
EARLY CLASSIFICATION ON TEMPORAL SEQUENCES

by

Zhengzheng Xing

M.Sc., University of Windsor, 2006

B.Eng, Beijing Institute of Technology, 2004

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the School

of

Computing Science

c© Zhengzheng Xing 2010

SIMON FRASER UNIVERSITY

Fall 2010

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Zhengzheng Xing

Degree: Doctor of Philosophy

Title of Thesis: Early Classification On Temporal Sequences

Examining Committee: Dr. Hafer Lou

Chair

Dr. Jian Pei, Associate Professor, Senior Supervisor

Dr. Ke Wang, Professor, Supervisor

Dr. Martin Ester, Professor, SFU Examiner

Dr. Xingquan Zhu, External Examiner,

Associate Professor, Faculty of Engineering and

Information Technology,

University of Technology, Sydney

Date Approved:

ii

lib m-scan11
Typewritten Text
November 30, 2010

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

Early classification of temporal sequences has applications in, for example, health informat-

ics, intrusion detection, anomaly detection, and scientific and engineering sequence data

monitoring. Comparing to learning conventional sequence classifiers, learning early classi-

fiers is a more challenging task and has not been systematically studied before.

In this work, we identify the problem of early classification and develop a series of

classifiers for temporal sequence early classification. The proposed classifiers are designed

for different types of temporal sequences including symbolic sequences and time series.

Furthermore, the proposed classifiers have several desirable characteristics which are useful

in different application scenarios. We evaluate our approaches on a broad range of real data

sets and demonstrate that the classifiers can achieve competitive classification accuracies

with great earliness. Also, the classifiers can extract interpretable features from sequences

for better understanding.

iii

To my family

iv

Nothing in life is to be feared, it is only to be understood. Now is the time to understand

more, so that we may fear less. — Marie Curie

v

Acknowledgments

I wish to express my deep gratitude to my senior supervisor, Dr. Jian Pei. I thank him

for his continuous encouragement, confidence and support, and sharing with his knowledge

and experience. Dr. Pei’s guidance enables me to hurdle all the obstacles in the completion

of this research work. Furthermore, he has taught me how to maximize creativity and stay

persistent in the process of creating and implementing new ideas. I believe what he has

trained me in graduate school will benefit my career all the time.

I am very thankful to my supervisor Dr. Ke Wang, my thesis examiner Dr. Martin

Ester, and my external reader, Dr. Xingquan Zhu, for their insightful comments and advice

for my research and thesis. I would also like to thank Dr. Lou Hafer to chair my thesis

defense.

Part of this work is done in collaboration with Dr. Philip S. Yu and Dr. Guozhu Dong.

I thank them for the knowledge and skills they imparted through the collaboration. I would

also like to thank Dr. Eamonn Keogh who gave me constructive suggestions on my thesis.

I would also like to thank many people in our department, support staff and faculty, for

always being helpful over the years. I thank my friends at Simon Fraser University for their

accompany and help. A particular acknowledgement goes to Kathleen Tsoukalas, Guanting

Tang, Bin Jiang, Bin Zhou, Ming Hua, Carrie (Cong) Wang, Luping Li, Zhenhua Lin, Yi

Cui, Hossein Maserrat, Brittany Nielsen, Junqiang Liu and Rong Ge. They have made my

graduate school enjoyable and memorable.

Last but not least, I am very grateful to my parents, my husband, my grandfather

and my aunt who always support, encourage, and tolerate me without limits. Their love

accompanies me wherever I go.

vi

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Contents vii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation and Problem Definition . 2

1.2 Challenges . 3

1.3 Contributions . 5

1.4 Organization of the Thesis . 5

2 Related Work 7

2.1 Early classification . 7

2.2 Sequence classification . 9

2.2.1 Feature Based Classification . 12

vii

2.2.2 Sequence Distance Based Classification 14

2.2.3 Support Vector Machine . 15

2.2.4 Model Based Classification . 16

2.3 Temporal Sequence Classification . 17

2.4 Relations to the thesis . 18

3 Early Classification On Symbolic Sequences 20

3.1 Problem Description and Preliminaries . 21

3.2 The Sequential Classification Rule Method . 22

3.2.1 Sequential Classification Rules . 22

3.2.2 Feature Selection . 23

3.2.3 Mining Sequential Classification Rules 28

3.3 The Generalized Sequential Decision Tree Method 30

3.3.1 The GSDT Framework . 31

3.3.2 Attribute Composition . 33

3.4 Empirical Evaluation . 34

3.4.1 Results on DNA Sequence Data Sets 34

3.4.2 Results on Time Series Data Set . 40

3.5 Summary . 42

4 Instance Based Early Classifiers on Time Series 48

4.1 Problem Definition . 49

4.2 1NN Early Classification . 50

4.3 The ECTS Method . 53

4.3.1 ECTS . 53

4.3.2 The Algorithm . 59

4.3.3 Relaxed ECTS . 62

4.4 Experimental Results . 63

4.4.1 Results of ECTS Methods . 65

4.4.2 Comparison with 1NN Fixed . 68

4.4.3 Comparison with SCR . 70

viii

4.5 Summary . 71

5 Feature Extraction on Time Series Early Classification 73

5.1 Motivation and Problem Description . 73

5.2 EDSC . 76

5.2.1 Feature Learning . 77

5.2.2 Feature Selection and a Rule Based Classifier 85

5.2.3 Improving the Efficiency . 90

5.3 Experiments . 92

5.3.1 Results Overview . 94

5.3.2 Interpretability of Features . 99

5.3.3 Sensitivity of Parameters . 100

5.3.4 Efficiency . 101

5.4 Summary . 102

6 Conclusions and Future Works 106

Bibliography 109

ix

List of Tables

3.1 The accuracy of several methods on the E. Coli data set. Except for SCR

and GSDT, all methods use the entire sequences in classification. 35

3.2 List of rules learned by SRC and GSDT methods. 37

3.3 Results on the Drosophila Promoters data set. 38

3.4 Results on the Synthetic Control data set. 40

3.5 Results on the Synthetic Control data set without upward/downward shift

sequences. 40

4.1 A training set T as the running example. 51

4.2 The clusters in different prefix spaces. 54

4.3 Results on seven datasets from UCR Time Series Archive 64

5.1 The example data set . 80

5.2 Results of ECG data set . 95

5.3 Results of Gun-Point data set . 95

5.4 Results of CBF data set . 95

5.5 Results of Synthetic Control data set . 96

5.6 Results of Wafer data set . 96

5.7 Results of OliveOil data set . 96

5.8 Results of Two Patterns data set . 98

5.9 Dominating classifiers . 98

5.10 Training time comparison . 102

x

List of Figures

1.1 A decision tree example. 4

2.1 A two-class time series classification example. 8

3.1 A feature enumeration tree. 26

3.2 A rule enumeration tree. 28

3.3 A GSDT. 32

3.4 Performance of SCR with respect to p0 on the Drosophila data set. 44

3.5 Performance of GSDT with respect to p0 on the Drosophila data set. 44

3.6 Accuracy with respect to weight. 45

3.7 Average length of prefix with respect to weight. 45

3.8 Accuracy with respect to weight on Drosophila. 46

3.9 Average length of prefix with respect to weight on Drosophila. 46

3.10 Results comparison on ECG Data. 47

4.1 Plots of data in Table 4.1. 54

4.2 The algorithm of the training phase in ECTS. 61

4.3 Comparison among full 1NN, ECTS, relaxed ECTS and early 1NN 66

4.4 Accuracy and ave. length vs. minimum support. 67

4.5 Comparison between ECTS and fixed 1NN 69

4.6 Comparison between ECTS and SCR . 72

5.1 Local distinctive feature example. 76

5.2 An example of learning distance threshold by class frequency. 81

xi

5.3 An example of learning distance threshold by KDE. 82

5.4 An example of learning distance threshold by Chebyshev’s inequality. 84

5.5 Feature selection. 87

5.6 Learning EDSC. 88

5.7 Classification. 89

5.8 Share computing . 90

5.9 LFOT. 92

5.10 Update M. 93

5.11 The improved learning framework. 93

5.12 Comparison among EDSC, ECTS and Full-1NN 97

5.13 Features on the CBF Data Set . 103

5.14 Features on the Gun-Point Data Set . 104

5.15 Results on ECG data set by varying p . 105

5.16 Results on ECG data set by varying k . 105

xii

Chapter 1

Introduction

Classification is an important research area in machine learning and data mining. The

task of classification is to first learn a prediction model from training examples, and then

automatically classify unseen examples using the learned model [24]. Classification has

various real world applications, such as spam email filtering, prostate cancer detection, and

handwritten recognition [24].

Classification has been extensively studied on structured data where a training example

is represented as a vector of attributes. The values of attributes are usually numerical or

categorical. However, in many applications, data in more complex forms has been collected

for classification. The data in complex forms may be unstructured or semi-structured, such

as biological sequence data, time series data, text data, and multimedia data [22]. Generally,

this thesis falls in the categories of classifying sequence data.

Simply, a sequence is an ordered list of events. The needs of classifying sequence data

arise in many real-world applications, such as protein function classification, intrusion detec-

tion, and warning systems in critical care medicine. The broad range of sequence data and

the different application scenarios keep posing various challenges for sequence classification.

Driven by real world applications, in the thesis, we formulate and study a new sequence

classification task, early classification on temporal sequences.

1

CHAPTER 1. INTRODUCTION 2

1.1 Motivation and Problem Definition

In many applications, the events in sequences follow a natural temporal order. We refer

these sequences as temporal sequences. An event can be represented as a discrete value, a

numerical value, or a complex data object. In this thesis, for a temporal sequence, if each

event is a numerical value, we refer it as a time series; if each event is a discrete value, we

refer it as a symbolic temporal sequence.

Most existing works on temporal sequence classification focused on conventional off-line

sequence classification. A complete sequence is obtained before classification and is then

classified based on the whole sequence. However, in some applications, in the process of

receiving a temporal sequence online event by event, it is desired to monitor the temporal

sequence and predict its class label as early as possible on the fly. We call this problem

early classification on temporal sequences.

In a retrospective study of the infants admitted to a neonatal intensive care unit, it was

found that the infants had abnormal heart beating time series patterns 24 hour before the

doctor finally diagnosed them with sepsis [21]. Monitoring the heart beating time series data

and classifying the time series data as early as possible may lead to earlier diagnosis and

effective therapy. As another example, Bernaille et al. [7] showed that by only observing

the first five packages of a TCP connection, the application associated with the traffic

flow can be classified. The applications of online traffic can be identified without waiting

for the TCP flow to end. In activity recognition [73], early classification may be used

for detecting anomaly behaviors as early as possible. Sequence classification techniques

have been applied for quality control and fault detection for semiconductor manufacture

industry [8]. It is interesting to use an early classifier to constantly monitor the manufacture

data and prevent serious faults ahead of time. Generally, early classification of temporal

sequences has applications in anomaly detection, intrusion detection, health informatics,

and scientific and engineering sequence data monitoring.

CHAPTER 1. INTRODUCTION 3

1.2 Challenges

To enable users to utilize the results of an early classifier, we argue that an early classifier

is expected to meet two requirements.

• An early classifier should be able to affirm the earliest time of reliable classification

so that the early predictions can be used for further actions.

• An early classifier should retain an accuracy comparable to that of a classifier using

the full length temporal sequences or some user-specified accuracy thresholds.

Learning early classifiers for temporal sequences is a more challenging task than learning

conventional sequence classifiers. Conventional sequence classifiers are built for optimizing

classification accuracy and classifying unlabeled sequences off-line given the whole sequences.

To learn an early classifier, we not only focus on learning an accurate model for classification,

but also aim at building classifiers to achieve the earliness in classification. Conventional

sequence classifiers may not achieve the goal for early classification. We use Example 1 to

explain the reason.

Example 1 In Figure 1.1, we list a sequence training data set which has two classes, the

positive class and the negative class. The sequences are composed by events in alphabet =

{A,B, C, D}. We suppose the sequences are temporal sequences. The order of events in

the sequences is the temporal order. For conventional sequence classification, we can build

a simple decision tree classifier. We consider all the possible length two subsequences as

attributes of sequences. Each attribute has two values, absence and presence. To build a

decision tree, we want to choose the attribute with the best information gain at the root.

Subsequence CD has the best information gain since CD appears in all sequences in the

negative class and is absent in all sequences in the positive class. As shown in Figure 1.1,

a simple decision tree with only the root node is built. For a sequence to be classified, if it

has a subsequence CD, it belongs to the negative class. Otherwise, it is classified into the

positive class.

By observing the training data, we can see that, actually, subsequence AB is shared by

75% of sequences in the negative class but not any sequence in the positive class. Further-

more, AB always precedes CD. By using AB, we can classify some examples in the negative

CHAPTER 1. INTRODUCTION 4

Class: pos
AAACBCC
ACACACC

CAACCCB

Class: neg

CCCCDCC

CABCDCC

CABCCDC

ABCCCCD

pos

CD

yes no

neg

Figure 1.1: A decision tree example.

class earlier than using CD. However, in the decision tree, subsequence AB is not utilized.

On the other hand, for the positive class, by using the decision tree, we cannot achieve early

classification. Since without observing a whole sequence, we cannot know if the sequence

contains CD or not. However, for the positive class, some features may be useful for early

classification. For example, subsequence AA appears in 2/3 = 66.7% examples in the posi-

tive class but never in the negative class, which may be used for early classification for the

positive class. From the above example, we can see that conventional sequence classifiers

may not well serve the purpose of early classification.

In the classification step, instead of doing off-line classification given a whole sequence,

we do classification on the fly when new events in the sequence arrive. The challenge is on

how to decide when to generate a reliable class label given the received events in a sequence.

Can we just generate a class label whenever a new event is received? We argue that early

classification should not only focus on how to generate a classification result on a prefix

but should also learn from the data if a prefix contains sufficient information for a reliable

CHAPTER 1. INTRODUCTION 5

classification and when is the earliest time for a reliable classification. Only a reliable early

classification result can be trusted and used by users for further actions. We will explain

this in more details in Section 2.1.

1.3 Contributions

In this thesis, we study the problem of early classification on temporal sequences. In par-

ticular, we make the following contributions.

• We formulate a new problem, early classification on temporal sequences. Although

some previous works mentioned the concept of early classification [13, 9], they did not

actually define and solve this problem. More details are provided in Section 2.1.

• We develop a series of classifiers for temporal sequence early classification. The pro-

posed classifiers are designed for different types of temporal sequences including sym-

bolic sequences and time series. Furthermore, the proposed classifiers have several

desirable characteristics which are useful in different application scenarios.

• We evaluate early classifiers on a broad range of real data sets and demonstrate that the

classifiers can achieve competitive classification accuracies with great earliness. Also,

some interpretable features are extracted from sequences. The experiments validate

that early classification is feasible and useful.

Some major components of this thesis were published as conference papers. Particularly,

the major results in Chapter 3 were published in [68] and the major results in Chapter 4

were published in [70]. Part of contents of Chapter 2 were published as a survey paper

in [69].

1.4 Organization of the Thesis

The remainder of thesis is structured as follows:

• In chapter 2, we review the related works and explain how they are related to this

thesis.

CHAPTER 1. INTRODUCTION 6

• In chapter 3, we focus on early classification for symbolic sequences. A rule based

classifier, SCR, and an extended decision tree, GSDT, are proposed for early classifying

symbolic temporal sequences. The classifiers are built from selected features from

sequences with good early classification utilities.

• In chapter 4, we present an instance based early classifier for time series. We extend

the simple 1NN classifier by adding a learning phase for the instance based classifier.

We aim to build an early classifier which is as accurate as 1NN classifier and achieves

early classification.

• Although an instanced based early classifier has been developed for time series in

Chapter 4, feature based early classifiers have better interpretability. In Chapter 5,

we extract features from time series and build a rule based classifier for time series early

classification. Competitive results and some meaningful features have been obtained

in experiments.

• In Chapter 6, we summarize the thesis and discuss the future works.

Experiments are included in Chapter 3, 4, and 5 to demonstrate that the classifiers we

proposed can achieve competitive classification accuracies with great earliness.

Chapter 2

Related Work

2.1 Early classification

To the best of our knowledge, Diez et al. [13] first mentioned the concept of early classifi-

cation for time series. They proposed a time series classifier based on literals on temporal

intervals and boosting. The classifier is not dedicated for early classification. They di-

vided time series into several time intervals and described each interval by a predicate. For

example, a predicate always(V ariable,Region, Begining,End) means that in the interval

between Beginning and End, the variable is always in this Region. For two-class classifi-

cation, a predicate is viewed as binary base classifier given the predicate is satisfied or not.

Ada boost [19] was used to ensemble the base classifiers as a linear combination of them with

different weights. They referred early classification as classifying partial examples which are

the prefixes of the complete time series. To classify partial examples, they simply ignored

the predicates on unavailable suffixes and only used the linear combination of the available

predicates for classification.

Ańıbal et al. [9] applied a case based reasoning method to classify time series to monitor

system failures in a simulated dynamic system. The KNN classifier was used to classify

uncompleted time series using various distances, such as Euclidean distance, DTW (Dynamic

time warping) and Manhattan distance. The simulation studies showed that by using case

based reasoning, the most important increase of classification accuracy occurs on the prefixes

through thirty to fifty percent of the full length.

7

CHAPTER 2. RELATED WORK 8

?

Training data Pos

Neg

To be clasified

Figure 2.1: A two-class time series classification example.

Although in [7, 13], the importance of early classification on time series was identified

and some encouraging results were shown, they only solved early classification as a problem

of classifying prefixes of sequences. In Chapter 1, we pointed out the challenge of early

classification is how to find out the earliest time for a reliable classification. The meth-

ods proposed in [7, 13] did not address the challenge. They only focused on generating a

classification result given a prefix of time series but did not answer if the prefix contained

enough information for a reliable classification. To classify a prefix, Diez et al. [13] simply

ignored evaluating the predicates on unavailable suffixes. In another word, when they used

the classifier, which is a linear combinations of predicates, to classify a prefix, they set the

weights of the predicates on the unavailable intervals as zero. Since the weights represent

the importance of intervals for classification, setting some of them as zero may generate

unreliable classification results based only on some unimportant intervals. Ańıbal et al. [9]

classified a prefix for a time series by only comparing to its k nearest neighbors of the prefix.

Treating early classification as classifying prefixes oversimplifies the problem. We explain

the reason using Example 3.

Example 2 In Figure 2.1, we have two classes of time series. The two classes share similar

patterns at the beginning and start to separate from each other in the later half of time series.

For a time series to be classified, when we receive its prefix as shown in Figure 2.1, should

CHAPTER 2. RELATED WORK 9

we generate an early classification result based on the prefix? The classification result is

actually meaningless since the prefix does not contain enough information to determine the

class label. We should wait for more information to predict the class label.

Early classification should not only solve how to generate a classification result given a

time series prefix but should also learn from the data if a prefix contains sufficient infor-

mation for a reliable classification and when is the earliest time for a reliable classification.

Only a reliable early classification result can be trusted and used by users for further actions.

2.2 Sequence classification

Generally, a sequence is an ordered list of events. An event can be represented as a symbolic

value, a numerical real value, a vector of real values or a complex data type. In this thesis,

we divide sequence data into the following sub-types.

• Given an alphabet of symbols {E1, E2, E3, ..., En}, a simple symbolic sequence is an

ordered list of the symbols from the alphabet. For example, a DNA sequence is

composed of four animo acid A,C, G, T and a DNA segment, such as ACCCCCGT ,

is a simple symbolic sequence.

• A complex symbolic sequence is an ordered list of vectors. Each vector is a subset of the

alphabet [37]. For example, for a sequence of items bought by a customer over one year,

treating each transaction as a vector, a sequence can be 〈(milk, bread)(milk, egg) · · ·
(potatos, cheese, coke)〉.

• A simple time series is a sequence of real values ordered in timestamp ascending order.

For example,

〈(t1, 0.1)(t2, 0.3) · · · (tn, 0.3)〉

is a simple time series recording the data from time stamp t1 to tn.

• A multivariate time series is a sequence of numerical vectors. For example,

〈(t1, 〈0.1, 0.3, 05〉)(t2, 〈0.3, 0.9, 0.8〉) · · · (tn, 〈0.3, 0.9, 0.4〉)〉

is a multivariate time series.

CHAPTER 2. RELATED WORK 10

• In the above, the data types of the events are simple. In some applications, the

data type of events can be arbitrarily complicated. For example, in a patient record

data set (http://www.informsdmcontest2009.org/), each patient is represented by

a longitudinal sequence of hospital visits. Each visit is an event and is described by

multiple numerical measurements, categorical fields and text descriptions. A complex

event sequence refers to the general form of sequences.

A sequence may carry a class label. Given L as a set of class labels, the task of (con-

ventional) sequence classification is to learn a sequence classifier C, which is a function

mapping a sequence s ∈ S to a class label l ∈ L, written as C : S → L.

In (conventional) sequence classification, each sequence is associated with only one class

label and the whole sequence is available to a classifier before the classification. There are

also other application scenarios for sequence classification. For example, for a sequence of

symptoms of a patient over a long period of time, the health condition of the patient may

change. For a streaming sequence, which can be regarded as a virtually unlimited sequence,

instead of predicting one class label, it is more desirable to predict a sequence of labels.

This problem is considered in [26, 27] as the strong sequence classification task.

Example 3 EEG time series data has been used to classify human brain activities, such as

“taking rest”, “mental arithmetic”, and “mental rotation” [36]. If we receive a streaming

EEG time series of a human being who is switching among different brain activities, a strong

classifier outputs a series of class labels which is the sequence of different brain activities

performed by the human.

In this thesis, we propose early classification on temporal sequences, which is different

from (conventional) sequence classification. In early classification, a classifier receives the

events in a temporal sequence online and classifies the temporal sequence as early as possible

once the classifier is confident about the classification. For early classification, in this thesis,

we do not consider strong sequence classification. Integrating early classification with strong

sequence classification is left as future works.

There are three major challenges in sequence classification. First, most of the classifiers,

such as decision trees and neural networks, can only take input data as a vector of features.

CHAPTER 2. RELATED WORK 11

However, there are no explicit features in sequence data. Second, even with various feature

selection methods, we can transform a sequence into a set of features, the feature selection is

far from trivial. The dimensionality of the feature space for sequence data can be very high

and the computation can be costly. Third, besides accurate classification results, in some

applications, we may also want to get an interpretable classifier. Building an interpretable

sequence classifier is difficult since there are no explicit features.

Most of the existing works focus on (conventional) sequence classification. The methods

proposed for the (conventional) sequence classification handled the sequential nature of

the data and are valuable for more advanced sequence classification tasks, such as strong

sequence classification [27] and early classification. In the following, we give a brief review

on existing sequence classification methods. In this chapter, when we mention sequence

classification, we mainly refer to (conventional) sequence classification.

We categorize sequence classification methods into three large categories.

• The first category is feature based classification, which transforms a sequence into a

feature vector and then applies conventional classification methods. Feature selection

plays an important role in this kind of methods.

• The second category is sequence distance based classification. The distance function

which measures the similarity between sequences affects the quality of the classification

significantly.

• The third category is model based classification, such as using hidden Markov model

(HMM) and other statistical models to classify sequences.

In the rest of this section, we will present some representative methods in the three

categories. Some methods may ride on multiple categories. For example, we can use SVM

by either extracting features (Category 1) or defining a distance measure (Category 2).

Sequence classification using SVM will be summarized in Section 2.2.3.

CHAPTER 2. RELATED WORK 12

2.2.1 Feature Based Classification

Conventional classification methods, such as decision trees and neural networks, are designed

for classifying feature vectors 1. One way to solve the problem of sequence classification is

to transform a sequence into a vector of features through feature selections.

For a symbolic sequence, the simplest way is to treat each element as a feature. For

example, a sequence CACG can be transformed as a vector 〈A,C, C, G〉. However, the

sequential nature of sequences cannot be captured by this transformation. To keep the order

of the elements in a sequence, a short sequence segment of k consecutive symbols, called a k-

gram, is usually selected as a feature. Given a set of k-grams, a sequence can be represented

as a vector of the presence and the absence of the k-grams or as a vector of the frequencies of

the k-grams. Sometimes, we also allow inexact matchings with gapped k-grams. By using

k-grams as features, sequences can be classified by a conventional classification method,

such as SVM [38, 39] and decision trees [11]. A summary of k-gram based feature selection

methods for sequence classifications can be found in [17].

The number of all the possible k-grams may be huge. Since not all features are equally

useful for classification, Chuzhanova et al. [11] used Gamma test to select a small informative

subset of features from the k-grams. A genetic algorithm was used to find the local optimal

subset of features.

In contrast to k-gram based feature selections, Lesh et al. [33, 37] proposed a pattern-

based feature selection method. The features are short sequence segments which satisfy the

following criteria (1) frequent in at least one class (2) distinctive in at least one class and

(3) not redundant. Criterion (2) means a feature should be significantly correlated with at

least one class. The intuition of Criterion (3) is that if two features are closely correlated to

each other, they are redundant for classification. An efficient feature mining algorithm was

proposed to mine features according to the criteria. After selecting the features, Winnow [45]

and naive bayes classifiers were used. The experimental results in [33] showed that comparing

to the method of considering each element as a feature, pattern-based feature selection can

improve the accuracy by 10% to 15%.

The challenge of applying pattern-based feature selection on symbolic sequences is how to

1We also refer them as attribute vectors

CHAPTER 2. RELATED WORK 13

efficiently search for the features satisfying the criteria. Ji et al. [25] proposed an algorithm

to mine distinctive subsequences with a maximal gap constraint. The algorithm, which

uses bit operations and a prefix growth framework, is efficient even with a low frequency

threshold.

Time series data is numeric. The feature selection techniques for symbolic sequences

cannot be easily applied to time series data without discretization. Discretization may cause

information lost. Ye et al. [72] proposed a feature selection method which can be applied

directly on numeric time series. Time series shapelet, the time series subsequence with the

best classification ability, is considered as the feature for time series classification [72]. For

a two-class classification task, given a learned distance threshold, a shapelet is a segment

of time series which can be used to separate the training data into two parts according to

the distance to the shapelet, and maximizes the information gain. The distance threshold

and the shapelet were learned from the training data to optimize the information gain. To

construct a classifier, the shapelet selection process was integrated with the construction of

the decision tree.

Although subsequences are informative features, they can only describe the local prop-

erties of a long sequence. Aggarwal et al. [3] developed a method to capture both the global

and local properties of sequences for the purpose of classification. They modified wavelet

decomposition to describe a symbolic sequence on multiple resolutions. With different de-

composition coefficients, the wavelet represents the trends in different ranges of intervals,

from global to local. Using wavelet decomposition and a rule based classifier, the wavelet

decomposition method outperforms the k-nearest neighbor classifier on a web accessing

sequence data set and on a genomic sequence data set.

In summary, the existing methods differ from each other on the following aspects.

• Which criteria should be used for selecting features, such are distinctiveness, frequency,

and length?

• In which scope does feature selection reflect the sequential nature of a sequence, local

or global?

• Should matchings be exact or inexact with gaps?

CHAPTER 2. RELATED WORK 14

• Should feature selection be integrated within the process of constructing the classifier

or a separate pre-processing step?

2.2.2 Sequence Distance Based Classification

Sequence distance based methods define a distance function to measure the similarity be-

tween a pair of sequences. Once such a distance function is obtained, we can use some

existing classification methods, such as K nearest neighbor classifier (KNN) and SVM with

local alignment kernel [56] (to be discussed in Section 2.2.3), for sequence classification.

KNN is a lazy learning method and does not pre-compute a classification model. Given

a labeled sequence data set T , a positive integer k, and a new sequence s to be classified, the

KNN classifier finds the k nearest neighbors of s in T , kNN(s), and returns the dominating

class label in kNN(s) as the label of s.

The choice of distance measures is critical to the performance of KNN classifiers. In

the rest of this section, we focus on summarizing different distance measures proposed for

sequence data.

For simple time series classification, Euclidean distance is a widely adopted option [29,

66]. The Euclidean distance usually requires two time series to have the same length.

Keogh et al. [29] showed when applying 1NN classifier on time series, Euclidean distance is

surprisingly competitive in terms of accuracy, compared to other more complex similarity

measures.

Euclidean distance is sensitive to distortions in time dimension. Dynamic time warping

distance (DTW) [31] was proposed to overcome this problem and does not require two time

series to be of the same length. The idea of DTW is to align two time series and get the

best distance by aligning. Xi et al. [67] showed that on small data sets, DTW can be more

accurate than Euclidean distance. However, recent empirical results [16] strongly suggest

that on large data sets, the accuracy of DTW converges with Euclidean distance.

For symbolic sequences, such as protein sequences and DNA sequences, alignment based

distances are popular adopted [28]. Given a similarity matrix and a gap penalty, the

Needleman-Wunsch algorithm [49] computed an optimum global alignment score between

two sequences through dynamic programming. In contrast to global alignment algorithms,

CHAPTER 2. RELATED WORK 15

local alignment algorithms, such as the Smith-Waterman algorithm [60] and BLAST [5],

measure the similarity between two sequences by considering the most similar regions but

not enforcing the alignments on full length.

2.2.3 Support Vector Machine

SVM has been proved to be an effective method for sequence classification [46, 42, 38, 61,

62, 59, 12]. The basic idea of applying SVM on sequence data is to map a sequence into a

feature space and find the maximum-margin hyperplane to separate two classes. Sometimes,

we do not need to explicitly conduct feature selection. A kernel function corresponds to a

high dimension feature space. Given two sequences, x, y, some kernel functions, K(x, y),

can be viewed as the similarity between two sequences [61]. The challenges of applying SVM

to sequence classification include how to define feature spaces or kernel functions, and how

to speed up the computation of kernel matrixes.

One of the widely used kernels for sequence classification is the k-spectrum kernel or

string kernel, which transforms a sequence into a feature vector. Leslie et al. [38] proposed

a k-spectrum kernel for protein classification. Given the protein animo acid alphabet of

20 elements 〈A,R, N,D · ··〉, the k-spectrum is all possible sequences of length k that are

composed by the elements in the alphabet. For example, if k = 3, the k-spectrum contains

ARN, AND, DCN, and so on. Given the alphabet A, a sequence x is transformed into a

feature space by a transformation function

Φk(x) = (φa(x))a∈Ak

where φa(x) is the number of times a occurs in x. The kernel function is the dot product of

the feature vectors,

K(x, y) = Φk(x) · Φk(y)

By using a suffix tree algorithm [38], K(x, y) can be computed in O(kn) time. Lodhi et

al. [46] proposed a string kernel for text classification. Leslie et al. [39] extended the k-

spectrum kernel to handle mismatching. Sonnenburg et al. [62] proposed a fast k-spectrum

kernel with mismatching.

One disadvantage of kernel based methods is that it is hard to be interpreted and hard

for users to gain knowledge besides a classification result. Sonnenburg et al. [61] proposed

CHAPTER 2. RELATED WORK 16

a method to learn interpretable SVMs using a set of a string kernels. The ideas is to use

a weighted linear combination of base kernels. Each base kernel uses a distinctive set of

features. The weights represent the importance of the features. After learning the SVM,

users can have an insight into the importance of different features.

String kernels or the k-spectrum kernel can be viewed as a feature based method. Saigo

et al. [56] proposed a local alignment kernel for protein sequence classification which can

be viewed as a distance based method. Although local alignment distance can effectively

describe the similarity between two sequences, it cannot be directly used as a kernel function

because it lacks the positive definiteness property [24]. Saigo et al. [56] modified the local

alignment distance and formed a valid kernel called local alignment kernel, which mimics

the behavior of the local alignment. The theoretical connection between the local alignment

kernel and the local alignment distance was proved. Given two sequences x and y, the local

alignment kernel K(x, y) can be computed by dynamic programming.

Other kernels used for sequence classification include polynomial-like kernels [59], kernels

derived from probabilistic model (Fisher’s kernel) [59], and diffusion kernels [57].

2.2.4 Model Based Classification

One category of sequence classification methods is based on generative models, which assume

sequences in a class are generated by an underlying model M . Given a class of sequences,

M models the probability distribution of the sequences in the class. Usually, a model is

defined based on some assumptions, and the probability distributions are described by a set

of parameters. In the training step, the parameters of M are learned. In the classification

step, a new sequence is assigned to the class with the highest likelihood.

The simplest generative model is the Naive Bayes sequence classifier [40]. It makes the

assumption that, given a class, the features in the sequences are independent of each other.

The conditional probabilities of the features in a class are learned in the training step. Due

to its simplicity, Naive Bayes has been widely used from text classification [32] and genomic

sequences classification [10].

However, the independence assumption required by Naive Bayes is often violated in

practice. Markov Model and Hidden Markov Model can model the dependence among

CHAPTER 2. RELATED WORK 17

elements in sequences [18].

Yakhnenko et al. [71] applied a k-order Markov model to classify protein and text se-

quence data. In the training process, the model is trained in a discriminative setting instead

of the conventional generative setting to increase the classification power of the generative

model based methods.

Different from Markov Model, Hidden Markov Model assumes that the system being

modeled is a Markov process with unobserved states. Srivastava et al. [63] used a profile

HMM to classify biological sequences. A profile HMM usually has three types of states,

inserting, matching and deleting. Aligned training examples are used to learn the transition

probabilities between the states and emission probabilities. The learned HMM represents the

profile of the training dataset. For each class, a profile HMM is learned. In the classification

step, an unknown sequence is aligned with the profile HMM in each class by dynamic

programming. An unknown sequence will be classified into the class which has the highest

alignment score.

2.3 Temporal Sequence Classification

In sequences, if the events follow a temporal order, we call them temporal sequences. In

this section, we summarize the existing works on temporal sequences in more details.

Time series data is an important type of temporal sequence data. In Time Series Data

Library [2], time series data across 22 domains, such as agriculture, chemistry, health,

finance,industry, are collected. UCR time series data archive [30] provides a set of time

series datasets as a benchmark for evaluating time series classification methods.

For simple time series data, to apply feature based methods, the feature selection is

a challenging task since we cannot do feature enumeration on numeric data. Therefore,

distance based methods are widely adopted to classify time series [67, 29, 66, 55]. It was

shown that comparing to a wide range of classifiers, such as neural networks, SVM and

HMM, 1-nearest neighbor classifier is usually superior in classification accuracy [29, 67].

To apply feature based methods on simple time series, usually, before feature selection,

time series data needs to be transformed into symbolic sequences through discretization

or symbolic transformation [44]. Without discretization, Ye et al. [72] proposed a method

CHAPTER 2. RELATED WORK 18

to find time series shapelets and use a decision tree to classify time series. Comparing to

distance based methods, feature based methods may speed up the classification process and

be able to generate some interpretable results.

Model based methods are also applied to classify simple time series, such as HMM which

is widely used in speech recognition [54]. Richard et al. [51] transformed time series data into

a lower dimensional reconstructed phase space and then applied mixture gaussian models

for classification.

Multivariate time series classification has been used for gesture recognition [27] and

motion recognition [41]. The multivariate data is generated by a set of sensors which measure

the movements of objects in different locations and directions. For multivariate time series

classification, Kadous et al. [27] proposed a feature based classifier. A set of user-defined

meta-features are constructed and a multivariate time series is transformed into a feature

vector. Some universal meta-features included the features to describe the trends of increases

and decreases and local max or min values. By using those features, multivariate time

series with additional non-temporal attributes can be classified by a decision tree. One

multivairate time series can be viewed as a matrix. Li et al. [34] proposed a method to

transform a multivariate time series into a vector through singular value decomposition and

other transformations. SVM is then used to classify the vectors.

For symbolic temporal sequences, Terran et al. [35] applied k-nearest neighbor classifiers

to classify sequences of Unix shell command data of users for anomaly detection. Since a

large amount of symbols are obtained from the command sequences, feature selection was

conducted to limit the size the alphabet. A distance measure was designed for measure the

similarities between users.

2.4 Relations to the thesis

In this chapter, we summarize the existing methods on sequence classification. We catego-

rize sequence classification methods into three large categories, feature based classification,

sequence distance based classification and model based classification. In this thesis, the

methods proposed in Chapter 3 and Chapter 5 belong to feature based classification and

CHAPTER 2. RELATED WORK 19

the methods proposed in Chapter 4 fall into the category of sequence distance based classi-

fication.

We divide sequence data into five subtypes. In this thesis, the methods in Chapter 3

focus on classifying simple symbolic sequences and the methods in Chapter 4 and Chapter 5

are designed for simple time series data. For the other three subtypes, complex symbolic

sequences, multivariate time series and complex event sequences, we may transform them

into simple types or develop new methods to classify them, which are left as future works.

In Chapter 3, we develop feature based classifiers by extracting features from symbolic

sequences. The criteria for feature extractions are built upon some previous sequence feature

extraction methods [33, 37]. For early classification, we extend the existing methods by

taking the earliness of features into consideration.

In Chapter 4, we extend nearest neighbor classifier for early classification. The methods

proposed in Chapter 4 are related to nearest neighbor classifiers for time series [55, 67,

29, 66]. We introduce a novel learning step for nearest neighbor classifiers to achieve early

classification.

In Chapter 5, we propose a feature selection method for time series early classifica-

tion. The proposed method extends the ideas of distinguishing patterns for symbolic se-

quences [25] and Shapelets on time series [72].

Chapter 3

Early Classification On Symbolic

Sequences

Symbolic temporal sequences are an important type of temporal sequences with real world

applications. For example, Terran et al. [35] classified temporal sequences of Unix shell com-

mands of users for anomaly detection. Each command is represented as a symbolic event.

Furthermore, time series data or other complex forms of temporal sequences can be trans-

formed into symbolic temporal sequences through discretization and other techniques [27].

In this chapter, we propose a framework for early classification on symbolic temporal

sequences. The framework falls into the category of feature based classification. Features

with good early classification utilities are extracted. A rule based early classifier and a

decision tree based early classifier are proposed. The rest of the Chapter is organized as

follows. In Section 3.1, we describe the problem of early classification on symbolic temporal

sequences and introduce some notations. In Section 3.2, we develop a rule based early

classifier, the sequential classification rule (SCR) method. In Section 3.3, we present a

generalized sequential decision tree (GSDT) method for early classification. We report the

empirical evaluations in Section 3.4. The chapter is summarized in Section 3.5.

20

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 21

3.1 Problem Description and Preliminaries

Let Ω be a set of symbolic events which is the alphabet of the sequence database in question.

s = a1 · · · al is a sequence if ai ∈ Ω (1 ≤ i ≤ l). The number of events in s is the length of

the sequence, denoted as ‖s‖ = l. A sequence is a temporal sequence if the events in the

sequence follow a temporal order.

Let L be a set of class labels. A sequence database SDB is a set of tuples (s, c) such

that s ∈ Ω∗ is a sequence and c ∈ L is a class label.

A sequence classifier is a function C : Ω∗ → L. That is, for each sequence s ∈ Ω∗, C

predicts the class label of s as C(s).

There are many possible ways to construct a sequence classifier. We review some existing

methods in Chapter 2. In order to make early prediction, in this Chapter, we want to build

an early sequence classifier. An early sequence classifier reads a sequence from left to right

in the temporal order, and makes prediction once it is confident about the class label of the

input sequence based on the prefix read so far.

For sequence s = a1 · · · al, sequence s′ = a1 · · · al′ (1 ≤ l′ ≤ l) is a prefix of s. We write

s′ = s[1, l′]. If an early sequence classifier C classifies a sequence s on a prefix s[1, l0], the

length l0 is called the cost of the prediction, denoted by Cost(C, s) = l0.

The performance of a classifier is often evaluated using a test database SDB′. The

accuracy of an early sequence classifier C is

Accuracy(C, SDB′) =
‖{C(s) = c | (s, c) ∈ SDB′}‖

‖SDB′‖
Moreover, the cost of the prediction is

Cost(C,SDB′) =
∑

(s,c)∈SDB′ Cost(C, s)
‖SDB′‖

The cost of prediction describes the earliness of classification.

Ideally, we want to construct an early sequence classifier C such that for a sequence

database to be classified, C can reach an expected classification accuracy p0 and minimizes

the expected prediction cost. p0 is a user specified parameter, which is the expected classi-

fication accuracy by the user.

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 22

3.2 The Sequential Classification Rule Method

In this section, we develop a sequential classification rule (SCR) method for symbolic se-

quence early classification. The major idea is to first learn a set of features with good

early classification utilities and then extract a set of sequential classification rules for early

classification. Each rule hypothetically represents a set of sequences of the same class and

sharing the same set of features. In this section, we first introduce some definitions in Sec-

tion 3.2.1, and then present the feature selection and rule mining process in Section 3.2.2

and Section 3.2.3 respectively.

3.2.1 Sequential Classification Rules

A feature is a short sequence f ∈ Ω∗. A feature f = b1 · · · bm appears in a sequence

s = a1 · · · al, denoted by f v s, if there exist 1 ≤ i0 ≤ l−m+1 such that ai0 = b1, ai0+1 = b2,

. . . , ai0+m−1 = bm. For example, feature f = bbd appears in sequence s = acbbdadbbdca

twice. When a feature f appears in a sequence s, we can write s = s′fs′′ such that

s′ = a1 · · · ai0−1 and s′′ = ai0+m · · · al. Generally, a feature may appear multiple times in a

sequence. The minimum prefix of s where feature f appears is denoted by minprefix(s, f).

When f 6v s, minprefix(s, f) = s, which means f does not appear in any prefix of s.

A sequential classification rule (or simply a rule) is in the form of R : f1 → · · · → fn ⇒ c

where f1, . . . , fn are features and c ∈ L is a class label. For the sake of simplicity, we also

write a rule as R : F ⇒ c where F is the shorthand of a series of features f1 → · · · → fn.

The class label in a rule R is denoted by L(R) = c.

A sequence s is said to match a sequential classification rule R : f1 → · · · → fn ⇒ c,

denoted by R v s, if s = s′f1s1f2 · · · sn−1fns′′. That is, the features in R appear in

s in the same order as in R. The minimum prefix of s matching rule R is denoted by

minprefix(s,R). Particularly, when R 6v s, minprefix(s,R) = s, which means any prefix

of s does not match R.

Given a sequence database SDB and a sequential classification rule R, the support of R

in SDB is defined as

supSDB(R) =
‖{s|s ∈ SDB, R v s}‖

‖SDB‖

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 23

when ‖SDB‖ is finite. When ‖SDB‖ is infinite, supSDB(R) is defined as the expectation

of the percentage of sequences in SDB that match R.

The confidence of rule R on SDB is given by

confSDB(R) =
‖{(s, c)|(s, c) ∈ SDB,R v s, c = L(R)}‖

‖{(s, c)|(s, c) ∈ SDB,R v s}‖
when ‖SDB‖ is finite. When ‖SDB‖ is infinite, confSDB(R) is the expectation of the

percentage of sequences in SDB matching R that have the same class label L(R) as R.

The cost of classification of rule R on SDB is given by

costSDB(R) =
∑

Rvs,s∈SDB ‖minprefix(s,R)‖
||{s|R v s, s ∈ SDB}||

Let R = {R1, . . . , Rn, } be a set of sequential classification rules. For early prediction, a

sequence tries to match a rule using a prefix as short as possible. Therefore, if a sequence

s matches at least one rule in R, the action rule is the rule in R which s has the shortest

minimum prefix of matching, that is,

actionR(s,R) = arg min
Ri∈R

‖minprefix(s,Ri)‖

Given a sequence database SDB. If a sequence s cannot match with any rule in R, we

can define that the action rule for sequence s is a default rule, Rdefault, which matches any

sequences. The ‖minprefix(s,Rdefault)‖ = ‖s‖.
Given a rule set R, the cost of prediction can be measured as the average cost per

sequence, that is,

Cost(R, SDB) =
∑

s∈SDB ‖minprefix(s, action(s,R))‖
‖SDB‖

To make the classifier accurate, we can confine that only sequential rules of confidence at

least p0 are considered, where p0 is a user-specified accuracy expectation. Now, the problem

is that how to mine a set of rules R such that each rule is accurate (i.e., of confidence at

least p0) and the cost Cost(R, SDB) is as small as possible.

3.2.2 Feature Selection

To form sequential classification rules, we need to extract features from sequences in the

training data set. Particularly, we want to extract effective features for early classification.

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 24

Utility Measure for Early Prediction

We consider three characteristics of features for early prediction. First, a feature should be

relatively frequent. A frequent feature in the training set may indicate that it is applicable

to many sequences to be classified in the future. On the other hand, an infrequent feature

may overfit a small number of training samples. Second, a feature should be discriminative

between classes. Discriminative features carry the power of classification. Last, we consider

the earliness of features. We prefer features to appear early in sequences in the training set.

Based on the above consideration, we propose a utility measure of a feature for early

prediction. We consider a finite training sequence database SDB and a feature f .

The entropy of SDB is given by

E(SDB) = −
∑

c∈L
pc log pc

where pc = ‖{(s,c)∈SDB}‖
‖SDB‖ is the probability that a sequence is in class c in SDB.

Let SDBf = {(s, c)|(s, c) ∈ SDB, f v s} be the subset of sequences in SDB where

feature f appears. The difference of entropy in SDB and SDBf , E(SDB) − E(SDBf),

measures the discriminativeness of feature f . When E(SDB) − E(SDBf) < 0, we do not

consider this feature.

To measure the frequency and the earliness of a feature f , we can use a weighted fre-

quency of f . That is, for each sequence s where f appears, we use the minimum prefix of s

where f appears to weight the contribution of s to the support of f . Technically, we have

wsupSDB(f) =

∑
fvs,s∈SDB

1
‖minprefix(s,f)‖

‖SDB‖
Then, the utility measure of f is defined as

U(f) = (E(SDB)− E(SDBf))ωwsupSDB(f) (3.1)

In the formula, we use a parameter ω ≥ 1 to determine the relative importance of information

gain versus earliness and popularity. This parameter carries the same spirit of those used

in some previous studies such as [50].

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 25

Top-k Feature Selection

Many existing rule-based classification methods such as [37, 43, 74] set some thresholds on

feature quality measures like support, confidence, and discriminativeness, so that only those

high quality (i.e., relatively frequent and discriminative) features are selected for classifier

construction.

In our case, we may take a similar approach to set a utility threshold and mine all

features passing the threshold from the training database.

However, we argue that such a utility threshold method is ineffective in practice. The

utility values of effective features may differ substantially in various data sets. It is very

hard for a user to guess the right utility threshold value. On the one hand, a too high

utility threshold may lead to too few features which are insufficient to generate an accurate

classifier. On the other hand, a too low utility threshold may lead to too many features

which are costly to mine.

To overcome the problem, we propose a progressive approach. We first find top-k features

in utility, and build a set of rules using the top-k features. If the rules are insufficient in

classification, we mine the next k features. The progressive mining procedure continues

until the resulting set of sequential classification rules are sufficient.

Now, the problem becomes how to mine top-k features effectively for sequential classifi-

cation rule construction.

Given a finite alphabet set Ω, all possible features as sequences in Ω∗ can be enumerated

using a sequence enumeration tree T (Ω). We use an optional support threshold min sup

to prune features. A feature is not considered if its support is lower than min sup. By

default, the min sup = 0. We can also limit the maximal length of features [37]. The root

of the tree represents the empty feature ∅. Each symbol x ∈ Ω is a child of the root node.

Generally, a length-l sequence s is the parent of a length-(l +1) sequence s′ if s′ = sx where

x ∈ Ω. Figure 3.1 shows a sequence enumeration tree of alphabet Ω = {a, b, c}.
To find the top-k features, we build a sequence enumeration tree. In order to avoid

searching trough the complete enumeration tree, we use a utility bound to prune the tree.

As the first step, we select a set k features as the seeds. The set is denoted as Seed in

the following. We use a heuristic method to search a small portion of the enumeration tree

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 26

b

abaa ac ba bb bc ca

c

cb cc

aaa aab aac
...

...

a

Figure 3.1: A feature enumeration tree.

and get the Seed which are the of top-k features in the portion of tree we searched. We first

select k′ length-1 features, where k′ is a small number less then k. That is, we compute the

utility values of all length-1 features, and select the best k′ features into Seed. Then, for

each of those length-1 features f in Seed, we search their length-2 children. Among all the

k′2 length-2 children, we select the best k′ features and insert them into Seed. The selection

procedure continues iteratively level by level until no longer features can be added into the

seed set. As the last step, we choose the best k features in the set Seed, and remove the

rest.

Once we obtain a set of k seed features, we can use the seeds to prune the search space.

Let Ulb = minf∈Seed U(f) be the lower bound of the utility values of the features in the set

Seed. For a feature f in the sequence enumeration tree, if the utility of the descendants of

f can be determined no greater than Ulb, then the subtree of f can be pruned.

Then, for a feature f in the sequence enumeration tree, how can we determine whether

a descendant of f may have a utility value over Ulb?

Theorem 1 (Utility bound) Let SDB be the training data set. For features f and f ′

such that f is a prefix of f ′,

U(f ′) ≤ E(SDB)ω

‖SDB‖
∑

s∈SDB,fvs

1
minprefix(s, f) + 1

Proof. In the best case, all sequences in SDBf ′ belong to the same class. In such a case,

E(SDBf ′) = 0. Thus, the decreasing in entropy is no greater than E(SDB)ω.

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 27

Since f is a prefix of f ′, ‖f ′‖ ≥ ‖f‖+ 1. Thus,

wsupSDB(f ′) ≤
∑

s∈SDB,fvs
1

minprefix(s,f)+1

‖SDB‖
Both the decreasing in entropy and the weighted support are non-negative. Thus, using

Equation 3.1, we have the upper bound in the theorem.

If the descendants of f cannot be pruned by Theorem 1, we need to search the subtree

of f . Once a feature whose utility value is greater than Ulb is found, we insert it into Seed,

the set of seed features, and remove the feature in Seed whose utility value is the lowest.

After inserting a better feature into Seed and removing a worse one from Seed, the lower

bound Ulb of top-k utility values is increased. The new lower bound Ulb is used to pruned

the search space.

When there are multiple nodes in the sequence enumeration tree whose utility values are

over Ulb and whose subtrees need to be searched, we conduct a best-first search. That is, we

search the subtree of the node of the highest utility value, since heuristically it may have

a good chance to provide good features. The search procedure continues until we cannot

extend any branches.

Since we search the sequence enumeration tree, which is the complete space of all possible

features, and our pruning guarantees no feature which is promising in the top-k list in utility

is discarded, we have the following claim.

Theorem 2 (Completeness of top-k features) The top-k feature selection procedure de-

scribed in this section selects top-k features in utility values.

When we match a feature against a sequence, we do not consider gaps. Extracting

features with gap constraints usually requires parameters to define in what extends the gap

is allowed in matching. Furthermore, gap constraints increase the computational cost in

constructing features [25]. Without allowing gaps, especially for long features, the supports

of features may become low. But for early classification, we prefer early features. Short

features usually have a better chance as earlier features than long features. Experimental

results of length of features extracted by our methods are presented in Section 3.4. We build

sequential classification rules by considering the feature combinations. In another word, we

use a sequence of short features to represent long features with gaps.

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 28

f
1

f2
f
k

f
1

f2 f
k.

.

.

.

Figure 3.2: A rule enumeration tree.

3.2.3 Mining Sequential Classification Rules

Given a set of features F = {f1, . . . , fk}, all possible rules using the features in F can be

enumerated using a rule enumeration tree similar to a feature enumeration tree in spirit.

Figure 3.2 shows an example of a feature enumeration tree. The root of the tree is the

empty set {}. Each node contains a feature fi ∈ F . A node Ri represents a sequential rule

f1 → · · · → fl ⇒ c (c ∈ L), in which f1 → · · · → fl are the features on the path from root

to node Ri. Node Rj : f1 → · · · → fl → fl+1 is a child of Ri. For a training data set SDB

composed by several classes, we use SDBi to denote all sequences in class i. The class of the

rule (right side of the rule) represented by node Ri is the class in which Ri has the largest

support, supSDBi(Ri).

We want to learn a set of rules where each rule satisfies the minimum support threshold

min sup and the minimum accuracy threshold p0. The min sup is an optional parameter

which is 0 by default. The accuracy threshold p0 is the the user expected accuracy for the

early classifier. To achieve the expected accuracy, we enforce that each rule satisfies this

accuracy.

Furthermore, we want to construct a set of non-redundant sequential classification rules

with low prediction cost. In order to avoid searching a large number of rules, we conduct

a best-first search on the rule enumeration tree. In building the tree, we consider the rules

with smaller cost before rules with larger cost.

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 29

A node in the rule enumeration tree can be in one of the four status: active, chosen,

pruned, or processed.

We build the first level of node from the root using the top-K features we extracted in

the feature selection step. Each node represents a single feature rule. All those nodes of

single feature rules are set to active. At the beginning, the learned Rule set R is empty.

For node R, we define its active support against the learned rule set R. The active

support of a rule R is defined as

supact(R) = ‖{s|s ∈ SDB, R v s, 6 ∃R′ ∈ R st minprefix(s, R′) ≤ minprefix(s,R)}‖

The active support means if a sequence s can be matched by rule R, and the sequence can

not be matched by any rule R′ already in the rule set R with a lower cost, s contributes one

vote for the active support of R. Otherwise, if a sequence s matching both R and R′, and

minprefix(s,R′) ≤ minprefix(s, R), then s should not contribute to the active support of

R.

Among the active nodes, we select a rule R of the lowest cost. If its confidence is at

least p0, its support is above min sup and its active support is higher than 0, then the rule

is chosen and added to the rule set R. The status of R is set to chosen, and all descendants

of R in the rule enumeration tree are set to pruned.

If the support of rule R is not higher than min sup, R and its descendants are set to

pruned since longer rules cannot satisfy the min sup threshold.

If the active support of rule R is 0, R and its descendants are set to pruned since a

longer rule cannot have a higher active support.

If the confidence of R is less than p0, R satisfies the min sup and its active support is

higher than 0, we consider all children of R by adding one feature at the end of R. After

the expansion, node R is set to processed and the children are set as active.

Once a rule R is chosen and added into the rule set R, we need to adjust the active

supports of the rules in the rule set R. If a sequence s uses another rule R′ as the action

rule before R is chosen, and uses R as the new action rule after it is added, then, we should

decrease the active support of R′ by 1. After the adjustment, if the active support of R′

becomes zero, R′ will be removed from the rule set.

For each rule, by requiring its active support higher than 0, we remove redundant rules.

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 30

In another word, in the learning process, all the selected rules are the action rules for the

training data. For early classification, it is important to keep a small number of rules. Since

in the classification step, when a new event in a temporal sequence arrives, we need to

decide whether there is a rule which matches the prefix we received so far. A large number

of rules will increase the classification time. Furthermore, a small number of rules without

redundancy can provide a succinct summarization of the early features in the data set.

The above best-first search will terminate because when rules are expanded, the supports

monotonically decrease.

After building a set of rules by best-first search, there may still be some sequences in

SDB which do not match any rules in R. We need to find new features and new rules to

cover them. To do so, we consider the subset SDBR̄ ⊆ SDB which is the set of sequences

not matching any rules in R. We select features and mine rules on SDBR̄ using the feature

selection procedure and the rule mining procedure as described before. The only difference

is that, when computing the utility of features, we still use (E(SDB) − E(SDBf)) as the

entropy difference, but use wsupSDBR̄(f) as the weighted support. The reason is that the

feature selected should be discriminative on the whole data set. Otherwise, some biased or

over-fitting features may be chosen if we compute the entropy difference based on SDBR̄.

Iteratively, we conduct the feature selection and rule mining until each sequence in the

training data set SDB matches at least one rule inR. The rule setR is used as the classifier.

When a set of rules R is used in classification, a sequence is matched against all rules

in R simultaneously, until the first rule is matched completely. This earliest matched rule

gives the prediction.

3.3 The Generalized Sequential Decision Tree Method

Decision tree [52, 53] is a popularly used classification model on attribute-value data which

does not consider any sequential order of attributes. It is well recognized that decision trees

have good understandability. Moreover, a decision tree is often easy to construct.

Unfortunately, the classical construction framework cannot be applied straightforwardly

to sequence data for early classification. There are not natural attributes in sequences

since sequence are not well structured attribute-value data. Thus, the first challenge is

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 31

how to construct some “attributes” using features in sequences. As shown in Example 1

in Section 1.2, one way to construct an attribute is to use one feature as an attribute and

each attribute has two values, feature presence and feature absence. However, we cannot

use feature absence to achieve early classification since we need to wait to scan the whole

sequence to determine whether the feature appears or not.

In this section, we propose a method to compose an attributes using a set of features.

We integrate the early prediction utility in attribute composition. We develop a generalized

sequential decision tree (GSDT for shot) method.

3.3.1 The GSDT Framework

As the critical idea of construction a GSDT, we use a set of features F to compose a node

in the decision tree such that at least one feature in F likely appears in a sequence to be

classified. In classification of a sequence s, once a feature in F is matched with s, s can be

moved to the corresponding child of the node for further classification.

Ideally, we can choose a set of features F to compose an attribute in the decision tree

such that each sequence to be classified matches one and only one feature in F . The feature

composed node mimics the node in a classical decision tree perfectly. Unfortunately, in

practice, we may not be able to get a set of features which perfectly partition the training

data into several disjoint subsets.

To tackle the problem, in GSDT, we allow a sequence in the training set to contain more

than one feature from F , and simultaneously ensure that each sequence in the training set

contains at least one feature in F . By covering the training data set well, we hope that when

the resulting decision tree is applied for classification of a unseen sequence, the sequence

may likely match with at least one feature from F .

Figure 3.3 shows a GSDT example. At the root node, a set of features {f1, f2, f3, f4} are

chosen to form an attribute A. As will be explained in Section 3.3.2, we ensure that every

sequence in the training set contains at least one feature from A, and allow more than one

feature to appear in a sequence.

Attribute A divides the sequences in the training set into 4 subsets: SDBf1 , SDBf2 ,

SDBf3 , and SDBf4 . Each feature and the corresponding subset form a branch. Different

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 32

+ +

A

B

C
f

f f

f

f
f

1

2 3

4

f21 22

f41 42

Figure 3.3: A GSDT.

from a classical decision tree, the four subsets are not disjoint. A sequence s in the training

set is in both SDBf1 and SDBf2 if both features f1 and f2 appear in s. Therefore, GSDT

allows redundancy in covering the training data set.

The redundancy in covering the training set in fact improves the robustness of GSDT.

Due to the existence of noise, a feature may randomly appear or disappear in a sequence by

a low probability. If a sequence is captured by more than one feature and thus more than

one branch in GSDT, the opportunity that the sequence is classified correctly by GSDT is

improved.

Although we select the features at the root node in a way such that each sequence in

the training set contains at least one feature at the root node, it is still possible that an

unseen sequence to be classified in the future does not contain any feature at the root node.

To handle those sequences, we also store the majority class (i.e., the class of the largest

population) in the training data set at the root node. If a sequence does not match any

feature at the root node, the GSDT predicts its class using the majority class.

Once the root node is constructed, the subtrees of the branches of the root node can

be constructed recursively. For example, in Figure 3.3, the branch of feature f2 is further

partitioned by choosing a set of features B = {f21, f22}.

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 33

If a branch is pure enough, that is, the majority class has a population of at least p0 where

p0 is the user specified parameter to express accuracy expectation, a leaf node carrying the

label of the majority class is added. In Figure 3.3, the branch f4 is further split by attribute

C = {f31, f32}, and two leaf nodes are obtained.

To avoid overfitting, similar to the classical decision tree construction, we stop growing a

branch if the training subset in the branch has less than min sup sequences, where min sup

is the minimum support threshold.

3.3.2 Attribute Composition

Now, the only remaining issue is how to select a set of features as an attribute.

Consider a training set SDB, we need to find a set of features which have high early

prediction utility and cover all sequences in SDB. We also want the set of features as small

as possible to avoid overfitting.

Given a set of features which cover all sequences in the training set, finding a minimal

set to cover all sequences is an NP-complete problem which is actually the minimum set

cover problem [20]

Here, we adopt a greedy approach. To construct the root attribute, let A = ∅ and

SDB′ = SDB at the beginning. We consider the top-k features of the highest early predic-

tion utility extracted using the method in Section 3.2.2. If a sequence in SDB′ matches a

feature in A, then the sequence is removed from SDB′. We iteratively add to A the feature

which has the highest utility score in SDB′. The iteration continues until SDB′ is empty.

If the k features are used up but SDB′ is not empty yet, another k features are extracted.

Each branch in the decision tree is actually a sequential classification rule. To construct

a non-root node, the same procedure as constructing root node is performed on the subset

of SDB which matches the branch to be extended.

In the classical decision tree construction, at each node, an attribute of the best capa-

bility to discriminate different classes is chosen. In GSDT, importantly, only the features

of high early prediction utilities are considered for attribute composition. As explained in

Section 3.2.2, the utility measure defined in Equation 3.1 captures the capability of dis-

criminating different classes and the earliness of prediction simultaneously. Using features

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 34

of high utility in attribute composition ensures the effectiveness of GSDT in classification

accuracy and earliness.

3.4 Empirical Evaluation

In this section, we report an empirical study on our two methods using both symbolic

sequence data sets and time series data sets. The time series data sets are transformed into

symbolic sequences by discretization. All the experiments were conducted in a PC computer

with an AMD 2.2GHz CPU and 1GB main memory. The algorithms were implemented in

Java using platform JDKTM 6.

3.4.1 Results on DNA Sequence Data Sets

DNA promoter data sets are suitable for testing our feature extraction techniques for early

prediction, because there are explicit motifs on promoters. Also, the sequential nature of

DNA sequences can be used to simulate the temporal orders. We use two promoter data

sets of prokaryotes and eukaryotes respectively in our experiments.

Results on the E.Coli Promoters Data Set

The E. Coli Promoters data set was obtained from the UCI machine learning repository [6].

The data set contains 53 E. Coli promoters instances and 53 non-promoter instances. Every

instance contains 57 sequential nucleotide (“base-pair”) positions.

Along with the data set, the results of some previous classification methods [65] on it

are also provided. The accuracy of those results are obtained by using “leave-one-out”

methodology. For the comparison purpose, we also use “leave-one-out” in our experiments.

In methods SCR and GSDT, we set the maximal length of a feature to 20. In each round

of feature extraction, we extract the top-30 features with the highest utility scores. The

results of in Table 3.1 is obtained when setting the accuracy parameter as p0 = 95%, minimal

support threshold as s0 = 5%.

In Table 3.1, the results from our methods and previous methods are listed in the error

rate ascending order. Our two methods can obtain competitive prediction accuracy using

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 35

Method Error rate Comments
KBANN 4

106 a hybrid machine learning
system

SCR 7
106 Average prefix length for

prediction: 21
57

BP 8
106 standard artificial neural

network with back-
propagation using one
hidden layer

GSDT 10
106 Average prefix length for

prediction: 20
57

O’Neill 12
106 ad hoc technique from the

bioinformatics literature
3-NN 13

106 a nearest-neighbor method
ID3 19

106 [52]

Table 3.1: The accuracy of several methods on the E. Coli data set. Except for SCR and
GSDT, all methods use the entire sequences in classification.

the parameter setting we described. Except for our two methods, the other methods all

use every nucleotide position as a feature and thus cannot give early prediction. Our two

methods use very short prefixes (up to 36.8% of the whole sequence on average) to give

early prediction.

Please note that, when counting the error rate of SCR and GSDT in Table 3.1, if a

testing sequence cannot be classified using a sequential classification rule or a path in the

GSDT (i.e., the sequence does not match any feature in a node of a path), we treat the case

as an error. In other words, we test the exact effectiveness of the sequential classification

rules generated by SCR and the decision tree generated by GSDT. Thus, the error rate

reported in Table 3.1 is the upper bound. In practice, the two methods can give make

prediction on an unmatched sequence using the majority class.

The running time of GSDT and SCR are 294 and 340 milliseconds, respectively. SCR

is slightly more accurate than GSDT but uses a slightly longer prefix on average. For the

GSDT methods, we extracted 38 features and for the SCR method, we extracted 37 features.

We list the rules generate by GSDT and SCR methods in Table 3.2. For GSDT, each rule

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 36

is a branch in GSDT tree.

By comparing the rules of SCR and GSDT, we can see that 32 rules are shared by the

two methods and GSDT generates more rules composed by feature combinations instead of

single features than SCR.

Some rules generated by SCR and GSDT are interesting. For example, rules tataa ⇒promoter,

and ataat ⇒promoter generated by both SCR and GSDT are highly meaningful in biology,

since tataat is a highly conserved region on E. Coli promoters [23].

In section 3.2.2, we point out that for early classification, we prefer early features which

are usually short features. From Table 3.2, we can see that the longest feature extracted

is of length 7, which is 7
57 = 12.28% of the full length. Most rules are composed by single

features. For some rules, several features composed a rule, such as ctcaa → ga → ac ⇒ −.

As we discussed in section 3.2.2, we choose to extract and match features without allowing

gaps for the sake of efficiency and avoiding parameters. We use combinations of a sequence

of short features to represent long features with gaps.

Results on the Drosophila Promoters Data Set

The Berkeley Drosophila Genome Project provides a large number of drosophila promoter

sequences and non-promoter coding sequences (CDS) [1]. We use a set of promoter sequences

of 327 instances and a set of CDS of 527 instances provided in year 2002 by the project to

test our two methods.

The length of each sequence is 300 nucleotide base pairs. Compared to the E. Coli

data set, this data set has longer sequences and more instances. Drosophila (fruit fly) is

a more advanced species than E. Coli (bacteria), which is expected to have more complex

mechanics on promoters. Those differences make the feature extraction in this data set more

challenging than that in the E. Coli data set.

10-fold cross validation is used to test the two methods. When setting the accuracy

parameter as 95% and the minimal support threshold as s0 = 10%, the accuracy and the

runtime of SCR and GSDT obtained are shown in Table 3.3.

SCR and GSDT reach similar accuracy, and both use a short prefix, around 28% of the

whole sequence, in prediction. GSDT requires a longer running time than SCR. This is

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 37

Rule SCR GSDT
1 aaaa ⇒ + aaaa ⇒ +
2 aatt ⇒ + aatt ⇒ +
3 caaa ⇒ + caaa ⇒ +
4 ctacg ⇒ − ctacg ⇒ −
5 ataat ⇒ + ataat ⇒ +
6 accga ⇒ − accga ⇒ −
7 actac ⇒ − actac ⇒ −
8 tattt ⇒ + tattt ⇒ +
9 tttta ⇒ + tttta ⇒ +
10 tataa ⇒ + tataa ⇒ +
11 gaccg ⇒ − gaccg ⇒ −
12 agaaa ⇒ + agaaa ⇒ +
13 gaacg ⇒ − gaacg ⇒ −
14 gatc ⇒ + gatc ⇒ +
15 tcgca ⇒ + tcgca ⇒ +
16 gagag ⇒ − gagag ⇒ −
17 ttcgt ⇒ − ttcgt ⇒ −
18 tcaat ⇒ − tcaat ⇒ −
19 ttaca ⇒ + ttaca ⇒ +
20 gaggg ⇒ − gaggg ⇒ −
21 aaact ⇒ + aaact ⇒ +
22 cgctttg ⇒ − cgctttg ⇒ −
23 taaacg ⇒ − taaacg ⇒ −
24 gtgaac ⇒ − gtgaac ⇒ −
25 ctttctt ⇒ − ctttctt ⇒ −
26 caatgg ⇒ − caatgg ⇒ −
27 cttta ⇒ + cttta ⇒ +
28 acttgc ⇒ − acttgc ⇒ −
29 tccggt ⇒ − tccggt ⇒ −
30 ccca ⇒ + ccca ⇒ +
31 ctcag ⇒ − ctcag ⇒ −
32 attttt ⇒ + attttt ⇒ +
33 aatt ⇒ + cgtct → tga ⇒ −
34 tttat ⇒ + ctcaa → aag ⇒ −
35 tgagg ⇒ + cgtct → gc ⇒ −
36 gagac ⇒ − ctcaa → ga → ac ⇒ −
37 acgg → agcct ⇒ − ctcaa → ctc ⇒ −
38 aacatt ⇒ −

Table 3.2: List of rules learned by SRC and GSDT methods.

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 38

Method Accuracy Avg. prefix len Runtime
SCR 87% 83.56 /300 142 seconds
GSDT 86% 85.64 /300 453 seconds

Table 3.3: Results on the Drosophila Promoters data set.

because GSDT performs more rounds of top-k extraction. When GSDT constructs a node

in the decision tree, top-k feature selection is performed based on a subset of training data.

The Effects on Changing p0

The user expected accuracy threshold, p0, is an important parameter. Using the drosophila

promoters data set as an example, we test the effects on changing parameter p0 in terms of

the accuracy and earliness in prediction. The results are shown in Figure 3.4 (for SCR) and

Figure 3.5 (for GSDT).

In Figure 3.4 and Figure 3.5, we report the accuracies, the average length of prefix

in percentage, the unmatch rates (i.e., the percentage of the test sequences which do not

match any rule in SCR or any path in GSDT, and are assigned to the majority class)

given different p0. Figure 3.4 also shows the rule error rate which is the percentage of

test sequences incorrectly classified by sequential classification rules without including the

default rule. Correspondingly, Figure 3.5 shows the tree error rate which is the percentage

of the test sequences incorrectly classified by the decision tree without including the default

rule. The figure is obtained by using the setting described except for changing different p0

value.

When p0 increases, the rule error rate of SCR and the tree error rate of GSDT decrease.

The reason is that the accuracy of each rule in SCR and each path in GSDT increases.

However, the unmatch rate in both method increases, since the number of qualified rules

and that of tree paths decrease. The overall effect is that the accuracy of SCR and GSDT

is high when choosing a modest p0. The accuracy is not good when p0 is either too low or

too high. When p0 = 0.9, the SCR reaches the best accuracy which is quite close to the

result when p0 = 0.95. When p0 = 0.95, the GSDT method reaches the best accuracy.

When p0 increases, the average prediction length monotonically increases. We can see

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 39

that there is an interesting trade-off between the expectations of earliness and accuracy. If

the users expect a lower accuracy, they may gain in the earliness.

In those two methods, the support of the a rule is not required to be high. Usually, s0

is set from 5% to 10%.

For some cases, it may not be easy for users to provide the expected accuracy, p0.

The benefit of enabling users to specify the thresholds of expected accuracy is to let users

control the tradeoff between the accuracy and the earliness. The alternative way is to

learn p0 through cross-validation using the training data to optimize classification quality

on the training data. The classification quality can be measured by a score function which

considers the earliness, recall and precision of classification. The score function carries the

same spirit as Equation 3.1. Given the classification score function, we can get a average

classification score for a given p0 through cross validation. For example, we can get the

classification score using 10-folder cross validation when we set p0 = 85%. By setting p0 to

a range of different values, such as varying from p0 = 75% to p0 = 90% with a step of 5%,

we can choose a p0 with the highest classification score as the default parameter setting for

unknown classification task.

The Effects on Changing ω

On the E.Coli dataset, we tested the effect of parameter ω in Equation 5.9 on the accuracy

and the early prediction of SCR and GSDT using the setting described before except for

varying ω. Figure 3.6 shows the accuracy of the two methods with respect to ω. When

ω = 3, both methods reach the highest accuracy. When ω > 3, the accuracy is insensitive to

ω. A similar trend is observed in Figure 3.7, which shows the average length of prefix with

respect to ω. SCR and GSDT use the shortest prefix length on average in early prediction

when ω is 2 and 3, respectively. When ω > 3, the average length of prefix used in prediction

is insensitive to ω. On the drosophila promoters data set, similar experiments are conducted,

and the results are show in Figure 3.8 and Figure 3.9. We observe that, using a fixed setting

of other parameters and only changing ω, the best prediction accuracy is reached for SCR

when ω = 8, and for GSDT when ω = 10. Comparing with the optimal value of E.Coli

dataset, it suggests that when the dataset is larger,ω is better to be set to a larger value.

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 40

Method Nor. Cyc. Inc. Dec. Upward Downward Avg. prefix len.
SCR 0.96 0.96 0.80 0.76 0.36 0.46 33/60

GSDT 0.98 0.88 0.92 0.96 0.42 0.36 27/60
1NN 1 1 1 0.98 0.94 0.9 60/60

1NN (on prefix) 0.48 1 1 1 0.54 0.54 30/60
1NN (on prefix) 0.98 1 0.98 0.98 0.82 0.74 40/60
1NN (on prefix) 1 1 1 0.98 0.9 0.84 50/60

Table 3.4: Results on the Synthetic Control data set.

Method Nor. Cyc. Inc. Dec. Avg. prefix len.
SCR 0.96 0.90 0.98 1.00 13/60

GSCT 0.96 0.92 0.98 1.00 15/60
1NN 1 1 1 1 60/60

1NN (on prefix) 0.84 1 0.92 0.96 20/60
1NN (on prefix) 1 1 1 1 30/60

Table 3.5: Results on the Synthetic Control data set without upward/downward shift se-
quences.

3.4.2 Results on Time Series Data Set

Time series is an important type of temporal sequence data. To apply our methods on time

series, discretization needs to be performed. In this section, we report the results of SCR

and GSDT on two time series data sets in details. Results of SCR methods on more time

series data sets can be found in Table 4.3 in Chapter 4.

Time series data is continuous. Since our methods are designed for discrete sequences,

we preprocess the time series as follows. We apply k-means discretization on the training

data set to get the discretization thresholds, and transform the training data set into discrete

sequences. The test data set is discretized using the thresholds learned from the training

data set. So, in classification, the discretization is performed online. The results in the

following session is obtained when we set k = 3 for the discretization.

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 41

Results on the Synthetic Control Data set

The synthetic control data set from the UCI machine learning repository [6] contains 600

examples of control charts synthetically generated by the process. There are six different

classes of control charts: normal, cyclic, increasing trend, decreasing trend, upward shift,

and downward shift. Every instance contains 60 time points.

We randomly split the data set into two subsets of the same size, i.e., 300 instances as the

training examples, and the other 300 instances as the testing examples. We set p0 = 0.95,

s0 = 10%, k = 30, and the maximal length of feature as 20 to obtain the results in Table 3.4.

In [29], it has been shown that for time series classification, one-nearest-neighbor (1NN) with

Euclidean distance is very difficult to beat. In Table 3.4, the results of 1 NN classification

with Euclidean distance using whole sequence and using prefix with different lengthes are

shown for comparison.

From the results of 1NN classification, we can see that there is a big accuracy drop from

using prefix of length 40 to using prefix of length 30. It indicates that the prefix till length

40 contains the important features for classification. In our GSDT and SCR, the average

length used in prediction is 27 and 33. It demonstrates that our feature selection procedure

can capture the key features within suitable length. GSDT and SCR methods perform

better on sequences in classes normal, cyclic, increasing trend and decreasing trend than in

class upward shift and downward shift. The reason is that upward shift and downward shift

sequences are very similar to increasing and decreasing sequences, respectively, especially

after discretization. To correctly classify the upward and downward shift sequences, a

classifier has to capture the shift regions accurately. However, the shift regions are similar

to some noise regions in other classes, which make the early prediction inaccurate.

If we remove the sequences in the classes of upward shift and downward shift, the

performance of the two methods, as shown in Table 3.5, improve substantially. The accuracy

is improved further and the average length of prefix is shortened remarkably. Our two

method can not beat 1NN when the prefix is longer than 30. But when the prefix is reduced

to 20, SCR and GSDT outperform 1NN by using average prefix of 13 and 15 respectively.

The features at the root node of a GSDT have good utility in early prediction. In the

complete synthetic control data set (i.e., containing sequences of all 6 classes), on average,

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 42

a sequence matches one of the features at the root node with a prefix of length 14.54,

which is substantially shorter than the length of the whole sequence (60). Moreover, when

the sequences in classes upward/downward shift are excluded, the average length of prefix

matching one of the features in the root node is further reduced to 11.885.

Results on Physiology ECG Data Set

PhysioBank(http://physionet.org/physiobank/) provides a large amount of time series phys-

iology data. A set of ECG data from physioBank is normalized and used in [66]. We down-

loaded the data set from http://www.cs.ucr.edu/∼wli/selfTraining/. The data set records

the ECG data of abnormal people and normal people. Each instance in the normalized

data set contains 85 time points. As same as in [66], we use 810 instances as the training

examples and 1, 216 instances as the test examples.

In Figure 3.10, the prediction accuracy by using various length of prefix of 1NN is shown

by the curve. From the result, we can see this dataset has highly distinguishing feature

around the very beginning of the sequence. When p0 = 99%, k = 30 and s0 = 10%, SCR

reaches a prediction accuracy as 99% using average prediction prefix of length 17.3 out of 85,

which is the asterisk point in the figure. Under the same setting, GSDT reaches an accuracy

of 98% by using an average prefix of length 11.6, which is the diamond point in the figure.

Both methods can make prediction with competitive accuracy compared to 1NN and using

a very short prefix on average. SCR takes 6.799 sec for the training and predication; while

GSDT takes longer time of 491.147 sec.

3.5 Summary

In this Chapter, we propose methods, the sequential classification rule (SCR) method and

the generalized sequential decision tree (GSDT) method, for early classification on temporal

sequences. The utility in early prediction is used in selecting features and building classifiers

to achieve early classification.

We report an empirical study on DNA sequence data sets and time series data sets. The

results clearly show that SCR and GSDT can obtain competitive prediction accuracy using

an often remarkably short prefix on average. Early prediction is feasible and effective. SCR

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 43

tends to get a better accuracy, and GSDT often achieves earlier prediction. SCR is often

faster than GSDT.

Although we made some good initial progress in early prediction, the problem is still far

from being solved. For example, more accurate methods should be developed and methods

on continuous time series are needed.

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 44

0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minimal Accuracy p
0

Accuracy
Rule Error Rate
Unmatched Rate
Average Prefix Length

Figure 3.4: Performance of SCR with respect to p0 on the
Drosophila data set.

0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Minimal Accuracy p
0

Accuracy

Tree Error Rate

Unmatched Rate

Average Prefix Length

Figure 3.5: Performance of GSDT with respect to p0 on the
Drosophila data set.

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 45

1 2 3 4 5 6 7 8
0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Weight

A
cc

ur
ac

y

SCR
GSDT

Figure 3.6: Accuracy with respect to weight.

1 2 3 4 5 6 7 8

20.4

20.6

20.8

21

21.2

21.4

21.6

21.8

22

22.2

Weight

A
ve

ra
ge

 P
re

fix
 L

en
gt

h

SCR
GSDT

Figure 3.7: Average length of prefix with respect to weight.

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 46

2 3 4 5 6 7 8 9 10
0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

Weight

A
cu

rr
ac

y

SCR
GSDT

Figure 3.8: Accuracy with respect to weight on Drosophila.

2 3 4 5 6 7 8 9 10

0.15

0.2

0.25

0.3

Weight

A
ve

ra
ge

 P
re

fix
 L

en
gt

h

SCR
GSDT

Figure 3.9: Average length of prefix with respect to weight
on Drosophila.

CHAPTER 3. EARLY CLASSIFICATION ON SYMBOLIC SEQUENCES 47

0 20 40 60 80 100
0.7

0.75

0.8

0.85

0.9

0.95

1

Prefix Length

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

1NN
SCR
GSDT

Figure 3.10: Results comparison on ECG Data.

Chapter 4

Instance Based Early Classifiers on

Time Series

In Chapter 3, we develop an early classification framework to solve the problem of early

classification on symbolic sequences. As demonstrated in Chapter 3, on some data sets,

including time series and symbolic sequences, the methods are able to achieve competitive

accuracies by using only less than half of the length of the full sequences. However, it

is also shown that on some numeric time series data, such as the synthetic control data

set, the symbolic methods do not work well. To apply the symbolic methods on time

series, discretization need to conducted properly. Furthermore, in the classification step,

online discretization is needed. However, appropriate discretization often heavily relies

on good background knowledge. Moreover, affected by the discretization granularity, the

discretization-based methods may lose important information in time series data. Thus,

early prediction on time series data, a type of data prevalent in time-sensitive applications,

remains open at large.

In this Chapter, we tackle the problem of early prediction on time series data and

develop a native method. Specially, we adopt the 1-nearest neighbor (1NN) approach,

which has been well recognized as an effective classification method for time series data. We

introduce a novel concept of MPL (Minimum Prediction Length) and develop ECTS (Early

Classification on Time Series), an effective 1-nearest neighbor classification method which

48

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 49

makes prediction early and at the same time retains an accuracy comparable to that of a

1NN classifier using the full-length time series. Our empirical study using benchmark time

series data sets shows that ECTS works well where 1NN classification is effective.

The rest of the Chapter is organized as follows. In Section 4.1, we formulate the problem.

We present a basic 1NN early classifier in Section 4.2, and develop the ECTS method in

Section 4.3. We evaluate ECTS empirically in Section 4.4. Section 4.5 concludes the paper.

4.1 Problem Definition

A time series s is a sequence of pairs (timestamp, value). The data values are ordered in

timestamp ascending order. We assume that all timestamps take positive integer values.

We denote by s[i] the value of time series s at timestamp i.

To keep our discussion simple, in this paper, we assume that all time series in question

are of length L, i.e., each time series s has a value s[i] at timestamp 1 ≤ i ≤ L. L is called

the full length of the time series.

For a time series s of length L, s[i, j] = s[i]s[i + 1] · · · s[j] (1 ≤ i < j ≤ L) is the

subsequence at timestamp interval [i, j]. Subsequence s[1, l] (l ≤ L) is the length-l prefix of

s.

For two time series s and s′, dist(s, s′) denotes the distance between them. In this paper,

we use the Euclidean distance

dist(s, s′) =

√√√√
L∑

i=1

(s[i]− s′[i])2,

which is a simple yet effective and popularly adopted choice.

The set of all possible time series of length L is RL and is called the full-length space,

where R is the set of real numbers. The prefix space of length-l, denoted by Rl, is the set

of length-l prefixes of all possible time series.

In time series classification, a training set T contains a set of time series and a set of

class labels C such that each time series t ∈ T carries a class label t.c ∈ C. The time

series classification problem is to learn from T a classifier C : RL → C such that for any

time series s, C predicts the class label of s by C(s). The performance of a classifier is

often evaluated using a test set T ′, which is a set of time series such that each time series

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 50

t′ ∈ T ′ also carries a class label t′.c ∈ C. The accuracy of a classifier C on the test set T ′ is

Accuracy(C, T ′) = |{C(t′)=t′.c|t′∈T ′}|
|T ′| . Often, we want the classifier C as accurate as possible.

For a time series s, an early classifier C can identify an integer l0 and make classification

based on s[1, l0]. An early classifier is serial if C(s[1, l0]) = C(s[1, l0 + i]) for any i > 0. In

other words, C can classify s based on only the prefix s[1, l0], and the classification remains

the same by using any longer prefixes. An early classifier is preferred to be serial so that the

early classification is reliable and consistent. The minimum length l0 of the prefix based on

which C makes the prediction is called the cost of the prediction, denoted by Cost(C, s) = l0.

Trivially, for any finite time series s, Cost(C, s) ≤ |s|. The cost of the prediction on a test

set T ′ is Cost(C, T ′) = 1
|T ′|

∑
t′∈T ′ Cost(C, t′).

Among many methods that can be used in time series classification, the 1-nearest neigh-

bor (1NN) classifier has been found often accurate in practice [29, 66]. The 1NN classification

method is parameter-free and does not require feature selection and discretization. Theo-

retically, Cover and Hart [64] showed that the error rate of the 1NN classifier is at most

twice that of the optimal Bayes probability when an infinite sample set is used.

Due to the effectiveness and the simplicity of the 1NN classifier on time series data, in this

Chapter, we focus on extending the 1NN classifier for early classification on time series data.

We use the 1NN classifier on full length time series as the baseline for comparison. Ideally,

we want to build a classifier which is as accurate as the baseline method and minimizes the

expected prediction cost.

4.2 1NN Early Classification

1NN classifier is a lazy learning method and does not require any training. To extend 1NN

classifier to achieve early classification, we need to add a training process to learn more

information from the training data. In the training stage, we want to find out how early a

time series can be used as the nearest neighbor to make accurate prediction.

Example 4 Consider a training set of time series T in Table 4.1, where each time series,

written as a sequence of values in timestamp ascending order, has a length L = 3.

To classify a time series s1 = (1, 2, 1), using full length time series, the 1NN classifier

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 51

t-id time series class
t1 (1, 1, 1) c1

t2 (2, 1, 2) c1

t3 (5, 2, 1) c1

t4 (6, 1, 2) c1

t5 (5, 8, 7) c2

t6 (5, 9, 9) c2

t7 (6, 8, 9) c2

Table 4.1: A training set T as the running example.

finds t1 as the 1NN of s1 in space R3, and outputs c1, the class label of t1.

The prediction on s1 can be made much earlier, since t1 is also the 1NN of prefixes

s1[1] = (1) and s1[1, 2] = (1, 2). In other words, using the 1NN of the prefixes, we may

make early prediction.

For a time series s and a training data set T , let

NN l(s) = arg min
t∈T

{dist(s[1, l], t[1, l])}

be the set of the nearest neighbors of s in T in prefix space Rl. In Example 4, NN1(s1) =

{t1} and NN2(s1) = {t1}.
In the full length space RL, using the 1NN classifier, a time series s is classified by the

dominating label in NNL(s). Consider prefix space RL−1. Let T [1, L− 1] = {t[1, L− 1]|t ∈
T} be the set of length-(L − 1) prefixes of all time series in the training set T . If the

time series in NNL(s) are still the nearest neighbors of s[1, L − 1] in T [1, L − 1], i.e.,

NNL(s) = NNL−1(s), then we can use NNL−1(s) to make prediction on the class label of

s at timestamp (L − 1) without compromise in accuracy. This immediately leads to early

prediction, as observed in Example 4. The question is when the data points of s arriving

in time ascending order, how we can know starting from which prefix length l, the nearest

neighbors of s will remain the same.

Generally, the set of length-l prefixes (1 ≤ l ≤ L) of the time series in T is T [1, l] =

{t[1, l]|t ∈ T}. For t ∈ T , the set of reverse nearest neighbors in prefix space Rl of t(1, l) is

RNN l(t) = {t′ ∈ T | t ∈ NN l(t′)}. That is, RNN l(t) is the set of time series in T that treat

t as its nearest neighbor. In Example 4, since RNN1(t1) = RNN2(t1) = RNN3(t1) = {t2},
RNN1(t2) = RNN2(t2) = RNN3(t2) = {t1}.

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 52

Suppose training set T is a sufficiently large and uniform sample of the time series to be

classified. For a time series t ∈ T , if there exists a timestamp l < L such that RNN l(t) =

RNN l+1(t) = · · · = RNNL(t), then we can use t to make prediction early at timestamp l

without loss in expected accuracy, since every time series s which uses t in RL to predict the

class label also likely has t as the 1NN in prefix spacesRl, Rl+1, . . . , RL−1. In Example 4, t1

can be used to make prediction at timestamp 1 since RNN1(t1) = RNN2(t1) = RNN3(t1).

Definition 1 (Minimum prediction length) In a training data set T with full length L,

for a time series t ∈ T , the minimum prediction length (MPL for short) of t, MPL(t) = k

if for any l (k ≤ l ≤ L), (1) RNN l(t) = RNNL(t) 6= ∅ and (2) RNNk−1(t) 6= RNNL(t).

Specifically, if RNNL(t) = ∅, MPL(t) = L. We denote by MPP (t) = t[1,MPL(t)] the

minimum prediction prefix of t.

Example 5 In Example 4, MPL(t1) = 1 and MPP (t1) = (1). Moreover, MPL(t2) = 1,

MPL(t3) = MPL(t4) = 2. MPL(t5) = MPL(t6) = MPL(t7) = 3.

Given a training set T , a simple 1NN early classification method works as follows.

Training Phase For each time series t ∈ T , we calculate the minimum prediction length

MPL(t).

Classification Phase For a time series s to be classified, the values of s arrive in timestamp

ascending order. At timestamp i, we return the dominating class label of time series

in NN i(s) that have a MPL at most i. If no such a time series is found, we cannot

make reliable prediction at the current timestamp, and have to wait for more values

of s.

Example 6 In Example 4, it is easy to verify that s1 = (1, 2, 1) is classified as c1 using t1

at timestamp 1. Consider s2 = (6, 2, 3). NN1(s2) = {t4, t7}, but the MPLs of t4 and t7

are greater than 1. Thus, s2 cannot be classified at timestamp 1. NN2(s2) = {t3, t4}. The

MPLs of t3 and t4 are 2. Thus, s2 can be assigned label c1 at timestamp 2.

The intuition behind the simple RNN method can be understood from a classification

model compression angle. A time series t in the training set T can be compressed as its

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 53

minimum prediction prefix MPP (t) since based on the information in T , any longer prefix

of t does not give a different prediction on a time series that uses t as the nearest neighbor.

Thus, those longer prefixes of t are redundant in 1NN classification and can be removed to

achieve early prediction. We assume that the training set is a sufficiently large and uniform

sample of the data to be classified. Then, for new time series to be classified, the early 1NN

classifier can classify new time series as accurate as full length 1NN.

The 1NN early classification method has two drawbacks. First, to make early prediction

using a time series t in a training set T , the RNNs of t must be stable after timestamp

MPL(t). This requirement is often too restrictive and limits the capability of finding

shorter prediction length. In Example 4, the RNNs of t5, t6, t7 are not stable, and the MPLs

of them are all 3. We cannot use those time series to classify s3 = (5, 8, 8) at timestamp 2.

Second, the 1NN early classification method may overfit a training set. The MPP of a

time series is obtained by only considering the stability of its RNN which often consist of a

small number of time series. The learned MPL(t) may not be long and robust enough to

make accurate classification if the training set is not big enough or is not a uniform sample

of the time series to be classified.

4.3 The ECTS Method

To overcome the drawbacks in the early 1NN classification method, we develop the ECTS

method which extends the early 1NN classification method by finding the MPL for a cluster

of similar time series instead of a single time series. In this section, we first develop the idea

of the ECTS classifier. Then, we present the algorithm of ECTS method in detail. At last,

we discuss a variation of computing MPLs in the framework of ECTS.

4.3.1 ECTS

When we cluster the training data in each prefix space, Rl, where l = 1, 2, · · · , L, we can

observe the formations of clusters along the time. When l is small, the clusters in Rl may

be very different from the ones in RL. When l increases and approaches L, some clusters

in Rl may become stable and similar to some in RL. Those clusters can be used for early

prediction.

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 54

1 2 3 4 5 6
1

2

3

4

5

6

7

8

9

Dimension 1

D
im

en
si

on
 2

class c1

class c2

t
1

t
2

t
3
, t

5
, t

6

t
4
, t

7

1 2 3 4 5 6
1

2

3

4

5

6

7

8

9

Dimension 1

D
im

en
si

on
 2

class c1

class c2

t
1
t
2

t
3 t

4

t
5 t

7

t
6

1
2

3
4

5
6

0

5

10
0

2

4

6

8

10

Dimension 1Dimension 2

D
im

en
si

on
 3

class c1

class c2

t
5

t
6 t

7

t
1

t
2

t
3

t
4

Figure 4.1: Plots of data in Table 4.1.

Prefix space Clusters

R1 S1 = {t1, t2}, S2 = {t3, t4, t5, t6, t7}
R2 S1 = {t1, t2}, S2 = {t3, t4} S3 = {t5, t6, t7}
R3 S1 = {t1, t2}, S2 = {t3, t4} S3 = {t5, t6, t7}

Table 4.2: The clusters in different prefix spaces.

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 55

Example 7 Figure 4.1 shows the distribution of the time series in Table 4.1 in each prefix

space, R3, R2 and R1. From Figure 4.1, we can observe the natural clusters in each prefix

space. We summarize the clusters in Table 4.2. Cluster S1 is stable in all three spaces, and

thus can be used at early classification as early as timestamp 1. Clusters S2 and S3 are

stable at timestamps 2 and 3 and thus can be used as early as at timestamp 2.

We consider the clusters in the full length space RL as the ground truth. To learn when

a cluster can be used for early classification, we need to address two issues. First, we need

to use a clustering approach to obtain the clusters in the full-length space. Second, we need

to compute the MPLs of clusters.

We adopt single link MLHC [15], an agglomerative hierarchical clustering method to

cluster the training data set in the full length space. It builds a hierarchical clustering

tree level by level by merging all mutual nearest neighbor pairs of clusters at each level.

Two clusters form a mutual nearest neighbor pair if they consider each other as the nearest

neighbor. The distance between two clusters is measured by the minimum among all inter-

cluster pair-wise distances. In the output hierarchical clustering tree (i.e., a dendrogram),

a cluster represented by a leaf node is called a leaf-cluster, and a cluster represented by an

internal node is called a sub-cluster. The whole training set is represented by the root, and

thus is called the root-cluster.

A cluster S is called 1NN consistent [14] if for each object (a time series in our case)

o ∈ S, the 1NN of o also belongs to S. Immediately, we have the following.

Lemma 1 The sub-clusters and the root-cluster generated by single link MLHC are 1NN

consistent.

[Proof] In the dendrogram generated by MLHC, we call a cluster represented by a leaf

node a leaf-cluster, a cluster represented by an internal node a sub-cluster, and the cluster

represented by the root the root-cluster.

A leaf-cluster contains only one time series. For a leaf-cluster s in the dendrogram

generated by MLHC on space Rl, let Sib(s) be the sibling cluster of s, which is another time

series. Now, we show NN l(s) ∩ Sib(s) 6= ∅ by contradiction.

Suppose NN l(s) ∩ Sib(s) = ∅. Then, we can find q ∈ NN l(s). According to the as-

sumption, q /∈ Sib(s). Then, ∀s′ ∈ Sib(s), we have dist(s, s′) > dist(s, q), which means

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 56

dist(s, Sib(s)) > dist(s, q). Then, s cannot be merged with Sib(s) in the process of MLHC.

This contradicts with the assumption that Sib(s) is the sibling of s.

For any sub-cluster S in the dendrogram, ∀s ∈ S, we have Sib(s) ⊆ S. Because NN l(s)∩
Sib(s) 6= ∅, we have NN l(s) ∩ S 6= ∅. So, S is a 1NN consistent cluster. The lemma holds

for the root cluster trivially since the root cluster contains all time series in question .

If all time series in a sub-cluster S carry the same label, S is called a discriminative

cluster. We denote by S.c the common class label of the time series in S. A discriminative

cluster can be used in classification.

Example 8 S1, S2 and S3 in space R3 in Table 4.2 are discriminative clusters and can be

used in classification. For example, s3 = (5, 8, 8) finds t5 ∈ S3 as the 1NN in R3. S3.c = c2

can be assigned to s3.

To explore the potential of a discriminative cluster S in early classification, we find the

earliest prefix space in which S is formed and becomes stable since then. The corresponding

prefix length is the minimum prediction length (MPL) of S.

One straight forward way is to apply MLHC on space RL−1 and check if S is preserved

as a sub-cluster, and continue this process on the previous prefix spaces until the sub-cluster

is not preserved. This can be very costly in computation.

An efficient way is to check if the 1NN consistence property holds for the cluster in the

previous prefix spaces and the stability of the reverse neighbors of S.

For a sub-cluster S, in space Rl (1 ≤ l ≤ L), we define the reverse nearest neighbors of

S as RNN l(S) = ∪s∈SRNN l(s) \ S. If S is well separated from other clusters, RNN l(S)

is empty. Often, some sub-clusters in a training set may not be well separated from others.

In such a case, RNN l(S) is the boundary area of S.

Definition 2 [MPLs of clusters] In a training data set T with full length L, for a discrim-

inative cluster S, MPL(S) = k if for any l ≥ k, (1) RNN l(S) = RNNL(S); (2) S is 1NN

consistent in space Rl; and (3) for l = k−1, properties (1) and (2) cannot be both satisfied.

Example 9 For discriminative clusters S1, S2 and S3, MPL(S1) = 1, MPL(S2) = 2 and

MPL(S3) = 2. Take S3 as an example, in spaces R3 and R2, S3 is 1NN consistent and

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 57

RNN3(S3) = RNN2(S3) = ∅. In space R1, S3 is not 1NN consistent. Thus, MPL(S3) = 2.

In a discriminative cluster S, there may be another discriminative cluster S′ ⊂ S.

MPL(S) may be longer or shorter than MPL(S′). Moreover, for a time series t ∈ T , t

itself is a leaf-cluster with MPL(t) (Definition 1). Among all the discriminative or leaf

clusters containing t, we can use the shortest MPL to achieve the earliest prediction using

t.

As one drawback of the 1NN early classification method, the MPL obtained from a very

small cluster may cause over-fitting. To avoid over-fitting, a user can specify a parameter

minimum support to control the size of a cluster. We calculate the support of a cluster in

a way that is aware of the population of the corresponding class.

Definition 3 (Support) In a training set T , let Tc = {s ∈ T |s.c = c} be the set of time

series that have label c. For a discriminative cluster or a leaf cluster S such that S.c = c,

Support(S) = |S|
|Tc| .

We only use clusters passing the user-specified minimum support threshold for early

prediction.

To summarize, given a training set T , the ECTS method works in two phases as follow.

Training Phase Given a minimum support threshold p0, for a time series t ∈ T , let SS =

{S|t ∈ S ∧ S is a discriminative cluster or a leaf cluster} be the set of discriminative

or leaf clusters containing t.

MPL(t) = min
S∈SS,Support(S)≥p0

MPL(S).

The training process is to compute MPLs for all t ∈ T .

Classification Phase Same as the 1NN early classification method in Section 4.2.

Section 4.1 states that we want to build a classifier as accurate as the 1NN classifier

using the full-length time series. The following result answers the requirement.

Theorem 3 In a training data set T of full length L, assuming for any t ∈ T and 1 ≤ l ≤ L,

NN l(t) contains only one time series1, ECTS has the same leave-one-out accuracy on T as

1If multiple 1NNs exist, we can select the 1NN of the smallest index.

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 58

the 1NN classifier using the full-length time series. Moreover, ECTS is a serial classifier

on the time series in T .

[Proof] In the leave-one-out classification, if a sequence t ∈ T is classified by sequence

q on prefix t(1, k) by the ECTS classifier, then MPL(q) ≤ k. Since t is classified by q,

t ∈ RNNk(q) in prefix space Rk. From the learning process we know that there is a cluster

Q containing q, and MPL(Q) = MPL(q). Since t ∈ RNNk(q), t is either a member of

cluster Q or a member of RNNk(Q). We consider the two cases one by one.

If t ∈ Q, because MPL(Q) ≤ k, starting from length k to the full length L, Q is

always 1NN consistent. Since t ∈ Q, in any prefix space Rl, where k ≤ l ≤ L, we have

NN l(t) ∈ Q. Because all members in Q have the same class label, by the ECTS classifier,

we have C(t, k) = C(t, k + 1) = · · · = C(t, L). For t, the classifier is serial. Since C(t, L)

by ECTS is actually the 1NN classifier using the full length, so for t, ECTS gives the same

prediction as the 1NN classifier using the full length time series.

Let t ∈ RNNk(Q). Since RNNk(Q) = RNNk+1(Q) = · · · = RNNL(Q), we have

t ∈ RNN l(Q) for any k ≤ l ≤ L. It means NN l(t) ∈ Q for any k ≤ l ≤ L. Because all

members in Q have the same class label, by the ECTS classifier, C(t, k) = C(t, k + 1) =

· · · = C(t, L). For t, the classifier is serial and ECTS gives the same prediction as the 1NN

classifier using the full-length time series.

Based on the above analysis, for any t ∈ T , the class label predicted by ECTS will be the

same as the class label predicted by the 1NN classifier using the full-length time series, and

the ECTS is serial.

Theorem 3 indicates that the learned MPLs by ECTS are long enough to classify all

time series in the training data set as accurately as the full length time series by a 1NN

classifier. If the training data set is large enough and provides a good sample of the time

series space, then, for an unlabeled time series, the ECTS classifier is expected to give the

same accuracy as the full length 1NN classifier, and is expected to be serial.

We propose a framework of extending instance based classifiers for early classification

through clustering. Particularly, we choose one nearest neighbor and single link hierarchical

clustering. One of the disadvantages of using one nearest neighbor and single link hierar-

chical clustering is that they are both sensitive to noisy data. To overcome the sensitivity

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 59

to noisy data, more robust clustering methods, such as hierarchical clustering using average

link can be used. In this thesis, we focus on studying single link clustering and one nearest

neighbor classifier because they together lead to the theoretical result shown in Theorem 3.

Theorem 3 guarantees the leave-one-out accuracy of the proposed classifier to be the same

as the one nearest neighbor classifier. It enables us to study in what extends the earliness

can be achieved given a theoretical accuracy guarantee and validates the framework for early

classification.

4.3.2 The Algorithm

To train an ECTS classifier, we integrate the computation of MPLs for clusters into the

framework of MLHC. The algorithm of training the ECTS classifier is shown in Figure 5.6.

The training process requires many nearest neighbor queries and reverse nearest neighbor

queries in various prefix spaces. To share the computation, we pre-compute the nearest

neighbors for every time series t ∈ T in all prefix space from R1 to RL (line 1 in Figure 5.6).

This pre-computation step takes time O(|T |2 · L) where L is the full length.

Then, we apply the single link MLHC [15] to space RL. We implement the MLHC

framework in lines 4-11. As stated before, in each iteration, MLHC merges all mutual

nearest neighbor (MNN) pairs of clusters. When a new cluster S is formed in the process of

MLHC, we compute its MPL (line 9). In line 10, we update the MPL of every time series in

s ∈ S if MPL(S) < MPL(s). When the iteration terminates, the MPL of each time series

s is the shortest MPL of all the clusters containing s.

All time series in a discriminative cluster should have the same label. In MLHC, if a

cluster formed is not pure, that is, the time series in the cluster are inconsistent in class

label, we do not need to merge the cluster further to other clusters in the next iteration.

MLHC in our method terminates when no pure clusters are generated after the current

round of iteration. In other words, our adaption of MLHC generates a cluster forest instead

of a cluster tree.

To compute the MPL of a discriminative cluster S, according to Definition 2, we check

whether the 1NN consistency and the RNN stability hold in space RL and the prefix spaces

Rl in prefix length descending order. If MPL(S) = k, to compute the MPL of S, we need

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 60

to find RNN l(S) and check 1NN consistency in spaces Rl(L ≥ l ≥ (k − 1)). If the MPL of

every discriminative cluster is computed from the scratch, it is very costly. Fortunately, we

do not need to compute the MPL for every discriminative cluster from scratch. Instead, we

can use the information provided by the clusters formed in the previous iterations. When

computing the MPL of a discriminative cluster S, which is formed by merging clusters S1

and S2 in an iteration, two situations may arise.

First, |S1| > 1 and |S2| > 1. Without loss of generality, let us assume MPL(S1) ≤
MPL(S2). Cluster S must be 1NN consistent and RNN stable in spaces Rl for L ≥ l ≥
MPL(S2). Thus, we only need to check if the 1NN consistency and RNN stability hold for

S in space Rl for MPL(S2) ≥ l ≥ 1.

Second, if |S1| = 1 and |S2| > 1, S is always 1NN consistent in spaces Rl for L ≥ l ≥
MPL(S2). For ECTS, to test the RNN stability of S, we only need to check if RNN(S1)\S2

is stable in spacesRl for L ≥ l ≥ MPL(S2). This is because we already know that the RNNs

of cluster S2 are stable in spacesRl for L ≥ l ≥ MPL(S2). If for some l(L ≥ l ≥ MPL(S2))

that S passes the test of l but fails for l − 1, MPL(S) = l. If S passes the test, then

MPL(S) ≤ MPL(S2). We need to check the 1NN consistency and the RNN stability in

the prefix spaces of shorter prefix lengths.

The complexity of building the dendrogram in the full-length space by MLHC is O(|T |2).
The worst case time complexity of ECTS is O(|T |3L).

The advantage of the ECTS method is parameter free, and easy to understand, and

more efficient comparing to the feature based method, the naive solution.

Our current method uses Euclidean distance which requires time series in the training

data to be of the same length. For time series of different lengthes, instead of using Euclidean

distances, we can use some distances, such as dynamic time warping (DTW) distances. For

dynamic time warping distance, to learn the MPLs, we can first learn the clustering struc-

tures using full length time series with DTW distance. Then, we can shrink the individual

time series by observing after which prefix, the time series changes its associated cluster

comparing to the full length clusters.

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 61

Input: a training data set T;
Output: MPL(t) for each t ∈ T ;
Method:
1: pre-compute 1NNs for each t ∈ T in all prefix spaces;
2: compute the MPLs of leaf clusters and update the MPL

for each t ∈ T ;
3: n = |T |, the number of time series in T ;
4: while n > 1
5: compute the mutual nearest neighbor pairs;
6: for each mutual nearest neighbor pair (S1, S2)
7: merge S1 and S2 into a parent cluster S, n = n− 1;
8: if all time series in S carry the same label then
9: compute the MPL of S;
10: update the MPL for each time series in S;

end if
end for

11: if no new discriminative clusters are generated in this
round then break;

end while

Figure 4.2: The algorithm of the training phase in ECTS.

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 62

4.3.3 Relaxed ECTS

If we apply the 1NN classifier in the full length space RL to classify the training data

T using leave-one-out method, we may get some time series miss classified. We denote

Tmis ⊆ T as the set of time series that are not classified correctly in the leave-one-out

process. One important reason of misclassification is that some time series in Tmis are on

the decision boundary. The nearest neighbors of those time series may have a considerable

chance to fall into other clusters in the prefix spaces. To compute the MPL for a cluster,

Definition 2 requires the RNN stability from prefix space RMPL(S) till the full length space.

The time series in Tmis may hinder many discriminative clusters from meeting the stability

requirement. Can we relax the requirement of MPL by ignoring the instability caused by

the time series in Tmis?

Definition 4 (Relaxed MPL) In a training data set T with full length L, for a dis-

criminative cluster S, MPL(S) = k if for any l ≥ k, (1) RNN l(S) ∩ (T − Tmis) =

RNNL(S) ∩ (T − Tmis); (2) S is 1NN consistent in space Rl; and (3) for l = k − 1,

(1) and (2) cannot be both satisfied.

Specifically, if S is a leaf cluster and RNNL(S) ∩ (T − Tmis) = ∅, then we define

MPL(s) = L.

We call the ECTS classifier using the above relaxed MPL the relaxed version of ECTS.

In the relaxed version, we relax the condition of RNN stability to partial stability. The

relaxed ECTS has the following property.

Theorem 4 In a training data set T of full length L, assuming for any t ∈ T and 1 ≤ l ≤
L, NN l(t) contains only one time series2, the relaxed ECTS has the same leave-one-out

accuracy on T as the 1NN classifier using the full-length time series.

[Proof] In the leave-one-out classification process, if a time series t is classified by se-

quence s on prefix t(1, k) by the relaxed ECTS classifier, t either is a member of a cluster

Q or belongs to RNNk(Q).

In the case where t ∈ Q, same as the proof in Theorem 3, we can prove the relaxed ECTS

makes prediction as accurate as the 1NN classifier using the full length time series.

2Again, if multiple 1NNs exist, we can select the 1NN of the smallest index .

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 63

In the case that t ∈ RNNk(Q), we need to consider two subcases.

In the first subcase, t ∈ RNNk(Q)∩ (T −Tmis), same as the proof in Theorem 3, we can

proof the relaxed ECTS makes prediction as accurate as 1NN classifier using the full length

time series.

In the second subcase, t ∈ RNNk(Q) ∩ Tmis. Although C(c, k) = C(s, L) cannot be

guaranteed, since t cannot be correctly classified by the 1NN classifier using the full length

time series, the subcase does not make the accuracy of the relaxed ECTS lower than that of

the 1NN classifier using the full length time series.

Based on the above analysis, we conclude, by using the relaxed ECTS, the leave-one-out

accuracy is at least the same as using the 1NN classifier using the full length time series.

Comparing with ECTS, the average MPLs learned by the relaxed ECTS is expected to

be shorter because for a cluster, we only require a subset of its RNN to be stable. When

classifying unlabeled time series, the relaxed ECTS is expected to give the same prediction

as ECTS and make the prediction on a shorter prefix. We will verify the expected property

in our experiments.

4.4 Experimental Results

The UCR time series archive [30] provides 23 time series data sets which are widely used

to evaluate time series clustering and classification algorithms. In each data set, the time

series have a fixed length. Each data set contains a training set and a testing set. The 1NN

classification accuracies using the Euclidean distance on the testing sets are provided in the

archive as well.

Table 4.3 lists the results on all the 7 data sets in the archive where the full-length 1NN

classifier using Euclidean distance achieves an accuracy of at least 85%. The 1NN classifier

can be regarded effective on those data sets. The seven data sets cover cases of 2-class and

more-than-two-class.

Table 4.3 compares 6 methods. We use the 1NN classifier using the full length (denoted

by full 1NN) as the baseline. In addition to ECTS and relaxed ECTS, we also report the

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 64

D
a
ta

se
t

E
C

T
S

R
el

a
x
ed

E
C

T
S

E
a
rl

y
1
N

N
1
N

N
F
ix

ed
F
u
ll
1
N

N
S
C

R
W

a
fe

r
A

cc
u
ra

cy
9
9
.0

8
%

(−
0
.4

7
%

)
9
9
.0

8
%

(−
0
.4

7
%

)
9
9
.1

6
%

(-
0
.3

9
%

)
9
9
.3

2
%

(-
0
.2

3
%

)
9
9
.5

5
%

9
3
%

(-
6
.5

8
%

)
2

cl
a
ss

es
A

v
e.

le
n
.

6
7
.3

9
(4

4
.3

4
%

)
6
7
.3

9
(4

4
.3

4
%

)
1
2
2
.0

5
(8

0
.3

0
%

)
1
1
0

(7
2
.3

7
%

)
1
5
2

5
5
.3

6
(3

6
.4

2
%

)
1
0
0
0

tr
a
in

in
g

in
st

.
T
ra

in
.

ti
m

e
1
5
2
.9

0
se

c
1
6
1
.0

8
se

c
3
.2

2
se

c
1
.5

8
se

c
0

se
c

1
6
4
.5

9
se

c
6
1
7
4

te
st

in
g

in
st

.
C

la
ss

.
ti

m
e

0
.0

5
3

se
c

0
.0

3
8

se
c

0
.1

0
3

se
c

0
.0

0
4

se
c

0
.0

0
4

se
c

0
.2

0
4

se
c

G
u
n
-P

o
in

t
A

cc
u
ra

cy
8
6
.6

7
%

(−
5
.1

%
)

8
6
.6

7
%

(−
5
.1

%
)

8
7
.3

%
(-

4
.4

1
%

)
9
1
.3

%
(-

0
.0

3
%

)
9
1
.3

3
%

6
2
.6

7
%

(−
3
1
.3

6
%

)
2

cl
a
ss

es
A

v
e.

le
n
.

7
0
.3

8
7

(4
6
.9

2
%

)
7
0
.3

8
7
(4

6
.9

2
%

)
1
0
7
.2

4
(7

1
.4

9
%

)
1
4
0

(9
2
.6

7
%

)
1
5
0

1
1
6
.1

7
(7

7
.4

5
%

)
5
0

tr
a
in

in
g

in
st

.
T
ra

in
.

ti
m

e
0
.3

9
se

c
0
.4

0
6

se
c

0
.0

9
se

c
<

0
.0

1
se

c
0

se
c

0
.8

6
se

c
1
5
0

te
st

in
g

in
st

.
C

la
ss

.
ti

m
e

0
.0

0
2

se
c

0
.0

0
3

se
c

0
.0

0
4

se
c

0
.0

0
2

se
c

0
.0

0
2

se
c

0
.1

1
se

c
T

w
o

P
a
tt

e
rn

s
A

cc
u
ra

cy
8
6
.4

8
%

(−
4
.9

7
%

)
8
6
.3

5
%

(−
5
.1

1
%

)
8
7
.2

5
%

(-
4
.1

2
%

)
9
0
.7

2
%

(
-0

.8
%

)
9
1
%

9
4
.7

5
%

(+
4
.1

2
%

)
4

cl
a
ss

es
A

v
e.

le
n
.

1
1
1
.0

9
7

(8
6
.7

9
%

)
1
1
0
.7

4
3

(8
6
.5

2
%

)
1
1
3
.2

4
(8

8
.5

%
)

1
2
4

(9
6
.8

8
%

)
1
2
8

8
6
.1

3
(6

7
.2

9
%

)
1
0
0
0

tr
a
in

in
g

in
st

.
T
ra

in
.

ti
m

e
4
8
.7

6
se

c
4
7
.4

6
se

c
2
.1

8
se

c
1
.3

4
se

c
0

se
c

6
5
.2

3
se

c
4
0
0
0

te
st

in
g

in
st

.
C

la
ss

.
ti

m
e

0
.1

0
1

se
c

0
.0

7
se

c
0
.0

7
7

se
c

0
.0

0
3

se
c

0
.0

0
3

se
c

0
.1

2
5

se
c

E
C

G
A

cc
u
ra

cy
8
9
%

(+
1
.1

7
%

)
0
.8

9
%

(+
1
.1

7
%

)
8
9
%

(+
1
.1

7
%

)
8
9
%

(+
1
.1

7
%

)
8
8
%

7
3
%

(−
1
7
.0

5
%

)
2

cl
a
ss

es
A

v
e.

le
n
.

7
4
.0

4
(7

7
.1

3
%

)
5
7
.7

1
(6

0
.1

1
%

)
8
3
.1

2
(8

6
.5

8
%

)
9
2

(9
2
.7

1
%

)
9
6

3
7
.5

(3
9
.0

6
%

)
1
0
0

tr
a
in

in
g

in
st

.
T
ra

in
.

ti
m

e
0
.8

3
se

c
1
.2

0
se

c
0
.1

se
c

0
.0

2
se

c
0

se
c

4
.2

2
se

c
1
0
0

te
st

in
g

in
st

.
C

la
ss

.
ti

m
e

0
.0

0
4

se
c

0
.0

0
4
se

c
0
.0

0
4

se
c

0
.0

0
1

se
c

0
.0

0
1

se
c

0
.0

6
2

se
c

S
y
n
.

C
o
n
tr

o
l

A
cc

u
ra

cy
8
9
%

(+
1
.1

7
%

)
8
8
.3

%
(

+
0
.3

4
%

)
8
8
.3

3
%

(+
0
.3

8
%

)
8
8
%

(+
0

%
)

8
8
%

5
8
.3

3
%

(−
3
3
.7

2
%

)
6

cl
a
ss

es
A

v
e.

le
n
.

5
3
.9

8
(8

9
.9

7
%

)
5
2
.7

3
(

8
7
.9

%
)

5
5
.0

9
(9

1
.8

2
%

)
6
0

(1
0
0
%

)
6
0

2
9
.3

9
(5

0
%

)
3
0
0

tr
a
in

in
g

in
st

.
T
ra

in
.

ti
m

e
4
.6

4
se

c
4
.9

9
2

se
c

0
.1

2
se

c
0
.0

6
se

c
0

se
c

2
1
.0

9
se

c
3
0
0

te
st

in
g

in
st

.
C

la
ss

.
ti

m
e

0
.0

0
4

se
c

0
.0

0
6

se
c

0
.0

0
4

se
c

0
.0

0
1

se
c

0
.0

0
1

se
c

0
.0

2
se

c
O

li
v
e
O

il
A

cc
u
ra

cy
9
0
%

(+
3
.8

%
)

9
0
%

(+
3
.8

%
)

9
0
%

(+
3
.8

%
)

8
3
.3

3
%

(-
3
.9

2
%

)
8
6
.7

%
3
6
.7

%
(−

5
7
.6

8
%

)
4

cl
a
ss

es
A

v
e.

le
n
.

4
9
7
.8

3
(8

2
%

)
4
9
7
.8

3
(8

2
%

)
5
2
6

(9
2
.2

8
%

)
4
0
6

(7
1
.2

3
%

)
5
7
0

5
0
0

(8
7
.7

2
%

)
3
0

tr
a
in

in
g

in
st

.
T
ra

in
.

ti
m

e
0
.2

2
se

c
0
.2

8
se

c
0
.0

8
se

c
0
.0

2
se

c
0

se
c

2
.0

3
se

c
3
0

te
st

in
g

in
st

.
C

la
ss

.
ti

m
e

0
.0

5
8

se
c

0
.0

3
7
8

se
c

0
.0

4
3

se
c

0
.0

0
6

se
c

0
.0

0
6

se
c

0
.0

1
6

se
c

C
B

F
A

cc
u
ra

cy
8
5
.2

%
(+

0
%

)
8
5
.2

%
(+

0
%

)
8
6
.8

9
%

(+
1
.9

8
%

)
8
3
.2

%
(-

2
.3

5
%

)
8
5
.2

%
5
5
.2

2
%

(-
3
5
.1

8
%

)
3

cl
a
ss

es
A

v
e.

le
n
.

9
1
.7

3
(7

1
.5

%
)

9
1
.5

2
(7

1
.5

0
%

)
1
0
3
.2

0
(8

0
.6

3
%

)
5
4

(4
2
.1

9
%

)
1
2
8

4
6

(3
5
.9

3
%

)
3
0

tr
a
in

in
g

in
st

.
T
ra

in
.

ti
m

e
0
.0

9
se

c
0
.1

0
9

se
c

0
.0

2
se

c
<

0
.0

1
se

c
0

se
c

0
.2

4
se

c
9
0
0

te
st

in
g

in
st

.
C

la
ss

.
ti

m
e

0
.0

0
1

se
c

0
.0

0
1

se
c

0
.0

0
1

se
c

0
.0

0
1

se
c

0
.0

0
1

se
c

0
.0

1
5

se
c

Table 4.3: Results on seven datasets from UCR Time Series Archive

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 65

results of the 1NN early classification method (Section 4.2, denoted by 1NN Early), the 1NN

fixed method which will be introduced in Section 4.4.2, and the SCR method [68]. ECTS

and relaxed ECTS use only an optional parameter, minimum support, to avoid overfitting.

All results of ECTS and relaxed ECTS in Table 4.3 are obtained by setting minimum

support= 0.

All the experiments were conducted using a PC computer with an AMD 2.2GHz CPU

and 1GB main memory. The algorithms were implemented in C++ using Microsoft Visual

Studio 2005.

4.4.1 Results of ECTS Methods

In Figure 5.12, we compare the performance of full 1NN, ECTS, relaxed ECTS and early

1NN in terms of classification accuracy and average prediction length (Cost(C, T ′) defined

in Section 4.1.

On data sets Wafer and Gun-point, the average prediction lengths of ECTS are shorter

than half of the full lengths. On the other five data sets, the average prediction lengths

of ECTS are from 71% to 89% of the full lengths. In terms of accuracy, except for data

sets Gun-point and Two-patterns, ECTS has an accuracy almost the same or even slightly

better than that obtained by the full-length 1NN method. On Gun-point and Two-patterns,

ECTS is about 5% lower in accuracy. The results on the seven data sets show that ECTS

can preserve accuracy consistently as the baseline method. At the same time, ECTS can

achieve considerable saving in prediction length.

Similar to ECTS, the results of relaxed ECTS confirm that relaxed ECTS can also

achieve early classification while retaining the accuracy as the baseline method. Especially,

on data set ECG, relaxed ECTS uses an average prediction length of 57.71,(60.11% of

the full length) and ECTS uses an average prediction length of 74.04 (77.13% of the full

length). Relaxed ECTS achieves significantly earlier classification than ECTS. Also, on the

Synthetic Control data set, relaxed ECTS uses shorter prediction than ECTS. The results

are consistent with our discussion in Section 4.2. The relaxed ECTS may be able to use a

shorter prefix length to obtain nearly the same accuracy as ECST. In Table 4.3, the runtime

of the training algorithms in ECTS and the relaxed ECTS (i.e., computing the MPLs for

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 66

 0

 20

 40

 60

 80

 100

W
afer

GunPoint

Two-Patterns

ECG
Syn-Con

Olive
CBF

A
cc

ur
ac

y

Data sets

full 1NN
ECTS

relaxed ECTS
 early 1NN

 0

 20

 40

 60

 80

 100

W
afer

GunPoint

Two-Patterns

ECG
Syn-Con

Olive
CBF

P
er

ce
nt

ag
e

of
 A

ve
. P

re
di

ct
io

n
Le

n.

Data sets

full 1NN
ECTS

fixed 1NN
 early 1NN

Figure 4.3: Comparison among full 1NN, ECTS, relaxed ECTS and early 1NN

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 67

0 0.2 0.4 0.6 0.8 1
40%

50%

60%

70%

80%

90%

100%

Minimal Support

Classification accuracy
Prediction length percentage
The accuracy of 1NN classifier on full length

Figure 4.4: Accuracy and ave. length vs. minimum support.

all training time series) and the average runtime of the classification phase of the ECTS

methods are also reported. The relaxed ECTS takes slightly longer time in training. Both

methods are very fast in classification.

From Figure 5.12, we can also see that on all the 7 data sets, the early 1NN method

achieves almost the same accuracies as the baseline method. In terms of accuracy, the early

1NN method, ECTS, and relaxed ECTS are all quite reliable. ECTS and relaxed ECTS

always achieve a shorter average prediction length than the early 1NN method. This result

confirms that finding MPLs through clusters helps to obtain shorter MPLs.

ECTS and relaxed ECTS have an optional parameter, minimum support. If the user

does not set the parameter, the default value is 0. As shown in the experiments, in most

cases, the performance of ECTS is satisfactory by using the default value. On data sets

Gun-point and Two-patterns, ECTS and relaxed ECTS are about 5% lower in accuracy

comparing to the full length 1NN. As explained before, when minimal support= 0, ECTS

may over fit a training set and thus may slightly lose accuracy. By increasing minimum

support, overfitting can be reduced. Figure 4.4 shows the effect on the Gun-point data set.

When minimum support increases, the accuracy of ECTS approaches the accuracy of the

full length 1NN classifier quickly. As the tradeoff, the average prediction length increases,

too. By using parameter minimum support, ECTS can reduce overfitting effectively.

By comparing ECTS, relaxed ECTS and the early 1NN method against the baseline

method, we can conclude that ECTS, relaxed ECTS and the early 1NN method have a

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 68

common property that they can all make early classification while retain an accuracy com-

parable to using full length 1NN classifier. relaxed ECTS is the best at finding short

prediction length. ECTS has the similar performance as relaxed ECTS in most cases. Early

1NN cannot achieves early classification as well as ECTS and relaxed ECTS, but it requires

significantly less training time.

4.4.2 Comparison with 1NN Fixed

Is learning different MPLs for different time series necessary? Can we just learn a fixed

MPL for all time series in a training set? Let us consider the following simple early clas-

sification method called 1NN fixed. Given a training set T of full length L, we calculate

the 1NN classification accuracy p in the full space RL. Then, we check the prefix spaces

RL−1,RL−2, . . . until prefix space Rk such that the accuracies in spaces RL−1, . . . ,Rk+1

are at least p, and the accuracy in space Rk is lower than p. We use (k + 1) as the MPL

for all time series. That is, in classification, we always read the length-(k + 1) prefix of a

time series s to be classified, and find the 1NNs of s among the length-(k + 1) prefixes of

the time series in T to classify s.

Interestingly, 1NN fixed is a simplified special case of ECTS in 2-class situations under

the assumption that each class forms one discriminative cluster in the full length space RL.

However, since 1NN fixed does not consider the different early classification capabilities of

the clusters in the hierarchy, it may use longer prefixes for classifications. Furthermore,

when there are multiple classes or multiple large discriminative clusters, the 1NN fixed

method may not work well since it requires the overall accuracy to be high and cannot

identify clusters which are separated from other clusters earlier than the overall accuracy is

satisfied.

We compare 1NN fixed with ECTS in Figure 4.5. On data sets Wafer, ECG and

Synthetic-control, ECTS using minimum support= 0 achieves a shorter average prediction

length than the 1NN fixed method. The two methods have similar accuracies. Especially,

for the 6 classes synthetic control data set, the 1NN fixed method has to use the full length.

ECTS uses a shorter prediction length. The saving mainly comes from the class cyclic,

which is classified using an average length of 45. To handle multi-class situations, the 1NN

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 69

 0

 20

 40

 60

 80

 100

W
afer

GunPoint

Two-Patterns

ECG
Syn-Con

Olive
CBF

A
cc

ur
ac

y

Data sets

full 1NN
ECTS

Fixed 1NN

 0

 20

 40

 60

 80

 100

W
afer

GunPoint

Two-Patterns

ECG
Syn-Con

Olive
CBF

P
er

ce
nt

ag
e

of
 A

ve
. P

re
di

ct
io

n
Le

n.

Data sets

full 1NN
ECTS

fixed 1NN

Figure 4.5: Comparison between ECTS and fixed 1NN

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 70

fixed method cannot classify one class earlier if the other classes are mixed together in the

prefix spaces.

On data set Gun-point, by setting minimum support= 15% to reduce overfitting, ECTS

obtains an accuracy comparable to the 1NN fixed method, but uses a remarkably shorter

average prediction length. Similar results are observed on data set Two-patterns.

From Table 4.3, we can see that on data sets OliveOil and CBF, interestingly, the 1NN

fixed method is less accurate than ECTS but can obtain shorter average prediction length.

For example, on data set OliveOil, ECTS obtains an accuracy of 90% and 1NN fixed method

makes only 83.33%. The 1NN fixed method obtains an average prediction length of 406 and

ECTS gives a length of 497.63. By analyzing the training set of 30 time series, we find that,

training samples 7 and 9 are the cause of the dropping accuracy in the 1NN fixed method,

which means the MPLs (406) of those two samples learned by the 1NN fixed method are

not long enough to make accurate classification. In ECTS, the learned MPLs vary from 117

to 570 for the training samples. For samples 7 and 9, the learned MPLs are 567 and 570,

respectively. Why does ECTS learn longer MPLs for samples 7 and 9? In the full length

space, training sample 9 has an empty RNN set. The RNN set of training sample 7 consists

of samples from two classes. Those RNN sets suggest that samples 7 and 9 are likely on the

decision boundary. In contrast to the 1NN fixed method, ECTS can find longer MPLs for

samples likely on the decision boundary to reduce the possible misclassification led by such

a sample.

From the above analysis, we can conclude that in most cases, the ECTS method can use

significantly shorter prediction to achieve very similar accuracy as the fixed 1NN method.

ECTS is especially suitable for more-than-two-class early classification task.

4.4.3 Comparison with SCR

We also compare ECTS with our previous symbolic method SCR in Chapter 3, a rule based

classifier proposed to solve the problem of early prediction for symbolic sequences.

Since SCR can only handle discrete values, k-means (k = 3) is used to discretize values

in the time series into 3 values. In the classification, we do the online discretization using

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 71

learned thresholds on the training data set. SCR requires a parameter, expected classifica-

tion accuracy, which is set to the full length 1NN accuracy. The other parameter of SCR,

minimal support, is set to 0.

We compare SCR with ECTS in Figure 4.6. Although SCR sometimes uses a shorter

average prediction length, the accuracies are significant lower than the expected values.

Comparing to SCR, ECTS makes early classification reliable in accuracy. In terms of effi-

ciency, ECTS is much faster than SCR in training.

4.5 Summary

In this Chapter, we propose the ECTS classifier to tackle the problem of early classification

of numerical time series data. ECTS extends the 1NN classifier to achieve early classification

while retains nearly the same accuracy as that of the 1NN classifier using the full-length

time series. In the experiments, we show that the ECTS methods are effective and superior

to other existing early classification methods.

CHAPTER 4. INSTANCE BASED EARLY CLASSIFIERS ON TIME SERIES 72

 0

 20

 40

 60

 80

 100

W
afer

GunPoint

Two-Patterns

ECG
Syn-Con

Olive
CBF

A
cc

ur
ac

y

Data sets

full 1NN ECTS SCR

 0

 20

 40

 60

 80

 100

W
afer

GunPoint

Two-Patterns

ECG
Syn-Con

Olive
CBF

P
er

ce
nt

ag
e

of
 A

ve
. P

re
di

ct
io

n
Le

n.

Data sets

full 1NN ECTS SCR

Figure 4.6: Comparison between ECTS and SCR

Chapter 5

Feature Extraction on Time Series

Early Classification

5.1 Motivation and Problem Description

In Chapter 4, we propose an ECTS classifier for time series early classification. The ECTS

classifier is a nearest neighbor based classifier. Ye et al. [72] pointed out that although the

nearest neighbor classifier is a simple and effective classifier for time series classification, the

time and space requirements in the classification step may limit its scalability. Furthermore,

nearest neighbor classifiers only provide a classification result without extracting and sum-

marizing patterns from the time series. It is not easy for users to interpret the classification

result and gain insights into the data.

The interpretability of an early classifier is particularly important in early time series

classification applications. A feature based early classifier, SCR, described in Chapter 3

extracts features from sequences and organizes features into sequential rules. The classifier

provides useful information for users to understand the importance of features and the

temporal relationship among features. But SCR is designed for symbolic sequences. When

applying the method to time series, the classification quality is greatly constrained by the

quality of discretization.

In this Chapter, we propose a new feature selection method to serve the purpose of

monitoring time series online and detecting class label as early as possible. This feature

73

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION74

selection method does not require discretization as the preceding step.

There has been some works on extracting features from sequence/time series data for

sequence classification. In the following, we briefly discuss two methods which are closely

related to the idea we propose.

Ji et al. [25] proposed a feature selection method on symbolic sequences to efficiently

search for the distinguishing patterns. Distinguishing patterns are subsequences which are

frequent in one class and infrequent in other classes. Distinguishing patterns intuitively

represent the characteristics of a certain class of sequences and can be utilized for time

series classification.

However, distinguishing patterns are defined on symbolic sequences. To extend the con-

cept of distinguishing patterns to time series, we need to address the following challenges.

First, how to represent a distinguishing pattern on time series and define pattern match-

ing? For symbolic sequences, given a length k subsequence, exact matches or approximate

matches can be defined. The matching is based on the portion and the positions of the

identical symbols. But for time series, since it is numerical, we do not have the concept of

the identical symbols. Therefore, we need to define the pattern matching on time series in

another way. Second, how to generate distinguishing patterns for time series? For symbolic

sequences, which are composed by a limited alphabet of symbols, the possible length k

subsequences can be enumerated with various kinds of pattern mining techniques [25]. But

for time series, the data is continuous and there is no such a finite alphabet. Therefore, we

need to design new efficient methods to generate patterns from time series.

Ye et al. [72] proposed a feature selection method for time series classification, called

shapelets on time series. “Informally, shapelets are time series subsequences which are in

some sense maximally representative of a class” [72]. Shapelets provide an interesting way

to represent features on time series and to define the matching. A feature on time series

is represented as a pair (s, δ), where s is a time series subsequence, and δ is a distance

threshold. A query time series subsequence s′ is considered matching a feature (s, δ) if

distance(s, s′) ≤ δ. Ye et al. [72] used Euclidean distance as the distance measurement,

and the matching is defined on the time series subsequences of the same length. The

distance threshold δ is learned by maximizing the information gain. Among all the shapelet

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION75

candidates (s, δ), the shapelet for distinguishing two classes is the one which separates the

two classes with the best information gain. In the process of learning shapelet, maximizing

information gain is the criterion used in both learning the thresholds for shapelet candidates

and choosing the best shapelet. For multiple class classification, the shapelet selection

process is integrated with the construction of a decision tree.

As shown in [72], using shapelets provides an effective approach for time series classi-

fication with good interpretability. However, we cannot directly apply shapelets for time

series early classification. The shapelet method focuses on learning global features with the

maximal information gain. Ideally, a perfect Shapelet of a class is the one representing all

time series in one class but does not cover any time series in other classes. When building

the decision tree, features with higher information gain will be the ancestors of features with

lower information gain. However, for early time series classification, some local distinctive

features, which do not have the best information gain, may be important for detecting the

class labels online as early as possible. Here, a local distinctive feature is the one which

represents a subset of time series in one class but very rare in other classes.

In Figure 5.1, we give an example to illustrate why the local distinctive feature is impor-

tant for early classification. In Figure 5.1, we have two classes of time series, the diamond

class and the star class. Feature A is shared by a subset of time series in the diamond class

and does not appear in the star class at all. Feature B covers all time series in the diamond

class but not any in the star class. Feature B is the shapelet of this data set since it has a

higher information gain than feature A. Feature A can determine half cases in the diamond

class but it does not cover as many cases as feature B, and we consider feature A as a local

feature comparing to feature B. But if we want to determine class labels as early as possible,

feature A represents half of the cases in the diamond class and feature A precedes feature B.

Therefore, some local distinctive features are useful for early classification. In order to select

local distinctive feature for early classification, we need new strategies to extract features

from time series other than selecting features which maximize the information gain.

In this chapter, we propose a new feature selection method for building a feature based

time series early classifier. The feature selection is particularly designed for detecting time

series class labels as early as possible online. Since the proposed method extends the ideas

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION76

−5

0

5

−5

0

5

−5

0

5

−5

0

5

0

1

2

0

1

2

0

1

2

0 2 4 6 8 10 12
0

1

2

Class Star Class Dimond

Feature A

Feature B

Figure 5.1: Local distinctive feature example.

of distinguishing patterns [25] and Shapelets on time series [72], in the following, we refer

the method as Early Distinctive Shapelets Classifier(EDSC).

5.2 EDSC

In this section, we propose the EDSC classifier for early classification on time series. We

first define distinctive features on time series and introduce two feature learning methods

in Section 5.2.1. Then, we propose a simple rule based classifier through feature selec-

tion in Section 5.2.2. In Section 5.2.3, we discuss some computational issues of the EDSC

framework.

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION77

5.2.1 Feature Learning

Same as the representation of a shapelet [72], we represent a feature on time series as a

time series subsequence and a distance threshold. We consider all the possible time series

subsequences in the training data set as candidate features. Formally, we define a feature

and feature matching as follows.

Definition 5 (Feature Representation) Given a training data set T , a feature f =

(s, δ, c) is a subsequence of a time time series t ∈ Tc with a distance threshold δ. Tc is

the subset of T containing all time series in class c. Before learning the distance threshold,

a feature candidate is represented as (s, ?, c). For a feature f , we refer class c as the target

class, and the other classes as the non-target classes.

Definition 6 (Feature Matching) Given a feature f = (s, δ, c) and a time series t which

has a subsequence s′, where distance(s′, s) ≤ δ, we say t has a match with feature f .

The shapelet method [72] learns the distance threshold by maximizing the information

gain. As we analyzed before, instead of only focusing on the global features, for early

classification, we prefer some local features which are distinctive and early. In Chapter 3, we

point out that the effective features for temporal sequences early classification are distinctive,

early, and frequent.

In the step of learning the threshold for a candidate feature, we focus on learning dis-

tinctive features. We will consider the other two properties, the earliness and the frequency

of features in the step of feature selection.

We define Distinctive Features on time series as follow,

Definition 7 (Distinctive Features) Given a feature f = (s, δ, c), for any time series

q which has a match with (s, δ, c), if q has a high probability belonging to class c, we call

f = (s, δ, c) a distinctive feature.

The above definition basically defines that if (s, δ, c) is a distinctive feature of a class c,

for any time series which has the feature, it is very likely belonging to class c.

Given a candidate feature (s, ?, c), we want to learn a distance threshold which makes

it a distinctive feature. We know that some time series subsequences do not carry the

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION78

characteristics to distinguish one class from other. For some feature candidates which are

actually not distinctive, the learned threshold may be zero or an over-fitted threshold for

the training data. The over-fitted features will be handled in the feature selection step.

Learning features through KDE

Given a candidate feature f = (s, ?, c), we first compute its best match vector in the training

data set T and then apply kernel density estimation (KDE) [47] on the best match vector

to learn the threshold.

Definition 8 (Best Match Distance) Given a time series subsequence s of length k and

a time series t of length L ≥ k, the best match distance of s and t is BestMatchDist(s, t) =

min{Dist(s, s′)|s′ is any length k subsequence of t }.

Definition 9 (Best Match Vector) Given a feature candidate (s, ?, c) and the training

data set T of N time series, the best match vector of (s, ?, c) is V = 〈d1, d2, ..., dN 〉 where

di = BestMatchDist(s, ti)

Kernel density estimation has been widely used in machine learning. Given a random

sample x1, x2, ..., xN drawn from a probability density function f(X). The kernel density of

f(X = x) can be computed by

f̂(X = x) =
1

nh

N∑

i=1

K(
x− xi

h
) (5.1)

where K is the kernel function and h is the smoothing factor [47].

We choose the gaussian kernel which is

K(
x− xi

h
) =

1√
2π

e−
(x−xj)2

2h2 (5.2)

To select an optimal bandwidth, given the gaussian kernel, we use a widely adopted

approach to estimate the bandwidth [58],

hoptimal = 1.06σn−
1
5 (5.3)

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION79

If we have J classes, by fitting the nonparametric density estimation f̂k(x) separately

for each class, we can compute the probability of sample x belonging to a certain class j,

using

P (C(x) = j|X = x) =
πj f̂j(x)

∑J
k=1 πkf̂k(x)

(5.4)

where πj is the class priors [47].

In the best match vector V = 〈d1, d2, ..., dN 〉 of a feature candidate f = (s, ?, c), each

item di in vector V corresponds to a training time series ti ∈ T and ti is represented as its

best match distance to s. Suppose we learned a threshold δ for f , a training time series ti

has a match with f if di ≤ δ. A training time series ti does not have a match with f if

di > δ since ti cannot have a subsequence with a distance to s within δ.

To learn the distinctive feature, according to Definition 7, we want that for any time

series t matches the feature, the probability of t belonging to the target class is high. One

naive way is to interpret the class frequencies on the training data set as the expected

probability. For example, we can learn a threshold δ for a feature candidate f = (s, ?, c)

such that for the training time series t ∈ T which matches f , there are at least 90% of

them are in the target class c. If there are multiple distance thresholds which satisfy the

probability threshold, we pick the largest threshold as the learned threshold. By learning

this threshold, we expect that for a query time series q to be classified, if q matches f , q

has a probability of at least 90% belonging to class c. Does using class frequency as the

expected probability lead to a robust threshold? Let us look at the following example.

Suppose we have a training data set T , which is composed of 11 negative training

examples, and 9 positive training examples. We have feature candidate f = (s, ?, N), which

is a subsequence of the first training example with a label negative. The target class is the

negative class. We compute the best match of f against each training example. The best

match distance for each t ∈ T to s and its class label are shown in Table 5.1. Note that

since f is a subsequence of training example ID = 1, the best match distance is 0. Table 5.1

is actually the best match vector of f .

In Figure 5.2, we plot the best match distance vector along the horizontal axis. The star

represents time series of the negative class and the diamond represents time series of the

positive class. As we stated before, we want to learn a threshold δ for f = (s, ?, N) such that

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION80

ID distance label

1 0 N

2 0.8914 N

3 2.5378 N

4 3.1134 N

5 3.2609 N

6 3.6260 N

7 4.2793 N

8 9.6961 N

9 15.2921 P

10 15.9861 N

11 16.9566 N

12 18.2847 N

13 18.5679 P

14 19.0240 P

15 19.2499 P

16 19.3602 P

17 20.0909 P

18 21.2128 P

19 22.5593 P

20 25.8332 P

Table 5.1: The example data set

for the training time series t ∈ T which matches f , there are at least 90% of them are in the

negative class. In another word, on the training data set, we want to learn a threshold for

f to make its accuracy ≥ 90%. We pick the largest threshold which satisfies this accuracy

as the learned threshold. In Figure 5.2, the learned threshold is the intersection of the

horizontal axis and the solid vertical line and the accuracy is 91.67%. We can see that the

threshold we learned actually cuts into a dense region of the non-target class (positive class)

which makes it not a robust threshold for classifying unseen time series. When we learn

the threshold, we only count the training examples in different classes but do not utilize the

distance distribution. The actual distances in the best distance vector are not considered

in computing the threshold but only the order of time series sorted by the distance is used.

To learn a more robust threshold for a feature candidate (s, ?, c), we propose a KDE based

method which takes the distance distribution in the best match vector into consideration.

We first separate the best match vector V into two parts, the target class and the non-target

class. The target class contains time series in class c and the non-target class contains time

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION81

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

11/12=91.67%

Figure 5.2: An example of learning distance threshold by class frequency.

series which do not belong to class c and may be composed by multiple classes. We then

estimate the kernel density for the target class and the non-target class separately. At last,

we estimate the class probabilities of any time series given its best match distance to s by

Equation 5.4. Given the class probabilities, we can directly learn the distance threshold of

(s, ?, c) according to Definition 7.

In the following, we will illustrate the KDE threshold learning through the same example

in Table 5.1. In Figure 5.3, we plot the distance vector along the horizontal axis. The dotted

curve is the estimated density function, f̂negative(x), for the target class (negative class) and

the dashed curve is the estimated kernel density f̂positive(x) for the non-target class (positive

class). The solid curve is the estimated probabilities of samples belonging to the target class.

The vertical solid lines are several distance thresholds learned by using different probability

thresholds. We can see that when the probability threshold is high, the learned distance

threshold protects a robust region of the negative class. But when the probability is not

high enough, like only 50%, the learned distance threshold moves into the region where the

two classes are mixed.

Formally, we summarize the KDE distinctive threshold as follow,

Definition 10 (Learning distinctive features by KDE) Given a feature candidate (s, ?, c)

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION82

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

Probability >=90%
Probability >=50%

Probability >=60%

Probability >=80%
Probability >=70%

Figure 5.3: An example of learning distance threshold by KDE.

and its best match vector V , we learn a distinctive threshold δ of (s, δ, c), by satisfying ∀x,

where 0 ≤ x ≤ δ, we have P (C(x) = c|X = x) ≥ β where β is a user defined probability

threshold. P (C(x) = c|X = x) is obtained by kernel density estimation based on V .

In the above definition, if x is not a value in the best match vector V , it can be viewed

as a virtual time series with best match distance to s as x. There are various way to sample

values in the range of vector V to learn the threshold. In our method, we sort the values

in V = 〈d1, d2, ..., dN 〉 in ascending order, and then compute the target class probability of

di in the ascending order. When we find the first breaking value, di, which does not satisfy

the probability threshold β, we know that the distance threshold δ lies in the interval of

[d(i− 1), di]. Although we can use the breaking value as the distance threshold, to learn a

more refined threshold, we can generate a set of extra samples which uniformly distributed

on the interval [v(i − 1), vi] and find the breaking value as the distance threshold. If the

learned threshold δ = 0, this feature will not be considered.

In the worst case, when the class distribution is extremely unbalanced, to compute the

distance threshold, we may need to estimate the densities for almost all the values in V .

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION83

Given V , the worst case time complexity of learning the distinctive threshold is O(N2)

where N is the number of training examples.

Learning feature by Chebyshev’s ineqaulity

In the following, we propose an alternative way to learn the distinctive threshold with less

computational cost. This method is based on estimating the probability distribution of the

non-target class through Chebyshev’s inequality [4].

Let X be random variable with a finite mean µ and finite variance σ2, then for any real

number k ≥ 0, the one tail Chebyshev’s inequality states [4]

Pr(|X − µ| ≥ kσ) ≤ 1/(k2 + 1) (5.5)

In order to learn the distinctive threshold for a feature candidate (s, ?, c), given its best

match vector V , we can view the non-target class in V as a random variable and compute

its mean and variance. Then, we can compute the range where the non-target class has a

low probability to appear by Equation 5.5.

Formally, we summarize the distinctive threshold by Chebyshev’s inequality as follow,

Definition 11 (Learning distinctive feature by Chebyshev’s inequality) Given a fea-

ture candidate f = (s, ?, c) and its best match vector V , and we use VnonTarget to denote the

time series in V in the non-target class, we have the threshold δ = Mean(VnonTarget)− k ∗
V ariance(VnonTarget), where k is a parameter. k ≥ 0 defines that that the probability of a

non-target time series matches f is ≤ 1/(k2 + 1).

Using the same example in Table 5.1, in Figure 5.4, we show the different thresholds

learned by using Chebyshev’s inequality with k = 2, 3, 4, 5, respectively. For example, when

k = 3, the probability of the non-target class appears in the left of the threshold is less than

1/(32 + 1) = 10%.

For a time series t matching feature f = (s, δ, c), by Bayesian theorem [48], the proba-

bility that t is in the target class is,

P (targetClass|t) =
P (t|target)P (target)

P (t|nonTarget)P (nonTarget) + P (t|target)P (target)
(5.6)

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION84

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k=5,<3.8%

k=4,<5.9%

k=3,<10%

k=2,<20%

Figure 5.4: An example of learning distance threshold by Chebyshev’s inequality.

The threshold learned by Chebyshev’s inequality only considers the distance distributions of

the non-target class in V . Therefore, it only enforces that P (t|nonTarget) in Equation 5.6

is small but does not guarantee that P (targetClass|t) is high. The learned threshold does

not guarantee the feature has a high precision. Furthermore, we do not enforce the feature

to be frequent since we focus on learning local distinctive features. In the feature selection

step, we further selecting features which are frequent, distinctive and early. The benefit of

estimating the probability P (t|nonTarget) through Chebyshev’s inequality is to prevent the

learned threshold lies in the dense region of the non-target class.

To compute the threshold, we only need to compute the mean of and variance given

the best match vector V . The worst case time complexity of learning the threshold is

O(N), where N is the number of training examples. This is more efficient than learning the

threshold through kernel density estimation, whose cost is O(N2).

When we compute the threshold for a candidate feature (s, ?, c), we learn the threshold

based on its best match vector of s. Why do we use the best match distances instead of

considering the distances of all the length k = |s| subsequences in the training data to s?

In the following, we refer distances of all the length k = |s| subsequences to s as all match

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION85

distances. Actually, the best match distances is a subset of all match distances. Or we can

view the best matches distances as a sample from the all match distance space.

Given a feature candidate, for each time series t, among all the length k subsequences,

we pick a representative subsequence to represent t. It is the subsequence closest to the

feature candidate. Since we want to learn a threshold which separates the target class from

the non-target class, we need to know how similar the subsequences in the non-target class

are to s. In the non-target class, among all the length k subsequences, the best matches

contain the most similar subsequences to s. In another word, in the 1-dimensional all match

distance space, the best matches of the non-target class preserve the “left most” class boarder

between the target and non-target classes. For learning the threshold, by using the best

matches, the learning is biased on the “left most” samples in the non-target class. However,

the “left most” samples contain the most important samples close the threshold we want

learn.

By using the best matches instead of all matches, we can compute the threshold with

less cost. For example, if we have a training data set of N time series of length L, for a

feature candidate (s, ?, c) of length k, we have in total (L − k + 1)N possible matches. To

compute the threshold through KDE, by using the all match distances, the time complexity

is O((L− k + 1)2N2). By using the best matches, the time complexity is O(N2). To apply

the Chebyshev’s inequality, the time complexity is O((L− k + 1)N) using all matches and

is O(N) using the best matches .

Best match vector is also used in [72] for learning the threshold for Shapelets. Note that

in the classification step, to classify a time series t online, once we find a match in t to a

feature (s, δ, c), which is within the threshold δ, we classify the time series based on this

feature. Although the match may not be the best match of t to s given the complete time

series, the best match distance must be within the threshold. Therefore, it is safe to classify

a time series online once a match to a feature is found.

5.2.2 Feature Selection and a Rule Based Classifier

In the previous section, we discussed how to learn the threshold for a given feature candidate

(s, ?, c). In this section, we are going to discuss how to select a good set of features and

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION86

build a rule based classifier for early classification.

As we discussed before, a good feature for early classification should have three proper-

ties, frequent, distinctive and early. Given a distinctive feature f = (s, δ, c), we propose an

utility function in Equation 5.9 to measure the three properties.

The precision of f = (s, δ, c) given its best match vector V = 〈d1, d2, ..., dN 〉 is defined

as

Precision(f) =
|{di|di ≤ δ ∧ label(i) = c}|

|{di|di ≤ δ}| (5.7)

The weighted recall of f = (s, δ, c) is defined as

WRecall(f) =
∑

di≤δ 1/ α
√

BestMatchLength(i)
|TargetClass| (5.8)

The utility measure of f = (s, δ, c) is defined as

Utility(f) =
2× Precision(f)×WRecall(f)

Precision(f) + WRecall(f)
(5.9)

This utility function extends f-measure [22] by taking the earliness of a feature into

consideration. Originally, the f-measure considers the precision and the recall of a feature.

The precision describes how distinctive a feature is and the recall reflects how frequent a

feature is. In order to consider the earliness, for each time series s, we use its best match

length with respect to f to weight the contribution of s to the recall of f . We use a parameter

α ≥ 1 to determine the relative importance of earliness. utility measure carries the same

spirit as the utility measure proposed in Chapter 3.

Since we consider all the subsequences in the training data as candidate features, it

leads to a large set of features which may have a great redundancy. Here, the redundancy

means that features who represent the same set of training examples. The redundancy

exists among features from different time series and lies in features which come from the

same time series. For examples, a group of similar time series subsequences of the same label

from different time series may represent each other with great overlaps. For a distinctive

feature, its subsequences or super-sequences may be redundant to it.

In order to obtain good interpretability and reduce the number of features for efficient

classification, we want to select a non-redundant set of features. Furthermore, as we an-

alyzed, in the process of learning the threshold, we do not consider the earliness and the

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION87

Algorithm: Feature Selection
Input: F

′
,

Output: F
Method:
1: Let B be the training examples covered by F

′

2: B′ = {}
3: while B′ 6= B

4: Find f ∈ F
′
with the highest utility measure (Equation 5.9)

5: If f covers new training examples not in B’
6: Add f to F and remove it from F

′

7: Update B′

8: else
9: Remove f from F

′

10: end if
11: end while

Figure 5.5: Feature selection.

frequency of the features but only focus on the distinctiveness. In the feature selection

process, we also want to prune features which do not have a good early classification utility.

In Figure 5.5, we propose an algorithm to select a non-redundant subset of features

with overall good early classification utilities. It ranks the features based on its utilities,

and selects features which can cover new training examples which are not covered by the

features with higher utilities.

After feature selection, we build a simple rule based classifier. For each feature, we build

a classification rule. For a time series t to be classified,

If t matches(s, δ, c) ==> ClassLabel(t) = c

If some time series cannot be classified after a required length, a default rule is used to

classify it. In our experiment, we set the default rule as the majority class, where

Default Rule : t ==> Majortiy Class

Generally, the default rule can be any time series classifier.

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION88

Algorithm: Learning EDSC
Input: a training data set T; MinL and MaxL;
Output: A rule set;
Method:
1: F = {}
2: for each class c
3: Fc = {}
4: for k=MinL:MaxL
5: for each length k subsequence s in Tc

6: Compute the best match vector
7: Learn the threshold
8: if threshold > 0
9: Add feature to Fc

10: end if
11: end for
12: end for
13: Fc = FeatureSelection(Fc)
14: F = F ∪ Fc

15: end for
16: Build the rules from F and add the default rule

Figure 5.6: Learning EDSC.

In Figure 5.6, we summarize the framework of learning the EDSC classifier. The MinL

is the minimum length of a feature and MaxL is the maximal length of a feature. In

Figure 5.7, we describe the algorithm of online classification using EDSC.

What is the time complexity of building the classifier? For the feature learning step, we

consider all the subsequences satisfying the minL and maxL requirements as the candidate

features. For each candidate feature, we need to compute its best match vector and then

learn the threshold. Suppose we have N time series in the training data set and each time

series of average length L. The number of length k sub-sequences is (L− k + 1) ∗N . For a

length k feature candidate, to compute its best match vector against the training data set

is k ∗ (L− k +1) ∗N . To compute the best match vectors of all length k feature candidates,

we need O(k(L− k + 1)2N2). For all the feature candidate between length 1 to L, the time

complexity to compute the best match vectors is
∑L

k=1 k(L− k + 1)2N2 = O(N2L4).

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION89

Algorithm: Classification
Input: Rule Set R; a time series t to be classified
Output: class label of t;
Method:
1: While the ith time point arrives
2: for each rule r in R except for the default rule
3: if t[1 : i] has a match with r
4: classify t using rule r;
5: return
6: end if
7: end for
8: end while
9: if no new time point arrives
10: classify t by default rule and return
11: end if

Figure 5.7: Classification.

Given a best match vector, to learn the threshold, we need either O(N) for the Chebyshev

method or O(N2) for the KDE method. For all the feature candidates between length 1 to L,

given their feature vectors, the time complexity to learn the threshold is
∑L

k=1(L−k+1)N2 =

O(N2L2) for the Chebyshev method and O(N3L2) for the KDE method. In practice, for

the KDE method, we often cannot reach this worst case complexity since we do not need

to estimate the densities for all the training examples. We sort the best match vector

and estimate the densities of the training examples in the sorted order until we found the

breaking point, where the probability drops below the required probability threshold.

For the feature selection step, the complexity is bounded by sorting all the possible

features which is O(L2Nlog(NL)).

The computational cost of EDSC comes from two aspects. First, we consider a large

number of feature candidates. Although this can be solved by using various heuristics to

reduce the number of candidate features, our current method focuses on an exact approach

for feature selection. We choose the exact approach to better evaluate the effectiveness of

the proposed early classification framework. In the future, approximate solutions can be

investigated. Second, same as [72], the computational bottleneck comes from computing

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION90

�������� ����

����
����
����
����
�
�
�
�
�
�
�
�
��

����
����
����
����
�� �
�
�
�
�
�
�
�

�����
�����
�����
�����
���
�
�
�
�
�
�
�

����
����
����
����
�
�
�
�
�
�
�
�
��
��������������
����
����
����
����
�� �
�
�
�
�
�
�
�

�����
�����
�����
�����
�
�
�
�
�
�
�
�
��

d2

d1

d3

d4

d5
d6

d7

����
����
����
����
�� �
�
�
�
�
�
�
�

t2 t2

1t 1t

d2’=d2+(s’[k’]−t2[i+k’−1])*(s’[k’]−t2[i+k’−1])

=d2+(s’[5]−t2[6])*(s’[5]−t2[6])

�������� ����

��
��
��

��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

D=<d1, d2, d3, d4, d5, d6, d7>

s s’

k’=5 k=4

L=10

d2’

i=2

O(kL) O(L)

Figure 5.8: Share computing .

the best match vectors.

In the following section, we will discuss an improvement on computing the best match

vectors and on feature selection.

5.2.3 Improving the Efficiency

When computing the best match vectors, actually, we can share the computation between

different candidate features instead of computing it for each feature from scratch.

Given a time series t, for the subsequences of t starting from the same position, we can

use them as a group to compute their best match vectors and share computing between

them. In Figure 5.8, we illustrate the idea of sharing computation by storing additional

information of the matching distances.

Suppose we have a time series t1 of length L, and we use its subsequence s and s′ as

two feature candidates. The length of s is 4 and the length of s′ is 5. s and s′ start from

the same position in t1. In another word, s is a prefix of s′ and s′ contains one more time

point at the end. When we compute the best match distance of s against another length L

time series t2, we need to compute the Euclidean distance of s with every sliding window

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION91

in t2 of length |s|, and the time complexity is O(L|s|). We store all the squared Euclidean

distances between s and each sliding window in t2 in a vector D. when we compute s′’s best

match distance with t2, we only need O(L) instead of O(L∗|s′|) by using D. This is because

to obtain s′’s Euclidean distance with one length 5 sliding window of t2, we only need to

update the distance of last time point of s′ to the last time point in a sliding window.

In Figure 5.9, we group features candidates generated from the same time series of the

same starting position and compute a feature’s best match vector by incrementally updating

the stored sliding window distance array of its prefix feature. The updating matrix algorithm

is listed in Figure 5.10. By using the above method, to compute the best match vectors for

all features from length 1 to L, the time complexity is reduced to O(N2L3) from O(N2L4).

In Figure 5.11, we present the improved learning framework. The other improvement in

this framework is on the feature selection. We do two rounds of feature selection. In the first

round, we do feature selection for the features generated from the same time series (Line 7).

In another world, instead of doing feature selection on all possible features, we divide the

the set of possible features into several subsets and do feature selection on each of them.

Each subset contains all the features generated from the same time series. In the second

round, we do feature selection on the union of selected features in the first round (Line 9).

By doing feature selection in two rounds, we can save space. We do not need to store all the

possible features and then perform feature selection. We also reduce the time complexity.

The time complexity is bounded by sorting the features generated from each time series,

which is O(NL2logL). This is more efficient than doing one round feature selection on all

possible features, which is O(NL2log(NL)). Selecting features in two rounds by breaking

down into several subsets generates the same result as selecting features on whole set. This

is proved in Lemma 2.

Lemma 2 For a set F of N features and a group of m exclusive subsets of F , F1, F2,...,Fm,

where F1 ∪ F2, ...,∪Fm = F we have,

FeatureSelection(F) =FeatureSelection(
⋃m

i=1FeatureSelection(Fi))

Proof. Suppose we select a subset of features from F using the feature selection algorithm,

and we denote the result set as F̂ . We also do feature selection on each subset Fi and denote

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION92

Algorithm: LFOT(Learn Features for One Training Time Series)
Input: a training data set T of length L; ti ∈ T ; MinL and MaxL;
Output: A set of feature F = {f |f = (s, δ)};
Method:
1: F = {}
2: for each startP ≤ L + 1−MinL
3: s = (ti, startP, MinL)

(Note: s is the length MinL subsequence of ti starting from position startP)
4: Initialize sliding window distance array M for s
5: Compute the best match vector Vs for s
6: Learn feature threshold and add to F
7: for MinL < l ≤ min(L + l − startP, MaxL)
8: s = (ti, startP, l)
9: Vs=UpdateM(s)
10: Learn feature threshold and add to F
11: end for
12: end for

Figure 5.9: LFOT.

the result set as F̂i. We first prove that for any f̂ ∈ F̂ , there must exist one F̂i, such that

f̂ ∈ F̂i. Since if f̂ is not in any F̂i, there must be another feature f which dominates f̂ ,

which means f has a better utility score then f̂ and covers all the training examples which

are covered by f̂ . In this case, f̂ cannot appear in F̂ which contradicts with f̂ ∈ F̂ . It means

that F̂ is a subset of
⋃m

i=1 F̂i. Then, we do second round feature selection on
⋃m

i=1 F̂i. We

can know that the selected set on
⋃m

i=1 F̂i is the same as F̂ since the features in F̂ dominate

any other features in
⋃m

i=1 F̂i.

.

5.3 Experiments

We evaluate our methods on seven data sets from UCR time series archive [30]. For com-

parisons, we conducted the experiments on the same data sets as in Chapter 4.

All the experimental results are obtained by using a PC computer with and AMD 2.2GHz

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION93

Algorithm: UpdateM
Input: M; T; tq ∈ T ; MinL and MaxL; s = (tq, startP, l)
Output: V
Method:
1: for each row i in M
2: for each column j = 1 : L− l + 1 in M
3: M [i][j] = M [i][j] + (s[l]− ti[j + l − 1])2

4: end for
5: V [i] = sqrt(min(M [i]);
6: end for

Figure 5.10: Update M.

Algorithm: Improved Learning Framework
Input: a training data set T; MinL and MaxL;
Output: A set of feature F = {f |f = (s, δ)};
Method:
1: F = {}
2: for each class Ci

3: Fc = {}
4: for ti ∈ Ci

5: F
′
= {};

6: F
′
=LFOT(ti)

7: Fc = Fc ∪ FeatureReduction(F
′
)

8: end for
9: Fc = FeatureReduction(Fc)
10: F = F ∪ Fc

11: end for

Figure 5.11: The improved learning framework.

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION94

CPU and 3GB main memory. The algorithms were implemented in C++ using Microsoft

Visual Studio 2005.

5.3.1 Results Overview

The results of the seven data sets are listed in Table 5.2(ECG), Table 5.3(Gun Point),

Table 5.4(CBF), Table 5.5(Synthetic Control), Table 5.6(Wafer), Table 5.7(OliveOil), and

Table 5.8(Two Patterns).

For each dataset, in its corresponding table, we describe the size, dimension, and number

of classes for the training data set and testing data set in the first row. We compare four

methods for each data set, EDSC-CHE (EDSC with Chebyshev’s inequality threshold learn-

ing), EDSC-KDE (EDSC with the KDE threshold learning), 1NN-Full (Full length 1NN with

Euclidean distance) and ECTS (Early classifier for time series proposed in Chapter 4). For

the EDSC-CHE and EDSC-KDE classifiers, as we described before, the classifiers contain

a default rule which is the majority class. Without using the default rule, the EDSC-CHE

and EDSC-KDE may not cover all the time series to be classified. In the result tables, we

also report the accuracy and coverage rate for the EDSC classifier without using the default

rules, and they are referred as EDSC-CHE-NDefault and EDSC-KDE-NDefault.

All the results are obtained using the same parameter settings. For the EDSC-CHE

method, we use the parameters as MinLen = 5;MaxLen = L/2; k = 3, and for the EDSC-

KDE method, we use the parameters as MinLen = 5;MaxLen = L/2; p = 95% where L is

the length of the full length time series.

In Figure 5.12, we summarize the performance of EDSC-CHE, EDSC-KDE, ECTS and

full 1NN in terms of classification accuracy and average prediction length. From Figure 5.12,

we can see that, in terms of earliness, EDSC-CHE and EDSC-KDE are always earlier than

ECTS, and sometimes, significantly earlier, such as on the ECG, CBF and Synthetic control

data sets. EDSC-CHE and EDSC-KDE have similar performance in terms of earliness. For

the classification accuracy, on Gun-Point data set and CBF data, EDSC-CHE and EDSC-

KDE are more accurate than FUll-1NN and ECTS. On Synthetic control and ECG data

set, EDSC-KDE has a better accuracy than FULL-1NN. On the remaining three data sets,

the EDSC-KDE and EDSC-CHE methods do not beat the accuracies of full length 1NN,

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION95

ECG: 2 classes; 100 training inst.; 100 testing inst.; L=96
EDSC-CHE: MinLen = 5;MaxLen = L/2; k = 3

EDSC-KDE: MinLen = 5;MaxLen = L/2; p = 95%
Accuracy Coverage Ave.Length No. Features

EDSC-CHE-NDefault 86.67% 90% 16.87/96 32
EDSC-CHE 82% 100% 24.78/96 32
EDSC-KDE-NDefault 90.70% 86% 20.34/96 29
EDSC-KDE 88% 100% 30.93/96 29
1NN-FUll 88% 100% 96/96 N/A
ECTS 0.89% 100% 57.71/96 N/A

Table 5.2: Results of ECG data set

Gun-Point: 2 classes; 50 training inst.; 150 testing inst.; L=150
EDSC-CHE: MinLen = 5;MaxLen = L/2; k = 3

EDSC-KDE: MinLen = 5;MaxLen = L/2; p = 95%
Accuracy Coverage Ave.Length No. Features

EDSC-CHE-NDefault 97.18% 94.67% 64.75/150 8
EDSC-CHE 94.67% 100% 69.3/150 8
EDSC-KDE-NDefault 95.74% 94% 64.80/150 9
EDSC-KDE 94% 100% 69.97/150 9
Shapelets [72] 93.3% 100% 150/150 1
1NN-FUll 91.33% 100% 150/150 N/A
ECTS 86.67% 100% 70.39/150 N/A

Table 5.3: Results of Gun-Point data set

CBF: 3 classes; 30 training inst.; 900 testing inst.; L=128
EDSC-CHE: MinLen = 5;MaxLen = L/2; k = 3

EDSC-KDE: MinLen = 5;MaxLen = L/2; p = 95%
Accuracy Coverage Ave.Length No. Features

EDSC-CHE-NDefault 95.03% 89.44% 35.03/128 3
EDSC-CHE 87.89% 100% 44.84/128 3
EDSC-KDE-NDefault 94.94% 87.78% 35.12/128 3
EDSC-KDE 85.89% 100% 46.47/128 3
1NN-FUll 85.2% 100% 128/128 N/A
ECTS 85.2% 100% 91.73/128 N/A

Table 5.4: Results of CBF data set

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION96

Synthetic Control:6 classes; 300 training inst.; 300 testing inst.; L=60
EDSC-CHE: MinLen = 5;MaxLen = L/2; k = 3

EDSC-KDE: MinLen = 5;MaxLen = L/2; p = 95%
Accuracy Coverage Ave.Length No. Features

EDSC-CHE-NDefault 94.49% 90.67% 30.62/60 38
EDSC-CHE 87.66% 100% 33.36/60 38

EDSC-KDE-NDefault 97.06% 90.67% 30.43/60 39
EDSC-KDE 0.9033 1 33.19/60 39

1NN-FUll 88% 100% 60/60 N/A
ECTS 89% 100% 53.98/60 N/A

Table 5.5: Results of Synthetic Control data set

Wafer: 2 classes; 1000 training inst.; 6174 testing inst.; L=152
EDSC-CHE: MinLen = 5;MaxLen = L/2; k = 3

EDSC-KDE: MinLen = 5;MaxLen = L/2; p = 95%
Accuracy Coverage Ave.Length No. Features

EDSC-CHE-NDefault 98.82% 99.51% 41.39/152 62
EDSC-CHE 98.49% 100% 41.93/152 62
EDSC-KDE-NDefault 99.15% 99.51% 38.42/152 52
EDSC-KDE 98.87% 100% 38.97/152 52
1NN-FUll 99.55% 100% 152/152 N/A
ECTS 99.08% 100% 67.39/152 N/A

Table 5.6: Results of Wafer data set

OliveOil: 4 classes; 30 training inst.; 30 testing inst.; L=570
EDSC-CHE: MinLen = 5;MaxLen = L/2; k = 3

EDSC-KDE: MinLen = 5;MaxLen = L/2; p = 95%
Accuracy Coverage Ave.Length No. Features

EDSC-CHE-NDefault 85.16% 90% 174.07/570 13
EDSC-CHE 76.67% 100% 213.48/570 13
EDSC-KDE-NDefault 95.45% 73.33% 223.18/570 13
EDSC-KDE 73.33% 100% 315.67/570 13
1NN-FUll 86.7% 100% 570/570 N/A
ECTS 90% 100% 497.83 /570 N/A

Table 5.7: Results of OliveOil data set

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION97

 0
 20
 40
 60
 80

 100

ECG
GunPoint

CBF
Syn-Con

W
afer

Olive
Two-Patterns

A
cc

ur
ac

y

Data sets

EDSC-CHE
EDSC-KDE

ECTS
FULL1NN

 0
 20
 40
 60
 80

 100

ECG
GunPoint

CBF
Syn-Con

W
afer

Olive
Two-PatternsP

er
ce

nt
ag

e
of

 A
ve

. P
re

di
ct

io
n

Le
n.

Data sets

EDSC-CHE
EDSC-KDE

ECTS
FULL1NN

Figure 5.12: Comparison among EDSC, ECTS and Full-1NN

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION98

Two Patterns: 4 classes; 1000 training inst.; 4000 testing inst.; L=128
EDSC-CHE: MinLen = 5;MaxLen = L/2; k = 3

EDSC-KDE: MinLen = 5;MaxLen = L/2; p = 95%
Accuracy Coverage Ave.Length No. Features

EDSC-CHE-NDefault 84.75% 93.75% 79.29/128 305
EDSC-CHE 80.6% 100% 82.33/128 305
EDSC-KDE-NDefault 94.94% 93.33% 83.62/128 279
EDSC-KDE 90% 100% 86.58/128 279
1NN-FUll 91% 100% 128 N/A
ECTS 86.48% 100% 111.10/128 N/A

Table 5.8: Results of Two Patterns data set

ECG EDSC-CHE (length), EDSC-KDE(combination), ECTS(accuracy)
GunPoint EDSC-CHE(length and accuracy)
CBF EDSC-CHE (length and accuracy)
Syn-Control EDSC-KDE (length and accuracy)
Wafer EDSC-KDE (length), Full-Length 1NN (accuracy), ECTS
OliveOil EDSC-CHE (length), ECTS (Accuracy)
TwoPatterns EDSC-CHE(length), 1NN-Full(Accuracy), EDSC-KDE(combination)

Table 5.9: Dominating classifiers

but with similar accuracies except for the OliveOil data set. Generally, EDSC-KDE is more

accurate than the EDSC-CHE. It is because the threshold learning quality of the EDSC-CHE

is not good as EDSC-KDE in order to gain a faster computation.

On a data set, if classifier A has a shorter or equal prediction length and a higher or

equal accuracy than classifier B, we say classifier A dominates classifier B on this data set.

In Table 5.9, for each data set, we list the classifiers which are not dominated by any other

classifiers. From Table 5.9 we can see that, on the five data sets, EDSC-CHE is among

the dominating classifiers, mainly because its earliness. On the four data sets, EDSC-KDE

is among the dominating classifiers. Interestingly, EDSC-CHE or EDSC-KDE is always

among the dominating classifiers if not both. When either EDSC-CHE or EDSC-KDE is

not among the dominating classifiers, they are dominated by each other, but never by ECTS

and FUll-length 1NN classifier.

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION99

From the above analysis, we can see EDSC-CHE and EDSC-KDE can achieve competi-

tive classification accuracies with great earliness.

5.3.2 Interpretability of Features

For the rule based classifier, besides a classification result, we also want to understand the

features extracted by the classifier. In this section, we are going to exam the interpretability

of the learned features.

CBF data set has three classes, named cylinder, bell, and funnel. In Figure 5.13, we

plots the profiles of the three classes of the CBF data set in the left column. Both the

EDSC-CHE method and EDSC-KDE methods extract 3 features for the CBF data set, 1

feature for each class. The features extracted by the two methods are quite similar. We use

the features of the EDSC-CHE as examples. In the right column of Figure 5.13, the features

of each class extracted by the EDSC-CHE are plotted. The features are the bold region in

the time series it comes from. By observing the three classes, we can see the three classes

are quite similar at the beginning. For example, in the interval between [0−20] time points,

the three classes mix together in the range of −2 to 0 along the vertical axis. When the

time series grows longer, the features for each class start to distinguish different classes from

each other. The features learned by EDSC-CHE well represent the characteristics of each

class and they lie in the early phases of the time series when the classes start to separate

from each other.

Let us take the Gun-Point data set as another example. The Gun-Point data set contains

two classes, the Gun-Draw class and the Point class [55]. In Figure 5.14, the profile of the

Gun-Draw class (left) and the Point class (right) are plotted in the first row. For the Gun-

Draw class, the actors “draw a replicate gun from a hip-mounted holster, point it at a target

for approximately one second, then return the gun to the holster [55]”. For the Point class,

“The actors have their hands by their sides. They point with their index fingers to a target

for approximately one second, and then return their hands to their sides” [55]. The Gun-

Draw class is different from the Point class by two actions, “draw a gun from a holster”,

and “return the gun to the holster” [55].

Using the EDSC-CHE, we learned 4 features for each class. In Figure 5.14, in the second

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION100

row, we plot the features with the highest utility score for each class respectively. We can

see that, for the GUN-Draw class, the feature captures the region of “draw a gun from the

holster”. It is the action to distinguish the two classes and it is an earlier feature than

“return the gun to the holster”. For the Point class, the feature happens to belong to a

noisy signal. But actually, by plotting the best matches of other time series for this feature

in bold (in the third row), we can see the feature represents the later moment of the “lifting

the arm”. The top features learned by the EDSC-KDE method are quite similar to the two

features plotted.

The above two examples on CBF and Gun-Point data sets demonstrate that the features

learned by our methods can capture the early characteristics of different classes.

5.3.3 Sensitivity of Parameters

The previous results are all generated by using k = 3 for the EDSC-CHE and using p = 95%

for the EDSC-KDE methods. In learning the threshold, parameter k (in Definition 11) and

p (in Definition 10) correspond to the degree of distinctiveness of learned features. In the

following, we use the ECG data set as an example to show the effects of changing the

parameters. The results on the ECG data with different values of p and k are shown in

Figure 5.15 and Figure 5.16, respectively.

We can see for the EDSC-KDE, when we increase p, the features we learned should be

more distinctive and the accuracy classified by the features should increase. In Figure 5.15,

we see that the accuracies of EDSC-KDE-NDefault generally increase from 80% to 91% in

the range of p = 50% to p = 95% and decrease after p = 99%. When we set p = 100%, no

feature satisfies this probability threshold and the accuracy of EDSC-KDE-NDefault is 0.

The trends show that when we increase p until a very high value, the features we learned

are more accurate in classification. Since when p is higher, the distance threshold protects

a safer region for the target class which has a larger margin to non-target class.

But when p = 99%, the accuracy of EDSC-KDE-NDefault is lower than the accuracy

at p = 95%. By examining the features, we found that when p = 99%, some features with

very small recalls are used in classification and lead to wrong classification. Setting a very

high threshold p = 99% may lead to selecting some features with very small recalls which

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION101

are actually over-fitted features.

On the hand, when we increase p, the coverage rates of the EDSC-KDE-NDefault de-

crease. Because when we increase P , the threshold learned tends to be smaller. There is

a trade-off between the accuracy and coverage when p increases. By using a default classi-

fication rule, EDSC-KDE reaches the highest accuracy of 88% when p = 95% as the best

balance between accuracy and coverage. When p = 90%, the EDSC-KDE has a similar

accuracy as 87%. On the other data sets, we also observe that when the best results usually

appear when setting 90% ≤ p ≤ 95%, and the results are stable in this range.

When increase p, the earliness of classification is monotonic after p > 65%. It suggests

that a lower threshold may lead to a earlier classification.

In Figure 5.16, we present the result for the ECG data set using EDSC-CHE when

changing the value of k. We can see when k increases, the accuracy of EDSC-CHE-NDefault

increases and the coverage rate decreases. When k = 2.5, EDSC-CHE reaches the best

accuracy as 85% due to a good balance between the accuracy and coverage of EDSC-CHE-

NDefault . On other data sets, we observe that the best results usually appear when

2.5 ≤ k ≤ 3.5. For the average prediction length, we observe that it monotonically increases

after k > 1, which shares a similar behavior as the EDSC-KDE method.

5.3.4 Efficiency

In Table 5.10, we compare the training time using the algorithm in Figure 5.6 (EDSC-

CHE(Nai.) and EDSC-KDE(Nai.)) and the improved algorithm in Figure 5.11 (EDSC-

CHE(Impr.) and EDSC-KDE(Impr.)). Actually, in EDSC-CHE(Nai.) and EDSC-KDE(Nai.),

in computing the best match vectors, we also incorporate the early stopping techniques pro-

posed in [72].

From Table 5.10, we can see that EDSC-CHE is faster than EDSC-KDE. This is due to

the different time complexity of learning the distance threshold. The improved algorithms,

EDSC-CHE(Nai.) and EDSC-KDE(Nai.), can significantly reduce the training time com-

paring to the naive algrithms. As we analyzed, this is due to the reduced time complexity

on computing best match vectors.

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION102

EDSC-CHE(Nai.) EDSC-CHE(Impr.) EDSC-KDE(Nai.) EDSC-KDE(Impr.)
CBF 37.93 sec 9.52 sec 41.48 sec 13.05 sec
N=30, L=128
ECG 123.42 sec 26.05 sec 137.45 sec 40.17 sec
N=100, L=96
SynCon 252.83 sec 62.20 sec 332.60 sec 140.798 sec
N=300, L=60
GUN Point 165.13 sec 25.6 sec 170.21 sec 30.38 sec
N=50, L=150
OliveOil 6729.26 sec 1707.63 sec 6700. 1 sec 1728.91 sec
N=30, L=570
TwoPattern 37249.4 sec 10876.6 sec 40925.3 sec 14258.1 sec
N=1000, L=128
Wafer 73944.4 sec 10841.5 sec 103298 sec 40082.2 sec
N=1000, L=152

Table 5.10: Training time comparison

5.4 Summary

In this chapter, we propose an EDSC framework for building a rule based classifier for time

series early classification. EDSC can achieve early classification and competitive accuracies

with good interpretability. In the future, we are going to investigate different feature selec-

tion strategies and explore approximate or heuristic approaches to improve the efficiency of

the proposed methods.

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION103

Figure 5.13: Features on the CBF Data Set

0 20 40 60 80 100 120 140
−3

−2

−1

0

1

2

3

4

(a) Cylinder class

0 20 40 60 80 100 120 140
−3

−2

−1

0

1

2

3

4

(b) A feature of cylinder class

0 20 40 60 80 100 120 140
−3

−2

−1

0

1

2

3

4

(c) Funnel class

0 20 40 60 80 100 120 140
−3

−2

−1

0

1

2

3

4

(d) A feature of funnel class

0 20 40 60 80 100 120 140
−3

−2

−1

0

1

2

3

4

(e) Bell class

0 20 40 60 80 100 120 140
−3

−2

−1

0

1

2

3

4

(f) A feature of bell class

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION104

Figure 5.14: Features on the Gun-Point Data Set

0 50 100 150
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a) Gun-Draw class

0 50 100 150
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(b) Point class

0 50 100 150
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(c) A feature of gun-draw class

0 50 100 150
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(d) A feature of point class

0 50 100 150
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(e) Best matchings of point class

CHAPTER 5. FEATURE EXTRACTION ON TIME SERIES EARLY CLASSIFICATION105

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy by EDSC−KDE−NDefault
Coverage by EDSC−KDE−NDefault
Accuracy by EDSC−KDE
Percentage of Average Classification Length

Figure 5.15: Results on ECG data set by varying p

0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy by EDSC−CHE−NDefault
Coverage by EDSC−CHE−NDefault
Accuracy by EDSC−CHE
Percentage of Average Classification Length

Figure 5.16: Results on ECG data set by varying k

Chapter 6

Conclusions and Future Works

In this thesis, we identify the problem of early classification on temporal sequences and an-

alyze the challenges. We formulate early classification as a problem of monitoring temporal

sequences online and predicting class labels as early as possible once classifiers are confident

about the predictions. We develop a series of classifiers for temporal sequence early clas-

sification. The proposed classifiers are designed for different types of temporal sequences

including symbolic sequences (Chapter 3) and time series (Chapter 4 and Chapter 5). Fur-

thermore, the proposed classifiers have several desirable characteristics which are useful in

different application scenarios, such as the interpretability. We evaluate our approaches on

a broad range of real data sets and demonstrate that the classifiers can achieve competitive

classification accuracies with great earliness. Also, some interpretable features are extracted

from sequences. The experiments validate that early classification is feasible and useful.

In the future, we are going to explore the following directions.

• For early classification, one of the challenges is to develop scalable algorithms for learn-

ing eraly classifiers. Although in this thesis, we proposed various methods to achieve

early classification, the efficiencies of those methods need to be improved. For exam-

ple, for the feature extraction methods we proposed in Chapter 5, the time complexity

is O(N2L3), where N is the number of sequences and L is the dimensionality of the

sequences. As we discussed in Chapter 5, one way to improve the efficiency is to the

develop some heuristic methods to eliminate the number of candidate features. The

106

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS 107

challenges of developing efficient learning algorithms for early classifiers come from the

following aspects. First, efficiently extracting features and building classifiers for con-

ventional sequence classification is a challenging task [25, 72]. Furthermore, comparing

to learning conventional sequence classifiers, learning early classifiers usually requires

extracting and examining a larger number of features since we do not only focus on

building an accurate classifier but also comparing features in terms of their utilities

for the earliness in classification. For example, for the ECTS classifier we proposed

in Chapter 4, its counterpart for the conventional time series classification is the lazy

instance based classifier. Without requiring the earliness in classification, instance

based classifiers do not have a training step. But in order to achieve early classifica-

tion, we create the training step which increases the time complexity of training step

from none.

• As mentioned in Chapter 2, temporal sequences can be summarized as five types, sim-

ple symbolic sequences, complex symbolic sequences, simple time series, multivariate

time series and complex event sequences. In this thesis, we focus on the simple sym-

bolic sequences and simple time series. In the future, we are going to explore early

classification on multivariate time series, complex symbolic sequences and complex

event sequences. We are going to explore the proper ways of transforming complex

forms of sequences into simple types for early classification. We are also interested

in developing new methods which are designed for specific types of data in different

applications.

• For a streaming sequence, the label of the sequence may change. The problem of strong

sequence classification [26, 27] is to predict a sequence of labels instead of predicting

one class label. In the future, we are going to integrate early classification with strong

sequence classification problem. We are interested in learning the earliest time to

predict a reliable changing of labels. This prediction is not only based on features in

the sequences, but also based the labels of the sequence detected before.

• In early classification and the strong sequence classification process, we may get feed-

backs after giving predictions. We may also suggest domain experts to label some

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS 108

sequences which may be useful for early classifying unseen sequences. In the future,

we are going to integrate early classification with active learning or semi-supervised

learning.

Bibliography

[1] Berkeley drosophila genome project. http://genomebiology.com/2002/3/12/
research/0087.1.

[2] Time series data library webpage: http://www-personal.buseco.monash.edu.au/

~hyndman/TSDL/.

[3] C. C. Aggarwal. On effective classification of strings with wavelets. In KDD ’02: Pro-
ceedings of the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 163–172, 2002.

[4] A. O. Allen. Probability, Statistics, and Queuing Theory with Computer Science Ap-
plications. Acadimic Press, Inc., San Diago, CA, 1990.

[5] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipmanl. Basic local
alignment search tool. J.Mol.Biol., 215:403–410, 1990.

[6] A. Asuncion and D. Newman. UCI machine learning repository. http://archive.ics.
uci.edu/ml/index.html, 2007.

[7] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian. Traffic classifi-
cation on the fly. Computer Communication Review, 36(2):23–26, 2006.

[8] E. Bertino, B. Catania, and E. Caglio. Applying data mining techniques to wafer man-
ufacturing. In PKDD ’99: Proceedings of the Third European Conference on Principles
of Data Mining and Knowledge Discovery, pages 41–50. Springer-Verlag, 1999.

[9] A. Bregón, M. A. Simón, J. J. Rodŕıguez, C. J. Alonso, B. P. Junquera, and I. Moro.
Early fault classification in dynamic systems using case-based reasoning. In CAEPIA,
pages 211–220, 2005.

[10] B. Y. Cheng, J. G. Carbonell, and J. Klein-Seetharaman. Protein classification based
on text document classification techniques. Proteins, 1(58):855–970, 2005.

[11] N. A. Chuzhanova, A. J. Jones, and S. Margetts. Feature selection for genetic sequence
classification. Bioinformatics, 14(2):139–143, 1998.

109

BIBLIOGRAPHY 110

[12] M. Deshpande and G. Karypis. Evaluation of techniques for classifying biological se-
quences. In PAKDD ’02: Proceedings of the 6th Pacific-Asia Conference on Advances
in Knowledge Discovery and Data Mining, pages 417–431, 2002.

[13] J. J. R. Diez, C. A. González, and H. Boström. Boosting interval based literals: variable
length and early classification. Intell. Data Anal., 5(3):245–262, 2001.

[14] C. Ding and X. He. K-nearest-neighbor consistency in data clustering: incorporating
local information into global optimization. In SAC ’04: Proceedings of the 2004 ACM
symposium on Applied computing, pages 584–589, New York, NY, USA, 2004. ACM.

[15] C. H. Q. Ding and X. He. Cluster aggregate inequality and multi-level hierarchical
clustering. In PKDD, pages 71–83, 2005.

[16] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. J. Keogh. Querying and
mining of time series data: experimental comparison of representations and distance
measures. PVLDB, 1(2):1542–1552, 2008.

[17] G. Dong and J. Pei. Sequence Data Mining, pages 47–65. Springer US, 2007.

[18] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Chapter 3. Markov Chain and
Hidden Markov Model. Biological Sequence Analysis: Probabilistic Models of Proteins
and Nucleic Acids, pages 47–65. Cambridge University Press, 1998.

[19] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

[20] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[21] M. P. Griffin and J. R. Moorman. Toward the early diagnosis of neonatal sepsis and
sepsis-like illness using novel heart rate analysis. PEDIATRICS, 107(1):97–104, 2001.

[22] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2005.

[23] C. harley and R. Reynolds. Analysis of e.coli promoter sequences. Nucleic Acides Res.,
15(5):2343–61.

[24] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning. Springer,
New York, NY, USA, second edition, 2009.

[25] X. Ji, J. Bailey, and G. Dong. Mining minimal distinguishing subsequence patterns
with gap constraints. Knowl. Inf. Syst., 11(3):259–286, 2007.

[26] M. W. Kadous. Temporal classification: extending the classification paradigm to mul-
tivariate time series. PhD thesis, 2002.

BIBLIOGRAPHY 111

[27] M. W. Kadous and C. Sammut. Classification of multivariate time series and structured
data using constructive induction. Machine Learning, 58(2-3):179–216, 2005.

[28] L. Kaján, A. Kertész-Farkas, D. Franklin, N. Ivanova, A. Kocsor, and S. Pongor. Ap-
plication of a simple likelihood ratio approximant to protein sequence classification.
Bioinformatics, 22(23):2865–2869, 2006.

[29] E. Keogh and S. Kasetty. On the need for time series data mining benchmarks: a survey
and empirical demonstration. In KDD ’02: Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 102–111, 2002.

[30] E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana. The UCR time series classification
and clustering homepage: http://www.cs.ucr.edu/~eamonn/time_series_data/,
2006.

[31] E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping for datamining appli-
cations. In KDD ’00: Proceedings of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 285–289, 2000.

[32] S.-B. Kim, K.-S. Han, H.-C. Rim, and S. H. Myaeng. Some effective techniques for
naive bayes text classification. IEEE Transactions on Knowledge and Data Engineering,
18(11):1457–1466, Nov. 2006.

[33] D. Kudenko and H. Hirsh. Feature generation for sequence categorization. In AAAI
’98/IAAI ’98: Proceedings of the fifteenth national/tenth conference on Artificial intel-
ligence/Innovative applications of artificial intelligence, pages 733–738, 1998.

[34] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. In ICML ’01: Proceedings
of the Eighteenth International Conference on Machine Learning, pages 282–289, 2001.

[35] T. Lane and C. E. Brodley. Temporal sequence learning and data reduction for anomaly
detection. ACM Trans. Inf. Syst. Secur., 2(3):295–331, 1999.

[36] J. C. Lee and D. S. Tan. Using a low-cost electroencephalograph for task classification
in hci research. In Proceedings of the 19th annual ACM symposium on User interface
software and technology, UIST ’06, pages 81–90, New York, NY, USA, 2006. ACM.

[37] N. Lesh, M. J. Zaki, and M. Ogihara. Mining features for sequence classification. In
KDD ’99: Proceedings of the fifth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 342–346, 1999.

[38] C. S. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for SVM
protein classification. In Pacific Symposium on Biocomputing, pages 566–575, 2002.

[39] C. S. Leslie and R. Kuang. Fast string kernels using inexact matching for protein
sequences. Journal of Machine Learning Research, 5:1435–1455, 2004.

BIBLIOGRAPHY 112

[40] D. D. Lewis. Naive (bayes) at forty: The independence assumption in information
retrieval. In ECML’ 98: The 10th European Conference on Machine Learning, pages
4–15, 1998.

[41] C. Li, L. Khan, and B. Prabhakaran. Real-time classification of variable length multi-
attribute motions. Knowl. Inf. Syst., 10(2):163–183, 2006.

[42] M. Li and R. Sleep. A robust approach to sequence classification. In ICTAI ’05: Pro-
ceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence,
pages 197–201, 2005.

[43] W. Li, J. Han, and J. Pei. Cmar: Accurate and efficient classification based on multiple
class-association rules. In ICDM ’01: Proceedings of the 2001 IEEE International Con-
ference on Data Mining, pages 369–376, Washington, DC, USA, 2001. IEEE Computer
Society.

[44] J. Lin, E. J. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: a novel symbolic
representation of time series. Data Min. Knowl. Discov., 15(2):107–144, 2007.

[45] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2(4):285–318, 1987.

[46] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. J. C. H. Watkins. Text
classification using string kernels. Journal of Machine Learning Research, 2:419–444,
2002.

[47] M. D. Marzio and C. C. Taylor. Kernel density classification and boosting: an l2
analysis. Statistics and Computing, 15(2):113–123, 2005.

[48] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[49] S. Needleman and C. Wunsch. A general method applicable to the search for similarities
in the amino acid sequence of two proteins. J.Mol.Biol., 48:443–453, 1970.

[50] M. Núńez. The use of background knowledge in decision tree induction. Mach. Learn.,
6(3):231–250, 1991.

[51] R. J. Povinelli, M. T. Johnson, A. C. Lindgren, and J. Ye. Time series classification
using gaussian mixture models of reconstructed phase spaces. IEEE Trans. on Knowl.
and Data Eng., 16(6):779–783, 2004.

[52] J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106.

[53] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993.

[54] L. Rabiner. A tutorial on HMM and selected applications in speech recognition. In
IEEE, pages 257–286, 1998.

BIBLIOGRAPHY 113

[55] C. A. Ratanamahatana and E. J. Keogh. Making time-series classification more accu-
rate using learned constraints. In SDM, 2004.

[56] H. Saigo, J.-P. Vert, N. Ueda, and T. Akutsu. Protein homology detection using string
alignment kernels. Bioinformatics, 20(11):1682–1689, 2004.

[57] B. Schölkopf, K. Tsuda, and J.-P. Vert. Kernel Methods in Computational Biology,
pages 171–192. The MIT press, 2004.

[58] D. W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization.
Wiley, 1992.

[59] R. She, F. Chen, K. Wang, M. Ester, J. L. Gardy, and F. S. L. Brinkman. Frequent-
subsequence-based prediction of outer membrane proteins. In KDD ’03: Proceedings
of the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 436–445, 2003.

[60] T. Smith and M. Waterman. Identification of common molecular subsequences.
J.Mol.Biol., 147:195–197, 1981.

[61] S. Sonnenburg, G. Rätsch, and C. Schäfer. Learning interpretable SVMs for biological
sequence classification. In RECOMB ’05: The Ninth Annual International Conference
on Research in Computational Molecular Biology, pages 389–407, 2005.

[62] S. Sonnenburg, G. Rätsch, and B. Schölkopf. Large scale genomic sequence svm clas-
sifiers. In ICML ’05: Proceedings of the 22nd international conference on Machine
learning, pages 848–855, 2005.

[63] P. K. Srivastava, D. K. Desai, S. Nandi, and A. M. Lynn. HMM-ModE-Improved classi-
fication using profile hidden Markov models by optimising the discrimination threshold
and modifying emission probabilities with negative training sequences. BMC Bioinfor-
matics, 8(104), 2007.

[64] T.M.Cover and P.E.Hart. Nearest neighbor pattern classification. IEEE Transactions
on Infomration Theory, 13(1):21–27, 1967.

[65] G. G. Towell, J. W. Shavlik, and M. O. Noordewier. Refinement of approximate domain
theories by knowledge-based neural networks. In In Proceedings of the Eighth National
Conference on Artificial Intelligence, pages 861–866, 1990.

[66] L. Wei and E. Keogh. Semi-supervised time series classification. In KDD ’06: Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 748–753, 2006.

[67] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana. Fast time series
classification using numerosity reduction. In ICML ’06: Proceedings of the 23rd inter-
national conference on Machine learning, pages 1033–1040, 2006.

BIBLIOGRAPHY 114

[68] Z. Xing, J. Pei, G. Dong, and P. S. Yu. Mining sequence classifiers for early prediction.
In SDM’08: Proceedings of the 2008 SIAM international conference on data mining,
pages 644–655, 2008.

[69] Z. Xing, J. Pei, and E. Keogh. A brief survey on sequence classification. To appear in
SIGKDD Explorations.

[70] Z. Xing, J. Pei, and P. S. Yu. Early classification on time series: A nearest neighbor
approach. In IJCAI’09: Proceedings of the 21st International Joint Conference on
Artificial Intelligence, pages 1297–1302, 2009.

[71] O. Yakhnenko, A. Silvescu, and V. Honavar. Discriminatively trained markov model
for sequence classification. In ICDM ’05: Proceedings of the Fifth IEEE International
Conference on Data Mining, pages 498–505, 2005.

[72] L. Ye and E. Keogh. Time series shapeletes: A new primitive for data mining. In KDD
’09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2009.

[73] J. Yin, Q. Yang, D. Shen, and Z.-N. Li. Activity recognition via user-trace segmenta-
tion. ACM Trans. Sen. Netw., 4(4):1–34, 2008.

[74] X. Yin and J. Han. CPAR: Classification based on predictive association rules. In
SDM, 2003.

