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Abstract

Leakage of a document distributed among a set of authorized recipients may result in vio-

lation of copyright or secrecy of a document. A hidden serial number in the document can

be used for finding the source of the leak. A coalition attack is collusion of a set of users to

generate copies of the document with a serial number (now called fingerprint) that is differ-

ent from their original ones. To trace such a forged fingerprint back to one of its producers,

reasonable assumptions are necessary. The marking assumption is one such assumption. It

says if the i-th bits of the fingerprints of all colluders are the same, it will have the same

value in the forged copy.

Our first result in this thesis is a construction that achieves the highest known rate of

fingerprinting codes, which we conjecture to be optimal [3]. This construction combines two

ideas from two earlier constructions. We use bias based code generation that was introduced

by Tardos [44] for his well-known fingerprinting code. Our accusation algorithm is based on

an earlier algorithm by Anthapadmanabhan, Barg and Dumer [7] that uses the information

theoretic notion of typicality. The drawback of this construction is its slow accusation

algorithm.

Building upon our first construction, we construct another fingerprinting code in which

the distributor may choose to have a faster accusation algorithm by sacrificing a little of

the rate. A different accusation algorithm for our first code allows us to generalize it to a

family of codes that show a tradeoff between rate and efficiency.

This tradeoff suggests new ways to construct more efficient algorithms without losing

the rate. For the case of two pirates this tradeoff can be made simpler by using Hamming

distance instead of a mutual information. This allows improving quadratic running time of

our first accusation algorithm to linear without lowering the rate at all.

We also look at weak fingerprinting, a variant of fingerprinting for which the capacity is

iii



known. We construct a capacity-achieving weak fingerprinting code.

Keywords: fingerprinting; collusion attack; rate; capacity; mutual information
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Chapter 1

Introduction

This thesis is focused on fingerprinting under marking assumption. The main purpose of

fingerprinting codes is protecting copyright and/or secrecy of a document.

Fingerprinting was born as a result of research on traitor tracing codes. Traitor tracing

research started in mid 90’s and so far it has resulted in a few different and independent

research problems. In the Chapter we will briefly review traitor tracing and some related

problems.

Fingerprinting codes have two main components. One is the code-matrix, which is the

set of codewords assigned to users. The other is the accusation algorithm. One line of

fingerprinting research tries to construct better codes by decreasing code length or time

complexity of accusation algorithms. Our contributions to fingerprinting research, which

are presented in this thesis, are all in this line of research as we will see in Chapters 4 and

5. There is another line of research that tries to prove lower bounds on the code length of

fingerprinting codes. We do not consider this problem in this thesis.

As we will see soon, fingerprinting without randomization is impossible, probabilistic

analysis tools are required for working on fingerprinting. More recent results, including

results in this thesis, have used tools and concepts from information theory and game

theory.

Chapter 2 of this thesis summarizes information theoretic and game theoretic tools

needed in the rest of the thesis.

Chapter 3 has two roles. First it presents a big picture of the research area to which

fingerprinting belongs. Second, it introduces fingerprinting under marking assumption by

presenting definition and a quick review of main results on the problem.

1



CHAPTER 1. INTRODUCTION 2

Our new results on fingerprinting are presented in Chapters 4 and 5. While results of

Chapter 4 and the last section of Chapter 5 have been published in [3], most of the results

in Chapter 5 are not yet submitted and will be submitted for publication.

Chapter 4 presents our construction of high rate fingerprinting codes. In this chapter we

construct our first fingerprinting codes. This code is the shortest fingerprinting code that

we are aware of. We conjecture that it achieves the shortest possible length. This code is

also the basis of our other constructions.

Informally speaking the construction of Chapter 4 achieves the shortest fingerprinting

code, but its accusation algorithm is not very fast. In Chapter 5 we address this problem

by introducing new constructions with faster accusation algorithms.

The first construction in this chapter is a fingerprinting code with a tradeoff parameter.

This parameter can be tuned during the construction such that the outcome of the con-

struction is a code with faster accusation algorithm. The price that we need to pay is to

sacrifice a little bit of the rate. As we will see the rate that we lose is not significant.

In the special case of two pirates we are able to improve the construction so that we

achieve faster fingerprinting code without sacrificing the rate.

Also in this chapter we present our result on weak fingerprinting. This is a different

model of fingerprinting which was presented in [3] first.

In Chapter 4 we introduce the notion of fingerprinting game. This concept underlies all

constructions presented in this thesis.

Finally we conclude by looking at open problems and research in progress.

1.1 Other research

The author has conducted research on different problems, during his PhD studies. The

focus of this thesis is on fingerprinting research.

Another research problem is the analysis of SAT heuristics. The aim of this line of

research is to understand why some simple heuristic algorithms are successful in quickly

solving random instances of hard problems (in this case SAT).

In particular in [2] we have focused on the so called Planted SAT and introduced a

variation of random walk heuristic that works surprisingly quickly on planted SAT. The

original random walk heuristic with high probability requires exponential time to solve

instances of planted SAT with densities larger than a constant [6]. Our result on our variant
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of random walk [2] is partly experimental and partly theoretical. In the experimental part we

show that our algorithm finds a solution for instances of planted SAT of any density. This

is interesting in comparison to other heuristics designed for planted SAT like [22, 23]. These

heuristics work for planted SAT with large enough constant density while our algorithm

finds a solution for instances of planted SAT of any arbitrary density.

In the theoretical part we have shown that this algorithm almost surely finds the sat-

isfying assignment of a full 3-CNF formula with a planted solution, in time linear in the

number of variables. Also we show that for a 3-CNF formula with a planted solution r

and super constant density,1 with high probability the algorithm finds a vector in which a

fraction ≤ ε of variables differ from r. Here ε is a constant. Notice that the proof does not

imply that this vector is a satisfying assignment. What makes this result valuable is that

we know that for high density planted SAT instances all satisfying assignments have small

Hamming distance from the planted solution.

The author has also conducted research in a significantly different area of computer

science. As a member of COSTAR lab at Simon Fraser University the author has been

involved in the development of Parallel Bit Streams Technology [14, 17, 15]. The aim of

this technology is to increase the performance of text processing tasks (such as parsing and

transcoding) through parallelization. We exploit advanced features of modern processors for

parallelization. We have been successful in sharply increasing performance of transcoding

[14] and parsing[15].

Developing software based on this technology is a tedious and time consuming task as it

requires low level programming. So, in addition to development of Parallel Bit Streams tech-

niques, we have designed a domain-specific language that is aware of Parallel Bit Streams.

An optimizing compiler has been developed that given an input program that is written in

our domain-specific langauge, produces optimized code in C. The XML parser reported in

[15] is developed using this technology.

1Here we mean the density should go to infinity when number of variables goes to infinity.



Chapter 2

Tools

Throughout this thesis we will use tools from calculus, probability theory, information theory

and game theory. Usually students of computer science take courses in calculus and prob-

ability theory. In order to make the content of this thesis accessible to computer science

students who may be interested in the topic, in this chapter we cover tools from information

theory and game theory that are needed for the rest of this thesis. Theorems that are crucial

for the results are stated with a proof, even though they might be standard. Some easier or

less crucial proofs are omitted.

2.1 Information theory

In this section we review concepts and tools from information theory that will be used

throughout this thesis. For an in depth study of these concepts the reader is referred to

[18, 20], even though [20] requires a more solid background in mathematics than [18].

2.2 Basic concepts

Binary entropy, or entropy for short, of a distribution P over a countable set X is defined

as

H(P ) =
∑
x∈X
−P (x) logP (x),

4



CHAPTER 2. TOOLS 5

where log denotes binary logarithm. By convention we assume that if P (x) = 0, then

P (x) logP (x) = 0. Informally entropy shows the unpredictability of the random experi-

ment of drawing an element of set X with respect to distribution P . A good example to

demonstrate this is when P is a binary distribution, i.e. X = {0, 1}. Since this is an impor-

tant case we use the following notation for it. Let p = P (0), then h(p) = h(1− p) = H(P ).

Now the reader may easily verify that h(0) = h(1) = 0. In these two cases the value of

a random variable drawn from the distribution is completely predictable, consequently the

entropy is zero. Uniform binary distribution is the most unpredictable binary distribution

in an informal sense. The notion of entropy formalizes this intuition as for any p ∈ [0, 1],

h(p) ≤ h(1/2) = 1.

For a random variable X that has distribution P we define H(X) = H(P ).

Conditional entropy of two random variables X, Y is defined as

H(X|Y ) =
∑
y

Pr(Y = y)H(X|Y = y).

P r(Y = y) denotes the probability that random variables Y takes value y. If Pr(Y =

y) = 0 we let Pr(Y = y)H(X|Y = y) = 0 by convention. H(X|Y = y) is the entropy of X

after fixing Y = y. To calculate this we consider the conditional probability space obtained

by fixing Y = y. Then let P̂ denote the distribution of X in this conditional probability

space. Now H(X|Y = y) = H(P̂ ). For example if X ∈ {1, 2, 3, 4, 5, 6} is the result of

throwing a die and Y ∈ {0, 1} is a binary variable that is one if the result of throwing the

die is divisible by three, then H(X) = log 6, while H(X|Y = 1) = 1 and H(X|Y ) = 5/3.

Alternatively we can define conditional entropy using the notion of joint entropy. If X

and Y are two random variables taking values in X ,Y, then we can define Z = (X,Y ) to

be a random variable that takes values in the set X ×Y. Then we define H(X,Y ) = H(Z).

Now we have,

H(X|Y ) = H(X,Y )−H(Y ). (2.1)

We leave it to the reader to verify that these two alternative definitions of conditional

entropy are equivalent.

Informally speaking, H(X|Y ) indicates unpredictability of X if the value of Y is known.

Naturally this results in defining a new concept known as mutual information of two random

variables denoted by I(X;Y ) and defined as

I(X;Y ) = H(X)−H(X|Y ).
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I(X;Y ) tells us the decrease in unpredictability of X if value of Y is known. Using the

second definition of conditional entropy one can show I(X;Y ) = I(Y ;X).

The reader may expect that H(X|Y ) ≤ H(X). This is indeed true. We skip the proof

which is based on concavity of the log function. As a conclusion we have I(X;Y ) ≥ 0.

Entropy is a concave function. We will use the following inequality later. For p, q, α ∈ [0, 1]

αh(p) + (1− α)h(q) ≤ h(αp+ (1− α)q). (2.2)

Another important concept in information theory is relative entropy or Kullback-Leibler

divergence. It is also known as KL divergence for the purpose of brevity. Assume P1 and

P2 are two distributions on the same countable set S. Then

D(P1||P2) =
∑
i∈S
P1(i) log

P1(i)
P2(i)

.

In all cases that P2(i) = 0 we let the corresponding summand is equal be zero by

convention. When P1 and P2 are binary distributions, let p = P1(0) and q = P2(0). Then

the value of D(P1||P2) is denoted by h(p||q).
To gain intuition about relative entropy, assume we are generating random samples

from a set according to one of the two distributions P1 and P2 and we want to guess which

distribution is being used for generating samples. The larger the relative entropy is the easier

it is to realize that samples are from P1. As an extreme case D(P1||P1) = 0. There is a

beautiful and somewhat surprising connection between mutual information of two variables

and their relative entropy. Assume random variables X and Y are distributed according to

distributions PX and PY and let PXY denotes their joint distribution. Then

I(X;Y ) = D(PXY ||PXPY ),

i.e. the mutual information of two random variables is equal to the relative entropy of the

corresponding joint distribution and product distribution.

Pinsker’s inequality

It is not hard to guess that having relative entropy in a formula makes it hard to manipulate

the formula. Pinsker’s inequality is a useful tool that sometimes can be used to estimate

the formulas involving relative entropy. We need the following definition.
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Definition. For two distributions P1 and P2 over the same countable set S, the L1 distance

of P1 and P2 is denoted by ||P1 − P2|| and defined as

||P1 − P2|| =
∑
a∈S
|P1(a)− P2(a)|

In this thesis, we only use Pinsker’s inequality for binary distributions. Here we state

the lemma in its general form, but we skip the complete proof and only give the proof of

the binary case.

Lemma 1

D(P1||P2) ≥ 1
2 ln 2

||P1 − P2||2.

Proof [18]: Assume P1 and P2 are binary distributions with parameters p and q and p ≥ q.
Let

g(p, q) = p log
p

q
+ (1− p) log

1− p
1− q

− 2
ln 2

(p− q)2.

Then
dg(p, q)
dq

=
q − p

ln(2)(1− q)q
− 4

ln 2
(q − p).

Since q(1 − q) ≤ 1/4 and p ≥ q we conclude that the above derivative is negative. By

increasing q the value of g(p, q) decreases until g(p, q) = 0 for p = q. This finishes the proof

of the binary case.

The following stronger form of Pinsker’s inequality for binary distributions is taken from

[3].

Lemma 2 For p ≤ q ≤ 1/2 or p ≥ q ≥ 1/2 we have,

h(p||q) ≥ (p− q)2

2 ln(2)q(1− q)

h(q||p) ≥ (p− q)2

2 ln(2)q(1− q)

Proof: Consider the function g(p, q) = h(p||q)−α(p−q)2 for an arbitrary real α. For p = q,

g(p, q) = 0. Similar to lemma 1 we look at dg(p,q)
dq . If α < 1/2 ln(2)q(1 − q) this derivative

is negative when q < p and positive when p > q. If we furthermore restrict the values of p

and q to p ≤ q ≤ 1/2 or p ≥ q ≥ 1/2 we can guarantee that the value of the derivative has

the same sign for all values between p and q. In either case, this implies the first inequality

claimed. The second one has a similar proof.
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We will also use the notion of conditional relative entropy. For distributions V and W

we define

D(V ||W |Z) =
∑
z

Pr[Z = z]D(Vz||Wz). (2.3)

Here Vz and Wz denote marginal distributions of V and W after fixing Z to z.

2.3 Method of types

Method of types is a combinatorial tool in information theory. It has been used in the

information hiding literature. A presentation on application of this method in information

hiding can be found at [48]. The method of types is used frequently in Chapter 4 and 5 of

this thesis. The reader may refer to [20] or [18] for a more in depth treatment of the subject.

Also [19] is an independent tutorial on the method of types.

Assume that U = X1X2....Xn is a string where the Xi are drawn from an alphabet

Σ = {1, 2, ..., c}. Let N(i|U) be the number of occurrences of symbol i in U . Then the type

of U , denoted by T , is a c-tuple of rational numbers T = (N(1|U)
n , ..., N(c|U)

n ).

Representations of a type. According to the above definition the standard represen-

tation of a type is a tuple of rational numbers, the sum of which is one. We may refer to

an individual coordinate of this tuple by T (a) for a ∈ Σ. An important alternate view of

a type is a probability distribution over the underlying alphabet. For example the type T

that we just defined is a probability distribution over alphabet Σ. These two alternative

representations of a type will be used as needed.

For each i, N(i|U) may have n + 1 different values so the number of types of a string

of length n is at most (n + 1)c. This result is useful mostly because the upper bound of

(n+ 1)c on the number of types is small (polynomial in n), compared to cn, the number of

all strings, which is exponential in n.

Lemma 3 Let Pc,n be the number of types of strings of length n drawn from a size c alphabet.

Then

Pc,n ≤ (n+ 1)c

In a setting where strings are generated randomly, it is interesting to ask what is the

probability of obtaining a string of a given type. Not surprisingly if symbols in a string

are independent and identically distributed, then all strings in a type class are of the same
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probability. The following theorem will be used later to prove some results on types. Also

it establishes a connection between entropy and relative entropy.

Theorem 4 Let X1, X2, ..., Xn be chosen independently from an alphabet Σ according to

a distribution Q on Σ. Then for a given sequence U , the probability of U = X1X2...Xn

depends only on the type of U and is equal to

2−n(H(TU )+D(TU ||Q))

Here TU denotes type of U and is considered as a distribution on the alphabet as well.

Proof: Let U = U1U2...Un. Then

Pr(U = X1X2...Xn) =
n∏
i=1

Pr(Xi = Ui) (2.4)

=
∏
a∈Σ

(Q(a))N(a|U) (2.5)

=
∏
a∈Σ

(Q(a))nTU (a) (2.6)

=
∏
a∈Σ

2nTU (a) logQ(a) (2.7)

=
∏
a∈Σ

2nTU (a) logQ(a)−TU (a) log TU (a)+TU (a) log TU (a) (2.8)

= 2n
∑
a∈Σ−TU (a) log

TU (a)

Q(a)
+TU (a) log TU (a) (2.9)

= 2−n(H(TU )+D(TU ||Q)). (2.10)

Consequently if the type of U is Q, then Pr(U) = 2−nH(TU ).

The set of all sequences that have the same type T is called a type class and is denoted

by C(T ).

Theorem 5 For a type class C(T ),

2nH(T )

(n+ 1)c
≤ |C(T )| ≤ 2nH(T )

Proof: First we prove the upper bound. Assume we draw n symbols from alphabet σ

according to the distribution T . Then theorem 4 implies that the probability of obtaining

a string of type T is |C(T )|2−nH(T ) ≤ 1. This implies the upper bound.
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For the lower bound we show that when i.i.d. symbols are drawn according to distri-

bution T , type T has the highest probability to be the type of the generated string. Since

there are at most (n+ 1)c types, then |C(T )|2−nH(T ) ≥ 1
(n+1)c which implies the result.

To finish the proof assume that the symbols X1, X2, ..., Xn are drawn i.i.d. from distribu-

tion T . Let T1 be a fixed type and let n1, n2, .., nc be integers such that T1 = (n1
n ,

n2
n , ...,

nc
n ).

Then the number of strings of type T1 is equal to(
n

n1, n2, ..., nc

)
=
(
n

n1

)(
n− n1

n2

)
...

(
nc
nc

)
Also let T = (m1

n ,
m2
n , ...,

mc
n ). Then we calculate the ratio of probability of generating a

string in T to that of a string in T1.

Pr(T )
Pr(T1)

=

(
n

m1,m2,...,mc

)∏
a∈Σ T (a)nT (a)(

n
n1,n2,...,nc

)∏
a∈Σ T (a)nT1(a)

(2.11)

=
∏
a∈Σ

(nT1(a))!
(nT (a))!

T (a)n(T (a)−T1(a)) (2.12)

≥
∏
a∈Σ

(nT (a))n(T1(a)−T (a))T (a)n(T (a)−T1(a)) (2.13)

=
∏
a∈Σ

nn(T1(a)−T (a)) (2.14)

= nn
∑
a∈Σ(T1(a)−T (a)) (2.15)

= nn(1−1) (2.16)

= 1 (2.17)

where inequality (2.13) follows from the inequality a!
b! ≥ b

a−b.

2.3.1 Conditional types

In this subsection we define conditional types. Recall that type of a string can be considered

a distribution on the corresponding alphabet. For strings U ∈ Σn and V ∈ Πn, conditional

type of U given V can be considered as a set of distributions on Σ indexed by elements of

Π. To define conditional types formally first we need to define joint types.

For strings U ∈ Σn and V ∈ Πn define string U × V ∈ (Σ× Π)n as a string of length n

such that (U ×V )j = (Uj , Vj). Then the joint type of U and V is defined as the type of the

string U × V .



CHAPTER 2. TOOLS 11

A string U ∈ Σn has conditional type R given V ∈ Πn if for any a ∈ Σ and b ∈ Π,

N(a, b|U, V ) = N(b|V )R(a|b).

If for some b ∈ Π, N(b|V ) = 0, then R is not uniquely determined but the set of all

U ∈ Σn having conditional type R, given V , is unique.

From this definition it is clear that for each b ∈ Π, R(·|b) is a distribution on Σ. So R

can be represented by a matrix, rows and columns of which are respectively indexed by Σ

and Π. Since the total value of the entries of each column of this matrix is one, this will be

a stochastic matrix. This alternative representation of a conditional type is useful.

The set of all strings U that have conditional type R given V is called the R-shell of

V and denoted by CR(V ). Corresponding to theorems 4, 5, we have the following results

on conditional types. The proofs are omitted here but they are similar to the proofs of

theorems 4, 5.

Theorem 6 Let V ∈ Πn and X1, X2, ..., Xn be chosen independently from an alphabet Σ

according to a stochastic matrix W(·|·) that gives a distribution on Σ conditioned on string

V . Then the probability of U = X1X2...Xn depends only on TV , and T(U,V ) and is equal to

2−n(H(TU |TV )+D(TU ||W|TV ))

TV denotes type of V and T(U,V ) is the joint type of U and V . Given TV and T(U,V ), TU is

uniquely determined.

Theorem 7
2nH(TU |TV )

(n+ 1)−|Σ||Π|
≤ |CR(V )| ≤ 2nH(TU |TV ).

2.4 Game Theory

Game theory is a branch of mathematics with applications in many different disciplines from

social sciences to engineering. Game theory tries to understand the behavior of systems in

which different players (e.g. humans, computers, etc.) work toward maximizing their own

benefit. Game theory required for our purpose is limited to a basic and well-studied subarea

of this field known as two person zero sum games. This tool has been used frequently in

information theory and information hiding. In this section we start a quick review of game
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theoretic tools and concepts that are needed in the rest of this thesis. For a more in depth

discussion the reader may refer to [38].

In a two person zero sum game, there are two players playing a game with each other.

In the case that we are interested in, this game has one round which means each player

makes one choice and then the result of the game can be computed. Each player has a set

of strategies and chooses one of his strategies at the same time as the other player, with no

information about the other player’s chosen strategy. Formally a game is a tuple (X,Y, P )

where X is the set of strategies of the first player. Y is the set of strategies of the second

player and P : X × Y → < is a function called payoff of the game. We assume that when

players choose their strategies x ∈ X, y ∈ Y , the second player pays P (x, y) to the first

player. So the gain of the first player is equal to the loss of the second player and that’s the

reason for the term zero sum.

The games with finite X and Y are called finite or matrix games. The reason for the

second term is that such a game can be represented by a matrix, the rows and columns

of which are indexed by elements of X and Y and the element in row x and column y is

P (x, y). Such a representation is called the matrix representation of the game.

The discussion below is precise for matrix games. For infinite games there is a subtlety

that we ignore during the discussion but we point it out here. In a finite game values such as

maxx miny P (x, y) do exist. For an infinite game such values may not be reachable but any

value arbitrarily close to supx infy P (x, y) is reachable. For the sake of brevity, we ignore

this point throughout the following discussion.

From the point of view of the first player, when he chooses strategy x1, his guaranteed

gain is miny∈Y P (x1, y). So he can guarantee a gain of maxx∈X miny∈Y P (x, y) by choosing

the right strategy. The strategy x̂ that achieves the maximum in maxx∈X miny∈Y P (x, y) is

called the maxmin strategy of first player. Similarly for the second player one can define a

minmax strategy.

If it happens that

max
x∈X

min
y∈Y

P (x, y) = min
y∈Y

max
x∈X

P (x, y)

then this value is called the value of the game and is denoted by v. Also there exists

strategies x̂, ŷ such that v = P (x̂, ŷ). The pair (x̂, ŷ) is called a saddle point of the game. It

is easy to construct games with no saddle point. For example assume X = Y = {1, 2} and

P (1, 1) = 1, P (1, 2) = 0, P (2, 1) = 0, P (2, 2) = 1.
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When a player chooses a fixed strategy it is said that he plays a pure strategy. Al-

ternatively a player can play a mixed strategy by choosing a distribution over all available

strategies. Then the expected payoff of the game will be E[P (x, y)] in which the expectation

is over random choices of x and y according to players’ mixed strategies.

When matrix games are extended with the notion of mixed strategies the existence of

saddle point for them is guaranteed. In this case, for the first player when playing mixed

strategy x∗, the guaranteed gain is equal to miny∈Y Ex∈x∗ [P (x, y)], where x is drawn from

x∗ randomly. This quantity is equal to miny∗ Ex∈x∗,y∈y∗ [P (x, y)]. Consequently the first

player can guarantee a minimum gain of maxx∗ miny∈Y Ex∈x∗ [P (x, y)]. Similarly the second

player can guarantee a maximum loss of miny∗ maxxEy∈y∗ [P (x, y)]. For all matrix games

we have

max
x∗

min
y∈Y

Ex∈x∗ [P (x, y)] = max
x∗

min
y∗

Ex∈x∗,y∈Y ∗ [P (x, y)] = min
y∗

max
x

Ey∈y∗ [P (x, y)].

This value is called the value of the game as before. Also (x∗, y∗) the maximizing and

minimizing strategies for the two pirates, is called a mixed saddle point of the game. In

1928 von Neumann [35] proved that any matrix game has a mixed saddle point. The original

proof by von Neumann was ”a long and difficult existence proof, based on functional calculus

and topology, of the ’solution’ for all two-person, zero-sum, games with a finite number of

strategies”[32].

This theorem is the basis of some of our experimental results in chapter 3 so we present

the proof here. The proof presented here, adopted from [38] is a relatively simple proof

based on linear programming and it is a constructive proof that finds the mixed saddle

point. We are not aware who came up with this proof first.

2.4.1 Minimax theorem

Theorem 8 Any matrix game has a mixed saddle point.

Proof: Consider a matrix game (X,Y, P ) and assume A is the matrix representation of

the game. For now assume that all entries in A are positive. Consider the following linear

programming problem (2.18) and its dual (2.19)

minimize xu, xA ≥ w, x ≥ 0 (2.18)

maximize yw, Ay ≤ u, y ≥ 0 (2.19)
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Here u = (1, 1, ..., 1) ∈ <|X| and w = (1, 1, ..., 1) ∈ <|Y |. The assumption that all entries of

A are positive, trivially implies that (2.18) has a feasible solution. Also all zero vector is

a feasible solution for (2.19). Feasibility of (2.18), (2.19) implies that both problems have

optimal solutions x̂, ŷ and x̂u = ŷw = θ. Now we claim that (x∗, y∗) where x∗ = x̂/θ y∗ =

ŷ/θ, is a mixed saddle point for game (X,Y, P ). It is easy to check that x∗ and y∗ are

legitimate mixed strategies for players of the game. Assume x and y are arbitrary mixed

strategies for the first and second player. Using (2.18), (2.19)

P (x∗, y) = (x∗A)y =
x̂Ay

θ
≥ wy

θ
=

1
θ

(2.20)

P (x, y∗) = x(Ay∗) =
xAŷ

θ
≤ xu

θ
=

1
θ

(2.21)

In particular when we choose x = x∗ and y = y∗ both sides of (2.20), (2.21) are equal, so

inequalities in (2.20), (2.21) must be equal in that case. This observation means P (x∗, y∗) =
1
θ and (2.21), (2.21) imply that (x∗, y∗) is a mixed saddle point of the game.

Now if A has a non-positive entry, choose c such that P (x, y) + c is positive for all x, y.

Define a new game (X,Y,Q) such that Q(x, y) = P (x, y) + c. It is not hard to see that the

new game has a saddle point if and only if the original game has a saddle point and our

proof is applicable to the new game.

2.4.2 Infinite games

In the game (X,Y, P ), if sets X and Y are infinite the game is called infinite. We are

interested in the case that X,Y ⊆ <n and P is a continuous function on X × Y . Infinite

games with a continuous payoff function admit a saddle point. We state this result here

without a proof. The reader may find a proof in chapter two of [38].

Theorem 9 Any infinite game (X,Y, P ) where X and Y are metric compact sets and H

is a continuous function on X × Y has a mixed saddle point.

Of particular interest to us are so called convex games. These are infinite games with

a continuous payoff function which is convex in y for any fixed x ∈ X. All convex games

have saddle points in which the second player has a pure strategy. As we will see, this result

yields an alternative proof for one of our theorems in chapter 4, but we omit the proof here.

Another property of convex games that is interesting for us is the following.
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Theorem 10 In the convex game (X,Y, P ), Y ⊆ <n the first player has an optimal mixed

strategy with support of size not more than n+ 1.

The proof is omitted here.



Chapter 3

Context

While in cryptography we are interested in hiding the content of a message being trans-

mitted, there are applications in which we are interested in hiding the very existence of a

message. As an example consider a spy who works in a hostile country. To maintain her

safety, the spy prefers to hide any information that she exchanges with her country. In

this case a ciphered message can only worsen the situation and arouse more suspicion. In

some other applications, the hidden message should also have some properties. For example

consider a simple system of copyright protection for pictures that embeds a serial number

in each copy of the picture. In this case, the message should be hidden, i.e. it should be

imperceptible. Also, it should be long enough so that no two copies of the picture have

the same serial number. The fact that each two copies of the picture have different serial

numbers suggests that embedding such a serial number may have more complications that

embedding a unique message in a picture or any other media.

This kind of problems are not new and since ancient ages people have been looking for

techniques for information hiding. In 440 B.C. Histiaeus, the tyrant of Miletus, an ancient

city in what is now Aydin Province of Turkey, tattooed a message on the shaved head of a

trusted slave. After the hair had grown, the message was hidden. The technique has been

used as recently as 20th century by some German spies. Look at [37] and references therein.

According to [5] in 1980’s Margaret Thatcher ordered word processors be programmed

to embed a unique key in the word spacing of documents, so that members of the cabinet

who leak a document can be traced back.

Despite this ancient need for information hiding, it is only slightly more than a decade

that the problem is studied seriously as an independent field of research in academia. The

16
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first international workshop on information hiding was held in 1996 in Cambridge, UK [4].

The purpose of this workshop was to be a place for five or more research communities who

worked on information hiding and were unaware of each other. Among other things, this

workshop produced a standard terminology for the field of information hiding. See foreword

of [4].

In this chapter we look at some of the research problems studied in the area of infor-

mation hiding. We mostly focus on fingerprinting under marking assumption which is the

subject of this thesis.

First we take a quick look at traitor tracing problem, which has a more cryptographic

nature. Historically traitor tracing is the father of fingerprinting, and some other problems

studied in the field of information hiding. Then we took a close look at fingerprinting.

We see formal definition and an overview of the results on fingerprinting. A sibling of

fingerprinting codes is the family of codes with Identifiable Parent Property, also known

as, IPP codes. They are both outcomes of research on traitor tracing problem. We will

quickly look at some problems studied in this in this area as well. At the end we take a

look at steganography. This is a more or less different problem in information hiding that

is a complementary problem for fingerprinting. As we will see soon, in the research on

fingerprinting the problem of how a fingerprint is embedded in a document is not addressed.

This is exactly the problem studied in steganography.

3.1 Traitor Tracing

Traitor tracing was first introduced in [16]. This is the paper that through time originated

various, now independent, research problems, one of them being fingerprinting under mark-

ing assumption. The purpose of traitor tracing is copyright protection. Indeed earlier traitor

tracing schemes can be viewed as a fingerprinting scheme under marking assumption over

large alphabets, where the accusation algorithm is Hamming distance1. This observation

has led to construction of traitor tracing schemes based on fingerprinting schemes. For ex-

ample Boneh and Naor [11] used fingerprinting code constructions of Boneh and Shaw [12]

and Tardos [44] to construct their traitor tracing scheme.

A traitor tracing scheme is supposed to securely distribute a plain text among a number

1Some authors restrict the definition of a traitor tracing scheme to one with Hamming distance as tracing
algorithm. For example see [40].



CHAPTER 3. CONTEXT 18

of authorized users. Here we review one of the constructions of [16] to see how a traitor

tracing system works. The purpose of the construction is to distribute a plain text among a

set of at most n users. The plain text is partitioned to m = log n segments. The distributor

chooses two keys for each segment. Each user receives a decoder. Each decoder has exactly

one of the two keys of each segment. The distributor encrypts each segment using each of the

keys and broadcasts all the 2m encrypted segments. Each users receives all 2m encrypted

segments and use the decoder to discard m of them and decode the other m encrypted

segments. If we identify each of the two keys of a fixed segment using {0, 1}, then the set

of m keys of a user is corresponding to a binary number with log n digits. So for n users

the distriutor can make n distinct decoders using different keys. Now If a user makes a new

decoder based on her own decoder and give it to an unauthorized user, the decoder can be

traced back to the person who built it using the set of keys used in the decoder.

This scheme can be generalized to be secure against coalition attacks by at most k users.

In this kind of attack, k user get together and build a new decoder using possible all the

decoders at their disposal. The distributor chooses r = 2mk2 keys in advance and each user

receives a subset of size m of keys. To distribute keys, the set of all keys is partitioned to

m subsets K1 · · ·Km of size 2k2 and each user receives one key from each subset which is

chosen uniformly and independently at random.

Assume that the distributor wants to send out one segment of plain text to authorized

users. This segment is encrypted to the ciphertext using a key s. This key is then broken

down to m keys s1 · · · sm such that s is bitwise XOR of s1, · · · , sm. Each key si is encrypted

by all keys in the set Ki. All these encrypted keys (2mk2 encrypted keys in total) is sent

to each user along with the ciphertext. Now an authorized user can decrypt si using their

keys, construct s and decrypt the plaintext.

A pirate decoder is an unauthorized decoder capable of decrypting the ciphertext. We

show if a pirate decoder is discovered one of the following two alternatives must hold.

1. Pirate decoder has access to all keys required to decode the ciphertext. This is at least

one key from each Ki.

2. Pirate decoder needs no key to decode the ciphertext, i.e. it breaks the underlying

encryption scheme.

Assuming the underlying encryption scheme is hard to break, we find out the m keys that
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pirate decoder uses to decode the ciphertext2. Then assuming there were no more than

k authorized users who leaked their keys, any authorized user who has more than m/k

common keys with the pirate decoder is accused of leaking their keys.

This scheme can be considered as a fingerprinting scheme which is secure against coali-

tions of size at most k and has an alphabet of size 2k2.

Given the correspondence of this construction with fingerprinting over large alphabet, it

is possible to improve this construction by using better fingerprinting schemes. In particular,

since k-fingerprinting is possible with binary alphabet, number of keys in this construction

can be reduced to 2m.

3.2 Fingerprinting

There are at least three different types of fingerprinting. The first and the most familiar

type is human fingerprinting which needs no explanation. The second type of fingerprinting

has a meaning similar to hashing. As an example there is a technology for audio search

based on fingerprinting (of the second type). This technology allows a user who hears a

music (in a restaurant, a shopping mall, etc.) to find the album and the artist by calling a

number on their cell phone and keeping the connection for a short period of time, say fifteen

seconds [47]. In the call center, a fingerprint of the received piece of music is generated and

is compared against fingerprints of music records in the database. If a match is found the

artist and album of the match is sent to the user by text message.

Another application of this type of fingerprinting is in copyright protection. For this

purpose, a software monitors a media stream and detects music played and compares its

fingerprint against the database.

There are interesting technical problems in generating this type of fingerprint, but this

type of fingerprint is different from the third type that we have considered in this thesis. The

purpose of this third type of fingerprint is protection of copyright or secrecy of a document.

Even though there is some overlap in the applications of the second and third kind of

fingerprint, namely copyright protection, they are completely different.

In order to protect their copyright, content producers may like to make each copy of

their productions unique. This would allow them to trace each copy to its original customer

2This is not a trivial task, but we skip details here.
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(user). A natural way of implementing this idea is to embed a serial number in the product.

Of course, a user must not be able to detect the serial number, otherwise he can randomly

change it and make an illegal copy that can not be traced back to the malicious user i.e.

pirate.

Even if we have embedded serial numbers that cannot be detected by a single user,

coalitions of users might be able to beat the system. A group of pirates can compare

their copies. Any difference that they detect in similar positions of their copies may be an

indication of the embedded serial number. They can produce an illegal copy by changing

the serial number in these detected positions according to a strategy of their choice. This is

called a collusion attack. The specific strategy that pirates use to produce the illegal copy

is called pirate strategy.

Now the content producer cannot simply check serial numbers and find the culprit.

Despite this, there is some hope for the content producer to catch the pirates. There are

certain positions in the serial numbers where all members of a group of pirates see similar

symbols. These positions of the serial number remain undetected by pirates. So they cannot

produce an illegal copy with a completely random serial number. The content producer

hopes to use the undetected portion of serial number to catch the pirates. For this to work,

the “serial numbers” (i.e., codewords) have to be carefully selected. Such a set of codewords

(in fact, a randomized strategy to obtain them) and an accusation algorithm to catch at

least one of the pirates is called a fingerprinting code if it is secure against a limited number

of pirates. The mathematical definition (see below) was first given by Boneh and Shaw [12].

3.2.1 The model

We start with introducing simple notation. We fix a finite alphabet Σ. In this thesis we

consider the binary alphabet Σ = {0, 1} but the definitions below make sense for any alphabet

and fingerprinting is studied over larger alphabets too. For a positive integer n we denote

the set {1, . . . , n} of positive integers not exceeding n by [n]. For a sequence X of length n

and i ∈ [n] we denote the i-th entry in X by Xi, i.e., X = (X1, . . . , Xn).

Definitions and Notation: A fingerprinting code of length n over the alphabet Σ for the

users 1, · · · , N consists of two components. A code generation algorithm and an accusation

algorithm.

Code generation algorithm generates codewords xv ∈ Σn for users v ∈ [N ] and possibly
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some additional input for the accusation algorithm. Before defining the second component

we need some extra definitions and notation. R =
log|Σ|N

n is called the rate of a fingerprinting

code.

Codeword for the user i ∈ [N ] is denoted by xi. Individual bits of this codeword would

be denoted by xij for 1 ≤ j ≤ n. Correspondingly, random variables Xi and Xij denote the

codeword for the user i and the j-th bit of the codeword for the user i.

A subset of users may use a pirate strategy to generate a forged copy. A pirate-strategy

for a set T of pirates and for codes of length n over an alphabet Σ is any (deterministic or

randomized) algorithm that takes as input the codewords xv ∈ Σn of the pirates v ∈ T and

outputs a forged codeword f ∈ Σn that satisfies the so-called marking assumption, i.e., if for

some j ∈ [n] the digits xvj agree for all v ∈ T , then we also have fj = xvj .

The second component of fingerprinting code, the accusation algorithm, takes the output

of code generation algorithm and a forged codeword f ∈ Σn and outputs a set A(f) ⊆ [N ] of

accused users. If f was obtained by the set T ⊆ [N ] of users performing a pirate-strategy

and v ∈ A(F ) for some user v /∈ T , then we say that v is falsely accused. If f obtained by a

pirate-strategy of T ⊆ [N ] but A(f) ∩ T = ∅, then we say the pirates are not caught.

We call a fingerprinting code ε-secure against t pirates if for any set T ⊆ [N ] of users of

size |T | ≤ t using any pirate-strategy the probability that either the pirates are not caught

or some user is falsely accused is at most ε. This probability is over the random choices in

the fingerprinting code generation and possibly in the pirate-strategy.

A fingerprinting scheme over the alphabet Σ is an infinite sequence of fingerprinting

codes Ci over Σ for the set [Ni] of users such that Ni goes to infinity. The rate of such

a scheme is lim supRi, where Ri is the rate of Ci. We say that a fingerprinting scheme is

t-secure if Ci is εi-secure against t pirates with limi→∞ εi = 0. The t-fingerprinting capacity

is the maximum achievable rate of t-secure fingerprinting schemes.

For a binary string x, |x| denotes the number of ones in x. We repeatedly use the Õ

notation for running time of algorithms. Õ suppresses a polylog factor compared to the

standard big O notation, i.e. Õ(f(n)) = O(f(n) logk(n)) where k is a constant independent

of n.

Some comments about this definition are necessary.

• The two type of errors that we mentioned above, naturally come up in the proofs. Usu-

ally proofs show that there exists a property A such that some pirates have property
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A and no innocent user has property A.

• Any fingerprinting code construction must include randomization in some way. It

can be easily seen that a deterministic fingerprinting code does not work. To see

why, consider a binary3 fingerprinting code for a set of three users. Consider the

codeword f such that fi is equal to maj(x1i, x2i, x3i) where maj denotes majority.

This codeword may be generated by any coalition of size two of the above three users

without violating marking assumption and accusation algorithm does not have any

way to specify which user is not in the set of pirates. Randomness is necessary in the

construction of fingerprinting codes in order to escape this trap.

• Pirate strategy might be randomized, but in the proofs, when necessary, we can limit

ourselves to deterministic strategies. This is because a fingerprinting code that is

secure against any deterministic pirate strategy is secure against any randomized pirate

strategy as well. Any randomized strategy can be considered as a distribution over a

set of deterministic strategies and the error probability of the randomized strategy is

the expected value of error probabilities of underlying deterministic strategies.

The goal of fingerprinting research is to find efficient and secure fingerprinting codes. The

paramount problem in the application of fingerprinting codes is the high cost of embedding

every single digit of the code. This makes it important to design secure fingerprinting codes

that are short, or equivalently, have high rate. In particular, recent research focused on

finding or estimating the t-fingerprinting capacity for various values of t.

3.2.2 Lower bounds on fingerprinting capacity

Earlier results on fingerprinting under marking assumption did not use the terminology that

we use here. These works were based on probabilistic analysis techniques and results were

stated in terms of lower bounds and upper bounds on codeword length. Recent results on

fingerprinting has used information theoretic techniques widely so the results are stated in

terms of information theoretic concepts like rate and capacity.

Boneh and Shaw introduced fingerprinting under marking assumption in [12], based

on results of [16] on traitor tracing. The code scheme constructed in [12] is of length

3The code does not need to be binary for the argument to work. We consider binary codes because our
focus is on binary codes.
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O(t4 logNε log 2tL
ε ) where L = 2t log 2NL

ε . This can be translated to a scheme with rate

O( 1
t4

). The construction has two steps, first a simpler but less efficient scheme is constructed

and proved to work. Then code concatenation with random error correcting codes is used

to improve the parameters of the construction.

Barg, Blakley and Katabiansky [8] has used techniques from error correcting codes to

improve the results of [12].

Tardos [44] introduced the notion of bias based code generation that we will see in the

next chapter. This technique simplified code generation considerably as there is no need to

construct fingerprinting schemes based on error correcting codes. The constructions of [44],

results in codes of length 100t2 log(N/ε) which corresponds to rate 1
100t2

. This is the first

construction that achieves the optimal order of magnitude but constant factor optimization

is still possible.

The constant 100 in the length 100t2 log(N/ε) was subsequently improved by several

papers. In particular we are aware of [43], [42], and [10]. All these papers go through

the proof in [44] and optimize various parameters in the proof to improve the codelength

without fundamentally changing the code construction or the accusation algorithm. All

improvements in the codelength directly translates to the same improvement in the rate

of t-secure schemes. The biggest improvement factor, almost 10, was achieved by Skoric,

Katzenbeisser and Celik in [42], but they make a reasonable simplifying assumption without

a mathematical justification. The smaller improvement factors of Skoric, Vladimirova, Celik

and Talstra in [43] and Blayer and Tassa in [10] is based largely on experimental evidence,

although the latter paper rigorously extracts some formulas for the parameters in the proof

of [44], but in the last step they also refuge to experiment to estimate their improvement

factor: it is between 4 and 5. All these improvement factors state the improvement over

Tardos’ original result [44].

In a different approach to the problem people have tried to find a high rate construction

for t-fingerprinting for small t. Here the hope is that the techniques will be then generalizable

to arbitrary t. An early paper in this direction is [41], which achieved rate 0.026 for two

pirates, using (2, 2)-separating codes.

The rate of 2-fingerprinting was improved to 0.2075 [9] by using randomly generated

codes. Based on this result, Anthapadmanabhan, Barg [6] constructed a t-fingerprinting

scheme which, in particular, achieved the best known rate for three pirates at the time:

0.064. Continuing this line of work, Anthapadmanabhan, Barg and Dumer [7] constructed



CHAPTER 3. CONTEXT 24

a t-secure fingerprinting schemes whose rates for t = 2 and 3 are much higher than previously

obtained rates but the rate of their schemes deteriorates exponentially with t. They use

independent uniform random codewords for two and three pirates, but they use the notion

of typicality much more extensively in their analysis that allows them to achieve rates 0.25

and 0.083 for 2 and 3-fingerprinting.

Dumer [21] Considered a simplified version of fingerprinting under marking assumption

in which all codewords are chosen uniformly at random from among strings with Hamming

weight p. In this model, pirates are restricted to generating forged copies of Hamming

weight p as well. The scheme in [21] has a rate ≥ 0.69
t2

. The code construction of this

scheme is similar to bias based code construction with single bias p. As it has been shown

in [3], achieving capacity using bias based code generation, requires using no less than

O(
√

t
4 ln(2) log(t)) different bias values when pirates are allowed to use any strategy that

respects marking assumption.

Another attempt to improve the result of [7] was done by Tardos and the author [3]. We

used the bias based code generation technique of [44] and the notion of typicality that was

previously used in [7] to achieve the best known rate for fingerprinting. We conjecture that

our code achieves the optimal rate (i.e. capacity) for t-fingerprinting for any t. (For t = 2

the same rate was already achieved in [7]). Independently of this work [27] based on earlier

construction in [34] constructed a similar scheme which has similar code construction as [3].

The construction of [3] will be presented in the next chapter of this thesis.

The main drawback of constructions of [3, 27] is the slow accusation algorithm, which is

exponential in t. As a result of this weakness there has been attempts to improve the rate of

the construction in [44] and subsequent papers [42, 43, 10], and keep the running time linear.

Huang and Moulin [26], building on [34], construct a family of suboptimal fingerprinting

scheme that has a linear time accusation algorithm. The rate of their construction is higher

than that of [44] and the construction has game-theoretic nature like those of [3, 27].

We improve this result and unify the constructions of [3, 27, 26] by constructing a family

of fingerprinting schemes parameterized by k ∈ {1, 2, ..., t}. While the larger k results in

a code with higher rate, running time is also higher namely Õ(Nk). Also in the case of

two pirates and k = 1 we improve the accusation algorithm to achieve the optimal rate in

linear time. All previous constructions that achieve optimal rate for 2-fingerprinting have

accusation algorithms of Õ(N2) time complexity.

The accusation algorithm of our 2-fingerprinting code has two steps. In the first step
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user’s codewords are sorted by Hamming distance to the forged copy. If there is user whose

codeword is close enough to the forged copy, the user is accused as pirate, otherwise we run

the algorithm of [3] on selected pairs of users.

Even though minimum Hamming distance sounds to be the simplest and most natural

accusation algorithm it is not yet analyzed in the case of binary alphabets. We are aware of

only one study of minimum Hamming distance as accusation algorithm in [33] that considers

the special case of two and three pirates and uniformly random fingerprints.

In constructions of traitor tracing codes collusion-secure fingerprinting codes are the

central component. In earlier constructions minimum Hamming distance was the accusation

algorithm used to detect pirates, so these constructions include a fingerprinting code with

minimum Hamming distance as accusation algorithm. The constructions that we are aware

of use alphabets of large size.

3.2.3 Upper bounds on fingerprinting capacity

Upper bounds on capacity can be translated to lower bounds on code length. Boneh and

Shaw [12] proved the first lower bound on the length of fingerprinting codes. It is hard to

translate this bound to an upper bound on capacity. Later Tardos [44] showed a stronger

lower bound on the length of fingerprinting codes that achieved the optimal order of mag-

nitude O(t2 log n
ε ), but it was not immediately translatable to an upper bound on capacity.

This result was later improved in [3] to show fingerprinting capacity is of O(1/t2).

Anthapadmanabhan, Barg and Dumer [7] are the first to prove upper bounds on the

capacity of fingerprinting. The upper bounds in their paper is given in terms of a hard

to evaluate information theoretic min max formula. They estimate this formula and prove

strong upper bounds on the t-fingerprinting capacity for small values of t (namely 2 and 3)

and an O(1/t) asymptotic bound.

We conjecture that the rate achieved in [3, 27] is actually the capacity. Proving or

disproving this conjecture is a major open problem in this line of research.

3.2.4 Codes with identifiable parent property

Previously we showed that binary fingerprinting codes cannot be deterministic. This proof

can be generalized to fingerprinting codes over alphabets of arbitrary size. The essential

point in the proof is that in a fingerprinting code a group of pirates who see different
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symbols in a column can use any symbol of the alphabet in that column of the forged

copy. If we restrict the set of eligible pirate strategies, then we reach a restricted version

of fingerprinting codes for which deterministic codes exist. This restricted family is called

codes with identifiable parent property. In this codes in any column pirates can output one

of the symbols that they see in their own codewords.

This family of codes was introduced in [24]. Such codes can be compared with 2-

fingerprinting codes. Let C be a code of length n. For two codewords a = a1 · · · an and b =

b1 · · · bn, Let D(a, b) = {c|∀1 ≤ i ≤ n, ci ∈ {ai, bi}}. Here D(a, b) is the set of descendants

of a and b. Also a and b are called parents of each member of D(a, b). Then we define

C∗ = ∪a,b∈CD(a, b). We say C has identifiable parent property (IPP) if for every c ∈ C∗ all

pairs (a, b) such that c ∈ D(a, b) have a common member.

In [24] various results on these codes has been presented. In particular it has been shown

that Reed-Solomon codes can be used to generate IPP codes. Also it has been shown that

F (n, q), the length of maximum q-ary IPP codes of length n, is larger than both qd
n
4
e and

0.4( q4)
n
3 . Also it is proved that F (n, q) ≤ 3qd

n
3
e and F (3, q) ≤ 3q − 1.

In [28] authors have determined the precise value of F (3, q). More specifically let (r +

1)2 − 1 ≤ q ≤ (r + 2)2 − 1. Then we can write q = r2 + r + k where 0 ≤ k ≤ 2r + 2.

Then authors show that for q ≥ 24, the size of a maximum IPP q-ary code of length three

is equal to 3r2 + m where m is either zero or 3k − 6 ≤ m ≤ 3k − 2. The exact value of m

depends on value of r and k. The interested reader may find the exact result in [28]. The

maximum size of q-ary IPP codes for q ≤ 48 was previously found in [46]. Other authors

have considered decoding algorithms for IPP codes and generalizing IPP codes to arbitrary

number of pirates.

3.3 Steganography

Steganography comes from Greek roots and literally means covered writing [37]. In steganog-

raphy a message is embedded in a media in such a way that its existence is hidden from a

third party. The media in which the secret message is embedded is called cover text. Our

focus here is on the use of digital media as cover text. The general idea in steganography is

to find non-significant data in covertext and modify it to embed the secret message. There

are some ad hoc techniques, for example on a storage device like a hard disk, information

can be written on unallocated space. Furthermore a hidden partition on a hard drive can
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be used for this purpose. Actually a steganographic ext2 file system based on this idea has

been implemented. See [30] and reference therein. Another technique is using unused fields

of networking protocols to store secret information.

Researchers in steganography are mostly interested in using image and audio files as

cover text. There is an abundance of such files being exchanged on the web and it is

easy to write a software to implement an embedding algorithm for audio and image. Also

exchanging audio and image files between two parties arouses little suspicion.

A very simple method of embedding secret information in an image or audio file is to

set the least significant bit of the pixels of the image to the bits of the secret message. For

example if an image file stores RGB information of pixels, modification in least significant

bit, does not result in any perceptible change in the image. This method is called Least

Significant Bit(LSB) method.

Stronger steganography techniques are based on the assumption that the embedding

technique is publicly known and the secrecy is maintained by a private key known to au-

thorized users. The LSB method can be improved by using a one time pad i.e. a pseudo

random binary key that chooses which pixels are chosen for embedding.

A more sophisticated approach stores one bit of secret message as parity of k bits of cover

text [5]. While in the first glance it seems that this will reduce efficiency of steganography

system, it increases the efficiency.

There are two types of attacks against an steganography system. Passive attacks, try

to detect whether or not an innocent looking message being exchanged contains any hidden

information. Active attacks try to destroy any potentially hidden message by using the same

approach, modifying non-significant parts of the message being exchanged.

The basic ideas of steganography that we mentioned above are resistent against passive

attacks but they are very vulnerable when exposed to any active attack. These ideas are

examples of steganographic systems that are known as substitution system. The upside of

these ideas is that they are easy to implement. Authors of [29] enumerate several stegano-

graphic softwares based on least significant bit substitution. There are other steganographic

techniques that are robust to attacks like compression, cropping or image processing. For a

survey of main steganography techniques the interested reader may refer to [29].
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3.3.1 Theoretical questions

There are various theoretical questions studied in steganography literature. The first such

question is how to define security for a steganography system and how one can prove that a

steganographic system is secure. Steganography follows a standard cryptography assump-

tion that the technique used is known publicly and security is due to a secret key shared by

authroized parties. In cryptography there are public key cryptography protocols that are

used to share a secret key between authorized parties. An interesting theoretical questions

is to construct public key steganpgrpahy systems. For discussions regarding such results

and pointers to related work see [5, 25].



Chapter 4

Higher Rates

In this chapter we present the construction of our fingerprinting code that appeared in

[3]. The result of this chapter will also be the basis of constructions presented in the next

chapter.

From a theoretical point of view, our result in this section is not fully constructive. We

use bias based code generation technique of [44] to generate our code matrix, but the optimal

bias distribution that results in optimal code is not known theoretically. Despite this, there

are two solutions that compensate the lack of a fully constructive code generation.

1. Our construction works for any arbitrary discrete bias distribution. Even the condition

of discreteness of bias distribution (that is needed for one of the proofs to work) is

a technical requirement and can be removed. Using distributions other than optimal

distribution results in lower rate. This rate is given in the remaining of this chapter

and is in the form of minimum of a mutual information.

2. Optimal bias distribution can be approximated using numerical computation tech-

niques. Using distributions close to the optimal distribution results in rates close to

optimal. This is a consequence of continuity of mutual information as we will see in

the rest of this chapter.

We solve the game numerically for small t to study the high rate fingerprinting scheme

for small number of pirates.

29
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4.1 Basics

In this section we introduce two basic concepts that has been used in this chapter.

4.1.1 Bias Based Code Generation

Consider the set of users [N ], a distribution D on [0, 1], and assume that we want to generate

a binary codeword xv ∈ {0, 1}n for each user v ∈ [N ]. This is done in a two phase process.

First we pick a bias-vector p̄ = (p1, . . . , pn) choosing the biases pj ∈ [0, 1] independently

for j ∈ [n], each according to distribution D. Then, in the second phase we pick the digits

xvj ∈ {0, 1} of the codewords independently for v ∈ [N ] and j ∈ [n]. We pick xvj with

expectation pj . The distribution D is called the bias distribution. Notice that the bias

vector is kept hidden from the users.

4.1.2 Channel based pirate strategies

These are strategies with the following two properties.

• Each bit fi of the forged copy depends only on the i-th bit of pirates’ codewords.

• Dependence of fi on xji is the same for every column.

A channel based strategy is characterized by a function

S : {0, 1}t → [0, 1].

When pirates use a channel based strategy, for each column i they produce fi randomly

with expectation S(x1i, x2i, ..., xti) where xji denotes the i-th bit of xj . The terms channel

based strategy and channel as well as the notation for the characterizing function are used

interchangeably.

Since pirates are restricted by marking assumption we can further limit ourselves to

eligible channel based strategies. By eligible we mean that S(00...0) = 0 and S(11...1) = 1.

This condition ensures that marking assumption is respected. We will see later in this

chapter that by restricting ourselves to channel based strategies we can simplify our proofs

while maintaining generality of the results.
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4.2 The fingerprint game

We start by defining a two person zero sum game. Assume David and Paula play the

following game. David’s strategy is a real number p ∈ [0, 1]. Paula’s strategy is an eligible

channel S : {0, 1}t → [0, 1].

Using players’ strategies we define a distribution Bp,S over all (t+1)-tuples (x1, ..., xt, f)

as follows. Each xj ∈ {0, 1} (j ∈ {1, ..., t}) is chosen independently with expectation p and

f ∈ [0, 1] is chosen such that Pr[f = 1|x1...xt] = S(x1...xt).

After two players chose their strategies, Paula pays I(x1, ..., xt; f) to David. We denote

this value by Ip,S . Notice that the mutual information is calculated in the distribution Bp,S .

David and Paula may choose to use mixed strategies D1 and D2 where D1 is a distri-

bution over interval [0, 1] and D2 is a distribution over eligible channels S : {0, 1}t → [0, 1].

Then we can define BD1,D2 to be the following distribution. First we choose p ∈ [0, 1] ran-

domly according to D1, then we randomly choose an eligible channel S according to D2.

Now we choose a (t+ 1)-tuple (x1, ..., xt, f) according to Bp,S . Now the expected payoff of

the game would be

Ep∈D1,S∈D2 [Ip,S ] = I(x1, ..., xt; f |p, S), (4.1)

where the conditional mutual information in the right hand side is calculated in BD1,D2 .

When D1 is concentrated on one value p, this distribution is denoted by Bp,D2 . Similarly

when D2 is concentrated on a single value S, it is denoted by BD1,S . It turns out that

Paula is always better off choosing a pure strategy. Assume Paula uses mixed strategy D2.

Consider the pure strategy S where S(x1...xt) = ED2 [S(x1...xt)]. Then for any strategy p

for David,

ES∈D2 [Ip,S ] = I(x1, ..., xt; f |S) = I(x1, ..., xt; f, S) ≥ I(x1, ..., xt; f) = Ip,S . (4.2)

The first equality is true by definition of expected value and conditional mutual infor-

mation. Notice that both sides of the second equality are calculated in Bp,D2 . The second

equality is true because S and (x1, ..., xt) are independent random variables. The inequality

is true because removing one random variable from a mutual information can only reduce

it. I(x1, ..., xt; f) has the same value when computed in Bp,S and Bp,D2 .

It is tempting to repeat the above argument to show that the distributor is also better

off using a pure strategy. This does not work for the following reason. Consider the two
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person game we mentioned before. In the one round of this game Paula chooses an eligible

channel that will be used to choose one bit f . Paula can use a mixed strategy D or the

corresponding pure strategy ES∈D[S]. In either case the value of Pr[f = 0] is the same.

This is not the case for David. As an example the uniform distribution over {0.001, 0.999}
as mixed strategy D and Ep∈D[p] = 1/2 as the corresponding pure strategy. If David uses

the pure strategy then for |(x1, ..., xt)| = t(1
2 ± ε) with high probability for some small ε.

But if David uses the mixed strategy then |(x1, ..., xt)| will be very close to zero or t with

high probability.

Von Neumann minimax theorem says that any two person zero sum game has an equi-

librium. Von Neumann’s original versions of this theorem is for finite games. Here we need

Ville’s continuous version (see [39] for the original one-dimensional version and for example

[36] for the generalization suitable for us) and we have to use that the payoff function is

continuous. Taking the above observation that Paula is better off choosing a pure strategy,

we conclude that

Vt := max
D1

min
S
Ep∈D1 [Ip,S ] = min

S
max
p
Ip,S (4.3)

Here D1 is a distribution on p and Vt is the value of the game. The value of the game is

the minimum expected amount that David will receive if he plays the optimal strategy and

also the maximum expected amount that Paula will pay if she plays his optimal strategy.

Lemma 12 implies that the rate of our fingerprinting scheme, denoted by Rt, is directly

related to Vt
Rt =

Vt
t
.

By Dt we denote the optimal distribution D1 that gives the maximum in (4.3). One of

the proofs, as we will see soon, requires that Dt is a discrete distribution. This is indeed true.

As Theorem 16 will show, the size of the support of Dt has a lower bound of
√

t
4(ln 2)(log t)

and an upper bound of b t2c + 1. The exact size of the support is unknown even for small

values of t ≥ 4. For t = 2, the optimal distribution is concentrated on the single value 1
2 .

For t = 3 the support includes two values p and 1 − p. Our numerical results show that p

is close to 0.26.

4.2.1 Details of construction

We denote our code for fingerprinting with Et,R,δ,n. Here, t is the maximum number of

pirates. R is the rate of the code, n is codelength and δ is a security parameter.
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Codewords are generated using bias based code generation with D = Dt. So the optimal

strategy for David is used in code generation. It seems that the type of strategy we have

considered for Paula in the game is much more restricted than possible strategies that can

be used by pirates. For one thing, the value of f at one column may depend on values of

xi at other columns. But we prove that there always exists an eligible channel that is close

enough to the pirate strategy. Assume that we generate codewords of a fingerprinting code.

Consider a t-tuple u = (x1...xt) of pirates1 that generate a forged codeword f . Let Bu be

the joint type of the codewords of the pirates and the forged copy f .

Alternatively Bu can be defined by choosing a (t+ 1)-tuple (x1i, ..., xti, fi) where i ∈ [n]

is chosen uniformly at random and (xji denotes the i-th bit in the codeword of xj .

Definition: Given a t-tuple u of users and the corresponding distribution Bu, the perceived

strategy of u is the conditional type of the forged copy f given codewords of users in u.

Alternatively the perceived strategy is denoted by a channel S defined as S(b) = E[f |xu = b]

for all b ∈ {0, 1}t with Pr[xu = b] > 0, where the probability and expectation are in the

distribution Bu. For values of b with Pr[xu = b] = 0 we arbitrarily define S(b) = 0 with the

exception of S(1t) = 1 (to make S eligible if possible).

Lemma 11 Consider the codewords generated for users of a fingerprinting code Et,R,δ,n and

a set of at most t pirates performing a pirate-strategy to produce the forged codeword. Let u

be a t-tuple of distinct users including all the pirates. Then the perceived strategy S of u is

an eligible channel and the probability that the total variation distance of Bu and BDt,S is

greater than δ is exponentially small.

We present the proof of this lemma in the next section.

Accusation Algorithm: To accuse pirate(s) based on a given forged copy f we repeat the

following for any t-tuple of users until at least one person is accused. Fix a t-tuple u of users

and find the corresponding perceived channel S. If the perceived channel is not eligible then

accuse no one in u (but some members of u might be accused later on in the course of the

algorithm). Also if the variation distance between Bu and BDt,S is larger than δ accuse

nobody in the tuple (again some users in this tuple might be accused later). Otherwise

choose a minimal nonempty w ⊆ u such that I(xw; f) ≥ |w|Rt. Then accuse all users in w.

1Here we identify users with their codewords.
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Notice that such a w exists because (4.3) implies I(xu; f) > tRt. Mutual informations to

be interpreted in BDt,S .

If we can show that it is unlikely that the accusation algorithm accuses an innocent user,

then Lemma 11 implies that the accusation algorithm will catch at least one of the pirates.

The next lemma shows that probability of accusing an innocent user is exponentially small.

In the next lemma we don’t require that the number of pirates is at most t only that this

number is subexponential, i.e., 2o(n). Consequently if the number of pirates exceeds the

bound t, even though the accusation algorithm may fail to detect any pirate, no innocent

user will be accused with high probability.

Lemma 12 For any t and R < Rt and small enough δ > 0 the following holds for the

fingerprinting codes Et,R,δ,n. For an arbitrary, but subexponential size set of users (the

pirates) performing any pirate strategy the probability that anybody gets falsely accused is

exponentially small.

4.3 Proofs

In the proofs below, when we use the term with high probability, we mean with probability

1− α where α is exponentially small.

Proof of Lemma 11: First assume that instead of Bu and BDt,S we want to upper

bound the variation distance of Cu and CDt . Here Cu is the marginal distribution of Bu
on (x1, ..., xt, p). (f is discarded). similarly CDt is the marginal distribution of BDt,S on

(x1, ..., xt, p). Since f is discarded CDt does not depend on S. This distance is easy to bound.

There are finitely many values that p can take2. Denote the number of possible values of p

by k. So a tuple (x1, ..., xt, p) can take 2tk possible different values. Using Chernoff bound

one can show that probability of each value in Cu and in CDt differs by at most δ
2t+1k

with

high probability. This is enough to show that variation distance of Cu and CDt is bounded

from above by δ
2 with high probability.

Now we consider a third distribution B∗. Marginal distribution of B∗ on (x1, ..., xt, p)

is Cu, but like BDt,S , f is generated using channel S. Variation distance between B∗ and

BDt,S is the same as the variation distance of Cu and CDt . So variation distance of B∗ and

2Here we use the assumption that David’s strategy is a discrete distribution
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BDt,S is at most δ
2 with high probability. It remains to bound the variation distance of Bu

and B∗ by δ
2 . Then triangle inequality gives the result required.

To bound the distance of B∗ and Bu we consider a four step process to generate code-

words.

1. First we generate the bias vector (P1, ..., Pn) according to Dt.

2. Generate the codewords of pirates.

3. Choose a new bias vector P ′ from among all permutations of the vector generated

in step 1 that satisfy the following condition. Joint type of the bias vector and the

pirates’ codewords must not change.

4. Generate the codewords for other users using bias vector P ′.

After step 2, codewords for pirates are fixed. In the next steps, joint type of pirates’

codewords and bias vector will not change. So the distribution Cu, as defined earlier, is

fixed. In B∗ generation of f is done according to perceived channel S. So at the end of step

2, B∗ is fixed. This is not the case for Bu. It is possible that the joint type of the forged

copy, the pirates’ codewords and the bias vector change during the third step. So Bu will

be fixed only after step 3.

Now we fix a value (b, c, p0) and bound the difference of its probability in Bu and B∗.

We consider the following sets.

H = {j ∈ [n]|(Xu1
j , ..., Xut

j ) = b} (4.4)

H0 = {j ∈ H|Fj = c} (4.5)

H ′ = {j ∈ H|P ′j = p0} (4.6)

H ′′ = {j ∈ H|Pj = p0} (4.7)

After the second step H, H ′′ and H0 are fixed but H ′ will be fixed only after the third

step. The probability of occurrence of (b, c, p0) in Bu is

|H ′′ ∩H0|
n

(4.8)

This can be interpreted as the size S of intersection of a fixed set H0 with a uniform random

subset (H ′) of a given size (|H ′′|) of a fixed base set (H). The expected value of S is |H
′|·|H0|
n|H|

which happens to be the probability of occurrence of (b, c, p0) in B∗. Using Chernoff bound,
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one can show that the probability that S differs a lot from its expected value is exponentially

small.

Proof of Lemma 12: We start by fixing a tuple w of pirate indices and assuming that xw
have used a pirate strategy to produce the forged copy f . So at this point biases, codewords

for pirates and forged copy are fixed but codewords for innocent users are not yet generated.

The accusation algorithm is performed in BDt,S . But we need to prove that our claim

holds when dealing with Bu. Given the continuity of mutual information and if the variation

distance between BDt,S and Bu is small then we have Iu(xw; f |p) ≤ I(xw; f |p) + δ′. Here Iu
and I respectively denote mutual information calculated in Bu and BDt,S .

Assume that accusation algorithm pronounces a tuple xz of users to be pirates. We want

to prove that it is unlikely that some users in xz are innocent. On the contrary assume that

xz can be partitioned to two subsets xz1 and xz2 such that users in xz1 are pirates and those

in xz2 are innocent. If xz2 is nonempty we can write

I(xz; f |p) = I(xz1 , xz2 ; f |p) = I(xz1 ; f |p) + I(xz2 ; f, xz1 |p) (4.9)

The first equality is trivial. The second equality is true because given p, xz1 and xz2 are

independent. Now, we know that xz is a minimal set of users such that I(xz; f |p) ≥ |z|Rt.
So I(xz1 ; f |p) ≤ |z1|Rt. Consequently, we should have I(xz2 ; f, xz1 |p) ≥ |z2|Rt.

We conclude that to prove the lemma we need to show that the probability that we

assign codewords to users xz2 such that

I(xz2 ; f, xz1 |p) ≥ |z2|Rt (4.10)

is exponentially small.

Notice that in (4.10), xz1 , f and p are fixed and codewords for users in xz2 are selected

randomly according to bias vector p. The fact that this set of users has been considered

by the accusation algorithm implies that, the conditional type of xz2 given bias vector p is

typical, i.e. close to the expected type. Theorem 7 implies that the number of such choices

is within a polynomial factor of 2nH(z2|p).

Similarly to pass the accusation algorithm conditional type of xz2 given xz1 , f , and p

must be close to expected. Also the number of such choices is within a polynomial factor

of 2nH(xz2 |p,xz1 ,f).
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This implies that the probability of choosing codewords xz2 such that (4.10) holds is

2−nI(xz2 ;xz1 ,f |p)+O(logn) (4.11)

≤ 2−nI(xz2 ;f |xz1 ,p)+O(logn) (4.12)

≤ 2−n|xz1 |Rt+δ
′n+O(logn) (4.13)

O(log n) in the exponent suppresses the polynomial factors we encountered in the count-

ing. The first inequality is a general property of mutual information and the second one is

result of (4.10).

Now we need to take a union bound. This will make sure that different choices of xz2
and xz1 are taken into account. Let q = |z2|. Then there are 2qRn choices for xz2 . Also

given that t is a constant, there are constantly many choices for xz1 . (Notice that here the

only requirement on t is that it is subexponential in n.) So the total error probability is

2(R−Rt+δ′)qn+O(logn).

Choosing δ′ < Rt −R is enough to make sure that the claim holds.

4.4 Numerical Results

As the proofs in the previous section are not constructive, we study the high rate finger-

printing code for small values of t through solving the game numerically. In this study we

look at the value of Ip,S and find Vt as well as minimizing S and maximizing values of p.

There are infinitely many choices for p and S. So instead of working on the continuous

interval [0, 1], we consider the discretized set A = {0, 0.01, 0.02, ..., 1}. To fix a pirate

strategy we need to choose 2t − 2 values from A. To speed up the search, we reduce this

number to t − 1 by restricting ourselves to symmetric channels. A symmetric channel S,

has the following two properties.

1. For each x, y ∈ {0, 1}t where |x| = |y|, S(x) = S(y).

2. For each x, y where |x| = t− |y|, S(x) = 1− S(y).

We need to prove that by restricting ourselves to symmetric channels, we don’t miss the

optimal channel. We can further speed up our search by looking at values of p in A∩ [0, 1/2].

To justify this restriction we need to show that Dt can be chosen such that for any p,

PrDt(p) = PrDt(1− p).
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Lemma 13 There exists a symmetric channel S such that maxpIp,S ≤ Vt. Also Dt can be

chosen such that for any p ∈ [0, 1], PrDt(p) = PrDt(1− p).

The lemma above is actually very useful and has applications beyond solving the game

numerically as we will see in the next chapter. Table 4.4 below summarizes our numerical

results.

t Support of Dt St Rt
2 0.5 0, 0.5, 1 0.25
3 0.26, 0.74 0, 0.38, 0.62, 1 0.0975
4 0.227, 0.773 0, 0.27, 0.5, 0.73, 1 0.0545
5 0.18, 0.82 0, 0.23, 0.36, 0.64, 0.77, 1 0.0338
6 0.15, 0.85 0, 0.19, 0.31, 0.5, 0.69, 0.81, 1 0.0232
7 0.13, 0.50, 0.87 0, 0.16, 0.26 , 0.44, 0.56, 0.74, 0.84, 1 0.0168

Table 4.1: Optimal channels and distributions and the rate for t up to 7. The third col-
umn lists values of St(x) in increasing order of |x|. All numbers for t ≥ 3 are numeric
approximations.

4.4.1 Proof of Lemma 13

Assume that S is an optimal pirate channel. We show how to modify S and make it

symmetric while preserving its optimality. To achieve the first symmetry condition we

define

Sσ(x1, x2, ..., xt) = S(xσ(1), xσ(2), ..., xσ(t))

for any permutation σ over {1, 2, ..., t}. Then define a new channel, S̄ such that

S̄ = Eσ[Sσ]

where Eσ means expectation over uniform distribution over all permutations σ. Then

Ip,S̄ ≤ Eσ[Ip,Sσ ] = Ip,S

The proof of the inequality is the same as Equation 4.2. The equality is proved using the

fact that Ip,Sσ has a fixed value independent of σ. It is easy to verify that S̄ satisfies the

first condition of symmetry.

For the second condition, again consider an optimal channel S. We show how to change

it to achieve the second condition of symmetry while preserving optimality. Similar to the
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first part define a channel S′ such that

S′(x1, x2, ..., xt) = 1− S(1− x1, 1− x2, ..., 1− xt).

Consequently we have Ip,S = I1−p,S′ . Now define,

S̄(x1, x2, ..., xt) =
S(x1, x2, ..., xt) + S′(x1, x2, ..., xt)

2
.

It can be seen that S̄ is optimal while it satisfies the second condition of symmetry.

To prove the last statement of the lemma regarding Dt, assume Dt is not symmetric

and define the distribution D1 such that for all p,

PrD1(p) = PrDt(1− p).

Now define the distribution D̄ such that

PrD̄(p) =
PrDt(p) + PrD1(p)

2
.

We have

Ep∈D̄[Ip,S ] =
Ep∈D1 [Ip,S ] + Ep∈Dt [Ip,S ]

2
=
Ep∈Dt [I1−p,S ] + Ep∈Dt [Ip,S ]

2
≥ Vt.

This proves that D̄ is also an optimal distribution and it is symmetric.

4.5 Estimating Rt

Even though we have a formula that give us the exact value of Rt, the current form of this

value is not informative. In this section we try to find bounds on Rt. We have a couple of

different formulas that give us the value of Rt.

Rt =
1
t
Ep∈Dt [Ip,St ] = max

p
Ip,St = min

S
Ep∈Dt [Ip,S ] =

Vt
t
.

The main difficulty here is the presence of mutual information in the above formulas. As we

saw in Section 2.2, mutual information can be stated as relative entropy of two probability

distributions. Pinsker’s inequality of section 2.2 gives us a lower bound on the value of this

relative entropy. We use this tool to prove a lower bound on Rt.

For a fixed p, Ip,St can be written as D(P(x1, ..., xt, f)||P(x1, ..., xt)P(f)). Here P(X) is

the distribution of random variable X. Remember that x1, ..., xt are binary random variables

with expectation p and f is a binary variable with expectation St(x1, ..., xt).
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Let x denote the t-tuple (x1, ..., xt) and define h(c||d) = c log c
d + (1 − c) log 1−c

1−d . Also

let g(p) = Pr(f = 1). Then D(P(x1, ..., xt, f)||P(x1, ..., xt)P(f)) can be written as∑
x∈{0,1}t

Pr(x)h(St(x)||g(p)).

This in turn is equal to Ep[h(St(x)||g(p)], where Ep[·] denotes expectation in the distribution

Bp,St . So we have

Ip,St = Ep[h(St(x)||g(p))] (4.14)

Now we can apply Pinsker’s inequality and write

Ip,St ≥
2

ln 2
Ep[(St(x)− g(p))2] (4.15)

Since we have

g(p) =
∑

x∈{0,1}t
St(x)p|x|(1− p)t−|x| = Ep[St(x)],

the expectation in Equation (4.15) is exactly variance of St(x). Unfortunately calculating

the variance of an unknown function of a random variable is not an easy task so we need

to find a way to bound this value from below. The observation below is the solution to our

problem. Let ∆ = |x| − pt. Then

Ep[St(x)∆] = (p− p2)g′(p). (4.16)

Remember that g(p) is an unknown value but we know that g(0) = 0 and g(1) = 1 due to

marking assumption. So we know that
∫ 1

0 g
′(p)dp = 1. As we will see later this helps us to

get around the problem of St being unknown. Now we can use Cauchy-Schwarz inequality

Ep[(St(x)− g(p))2]Ep[∆2] ≥ Ep[(St(x)− g(p))∆]2. (4.17)

Given that Ep[∆] = 0, we also have

Ep[(St(x)− g(p))∆] = Ep[St(x)∆]− g(p)Ep[∆] = (p− p2)g′(p). (4.18)

Also we have Ep[∆2] = t(p − p2). This is because Ep[|x|] = pt, hence Ep[∆2] = Ep[(|x| −
pt)2] = V ar[|x|] = V ar[x1 +x2 + ...+xt]. Given p, variables xi are independent and each of

them has variance p− p2. So Ep[∆2] = t(p− p2). Putting this last observation and (4.15) -

(4.18) together, we conclude that

Ip,St ≥
2

ln 2
E[(St(x)− g(p))∆]2

E[∆2]
=

2
ln 2

(p− p2)(g′(p))2

t
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So

g′(p) ≤

√
ln(2)tIp,St
2(p− p2)

≤

√
ln(2)t2Rt
2(p− p2)

. (4.19)

Earlier we said that
∫ 1

0 g
′(p)dp = 1. Using the fact that

∫ 1
0 (p − p2)−1/2dp = π and taking

the integral of both sides of the inequality (4.19) from zero to one we have

t2Rt ≥
2

ln(2)π2
.

So we have proved the following theorem.

Theorem 14

Rt ≥
2

ln 2π2t2
=

0.292...
t2

This technique can be stretched to result in a stronger bound even though the stronger

bound is an asymptotic one, unlike Theorem 14 that holds for any t ≥ 2.

Theorem 15

Rt ≥
1

2 ln(2)t2
+ o(t−2) =

0.721...+ o(1)
t2

Proof: We use the same notation and some of the formula in the proof of Theorem 14.

Recall (4.18) where we applied Cauchy-Scwarz inequality. Let ∆̂ = St(x)− g(p). We want

to bound E[∆∆̂]. This time our plan is this. We consider three different cases, depending

on the value of ∆ and ∆̂. In each case we come up with a bound for E[∆∆̂]. Then we put

these bounds together and construct a new upper bound for g′(p), as we did the same thing

in (4.19). After this step, our proof will be totally different from the previous proof.

Let T1 and T2, be two positive thresholds. We do not fix these thresholds rather we

will put some constraint on their values. Then consider three different events. Event A1

in which ∆̂ ≤ A1. Event A2, that ∆̂ > A1, but ∆ ≤ T2, and event A3 that ∆̂ > A1 and

∆ > A2. Let χa be the indicator random variable corresponding to Aa. Then

Ep[∆̂∆] =
3∑

a=1

Ep[χa∆̂∆] (4.20)

Now we calculate an upper bound for each term of the summation above separately. The

case of A1 is more complicated. First assume that g(p) ≤ 1/2 . Now we apply the stronger

form of Pinsker’s inequality (Lemma 2). For St(x) ≤ 1/2, if St(x) ≤ g(p),

h(St(x)||g(p)) ≥ ∆̂2

2 ln(2)(g(p)− (g(p))2)
.
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Alternatively if g(p) > St(x) and St(x)

h(St(x)||g(p)) ≥ ∆̂2

2 ln(2)(St(x)− (St(x))2)
.

Finally if St(x) > 1/2, the original form of Pinsker’s inequality implies that,

h(St(x)||g(p)) ≥ 2∆̂2

ln 2
.

Assuming A1 holds(i.e. ∆1 ≤ T1) we can merge all three cases to

h(St(x)||g(p)) ≥ ∆̂2

2 ln(2) ((g(p)− (g(p))2) + T1)
.

From this we conclude

Ip,St = Ep[h(St(x)||g(p))] ≥ Ep[
χ1∆̂2

2 ln(2)(g(p)− g(p)2) + T1
] (4.21)

Now we have

Ep(χ1∆̂∆)2 ≤ Ep[χ1∆̂2]Ep[∆2] = (p− p2)tE[χ1∆̂2].

Combining the last two inequalities we have

Ep[χ1∆̂∆] ≤
√

2 ln(2)(p− p2)(g(p)− (g(p))2 + T1)tIp,St (4.22)

If A2 holds we will have ∆̂ > 0 and ∆ < T2∆̂
T1

. Combining this with (4.15) we get

Ep[χ2∆̂∆] ≤ T2

T1
Ep[χ2∆̂2] ≤ T2

T1
Ep[∆̂2] ≤

ln(2)T2Ip,S
2T1

(4.23)

Finally in the case A3 holds we use the trivial bound ∆̂∆ < t. Assume T2 ≤ 2(p− p2)t,

and remember that Ep[∆] = 0. We use Chernoff inequality to bound the probability of

∆ > T2 and conclude that

Ep[χ3∆̂∆] ≤ tE[χ3] ≤ 2te
− T2

2
4(p−p2)t (4.24)

assuming T2 ≤ 2(p− p2)t.

Substituting (4.22), (4.23), and (4.24) in (4.20) we obtain

g′(p) ≤

√
2 ln(2)(g(p)− (g(p))2 + T1)tIp,St

p− p2
+

2T2Ip,St

T1(p− p2)
+

2t
p− p2

e
− T2

2
4(p−p2)t (4.25)
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given that T1 > 0 and 0 < T2 ≤ 2p(1− p)t2. Now to make things simpler we work with the

limit of function g and provide an asymptotic bound. Let α = lim inft→∞ tIp,St and let ti
be a sequence of positive integers such that when i tends to infinity ti →∞ and tIp,St → α.

In distribution Bp,Sti let gi(p) = E[f ]. In other words gi is the function g studied above for

t = ti.

Inequality (4.19) implies that functions g
′
i, the derivatives of gi, obey a uniform bound.

This means there is a constant c(p) which depends only p and not on i or ti such that for

all i, gi(p) < c(p). Given this, we can employ Arzela-Ascoli theorem of functional analysis

and conclude that there exists a subsequence of functions gi that uniformly converges to

a function g∞. Actually we do not need all the power of this theorem, and only a weaker

assertion that a subsequence of functions gi pointwise converge to g∞ is enough. This means

that there exists a sequence `i such that for each p, g`i(p)→ g∞(p) when i tends to infinity.

This function g∞ will be continuous and also we have g∞(0) = 0 and g∞(1) = 1.

Unfortunately g∞ may not be differentiable so instead of working with its derivative we

work with the upper derivative g+
∞(p) = lim suph→0

g∞(p+h)−g∞(p)
h . This upper derivative

exists due to continuity of g∞. We want to rewrite (4.25) for g∞, but first we want to choose

T1 and T2 in a way that simplifies the right hand. For different gi we may need to define

T1 = T1,i and T2 = T2,i separately. For our purpose it’s enough to make sure the following

conditions are respected. When i tends to infinity,

T2,i√
ti ln ti

→∞, tT1,i

T2,i
→∞ and T1,i → 0.

Then we will have

g+
∞(p) ≤

√
2 ln(2)α(g∞(p)− (g∞(p))2)tIp,St

p− p2
(4.26)

Let G(p) = arccos (1− 2g∞(p)) for p ∈ [0, 1]. We have G(0) = 0 and G(1) = π and G is

continuous at 0,1. Also g∞(p) = (1−cos(G(p)))/2 and sin(G(p)) = 2
√

((g∞(p)−(g∞(p))2)).

Therefore

g+
∞(p) = sin(G(p))G

′+(p)/2 =
√

(g∞(p)− (g∞(p))2)G
′+(p),

where G
′+(p) denotes the upper derivative of G(p). Using (4.26) we conclude

G
′+(p) ≤ 2 ln(2)α(p− p2)−1/2
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for 0 < p < 1. Then we have

π = G(1)−G(0) ≤
∫ 1

0
2 ln(2)α(p− p2)−1/2dp = 2 ln(2)απ.

So we must have α ≤ 1
2 ln 2 .

4.6 Support of Dt

In order to have an explicit construction of the optimal fingerprinting code described, an ex-

plicit construction of the distributor’s optimal distribution, Dt, is required3. Unfortunately

we don’t know much about this distribution. We have only been able to prove some bounds

on the size of the support of Dt. The theorem below states this result.

Theorem 16 Let Kt denote the size of the support of Dt, the optimal bias distribution.

Then √
t

2 ln 2 log t
≤ Kt ≤

5
2
t− 1

Before proving the theorem formally, we present the idea of the proof informally. The

lower bound is proved based on the following idea. Assume that support of Dt is too small.

Then there is an interval A of size at least ε, for a properly chosen ε, such that A ⊂ [0, 1]

and A excludes all points in the support of Dt. Then we can construct a pirate strategy S,

such that for any p 6∈ A, Ip,S < Vt. Given the definition of Vt, this is a contradiction.

As for the upper bound we consider an equation whose roots include all points in the

support of Dt, and possibly some other points. This equation has log factors, so we go

through some algebraic manipulation to transform it into an equation involving polynomials.

Then the degree of this polynomial along with the number of potentially lost roots during

algebraic manipulations gives us an upper bound on the size of the support of Dt.

Proof: For the lower bound let ε =
√

ln 2 log t
t and let α ∈ [0, 1] be arbitrary. For x ∈ {0, 1}t

let S(x) = 0 if |x|t < α and S(x) = 1 if |x|t ≥ α. As this channel S is deterministic we have

H(f |x) = 0 in the distribution Bp,S for any p. In the same distribution we have

Ip,S = I(f ;x) = H(f)−H(f |x) = H(f) = h(E[f ]). (4.27)

3As we mentioned before, other bias distributions may be used and the construction still works, but the
rate achieved, will not be necessarily optimal.
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For p ≤ α− ε we have

E[f ] = Pr[|x| ≥ αt] ≤ e−2ε2t = 1/t2

by the Chernoff bound. Using h(u) ≤ u log(e/u) we obtain

Ip,S = h(E[f ]) ≤ h(1/t2) ≤ log(et2)
t2

< Vt,

where the last inequality comes from Theorem 15.

We can prove Ip,S < Vt similarly for p ≥ α + ε. But by the definition of Vt we have

Ep∈Dt [Ip,S ] ≥ Vt, so there should be at least one p ∈ (α − ε, α + ε) that belongs to the

support of Dt. As α was arbitrary, this implies the claimed lower bound on the size of the

support of Dt.

For the upper bound note that each point p in the support of Dt is a root of the equation

(Ip,St = Vt). Here equation 4.27 shows Ip,St = h(M(p)) − K(p) with the binary entropy

function h and some degree t polynomials M and P . Thus, we have to bound the number

of roots of the function

h(M(p))−K(p)− V. (4.28)

Now the first derivative of (4.28) is

M ′(p)(logM(p)− log(1−M(p)))−K ′(p). (4.29)

It is not hard to see that M ′(p) is not identically zero. Divide by M ′(p) to get

logM(p)− log(1−M(p))− K ′(p)
M ′(p)

(4.30)

and compute the derivative again:

M ′(p)
ln 2M(p)(1−M(p))

− K ′′(p)M ′(p)−M ′′(p)K ′(p)
M ′(p)2

(4.31)

Multiplying by the denominators we obtain a polynomial of degree at most 4t− 3. One

can see that this is not identically zero (or it is even simpler to see that if it were zero, then

(4.28) would be a polynomial of the form cM + d and thus it would have at most t roots

as needed). Consequently (4.31) has at most 4t − 3 roots. Given that M ′(p) is of degree

less than t, we can partition (0, 1) to at most t intervals such that (4.30) is differentiable

on each interval. On each of these intervals (4.30) has at most one root more than (4.31).
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So (4.30) has at most 5t− 3 roots. These are all roots of (4.29) as well. Any extra root of

(4.29) would be a common root of M ′(p) and K ′(p) and so a root of the polynomial that

we get at the last step. So (4.29) has also at most 5t− 3 roots.

Each root of (4.28) is also a maximum and consequently a root of its derivative (4.29)

too. In addition to these, (4.29) must have at least one root between each two roots of

(4.28). As (4.29) has at most 5t− 3 roots (4.28) has at most 5
2 t− 1 roots as claimed.

The theorem above was published in [3]. After this paper, Huang and Moulin [27] based

on an earlier result by Moulin [34] constructed a fingerprinting code similar to ours. Using

Theorem 10 it was shown in [27] that the upper bound on Kt is at most Kt ≤ bt/2c + 1.

This is based on Lemma 13 that implies strategy of second player in fingerprinting game

can be confined to a subset of <bt/2c. Then Theorem 10 implies Kt ≤ bt/2c+ 1.



Chapter 5

Quick Accusations

Our construction in the previous chapter achieves highest known rate for fingerprinting, but

the accusation algorithm of our code is slow. In this chapter we address this problem.

In Section 5.1 we modify the accusation algorithm of the previous chapter. The new

algorithm has a different analysis, specially when proving no innocent user is accused. In

Subsection 5.1.1 we use the new accusation algorithm and its analysis to construct a family

of fingerprinting codes that are parameterized by a tradeoff parameter k ∈ {1, 2, · · · , t}.
The codes with small k, have a faster accusation algorithm, but lower rate while the codes

with large k have slower accusation algorithm and higher rate.

In Section 5.2 we look at two approaches for improving the result of the Section 5.1.1.

While we show the first method does not work for large t, it remains open to study the

second approach.

In Section 5.3 we show that for two pirates we do not need to sacrifice rate to speed up

the accusation algorithm. We construct an accusation algorithm which runs in Õ(N) and

achieves the same rate as our construction in the previous chapter.

In Section 5.4 we introduce a new model for fingerprinting called weak fingerprinting

and a weak fingerprinting code. The reason for introducing the model is discussed there.

Not surprisingly, in this chapter we will use the notation of the last chapter. Among

other things we will repeatedly work with distributions BD,S and Bu that we defined in the

previous chapter.

47
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5.1 Modifying the accusation algorithm

The high rate fingerprinting scheme that we constructed achieves the highest known finger-

printing rate, but the running time is growing exponentially with t. A simple observation

allows us to construct a family of fingerprinting schemes parameterized with an integer

k ∈ {1, 2, · · · , t} that controls a tradeoff between the rate and efficiency of the accusation

algorithm. This parameter is chosen by the distributor when constructing the code. Smaller

values of k result in a code with a lower rate and faster accusation algorithm.

The codes that are achieved at the two extremes of our tradeoff are not new. For

k = t we achieve the same code that was constructed in the last chapter. Independent of

us a similar code with the same rate has been constructed in [27] building on the results

of [34]. Interestingly, our construction here is different from both previous constructions.

These three different constructions, achieve the same rate and have similar code generation

algorithms but accusation algorithm and its analysis is different. When proving that almost

surely some pirate will be accused, our analysis in this chapter is almost the same as the

one in the previous chapter. When proving no innocent user will be accused these three

constructions are different. The code on the other end of extreme (k = 1) is also constructed

in [26] building on the results of [34]. Our algorithm and analysis in this chapter is different

from that of [26].

For any k the running time of the accusation algorithm is Õ(Nk). For k = 1 we achieve

linear running time which matches the running time of [44]. While the rate of our code with

k = 1 will be smaller than the rate of our previous code, it is better than the rate of [44]

and subsequent improvements that we are aware of. We will discuss this issue soon.

In the rest of this section we introduce a new accusation algorithm for the high rate code

of the last chapter. At the end we make an observation that results in the tradeoff. The

result on tradeoff will be discussed in section 5.1.1.

We start by stating a few definitions and then the new accusation algorithm. Then we

will prove the correctness of the new accusation algorithm.

In the last chapter we defined the notion of perceived strategy for a group of users which

is the conditional type of the forged copy given user codewords. In this chapter we use a very

similar concept. For a tuple u of users, let Su denote the conditional type of a forged copy

given codewords of users in u. This is almost identical to the notion of perceived strategy,

except that the former is used for a tuple of users u when we suspect that u includes all
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pirates and no innocent users. Su is a more general concept and we use it for any tuple u

of users.

Also in this chapter we use two distributions Bu and Bp,S in this generalized setting. If

for u ⊂ w, |u| < |w| = t then Bu is the marginal distribution of Bw with users in w − u
removed.

Our counterpart of Bp,S in this chapter is a little bit more complicated. If tuple u is of

size t then Bp,Su = Bp,S where S is the perceived strategy of u. Also for any v ⊂ u, Bp,Sv is

the marginal distribution of Bp,Su with users in v−u removed. Now for v, |v| < t where the

corresponding superset of size t is unknown, we can still define Bp,Sv similar to Bp,S except

that now we have a tuple of size smaller than t, and instead of a perceived strategy we work

with Sv which is a generalization of the notion of perceived strategy1. For a given tuple u

of size t and v ⊂ u, two definitions of Bp,Sv , presented in this paragraph, are equivalent as

the reader can easily verify. Similar to the last chapter we can extend this definition and

define BD,Sv where D is a bias distribution.

The following definition is inspired by the concept of Maximum Penalized Mutual

Information (MPMI) decoder of [34].

Definition: In a fingerprinting code with rate R that has a bias based code generation

let Penalty(u) = I(xu; f |p) − |u|R. Tuple u is called high penalty, if for any w ⊂
u, Penalty(u) ≥ Penalty(w). The mutual informations implicit in this definitions are

interpreted in Bp,Su .

Now we are ready to state and prove the correctness of our new accusation algorithm.

Accusation Algorithm: Given a forged copy f , for a j-tuple u of users (j ≤ t) do the

following. If variation distance of Bu and BD,Su is larger than δ, then accuse no one in u.

(Some members of u may be accused later in the course of the algorithm). Otherwise if u

is high penalty and has positive penalty accuse all members of u. Repeat this algorithm for

all j-tuples of users (j ≤ t).
Now we need to define some notation. We define two conditional distributions T and

Tu,w. More specifically, let u be a j-tuple of users. Let w be a tuple of users as well. Now

let Tu,w denotes the conditional type2 of u given the forged copy f , codewords of users in w

and bias p. Also let T be a conditional distribution (i.e. a matrix) defined as follows. Let

rows of T be indexed by 2j different values that a j-tuple u of users may observe in a given

1The notion of perceived strategy was defined for a set of t users.
2Remember that any type is a distribution as well.



CHAPTER 5. QUICK ACCUSATIONS 50

column of code-matrix. Also let columns of T be indexed by p ∈ [0, 1] where p belongs to

the support of bias distribution. Now T is a conditional distribution that given the bias in

a column, gives the probability that a j-tuple of users u, in the second phase of bias based

code generation, receive a given sequence of j bits in that column. The reader may notice

that T depends on size of u, but our notation does not show this. Tuple u will be clear from

the context so we drop it in our notation.

Shortly we will need to compare T and Tu,w for given tuples u and w. For this comparison

to make sense, we would like to pretend that T depends on f and w as well. For this purpose,

each column of T will be replicated 2|w|+1 times and each copy will be indexed by one binary

sequence of length |w| + 1. Each such value represents the value of (xw, f) in a column of

codematrix. From now on, whenever we talk about T , we mean T with replicated columns.

Again our notation does not show the dependency of T on size of w as w is clear from the

context.

To make this definition clear we explain it in more detail for special case of j = 1 and

single bias p and |w| = 0. In this case each of T and Tu,w is a two by two matrix, in which

rows and columns are labeled by members of {0, 1}. Then column i of Tu,w is the type of

user u given f = i. For T things are easier. Conditional on the bias being p, all columns of

T are equal and

T1i = p, T0i = 1− p.

In the last chapter, when proving the correctness of our accusation algorithm, we were

working with two different interpretations of mutual information, depending on the under-

lying distribution. In this section our analysis is different and we use Theorem 6. So instead

of mutual information we work with relative entropy. As we will see below, this relative

entropy is equal to a variation of mutual information that is different from both interpre-

tations used in the last chapter, but close to them. The crucial point that allows us to use

this variation is that for a tuple u of pirates, if Bu and BD,Su have variation distance zero,

then all three versions of mutual information have the same value.

For tuples u,w of users (potentially including pirates) we are interested in the value of

D(Tu,w||T |f, xw, p). To calculate this value we look at the bias vector, codewords of users

in u and w and the forged copy. Then the corresponding conditional relative entropy is

calculated as defined in equation (2.3). Here (f, xw, p) is a random variable distributed

according to Bw
For now we work with a single bias p. Generalizing our observation below to an arbitrary
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bias vector is straightforward. Also in our calculations below we assume u is of length one.

Calculations for arbitrary size u is similar. Let q1 = p and q0 = 1− p. Then

D(Tu,w||T |f, xw) =
∑

(i,j)∈{0,1}|w|+2

Pr[(f, xw) = j]Pr[xu = i|(f, xw) = j] log
Pr[xu = i|(f, xw) = j]

qi

=
∑

j∈{0,1}|w|+1

−Pr[(f, xw) = j]H(xu|(f, xw) = j)

+
∑

(i,j)∈{0,1}|w|+2

Pr[(f, xw) = j]Pr[xu = i|(f, xw) = j] log
1
qi

=−H(xu|f, xw) + Pr[xu = 1] log
1
p

+ Pr[xu = 0] log
1

1− p
(5.1)

Let’s denote the value of 5.1 by Î(xu;xw|p). The quantity −H(xu|f, xw) above is interpreted

in Bu∪w as it is clear from the context. The next term is a bit strange though. In Pr[xu =

1] log 1
p +Pr[xu = 0] log 1

1−p both probabilities are calculated in Bu, but p is the probability

of xu = 1 in BD,Su . If Bu, and BD,Su have variation distance zero, then value of 5.1 is equal

to I(xu;xw|p) interpreted in either Bu or BD,Su , but when the variation distance is not zero

Î might be different from both interpretations of I. It is important to observe that Î is a

continuous function of each of its parameters as well.

Now we are ready to prove the correctness of our modified accusation algorithm. Without

loss of generality in the proofs we concentrate on the bias distribution Dt and prove that

any rate arbitrarily close to Rt is achievable.

Lemma 17 Let a group of pirates of size subexponential in n, perform a pirate strategy

and produce a forged copy f . Let u be a tuple of users accused by the modified accusation

algorithm given f as input. The probability that u includes any innocent user is exponentially

small.

Proof: Similar to Lemma 12, the mutual informations in the accusation algorithm are done

in BD,Su , but we need to prove that our claim holds for Î. If the variation distance of Bu
and BD,Su is small then we have

Î(xu; f |p) ≥ I(xu; f |p)− δ1. (5.2)

Now let’s assume u can be partitioned to u1 and u2 such that

• Members of u1 are pirates and members of u2 are innocent.
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• It is possible that u1 = ∅, but u2 is not empty.

First we show that the probability of the following event

I(xu2 ; f, xu1 |p) ≥ |u2|Rt (5.3)

is exponentially small. Here we assume without loss of generality that bias distribution is

Dt which was introduced in the last chapter.

Putting Inequalities 5.3 and 5.2 together we conclude Î(xu2 ; f, xu1 |p) ≥ |u2|Rt− δ1 This

means D(Tu2,u1 ||T |f, u1, p) ≥ |u2|Rt − δ1. Theorem 6 implies that this happens with prob-

ability no more than 2−n(|u2|(Rt−δ1)). There are 2n|u2|R choices of u2 and a subexponential

number of choices for u1 (if any). Setting R ≤ Rt − δ1 and taking a union bound is enough

to prove our claim.

Remark: The reason that we need to keep working with distribution BD,S and its variations

is that we want to build our result on top of the fingerprinting game. Otherwise we can

make the above proof simpler by working in Bu.

Lemma 18 Let a group of at most t pirates perform a pirate strategy and produce a forged

copy f . Let z be a tuple of some (but not necessarily all) pirates. Assume z includes no

innocent user. Then with high probability the distributions Bz and BD,Sz have variation

distance less than δ.

Proof: In Lemma 11 we proved that for the set of all pirates this claim holds i.e. two

distributions Bu and Bp,S have variation distance less than δ, where u is the set of all

pirates. Now Bz and Bp,Sz are marginal distributions of Bu and Bp,S , so their variation

distance cannot be larger than δ.

Theorem 19 Let a group of at most t pirates perform a pirate strategy and produce a forged

copy f . With high probability the output of the modified accusation algorithm is a non-empty

set of pirates that includes no innocent user.

Proof: Lemma 18 shows that any set of pirates will pass the first step of the accusation

algorithm. The existence of a saddle point for fingerprinting game implies that the set of

all pirates has high penalty. Any subset of this set which has the highest penalty is clearly

a high penalty set. Lemma 17 implies that it is unlikey that an innocent user is accused.
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So far in this section we have only modified the accusation algorithm of the last chapter.

The new accusation algorithm is simpler. In addition it has an advantage when we want to

check whether a given set of size less than t of users includes any pirates. Let k denote the

size of the given set of users. Using the algorithm of the previous chapter we needed time

Õ(N t) if the given set includes any pirate or not. Using the new algorithm this can be done

in time Õ(Nk). This observation will be used in the next section to construct a family of

codes that demonstrates a tradeoff between rate and efficiency of accusation algorithm.

5.1.1 The tradeoff

Now to construct our family of fingerprinting schemes that achieves the complexity-rate

tradeoff we only need to modify the fingerprinting game of section 4.2.

Let k ∈ {1, 2, · · · , t} be a given integer. Paula chooses a symmetric channel S and David

chooses a bias p ∈ [0, 1]. After both players revealed their strategies, Paula pays I(xz; f) to

David where |z| = k. The mutual information is evaluated in Bp,S . Let w = {1, 2, · · · , t}
then xw is a tuple of t bits each of them generated independently with expectation p. Then

z is an arbitrary subset of w of size k. Given xw, f is generated using channel S. It is

important that Paula is confined to symmetric channels, otherwise the formulation of the

game would have been more complicated. Using Lemma 13 we will see that we do not lose

generality by imposing this restriction. As in Section 4.2 we argue that Paula is always

better off using a pure strategy than a mixed one. David’s optimal strategy is mixed. This

is a distribution over [0, 1] and Lemma 13 implies that it is symmetric with respect to 1
2 .

Lemma 20 We have

max
D

min
S
Ep∈D[I(xz; f)] = min

S
max
p
I(xz; f),

where p ∈ [0, 1], S is an eligible symmetric channel, D is a distribution over [0, 1], z is a

subset of {1, 2, ..., t} and |z| = k.

Let V (k)
t denote the value of this game. In this game we know that there exists a k-tuple

of pirates such that I(xz; f |b) ≥ V
(k)
t . For symmetric channels this is a consequence of

Lemma 20. For non-symmetric channels, it is a result of convexity of mutual information.

For tradeoff parameter k our code generation and accusation algorithm are as follows.

Let Dt,k denote the optimal strategy for David in the above game when tradeoff parameter

is k.
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Code Generation: Use bias based code generation with Dt,k as bias distribution.

Accusation Algorithm: Repeat the following for all 1 ≤ j ≤ k in increasing order of j.

Given a forged copy f , for all j-tuples u of users do the following. If variation distance of Bu
and BD,Su is larger than δ, then accuse no one in u. (Some members of u may be accused

later in the course of the algorithm). Otherwise if u is high penalty and has positive penalty

accuse all members of u.

Remark. The increasing order of j is not necessary for the correctness of the algorithm.

We added it to the algorithm to simplify the presentation of some of the upcoming material.

The above algorithm has a running time of Õ(Nk). For tradeoff parameter k we can

choose the rate of the code to be R(k)
t = 1

kV
(k)
t . Then we can prove the correctness of our

construction by proving analogus versions of Lemmas 18 and 17. Since the proofs are almost

identical we do not repeat it again.

Intuitively it is clear that larger k results in higher rate. When k is larger the accusation

algorithm does everything that it does for smaller k plus some extra work. This means

that the rate can only increase when we increase k. To make this intuition more precise we

consider two codes C1 and C2 with tradeoff parameters k = k1 and k = k2. Assume each

code is constructed using the corresponding optimal bias distribution. Then the rate of C1

is greater or equal to the rate of C2 if and only if k1 > k2. To prove this claim we need the

following observations.

The following is easy to verify based on definition of mutual information.

I(x1, x2, · · · , xk; f) = I(x1; f) + I(x2; f |x1) + · · ·+ I(xk; f |x1, · · · , xk−1). (5.4)

Also we have

I(xj ; f |x1, · · · , xj−1) = H(xj |x1, · · · , xj−1)−H(xj |f, x1, · · · , xj−1) (5.5)

Now when j increases, the first term in the right hand side of expansion 5.5 remains un-

changed but the second term does not increase. The observation about the second term is

a result of limiting pirates to symmetric strategies and the fact that conditioning reduces

entropy. Consequently we have

I(xj+1; f |x1, · · · , xj) ≥ I(xj ; f |x1, · · · , xj−1)

and so for k1 > k2

1
k1
I(x1, x2, ..., xk1 ; f) ≥ 1

k2
I(x1, x2, ..., xk2 ; f)
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This is because in the expansion of the left hand side all terms on the right hand side appear

plus some larger terms. This is enough to prove our claim.

The rate of our code for k = 1 is I(x1; f |p) where x1 is generated using the distributor’s

optimal strategy. Also f is generated using pirates’ optimal strategy. This rate is better

than the rate of [44] and subsequent improvements that we are aware of. The code in

[44] and later improvements, all have an accusation algorithm which is based on weighted

Hamming distance. The crucial point here is this. Let x1 and x2 be two codewords and let

Txi|f,p denote the conditional type of xi given f and the bias vector. If Tx1|f,p = Tx2|f,p then

accusation algorithm of [44] and its improvements either accuse both users 1 and 2 or none

of them. The same is true for our tradeoff code with k = 1.

Now if in our code the pirates use optimal strategy and we generate new codewords

to increase the number of codewords to more than 2nR
(1)
t then using Theorem 6 we can

show that with high probability there exist two users i and j such that i is a pirate, j is

innocent, and Txi|f,p = Txj |f,p. This means that our code cannot tolerate any rate higher

than R
(1)
t . The same is true for the accusation algorithm of [44] and subsequent papers.

These algorithms either accuse both i and j or accuse none of them. Both cases are wrong,

so these algorithms cannot tolerate a rate higher than R
(1)
t as well. Consequently for any

given bias distribution, the rate of the accusation algorithm of [44] and its improvements

are not higher than the rate of our code for k = 1.

This observation is important from the practical point of view. The optimal bias distri-

butions for our constructions in the last chapter and this one are unknown. Also, it is hard

to evaluate the rate of the code for a given distribution. This observation assures us that

whatever our bias distribution is, we can achieve a code that is better than best previously

known codes. This justifies practical use of our constructions.

5.2 A direction for improvement?

Our accusation algorithm above seems to suggest a potential approach to improve our

tradeoff. Our next result on two pirates is a good example of this improvement. In this

discussion we consider the general case of t pirates. To simplify things we focus on the

special case of k = 2. Choosing k = 2 results in a quadratic accusation algorithm with the

rate R(2)
t which is lower than the optimal rate. Now we ask this question: can we keep this

rate and speed up the accusation algorithm? We look at a potential way of achieving this
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goal that works perfectly well in the case of two pirates, as we will see in the next section.

Let’s modify our accusation algorithm slightly. For k = 2 our accusation algorithm has

two rounds, in the first round we look at single users and in the second round we look at

pairs of users. Our slightly modified version of the algorithm will stop after the first round,

if a pirate is found in the first round. We will be able to speed up this algorithm if in the

second round of the algorithm we need to consider only a small subset of the set of all users.

Ideally, if this smaller set is of size O(N1/2), the overall running time will be linear.

Can we prove a user is innocent after the first round of the algorithm? The fact that we

didn’t find any pirate in the first round means that for all users i, I(xi; f |p) ≤ R(2)
t . In this

formula biases p are chosen from distribution Dt,2. On the other hand we know that with

high probability the algorithm will find a pair (i, j) of pirates in the second round. This

means I(xi, xj ; f |p) > 2R(2)
t . Again p ∈ Dt,2. Now assume we construct the tradeoff code

k = 1 using distribution Dt,2. The rate that we achieve will be less than R
(1)
t which is in

turn smaller than R
(2)
t . Let R̂ denote this rate. Now the construction of the tradeoff code

implies that there exists a pirate i such that I(xi; f |p) > R̂. Moreover we know that (using

the convexity of mutual information) the average of I(xi; f |p) for all pirates i is at least R̂.

An important point here is that the value of I(xi; f |p) does not depend on k. The value of

k only determines the number of rounds of the algorithm that should be run and the rate

of the code. Now let’s go back to the code with k = 2 and bias distribution Dt,2 and for

pirates i ∈ {1, 2, · · · , t} look at the value of I(xi; f |p). All these t values are smaller than

R
(2)
t and their average is larger than R̂ < R

(2)
t . Now we want to answer this question: what

is the minimum possible value of I(xi; f |p) for pirate i. A little bit of thought shows that

the worst case happens when for t − 1 pirates the value of I(xi; f |p) is very close to R
(2)
t

and there is one pirate j such that MinI = I(xj ; f |p) = R̂− (t− 1)∆ where ∆ = R
(2)
t − R̂.

Now any user ` with I(x`; f |p) < MinI is definitely innocent.

So, we can prove that some users are innocent and improve the running time of the

algorithm in the second round. For t = 2 as we will see shortly this can be done perfectly

well. For slightly larger values this method may be useful and more investigation is needed.

Unfortunately for large t, this value is not helpful as one of the following two cases will

happen.

1. R(2)
t − R̂ = o( 1

t2
). If this happens our discussion here is irrelevant, as in this case

choosing k = 1 we achieve linear accusaton algorithm with effectively the same rate
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as k = 2.

2. R(2)
t − R̂ = c

t2
. In this case ∆ = c′

t2
. So MinI will be negative very soon as we increase

t. This implies that for t larger than a threshold this method does not help us to

improve the tradeoff code with k = 2.

A potential approach to solve this problem is to prove that the maximum value of

I(xi, xj ; f |p) for pirates i, j is achieved by the pirates with two highest values of I(xi; f |p).
Or at least we say if we lose a certain fraction pirates when discarding innocent users still

the remaining pirates include a pair i, j such that I(xi, xj ; f |p) > 2R(2)
t . This guarantees

that the algorithm will finish in the second round. It is an interesting open problem to study

this approach further.

5.3 A fast accusation algorithm for two pirates

The main drawback of our high rate fingerprinting code is the slow accusation algorithm,

running time of which grows exponentially in t, the maximum number of pirates. An ideal

fingerprinting scheme will have an accusation algorithm which is independent of t like those

of [44, 12] while keeping the rate of our high rate fingerprinting (or improving it if possible,

but we conjecture that it achieves the optimal rate). In this section we present an accusation

algorithm for the special case of t = 2 with running time Õ(N). We prove that using this

new algorithm along with the code generation described in Section 4.2.1, we can achieve the

rate R2 = 0.25 while the running time of the accusation algorithm is improved from Õ(N2)

to Õ(N). Our algorithm here is based on the previous accusation algorithm. While previous

algorithm checks all pairs of users for finding pirates, here we first restrict the number of all

suspicious pairs to O(N1/2) in time Õ(N), then we run the previous algorithm on the short

listed suspicious pairs.

The main idea of our new algorithm is to sort users in terms of their Hamming distance

from the forged copy. Then if there is a user whose codeword is too close to the forged copy

he must be a pirate. Otherwise we know that users whose codeword has a large Hamming

distance to the forged copy are innocent. So we are left with a set of users whose codewords

are relatively close to the forged copy. We prove the number of such users is O(N1/2), and

so we can run the previous algorithm while keeping the running time Õ(N).
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5.3.1 A useful lemma

Without loss of generality, we may assume that first codewords of the pirates are generated

and pirates generate the forged copy f . Then the distributor generates codewords of other

users. We want to upper bound the probability that at least one innocent user has relative

Hamming distance smaller than δ < 1/2 to f . Fix ρ < δ. First we try to calculate the

probability that one innocent user x has relative Hamming distance ρ from f . If this is the

case, the bitwise xor of x and f denoted x+f will satisfy |x+f | = ρn . Since f is fixed and

x is chosen uniformly at random, x+ f is also distributed uniformly at random. All binary

strings y with |y| = ρn, are of the same type. The size of the corresponding type class is

2nh(ρ). So the probability of choosing x such that |x+ f | = ρn is 2−n(1−h(ρ))

Lemma 21 Let y be a fixed string of length n. Let x be string chosen uniformly at random

from among all strings of length x. The probability that x has relative Hamming distance

less than δ < 1/2 from y is at most 2−n(1−h(δ))+O(logn).

5.3.2 Accusation algorithm

Now given Lemma 21 we modify the accusation algorithm of our high rate fingerprint code

such that the rate remains equal to 0.25 and the running time of the accusation algorithm

becomes linear.

Algorithm: In the first step of the new algorithm we check users with Hamming distance

smaller than 0.207n to the forged copy. If there is more than one such user algorithm finishes

by declaring failure. If there is exactly one such user it will be accused as pirate and the

algorithm finishes. Otherwise we look at all users whose Hamming distance with the forged

copy is less than 0.293n. We will show that the number of such users is O(N1/2). Now

we run the original accusation algorithm of our high rate fingerprint code on this group of

users. It is easy to see that the running time of the accusation algorithm is Õ(N).

Theorem 22 The above accusation algorithm for 2-fingerprinting finds at least one pirate

in time Õ(N) whp. The probability of accusing an innocent user or returning no pirate is

exponentially small.

Proof: Now we prove that the algorithm works correctly with high probability. Lemma 21

implies that the the probability that an innocent user has Hamming distance smaller than
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T = 0.207n to the forged copy is not larger than 2−0.26n. Since there are at most 20.25n

users in the system, with high probability no innocent user will be accused in this step. Also

the probability that more than one user (innocent or pirate) are closer than T to the forged

copy is negligible. The only remaining case is when no user has Hamming distance smaller

than T to the forged copy.

The Hamming distance between two pirates is (1
2 + o(1))n with high probability. This,

along with marking assumption, implies that with high probability the average Hamming

distance of pirates from the forged copy is (1
4 +o(1))n. This implies that the distance of one

pirate to the forged copy lies in the interval [T, (1
4 + o(1))n] and the distance of the second

pirate to the forged copy lies in the interval [(1
4 + o(1))n, 0.293n]. So if we run the original

accusation algorithm of the high rate code on users with Hamming distance ≤ 0.293n to

the forged copy, we will find at least one pirate with high probability. Lemma 21 implies

that the expected number of such users is not more than O(20.123n) = O(N1/2) with high

probability. This completes the proof.

5.4 Weak fingerprinting

In this section we introduce a model for fingerprinting in which the accusation algorithm gets

a huge help: when searching for one of the pirates it learns from an “oracle” the identity of

all the other pirates. See the formal definition below. It is not surprising that we can adapt

our fingerprint codes to this setup and increase their rate slightly. This model was first

introduced in [3]. An improvement of the strong converse theorem of [7] by Gabor Tardos

[45] implied that our method achieves weak fingerprinting capacity. Our main reason for

introducing this model was to provide an evidence for our conjecture that our construction

of the last chapter achieves fingerprinting capacity.

Definition: A weak fingerprinting code over alphabet Σ for users U consists of a distribution

algorithm, an oracle and an accusation algorithm. The distribution algorithm is the same

as in the standard model: a randomized procedure for producing codewords Xv ∈ Σn for

users v ∈ U (and possibly some side information). A set T ⊆ U of pirates use a pirate-

strategy to output a forged codeword. We allow the same type of pirate-strategies as in the

standard model, namely the ones obeying the marking assumption. The oracle is a function

(algorithm) that has full access to the output of the distribution algorithm and the forged

codeword and also to the set T of pirates. It picks a pirate u ∈ T to chase and outputs
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the remaining pirates T \ {u}. Finally the accusation algorithm has access to the forged

codeword and the outputs of the distribution algorithm and the oracle and outputs a single

accused user. The accusation algorithm errs if its output is not the pirate u picked by the

oracle. Note that as the oracle is part of the fingerprinting code it collaborates with the

accusation algorithm: it will choose the pirate u that is easiest to catch.

A weak fingerprint code is ε-secure against t pirates if for any set T of pirates of size at

most t and for any pirate-strategy the probability of error is at most ε. The rate of fingerprint

code and weak fingerprinting schemes are defined as in the standard model. The weak t-

fingerprinting capacity is the maximal rate achievable by a a t-secure weak fingerprinting

scheme.

To contrast with weak fingerprinting we call the fingerprinting as defined in Section 4.2

the standard model. As in the standard model we can allow the accusation algorithm of

the weak fingerprinting to stop without accusing any user and consider this type of failure

less serious than falsely accusing an innocent user. The codes constructed in this section

have the advantage that for any subexponential size set of pirates using any pirate-strategy

and even for any malicious oracle outputting any subset of them the probability of falsely

accusing anybody is still small.

It is clear that any standard fingerprinting code can be adapted to fit this model without

changing its rate or the error probability. Simply make the accusation algorithm ignore the

output of the oracle and make the oracle choose the pirate that will be accused.

In the rest of this section we adapt our fingerprint codes constructed in Section 4.2

to the weak model while increasing their rate. Both the minimax result (Lemma 23) the

construction is based on and the correctness (Theorem 24) are proved in the same way as

in the standard model, so we omit these proofs.

For i ∈ [t], p ∈ [0, 1] and S an eligible channel we define I(i)
p,S to be the conditional mutual

information I(xi; f |x(i)) in the probability space Bp,S . Here x(i) := (x1...xi−1xi+1...xt). One

can think of I(i)
p,S as a measure of the information, one bit of the forged codeword gives on the

identity of the ith pirate if the identity of all the other pirates had previously been known

and the pirates use a channel based strategy with the channel S. Here we also assume

that the code distribution is bias based and p is the bias chosen for the particular digit we

consider.

Now we consider the game in which Paula chooses a channel S and David chooses a

pair (p, i) with p ∈ [0, 1] and i ∈ [t]. After their simultaneous choices Paula pays I(i)
p,S to
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David. As in Section 4.2 we argue that Paula is always better off using a pure strategy

than a mixed one. As for Lemma 13 we use symmetry to prove that David can choose an

optimal mixed strategy (distribution over (p, i)) in which p and i are independent and i is

distributed uniformly over [t].

Lemma 23 We have

max
D

min
S
Ep∈D,i∈Ut [I

(i)
p,S ] = min

S
max
p,i

I
(i)
p,S ,

where p ∈ [0, 1], i ∈ [t], S is an eligible channel, D is a distribution over [0, 1] and Ut is the

uniform distribution over [t].

We use Stw to denote a channel S minimizing the right hand side and Dt
w to denote a

distribution D maximizing the left hand side. We let Wt stand for the common value of this

minimum and maximum.

Let Ft,R,δ,n be the following weak fingerprint code. The parameters have the same

meaning as in Et,R,δ,n. For simplicity we assume here that the number of pirates is exactly

t. As the accusation algorithm learns the number of pirates anyway, it is easy to remove

this simplifying assumption.

Codeword generation: We use bias based codeword generation with the bias distribution

Dt
w. The codelength is n and we choose a set U of users of cardinality b2Rnc.

Oracle: Let u = (u1, . . . , ut) be the t-tuple of pirates and let S be their perceived strategy.

By the definition of Wt and Dt there exists an index i satisfying Ep∈Dt [I
(i)
p,S ] ≥ Wt. The

oracle chooses such an index i and outputs the set of all pirates except ui.

Accusation algorithm: Let T ′ = {u1, . . . , ut−1} be the output of the oracle. For any user

ut ∈ U \ T ′ we consider the tuple u = (u1, . . . , ut−1, ut) and the perceived strategy S of u.

We accuse ut if S is eligible, the total variation distance between the distributions Bu and

BDt,S is at most δ and Ep∈Dt [I
(t)
p,S ] ≥ Wt. In case more than a single user ut satisfies these

conditions the accusation algorithm fails.

Theorem 24 For any t and R < Wt there exists a positive δ such that the fingerprinting

codes Et,R,δ,n for n ≥ 1 form a t-secure fingerprinting scheme of rate R.



Chapter 6

Open problems

In this chapter we review three major direction of research on fingerprinting that has inter-

esting problems to work on.

6.1 Capacity

In this thesis we have constructed fingerprinting codes that achieve the best known rates.

We conjecture that our construction of chapter 4 achieves the fingerprinting capacity. This

is one of the major open problems in fingerprinting research. Actually, this problem is

resolved in [34] for some other models of fingerprinting, but the proof, as is, does not work

for marking assumption. It is interesting to explore what exactly can be proven for marking

assumption model, using the tools introduced in [34]. Even if the proof does not work for

marking assumption, it may work for relaxations of marking assumption model in which

pirates can detect up to a δ fraction of columns in which they all have the same value.

The relaxations on marking assumption are considered by many researchers to be a more

natural model for fingerprinting. If pirates decide to change a fragment of the document

they may be able to violate marking assumption without actually finding the column in

which they all have the same bit. Our constructions in this thesis work for this relaxed

version of marking assumption as well. The rate that we achieve will decrease when we

increase δ.
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6.2 Better constructions

Another major open problem is to improve upon results of chapter 5 of this thesis. It is

not clear if the tradeoff between efficiency and rate is a result of our method or a natural

restriction in fingerprinting.

We have shown that for two pirates the tradeoff is not needed and the highest known rate

(conjectured to be capacity) can be achieved along with a linear time accusation algorithm.

We also have some preliminary results on three pirates that suggest tradeoff of chapter

5 is not the best possible for three pirates. One can observe that in the case of three pirates

and k = 3 the average Hamming distance of pirates to the forged copy is smaller than

the average Hamming distance of innocent users and the forged copy. So when we look at

triplets of users in the accusation algorithm for k = 3, we know that at least one of the

pirates should be from the set of users with small Hamming distance to the forged copy.

This reduces the overall running time slightly.

All in all it seems that for small t our tradeoff code is not the best. For larger t this

question is open. As we saw before, a direct generalization of our method for two pirates

will not be successful for larger t, but the second approach that we suggested in section 5.2

needs further investigation.

There are two other problems that we are investigating but they are not completely

done, so they have not been reported in this thesis. We have shown that Hamming distance

plays an important role in improving the tradeoff for two and three pirates. Also, one may

be curious to study minimum Hamming distance as simplest accusation algorithm.

Here the problem is to devise a fingerprinting code with one of the following accusation

algorithms.

• Accuse the user with smallest Hamming distance to a given forged copy.

• Accuse all users with Hamming distance < Z to a given forged copy for a properly

chosen threshold Z.

As we discussed in chapter 2, there is little work on this problem in the case of binary

alphabet. For larger alphabets the problem has been investigated in traitor tracing research.

We have considered the first kind of accusation algorithm above and our preliminary

results on this problem, suggests that we can construct a code with rate Θ( 1
t2 log2 t

). This is
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interesting because using such a simple accusation algorithm we can achieve a rate which is

close to the capacity.

Another problem is studying performance of our constructions for larger alphabets. Our

preliminary inspections suggest that using larger alphabets improves the rate of the code.

A precise analysis of the change in the rate is not yet done.

6.3 Better evaluation of rates

We have shown that the rate of our tradeoff code, drops when we decrease k. Despite this,

the rate is stated in terms of formulas involving mutual information. Precise evaluation of

these formulas is an interesting and important problem.

We know that even when k = 1 the rate is c
k2 . In [26] authors have shown that an

argument similar to theorem 14 proves similarly that c ≥ 0.29. The important question is

to determine the actual value of c.

At this point we don’t have any reason that the difference of rate in our tradeoff code

for k = 1 and k = t is not of o( 1
t2

). Indeed it will be a very interesting result to prove that

the difference is o( 1
t2

). Then we no longer need to use k > 1. Using k = 1 we are close

enough to capacity and we have a linear time algorithm! Even if this best case scenario

is not true, it is improtant to know the difference of rate between codes corresponding to

different values of k.



Bibliography

[1] M. Alekhnovich, E. Ben-sasson, Linear upper bounds for random walk on small density

random 3-CNF, In Proceedings of 44th Symposium on Foundations of Computer Science

, page 352, 2003.

[2] E. Amiri, E. Skvortsov, Pushing Random Walk Beyond Golden Ratio, CSR 2007, also

in Lecture Notes in Computer Science, 4649, pages 44-55, 2007.

[3] E. Amiri, G. Tardos, High rate fingerprinting and fingerprinting capacity, In Proceedings

of the Nineteenth Annual ACM -SIAM Symposium on Discrete Algorithms, pages 336-

345, 2009.

[4] R. J. Anderson, ed. Information Hiding: First International Workshop, Lecture Notes in

Computer Science, vol. 1174, 1996.

[5] R. J. Anderson, F.A.P. Petitcolas, On the Limits of Steganography, IEEE Journal on

Selected Areas in Communications,16 (4), 1998, Page: 474.

[6] N.P. Anthapadmanabhan, A. Barg, Random Binary Fingerprinting Codes for Arbitrarily

Sized Coalitions, Proceedings of IEEE International Symposium on Information Theory

, ISIT 2006, pages 351-355, 2006.

[7] N.P. Anthapadmanabhan, A. Barg, I. Dumer, Fingerprinting capacity under the marking

assumption. Submitted to IEEE Transaction on Information Theory - Special Issue on

Information-theoretic Security. Available from arXiv:cs/0612073v2. Preliminary version

appeared in the Proceedings of the 2007 IEEE International Symposium on Information

Theory, (ISIT 2007), 2007.

65



BIBLIOGRAPHY 66

[8] A. Barg, G. R. Blakely, G. Kabatiansky, Digital fingerprintg codes: Problem statements,

constructions, Identification of traitors. IEEE transactions on information theory vol. 49,

No. 4, pages 852-865, April 2003.

[9] G. R. Blakely, G. Kabatiansky, Random coding technique for digital fingerprinting codes:

fighting two pirates revisited. ISIT 2004, page 202.

[10] O. Blayer, T. Tassa, Improved versions of Tardos’ fingerprinting scheme. Submitted.

[11] D. Boneh, M. Naor, Traitor Tracing with Constant Size Ciphertext, In Proceedings

of the 15th ACM Conference on Computer and Communication Securit, pages 501-510,

2008.

[12] D. Boneh, J. Shaw, Collusion-secure fingerprinting for digital data, IEEE Transactions

of Information Theory 44 (1988), 480–491.

[13] H.G. Burchard, D.F. Hale, Piecewise polynomial approximation on optimal meshes,

Journal of Approximation Theory 14 (1975), 128–147.

[14] R. D. Cameron, A case study in SIMD text processing with Parallel Bit Streams -

UTF-8 to UTF-16 Transcoding, In Proceedings of the 2008 ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, pages 91-98, 2008.

[15] R. D. Cameron, E. Amiri, K. Herdy, D. Lin, T. Shermer, F. Popowich, Parallel parsing

with bitstream addition: An XML case study. Technical Report No. SFU-CS-2010-11,

Simon Fraser University, October 26, 2010.

[16] H. Chor, A. Fiat, M. Naor, Tracing traitors, Advances in Cryptology - CRYPTO ’94,

14th Annual International Cryptology Conference, Also in Lecture Notes in Computer

Science 839, pages 257-270. Springer 1994.

[17] R. D. Cameron, K. Herdy, E. Amiri, Parallel Bit Stream Technology as a Foundation for

XML Parsing Performance. In Proceedings of the International Symposium on Processing

XML Efficiently: Overcoming Limits on Space, Time, or Bandwidth. Balisage Series on

Markup Technologies, vol. 4 (2009). doi:10.4242/BalisageVol4.Cameron01.

[18] T. Cover, J. Thomas, Elements of information theory, Wiley-InterScience, 2006.



BIBLIOGRAPHY 67

[19] I. Csiszár, The method of types, in IEEE Transactions on Information Theory, vol. 44,

No. 6, 1998.

[20] I. Csiszár, J. Körner, Information Theory: Coding Theorems for Discrete Memoryless

Systems, Academic Press, London, 1981.

[21] I. Dumer, Equal-Weight Fingerprinting Codes, Second Interntational workshop on

codeing and cryptology, Lecture Notes in Computer Science, Vol. 5557, pages 43-51.

2009.

[22] U. Feige, D. Vilenchik, A local search algorithm for 3SAT, Technical Report MCS 04-

07, Computer Science and Applied Mathematics, The Weizmann Institute of Science,

2004.

[23] A. Flaxman, A Spectral Technique for Random Satisfiable 3CNF Formulas, In Proceed-

ings of the Thirteenth Annual ACM -SIAM Symposium on Discrete Algorithms, pages

357-363, 2003.

[24] H. D. L. Hollman, J. H. van Lint, J. P. Linnartz, L. M. G. M. Tolhuizen, On Codes

With Identifiable Parent Property, Journal of Combinatorics Theory A., Vol. 82, 1998,

pages 121-133.

[25] N. J. Hopper, Toward a Theory of Steganography, PhD Thesis, School of Computer

Science, Carnegie Mellon Univeristy, 2004.

[26] Y.W. Huang, P. Moulin, Capacity Achieving Fingerprint Decoding, In Proceedings

of 2009 IEEE Workshop on Information Forensics and Security(WIFS 2009), London,

United Kingdom, December 2009, pages 51-55.

[27] Y.W. Huang, P. Moulin, Saddle Point Solution of the Fingerprinting Capacity Game

Under the Marking Assumption, in 2009 IEEE International Symposium on Information

Theory (ISIT 2009), Seoul, Korea, June 2009.

[28] W. Jiang, Y. Li, X. Yu, Maximum IPP Codes of Length 3, Annals of Combinatorics,

Vol. 13, 2010, pages 491-510.

[29] N. F. Johnson, S. Katzenbeisser. A Survey of Steganographic Techniques, Chapter 3

in S. Katzenbeisser (ed.), F. A. P. Petitcolas (ed.) Information Hiding Techniques for

Steganography and Digital Watermarking, Artech House Books, 2000.



BIBLIOGRAPHY 68

[30] G.C. Kessler, An Overview of Steganography for the Computer Forensics Examiner,

Forensic Science Examinations, Volume 6, Number 3,July 2004.

[31] E. Kawaguchi, R.O. Eason, Principle and Applications of of BPCS-Steganography

[32] R. J. Leonard, From Parlor Games to Social Science: Von Neumann, Morgenstern, and

the Creation of Game Theory 1928-1944, Journal of Economic Literature, Vol. 33, No.

2 (Jun., 1995), pp. 730-761

[33] S.C. Lin, M. Shahmohammadi, H. El Gamal, Fingerprinting with minimum distance

decoding, CoRR abs/0710.2705, (2007)

[34] P. Moulin, Universal Fingerprinting: Capacity and Random-Coding Exponents.

arXiv:0801.3837v2, 2008.

[35] von Neumann, J: Zur Theorie der Gesellschaftsspiele, Math. Annalen 100 (1928) 295-

320.

[36] H. Nikaido, On von Neumann’s minimax theorem, Pacific Journal of Mathematics 4

(1954), 65–72.

[37] F. A. P. Petitcolas, R. J. Anderson, M.G. Kuhn, Infomation Hiding - A Survey, In the

Proceedings of the IEEE, special issue on protection of multimedia content, 87(7):1062-

1078, July 1999.

[38] L.A. Petrosjan, N. A. Zenkevich, Game Theory, World Scientific Publishing, 1996.
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