles and Cages|Subcategory.28

3|Water Bottle - 30 oz.|Product.477

3|Mountain Bottle Cage|Product.478

As member captions are for display purposes and are not unique in each hierarchy, they

are unreliable for accurate aggregation.  Therefore, we include UniqueMember Name in the

metadata.   This compact representation of the tree yields minimum transmission time to the

client-side as no tree node appears twice in this list.  When the JavaScript OLAP Client receives

this response, it parses the result by maintaining a stack to keep track of the current list of

ancestors, and rebuilds the tree in one pass.

For the second issue, when the JavaScript OLAP Client requests a hierarchy h from

dimension d, the RWS obtains the hierarchy level breakdown from the ODA Layer.  With

knowledge of member count on every level of h, and a predetermined tolerance , the wrapper

returns a sub-tree t of h from the root r to a level l where the member count in l in h is at most .

Although the choice of  is not part of our research, it should be a function of several

parameters: browser version, JavaScript engine, and device hardware (such as CPU and memory).

There is a trade off with the value of : the higher the tolerance, the larger is the sub-cube

provided by the RWS, which offers aggregation at low granularity.  With low tolerance, the

RESTful wrapper can only provide aggregation at higher levels of the hierarchy and shallow drill-

downs, although it is capable of providing reasonable responses to devices with slower JavaScript

engine and hardware specs.

Note that we are strictly discussing hierarchies with high branching factor, not fact tables

with massive amount of transactions.  In real life data warehouses, usually the product and

customer dimensions are on such scale and, even in such cases, obsolete products and inactive

customers can be pruned from the hierarchy trees.



33

3.6.2 Multidimensional Data Transformation

Recall in section 2.1, we described the in-memory dataset used by the JavaScript

prototype as an n x (|D| + |M|) array, which corresponds to a fact table in the data warehouse used

to build a cube.  We used the MDX query such as the one in Figure 18 embedded in an XMLA

Execute message to fetch a sub-cube; however, there are still two potential problems with this

approach.  First, specifying the measure in the slicer axis (where clause) only allows retrieval of

one measure.  In many occasions, multiple measures are desirable.  For instance: visualizing the

results in a scatter plot, or performing calculations using multiple measures.  Second, we

mentioned in the previous section that in some cases, fetching every single leaf member is not

possible, as it takes too long for the OLAP server to perform partial-aggregation and the

JavaScript client cannot digest that many document objects.

We modify the sub-cube retrieval routine and generalize it to the following:

Select {measure1,… measurem} on Axis(0),

Descendants([dimension1].[hierarchy1].[root], distance1, Leaves) on Axis(1),

…

Descendants([dimensionn].[hierarchyn].[root], distancen, Leaves) on Axis(n),

From [cube]

Instead of using the measure as the slicer, we treat measures as dimensions and create a set of

desired measures on axis 0.  Subsequent axes are then bound to the desired dimensions.  Since we

want to answer queries at various levels of granularity with respect to each dimension, we need to

fetch members from as far down the hierarchy tree as possible.  By specifying the absolute

distance and the keyword Leaves, the descendants function returns the set of member nodes that

are of distance distancei from [dimensioni].[hierarchyi].[root] and, in addition, leaf nodes that are

closer than distancei from the root.  In trees such as the one in Figure 19 that are unbalanced, this

approach effectively captures short branches.  Without the leaf members from shorter branches, a

cross-tab on high level would generate incorrect aggregation.
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The multidimensional result set is a sub-cube of [cube], of which cells are addressed as

CellOridinals in a row-major format within a sub-cube [29].  Conceptually, a CellOrdinal value

is a number assigned to a cell as if the result set is a p-dimensional array where p is the number of

axes.  If axis k has Uk members, the ordinal number of a cell whose tuple ordinal are (s0, s1,s2 ,…

sp-1) is:

1

0

p

i
ii es where 0e  and

1

0

i

k
ki Ue

Figure 20. CellOrdinal calculation

To minimize modifications required on the JavaScript OLAP Client so that it can perform

aggregation as if the multidimensional result set is a fact table, we transform the sub-cube into a

fact table on the RWS Layer.  Consider the following excerpt from an XMLA response to the

query in Figure 18:

    <CellData>

      <Cell CellOrdinal="0">

        <Value xsi:type="xsd:double">1.35E3</Value>

        <FmtValue>$1,354.59</FmtValue>

      </Cell>

      …

      <Cell CellOrdinal="1793">

        <Value xsi:type="xsd:double">2.4567E2</Value>

        <FmtValue>$345.67</FmtValue>

      </Cell>

    </CellData>

Figure 19. Member node selection with descendants(root, 3, leaves)
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Each CellOrdinal is associated with a tuple/cell in the sub-cube space.  A CellOrdinal number is

calculated by the formula in Figure 20.  Conversely, if we know the CellOrdinal number of a

tuple, the number of axes, and the cardinality of the member set for every axis, we can determine

the tuple ordinal (measure1, …measurem, s1 ,… sn) where si = [dimensioni].[hierarchyi].  For

instance, a value of 345.67 is associated with CellOrdinal=1793, which could mean the first

member in the first axis, the twenty-second member in the second axis, and the fifty-eighth

member in the third axis.  With the axis member set in the XMLA response, this particular tuple

translates to “$345.67 is the [Measures].[Amount] of all purchases of [Product].[All

Products].[Generic Keyboard] in [Store].[All Stores].[California]&[Irvine], that is delivered on

[Delivery Date].[Date].[2007/12/18], from the [Sales] cube”.  We move the first m elements that

denote the measures to the end of the n dimensions.  We insert this tuple as a row into a sub-cube

fact table with the reduced UniqueMemberName as column values.  We perform reductions on

the UniqueMemberName for two obvious reasons: first, to minimize the amount of data

transmitted, and second because the fully qualified name is redundant, as we already know the

dimension and hierarchy from the column header.  The dimension and hierarchy names of the

axes serve as the headings of the sub-cube fact table.  Table 2 shows portions of a sub-cube table

by transforming the multidimensional result set.

[Product].[All Products] [Store].[All Stores] [Delivery Date].[Date] [Amount]

Generic Mouse [BC]&[Vancouver] 2007/12/15 123.45

Generic Keyboard [Ontario]&[Ottawa] 2007/12/16 44.15

Generic Keyboard [Ontario]&[Toronto] 2007/12/16 533.21

Generic Keyboard [California]&[Irvine] 2007/12/18 345.67

Table 2. Multidimensional result set transformation

The potential size of the sub-cube fact table is worth noting.  Theoretically, if the [Sales]

cube is extremely dense, the multidimensional result set would return a CellOrdinal for nearly

every combination of members in every hierarchy requested.  This implies the size of a k-axis

sub-cube fact table is equal to:

k

i
iAM

1

|)(|

where Ai is the dimension.hiearchy selection on axis i and M(Ai) is the descendant member set in

Ai.
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After the RWS creates the sub-cube fact table, it serializes it to a JSON string before

sending it to the client.  Similar to the metadata download, the JavaScriptOLAP Client uses

JSON.parse and directly instantiates the XmlHttpRequest response string into a 2-dimensional

Array Object.

3.6.3 Data Caching

In contrast to an Online Transaction Processing application (OLTP), where transactions

frequently update the database, an OLAP application optimizes data retrieval data for responsive

query answering.  In other words, data tend to stay static until a periodic scheduled update.  It

then makes sense to retain a copy of the previously fetched dataset and store it locally at the

server.

Caching can be implemented on the RESTful Web Service Layer, the JavaScript OLAP

Client, or both.  Although current browsers already support local/web persistent storage in the

HTML5 draft, the disk quotas are limited to three to ten megabytes per domain, which is easily

exceeded.  The limit is set in stone unless we modify an open source browser.  Another issue with

a client-side cache is that when the JavaScript client receives a new dataset, it needs to decide

whether to perform caching and, in the event that it has reached the quota limit, it needs to

determine which datasets to swap out.  Furthermore, when the user wants to fetch a sub-cube, the

JavaScript client needs to validate the local dataset version with the RESTful wrapper.  To

alleviate the JavaScript client from these overheads, we experimented with server-side caching.

When the JavaScript OLAP Client sends a request to the RESTful Web Service Layer to

fetch a sub-cube, the sub-cube’s uniqueness is determined by a few properties: the number of

axes in the dataset, the hierarchies specified for those axes, the depth of the hierarchy retrieved,

and the measure selections.  These properties can be derived from the MDX statement in the

query.  When the RESTful web service has this information, it uses a hash function to obtain a

file name and check for the existence of that file in a repertoire of datasets on disk.  The sub-cube

is returned if it has been previously cached; otherwise, the web service requests a new sub-cube

from the OLAP server.  When the OLAP server returns a result set, the RWS sends a transformed

and compressed sub-cube fact table to the client and caches an identical copy, identified by the

file name produced by the hash function.

Note that although we do not explore such options in this research, the cached sub-cube

fact table does not necessarily have to be an exact match of the client request.  As long as the

measure selection is identical, a cached dataset that is a superset of the client request is sufficient;
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however, the RWS needs to decompress the cached copy, remove and reorder columns to match

the client request, and recompress the sub-cube fact table before returning it to the client.

3.6.4 Dataset Compression

Compressing the dataset before sending it to the client has several advantages. First,

energy consumption associated with sending and receiving data is a major concern for mobile

devices and usually trumps the overhead incurred by client side decompression cost.  Second,

dedicated efforts to minimize network usage add up to drive down business operating cost.

Finally yet importantly, the reduction in transmission time is favourable from a user experience

perspective.

On the premise that the server is responsible for compression, there are three ways of

decompressing the dataset in a web-based OLAP application:

i. Leave compressed dataset in browser memory to minimize memory footprint, and

decompress individual records as required by aggregation on the fly.

ii. Decompress the whole dataset as soon as JavaScript receives it.

iii. Decompress with the browser before passing dataset to JavaScript.

JavaScript does not handle binary data efficiently in comparison to programming languages that

are closely tied to physical hardware [30].  Although we do not investigate in this research, it is

very likely that (i) and (ii) will incur further cost to aggregation time that outweighs any benefits

and makes client-side aggregation a moot point.  On the other hand, web browsers natively

support two compression schemes: gzip and deflate.  If a web server returns a response to the

client and indicates that the http-content-encoding is gzip or deflate, the client will automatically

decompress the content at the browser level, which of course is pre-compiled binary.  In fact,

compressing http content at the browser level is the norm nowadays for any type of web

application.  Figure 21 illustrates this process with a gzip compression.
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Figure 21. Compression at HTTP level [31]

We chose the third approach and adapted zlib [32], an implementation of deflate as the

sub-cube compression scheme. Deflate is a lossless general purpose compression method that

combines the LZ77 algorithm and Huffman Coding [33].  The following figures show the result of

compressing the datasets.

Figure 22. Original versus deflated sub-cube size

Throughout this research, we generated 111 unique sub-cubes from two synthesized

datasets and one real-life dataset.  In this graph, the horizontal axis represents the sub-cubes

sorted according to their original sizes.  The vertical axis shows the effect of deflating the sub-

cubes before the RWS sends them to the client.  The average compression rate is 9.37% of the

original sub-cube size with  = 4.36.  Strong evidence shows that sub-cube compression is highly

effective on the nature of all the datasets we use in this research.  We achieve our goal of

reducing dataset transmission time and bandwidth consumption while incurring only an initial

minimal decompression cost.
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3.7 Lightweight OLAP User Workflow

We compare the performance of a client-centric system on basic OLAP operators such as

cross-tabs, random drill-downs, and roll-ups.  These operations are common and frequently

executed by a lightweight OLAP user.  We run 74 OLAP operations where each operation is

repeated at least five times per network latency setting.  Workflow operations are categorized by

measure groups, which are sets of related dimensions and measures, and are not mutually

exclusive.  Table 3 shows the testing environment.

JavaScript OLAP Client
(JSOC) Server-based Client (SBC)

Browser Platform Firefox 3.6.10

Front-end Machine

Core 2 Duo E6750 @ 2.66GHz,

3.25GB of Ram,

Windows XP Professional 32-bit SP3

Back-end Server

Core 2 Duo E6750 @ 2.66GHz,

3.25GB of Ram,

Windows XP Professional 32-bit
SP3

Windows Server 2008 R2 64bit

48 GB Memory

Intel Xeon X5650 @ 2.67GHz, 2
processors, 24 cores total

OLAP Server

Windows Server 2003 64-bit SP2

SQL Server Analysis Service 2005

12 GB Memory

Intel Xeon E5320 @ 1.86Ghz, 2 processors, 8 cores total

Dataset REAL Warehouse Sample V6 MT

Network Latency The front-end machine will be simulated to have approximately
30/90/150 ms roundtrip latencies to the back-end servers.

Table 3. Testing environment

In addition to the load time and script time we described in section 2.4, note that load

time is a one-time cost for the JavaScript OLAP Client during the sub-cube download before a

cross-tab is generated; it is incurred on a server-centric model per OLAP operation.  Script time is

measured for our JavaScript OLAP Client and is assumed negligible in the case of the server-

centric model.
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Figure 23. Traffic shaping with Dummynet [34]

Network traffic is shaped using Dummynet and is verified by sending a ping request to

the backend OLAP server before and after lag injection, as seen in Figure 23.  Details of the

workflow operations in each measure group can be found in Appendix D and the dataset used can

be found in Appendix C.  We summarize the average response time of the test results.  As

expected, incremental network latency affects the server-centric model by a constant amount

because every OLAP operation request is sent to the server.  The parameter has a lesser impact on

the JavaScript OLAP Client as the only time the client needs to communicate with the server is

during the initial sub-cube retrieval.

Network Latency (in ms)
0 30 90 150

Measure Group JSOC SBC JSOC SBC JSOC SBC JSOC SBC
Store Sales 75 229 80 258 93 313 110 374

Item Vendor 81 265 90 296 107 353 146 417
Distribution

Center Inventory 87 144 91 174 100 236 116 298

Store Inventory 29 197 39 235 50 294 63 354

Table 4. Average performance time on model comparison
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The following set of figures shows the response time of the two models with respect to

every OLAP operation in the workflow sequence:
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Figure 24. Performance time comparison on workflow sequence

These figures show that, for the server-centric model, the server performance remains

constant, but the lines shift upward as the network latency increases.  In the case of the JavaScript

OLAP Client, we observe spikes that are affected by injected latency.  This phenomenon results

from the order of executing the OLAP operations and the way sub-cubes are retrieved.  In a way,

this is a worst case scenario where a fetch is done before every cross-tab generation.  In an ideal
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case, a user can combine the dimensions that he/she is interested in and download them in one

sub-cube.  Such a sub-cube is capable of generating various combinations of cross-tabs, and

facilitates drill-down and roll-up operations without fetching additional data.  In our experiment,

we force the client to download a new sub-cube before each and every cross-tab in order to avoid

such bias, which would otherwise reduce the number of spikes in the JavaScript OLAP Client

series.

It is also worth noting that when the RESTful Web Service component requests the sub-

cubes from the OLAP server, there is a cost to generate the dataset.  For example, there are 15

sub-cubes retrieved in this workflow sequence.  The average time for the OLAP server to

generate these partial pre-aggregated results is 27.9 seconds.  This may seem like a steep cost that

outweighs the advantages of client-side aggregation; however, recall that one of the

functionalities implemented in the RWS layer is caching.  When we repeat the workflow

sequence using simulated network latency of 0/30/90/150 milliseconds, the sub-cubes are

retrieved from a disk cache that takes 1 millisecond or less.  In a real world application, there are

at least three ways to relieve this overhead from the user.  First of all, modern OLAP servers have

the option of optimizing multidimensional data by pre-aggregating at various levels of

granularity, or by not aggregating at all.  A server optimized at leaf level pre-aggregation would

complement our sub-cube retrieval method.  Second, an OLAP server is updated at regular

intervals, after each data integration; it can preemptively compute, transform, and store frequently

asked sub-cubes and store it on a server hard disk.  Third, as mentioned in section 3.6.3, the RWS

can be modified to fetch a cached sub-cube (of which the dimension/hierarchy and measures are a

superset of the requested sub-cube), splice and rearrange the order of columns, and return it

without sending a request to the OLAP server.

With regards to network consumption, we track the total amount of data transmitted

between the two models in each measure group in Table 5 and conclude that the front-load cost of

the JavaScript OLAP Client does not necessarily consume more network bandwidth compared to

the server-centric model.  As a matter of fact, with more operations performed on a sub-cube, the

overall network usage is considerably less than that of a server-centric model.
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Network Usage (in KB)
Measure Group JSOC SBC

Store Sales 259.9 383.5
Item Vendor 94.3 176.4
Distribution Center Inventory 344.2 219.6
Store Inventory 65.4 254.0

Table 5. Total data size transferred

3.8 Performance Degradation with Respect to Sub-cube Size

Recall the prototype engine in section 2.3.  The query processing method of the prototype

is similar to that of a main-memory OLAP engine running on a server: perform table scan of the

fact tables.  While a server-side main-memory OLAP engine can digest massive table sizes, not

all browsers can efficiently handle table sizes anywhere near a million rows using the same

method.  Given that fact tables can grow by thousands or more records from daily business

operations, performance degradation of fact table linear scanning is inevitable in a browser

environment.

In our proposed sub-cube fact table approach, it does not matter how large the database is

in terms of number of tuples in the fact table.  What really matters is the size of the downloaded

sub-cube.  There are two ways in which the sub-cube size may explode to a point that the

JavaScript OLAP Client using table scan query processing cannot outperform the server-centric

model.  The objective in this section is to evaluate such performance degradation.

Sub-cube Size Explosion by Introducing Additional Slices

Consider workflow sequence number 21 to 25 from Appendix D.  Without simulating

network latency as a parameter, the following table shows the response time of the server-centric

model to perform the five OLAP operations and the performance of the JavaScript OLAP Client

with respect to different sub-cube sizes retrieved from the RWS.

JavaScript OLAP Client
Sub-cube size

Workflow SBC 5,263 7,395 12,575 16,772 26,660 31,192 36,975 75,247
21 219 37 53 90 119 192 243 275 431
22 297 21 30 49 66 105 134 155 287
23 359 20 30 48 65 104 134 154 287
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Workflow SBC 5,263 7,395 12,575 16,772 26,660 31,192 36,975 75,247
24 281 22 32 49 66 103 141 162 292
25 94 20 30 46 63 106 120 149 288

Table 6. Performance degradation with respect to sub-cube size

One may wonder why the sub-cube size can increase by an order of magnitude or more,

which reveals the drawback of letting the user to slice the cube at will.  When the user downloads

more dimensions than necessary to answer his cross-tab query, the size of the dataset increases

because of amplified granularity.  To answer the above workflow sequence, the minimal sub-cube

only requires two dimension slices from the entire cube: the [Time] dimension diced to year 2004,

and the [Item] dimension diced to “Fiction” category.  However, if the user intentionally or

inadvertently takes slices of additional dimensions or dices a larger set of members, the number

of tuples in the sub-cube fact table increases as shown in Table 7.

Number of Tuples Dimension/Hierarchy Change

5,263 Minimal sub-cube download

7,395 Add [replen strategy].[strategy type] hierarchy

12,575 Add [customer].[years since purchased] hierarchy

16,772 Add [replen strategy].[title type] hierarchy

26,660 Add [store].[store status] hierarchy and [vendor].[vendor type] hierarchy

31,192 Add [store].[store] hierarchy

36,975 Add [vendor type].[vendor type] hierarchy and [replen
strategy].[strategy type] hierarchy

75,247 Include all book instead of “Fiction” category

Table 7. Sub-cube size explosion

Sub-cube Size Explosion due to Increased Member Set

Another possibility for retrieving a sub-cube of larger size is to include additional

members in the sliced dimensions.  Referring back to the five OLAP operations in the previous

section, the default retrieval method is to fetch descendants of the [Item].[By Category] hierarchy

down to the [subcategory] level, and not to the leaf level, which contains a set of 43,951

members.  The rationale for this is described in section 3.6.1.  Consider the scenario if we fetch a

subset of the 43,951 members.  By increasing the number of members in this dimension, the sub-

cube size grows extremely fast as the member set size in the [Item] dimension is multiplied by the

cross product of the member set sizes of other sliced dimensions.  This has a profound impact on
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the size of the sub-cube unless the original cube is sparse, in which case the non-zero cells would

be relatively low.

JavaScript OLAP Client
Sub-cube size

Workflow SBC 5,263 8,575 14,772 27,193 51,247
21 219 41 62 110 229 367
22 297 22 40 59 129 243
23 359 22 39 61 125 229
24 281 25 39 60 119 235
25 94 23 37 61 128 232

Table 8. Increased member set size

Figure 25. Performance degradation

We average out the time over these five operations and plot out the three series: server-

based client, JavaScript OLAP Client: sub-cube size increase by addition dimensions and sub-

cube size increase by larger member set.  Figure 25 shows the points at which the same query

takes longer for the JavaScript OLAP Client to perform local aggregation than a server-centric

model.  In this case, client-side aggregation will incur a performance penalty as the current

algorithm performs a linear scan on the tuples in the sub-cube, while server-side aggregation only

focuses on members explicitly specified in a query.  Although the threshold varies depending on

the actual query executed, dataset and metadata used, and client/server hardware, these

experiments show similar results, with the degradation being slightly faster in the case of
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increased member set size.  We believe this is because when we expand the member set by taking

more members from deeper levels of the hierarchy tree, it takes slightly more time to determine

the ancestor member at the aggregation level.
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4 Calculations and Data Visualization

While lightweight OLAP users mainly generate cross-tabs, OLAP power users often

demand queries that involve calculations such as top-k percentage contribution over m-time span,

and m-day moving average.  In this chapter, we explain these two calculations, algorithms used to

carry out these calculations, and the data visualizations applied.  With extensive testing, our goals

are (i) to compare the JavaScript OLAP Client’s performance against a simulated server-centric

web-based OLAP application to perform these calculations; and (ii) to show that performing

successive calculations against a server-centric model would introduce jitter in the presentation

layer, if not completely overwhelm the OLAP server.

In addition to these two calculations, section 4.4 introduces a novel client-side

aggregation technique in common data visualization – a scatter plot.  We implement this

technique on the conventional vector-graphic based library and the new HTML raster-based

library, and demonstrate that HTML5 makes a JavaScript-based Rich Internet Application a

strong candidate as an OLAP client.

4.1 Data Visualization in Traditional Web-based OLAP

We do not use run tests against SAP’s server-based client because even though it has the

functionality to send calculation queries, we cannot achieve the second goal.  In current

generation of web-based OLAP clients, the server renders graphical data visualization in real-

time and sends it as a static image to the client.  As shown in previous sections, current JavaScript

engines are powerful enough to render graphics on the browser.  To compare apples to apples, it

would be more interesting to test our client-centric model against a model where the server

performs the calculations and the client renders the results using the same data visualization.  To

that end, we simulate a web application that has minimal script execution on the browser side and

that uses the OLAP Data Access layer used by the server-centric model to fetch computed results

from the same OLAP server.  Common across all tests, all clients and servers are on the same

network where the network latencies between any entities are no more than one millisecond.  In

the top-k percentage contribution and m-day moving average calculation tests, we inject three
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levels of network latency to simulate clients connecting to a remote server and observe the impact

to query response time.

4.2 Top-k Percentage Contributions Over m-time Span

This calculation is essentially a ranking problem.  We introduce another function by

modifying getMatrixAnswer to perform group-by on one axis rather than two.  During scanning

the fact table for tuples that fall within the m-time span, we perform a group-by on the single axis

on the specified measure.  Consider the following example: a user requests the top ten item

subcategories and their percentage contribution to the total sales in the past two weeks.  In this

case, we retrieve a sub-cube that contains three dimensions: [Item] at the [Subcategory]

granularity, [Time] at the [Calendar Date] granularity, and the measure [Sales].  Using

getMatrixAnswer to group-by on the [Item].[Subcategory] axis, filtered by tuples with

[Time].[Calendar Date] in the past two weeks.  When the aggregation ends, we obtain an object

Answer that contains a list of <item subcategory: sale amount> as its <property: value>, as well

as a running total of the sale amount of every item subcategory.  Then we select the top 10 item

subcategories ranked by their sale amount using SelectTop(10, Answer) in Figure 26.

Algorithm SelectTop (k, Answer)

Array TopKAnswer;

For (each property in Answer)

        TopKAnswer.insert({property, Answer[property]}, k)

return TopKAnswer;

Figure 26. Top-k selection

In this example, the algorithm maintains a static array of size ten.  It loops through the

properties of Answer and insert the <item subcategory, sale amount> into this array using the

following insert custom insert method.
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Array.insert = function (object, k) {

    For i = 0 to Array.length – 1

        If (object.value >= Array[i].value) {

            // insert at i and shift all elements after i

            Array.splice(i, 0, object);

            break;

    End For

    //return only the first k elements

    return this.slice(0,k);

}

Figure 27. Custom array insertion method

This method inserts the object passed in as a parameter at the appropriate position according to its

value, and shifts all elements thereafter by one.  It then truncates the array to the first k elements.

The running of the top-k selection algorithm is O(nk) where n is the number of members.

Finally, we compute the aggregated sales amount of the ten item subcategories as a

percentage of the total sales amount of every item subcategory and display them in a HTML table

as well as a browser rendered pie chart using rGraph, a Raphaël SVG library [35].  We use a

slider bound to [Time].[Calendar Date] to allow the user to change the value of m successively,

providing real-time visualization to the calculation result.  Although possible with a server-centric

model, in the presence of multiple simultaneous users, as well as network latency, the result

would be jerky.  Therefore, offloading these types of intensive calculations to the client is

beneficial from the perspective of the user and the server.

To benchmark this calculation against a server-centric model, we run an experiment with

three values of k and a slider control bound to the [Time] dimension.  Each slider movement re-

computes the top-k contribution and re-renders the output.  We run the calculation 500 times with

random start and end dates for each model.  For the JavaScript OLAP Client, the sub-cube

downloaded is [Item].[Subcategory], [Time].[Calendar Day].[2004], and [Measure].[Sale Amt].

The sub-cube is 471KB with 77,629 tuples and takes 7/40/98/159 milliseconds to download with

injected latencies of 0/30/90/150 ms, respectively.  We observe that the JavaScript OLAP Client

performs the calculation and renders the result in the range of 75 to 85 ms regardless of the value

k.  While the server-centric model also computes the result in comparable time (75~91 ms),
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simulated network latency adds an overhead to the response time and prevents the browser from

rendering visualization seamlessly.

JavaScript OLAP Client Server-centric OLAP Client
Network Latency (in ms) Network Latency (in ms)

Parameter k 0 30 90 150 0 30 90 150
10 76 76 75 76 75 104 163 226
20 81 82 83 82 85 118 174 243
30 83 82 84 85 91 123 174 242

Table 9. Top-k percentage contribution performance

4.3 m-day Moving Average

Another common calculation is the m-day moving average of a measure for a set of

members.  For example, the user may be interested in the past 7-day moving average sales

amount of all the stores in Seattle in 2004 plotted as a line graph.  First, we use our sub-cube

retrieval method to obtain dataset consists of the pre-aggregated sales amount of all n stores in

Seattle by individual dates in 2004.  We perform a group-by on individual dates, and then by

store, and sort the dataset according to the date on a ascending order.  We compute the 7-day

moving average of each day in January and plot the initial result on a line graph visualization

using flot, a Canvas library [36].  We add a “playback” function so that the graph iterates through

each day in 2004, calculates the 7-day moving average for the next day, and presents a “moving”

average animation as a different way for the user to observe data trends.

Given an n-day simple moving average for yesterday for storei, the cost of calculating the

n-day simple moving average for today is inexpensive:

n
storentodaySales

n
storetodaySales

storeyesterdaySMAstoretodaySMA ii
ii

),(),(
),(,

Because the JavaScript client has the aggregated dataset in memory, it is not necessary to perform

a linear scan to determine Sales(date, storei).  Cases such as the n-day moving average best

exemplify the benefits of delegating work to the client-side, especially when requests are frequent

and the server needs to recalculate every time.

For the m-day moving average calculation, we retrieve a sub-cube for the JavaScript

OLAP Client – [Store].[By Geography].[Seattle], [Time].[Calendar Day].[2004], and

[Measure].[Sale Amt].  The moving average sale of each store in Seattle is computed for January

to form the series and to initialize a line graph.  When the user initiates the animation, the
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JavaScript OLAP Client computes the moving average of each store for the next day and

continuously updates the visualization until it reaches the end of year 2004.  To make a fair

comparison, the server-centric model also runs an MDX query to fetch the initial plot.  When the

user initiates the animation, the browser fetches the moving average of the next day, instead of

the whole period from the OLAP server.  When the browser receives the data for the next day, it

updates the visualization locally.  Table 10 shows the performance time of both models, including

rendering time.

JavaScript OLAP Client Server-centric OLAP Client
Network Latency (in ms) Network Latency (in ms)

Parameter m 0 30 90 150 0 30 90 150
7 88 87 87 87 159 194 249 309

14 89 90 89 88 166 193 259 317
21 90 91 91 92 172 204 258 320
30 90 93 92 93 173 204 261 329

Table 10. m-day moving average performance

In general, human visual perception will not notice flicker at thirty frames per second or

more.  This is equivalent to about 33 milliseconds for the script time plus rendering time.

Although the performance our current implementation is slower than that threshold, it is fair to

say that the JavaScript OLAP Client still does better than the server-centric model in three ways.

First, we shorten the amount of time it takes to display the pie chart by bridging the gap on

network latency.  Second, we reduce overall network traffic and server load, so that the server can

service more clients.  Finally, the smoother visualization provides a better user experience.

4.4 Scatter Plot Aggregation on Mouse Selection

Up to this point, we have been primarily concerned with the aggregation performance

aspect of a web-based OLAP client.  From the experiments in section 2.4, we learn that

dynamically manipulating the HTML content through Document Object Model is not to be

trivialized.  Often times, OLAP analysis can produce massive datasets.  If the results are always

shown in a data grid, rendering time alone on a web browser may bog down the application.

Even if rendering time is not an issue, analysts can miss potentially interesting trends when they

are overwhelmed by the sheer amount of data in a large spreadsheet, as pointed out by Shrader

[37].  Graphical visualization tools come into play to overcome such a challenge [38].  A scatter

plot is a type of mathematical diagram using Cartesian coordinates to display a set of data.  The x
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and y axes represent two measures of a dataset; for each tuple in the dataset, a point is plotted

according to its two measures as the x and y coordinates.  While a data grid can potentially span

several screens, a scatter plot, on the other hand, can scale to the width and height of the screen,

providing the ability to display hundreds of thousands of data points in confined space.

In a traditional server-centric model, a scatter plot of the data is pre-rendered at the server

and delivered to the browser as a static image file.  Thus, the analyst cannot change the scatter-

plot interactively in order to drill-down on a region of the plot with a mouse (i.e. using the mouse

to create a rectangle on the plot).  As a result, the JavaScript OLAP Client is clearly superior to a

server-centric OLAP client.  However, to generate scatter plots at the client-side using the dataset

in-memory is a challenging problem.

We experiment with generating scatter plots at the client-side using the datasets in-

memory.  Scalable Vector Graphics, or SVG, has been around for over a decade.  In the past, web

developers have used this mark-up to create dynamic and interactive graphic components for the

web browser.  HTML5 introduces the Canvas element tag that brings a new world of possibilities

with client-side rendered graphics.  Rather than a straightforward graph presentation, we explore

a new technique that is tailored to client-side OLAP.

Suppose that the user creates a scatter plot with a measure on the x-axis, another on the y-

axis, and a third measure on the z-axis.  We summarized x, y and z coordinates of data points in

the mouse selection region on the graph.  This type of aggregation brings a completely new

spectrum of data analysis.  It has the potential to aggregate a group of visible outliers, or quickly

determine the contribution of a set of points relative to other selected regions.  Furthermore, as

the user drags the mouse selection, the aggregation updates itself in real-time.  Such technique is

nearly impossible in a server-centric model where the client informs the server of the user

selection.  First, the server would need to track the entire dataset that the user currently has on the

workspace.  Second, even if the server was capable of that, it would not be able to keep up with

returning aggregation results on every onMouseDrag event in the presence of network latency, let

alone the server process time.  If the client takes a step back, and responds only to the

onMouseUp event, the user would need to do repetitive mouse selections to see the difference of

selecting neighbour points.  For these reasons, we explore the scatter plot aggregation on mouse

selection on the client-centric model.

There are two methods of graphic rendering in a web application as described in the top-k

contribution and the m-day moving average calculations: Scalable Vector Graphics and Canvas.

When the number of rendered elements is small, the performance difference is negligible.  With
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SVG, every vector graphic that appears on the canvas is an object in the Document Object Model.

The benefit of SVG is that event listeners can be bound to each object; and the drawback is that

retrieving an object requires DOM traversal.  After we plot the graph, mouse region selection is

implemented by drawing a panel in the scatter plot using Protovis, a SVG library [39].  On the

other hand, the Canvas approach is quite different as it is a raster-based graphic library.  The

entire canvas is treated as an image, although there can be data associated with the image.  We

plot the tuples and store them in the order they are fed, in a base canvas.  We implement the

region selection ourselves by stacking another layer of Canvas element on top of the base.  This

way, the base layer keeps a static rendition of the scatter plot and remains intact while the user

interacts with the top layer.  When the user clicks on the canvas, the onMouseDown event triggers

a rectangular box on the top layer: as the cursor moves across the layer, the top layer is constantly

erased and redrawn.  The onMouseDrag event handler is fired continuously as the selection

change, and loops through the set of points in the graph.  If a point falls within the selection

region by comparing the x and y coordinates of the rectangle, we use the index of the point, look

up the tuple in the dataset without linear scanning, and aggregate the three measures.  We are able

to circumvent linear scanning because the tuples in the dataset and the set of points in the graph

are strictly ordered.

The goal in this step is to evaluate the potential of the new Canvas element introduced in

HTML5 as a candidate for rendering data visualization.  In this research, we introduced a novel

client-side aggregation technique: summarization of n data points in a mouse selection region on

a scatter plot.  We experiment with both methods of rendering a scatter plot from OLAP data, and

observe their performance as the user interacts with the data point.

The result of this test in Table 11 shows a dramatic difference between SVG and Canvas.

These two libraries have a fundamental difference.  Recall that web documents conform to a

Document Object Model.  Every HTML tag is an element object in a DOM.  Event listeners can

be bound to DOM elements even during runtime, thus making them interactive.  JavaScript can

dynamically update the content of an HTML document by inserting, updating, and deleting

elements from the DOM.  It is well known that DOM traversal to find elements is very costly.

However, no research has been done on its performance to extend data point aggregation in

addition to DOM traversal.  SVG objects are also part of the DOM, which explains why the

scatter plot aggregation performs so poorly under SVG as there are thousands of objects.  When

the selection box is dragged, thousands of DOM traversals are initiated, and the browser bogs

down.  The Canvas element, on the other hand, is one DOM object.  The change in mouse
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selection does not rely on DOM traversal to determine which points are selected.  Rather, the data

associated with the object is searched, and as there is no need to determine ancestor-descendant

relationship during aggregation, the Canvas approach is capable of calculating several orders of

magnitude more tuples than for example, a cross-tab.

SVG Canvas
n Avg. Time (ms) Avg. Time (ms)

5,000 398 1
10,000 - 1
50,000 - 3
100,000 - 7
200,000 - 14
300,000 - 18
400,000 - 26

Table 11. SVG versus Canvas scatter plot aggregation

Our goal is not to claim that Canvas has far superior performance to SVG.  Rather,

through this experiment, we understand that Canvas has great potential to provide new data

exploration techniques, in which data visualization and OLAP aggregation overlap.  Therefore, it

complements SVG to deliver a graphical-rich OLAP client tool.
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5 Conclusion and Future Work

5.1 Conclusion

While disk-based and heavily-indexed OLAP servers have been around for decades, main-

memory OLAP servers are taking off with cost of memory drastically lower than it has ever been.

In this research, we propose an in-memory client-side OLAP engine written in JavaScript.  The

web-based OLAP application runs in the context of a restrictive browser.  We experiment with

the performance of the JavaScript OLAP engine against various parameters and observe

challenges with a standalone system.  We enhance the baseline JavaScript OLAP Client, which in

conjunction with a server component, overcomes many of the challenges we observed.  The

OLAP architecture is different from traditional client-server OLAP systems where the client is

merely a presentation layer.

Through careful experimentation, we demonstrate as a proof-of-concept that client-side

aggregation can outperform a server-centric OLAP model, in which network latency can

contribute a considerable proportion to the response time.  We devised a set of OLAP operations

commonly found in a lightweight OLAP user workflow and benchmarked the performance of the

JavaScript OLAP Client against a real-world OLAP system using a real-life dataset.

Furthermore, we strengthen our claim by showing the capability of the client-centric model

to perform calculations commonly used by OLAP power users.  We compare our results to a

simulated server-centric model and show that a client-centric model not only performs better, but

is also capable of rendering graphical visualization by itself, reducing overall network

transmission, and offloading server load to the client-side so the server can serve additional

requests.  We also contribute to the research community by demonstrating a novel technique for a

user to explore his/her data by interacting with the visualization and performing client-side

aggregation on the fly, which would otherwise be impossible in a server-centric model.

5.2 Future Directions

As there are very few studies in the area of client-side OLAP, particularly in a web-based

environment, we feel there are still many aspects of this research worth exploring, both from

academic and industrial perspectives.  JavaScript engines are constantly improving in terms of
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speed.  Browsers are adopting more and more features that facilitate the development of web

applications parallel to desktop applications.

From a query processing perspective, our JavaScript OLAP engine uses an in-memory

table scan algorithm to perform aggregation; it would be interesting to try out other index

algorithms and compare their differences in a browser setup.  In fact, it would also be worthwhile

to explore persistent local storage to keep the dataset on disk rather than in-memory because

many browsers have embedded the SQLite engine to simulate a small relational database.  In

other words, it is possible to let the SQLite engine do the group-by operations after data is

retrieved from a server.

Dataset compression can also be investigated to determine the performance trade off

between holding more compressed tuples in main memory and decompressing subsets of the data

on the fly.  Part of our research involves looking into the ability of JavaScript to work with

compressed data.  Preliminary results show that JavaScript is efficient with binary format as it is

not a primitive type in the language [30].

On the topic of Rich Internet Applications, it would be interesting to see the JavaScript

OLAP engine ported to Flex or Silverlight and compare the performance bottlenecks.  A Flex or

Silverlight version could consume our web service layer easily and would enable a lot more

possibilities with hardware accelerated graphics libraries.

The RESTful Web Service layer can also be extended to enhance its caching strategy:

pre-generation of commonly requested sub-cubes.  In addition, if user profiling is incorporated

into this layer, it can reduce the size of sub-cubes returned by fetching dimensions at higher

granularity instead of leaf level based on the user’s query history.  Alternatively, when a user

requests a sub-cube with many dimensions, the RWS can select an optimal combination of

granularities.
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Appendices

Appendix A: Weather Dataset Specification

Dimension 1: Brightness

    Hierarchy: Brightness-Level

        Level: Brightness (2)

        Level: Brightness Value (3)

Dimension 6: Measures

    Hierarchy: Measures

        Level: Reading (1)

Dimension 2: Day

    Hierarchy: Day-Level

        Level: Day (2)

        Level: Day Value (31)

Dimension 7: Present-weather

    Hierarchy: Present-weather-Level

        Level: Present-weather (2)

        Level: Present-weather Value (102)

Dimension 3: Hour

    Hierarchy: Hour-level

        Level: Hour (2)

        Level: Hour Value (9)

Dimension 8: Solar-altitude

    Hierarchy: Solar-altitude-Level

        Level: Altitude Band (2)

        Level: Altitude Sub-band (9)

        Level: Altitude Value (187)

Dimension 4: Latitude

    Hierarchy: Latitude-Level

        Level: Zone (2)

        Level: Latitude (9)

        Level: Latitude Value (160)

Dimension 9: Station-id

    Hierarchy: Station-Level

        Level: Station Group (2)

        Level: Station Sub-group (86)

        Level: Station ID (7122)

Dimension 5: Longitude

    Hierarchy: Longitude-Level

        Level: Zone (2)

        Level: Longitude (19)

        Level: Longitude Value (370)

Dimension 10: Weather-change-code

    Hierarchy: Weather-change-code-Level

        Level: Weather-change-code Group (2)

        Level: Weather-change-code Value (11)
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Appendix B: Partial XMLA Response
<return xmlns="urn:schemas-microsoft-com:xml-analysis">
…
<OlapInfo>
  <CubeInfo>
    <Cube>
      <CubeName>Sales</CubeName>
    </Cube>
  </CubeInfo>
  <AxesInfo>
    <AxisInfo name="Axis0">
      <HierarchyInfo name="[Shippers].[Shipper Name]">
        <UName name="[Shippers].[Shipper Name].[MEMBER_UNIQUE_NAME]" type="xsd:string" />
        <Caption name="[Shippers].[Shipper Name].[MEMBER_CAPTION]" type="xsd:string" />
        <LName name="[Shippers].[Shipper Name].[LEVEL_UNIQUE_NAME]" type="xsd:string" />
        <LNum name="[Shippers].[Shipper Name].[LEVEL_NUMBER]" type="xsd:int" />
        <DisplayInfo name="[Shippers].[Shipper Name].[DISPLAY_INFO]" type="xsd:int" />
      </HierarchyInfo>
    </AxisInfo>
    <AxisInfo name="SlicerAxis">
      <HierarchyInfo name="[Measures]">
        <UName name="[Measures].[MEMBER_UNIQUE_NAME]" type="xsd:string" />
        <Caption name="[Measures].[MEMBER_CAPTION]" type="xsd:string" />
        <LName name="[Measures].[LEVEL_UNIQUE_NAME]" type="xsd:string" />
        <LNum name="[Measures].[LEVEL_NUMBER]" type="xsd:int" />
        <DisplayInfo name="[Measures].[DISPLAY_INFO]" type="xsd:unsignedInt" />
      </HierarchyInfo>
      …
      <Tuple>
        <Member Hierarchy="[Time].[Year]">
          <UName>[Time].[Year].[All]</UName>
          <Caption>All</Caption>
          <LName>[Time].[Year].[(All)]</LName>
          <LNum>0</LNum>
          <DisplayInfo>65545</DisplayInfo>
        </Member>
      </Tuple>
      …
    <CellData>
      <Cell CellOrdinal="0">
        <Value xsi:type="xsd:double">1.35445859E6</Value>
        <FmtValue>$1,354,458.59</FmtValue>
      </Cell>
      <Cell CellOrdinal="1">
        <Value xsi:type="xsd:double">4.0775082E5</Value>
        <FmtValue>$407,750.82</FmtValue>
      </Cell>
      <Cell CellOrdinal="2">
        <Value xsi:type="xsd:double">3.7398319E5</Value>
        <FmtValue>$373,983.19</FmtValue>
      </Cell>
      <Cell CellOrdinal="3">
        <Value xsi:type="xsd:double">5.7272458E5</Value>
        <FmtValue>$572,724.58</FmtValue>
      </Cell>
      <Cell CellOrdinal="35">
        <Value xsi:type="xsd:double">2.262985E5</Value>
        <FmtValue>$226,298.50</FmtValue>
      </Cell>
    </CellData>
  </root>
</return>
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Appendix C: REAL Warehouse Sample V6 MT Dataset Specification

Dimension 1: Buyer
    Hierarchy: Buyer
        Level: Buyer Index (26)
        Level: Buyer Name (585)
    Hierarchy: Buyer ID
        Level: Buyer ID (585)
    Hierarchy: Buyer Name
        Level: Buyer Name (585)

Dimension 2: Customer
    Hierarchy: Auto Renew Ind
        Level: Auto Renew Ind (3)
    Hierarchy: By Geography
        Level: Country (2)
        Level: State (6)
        Level: City (91)
        Level: Customer Name (218405)
    Hierarchy: Card Status Code
        Level: Card Status Code (5)
    Hierarchy: City
        Level: City (91)
    Hierarchy: Country
        Level: Country (2)
    Hierarchy: Cust Info Code
        Level: Cust Info Code (13)
    Hierarchy: Customer
        Level: Customer Index (2139)
        Level: Customer Name (218405)
    Hierarchy: Customer Index
        Level: Customer Index (2139)
    Hierarchy: Customer Name
        Level: Customer Name (218405)
    Hierarchy: Email Addr
        Level: Email Addr (133826)
    Hierarchy: Expiration Date
        Level: Expiration Date (63)
    Hierarchy: Member ID
        Level: Member ID (218405)
    Hierarchy: Primary Member ID
        Level: Primary Member ID (2)
    Hierarchy: Purchase Date
        Level: Purchase Date (1239)
    Hierarchy: State
        Level: State (6)
    Hierarchy: Years Since Purchased
        Level: Years Since Purchased (5)
    Hierarchy: Zip Code
        Level: Zip Code (124)

Dimension 3: DC Vendor
    Hierarchy: Active
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        Level: Active (3)
    Hierarchy: Vendor
        Level: Vendor (12687)
    Hierarchy: Vendor Num
        Level: Vendor Num (12687)

Dimension 4: Distribution Center
    Hierarchy: Distribution Center
        Level: Distribution Center (6)
    Hierarchy: Distribution Center Code
        Level: Distribution Center Code (6)

Dimension 5: Item
    Hierarchy: Author
        Level: Author (19831)
    Hierarchy: Author Index
        Level: Author Index (16968)
    Hierarchy: Bargain Catalog Ind
        Level: Bargain Catalog Ind (4)
    Hierarchy: BN Retail
        Level: BN Retail (837)
    Hierarchy: BN Retail Grouping
        Level: BN Retail Grouping (6)
    Hierarchy: By Category
        Level: Product (3)
        Level: Subject (19)
        Level: Category (123)
        Level: Subcategory (373)
        Level: Item (43951)
    Hierarchy: By DC Vendor
        Level: DC Vendor Alpha (26)
        Level: DC Vendor (1306)
    Hierarchy: By Dept
        Level: Dept (12)
    Hierarchy: By Original Purchase Vendor
        Level: Original Vendor Index (25)
        Level: Original Purchase Vendor (300)
    Hierarchy: By Purchase Vendor
        Level: Purchase Vendor Index (24)
        Level: Purchase Vendor (232)
    Hierarchy: By Return Code
        Level: Return Code Status (4)
        Level: Return Code (6)
    Hierarchy: By Return Vendor
        Level: Return Vendor Index (25)
        Level: Return Vendor (297)
    Hierarchy: By Source Vendor
        Level: Source Vendor Index (23)
        Level: Source Vendor (190)
    Hierarchy: By Status
        Level: Current Status (4)
        Level: Status Detail (14)
    Hierarchy: By Subject
        Level: Subject (19)
        Level: Category (123)
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        Level: Subcategory (373)
        Level: Item (43951)
    Hierarchy: Category
        Level: Category (123)
    Hierarchy: Class Code
        Level: Class Code (21)
    Hierarchy: Current Status
        Level: Current Status (4)
    Hierarchy: Current Status Code
        Level: Current Status Code (14)
    Hierarchy: DC Vendor
        Level: DC Vendor (1306)
    Hierarchy: Dept
        Level: Dept (12)
    Hierarchy: Display
        Level: Display (241)
    Hierarchy: EAN
        Level: EAN (43928)
    Hierarchy: Edition
        Level: Edition (1575)
    Hierarchy: Imprint Index
        Level: Imprint Index (33)
    Hierarchy: Imprint Name
        Level: Imprint Name (5885)
    Hierarchy: ISBN
        Level: ISBN (42771)
    Hierarchy: Item
        Level: Item (43951)
    Hierarchy: Language Code
        Level: Language Code (55)
    Hierarchy: Large Print Ind
        Level: Large Print Ind (3)
    Hierarchy: Long Item Desc
        Level: Long Item Desc (43928)
    Hierarchy: Original Purchase Vendor
        Level: Original Purchase Vendor (300)
    Hierarchy: Product
        Level: Product (3)
    Hierarchy: Publish Date
        Level: Publish Date (4702)
    Hierarchy: Publish Year
        Level: Publish Year (70)
    Hierarchy: Publisher Index
        Level: Publisher Index (32)
    Hierarchy: Publisher Name
        Level: Publisher Name (4547)
    Hierarchy: Purchase Vendor
        Level: Purchase Vendor (232)
    Hierarchy: Retail Amt
        Level: Retail Amt (853)
    Hierarchy: Return Code
        Level: Return Code (6)
    Hierarchy: Return Code Status
        Level: Return Code Status (4)
    Hierarchy: Return Vendor
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        Level: Return Vendor (297)
    Hierarchy: Source Vendor
        Level: Source Vendor (190)
    Hierarchy: Status Detail
        Level: Status Detail (14)
    Hierarchy: Subcategory
        Level: Subcategory (373)
    Hierarchy: Subject
        Level: Subject (19)
    Hierarchy: Total Num Pages
        Level: Total Num Pages (1243)
    Hierarchy: Total Num Pages Grouping
        Level: Total Num Pages Grouping (6)
    Hierarchy: Years Since Published
        Level: Years Since Published (10)

Dimension 6: Measures
    Hierarchy: Measures
        Level: MeasuresLevel (19)

Dimension 7: Periodicity
    Hierarchy: Measure
        Level: Measure (2)

Dimension 8: Replen Strategy
    Hierarchy: Replen Strategy
        Level: Strategy Type (4)
        Level: Strategy (8)
        Level: Title Type (14)
    Hierarchy: Strategy
        Level: Strategy (8)
    Hierarchy: Strategy Type
        Level: Strategy Type (4)
    Hierarchy: Title Type
        Level: Title Type (14)

Dimension 9: Store
    Hierarchy: Ad Area
        Level: Ad Area (6)
    Hierarchy: City
        Level: City (126)
    Hierarchy: Close Date
        Level: Close Date (75)
    Hierarchy: District
        Level: District (6)
    Hierarchy: Division
        Level: Division (2)
    Hierarchy: Geography
        Level: Division (2)
        Level: Region (3)
        Level: District (6)
        Level: City (126)
        Level: Store (285)
    Hierarchy: Grand Open Date
        Level: Grand Open Date (2)
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    Hierarchy: Linear Ft
        Level: Linear Ft (66)
    Hierarchy: Linear Ft Grouping
        Level: Linear Ft Grouping (5)
    Hierarchy: Market Area
        Level: Market Area (7)
    Hierarchy: Mgr Name
        Level: Mgr Name (135)
    Hierarchy: Months Since Opened
        Level: Months Since Opened (6)
    Hierarchy: Open Date
        Level: Open Date (222)
    Hierarchy: Region
        Level: Region (3)
    Hierarchy: Square Feet
        Level: Square Feet (147)
    Hierarchy: Square Feet Grouping
        Level: Square Feet Grouping (6)
    Hierarchy: Status Desc
        Level: Status Desc (5)
    Hierarchy: Store
        Level: Store (285)
    Hierarchy: Store Phone
        Level: Store Phone (140)

Dimension 10: Time
    Hierarchy: Calendar
        Level: Calendar Year (20)
        Level: Calendar Qtr (74)
        Level: Calendar Month (219)
        Level: Calendar Week (1132)
        Level: Day (6616)
    Hierarchy: Day Of Week
        Level: Day Of Week (8)
    Hierarchy: Fiscal
        Level: Fiscal Year (21)
        Level: Fiscal Qtr (75)
        Level: Fiscal Period (220)
        Level: Fiscal Week (947)
        Level: Day (6616)

Dimension 11: Vendor
    Hierarchy: Vendor
        Level: Vendor_Index (26)
        Level: Vendor Name (1536)
    Hierarchy: Vendor Index
        Level: Vendor Index (26)
    Hierarchy: Vendor Name
        Level: Vendor Name (1536)

Dimension 12: Vendor Type
    Hierarchy: Vendor Type
        Level: Vendor Type (6)
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Appendix D: Workflow Sequence

Measure Group – Store Sales

1. Generate cross-tab on [Store].[Geography].[West].[Washington],

[Time].[Calendar].[Quarters].[2004] and [Measure].[Sale Amt]

2. Drill-down on [Store].[Geography].[West].[Washington].[Seattle]

3. Drill-down on [Time].[2004].[Q3]

4. Drill-down on [Time].[2004].[Q4]

5. Roll-up [Time].[2004].[Q3]

6. Drill-down on [Time].[2004].[Q4].[November]

7. Generate cross-tab on [Store].[Geography].[West].[Washington],

[Time].[Calendar].[Month].[2004] and [Measure].[Mark Down Amt]

8. Drill-down on [Time].[2004].[January]

9. Drill-down on [Time].[2004].[February]

10. Drill-down on [Time].[2004].[March]

11. Generate cross-tab on [Store].[Geography].[Barnes & Noble], [Item].[By Category] ,

and [Measure].[Sale Qty]

12. Drill-down on [Item].[By Category].[Book]

13. Drill-down on [Item].[By Category].[Book].[Art]

14. Drill-down on [Item].[By Category].[Book].[Art].[Graphic Design]

15. Drill-down on [Store].[Geography].[West]

16. Drill-down on [Store].[Geography].[West].[Washington]

17. Drill-down on [Store].[Geography].[West].[Washington].[Seattle]

18. Roll-up on [Store].[Geography].[West].[Washington].[Seattle]

19. Drill-down on [Store].[Geography].[Central]

20. Drill-down on [Store].[Geography].[Central].[Illinois]

21. Generate cross-tab on [Time].[2004].[Quarters], [Item].[By

Category].[Book].[Fiction] and [Measure].[Item Coupon Amt]
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22. Drill-down on [Item].[By Category].[Book].[Fiction].[ADV/ESPIONAGE]

23. Drill-down on [Item].[By Category].[Book].[Fiction].[ADV/ESPIONAGE].

[ADV/ESPIONAGE]

24. Drill-down on [Item].[By Category].[Book].[Fiction].[Horror]

25. Drill-down on [Item].[By Category].[Book].[Fiction].[Horror]. [Asia]

26. Generate cross-tab on [Item].[By Category].[Book].[Literature],

[Customer].[Customer].[Customer Index] and [Measures].[Member Disc Amt]

27. Generate cross-tab on [Store].[Geography].[Barnes & Noble], [Customer].[By

Geography] and [Measures].[Discount Amt]

28. Drill-down on [Customer] .[By Geography].[USA]

29. Drill-down on [Customer] .[By Geography].[USA].[MN]

Measure Group – Item Vendor

30. Generate cross-tab on [Item].[By Category].[Book], [Vendor].[Vendor].[Vendor

Index] and [Measure].[Item Vendor Count]

31. Drill-down on [Item].[By Category].[Book][Military History]

32. Drill-down on [Item].[By Category].[Book][Military History].[Weapons of War]

33. Drill-down on [Item].[By Category].[Book][Military History].[Weapons of

War].[Weapons of War]

34. Drill-down on [Vendor].[Vendor].[Vendor Index].[F]

35. Drill-down on [Vendor].[Vendor].[Vendor Index].[P]

36. Generate cross-tab on [Vendor Type].[Vendor Type] .[Vendor Type], [Item].[By

Category].[Subcategory] and [Measure].[Item Vendor Count]

Measure Group – Distribution Center Inventory

37. Generate cross-tab on [Distribution Center].[Distribution Center].[Distribution

Center], [Item].[By Category] and [Measures].[DC Days In Stock],

[Time][Calendar][2004]

38. Drill-down on [Item].[By Category].[Book]

39. Drill-down on [Item].[By Category].[Book].[Study Aids]

40. Drill-down on [Item].[By Category].[Book].[History]
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41. Drill-down on [Item].[By Category].[Book].[Westerns]

42. Drill-down on [Item].[By Category].[Book].[History]

43. Drill-down on [Item].[By Category].[Book].[Fiction]

44. Drill-down on [Item].[By Category].[Book].[Business]

45. Drill-down on [Item].[By Category].[Book].[Business].[Management]

46. Generate cross-tab on [Distribution Center].[Distribution Center] .[Distribution

Center], [Time].[Calendar].[Month].[2004] and [Measures].[Total DC Qty],

[Item].[By Category].[Book]

47. Drill-down on [Time].[Calendar].[2004].[October]

48. Drill-down on [Time].[Calendar].[2004].[September]

49. Drill-down on [Time].[Calendar].[2004].[September].[Week 36]

50. Drill-down on [Time].[Calendar].[2004].[August]

51. Drill-down on [Time].[Calendar].[2004].[August].[Week 35]

52. Drill-down on [Time].[Calendar].[2004].[November]

53. Generate cross-tab on [Distribution Center].[Distribution Center] .[Distribution

Center], [Item].[By Category].[Product] and [Measures].[Available Qty],

[Time].[Calendar].[2004]

54. Drill-down on [Item][By Category].[Pre-Pack]

55. Drill-down on [Item][By Category].[Pre-Pack].[Little Gift Bks]

56. Drill-down on [Item][By Category].[Pre-Pack].[Little Gift Bks].[Mini Kits]

Measure Group – Item Inventory

57. Generate cross-tab on [Replen Strategy].[ Replen Strategy].[Strategy Type],

[Store].[Geography].[District] and [Measures].[On Hand Qty],

[Time].[Calendar].[2004]

58. Drill-down on [Replen Strategy].[ Replen Strategy].[Strategy Type].[Backlist]

59. Drill-down on [Replen Strategy].[ Replen Strategy].[Strategy

Type].[Backlist].[Modeled]

60. Drill-down on [Replen Strategy].[ Replen Strategy].[Strategy Type].[Frontlist]

61. Drill-down on [Replen Strategy].[ Replen Strategy].[Strategy
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Type].[Frontlist].[Store Managed]

62. Generate cross-tab on [Item].[ By Category].[Subject], [Buyer].[Buyer].[Buyer Index]

and [Measures].[Model Qty]

63. Drill-down on [Buyer].[Buyer].[Buyer Index].[B]

64. Roll-up on [Buyer].[Buyer].[Buyer Index].[B]

65. Drill-down on [Buyer].[Buyer].[Buyer Index].[C]

66. Generate cross-tab on [Time].[Calendar].[Calendar Week].[2004],

[Store].[Geography].[District] and [Measures].[Return Qty], [Item].[By

Category].[Book].[Fiction]

67. Drill-down on [Time].[Calendar].[Calendar Week].[2004].[30]

68. Drill-down on [Time].[Calendar].[Calendar Week].[2004].[31]

69. Drill-down on [Time].[Calendar].[Calendar Week].[2004].[32]

70. Drill-down on [Time].[Calendar].[Calendar Week].[2004].[33]

71. Generate cross-tab on [Time].[Calendar].[Calendar Month].[2004], [Item].[By

Category].[Category].[Business], and [Measures].[On Order Qty]

72. Drill-down on [Item].[By Category].[Category].[Business].[Investing]

73. Drill-down on [Item].[By Category].[Category].[Business] .[Investing].[Day Trading]

74. Drill-down on [Item].[By Category].[Category].[Business].[Spiral Jrnl]
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