THE USE OF TASKS AND EXAMPLES IN A HIGH
SCHOOL MATHEMATICS CLASSROOM: VARIANCE OF
PURPOSE AND DEPLOYMENT

by
Daniel Kamin

B.A.Sc., University of Toronto, 1980
B.Ed., University of Alberta, 1988

THESIS
SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
In the
Faculty of Education
© Daniel Kamin 2010

SIMON FRASER UNIVERSITY

Summer 2010

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy
or other means, without permission of the author.



APPROVAL

Name:
Degree:
Title of Thesis:

Examining Committee:

Date Defended/A pproved:

Daniel Jay Kamin
Master of Science

The Use of Tasks and Examples in a High School
Mathematics Classroom: Variance of Purpose and
Deployment

Dr. Cécile Sabatier, Assistant Professor
Faculty of Education, SFU
Chair

Dr. Peter Liljedahl, Assistant Professor
Faculty of Education, SFU
Senior Supervisor

Dr. Nathalie Sinclair, Assistant Professor
Faculty of Education, SFU
Supervisor

Dr. Rina Zazkis, Professor
Faculty of Education, SFU
External Examiner

August 23, 2010



SF SIMON FRASER UNIVERSITY
LIBRARY

Declaration of
Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Last revision: Spring 09



SFU SIMON FRASER UNIVERSITY
THINKING OF THE WORLD

STATEMENT OF
ETHICS APPROVAL

The author, whose name appears on the title page of this work, has
obtained, for the research described in this work, either:

(a) Human research ethics approval from the Simon Fraser University
Office of Research Ethics,

or

(b) Advance approval of the animal care protocol from the University
Animal Care Committee of Simon Fraser University;

or has conducted the research

(c) as a co-investigator, collaborator or research assistant in a
research project approved in advance,

or

(d) as a member of a course approved in advance for minimal risk
human research, by the Office of Research Ethics.

A copy of the approval letter has been filed at the Theses Office of the
University Library at the time of submission of this thesis or project.

The original application for approval and letter of approval are filed with
the relevant offices. Inquiries may be directed to those authorities.

Simon Fraser University Library
Simon Fraser University
Burnaby, BC, Canada

Last update: Spring 2010



ABSTRACT

This is an action research study into the useasifstand examples in a senior
high school mathematics classroom, in which thethteais the researcher. Investigating
a teaching style that seemed to be highly exananairiented, the study focuses on
purposes and intentions behind the uses and deplayoh tasks and examples within a
problem-solving framework. The investigation rdgesxpected as well as unexpected
teaching strategies employed to facilitate and @ixpestudent learning, including the use
of deliberate overloading, creation of dissonapestial understanding, and atypical
sequencing and progression of curricular matei&le primary result of the study is a
breakdown and classification of examples and probla terms of their contexts in

classroom teaching and teacher intention.
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CHAPTER 1: INTRODUCTION

1. Teaching and Craft Knowledge

This study examines and attempts to explain thewameans in which tasks and
examples are used in teaching senior high schothlematics, unusual in that | am both
the researcher and subject of the research. Hseme for undertaking this study into my
own practice stem from a desire to analyze, undedsand perhaps justify my particular
brand of teaching. As teacher-researcher, takintpe analysis of my own teaching
provided certain challenges. In their analysithef TIMSS (The Third International
Mathematics and Science Study) 1999 Video Studgbétit, Gallimore, Garnier, Bogard
Giwvin, Hollingsworth, Jacobs, Chui, Wearne, SmKersting, Manaster, Tseng,
Etterbeek, Manaster, Gonzales, and Stigler (2008¢wve that everyday teaching
routines and practices can become invisible arah appear as the natural way to do
things rather than choices that can be re-exami(ed) Such practices develop over
time to become innate, ingrained and instinctikeinhardt (1990) refers to these
practices as “craft knowledge” in teaching. Sheegwnts on the difficulties encountered

by teachers “distilling” their own craft knowledge:

...It is also difficult to determine whether a teacksein fact reporting the
critical, crucial, analytic pieces of performancel&nowledge base. This
problem does not exist because teachers are soniebgwable than others



to identify important features of their skilled f@mance, but because it is
inherently problematic for anyone both to engaganract skilfully and to
accurately interpret it (p. 19).

Teachers are rarely called upon to articulate tbevetions and reasons for their
pedagogical choices and actions. In their studgnathematics teachers’ choices of

examples, Zodik and Zaslavsky (2009) note:

. all five teachers whom we observed claimed thetythad never
articulated how to select and generate examplest-trmoughout their
years of pre-service and in-service education ntr wolleagues in their
school or other forms of professional communicaiokloreover, they
had never explicitly thought about these issued ).

Teachers do not find it a simple task to elucidaé&r teaching methods. Ayres, Sawyer,
and Dinham (2004) note that teachers were obsersieg many more types of teaching

strategies than they themselves seemed to be aivare

2. Standard Practice and Teaching-to-the-Exam

The impetus for conducting this study can be trdmsszk to two contributing
factors. The first was my intention to justifyeathing-to-the-exam approach; a
secondary factor was a desire to investigate cepiagogical elements of my teaching
that | felt were somewhat unusual when comparedhat | consider to be standard
practice. Standard practice among teachers ofemadtics can be defined as the
teaching methodology guided by and adhering to-ea&thblished classroom norms. In
very general terms, this practice consists of mhong information to students through the

use of classroom notes and examples, and the sidgepsigning of sets of tasks which



echo the mathematical content presented. Stamgaed of examples and tasks,
associated with typical mathematics teaching, dsaseclassroom norms (and
contravention of these) will be discussed latahia study. Those aspects of my
teaching practice which might be construed as walusave evolved in an attempt to
break through the rhythms of student engagemenbahaviours in the mathematics

classroom that have arisen as a result of stanaafice and classroom norms.

There is a perception among educators that teatbitige-exam, also known as
measurement driven instruction, is detrimentalagtice to be avoided. The most
frequent complaints are that this practice leadsatoowing of the curriculum, rote
learning, diminished broad-based learning, andfiitsent preparation of students for
anything other than the exams they were prepame(Giaskey, 2007; Koretz, 2002;
Madaus, 1988; Popham, 2001, 2007; Volante, 2086hoenfeld (1988) discusses the
teaching of routinized procedures at the expensmoérstanding. “There is concern
about the damaging effects of exam-driven instamcéind the unintended lessons about
what constitute problem solving and mathematicse¢h@erge in the course of standard
test-oriented instruction” (Lave, Smith, and But®®88, p. 61). This prevailing view,
that test preparation and learning are somehow attytexclusive, contradicts what |
observed my students to be experiencing. Thisidge vindication of exam teaching
was a starting point, but as a realistic descniptibwhat | was doing, was inadequate,
and not quite correct. This study represents thik\@one in more accurately defining

and analyzing my teaching beyond my overly simiglistitial assessment.

What is the job of the mathematics teacher? iBhogpen to interpretation.

According to Hiebert et al (2003hé goal of teaching is to facilitate learnirgills,



Dreyfus, Mason, Tsamir, Watson, and Zaslav&006) suggest that, “... the role of the
teacher is to offer learning opportunities thaiiwe a large number of ‘useful examples’ to
address the diverse needs and characteristice tdéainers” (p. 1-135). However, teachers
are also charged with the delivery of curriculusipatlined in government documents.
This curriculum relies on a set of learning outcep@oviding a framework within
which the teacher works to instil some level of tagsin his or her students. However,
in those courses with heavily weighted final exaatiomns, or those jurisdictions with
comprehensive exit exams, it might be argued thatthe teacher’s primary
responsibility to prepare students for those exalfxaminations that have important
consequences for students, such as promotion bhehggades or admission to post-
secondary institutions, have been labelled as “sigkes tests”. Students are under
pressure to perform on these assessments, anduestyan the purpose of teaching
material that will not be on these exams. As weliether we agree with the fairness or
validity of examination scores as indicators ofaaiquality, strength and health, those
results are used to rank schools. Teacher eftgatss is also judged by the school’s
exam performance. These perceptions are impo#darthey can influence school and
course enrolment, and other aspects of the resligynployment that may stem from
these factors. Madaus (1988) pointed out thgtriadictions where important decisions

are presumed to be based on test results, teaghleesach to the test.

The task of meeting the objectives of both exanpgation and curriculum
learning outcomes is approached through givingesitgda steady diet of questions and
problems to work on. Through the school year, mgdé 12 mathematics students are

given somewhere in the order of 900 to 1000 questio work on, most of which are



problems taken from previous examinations. Inway, the exam questions themselves
became the main resource for delivery of the coufsges et al (2004) report similar
practices among teachers of high-achieving studersisnior high school courses with
external high-stakes exams. Exam problems coldexter several years provided a clear
definition of the scope of the curriculum. As Madq1988) points out, “In every setting
where a high-stakes test operates, a traditiormasff fests develops, which eventually de
facto defines the curriculum” (p. 39). Most usefidre the limiting and higher level

types of problems, which were instrumental in deditng the upper range of the

curriculum.

However, the view of my teaching as exam-drivexs wot consistent with the
“ideal” senior mathematics lesson which | strovéntplement, nor the classroom
atmosphere that | attempted to generate. Thisliddass is filled with student activity
in practical application of course content; thapi®blem-solving. More specifically,
this consists of students working on batteriesrobfems in small informal groups,
occasionally interspersed with teacher intervenéind instruction in the form of worked
examples. The reality of my Grade 12 mathematasscoom might approach the
optimal condition described above. Regardlesdasiscoom realities, this description
does not seem reconcilable with an “exam teachapgiroach. A conclusion resulting
from these clashing approaches to teaching andifepis that perhaps both are
occurring. A certainty is that the course is bamgght primarily through the use of
examples and tasks, many of which originated froavipus examinations. In this sense,

the class was being prepared for the external exatian; while this was certainly

! “Limiting” is used to describe the most difficult or complex type of problem that students should
be expected to do.



underway, the examples used also served two atigariant purposes: they were
exemplary in setting out and delivering the curdion and many of them, along with

their extensions and variations, were invaluablnair utility for problem-solving.

Research Question

Following from the above, the research questionmes$d in this study was
formulated: What are the aspects of my teaching process/methadhich are
responsible for successful student learning7his rather broad question is resolved into
a more specific one: How do | use tasks and exasriplmy lessons to achieve my
teaching goals? This will be accomplished by trg¢he “lives” of examples and tasks,

starting with their conception in the lesson.

3. Tasks, Examples and Problems

Over time, certain terms have taken on various imearthat may not be clear to
all parties involved in the educational processends in educational thought expressed
in the professional literature seem to have regiiitétaken as shareflinterpretations of

certain terms. Clear definitions and descriptiaresessential for correct and succinct

% «Taken as shared” is a phrase meaning a concept whose interpretation is agreed upon by a
group or collection of individuals.



communication of ideas including those pedagogctibns and constructs which | am
attempting to describe and explain in this repoxtill speak later to the lack of language

to describe some of the phenomena | identify inuhes of tasks and examples.

Examples

The use of examples is woven into the fabric ofwhathematics teachers do to
such an extent that it is difficult to step backl &volate what is meant by “an example”,
although this may seem to be quite obvious. “Téledion of examples is the art of
teaching mathematics” (Leinhardt, Zaslavsky, ar@n$t990, p. 52). According to Bills
et al (2006), examples are, “anything used as ratenal for generalising, including
intuiting relationships and inductive reasonintystrating concepts and principles;
indicating a larger class, motivating, exposingsilae variation and change, etc., and
practising technique” (p. 1-127). Zodik and Zaslawv(2008) put forward this notion of

what constitutes an example:

Theoretically, every mathematical object can bensseean example, that
is, as a particular case of a larger class. We thk stand that for a
mathematical (or any) object to become an exampomething, there
should be some mental interaction between the peand the object that
registers in the eyes of the person as an exampléaoger class.” (p. 169)

An example is somewhat of a nebulous entity. Iy @@nsist of a simple expression, or
comprise a complex multi-stage problem. The déifikrmeanings ascribed to
mathematical examples arise from the differentyestves of mathematics teachers,
researchers and educators of mathematics teacherexample may exist as an isolated
object, or be used to define, characterize or dstnate a mathematical idea or concept

(exemplification).



Thus, while many objects may be used as an exanipgegclear from a
pedagogical perspective some have more explanptoser than others,
either because they highlight the special charistierof the object or
because they show how to build many other exangfieke focal idea,
concept, principle or procedure (Zaslavsky, 2010,08).

An example of a trinomial that could be factoreckis-2x-15. An example of
trinomial factoring would demonstrate the factorirtgow this factoring comes about

would be the basis for a “worked example”. Sintyjlaan example demonstrating the
concept of logarithms could beg52—15. How such examples are utilized forms the basis

of the work in this study. Examples which inclutleir solutions, along with the
necessary teaching and support required to ensatr¢hey attain their intended purpose,
form “worked examples”. Atkinson, Derry, Renkl,dawortham (2000) provide this

description for worked examples:

As instructional devices, they (worked examplegidally include a
problem statement and a procedure for solving tteblem; together,
these are meant to show how other similar problengst be solved. In a
sense, they provide an expert’'s problem-solving ehdar the learner to
study and emulate” (p. 181).

For the purposes of this study, references togaehing use of examples will allude to a

worked example.

Problems (and Problem-solving)

As Fan and Zhu (2007) report, there exist differemderstandings among
researchers about what comprises a problem. Téf@yeda problem as a situation that
requires a solution and/or decision, no matter idrethe solution is readily available or
not to the solvers. It is often taken for granteat examples are problems, and that

worked-examples incorporate problem-solving. Hosvethis need not be the case, and



these need not be implicit assumptions. “Indeeshlpms and problem solving have had
multiple and often contradictory meanings through years...” (Schoenfeld, 1992, p.
10). “The term problem-solving has become a slagaompassing different views of
what education is, what schooling is, of what mathtcs is, and of why we should teach
mathematics in general and problem solving in paldr” (Stanic and Kilpatrick, 1989,

p. 1). The authors of the TIMSS 1999 Video Studiireed problems asgVents that
contained a statement asking for some unknownrimdton that could be determined by
applying a mathematical operation. Problems vagreatly in length and complexity,
ranging from routine exercises to challenging peotd” (Hiebert et al, 2003, p. 41).
Problems might consist exercises: “straight-forward problems, usually preed with

little context, for which a solution procedure apgdly has been demonstrated” (Hiebert
et al, 2005, p. 117), and applications, which ‘gmblems that appeared to have some
adjustment to a known procedure, however slighsoone analysis of how to use the
procedure” (ibid, p. 117). An ambitious techniaad process oriented definition of

problem solving is provided by Lesh and ZawojewgKi07):

Thus, problem-solving is defined as the processtefpreting a situation
mathematically, which usually involves several atere cycles of
expressing, testing and revising mathematical pm&tations - and sorting
out, integrating, modifying, revising and or refigi clusters of
mathematical concepts from various topics withind ameyond
mathematics (p. 782).

For the purposes of this study, a problem is a tagjuestion whose solution
requires more than simple inspection, perhaps plelstages of working to find a
solution. Some level of complexity is implied, v&ing reasoning and/or heuristics. As
with examples, the best problems, from a teacherggective, exhibit exemplary

attributes, which briefly means that such problemespedagogically significant with



respect to the teaching objectives, while also idiog an appropriate level of

complexity and challenge.

Tasks

A task can be defined as any question, exercipeatnlem assigned to students.
Stein, Grover, and Henningsen (1996) define a maditieal task as “a classroom
activity, the purpose of which is to focus studerftention on a particular mathematical
idea” (p. 460). Christiansen and Walther (198&gdentiate between routine tasks
(exercises) and problem-tasks (problems). In nmadities classes, tasks are typically
associated with lists of exercises, often rep&igvoups of similar questions. Tasks, as
referred to in this study, are those problems arebtions that are assigned to students to
complete, and may be in-class or outside of ciass.t Assessment items, which include
guestions and problems used on quizzes and tesysnot be considered in the same
vein as classroom tasks and assignments; nonethtiey are important teaching

devices insofar in their use as worked examples aftidents have attempted them.

10



CHAPTER 2: SURVEY OF EXISTING
EDUCATIONAL RESEARCH

1. Craft and Pedagogical Content Knowledge

Shulman (1986) identified three categories of kremlgke pertinent to
transforming the knowledge of the teacher intodtsetent of instruction. Subject matter
content knowledge, the amount and organizatiomofatedge in the mind of the teacher;
pedagogical content knowledge, the content knogddgtiat embodies the aspects of
content most germane to its teachability; and cular knowledge. Of most relevance to

this study is teachers’ pedagogical content knogeed

Pedagogical content knowledge includes knowledghos¥ to represent
ideas in order to make them comprehensible togameér. It also includes
knowledge of the difficulties that students areeljk to encounter in
learning a particular topic as well as strategies dvercoming those
difficulties. It includes knowledge of the concegtuand procedural
knowledge that students bring to the learning of tapic, the

misconceptions they may have developed, and tigestaf understanding
that they are likely to pass through in moving framstate of having little
understanding of the topic to mastery of it (Catperl988, p. 192).

Shulman adds, “Since there are no single most galflerms of representation, the
teacher must have at hand a veritable armamentariatternative forms of
representation, some of which derive from reseaffodreas others originate in the
wisdom of practice” (Shulman, 1989,9). In addition to knowledge of the potential

of mathematical tasks and an awareness of “studexsting conceptions and prior

11



knowledge”, Krauss, Brunner, Kunter, Baumert, BliNeubrand, and Jordan (2008)
identify a third aspect of mathematical pedagogicaitent knowledge, the
knowledge of appropriate mathematics specific utdtonal methods. Ball (2000)
comments on the link between content knowledgepaagogical content

knowledge:

Viewed from the perspective of practice and theiacivork of teaching,
at least two aspects seem central. First is thaaity to deconstruct one’s
own knowledge in to a less polished and final fonwhere critical
components are accessible and visible. This feabtfiteaching means
that paradoxically, expert personal knowledge dijestt matter is often
ironically inadequate for teaching. Because temchmist be able to work
with content for students in its growing unfinishadte, they must be able
to do something perverse: work backward from matameé compressed
understanding of the content to unpack its corestitelements. Knowing
for teaching requires a transcendence of the tawoderstanding that
characterizes and is sufficient for personal knogé and performance
(Ball, 2000, p. 245).

Zodik and Zaslavsky (2008) consider the connedbietiveen pedagogical content

knowledge and teachers’ use of examples:

With respect to exemplification, the mathematicghexct of an example
has to do with satisfying certain mathematical ¢oowls depending on the
concept or principle it is meant to illustrate. Kvledge of students
learning includes a teacher’s understanding of blmdents come to know
and how their existing knowledge affects their ¢nmgion of new
knowledge. It also relates the teacher’'s sensjtid students’ strengths
and weaknesses, and with respect to exampleseatbérs’ awareness of
the consequences of students’ over-generalizingirater-generalizing
from examples, and students’ possible tendency dbticen irrelevant
features of an example instead of attending toritial features (p. 167).

The lack of common referents in terms of languagaeiscribe the pedagogical

actions by classroom teachers is addressed byeStapt Truxaw (2007):

12



At the present time, the shared professional diseowf the mathematics
education community lacks the capacity to desctite core of its work —
mathematics pedagogy. To strengthen mathematachitegy and learning, we
contend that it is critical to develop a sharedjlaage of mathematics pedagogy...
This shared language may facilitate discussiongpraftice, support teacher
learning, and afford conceptual tools that teackars draw on as they organize
mathematically rigorous lessons and reflect orrtiegiching (p. 206).

Bochicchio, Cole, Ostien, Rodrigues, Staples, Sasid Truxaw (2009) identified high
school mathematics teachers’ pedagogical “movekichv‘elicited, extended, or built on
students’ mathematical thinking or guided the lessmathematical trajectory”. They
attempted to create a shared language to deshabe tesults. In their investigation into
“mathematical-pedagogical” actions and behaviotiigraspective teachers, Zazkis,
Liljedahl, and Sinclair (2010) use the term “teathmoves” to characterize these
behaviours and actions. In doing so, the authomseent, “Our naming of teaching

moves helps in bringing them into being” (p. 35).

Earlier in this study, the idea of craft knowledgéeaching, and the difficulties
teachers have in analyzing their practice wereudised. The ways in which pedagogical
content knowledge is expressed into practice afstc@m teaching from the perspective
of teachers, especially at the senior high scheal| is not well reported in the literature.
Difficulties are compounded by the lack of appraf@ilanguage with which to describe
these aspects of teaching, although progressnglmeade in this area. These challenges
directly impact on the work done in this studywak be shown in my analysis of task

and example use.
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2. Pedagogical Roles of Tasks and Examples: Exenipation

The use of examples is generally acknowledged nbessential and ingrained
aspect of most mathematics teaching (Atkinson,&Gf10; Bills et al, 2006; Carpenter,
1989; Mason, 2006; Stein et al, 1996; Zaslavsk$02@odik and Zaslavsky, 2008).
“Examples are an integral part of mathematicalkimg, learning and teaching,
particularly with respect to conceptualization, getization, abstraction, argumentation
and analogical thinking” (Zodik and Zaslavsky, 20p8165). When examples perform
as such, they “exemplify”. This obvious purpos@nfexample, however, must be seen
as such by the student. “Mathematical objects belyome examples when they are
perceived as ‘examples of something’: conjecturesa@ncepts, application of
technigues or methods, and higher order constsucts as types of proof, use of
diagrams, particular notation or other support, smon (Goldenberg and Mason, 2008,
p. 184). “Exemplification is used to describe aityation in which something specific is
being offered to represent a general class to wketmers’ attention is to be drawn”
(Bills et al, 2006. p. 1-127). Examples which b#smonstrate these attributes have been
termed “exemplary”, which Mason (2002, 2006) expdais when learners can see

through a few particulars to a generality:

What makes an example exemplary is seeing it aartécplar case or

instance of a more general class of objects; bawgre of what can be
varied and still it belongs to the class, and witivhat range of values can
it be varied. The invariance is the ‘type’, conicep technique. Thus,
exemplariness resides not in the example, but w Hoe example is

perceived (Mason, 2006, p. 17).
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Further, Mason identifies the following tactics gposing “examplehood”, which he
describes as, “promoting appreciation of generalityerent in concepts, properties and

techniques” (ibid., p. 63):

* Another and another: a sequence of examples catstrby students to promote
an awareness of variation;

» Dimensions of possible variation: describing anglesing the range of variable
aspects of examples;

» Reversing: Exploration of similar tasks which prodihe same answer;

» Characterising: Describing all possible objectsitga specified property;

» With and across the grain: Attending to patternish(the grain) and attending to
the underlying structure expressing and interpgetie significance of the

generalities (against the grain).

* Reveal and obscure: Constructing example(s) wiaebal and then obscures a
property;

» Particular to general: Using particulars to suggesteralization;

» General to particular: Using a general questiodeatify particulars.

Bills et al (2006) review the use of examples froistorical, theoretical, teaching
and learning perspectives. From the teaching petise, they emphasize the complexity
of example use, and discuss examples as fundameakafor communication and
instructional explanation. They describe two htttes of good examples: transparency, a
measure of the relative ease with which the exam@le/s attention to its exemplary
features; and generalizability, reflecting the ipibf the example to point to its arbitrary
and changeable features. The mechanisms behins¢haf examples, as shown above,

are instrumental in understanding how examplesised. This addresses the research
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guestion driving this study: determining the asp@ftteaching process/method which

are responsible for successful student learning.

3. Categorizations of Tasks, Examples and Problems

Various authors have created categorizations ahples from different
perspectives. These include those based on a kdgw/lacquisition perspective; others
reflect various characteristics of the tasks, eXamand problems used, as well as their
pedagogical aspects. In her epistemological seatn the attainment of mathematical
knowledge, Rissland (1978) examines three maj@&goates of items comprising
mathematical knowledge:

» results (traditional logical deductive elementsnaithematics);

» examples (illustrative material);

» concepts (mathematical definitions and heuristitong and advice)
“Thus, mathematical knowledge can be structurethbge major types of item/relation
pairs —example/constructional derivation, resutgfial support, and concepts/
pedagogical ordering — which establish three regmadion spaces for a mathematical
theory: examples-space, results-space and conspate. She further defines
epistemological classes of the “examples-spacebasisting of four types of examples:

» Start-up examples (motivation for and initiatiotoi@ topic);

* Reference examples (basic, widely applicable, stahdases);

* Model examples (paradigmatic, generic examples);

» Counterexamples (demonstrating that conjecturefatze).
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The mathematics portion of the TIMSS 1999 Videwd$t(Hiebert et al, 2003)
included 638 eighth-grade lessons collected froves@articipating countries. The
authors found that significant portions of lessamese given over to solving mathematics
problems. For all problems that were identifiddee purposes were defined: review,
introducing new content, and practicing new contélrfte authors also considered how
problems were connected, distinguishing among lbasic kinds of relationships
occurring in lessons:

* Repetition: practicing procedures;

» Mathematically related: using solutions to a presgiproblem, extending a
previous problem, highlighting some operations pfevious problem, or
elaborating on a previous problem;

* Thematically related: associated with a precediodplem of similar topic or
theme;

» Unrelated: using different operations, and notteglanathematically or

thematically to any of the previous problems inlésson.
The authors also distinguished between applicatimlsexercises. Exercises consisted
of similar problems involving the use of taughtg@edures; applications required the use
of learned procedures to solve problems presentadiifferent context. Shavelson,
Webb, Stasz, and McArthur (1988) identified feasurharacteristic of expert teaching of
mathematical problem solving. Those that direictipact the use of tasks and examples

include:

» activating of students’ prior knowledge relevantg¢aching a new concept;
* sequencing relevant prior knowledge from less @atéwo more relevant;
» using multiple representations of concepts;

» coordinating and translating among alternativeasgntations;
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» providing informal proofs, alternative represerdas;
» providing detailed explanations and justificati@fiseasoning;

» linking concepts/operations to problem types.

Bills et al (2006) distinguish between examples abncept and examples which
consist of procedures. Those examples which detradegprocedures are further
classified into worked-out examples, “in which fftrecedure is performed by the
teacher, text-book author or programmer, often witine sort of explanation or
commentary” (p. 1-127), and exercises, which camditasks set out for learners to
complete. They point out the lack of clarity amahgse distinctions, indicating that the
representation of an object may also be constraedmocedure, and acknowledge the
overlap between exercises and worked exampledawgky (2010) distinguishes among
specific, semi-general and general examples, acaptd their “explanatory power”. She
identifies the following cases of teacher’s usexdmples: conveying generality and
invariance, explaining and justifying notations adhventions, establishing the status of
pupil’'s conjectures and assertions, connecting emagtical concepts to real life
experiences, and the challenge of constructing pleswith given constraints. These
cases underline her conclusions that, “Choosinguatonal examples entails many
complex and even competing considerations, soméimh can be made in advance, and
others that only come up during the actual teachiMgny considerations require sound
curricular and mathematical knowledge” (p. 126hdik and Zaslavsky (2008) examined
teachers choice and generation of examples in Gta8@and 9 mathematics classes.
They identified the following types of consideratsoemployed by teachers in

generating/selecting examples:
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start with a simple or familiar case;
attend to students’ errors;

draw attention to relevant features;
convey generality by random choice;
include uncommon cases;

keep unnecessary work to a minimum.

Among their observations was that almost half bfre teacher-generated examples

observed were spontaneously constructed.

In their study into the use of tasks used in G&te Grade 8 mathematics

classes, Stein et al (1996) investigated the extewhich mathematical thinking and

reasoning was occurring as a result of these tabksir coding decisions distinguished

between “...tasks that engage students at a sudaekdnd tasks that engage students at

a deeper level by demanding interpretation, flditjbithe shepherding of resources, and

the construction of meaning” (p. 459), and examithede tasks in terms of their task

features and their cognitive demands. Of intemesthe coding decisions they made for

these tasks, which fall under four main categotesk description, task set up, task

implementation, and factors associated with théireor maintenance of high-level

tasks:

Task description:

percentage of class time devoted to the task;
type of resources used;

type of mathematical topic;

context (real-world or abstract context);

whether or not the task was set up as a collaberagnture among students.
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Task set-up:

* number of possible solution strategies;

* number and type of potential representations thalidcbe used to solve the
problem;

e communication requirements of the task (the extemthich students were
required to explain their reasoning and/or judtifgir answers);

» cognitive demands (memorization, the use of forsyuégorithms or
procedures without connection to concepts, undedsig, or meaning);

* cognitive activity (complex mathematical thinkirrgasoning, making and

testing conjectures).

Task implementation (noting changes from task paisumplementation):
» change in number of solution strategies;
» change in number and kind of representations;

» change in communication requirements.

Atkinson et al (2000) call attention to the worleecgimples research, and discuss
the implications of the findings on instruction&sign. They stress that learning from
worked examples is of major importance during theal stages of cognitive skills
acquisition, including those required in other damauch as music and athletics. For
worked examples to contribute to instructional effeeness, they must be looked at in
the context of the entire lesson (inter-exampléuies) or how examples are designed,
connected and presented (intra-example featuiidsy note three “intra-example” (how
such examples should be designed and construetailiyés:

* integration of example parts (text and diagrams);

» use of multiple modalities (integrating aural ansiral information);

» clarity of sub-goal structure (integrating stepd anb-goals).
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The relationships among examples and how lessanddshe designed, which they

termed “inter-example” features are :

* multiple examples per problem type;

* multiple forms per problem type (effects of varymgblem types within
lessons);

» surface features that encourage a search for despuse (variability in
problem context);

» examples in proximity to matched problems (exangulEhblem pairs).
How the above features of examples are best useditibate learning is explained as

follows:

First, transfer is enhanced when there are at teestxamples presented
for each type of problem taught. Second, varyingblem sub-types
within an instructional sequence is beneficial, baty if that lesson is
designed using worked examples or another format thinimized
cognitive load. Third, lessons involving multigdeoblem types should be
written so that each problem type is representedxXaynples with a finite
set of different cover stories and that this saeteo§ cover stories should
be used across the various problem types. Finakgons that pair each
worked example with a practice problem and intaspeexamples
throughout practice will produce better outcomemntlessons in which a
blocked series of examples is followed by a blockedes of practice
problems (p. 195).

Krainer (1993) attempts to bridge theory with picein terms of the conflict
between instructional efficiency and the need fodents to be consumers as well as

producers of knowledge. In order to be “powerfidsks should:

* be interconnected to other tasks (horizontal cotoes);

» facilitate the generation of further interestingegtions (vertical
connections);

* initiate active processes of concept formation ageanied by concept
generating actions;

* encourage reflection leading to further questisomfthe learners and
leading to new actions.
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In most of the studies cited above, the analysdscategorizations of the
classroom implementation of tasks, examples anblg@mms do not sufficiently address

level of complexity that will be demonstrated latethis study.

4. Problem Solving

Since every problem used in the classroom is alssxample, and the majority of
examples considered in this study are problemddtsed earlier), it is instructive to
review contributions from research on the instuwi use of problems and problem-
solving. Lesh and Zawojewski (2007) note the shaftd “pendulum swings” that have
occurred during over this time span, between baglk level instruction and curricular
emphases on critical thinking and mathematical lpralsolving. They also report a
growing recognition among mathematics educators thaerious mismatch exists (and
is growing) between the low level skills emphasizetest-driven curriculum materials
and the kind of understanding and abilities thatregeded beyond school” (p. 764).
Polya’s (1957) problem solving heuristics are destlivith being highly influential in
bringing problem-solving to the fore of school n&ttatics curricula over the last four
decades (Lesh and Zawojewski, 2007; Schoenfeld?;18@nic and Kilpatrick, 1988).
However, Schoenfeld (1982) asserted that, “...Polgh&racterizations did not provide
the amount of detail that would enable people weoamot already familiar with the

strategies to be able to implement them” (p. E3hoenfeld also discusses the
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phenomenon of students purportedly solving prob)drasin reality working with drill-

and-practice exercises on simple versions of profselving strategies.

Stanic and Kilpatrick (1988) take a historical pastive to examine the role that
the teaching of problem solving plays in schoolicutum, describing three general
themes that characterize this role. These ingiwdblem solving as context for
achieving other purposes, problem solving as skilt] problem solving as art. As a
“context” for achieving other goals, they identifye following:

» Justification: problems provide justification fdret teaching of mathematics;

» Motivation: aim of gaining student interest;

* Recreation: to allow students to have some fun thiehmathematics;

* Vehicle: vehicle through which new concept or skilpht be taught;

* Practice: having the largest influence on the nmatt&s curriculum, practice
to reinforce skills and concepts.

Problem solving may be considered as one of a nuoflekills constituting curriculum.
Stanic and Kilpatrick distinguish between routimel @on-routine problems, pointing out,
unfortunately, that non-routine problem solving d@es an activity restricted to
especially capable students rather than all stsddmastly, they consider problem
solving as art, as emerging from the work of Polyaeir view is that problem solving as
art is the most defensible, fair and promising, oot problematic theme because it is

the most difficult to “operationalize” in textbooksd classrooms.

In their overview of past research into the teagluhimathematical problem
solving, Lesh and Zawojewski (2007) identify magoeas of research. Those appearing
prior to 1990 include task variables and probleffiadilty studies (focusing on features

of the types of problems students were given), gip®vice problem solver studies, and
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instruction in problem-solving strategies. Thesoaldentify three avenues of research on
higher-order thinking in mathematical problem sotyimetacognition, habits of mind,
and beliefs and dispositions. They conclude taenieg of mathematics should occur
through problem-solving, and propose a shift froaditional views of problem solving

to one that emphasizes, “synergistic relationshijetiveen learning and problem solving.
They suggest the adoption of a models-and-modelppgoach, in which the learning of
mathematics takes place thorough the use of matieahaodeling in problem-solving.
This approach is contrasted with the traditiongrapch to problem-solving, which the

authors view as a four-stage process:

1. Master pre-requisite ideas and skills;
2. Practice newly mastered skills;
3. Learn general content-independent problem-solvinggsses and heuristics;

4. Learn to use the preceding ideas, skill and hecsigt applied problems.

As discussed in Chapter 1, the line between whadttates a problem and other
types of classroom tasks is not clear. For exantipieTIMSS 1999 Video Study simply
treats all examples and tasks used as problenthatistudy, such problem statements
used in classrooms were classified by the mathealgirocesses implied, as either using
procedures, stating concepts, or making connectidhg authors described “making
connections” as,Problem statements that implied the problem wootdi$ on constructing
relationships among mathematical ideas, factsrazgulures. Often, the problem statement
suggested that students would engage in specirakfof mathematical reasoning such as
conjecturing, generalizing, and verifying” (Hiebettal, 2003p. 98). This aligns more

closely with the activity of “problem-solving”, @ problems that the authors classified
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as “applications”, in which students are requireapply procedures learned in one
context to address a problem presented in a diffex@ntext. An important distinction
emerging from the study, and a characteristic diffigating higher achieving countries
from their counterparts, was in how “making conied®” types of problems were
implemented in the classroom. These problemsreigtained their intended
characteristics or degenerated into more simplafusrocedures” types of problems.
This “routinization” of complex tasks is also refant by Stein et al (1996) in their study
on task use. They noted that, frequently, teaclersd do too much for the students,
taking away students’ opportunities to discover arake progress on their own. High-
level tasks often declined into less demandingraigtilue to student failure to engage in

these activities, attributed to lack of interesgtivation or prior knowledge:

Although this factor spans a variety of reasons,rdasons all relate to the
appropriateness of the task for a given group afdestts. The

preponderance of this factor points to the imparaof the teachers’

knowing their students well and making intelligehiices regarding the
motivational appeal, appropriate difficulty levak well as the degree of
task explicitness needed to move their students time right cognitive

space so that they can actually make progresseotasik (p. 480).

To maintain student engagement in “high level” saskenningsen and Stein (1997)
report five influential factors: the extent to whithe task builds on students’ prior
knowledge: scaffolding (simplifying the task whiteintaining its complexity),
appropriate amount of time provided, high levelf@enance modelled by teachers or
capable students, and sustained teacher pressumgplanation and meaning. Lesson
design strategies employing worked examples to pterexpert thinking and creative
problem solving, in addition to procedures (Atkings al, 2000) are discussed earlier in

this chapter.
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Bills et al (2006) examine the impact that examysde has on learner reasoning
and problem-solving proficiency, referring to a toaum that runs from remembering
suitable examples to analogical reasoning. Thadézanay apply known techniques
from relevant worked-out examples. In contraspriablem solve by modelling and
using heuristics, knowledge of similar situatiossequired. “This mixture of logical-
based reasoning (using deductive mechanisms) ard@&-based reasoning characterise

mathematical competence at every level” (Billslel&l42).

Research on problems and problem-solving confifras pervasive presence in
teaching philosophy and curriculum, although auticgeroblem-solving is not often
realized. There is a tension between the teadfingathematical basics and problem-
solving. My approach corresponds with that of Lastd Zawojewski (2007), in which
learning should occur through problem-solving. lewer, as reported in several studies,
these attempts often result in a reduction toeke tlesirable outcome of routinized
exercises. Although not examining the impact afem-solving per se, the choices
made in this research and in my teaching in gereeatiriven by the assumption that

problem-solving is one of my essential purposesguads.
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CHAPTER 3: METHODOLOGY

1. Setting

School and Students

This research study was conducted at a secondaoplsic Vancouver, British
Columbia over the course of 2008 and 2009. Theddhk an urban high school of
approximately 1300 students from Grade 8 to Gradsitated in a relatively affluent
section of Vancouver, British Columbia. The exp#ions of the adjacent community are
high for students at this school to have a sucakbgjh school experience. Typically,
this success is realized, with the vast majoritgtaflents graduating and moving on to
local and Canadian universities and colleges. dtbeg, a large constituency of the
students are highly motivated in academic courstsvever, this does not preclude a
large number of students from experiencing difiguh mathematics courses.
Graduation requirements in British Columbia ardilfatl with a Grade 11 mathematics
course; many students in the school (approxim&e®ds) choose to not go on to a Grade
12 math course. Students wishing to pursue stilliegthematics and science based
post-secondary paths require the Grade 12 matlseo8tarting in 2008, formerly

mandatory government exafrzecame optional for students.

® Final grade 12 government exams, optional except for English 12, make up 40% of a student’s
grade.
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The Grade 12 course in which this study is carowet] Principles of Mathematics
12, evolved from its 1980’s precursor, Algebrath?ough “Mathematics 127, to its
current incarnatiofi. There have been a number of curricular changestime, but it
remains essentially a pre-calculus course, witbstom Transformations (of functions),
Trigonometry, Logarithms, and Sequences and Sefibs.course also contains
Combinatorics and Probability units. Studentshiese classes typically have a wide
range of abilities, and enter with various levdlp@paredness. Although most of the
students in the Grade 12 math course are Gradeid@rds, typically 17 years of age, an
increasing number of students from lower gradepapeilating these classes. In recent
years, students have been able to accelerate thiogly school academic courses by

taking Grade 10 and higher academic courses dthengummer, and distance education.

2. Data Collection

The most appropriate description of this studyctsoa research. In my case, as
teacher-researcher, the type of action researdfdsed to as participatory, or self-
reflective research (Cresswell, 2008), in whichrémearcher retrospectively constructs
an interpretation of the action. The hallmarksction research apply here: data
collection through experiencing (observation, freltes) and examining (using and
making records), documents, journals, videotapddiatdnotes. In the sense that the

direction of the study underwent some refocusingngudata analysis, the research

* A new set of courses for grade 12 mathematics, Pre-Calculus 12 and Foundations of
Mathematics 12 is scheduled for implementation in 2012.
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method also contains some aspects of groundedytdesign. Charmaz (2000) describes
this method as consisting of systematic inductwielglines for collecting and analyzing
data to build theoretical frameworks that expléi@ tollected data. As self-reflective
action research, the analysis of the data requietgichment, objectivity and
chronological accuracy. Although I strived to asl@ these, | cannot guarantee them.
The separation of a priori perceptions, assumptimasawareness from those aspects
revealed through analysis and reflection, defineel af the essential difficulties with this
study. “Since we always create our personal naeréitom a situated location, trying to
make our present, imagined future, and remembeastcphere, there’s no such thing as

orthodox reliability in autoethnographic resear@llis and Bochner, 1996, p. 751).

Data collection began with the documentation ofnepl@s and problems used in
my Grade 12 mathematics classes during the 2008-2€lbol year. At an early point in
the study, in order to uncover the aspects of raghtimg most responsible for student
learning, | also considered methods of compilingleht perceptions of understanding
and learning based on what was meaningful to thidowever, as teachers find it
difficult to elucidate the nature of their practidas at least as difficult, if not more so,
for students to identify the mechanisms behind tleairning. Overall, student responses
to these kinds of questions were not, in genegal taelpful. For example, an initial
stage of this study attempted to identify aspetexamples which students thought were
instrumental to their understanding and learnilmgretrospect, asking students to probe
their awareness of metacognitive processes wakelytio produce meaningful results
without significant training. Not surprisingly,ahexercise did not provide information

that was directly useful. Leaving the complexitéstudent learning for subsequent

29



research, | targeted task and example usage fretedicher’s perspective. In order to
determine how and why these tasks and examplesheérg used required tools - ways
in which to facilitate an analysis. What was neeeg was a method by which I could
penetrate the body of “craft knowledge”. The obadje involved the determination of a
means to make structural sense out of the colkedistrategies which combine to form
my technique. As described in Chapter 1, the ceripyl of craft knowledge is difficult

to deconstruct. Parallel or analogous studiekenrésearch appeared to be quite rare, as

noted in the previous chapter.

As | have indicated, initial attempts to acquinedgint learning data were
abandoned. The analysis of records, plans, jomgnahd self-reflection of my lessons
form the basis of this research. To ascertain ndrdhere were additional qualities in the
actions of teaching that transcended identificatioough the above written and “static”
records, lesson video-recording was undertakery. U8ng video it is possible to capture
the simultaneous presentation of curriculum condewlt execution of teaching practices.
It can be difficult for teachers to remember classn events and interactions that happen
quickly, perhaps even outside of their consciouaramess” (Hiebert et al, 2003, p. 5).
There was no attempt to record any particular tfdesson or make those that were
recorded particularly better examples of my pra&cticlThe recording was completed over
a period of three weeks, covering a more or lesdam string of lessons across two
different Grade 12 mathematics classes. One stthas a regular “math 12” class, and
the other an “enriched” math 12 grdugn all, just over 500 minutes (8.5 hours) ofssla

time over 8 lessons was recorded. The video r@ugsdvere reviewed, and transcripts

® This enriched group was comprised mostly of Grade 11 students. They typically receive the
same instruction, perhaps sooner and at a slightly accelerated pace.

30



were made of selected portions of lessons whicle wedevant to the teaching use of
examples and tasks were made. Seven of thesa lepsmde transcripts, selected as
representative samples or subsequently referrgdthas report, may be found in the

Appendix.

3. The Categorization of Tasks and Examples

The accumulated data on task and example use graag 12 mathematics classes
consisted of documentation taken from lesson plaasnals, as well as my lesson
reflections, assessment items and the video redafdrmed by a-priori assumptions and
ideas from my teaching practice, | attempted toerhe “lives” of these examples, tasks
and problems (for simplicity, in the subsequentassion, | will use the term example to
include tasks and problems). Most of the examiplesy lessons are used for a variety
of reasons, and often with one or more ulteriochi@sg motives. As well, changes to the
initial reasons for using tasks and examples dutieg deployment are not unusual. Not
only can examples take on different attributegdaiching purposes, but they may be
perceived in different ways from the student pecipe. It is therefore unlikely that any
example represents or accomplishes a single purgosader to determine these
purposes, and clearly and fully explain examplearstdeployment, four types or levels
of description emerged. At the most basic levad,term “Origin” is used to indicate
how an example emerged, or came to be, in a lesSane a task or example is brought

to the lesson, or is at some stage of implememtatitoecame necessary to look at the
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teaching means through which it is delivered, ancwnicated to the class. “Delivery”,
the second major category, represents the manmdrian the example is communicated
to the class. These first two categories of exardpkcription, Origin and Delivery, are
primarily mechanical aspects of lesson planningrapdesent superficial aspects of the
teaching process. As such, they were largely whoed, if not obvious, prior to this
study. The more difficult questions to answer warses and why these examples were
being used. What were the teaching goals | intgéno@ccomplish through their use? In
the course of considering these questions, fudiganization emerged, resolving into
two additional categories:

» Context: When and how examples/tasks are used,;

* Intention (or intent): Why they are used?
It is possible that these two categories may haes lmelded into a single one, as there
are a number of connections and similarities antbagnany subdivisions of “Context”
and “Intent”, as will be demonstrated in the follaggtwo chapters. However, there are
important distinctions between the two categondsch not only justify their
formulation, but explain the order in which theg aresented in this report. “Context”
of example use embodies aspects of the teachimggsdhat may be discerned by an
outside observer. These “Contexts” corresponamaesof the existing categorizations
that have appeared in previous research, outlmé&hapter 2. Teaching “Intents” are
subtly different in that they represent the ledstious, but more complex reasons for
using examples. Through the various teaching fitsteof example use, the most

idiosyncratic and perhaps controversial aspectsyofeaching can be addressed.
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The creation of this particular classificationtsys is specific to the manner in
which | have interpreted my own teaching. It saslthat other arrangements and
interpretations are possible. However, this laysuine which seems to logically
represent the aspects that emerged from this stéayther, the progression through
Origin-Delivery-Context-Intention is one that moviesm simple and obvious features to
those that are more complex and difficult to idigrdind explain. The general
organization of the classifications, under the Hroategories of Origin, Delivery,
Context and Intention, are laid out in Figure heBubdivisions in each category are
shown below. The “Origin” and “Delivery” subdivisis are self-explanatory; the
subdivisions of the “Context” and “Intent” categesj a much more important part of this
report, are more fully explained with illustratiegamples and definitions in Chapters 4

and 5.

Origin
There are five general modes of conception for gptamse in the lesson under this

category:

* Planned

* Spontaneous

* Random

» Assessment (questions/problems on quizzes, testsaominations)

» Student request (or resulting from student queries)
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( contrasting ) AND DIFFICULTIES
~
TASK [ TO CREATE PARTIAL
sdiletoly ( ey ) UNDERSTANDING
J
[ consoLibDATING | [ ST RUCTURED ]
~
ASSESSMENT ( SN ) [ TO OVERLOAD ]
7
ASSESSMENT CROSS OR MULTI [ TO PRE-FAMILIARIZE ]
TOPIC
N ITEM
STUDENT TO CREATE
REQUEST UNCOMMON OR A PLATFORM FOR
/ EXCEPTIONAL CASE FUTURE SCAFFOLDING
[ ACROSS THE GRAIN ]
Figure 1: The Categorization of Tasks and Examips
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Delivery

*  Worked example
* Task

* Assessment item

Worked examples and tasks were defined in Chapté&ssessment items are also tasks,

although delivered in a more formal setting, or &l exams.

Context

The different “Contexts”, or ways in which the exales were being used, were
developed by considering the inherent qualitiethefexample and its chronological
placement in the lesson, curricular unit, termostlyear, etc. The language necessary to

describe these was reasonably accessible. Thahtfcontexts arrived at were:

» Standard

* Overview

* Warm-Up

* Introductory

e Limiting

» Contrasting

* Review

» Consolidating

» Extending

» Cross or Multi-Topic

* Uncommon or Exceptional Case
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Intent

In the final category of task and example desicniptteaching “intent”,
pedagogical intention and teaching strategies ar@pparent in and of the examples
themselves, nor are they readily discernable frimdysng records of teaching. In fact,
they represent my attempts to isolate, identify gid a name to the various features and
attributes that define my teaching methods. Thesr/es” are related to those
“mathematical-pedagogical actions” discussed bykigaat al (2010) and Bochicchio et
al (2009). Arriving at appropriate nomenclaturetfeese proved difficult. Coding and
categorization structures used in related studsgmrted in Chapter 2, provided
negligible guidance. Appropriate descriptors f@me of the intentions | report do not
seem to be present in the literature, or at leatsinnthe necessary context. The following

represent, as reasonably descriptive as posdi@aeaching intentions resulting from my

analysis:
e Standard
e To Level

* To Create Cognitive Dissonance

* To Stimulate Inquiry

» To Create Partial Understanding

* To Point Out Common Errors and Difficulties
» Structured Variation

* To Overload

* To Pre-Familiarize with Upcoming Topics

» To Create a Platform for Future Scaffolding

e Across The Grain
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The following example (see Transcript 7, Appendasx¢onsidered through the

lens of the classification system outlined above:
Example 1.
Given the graph dix) = sinx, sketch the graph of its reciprocal.

This example was used to introduce reciprocal trgoetric functions. | sought to
employ a graphical approach to allow students ¢éanthis perspective much earlier than
I usually do in this area, hoping that this atypsmguence would address a characteristic
student weakness in understanding reciprocal tageatric functions and expressions.
Chronologically, it directly followed the graphimg basic trigonometric functions (see
example 38). These students had already learaesgftrmations of functions in an
earlier curricular unit, and from this were familigith the sketching of reciprocals of
general functions. This included asymptotic bebaniinvariant points and other
features of such graphs. The important aspectsidered and points made during the
flow of this example are:
» review of characteristics of the functigr= sin 8, including a clarification of
the meaning of the horizontal axis (representingragie);
» emphasis that the function’s domain consists afeal numbers;
» construction of the sine graph is facilitated bitiog the period in half and
then half again;

» continuous emphasis on radian-degree conversion;

» characteristics of the reciprocal and its consioagt

' i . m_ 1
* using special angles nZ = -

7
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B

* naming this function cosecardsc30° = j ;

* domain and range of = cscé (solutions over all real numbers).

7\
N

As indicated above, passing through origin, deliveontext and intention, the
classification organization proceeds from simplentre complex pedagogical concept.
This example had its conception, or “origin”, imphing. The “delivery” was in the
form of a “worked example”. The context is printaintroductory, with some elements
of review and consolidation. The primary teacHimgention” for using this example in
this way was to “address common errors and diffiesil. As indicated above, this
relates partly to student difficulties with reciped functions in general, but more so with
the problems they have working with expressionsemditions involving reciprocal
trigonometric functions. This atypical approactegenting the graphical definition of
cosecant first, could also be considered as a fdrfworking across the graifi” Other
intentions are manifested through this exampleh sisclevelling (but not overly distinct
from the contexts of review and consolidation),ingithe repetition of the construction
of the sine graph. In the discussion on the dorohithe cosecant function, there is an
attempt to “prefamiliarize” with solutions over aflal numbers, which is an aspect of the
upcoming work on solving trigonometric equatior@ertainly multi-faceted, the teaching

intentions drive the mobilization of this example.

The above description provides a sense of howndrydthat example was used in

the classroom. The features identified do nategtcapture the essence of the actual

® «Across the grain” is a way in which a concept can be presented from a different point of view or
in a different way. This is explained in Chapter 5.
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deployment of the example, but rather provide asit@ately as possible, given the
available means, a deconstructed representatihal transpired. As emphasized,
earlier in this study, there are challenges ircalditing these motivations and reasons,
and there are difficulties in explaining how crafiowledge is turned into instructional
content. The last two categories in the clasdificasystem | have constructed, context
and intention, are the most important as well astilost complex. Context is considered
in the next chapter. “Intention,” comprising theshcomplicated set of ideas in this

analysis, is presented in detail in Chapter 5.
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CHAPTER 4: TASKS AND EXAMPLES:
CONTEXT

“Context” is the first of two major organizers whitanalyzed in depth. It
consists of a set of descriptors which depict witle@ chronological placement in a
curricular unit) and how examples were used in @sgbdns. These attributes are
reasonably self-evident, yet an example or task maryifest itself in several possible
contexts. As will be demonstrated, context isagly a function of structural or
chronological development in a lesson or over abrmof lessons. The following

contexts for tasks and examples are those thatd id@ntified in my teaching:

» Standard

* Overview

*  Warm-up

* Introductory

e Limiting

» Contrasting

* Review

» Consolidating

» Extending

» Cross or Multi-Topic

» Uncommon or Exceptional Case
Thesecontexts are generally predetermined in planning. Thissdu& preclude the

necessity of having a number of examples readgpontaneously producing appropriate
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examples, for the various eventualities that ansgassroom teaching. Whether the
product of conscious thought, planning, improvieegdpontaneous “in the moment”

teaching, actual examples are used to illustrate efthe contexts.

1. Standard

There are many reasons for and modes of deplopagftc examples and tasks.
Among the multitude of reasons for the teachingafsbese, there remain those
examples which are used simply for typical anddtesaching purposes, as in illustrating
concepts, simple exposition, and exemplificati®issland (1978) referred to these as
“reference examples,” in their use as basic, widgllicable, standard cases. For the
purposes of this study, the “standard” contexhaduded to point out that examples may
be used in straight-forward and simple ways, inti@st with some of the other strategies
that emerge later in this chapter. Another wagxplain this is that such examples do
not seem to fall under any other type of contextaégorization. The following

examples are such cases:
Example 2.
y =1 (X) is transformed toy =f (2x + 4).

This transformation is used in two ways. It eitrequires a graphical transformation of a
generic functiory = f(x), or the statement of the transformation involv&dhen X + 4

is factored to 2(+ 2), andf (2x+ 4) becomed (2(x + 2)), it is clear that the function

is horizontally compressed by a factor of 2 withprect to its distance from the y-axis,

and then translated 2 units left. Students mustél know how to use these facts.
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Example 3.

The terminal arm of an ang& in standard position passes through the point
(3, 8). Determine sid@, cosé, tand andé .

The selection of a quadrant Il angle allows an @gtion of aspects of the trigopnometric
ratios and standard position angles. A diagraoygh not absolutely necessary, is
recommended (Figure 2). The visual aspect of npaalglems is an ongoing theme that

will be addressed later in this report.

(-3,8)

Figure 2: Angles in Standard Position

» The tangent of the angk is determined ad :%
X —

. sin4§’=i andcosaé’:_—3

J73 J73
* Now the determination of the ange Any of the three above ratios can be used
to obtain the angle, and it is necessary for thdesits to understand this. First,
an estimate of the angle should place it at sometimi the order of 2 radians due

to its placement in the second quadrant. Thislshoe sufficient to alert students
to problems with their answer.

* Using the inverse sine ef%yields 1.212 radians. This is also the reference

73

angle, which be subtracted framto give the corredf, 1.930 radians;
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» Using the inverse cosine O\/_% gives us 1.930 directly; At this point, it is

necessary to clarify the types of answers calctggimovide when inverse
trigonometric functions are used, and how theswarssshould be used.

* Using the inverse tangent e% gives us—1.212 radians, to which the addition

of 77 will yield the correct quadrant Il angle.

The two problems used above to demonstrate “stdhdaamples may not appear as
such to students, especially those experiencirigulfiy. The video evidence indicates
that virtually all of the teaching analyzed attesnat simultaneously address different
student skill and ability levels. It is therefarslikely that any example represents or
accomplishes a single purpose. However, the exasmgblosen to illustrate the different
contexts explained below are specifically chosenigblight those particular contexts.
This will be true for the examples used for illasive purposes in Chapter 5 as well,

where “intent” is discussed.

2. Overview

Overview examples are problems which demonstrateesuf the major points
that constitute a curricular unit, typify its contecondense the material, and/or briefly
demonstrate the progression through the unit anolvigrarching goal(s). In certain
curricular units (or other natural division of tbeurse content) that do not require a
gradual build-up of competencies, such an exangiepcovide an effective launch into

the coursework. Units that particularly lend theitass to this approach are
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Combinatorics and Probability. Outlining the ldaghoutcomes or goals is beneficial, as
knowledge of where the instruction is heading cavige motivation, raise interest, and
stimulate inquiry. On the other hand, student gsioin and distress may result if the
example seems overly complex. Itis likely thathbloenefit and detriment will occur

simultaneously in a class, so care is necessagdore an overall positive result.
Example 4.
Determine the probability of winning the 6-49 |ojte

* Allows a discussion of theoretical probability, tikember of successful outcomes
divided by total possible outcomes, and what wehtnggean from such
information.

» employs previously learned combinatorics conceptietermine the number of
ways 6 different objects can be selected from@8hich the order does not
matter:4,9Cs , Or 13 983 816, and showing that the probahilitgelecting the 6

. . 6Cs
winning numbers is*—-
49 ™6
* Since winning (to a lesser extent) also include$ &; 5 “correct” numbers, the
example is extended to selecting, for example,reeconumbers and 1 incorrect
number: This calculation incorporates the Fundaaié€unting Principle of the

(6Cs)(C1)

product of choices-—*——=——*=
49 ~6

The previous example and the next are both usedexview the probability unit. Each

presents slightly different aspects of the upconmragerial.

Example 5.

There is a 40% chance of rain on each of the negtdays. What is the
probability that it will rain on 3 of those days?

" This lottery involves the selection of 6 numbers from 1 to 49, and having these six numbers
match the six numbers drawn.
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* We begin to construct a probability tree (Figurev@ich we could continue to
show all 32 outcomes, but indicate the impractigalf doing so.

* The artificiality of using a fixed probability (irghendence) for these kind of
events is discussed.

» The incomplete probability tree can be used totiflepatterns or some way to
determine the number of branches in which ther8alays of rain and 2 days of
no rain. One way is to look for the number of wagermutations of RRRNN.

!
This is a known problem from the combinatorics urﬁ?% =10.

0.4 0.6

[ rain | [no rain |

0.6 04 0.6 0.4 0.6

| rain | ‘no rain|| rain | |norajn| | rain | |norain|| rain | |n0rain|

Figure 3: Partial Probability Tree Diagram

» Every branch that has 3 successes and 2 failutesave the same probability,
(0.49/(0.6)2 , and there are 10 such branches. The answebavill

10(0.4)%(0.6 2 =0.2304

* What of other results? Looking at 0, 1, 2, 3,5 guccesses leads to the generic
binomial probability equation far trials, probability of succegs with x
successesP(x)= C (p)(g)"™

This example allowed me to go through many elemeitise probability unit as well as
providing an opportunity to give some of its “flaud. Such examples, having the

potential to lead to productive and perhaps esdatiscussion, provide excellent means

for overview.
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3. Warm-up

A warm-up by its own definition is a start-up taskhe form of a student
activity, used to bring students to a state of irezg$, to focus energy, and allow students
to be more receptive to upcoming work, to whicin#ty or may not have a direct
connection. If not connected to the curricularenat at hand, it usually has some
purpose, which might include reasoning, problemriagl mental math, etc. My
interpretation of such an activity is that it regsi a problem of sufficient complexity to
generate a problem-solving atmosphere rather ihgrlesreview exercises. These kinds
of activities are usually presented at the begimha lesson, but they may also be used
at the beginning of curricular units, school terorsat the beginning of the school year.
Occasionally, an interesting or unusual probleosisd as a warm-up; otherwise, the
problem incorporates some review or practice ofdsasConsidering time constraints,
warming-up is often incorporated into “introductoexamples. | tend to bypass warm-
up tasks in general, but they do emerge from tortérie. The following task was used

as such. Although not directly related to curnien] it draws from several useful areas.
Example 6.

An astronaut is attached to a space station wkich the shape of a cube
with sides 100 m long. The astronaut’'s cable $® d4I00 m long. What
per cent of the surface area of the cube can thenasit access if:

a) the cable is attached to a corner of the cube?

b) the cable is attached to the centre of onedétee cube®

8 Adapted from Canadian Invitational Mathematics Competition, 1989, Waterloo Mathematics
Foundation
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As a warm-up task, the “space station questionVides a challenging problem in
geometry and trigonometry.

* In order to proceed, it is useful to reduce thébfgnm to a two-dimensional
format. In Figure 4 below, a scale diagram offtagened cube is drawn.

* For part b), a circle drawn with radius 100 metsedrawn with its centre in the
centre of a cube face.

» The required area is visualized. A strategy focudating it is required. One
approach uses special angle relationships to fiacgtea that must be subtracted
from the 100 metre radius circle, or to determimee¢omponent areas that make
up the total.

The factors making this and other such problemsessful as warm-ups are their

accessibility and interest level. Accessibilityaiunction of student ability, which

Y

N

i
/

Figure 4: Flattened Cube

declines as the complexity of the problems incredsefortunately, the typical senior
mathematics student is not engaged by such probl&ms result, many such interesting

problems are abandoned, and often fall under thaew of the enriched classes only.
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Another type of warm-up example is a special cgresting case pertaining to the current

work, as shown in the following example:
Example 7.

7 people sit around a table. How many differenttisgaorders are
possible?

The question really is, what is the difference lestwthis problem and the number of
different seating orders for 7 people in a row @hhstudents easily answer, 7!, or 5040)?
It is best if students conclude on their own thaté is no particular starting point on a

round table, and realize that there are 7 timess @s6! permutations.

4. Introductory

Introductory examples and tasks are used at thefieg of a course, unit, or
other curricular content division, to help set sh&ge for subsequent development.
Rissland (1976) refers to these as “start-up” examfsee Chapter 2). Leinhardt et al
(1996) suggest that, “the object is to craft theoduction, and later sequencing, in ways
that enhance the early understandirigp. 47). Introduction differs subtly from
overview, as it is concerned with entry only, amd & quick tour of the whole unit. The
types of examples used to introduce a topic ornamitje from a conventional simple
type, which ease into the material gently, to tee of a limiting example. In any case,
introductory examples tie previous work to up anching work. An underlying use of
problems to introduce topics is a subtle messagtutients that problem-solving is an
embedded aspect of our course. This is most gléldtrated by the use of a limiting

problem, which also has the purpose of generatumgst interest. The following
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introductory examples contain review, some chareties of entire topic overview, and

some “new” instructional aspects.
Example 8.

Find all intersections of the graphs of the fumusioy = x¥* and y = 2*.

Graphing these functions should be review; in@ase, both have been reviewed
immediately prior to this. Two of three intersecis, (2, 4) and (4, 16), are found by
inspection. The remaining intersection cannotdumél by these means, providing an
opportunity to introduce various utilities of theaghing calculator. The next example

was used to introduce the transformations of graphsigonometric functions:
Example 9.

Determine the equation of the (sinusoidal) funcsbown:

Figure 5: Graph of Sinusoidal Function
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The transcript of the deployment of this example loa found in the Appendix,
Transcript 3. Bypassing a generic and graduabdtuiction, this is an aggressive move
forward. It should be noted, however, that theneally only one “new” aspect to this
problem, as these students already have learneddwansform functions graphically
and algebraically. They are also familiar with greperties of the graphs of sine, cosine

and tangent, but have not dealt with transfornmatiof periodic functions yet.

* The transformation ofy = f(x) to y = af(k(x —p) + g has been studied; Now we
will extend these ideas slightly to the transforiorabf f(x) = cosx to

f(x)= a cos(k(x —p) + Q.
* The key idea is thgtarting point, which is tied to the choice of sinusoidal

function. If we use (+) cosine, the starting pautuld be x :7—37:
» The central (horizontal) axis is midway betweenrtieximum and minimum
(vertical) points of the function# =3=q; the amplitude is half of the

range of the function, or the distance from thetred¢mxis to the maximum or
minimum point, s@ = 5.

» The final part is the determination kyffor which we use periodg—k]—T, or

K= 2m

= eriod’ The horizontal distance from a maximum point toaldgcent
perio

minimum is one half of the period. The periodz(ss?ﬂ—gj :8—;TD k :§4.

* The function isf(x) = 5cosE(x——H +3

Example 10.

Nine horses are in a race. How many different waysthey finish if two
horses are tied?
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There are several related purposes to using thisebe to introduce combinatorics, but
primarily to instil the reasoning aspect necessadddress such problems. The

problems also demand that attention paid to voeadpw@nd wording is crucial.

» To visualize the problem, the creation of a diagmargraphic may assist in
pointing out the direction needed. In this cassigning a letter to each horse, A,
B,C,D,E,F, G, H,and |, is a simple way to med

* The problem indicates that two horses are tied,daes not specifically place
them in the finishing “order”. Then, how many eifént pairs are possible, and
does the order of the horses in the pair mattdr@s ve introduce clearly the
aspect of order.

* The tools provided in this unit on combinatoricepde exactly the means to
determine the number of different pairs which carsélected from 9 “objects”
9C2.

» Our diagram should help in visualizing that theme &finishing places. One of
the early concepts we look at is the Fundamentah@ag Principle. This will
instruct us that 8 objects can be arranged in 8Poways.

* Another aspect of the Fundamental Counting Priecipsing the concept of the
product of the above choices, resultsoDy)( sPs).

In this context, the example above plays an intctahy role. However, the same
example has been used as an overview, which h#e slifferences, and has the
characteristics of a limiting example (discusseldwg It is important to reiterate that
the various contexts in which the example is mebdiremains a function of teaching

intention.

5. Limiting

By limiting, | mean examples that are indicativettod most difficult or complex
type of problem that students should be expecteldtoLimiting examples are not

typically used until well into a unit, if we haveaate the logical progression of basic to
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complex material. Although contradictory, someeasp of a limiting problem are also
qualities that may prove useful at or near thero@gg of a unit. In that case, limiting
examples may function as introductory and/or giv@eerview, providing students with
a glimpse of the coming landscape. This is by eams a “gentle” means of
introduction, but is used to generate interestearghge students. Careful judgement is
required as to whether this will have a detrimeattdct, and so avoid the proliferation of

confusion and frustration.
Example 11.

What is the probability that at least two studentghis class have the
same birthday?

This is a limiting example due to its complexifffhe concepts contributing to its solution

are clear enough. In combination, these prove titagito the typical student.

» The essential concept of theoretical probabilityiding the number of successful
outcomes by the number of all possible outcomes.

* Previously learned combinatorics concepts are eyepto 1) Determining the
number of different ways 30 students can have dayh - this involves choices
times choices times choices, or (365)(365)(365) (Fundamental Counting
Principle); 2) We require the number of ways 306pe can have different
birthdays. For this, we use the number of pernmanat 365P30 .

* Anindirect approached is required. Students mesadize the sheer size of the
problem of finding the total number of ways thateatst two people have the
same birthday. This is easily avoided by simphgiing the probability that
everyone has a different birthday from one, leawisgvith the answer:

_ 365P30
(365)°
* in atypical classroom, it can usually be confirntieat there are two students (or

more) with the same birthday. If not, it can léad good discussion on the
implications of probability.

o Adapted from British Columbia Principles of Mathematics 12 Examination Specifications, 2001
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Example 12.
If loge5 =x and log;2 =y, express log00 in terms ok andy.™

This is a limiting example due to its difficultyMel. Logarithm problems involving
change of base typically prove challenging for etitd. One of the reasons for this is
that, unlike typical problems of the past, theraassingle clear solution method
prescribed. To proceed, the connection must beertied the common element in the

problem is the base three:

Part 1. log,, 2=y

277 =2
3¥=2
log,2=3y

Part 2: log,5=x
9" =5
3> =5
log, 5=2x

Part 3: log, 100
=log,(2504)
= log,(5°(2?)
=log,(5) +log,(2*)
= 2log,(5) +2l0g,(2)
=2(2x)+2(3y)
=4x+6y

This problem provides an extensive workout withltves of logarithms. With

experience, the likelihood of proceeding correettyl efficiently increases dramatically.

19 BC Ministry of Education Mathematics 12 Exam, 1991
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The next example is limiting not due to its diffigulevel, but in its demonstration of the

extent of my interpretation of the curriculum.

Example 13.

If a is a quadrant | angle with tamn= g and @ is a quadrant Il angle

with cos@= —1—53 and calculate the following (exactly):

a) cos &
b) cos @-a)

C) sin (9+7—Tj
6

The term “exactly” implies the use of fractionsgi@als and known identities and

formulas. The following combination of tasks cdmtites to the overall limiting aspect

of this problem:

Using standard position diagrams, the unknown sanelscosines o and @ are
determined since these will be needed for the doabgle and angle sum and
difference identities:

. 12 8
sma=——, sm,[?—— 0Sf =——
J73 J73
. 7 . o1 7T_~3
For the special angle-, sh—==, cos—=—
6 6 2 6 2

The problem reduces to the insertion of the cotregihtnometric ratio into a
double angle identity for a), for example:

cos2a =cos’ a —-sina

(7))

_64_9

73 73
55

73
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» Using given sum and difference formulas for b) apd

The problem also contains several subtle reminofgpsevious concepts, such as the use
of a pythagorean triple in the reference triangkeainglef3, and the use of special angles.
Students ignoring the exact requirement will attetogsolve for the angles by calculator
and then obtain the required sines and cosindssetangles. This method can be used

to check for correctness of theact answers.

6. Contrasting

Examples with superficial or structural similargtiare presented together or in
succession, in order to compare and highlight fomefztal differences in methods of

approach. Two cases are shown below:
Example 14.
Solve,0< x< 2!

a) COX = L b) sinx =-0.450

NG

Both of the above must be considered in a simieméwork, and yet the details of their

solutions processes are quite different. Parhalsl be solved by recognizing the

special angle aspect: placement eifareference angle in quadrants Il and Ill to obtain

the two solutions for the anqlesjn andSTﬂ. This is typical of those problems

requiring a “non-calculator” solution and “exacsaers”. Part b) requires not only a
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calculator-aided solution, but the knowledge of Howorrectly apply that information to
obtain the solutions in quadrants Il and IV:

sin™t(-0.450) = -0.4668

X, = 11+0.4668

= 3.6084

X, =—0.4668 + 271

= 5.8164
X =3.61,5.82

Example 15.

Solve:

X+3
a) (i] - 645—2>< b) 2X - 52><—l
16

Both of the above require solving for unknown exgas. Part a) can and should be

solved using base 2 or 4, reducing the problemsionale algebraic equation:

(ijx+3 — 645—2)(
16

(2_4)x+3 - (26)(5—2x)
—4(x+3)= 6(5- X)
-4x-12= 30- 1X

8x=42
42_21
8 4

Part b) requires the use of logarithms and morelagc manipulation, depending on the
approach. Although part a) could be solved usiggtithms (below), it is not

recommended as the best use of student time anneeso

56



2)( - 52x—1
log 2* = log5**
xlog2= (2x-1)log5
xlog2= 2xlog5- log5
log5= 2xlog5-x log 2,
log5=x(2log5- log 2)
_ log5
- (2log5-log 2)

7. Consolidating

Consolidation is the process of drawing togetheious concepts and procedures,
to assist with clarifying new or previously learnamhcepts. In this sense, it can be
differentiated from review, which is the reiteratiof previously learned or presented
material. In examples, consolidation can be matefby using any number of
previously visited ideas and demonstrating relaimms among these. It may involve the
integration of these ideas to assist in the satubioa new problem. Alternately, it may
involve a spiralling effect, pulling together thecessary ideas again and again as they
are needed. In all of the above cases, consaité&ian ongoing aspect of teaching that
can be found in virtually all worked examples. ®idevidence of my lessons confirms
that there is a continuous background “noise” afsatidation. It has become an
ingrained and automatic aspect of my teaching,teotly reminding, reviewing, and
emphasizing links. Students may be experiencimgmg degrees of review and/or
consolidation, depending on how well they haverledrthe background material. When

attempting to link back to poorly or partially le&d concepts, students have an
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opportunity to improve their comprehension. Patralerstanding is a teaching

intention examined in the next chapter.
Example 16.

In a standard 52-card deck, how many differentro-tends are possible
which contain exactly one pair?

This problem is approached through the connectigheofollowing distinct sub-

problems, each of which is a previously learnedctop

* How many card ranks are possible? The pair ofscamaist consist of a single
rank. How many card ranks are possible? 13, aritspaly 15C; , if we consider
the number of ways a rank may be chosen,;

* How many ways can the pair be chosen from the dsaaira single rank? Of 4
possible cards in each rank, we need groupings@f@m the pair, 05C,
different ways.

* How many different ways are there to get the 3 iemg cards, and how can we
ensure that these 3 cards are different from etiedr and different from the pair?
The 3 remaining cards must be chosen from among2htfemaining ranks.
Combinatorics gives us the means to determineuh#er of ways to select 3
different objects from 12, usingCs.

* Once again, each of the 3 different ranks is maef4 possible cards. This
means that there argl()®, or £ different ways to select specific cards.

* How do we put this information together? Each &f afvove components

contributes to the calculation, using the Fundaalégdounting Principle concept
of choices times choices times choicesC{)(4C2)( 12C3)(4C1)° .

By linking several simpler problems, and emphagjziow each contributes to the
overall more complex calculation, more meaningvewg to the previous ideas. This is
the essence of consolidation, in which the tyirgetber of previous work results in
better understanding of those while simultaneoagtgnding to further and more

complex concepts
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Example 17.

Determine the equations of the asymptotes of tmetion y = tan bx,
whereb> 0

This example consolidates the graphical behavibtiteotangent function and the
transformation brought about by the constant

* Review of the graphical properties of the tangentfion: vertical asymptotes of

lie at x :%T plus integer multiples of the period of the fupatiwhich is
. V4
mradians:x = > +nm, nO|

» Review of the effect of thiein a functiony = f(bx): b is a horizontal compressing
factor.

» The asymptote Iocationsg:g+ niz, nO1 , are divided byly”, and thus are

located atx:£+M, nOl.
2b b

8. Extending

Extension is a common occurrence in which one elaomptask is used as a base
for developing a further exploration, or a more ptew idea. Many of these are planned,
but frequently they are spontaneous, and of tredensions can be one way to address

student questioning.
Example 18.

a) An earthquake registers 8.6 on the Richter Scédlew many times
more intense is another earthquake with Richtde€:8?

1 BC Ministry of Education June 2003
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10°° —1(0.9-86
155 =10

The extension part b) involves a more complex atghfuller understanding of

logarithmic behaviour and properties of logarithimasn part a).

b) What is the Richter Scale of an earthquake S006s less intense than
a 7.5 Richter scale earthquake?

10"°
log or 7.5~ log 500!
5000

Example 19.
Determine the period and the amplitude of the fimngt = k sind cosé.

The example itself acts as an extension of ouctfpiork, in a double-angle identity

application with which students often have diffigul
y=ksin@cosé

ksin@cosé?:g(Zsiné’cosé’)
Since2sin@cosfd =sin26

E(ZSiné’cosé’):g(sinZQ)

k. .
=—(sin26
y 2( )
From our previous study of these types of functioves determine that the amplitude is

g and the period is.

Example 20.

What is the interest rate required to increasendialiamount by a factor
of ten in ten years?
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It is perhaps no coincidence that many ‘extensexamples also act as those problems
used to ‘point out common errors and difficultieshich is discussed in the next chapter.
This is such an example, extending the basic iflexgonential growth. The expected
“exponential growth” types of problems are thosechla) determine a final amount, and
b) determine a time or a half-life required forpeesified exponential growth or decay.
Here students are asked to extend those ideasrbgduhe equation around to solve for
the growth rate:

Annual growth raté: A= A(1+i)

10=(1)(x)"

x° =10

x = 10% = 1.2589
i =0.2589

This calculation yields a per cent growth of 25.88%ssumed to be an annual interest
rate, compounded yearly. Although financial matte typically conducted with annual
growth rates, this is not necessarily that typguadstion, and such an assumption should

be questioned and discussed. If a continuous Yraate is needed, we extend further:

Continuous compoundings= A¢€"
10=(1)e®
In10 =10i

In10

i =——=0.2303
10

This gives a continuous compounded rate of 23.0@%ch can be compared to the

annual growth rate determined above.
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9. Cross or Multi-topic

Examples in this context draw from more than omséimiit curricular unit,
possibly incorporating seemingly unconnected cots;ggerhaps in surprising and
unexpected ways. Cross-topic questions are a mieamphasize relationships between
and among curricular “units”. In a well-sequencedrse, there should be a natural
emergence of problems linking various topics asthese progresses, building on
previous work. An example is the transformatiohgigonometric or logarithmic
functions after an initial unit on general transfations. The type of cross-topic

problems | am referring to are those that tie togietoncepts in unusual or novel ways.
Example 21.

Two teams are involved in a sudden-death shootinuyhich the first

team to score wins. Team 1 has a 0.70 probabifiscoring on each of
their attempts, and team 2 has a 0.80 chance oihgcon each of their
atterlr;pts. If team 1 shoots first, determine thebabdility that they will

win.

Although an unlikely scenario as a real-life apgiion, the probabilities for the first few
trials can be constructed/calculated. It becometeat that this shoot-out may go on
indefinitely. A pattern emerges, in which the aas¥g an infinite geometric series.
Probability and infinite series are not typicallynebined in this course. The calculation

of probabilities, likely from a probability treeigjd:

«  P(team 1 wins) = 0.7+ (0.3)(0.2)(0.7) + ((0.3)(}@.7)+ ((0.3)(0.2)0.7)+...

12 Adapted from Mathematics 12, Pearson (2000)
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* The above expression forms an infinite geometmeace with common ratio

(0.3)(0.2)
* Using the sum of an infinite geometric series:
a
1-r
S Y
1-(0.2)(0.3)

=0.7445

The probability team 1 wins is about 74%.

Example 22.

Given the functionf X ¥ logx ,which of thelowing would best describg = I%)g
A y=1f(x)

B. y=-f(X)

C.y=f"(x)

D. y=—1f(-x)

E. y:i

f(x)

This problem is not necessarily a cross-topic qoestlt depends on how a student
approaches its solution. It is linked to the tfansation unit covered earlier by students
in specific use of notation taken from that unithe answer choices. It may be that each
of the choices is examined in turn, where a) isfection in they-axis, b) is the correct
answer, a reflection in theaxis, c) is the inverse, d) is both a) and b)aefbns, and e)
the reciprocal off (x). Below are two ways to determine the answergikigarithmic
concepts, if a student does not realize that thecteon in thex-axis,—f (x), is the only

reasonable answer:

Method 1:
Change the log equation to its exponential forwh tien back:
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(a) " =x
-y =log, X
y=-log, x=—-f(x)

Method 2

Take the reciprocal of the base and the argument:

y:Iogéx
1
y=log,—
X
y=log, x*
y=-log, x
y=-f(x)

10. Uncommon or Exceptional Case

These examples have unusual or special significaviieh may be due to their
technological, cultural, historical, or simply mathatical interest. Such examples differ
from those “limiting” examples, which are constedby curriculum. Certain examples
may be considered exceptional in the context otthese material, in that they would
typically not be seen by students. Such exampkesféen outside the specified

curriculum, but have attributes worth exploring.

64



Example 23.

X x°
Maclaurin Series: sinx=x——+——...

3! 5!
This task involves the use of a graphing calculam@how how the polynomial
ultimately converges with the sine function (Figéje The existence of such

relationships, and their applications, forms a uisgiscussion. It is not my purpose to

examine how these series are derived, but to genietarest.

Figure 6: Maclaurin Series

Example 24.

Evaluate: lim (1+1j
X - 00 X

The topic of limits is usually restricted to Calgsicourses. However, the current
Principles of Mathematics 12 curriculum contaireréng outcomes involving the use of

e, the natural logarithm, and applications of contimsiexponential growtl?. This limit

13 For the new Pre-calculus 12 course slated for implementation in September 2012, there is no
sign of the natural logarithm.
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affords an accessible method of demonstratinghaergence te, through “brute force”,

where numbers are substituted into the expression:

1 10
£1+ 1_Oj = 2.59374
1 100
£1+ﬁj = 2.70481

1 10°
£1+Ej = 2.71828
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CHAPTER 5: TASKS AND EXAMPLES:
TEACHING INTENTION

In Chapter 4, | discussed the kinds of examplestasks used in terms of their
context, which is analogous to their ‘location’my teaching. Here | consider the
purposes and goals of the use of tasks and exampi@gteaching process, which fall
under the general organizer referred to as “inberiti A number of descriptors are
identified, through which | attempt to explain wthese examples and tasks are used, and
what | expect and hope the students to experiert@wing that these are potential
outcomes. Those intentions identified are as ¥adto

» Standard

e To Level

* To Create Cognitive Dissonance

* To Stimulate Inquiry

» To Create Partial Understanding

e To Point Out Common Errors And Difficulties

» Structured Variation

* To Overload

* To Pre-Familiarize With Upcoming Topics

* To Create A Platform For Future Scaffolding

e Across The Grain

These intentions form a wide-ranging and dispazateglomeration of concepts,

properties and techniques. These labels chosesistah direct and metaphorical
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descriptors best express the reasons for using taskexamples that have arisen from
the study of their classroom implementation. T@agimtention is subject to change
depending on their viability as the lesson proce&itsme of these intentions are linked
to others; some are either directed toward or egpeed by different groups of students
at different times. Since the intentions are Ishk@ potential outcomes, students may
experience unintended outcomes. An example ohtight involve an “across the grain”
approach, which also results in levelling, whicklésirable. This approach may also
generate overload or cognitive dissonance, whichmaabe desirable. In certain cases,
it is difficult to discern between those aspectiesson ‘context’ (Chapter 4), and the
intentions outlined in this chapter. In the foratidn of this categorization system, |
have pointed some problems and limitations of dsttanting context and intention into
separate entities. For instance, the distinctetwben the use of examples in a
“contrasting” Context, and the teaching Intentidrusing a series of examples for
“structured variation” may not be clear. Howeu&ere are sufficient differences among

the major categories and their subdivisions thaitritesir separate treatment.

It became obvious that some of the intended outearaanot result from the
implementation of single examples or tasks. Thay woalesce over groups or series of
problems, or be a function of time. Examples @ thclude the strategy of creating
“partial understanding”, and the purposeful indueatrof “cognitive dissonance”. In
both of the above, it is implicit that | would atipt to resolve any student issues with
course material over time. A number of differanategies are employed to accomplish
my teaching goals as the students have a wide @ragjalities and learning styles. A

wide-spectrum approach reflects my attempt to asddieis aspect of my students, hoping
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that some of these will be successful, and appiegithat they may not. As with the
previous chapter examining ‘context’, a descriptdreach intention will follow,
illustrated with actual problems used for thoseppses. In the exploration of my
teaching goals, | must point out that, althoughegigmce and evidence exist to indicate
that these intentions are realized to some extdatnot my purpose to report on the

success of these endeavours, or to justify them.

1. Standard

The reasons for using tasks and examples can beleomHowever, in my
analysis, it became clear that there are also steajght-forward teaching motives.
These are an aspect of what can be consideredastite@ching practice, which is
discussed in Chapter 1. In the absence of cong@dagogical purposes or ulterior
motives for using tasks and examples, it is ugbtenh, to have a ‘standard’ example as
the first category. In this case, an example obj@m may be used to demonstrate a
concept or technique. However, from a studentgs®tsve, receptiveness and
appreciation of any pedagogical intent cannot Beragd. As well, virtually any
example, depending on presentation and chronologli@eement, could be considered to
be typical. Itis the rearrangement of typicaleatp of sequencing, presentation and
minutiae of teaching that create opportunitiesore elaborate types of intention.

Consider the following example:
Example 25.

A population doubles every 12 years. How long wilake to triple?
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A= A(2)"

3=1(2)%
t
log3=—Iog 2
g 1 g
t= 12log3 =19.02 years
log 2

There is nothing remarkable about this problems lised to demonstrate the

t
application of logarithms in solving the genergbemential equatiotA=A ,(2)*?. This

problem has the potential of being used for a nurabeeaching purposes, or intentions.
It might have been used to “level”, the processrguring widespread understanding,
discussed in the next section. The problem coelddgd to point out common errors and
difficulties which students have in exponentialwgtio questions of this type. The
problem may be used to “stimulate inquiry”, indismonstration that all exponential
growth can be construed to have a doubling tinjg@jrtg time, a per cent growth rate, or
any number of representations. This line of thowgim also lead to the teaching
intention of “pre-familiarizing with upcoming tog@t, such as continuous exponential
growth. Further, as shown in example 44 latehis thapter, such a problem can be
used with an “across the grain” intention. Thesgerelaborate “intentions”, discussed

in this chapter, lie in contrast to the simpliaitfythe so-called “standard” intention.

2. To Level

| use the term levelling to describe the procesatt@impting to bring as many

students as possible up to a reasonable levelngpetency. In practice, the teaching
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process cannot effectively be pushed beyond atpatés dictated by the characteristics
of the central group of mid-level performers. Umdoately, the system is bound by time
constraints, which creates difficulties for thotgdgnts requiring more time to
understand and gain mastery of coursework. Theralevays capable and less capable
students, as well as those who learn at differietsrand in different ways, and have a
range of motivation levels. Attempts to work withthese constraints, to expedite and
accelerate learning, is the focus of certain otimentions” discussed in the following
sections of this chapter. Levelling serves tbiirze class progress and check for
understanding, competency and/or mastery of cdarcuaterial. While striving to
achieve relative uniformity in students’ levelsusfderstanding, levelling is used to
provide opportunities for clarification of instrum. It is most typically carried out
through discussion of solutions to tasks that majude homework, quizzes and
assessments. Any reasonable problem may be usedetiscle to accomplish this, as
long as it allows opportunities for review and aaidation (which have been presented
as “contexts” for the use of examples). The follmyvexample uses levelling to reiterate
various methods with which to handle logarithm peats involving different bases. It
may appear to be no different than a typical aoshictory example on this topic except

for its chronological placement, and the resultingnces of its presentation.
Example 26.
Simplify: log, 3/3

This problem may be approached using base 3 ordba&me point we make is
that ultimately it does not matter, as long asmntehod uses valid mathematics. Taking a

base 9 approach:
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Base 9: log, 3v/3 log, 3v/3
=log, v3%x3x3 =Iogg3(3%)
or
=log, V27 141
=log,3™*

=log, () =log, 3
=log, 3

The worked solution above refers students backeaeéntral idea in logarithms of
“matching bases”, as indicated by the identdg, a“ = x. The levelling | seek to

achieve takes place in ensuring that the radicdiraetic from previous years, and use of
the laws and identities of logarithms are undestmad accessible. In this process, | use
the base 9 approach (above). Other approachdsecstmown if prudent, but do not
necessarily promote the intention of levelling, ather tend toward an “across the
grain” approach. The following alternative appio& presented using another
commonly occurring technique in which we convereaponential equation to a

logarithmic form and vice-versa:

let x =log, 3v/3
9 =3J3

(3°) =33
(3)" =33
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The above method is slightly more problematic fume students as it requires the
insertion of a variable which is absent from thigioal problem statement. As well, the
use of different methods begins to veer away froenintention of levelling to others,
such as working across the grain, discussed latiis chapter. The next case is taken
from an assessment task and its subsequent invetaked solution (see Appendix,

Transcript 1):

Example 27.

Determine the inverse™ x( ) if x(9 2log ¢
f(x) = y=2log, (x+ 2)
Xx=2log, (y+ 2)

X
§=Iogs(y+2)
R=y+2

y=f*(x)=32-2
Students had difficulty with the leading “2”, whidbrought up as an exponent to give

y =log, (x+ 2), often led to difficulty. The problem was solvalat this stage, but few

students who took this route were able to get there

x=log, (y +2)
3 =(y+2y

(SX)% —Foye2
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Discussion of the different aspects of this problehrow to handle inverses, laws of
logarithms and converting a logarithm to an exptiaéaxpression, all of which were not

new at this stage of our progress, allowed for stawelling to occur.

3. To Create Cognitive Dissonance

In order to alter or replace certain ingrained;qoaceived student notions that
hinder or prevent progress in Grade 12 mathemattisshecessary to bring about
conceptual change. Undertaking this requires aerded effort. One strategy for
accomplishing this involves the intentional useasks and examples to create
dissonance. Festinger (1957) put forward his thebrognitive dissonance, stating that,
“The existence of dissonance, being psychologiaatiyomfortable, will motivate the
person to try to reduce the dissonance and ack@mw&onance” (p. 3). Observation of
my classroom has led me to believe that | creasotiance in order to facilitate learning.
This has become an innate aspect of my teachihgreTare two conditions under which
it is necessary to attempt to effect change inesitglperceptions and certain ingrained
pre-conceived notions. This is when students’teygddeas of how mathematics should
be done begin to impair their ability to functicasonably, and are most typically found

in the area of problem-solving and the refusalde wusual representations. .

The vast majority of examples used require, proraatéare biased toward
problem-solving. My teaching methods encourageuteeof a minimal set of basic facts,

and experience. Memorization of particular probsatution methods and rote learning,
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which may have contributed to student successamp#st is not sufficient to deal with

the types of problems encountered in this couRifficulty arises when students are
asked to solve problems for which there has beettireat precedent, and where
memorizing solution methods do not help. It is tha& use of single problems themselves
which promote dissonance, but likely the fact thét is the type of work that is
emphasized, expected and assessed. The intehttoeating cognitive dissonance is
perhaps the most difficult to demonstrate. Thevglas chosen to illustrate how the
development cognitive dissonance may be promoteeitlier problems of a complexity
level requiring some problem-solving strategieghoise most efficiently solved with a

graphical or other visual approach (or perhaps)both

Example 28.

How many different ways are there to arrange ¢iters in the word PARALLEL
such that no L’s are together?

Basic arrangements and permutations for simplemples had been considered. For

example, from our coursework, it was well knowrt tite number of 8-letter
|
permutations of PARALLEL would be% =3360. A direct approach would be to

consider the ways that the L’s could be separated.

To solve this problem, a visual approach can peadstructure. The
|
letters P, A, R, A, and E can be arranged arouadséparated L's in‘;—;

ways. Possible patterns for the arrangements oaratg L's are as
follows:

L L L
L L L

L L L

There are 4 ways to have this separation pattern
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L L L

L L L

There are 3 ways to have this separation, bsititnmber can be doubled for
reverse symmetry: 6 ways;

L L L
L L L

There are 2 ways to have this separation, buntimsber can be doubled for
reverse symmetry: 4 ways;

(el fol [ [ Juf
(el [ el | Jue] |
(el [ el | [ Juf

There are 2 ways to have each of the above psitérose shown and the reverse
of each: 6 ways;

The total number of possible patterns to sepahaté’s is 20. The product
|
of 20 and the number of possible arrangementseobther Ietters5—;, yields

2

1200 unique arrangements.

An indirect approach to this problem could be tbtgact the number of ways that

the L’s could be together, in groups of 3 or 2nirthe total number of permutations,

3360. In either case, since there is no direatgatent for such a problem in our course,

students must use basic principles and reasonibggm to find solutions. In other

words, they must problem-solve. This can conteliotdissonance in the sense that

student expectations do not align with my demamdisraquirements with respect to

problem-solving.

An increasing emphasis on visualization, primanlyhe area of the graphical

representation of functions, is an important aspé@rade 12 mathematics. My

experiences indicate various levels of studentctehce to accept and therefore

76



appreciate the utility of these visualizations mdarstanding course content and in
problem-solving. Graphical methods, which can kastkist and consolidate algebraic

approaches, may be used in both of the followirepges:
Example 29.
Solve: cos 8=-1, 0 <x< 2r

| teach a graphical method (Figure 7), which app&ame to be the natural way a
student should approach this type of problem. B@éteaviour of the cosine function is
well known, and the fact that it is then compredsgd factor of 3 yields 3 solutions in

the required domainx = %T rand ‘%ﬂ

Figure 7: Solving cos 8 =-1
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Example 30.

The smallest positive zero of the function= cosk£x+gj occurs at

x:’—ZT. Find k if k >0

To solve graphically:

- X

4 -TU8 W8 T4 38 TUING

Figure 8: Graphical Approach for y = cosk ( X +’§T)

* The cosine function maximum is transformgdunits to the right frorx = 0, and

graphed from the point—%, 1) to its first root ak = —. The distance from this

NN

maximum at—g to the positive zero aiZ—T is %ﬂ This distance equates to one
guarter of the period, giving a full period ggir or 57” The valu& is found

from the relationship period %i—T givingk = g Yet many students would solve

the problem non-graphically in this way:

% Ministry of Education, 1994
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Perhaps the means achieve the end, but | am leéftaniuneasy feeling that these
students have missed the point. | consider thehigal approach to be inherently
superior since it affords a visual context with efhto make sense of the relationships we

are examining.

The factors contributing to the creation of cogr@tdissonance identified above,
related to problem solving, visualization (primamjraphical) and the resulting issues in
mathematical competency, arise from my consciciesrgits to address a disparity in
actual student ability levels and my perceptiofew€ls appropriate to achieve the goals

of this course.

4. To Stimulate Inquiry

There are several possibilities through which tbe af tasks and examples can
stimulate inquiry. Some students are genuinebréetted in the coursework. However,

as we begin to explore some interesting applicat@rmathematics, satisfaction, and
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even joy of discovery and mastery seem to beconreasingly elusive for the average
student. Evident in many tasks and examples a&tempt to engage students, through
connections to actual or plausible events, to beaneaning through relevance, or to
provide mathematically interesting yet accessibtblems. Such problems are not
necessarily connected to curriculum. Regardleskeointerest level of the course
material or any particular example, students mapsh to not engage. The example
below, originally an assessment item, createsesruiila for the thoughtful student. The
purpose of this question is to encourage some titdoward the use of mathematical

models and their limitations, beyond mechanicakstiiion of numbers into equations:
Example 31.

There are approximately 10 000 of an endangerelai §8b species left.
The population is decreasing at 8% per year. Ktrdite, how long will it
be before extinction?

A. 30years B. 60years C. 90years D. 120syefarnever

Possible answers to this question might be c), vgiges 5.5 fish remaining; or D), 0.45
fish remaining. A better answer, pointed out ® ginoup in the aftermath of the
assessment, would be a range, say 90 to 120 yeeogyorating the “real-life” and
“approximate” nature of the question. A similaaexle asks students to determine
when a car depreciating at 15% per year will betbess, which leads to a discussion in
the suitability and practicality of mathematical siets. The following example provides

an opportunity to explore some variations on adsdeshtype of problem:
Example 32.

You are at a point (0, 0) on ary grid and must move to the point (10,
10), moving only in the positiveandy directions (on lattice points).
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a) How many different paths can be taken?

b) If you must pass through the point (3, 7), hoanyndifferent paths
are possible?

C) If you cannot pass through the region shownyfé®), how many
different paths are still possible?

| | | | | | | | | |
- [t e B e e e f el e it Bl
| | | | | | | | | | | |
| | | | | | | | | | | |
,,\,,l [N [
| |
| |
| |
| |
| |
| |
T 1T T O T
| | | | |
| | | | |
- - T T T T T T T T f—— [
| | | | |
| | | | |
- —---§ — ek — - — b - - —— - - -
| | | | |
| | | | |
JE P R S DD S SN SN [
| | | | |
| | | | |
_1__ 4 [
| = |
| |
| |
[ I —
| |
| |
B -
| |
| |
[ P PR P
| |
| X
i i
¥ - L
| | 2 \ 4 \ [5) \ 8 \ 10 \
| | | | | | | I | | | |
I s e e e e s e A R H et A HE R
| | | | | | | | | | | |

Figure 9: Pathway Problem

This problem is a slight twist on a standard “patkirxquestion.

» Part a) can be solved using an application of tedBmental Counting Principle,

+ | . - -
—( 11%| 11(())l)- . Students may also determine the number of pathiva using basic
summation principles in determining the number af/sito get each lattice point
in turn.

» Part b) can be treated by multiplying the numbguathways from two smaller
grids, one with dimensions 3 units by 7 units, #reother, 7 units by 3 units:

(3+7))((7+3)!
( 317! j( 713! j
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» Part c) normally requires the basic principles apph of taking each lattice point
or node in turn, starting from point (0, 0), andrking around the open region.

The problem above provides opportunities for exation in seeking a combinatorial
solution to part c), instead of working throughte&attice point. A further variation of

the pathway question is shown below:

Determine the number of ways in which you can ganhfpoint A to point
B, moving in the direction of point B:

A

Figure 10: Pathway Problem Variation

This problem was used on a combinatorics unit gest,as such, precluded any attempts
to find a more elegant solution beyond that of teriorce.” The examples used,
especially part ¢) and the pathway problem showfigare 10, are extensions that also
exceed the parameters of the learning outcomdgindurse. It is hoped that the use of

mathematically interesting and thought-provokingljdems serves to engage students.
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5. To Address Common Errors and Difficulties

A number of problems are used to point out theiotjematic” aspects.
Experience in the delivery of this course provihessghts in identifying those concepts
and procedures likely to cause difficulties. Vidaadence shows a continuous emphasis
on error prevention awareness during worked exasnplerting students to potential
trouble spots and common student errors. For reaagnples used, pointing out
common errors and difficulties is not necessahky primary reason for their selection
and use, but is an embedded aspect of almost diledeexamples. In an example
considered previously, (Example 3, “The terminah &f an anglé® in standard position
passes through the point (3, 8). Determine&icosd, tand andé."), the
determination ofingles in standard position using inverse sineneand tangent,
proves to be a common source of difficulty. Spealfy, the problem lies in the
interpretation of radian measures obtained frorowtators. Proper procedures and

potential errors are emphasized to students thrduglvorked examples. Issues in
. . " T
interpreting angle measures for standard positimgbes greater thalﬁér, or 90° can

usually be resolved with the use of or assistafickagrams. As described earlier in the
discussion of cognitive dissonance, a resistancsea visual approach can lead to

problems.

The following examples present challenges to stigdieom a problem-solving
point of view. Both require some manipulation iowa them to be considered as more

familiar cases, at which point they may becomeineutxercises:
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Example 33.
3
log, 9=—-—
Ox 5

It is not necessarily the presence of a variabée lba this logarithmic equation that is the

source of problems for students. It is a relagiwsdnple procedure to rearrange the

_3
equation into its exponential formx 2 =9. Students are surprised to find that the

1
relatively simple identity(x“)n =x" = x, can be used to obtain the answer:

Example 34.

Solve: cosf - 2seé— £

Many of the problems presented to students whigle hn@ixed trigonometric functions
are not solvable by simple algebraic methods ssdacioring. This problem is
contrived to make use of the reciprocal relatiopsigtween cosine and secant, and can
be changed into a more recognizable factorable:form

(cos@)(co¥ > 2(sef )(ces-) cBs

cos - 2- cod= 0

cos@-co¥g- = 0
(cosfd- 2)(cog+ 1 O
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The above examples point out common difficultiegezienced by students. The errors
that students typically make, beyond those in balgiebra and arithmetic operations
(largely avoided or identified by checking work)e associated with their common
difficulties. Procedural or mechanical errors stang from incomplete understanding,
or incomplete mastery of material. Through thentdeation of common difficulties,
and their emphasis in worked examples, studentslared to such pitfalls, and for the
most part, can successfully avoid or navigate tginahem. An alternate solution for

Example 15 b), used earlier, is shown below:

Example 35.
Solve: 3(2) = &

If the instruction is to “solve by algebra to 2 aeal places”, such approaches are

typical:

3(2><) - 52><—1
IogS(B(Z‘)) = log, 5*°*
log, 3+1log, 2= X-1
log, 3+ xlog, 2= X-1
0.68+ 0.64= x- 1

The solution above is essentially correct to thiatgghown, other than rounding off
earlier than necessary. Some students run inbblecsolving equations such as the one

shown in the final step above. The following elisomore common:

IogS(S( 2)) = log,
xlog,(3(2) = -1
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Further, early rounding often leads to incorre¢ttisons. Although any valid solution is

acceptable, the recommended one is shown here:

3(2)=5"

Iog(S( 2)) = log5**
log3+log2 = (%- 1)log5
log 3+ xlog 2= %X log5- log5

log 3+ log5= % log5-x log 2

log 3+ log5=x(2log5- log2)

= log 3+ log5 -

= 1.072
2log5-log2

6. To Create Partial Understanding

Partial understanding presents somewhat of a aiati@n in my overall

approach of working from well understood basic gpfes to solve problems. Wherever
possible, | attempt to instil in my students a fignasp of the underlying contributing
knowledge, rules and procedures. Where, then, tritigle possible to circumvent the
mastery of basics, and achieve our goals withooipdete understanding? Hewitt (1996)
discussed the idea of “subordination of skills"which he expresses the idea that, “If
you want to practise walking... then start learniogun” (p. 28). “The desirability of
immediately subordinating something which is tddaned, is that practice can take
place without the need for what is to be practiselecome the focus of attention” (ibid.,
p. 34). If total mastery is not feasible, certain buildisigcks which a student should

have may be sacrificed temporarily or permanenfig.example of the latter case is
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demonstrated in some students’ understanding offpaf trigonometric identities.

Little actual understanding of trigopnometry is regqd, other than the use of given
identities, combined with algebraic manipulatianprder to achieve success. This
example, however, is a type of short-circuiting] aoes not demonstrate characteristics

of partial understanding that may result in aceglen of the learning process.

In most cases, it is desirable, if not imperatiee students to have a firm
foundation prior to proceeding. Partial understagdesults then by moving the class at
rates which do not allow sufficient time for stutketo become fully conversant. Another
way this is done is to often leave the detail$ent to encounter in the assigned tasks,
having shown the central and essential informatioly. For most students, temporary
partial understanding is superseded by fuller istdading over time. One example
involves the topic of continuous exponential growfpartial, or perhaps unsatisfactory
or fuzzy understanding of this concept is obtain€tle example shows the convergence
(which itself is a concept that may be poorly ustissd) of compound interest over

increasingly smaller time periods to justify the wf the constante”:
Example 36.

If $1000 was invested at 5% per annum over 10 yezakulate the
amounts if interest was compounded for the follagvithme periods:
yearly, monthly, daily, every second and all tlmeeti(continuously)

The concept of compound interest itself is problgenaFor some students, the Grade 12
unit on exponential and logarithmic functions is flist time they have been exposed to
this concept. The purpose of this question isWmshow compounding behaves over
increasingly smaller time periods, and to conniasith a discussion of continuous

exponential growth.
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a) yearly: 1000(1.05)" = $1628.89

005 10x12
b) monthly: 1000(1+?) = $1674.01

10x365
¢) daily: 1ooo(1+%j - $1648.66
365
0 05 10x365%24x60x60
d) every second: 1000(1+ ' j =$1648.73
365% 24 x60 %60

e) continuously:  1000e*®* = $1648.72

The concept of continuous exponential growth, ahdtwhe numberée’ represents,
contribute to this section of the course that is thrat is both poorly and partially

understood.

Partial understanding is intended to be a temparanglition enabling teaching
and student learning to proceed. As a chronic itiomd it is neither desirable nor
acceptable. Determination of actual instances apartial understanding is an
intentional outcome of teaching is difficult, aslépends on the individual student.
Partial understanding, then, is not a goal, bua@®eptable temporary condition. For

some students it remains a permanent condition.

7. Structured Variation

Structured variation employs a series of relatexigles with strategic
variations, with the intention of facilitating aneinforcing student learning through

examining the similarities and differences in tlkarmaple grouping. Watson and Mason
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(2004) suggest that mathematical structure carxpesed by varying certain aspects of
tasks while keeping others constant, and stressghef systematic changes so that the
learner does not overlook these variations. Furivatson (2000) states, “Structural
patterns emerge by looking across the examples,illhminating relationships and
characteristics within the concept.” (p. 6). Atroduction to logarithms is attempted
through the use of a series of brief and simplerptes. Initially, base 10 examples are
used, moving to an exponential representationeféhationship. Those concepts are

carried on to a different base:

Example 37.

log1000= 3
log1® = 6

1
log~/10= log1G =

N~

1
log—=-1
g10

log2= 0.3010 (10*°= :
log, 81= 4 (3= 81)

This series of examples is intended to illustragsé concepts in a self-evident manner.

The next example contains a set of transformatdiise sine function.
Example 38.

Sketch the graphs of each of the following:

oreoef o]
]

C) y =sinsx
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In these successive examples, the number of tnanafmns applied to the basic function
y = sinx decreases, while other aspects become more complexfundamental period
2mtis varied in each case, moving from simple mudpbfrtin a), to 3tin b), and then to
a numerical value of 2 units in part c). The ordantentionally skewed to allow
attention to be drawn to these and other featwitls the final example emphasizing a
single characteristic. The example in a), havingrical stretch by a factor of 3 (or

amplitude of 3), vertical displacement of -4, horital compression by a factor of 2 and a
horizontal translation (phase shift) 973% , Is also intended to create temporary overload,

and a degree of partial understanding. | attempgdolve these unstable conditions by

the end of the third example.

8. To Overload

Overloading is the strategy of deliberately givetgdents too much information
in too short a time. It may also consist of theigrement of tasks which are overly
complex or lengthy, and/or not allowing sufficigime for the completion of tasks. The
intention is to find an optimal mix of stress amm so that students may come to an
appreciation and understanding that they mighbtieérwise achieve. Of course,
students may experience overload regardless di¢eattent, and my experience
indicates that this strategy does not work fosalbents. It may be that the time and

effort taken to re-teach, review, consolidate awel the class, as a consequence of
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overload, does not result in a net gain for teaelnerstudents. The following task is one

that is intended to bring about some degree ofloadr
Example 39.

For all special angles between 0° and 360°,
a) convert to radians (exact values),

b) using basic principles, find the sine, cosine aadigént
ratios (exact values) for each of these anglesy this out
in a table.

C) On one graph, plot each point from your table t@pbrthe
functions (on the domain from O tomRy = sin x and
y = cosx; on a separate graph, piot tanx.

My intention is to maximize learning with a formiafimersion into the characteristics of
the graphs of trigonometric functions. Contribgtio overload are the constituent tasks

necessary to complete the task:

» Facility with special triangles special triangl@9{- 60°- 90° and 45°- 45°- 90°)
and angles, and the determination of exact trigatomvalues for special angles
from O to 360 degrees (0 tat2adians);

» Conversion of degree to radian measure and exasts/af radian angle measure;

» Principles of graphing: setting up axes and scateisplotting points;

» Interpolation/extrapolation of the plotted poindsoiotain the graphs of the three
functions, and discerning the asymptotic behavaduhe tangent function.

This task also points out the effect of early clotogical placement of a problem in the
learning cycle in contributing to overload. Indluase, students are attempting to deal
with new parameters (radian measure). If undentélyestudents as intended, it serves

several purposes simultaneously, while laying tleengdwork that will play a key role
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for the entire trigonometry section. The intentiorcreating an overloaded condition, and
the stress that accompanies it, is to pressuremstsio come to terms with the level of
content and the material itself. If successfuldsnts are elevated to an appropriate level

at which they are expected to perform.

9. To Prefamiliarize With Upcoming Topics

Across a mathematics curriculum, it is possiblprivide clues and hints as to
upcoming course content. By the time we get theyme of this content will have been
anticipated. Most short-term future topics aradabextensions of previous work, and in
this sense, prefamiliarization is an ongoing aspét#aching. Longer-term
prefamiliarization is less frequent, but any oppoity to promote student thinking in the
direction of future topics is to our advantage.e@ay to accomplish pre-familiarization
is to build minor digressions into worked examphdgenever possible and appropriate.
Instances of this seem difficult to capture, whethdesson records or video recording.
Blatant examples of this are classroom postersagung formulae for upcoming units —
such as the expressions for permutations and catias. The following example

illustrates an attempt to embed an idea relevafittoe work:
Example 40.
Given f (x) = 2°, find the inversef ()
Placing this example prior to the study of logarithmeans that students have no

mechanism with which to extragg™from the expression of the inverses 2. At the
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time this problem is given, students wrestle wité ¢dilemma of how they might bring
the exponent down. This will later provide an ogpoity to introduce the logarithm, as

well as to demonstrate that the logarithmic funci®the inverse of the exponential.

The next “intention” considered, “create a platfdonfuture scaffolding”, is
similar to “prefamiliarization”. Both describe @ssin which aspects of teaching are used
to make future work and concepts more accessildeuttents. This is an expected
characteristic of curriculum flow throughout schablese related “intentions” come into
play when the expected condition proves inadequepeepare students. This is

discussed in the next section.

10. To Create a Platform for Future Scaffolding

Scaffolding is a term typically used to mean thevsion of support in the
metaphorical sense, to convey the idea of movinthrgqugh discrete levels of
complexity. Henningsen and Stein (1997) use tira tzaffolding to describe assistance
that enables a student to complete a task, “butites not reduce the overall complexity
or cognitive demands of the task” (p. 527). | treeterm in a slightly different sense, as
in preparing students for upcoming work, eitheedan the current course or in future
courses. Since the Grade 12 math course is eghcalus course, certain examples that
lie slightly beyond curricular content can be usedmphasize algebraic and graphical

representation of functions and relations that fopreparatory work in that direction:
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Example 41.

-2
Let f be the function given by (x) = i 5
X_

a) Find all the zeros of.
b) Find the range of.
c) Graphy = f(x)."
There are several aspects of this problem thahateictive.
* Piecewise functions;
» linking absolute value, roots of functions, domamd range and behaviour of
functions;

* limits to +co leading to determination of horizontal asymptotes;

» vertical asymptotes.
Insight gained by having taught the next level,chhn the case of Grade 12
mathematics is calculus, facilitates the identtfmaof necessary bridging topics. In this
case, piecewise functions are identified as anlowked topic, and thus can be

addressed.
(a2
=" = [X-2

Attending to these concepts allows us to pull alemof previously learned curricular
topics from various locations in the high schoariculum together, and combine them
in ways that are useful for future use. The top®sd in the above example have more to

do with the material in the Grade 11 mathematiess®than the current course. This

15 Adapted from Advanced Placement Calculus 1991 Free Response Question.
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provides another reason to “create a platformfprasrequisite knowledge students will
need in the future recedes further into the pagtigiost. Both “prefamiliarization” and
“providing a platform for future scaffolding” carelused to emphasize for students those
aspects of the high school mathematics curriculeemted important and necessary for

future mathematics and mathematics related courses.

11. Across The Grain

“Across the grain” is a metaphor used by Watsoi®(2@o describe student
reflection on mathematics in a different mannenttieat which is used to generate the
initial work. As Watson describes, “Awareness toficture appears to require
reorganising one’s initial approach to a conceptdilecting from another point of
view” (p. 6). The detection of patterns, then, Wioloe associated with “going with the
grain”. | am using this metaphor in a slightlyfdient sense, as a teaching strategy
employed through examples that illustrate, reirdand consolidate by using different or
non-standard approaches. Such examples suppastookiiin their corroboration of our
results through different means. This can be quotgerful in the promotion of student’s
understanding by cross-connecting existing exantplegrengthen key points, as well as
serving to enhance the larger canvas of overalhematical understanding. An example
which achieves “across the grain” success may leethe most productive use of an
example from the teaching point of view. It cormdsrother qualities including

consolidation, extending, reviewing and others.
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Although pedagogically among the best use of exasyphey do not emerge
frequently. It is perhaps no coincidence that xgneples of across the grain unite
graphical and algebraic approaches to functioriges@ large, disparate, under-connected
yet essential strands in the high school pre-cascalrriculum are also often a source of
cognitive dissonance, as discussed in the predecatson. Each of the following

examples was used to illustrate an alternative otkth achieve a result.
Example 42.
Transform the graph=x® into y = 2¢.

The example may be construed as graphically, smply describe the transformation.

Typically, the transformation is considered as dival stretch,y = af (x).

y = 2¢ is graphed by vertically stretching= x* by a factor of 2, since = 2. Working
across the grain, the same transformation can m&idered as a horizontal compression,

treating the function ay = f (kx).

y =2X

=(Vax)

Thus, the same transformation can be achievedanlitbrizontal compression by a factor

of /2, since k= /2. Depending on the function, relationships cafoo@d which

obtain the same result through different transfdiona.

Example 43.

Sketch a graph of = cox from basic principles.
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One aspect of this example is the opportunity foakkernate demonstration of plotting

this function by using the squares of the cosirfespecial angles. The results are

interesting:
X O |n |\m |m |m |27 |30 |51 |7
6 4 3 2 3 4 6
cosx |1 |3 |1 1 |0 | 1) 1| J3|1
2 | V2|2 2| N2 | 2
cox |1 |3 |1 |1 |0 |1 )1 |3 |1
4 2 4 4 2 4

Table 1: Special Angle Values focos x and cos® x

The graphs ofy = cosx and y = cos® x are then produced as shown:

X

n 43/ sn3 2nm

-1t

Figure 11: Graphs of y =cosx and y = cos” x
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The curvey = cos’ x itself appears to be sinusoidal, (this may be icoefd with a
graphing calculator, and is confirmed later in #asmple) with amplitude 0.5, central
axis raised up 0.5 units, and a periodUsing this information, and our knowledge of the

effects these transfomations have on the cosingibmequation:

y =acoskx+(q - %c052x+%

Taking %0032x+% to be equal toy = cos’ x,

cos? X :l0032x+l
2 2

2cos* X = cos2x +1
2c0s’ X —1 = cos2x

Working across the grain, the double-angle ideriititycos X has been confirmed by

considering the transformation gf= cosx into y = cos’ x.

Example 44.

If an amount doubles in 8 days, express the grawta function using.

Students have difficulty distinguishing among tliféedent ways in which exponential
relationships may be expressed: as annual peigoanth, by a factor increase in a given
duration as above, or as continuous growth usisgéand that these ultimately
represent the same thing. Our standard approa¢tdabling” is to use base 2, but it is

not typical to transform it:
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t
Y=Yo(2)®
t
y= yo(eInz )?

)

_ 8
Y=Y€
0.0866t

Y=Y€

A parallel approach shows the doubling relationstgoting with the standard

exponential growth equatiory, = y,e*

Y = Vo€
2=(1)e®
In2 =8k

k= In?Z = 0.0866

0.0866t

Y=Y.€

Both approaches above yield the same result, &ndheer note is made that doubling
every 8 days is equivalent to a continuous daibywgin of about 8.7%. This across the
grain approach links the various means to reprabergame relationship. The final
example demonstrates an indirect, yet common seatieod of graphing logarithmic

functions:

Example 45.

Graphy =log, x
The purpose of working this example is to presenndirect method of accomplishing
this task, while at the same time emphasizingnkerse relationship between the
exponential and logarithmic functions. Startinghithe more familiar functiory = 2,

it is relatively easy to produce ordered pairs1(0(1, 2), (2, 4), (3, 8), 0.5),

(-2, 0.25), and so on. At this point in the coustadents are not able to similarly
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produce ordered pairs for the graph of the logamithfunction as easily. Since

y =log, x is the inverse of = 2%, points on the logarithmic function are obtaingd b

switchingx andy values in the ordered pairs, and/or reflectingpbiats in the liney =

X. Other graphical features of the logarithmic fume, such as its asymptotic behaviour,
are easily identified, as the asymptote line 0 for y = 2* becomes = 0 for its

inverse. We then confirm that the inverse of tkgomential function is the logarithmic

function:

f(x)=y=2"

x=2'

log, x=y=f7(x)
Whether or not students choose to use this simglieeict method, we have also
demonstrated another algebraic-graphical connettimugh this across the grain

example, and with it, continue to cement the cohoéfpgarithms.
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CHAPTER 6: CONCLUSIONS

1. Classification of Tasks and Examples

The complexity of teaching is well documented ie likerature. Shulman’s
(1986) foundational distinction between the constit theoretical aspects of teaching,
subject matter content knowledge, pedagogical cokigowledge and curricular
knowledge, provide a basis for understanding tbraexity. However, there remain
problems in identifying and describing the “crafiokvledge” of teaching (Leinhardt,
1990). Ball (2000) poses this pertinent questitiiow could teachers develop a sense
of the trajectory of a topic over time or how tovdi®p its intellectual core in students’
minds and capacities so that they eventually reaafure and compressed
understandings and skills” (p. 246)? The answapissimple. The ability of teachers to
describe the inner workings of how they go aboathéng is not well developed.
Associated with the difficulty in articulating td@ng processes is the lack of suitable

language with which to do so.

The importance of the use of examples in mathesatassrooms is well
accepted and documented in educational literatline results of this study indicate
many ways in which tasks and examples are employ&e.origin, delivery and context
categories describe the more obvious and easitgdiable characteristics of task and
example use, while the “intention” represents gpdepedagogical purpose, and cannot

necessarily be associated with a task or exanttevever, these intentions may be
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realized through example use. These latter twegoaies, shown in Table 2, contain the

sets of task and example types identified and mleaddressed in my study.

Context Intention
» Standard e Standard
e Overview e To Level
*  Warm-up » To Create Cognitive Dissonance
e Introductory e To Stimulate Inquiry
» Limiting » To Create Partial Understanding
e Contrasting e To Address Common Errors And
* Review Difficulties
e Consolidating » Structured Variation
» Extending * To Overload
e Cross or Multi-Topic * To Pre-Familiarize With Upcoming
* Uncommon or Exceptional Case Topics
e To Create A Platform For Future
Scaffolding
* Across The Grain

Table 2: Classification of Examples and Tasks — Coext and Intention

An important limitation to this categorization addssification breakdown is that there is
an artificial sense that these constructs can exdspendently. Many of the purposes of
task and example use are highly intertwined witlers, so that studying each in isolation
is not entirely feasible. The two broad categooikesontext and intention overlap at
several points; this is inevitable, as intentiodescriptive of purpose, and context
provides the means with which to achieve thesafies. As such, they are not always
distinct. For instance, the following example wagd to demonstrate the context of

“extending” (see Example 19):

Determine the period and the amplitude of the fimngt = k sind cosé.
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This example is both an extending and cross/mayictexample in terms of its context,
but also reflects intentions to simultaneously legeint out common difficulties and
work across the grain. Such an example wouldl&sty have consolidating and review
“side effects”. In other cases, overview and idtrctory types of tasks and examples
may be indistinguishable from each other, as tleepm@plish similar purposes. Review
is an ongoing aspect in virtually all task and egdeployment, and in many instances,
is inseparable from “consolidation”. Further, adicated previously, many of the
contexts may be in action simultaneously, whethemided or not. To complicate
matters, regardless of the teaching strategiesna@wtions, students will no doubt
perceive and experience these examples and tagkaiirown unique ways.

Christiansen and Walther (1986) caution:

We have repeatedly emphasized that the outcomeanoénalysis, a
classification, or an analysis of a task depenohgly on the pedagogical
intentions under which the task is envisaged todel in the class by the
teacher or the didactician making the analysis. Amdilarly, that the
students’ activity and learning — when and if tasktis used in practice —
depend strongly on the ways in which it is presgtig the teacher and on
his interactions with the learners in the clas{fy).

The most frequent characteristics of the workedrgtas used in my lessons fall under
the contextual umbrella of review and consolidatieith associated intentions of
levelling, addressing common errors and difficsltiand working across the grain
(wherever possible). These are reasonably standa&s] | believe, in mathematics
classrooms. | have identified several other cdstard teaching intentions, which are

indicative of less standard types of teaching atjias and approaches.

Overall, the various categories and subdivisionssik and example usage

outlined in this study serve to deconstruct mytdtabwledge relatively successfully,
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and reasonably well describe what | attempt to mpdish in the Grade 12 mathematics
classroom. In doing so, insights became availatlieh were previously largely
unattainable due to the nature of craft knowledgemy case, this was an almost
undecipherable collective of teaching strategiesitdated over the years through direct
experience, combined with an expert knowledge efctirricular material, (Shulman’s
“subject matter content knowledge”), also attaioedr time. Obviously, certain aspects
of my use of tasks and examples were easier tagidesand explain than others. Those
aspects of my teaching that proved more elusiveemotify and illustrate, such as
teaching for partial understanding, and the creatiocognitive dissonance, have at least
been identified and labelled. This provides atistgrpoint for understanding these and
other aspects of my teaching which have been diffto extract from the craft. The
analysis also provides a framework which may altefinements, better descriptions and
explanations to be formulated. This has threeizapbns for my teaching, that of my
colleagues in the profession, and perhaps thosarbrg a teaching career:

» The identification of the contexts and intentionisdrent in my teaching affords a
better awareness of the teaching and facilitatpstident and improvement to
my practice;

* | am more able to identify similar aspects in thactice of other teachers;

* The aspects of my teaching illuminated through shusly provide useful insights

for professional development for new and existaachers.
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2. Breach of Classroom Norms

By having multiple strategies operating simultarsiguhe probability of
achieving the curricular goals was increased. Hewdew of these intended teaching
outcomes came to fruition when there was too pbarfi between the demands of the
course and the skill and knowledge levels of thedestits. This seems to be the dominant
challenge that | have experienced in teaching Gi2d@athematics — that students are
ill-equipped to cope with the coursework, in smifeheir many years of preparation.
Many students are not ready for the tasks thattaham in their senior high school
mathematics courses. Addressing these shortcomnoges to be an important factor in
how tasks and examples are used in the classréanexample would be factoring by
difference of squares, a Grade 9 or 10 topic, whahoften not been successfully
integrated into a mathematics repertoire by the tmr students enter the Grade 12
course. | include poorly learned procedures ameige lack of understanding of
mathematical basics as contributing to this problé&mr example, a surprising number of
senior students could not explain why cross-muliig works in the solution of simple
fraction equations. | believe that this is sympatimof a larger problem, a reliance on
set algorithms and rote learning instead of undadshg, even extending to the reduction

of problem solving to memorizable procedures.

Given the teaching task of attaining a degree adtary of the required curricular
material to a level of sophistication appropriatéite grade level and the complexity of
the subject matter, it is natural that certain ag mechanisms evolved to facilitate the

attainment of this goal. In part, this requiresigng students forward, and attempting to
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find ways to speed up or to find viable short-¢hteugh the material for those
experiencing difficulty. In this respect, my apacbes may be described as contravening
established classroom norms. Students expectatass to operate in a manner in

which they have become accustomed to. As welh batdents and teachers have been
conditioned to act within certain institutionalizpdrameters and exhibit specific
behaviours: teachers are expected to teach infepeelys and students to respond
accordingly. These classroom norms include charatics of most mathematics

classrooms. Christiansen and Walther (1986) dascthis as the “prevailing tradition”.

* The teacher specifies one or more exercises toooked on by the pupils, usually
in continuation of explanations and demonstratibprocedure, which are linked
to an example meant to serve as a model;

* The pupils learn from their work (individually ar groups) with the assignment,
but their mathematical learning activity is predoamtly limited to drill and
practice in relation to previously described consegmd procedures;

* The results are controlled, and perhaps discusgédive whole class;

» If the teacher finds the feedback from the previsteps negative, he usually falls
back to the standard procedure: further explanatibnther drill; if he evaluates

the feedback as positive, the pattern describ&glaved on ‘new’ exercises (p.
245).

These norms include predictable sequencing andhological order of curriculum
content, as well as the contrivances through wbighiculum content is imparted as set
up through textbooks, worksheets and exercisesthengredictable and periodic nature
of assessment tools (tests, quizzes and exami3.eBal (2006) discuss the typical use
of exercises in teaching: “... having learned a pdoce, the learner rehearses it on

several such ‘exercise’ examples. This is firgtrider to assist retention of the procedure
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by repetition, then later to develop fluency with(p. 1-136). Hildebrand (1999)

expressed this as the pedagogic conttaahd discusses the ramifications of breaking it:

Any time a teacher chooses to break the conventitres prevailing
norms, of the pre-existing pedagogic contract, theyst expect student
resistance and be prepared to justify why sucheakors occurring. Just
such a situation arises when teachers ask thalestsi to move from a
model of learning based on transmission to onedoaseconstructivism

(p- 3).

My teaching, in many instances, stretches and avetres these classroom norms
Students generally have come to expect a relativalgow range of pedagogical styles,
which their teachers typically adhere to. Suclestpften incorporate instructional note-
taking and related predictable classroom proceduvsphilosophy has been for
students to learn by doing, and so note takingreplaced by worked examples. |
developed an aversion to the process of note-gigeging this as anathemic from the
student point of view, in spite of its inclusiontime pedagogic contract.felt that student
records of my worked examples would be superidhéoact of note-taking, the
distinction being that these “worked examples” vadbimlvolve more than direct
transcription of my work. It was vital that studebe active participants in this process,
working through these problems with me. Optimadlydents would emerge with
understanding as well as their own self-producedpiiation of step-by-step annotated
notes. Of course, this optimistic approach cowden work for all of my students; in
practice, this process often degenerated bacletsithple note-taking which | had been
attempting to avoid and improve on. The successyépproach is therefore highly

dependent on student engagement.

'® Hildebrand (1999) re-labelled Brousseau’s (1997) didactic contract to clarify its meaning as that
reflecting the context of a classroom or school culture, rather than the association of the term
didactic with transmissive teaching.

107



Traditional teaching convention dictates that newoepts be introduced
gradually, beginning with review of required knoddg, followed by a progression from
simple to more complex material. This progresssatypically characteristic not only of
single classes and topics, but of entire unitsootent, and perhaps year-long course
layout as well. Experience taught me when | caalatravene this by beginning
immediately with examples. For example, the follogwroblem (see Example 10) was

used to introduce the combinatorics unit, prioteaching the constituent concepts:

Nine horses are in a race. How many different waysthey finish if two
horses are tied?

It is true that this short-circuit does not workllweith some students. This re-
arrangement is not necessarily meant to acceleoatse delivery. However, accelerated
teaching in portions of the course does enablaiegto occur for as long as possible. |
would describe this as “maximal immersion.” Theetion of such teaching is to
increase the probability of all students reachindga as they are able within the

constraints imposed — available time, studenttghédvel, etc.

Throughout high school, students have been accestéothe tradition of unit
tests as a closure to a specific package of claricoaterial. However, | found the
analysis of these tests, after results are retumestiidents, to be an invaluable aspect of
the learning process. Although these test itemsraended to serve as an assessment of
coursework mastery, they, more importantly frompoint of view, if not the students,
become part of the overall process of learning.nW&tudents continue to improve
mastery as they move through this post-test zdins.always the case that some students

experience maximal learning after error-correcaod post-test consolidation.
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3. Future Considerations

The complexity of example use at the senior higtostlevel is not well
reported. Existing studies examining teachersagsoof examples are predominantly at
the Grade 8 level and below. Although findingsoth research are applicable across
age groups, content knowledge requirements are damanding in the final high school
courses, and correspondingly, the pedagogical noki®mwledge that is tied to the
teaching of senior secondary mathematics may be gdemanding and complex. This
might explain the fact that reported uses of tagidexamples do not reflect the much
wider spectrum and depth of context and intenteset out in this report. Mathematical
content in senior secondary courses moves pasematits basics, so that those
foundational and profound cases of teaching armileg, which are generally more
easily observed in the early lessons of arithnaatid algebra, become more difficult to
locate. In the senior high school mathematicssgliass also more difficult to isolate
causes and effects in teaching and learning dtleetoomplexity of content, and the
divergence of students’ mathematical abilitiesl| skits and preparatory histories. Even
through the middle high school Grades 8, 9 andH®tasks and examples are much
simpler and less abstract, and therefore perhagisrda analyze. Studies targeting
elementary and middle school grades ultimately b&gf limited relevance to the senior
mathematics classroom. As well, senior secondathematics classes take on
characteristics quite different from those of poers grades due to the obvious maturing

of students. The final year in high school alswveg as a transition period, preceding, or
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as a prelude to post-secondary courses and progvdarase students are likely to
experience an entirely different pedagogical apgod believe that there is an ingrained
behaviour of teachers of senior secondary mathematiurses to build in preparatory
aspects to prepare students for what lies aheatid¢ar. | have indicated the use of “pre-
familiarization with upcoming topics” as a teachingention. This strategy applies in a
larger sense, since, as teachers, we take evpoytapity to prepare our students for life

after high school in more than simply mathematmsrses.

Further research is needed to continue the wotkachers’ uses of examples.
The teaching and learning aspects are intertwitinéslyeport focuses on the teacher
perspective. Given this, it remained impossibldiszonnect teacher actions from their
impact on student learning. Studies point to #ok lof teacher education in the use of
examples; teachers gain expertise only throughldpreent of their craft. How teacher
education programmes might make use of this expaching knowledge in assisting is
an area warranting further study. As well, reseatearly points to the difficulties
teachers have in identifying, elucidating and comitating this expertise. Opportunities

for professional development in this area wouldibeful for the teaching community.

The specific choice of examples may facilitate orpéde students’

learning, thus it presents the teacher with a ehgk, entailing many
considerations that should be weighed. Yet, nuoermathematics

teacher education programmes do not explicitly esklthis issue and do
not systematically prepare prospective teachede#b with the choice and
use of instructional examples in an educated wHyus, we suggest that
the skills required for effective treatment of exdes are crafted mostly
through one’s own teaching experience (Zodik andl&asky, 2008, p.

166).

The teaching use of tasks and examples is motiatddiriven by factors which

assist students in attaining mastery of the cuarcmaterial. The simplest and most
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common use of examples is in “exemplification.”eReg beneath this obvious use, there
are more complex functions served by the teachsegod tasks and examples. These
uses arise, in part, from the necessity of takiegssto facilitate and expedite student
learning and performance at a level consonant thiahexpected at the Grade 12 level. |
interpret this “level” to include problem-solvinghis is manifested by tasks and
assessments which exceed the typical and expeagies of questions and problems.
This interpretation is also reflected in the unged philosophy of the teaching process,
which can be seen in the ways in which examplegasid have been portrayed in this
study. Whether or not the attainment of curricalajectives is to be measured by
achievement on high-stakes examinations or noecspf these exams can be used to
enhance classroom teaching. This is accomplidiredigh the use of exam problems, as
well as their tailored, altered, extended and adfuiforms. Inevitably, elements of final
exams affect the manner in which course is taughts is clear from the studies of the

last thirty years. However, it need not detragtrfrthe quality of student learning.
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APPENDIX

TRANSCRIPT 1': Inverse of a logarithmic function

Find the inversé ™ X ) iff X ¥ 2logx@

Oh, | really threw you guys off by putting this 2 front. So why would
you make your life more difficult and put this 2 tpre instead of just
getting rid of it altogether and taking it to théher side? That's a tactical
error. Because then you do the thing. Two wayotth...

Okay, y =2log, (x+ 2), switch thex and y. You want to dig out this

Don’'t make it worse! Make it better! Start gettind of stuff. That's why
you should get this 2 over here. And many of yotipup there. Yes, it's
a law, | know, very good, yes, but not the bestghio do here. Yeah, |
never did one of those, but | thought, let's punsaransformation thing
in there. Now I'll talk about the graph in a minut®o then we do that
thing, there’s two ways to do this | was just sgyiDo you know what
those two different ways are to get you the sanmegth Do you? | think
no. Do you have any idea what I'm talking abolit®%ould be nice if you
wrote something down. And now, here’s the two thing/hat’s it say,

gzlog3(y+ 2). Okay, change this to exponential, what's the Base

Where’s the base? Is this the base? Is this tbe?bahis? This? What is
the log? What is the thing? The argument? We're step away, just get
this two to the other side and we're finished.

X

— =log,(y+2)
R=y+2
y=32-2

That'sf-inverse ofx. That's changing it from log to exponential. Theey
point of view is it's a log base 3, so do 3 to teqtials 3 to that. What is 3
to this, well that's what it is. If | have 3 to theg base 3, it'y + 2. Same.

" Unless otherwise indicated, | am the speaker in this and the following transcripts.
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X

3 =y+2. Same. Same result. Two different ways, same anseeyou

should writey = f ™(x) =32 - 2.

TRANSCRIPT 2: Transformation of the Sine Function nto Cosine

If I move (the graph of) si® 90° this way it becomes cosiflieCorrect?

Then how do you do a movement 900—72€)rthat way?[9+g} .

cosé = sir[é’“—ﬂ That'’s just what | see from my graphs. Is thie® If

I move the sine graph’zZ this way, it becomes the cosine graph. Have a
look. Let’s see if it works. Pick & It should work — why do | have to

check it? Iscos0O= sir{ (}7—21}? What's the cosine of zero? [One].

What's the sine ofl—zT? One! Well, you need to start knowing these

things. Tell me, sine 01121 sine of 90°? One! Cosine of zero? [1]. Well,

it works for that angle. It actually works for eydring, and in the next
unit, the things that work all the time, we cakh... identities, and that's
an identity.
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TRANSCRIPT 3: Formulation of a Trigonometric Equation

If 1 give you a point, .a maximum point, and the thing will be, ...a
maximum point is located at sonxeand somey, and the closest next
minimum point to that is located at some coordin&ted I'll give you
some numbers. ...Those areoordinates. Right away you could tell me a

few things. And let’s sayg and 5?” Just in case you're thinking about it,

that's 60° and that’s 300°. Right? Becau;éés are 60’s ...so as much as

you can get used to radians, you should be tryindat that . Now you
guys actually have an advantage because you wilthbeing about
radians longer than some other Math 12 classes,yandwill be better
able to work with it. So there is a bit of a methodthe way I'm going
with this. The question is, what is the equationtto$ graph? And you
should say something to me right away. You shoaidaen’t there more
than one possible equation for that graph? Themvorging is not good. It
should be, what is an equation or a possible eguadir... that might be
more acceptable. What is an equation of this graetause if you've
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been listening to me, sine and cosine are the shayged graphs. It could
be sine or cosine.

So let’s find out everything we know about thisgirgust from these two
points. Now | have to tell you that it is a ... —drdt know. How do |

describe a graph that must be one of these waves®™ord. Like, I'm not

saying that this is a sine or cosine graph. A gida function means that
it is a sine or a cosine. Well, let’s see if it tashe a sine graph or not.
(response to a student). | suggest to you thae#sgest way to do this
graph is to call it a cosine because when we ghgbsine we started at
the top. Which is on the original of your graphuyg-axis. Cosine starts
at the top. So your y-axis is over here. So howifat is a cosine graph,
has it been shifted? It's right in front of youhi$ amount, from zero. So
when you move a function this amount this way, tdoes it show up in

the equation? You know from transformations %T shifts a graphg

units this way.

It's just a number’—T, it's ah, well its 60° but as a numb’éris 3.14

3
divided by 3 — it's just a number. But this is muaicer than using all
those decimals. Now...can you tell me the amplitudéhis? Isn'’t it that
amplitude is up and down the same amount fromeallihe middle that |
call what? The central axis. ...Anyway, you shouldabée to give me the
central axis. Shouldn't it be halfway between thees? How do you find
halfway between two numbers? You add them, updaride by 2. It's an
average. What is it, 3y = 3? Where is the central axis normally? Yeah,

so how far are we up or down? If the phase sbiéziand | am dealing

with a cosine... What's the amplitude? 5. So st check. Is it 5 and
5, 10 units from here to here? That looks likéram 8 to—2. Just check.
5! I'm missing one thing. That's right. What istperiod normally? One
cycle is 2t What's one cycle of this then? Question: How mwot a
cycle is it from the top to the bottom. Use youmeoon sense. I'll come
back when you have it. (I didn’t go anywhere)...Howah of a cycle?
Half of a cycle! Let’s try it again. How much of@cle is it from the
highest point t the next nearest lowest point? f dala cycle! Doesn't
matter if its sine or cosine. So between here aaré s one-half of a -
well, | used another word than cycle — the periblois half of a period.
And there’s nothing I've told you that isn’t justmeost pure common
sense. If that’s half of a period, what is one @&?i Well, | guess we need
to know how far it is from here to here. | thinlettvay you find distance
is to subtract the lower one from the higher onkeleast it worked when |

was a kid. So what is half of a period4—3°]—7. How’s the math there? So
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one period isS?ﬂ. Do you know anything about a period, like an digua
for example? Period :2777- So are we stretching the period or
compressing it? It's notr2 Wait a second.1Ris the normal period%T,

is that bigger? Yeah, becaussa i3 G%T’s. This is bigger than normal.

Anyway, there is a number in here that's calkedndk is related to the
period by this simple equation that | gave youv8at'sk? Maybe you
have to do some figuring out here. Like8 3 times 2t 8rttimesk = 61t

k= % which is% which is what you put in here:

_ 3( nﬂ .
y=5C08§ —| X—— ||+ <
il

TRANSCRIPT 4: Solving Trigonometric Equations With Exact Solutions

What is the solution to si@= —%, between zero and 360°, or (I am going

to have to tell you), greater than zero and leas @m, and you say, from

your knowledgeﬁ:%r and %ﬂ because you are so good at it. Can you

rattle that off without doing any work?

Well, if you're not at that stage, then you havestep back, and you have
to say, ah, | remember that this is special. Wkégrence angle are we

talking about, sine of that ang+e%, and you need to know it's 30° and

which quadrants have a negative sine, and you tee&dow that. These
two. Do you know that? You need to know withoumniting too much,
and the reason I'd like you to say is that's where negative because sine

isX.
r

So you have to know there is a 30° reference andlas quadrant, and a

30° reference angle in this quadrant. But SO%Tisso this angle is%r,
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%T and one more, or you could go 1-2-3-4-5-6-7, 89t1, count the

30’s, right?

Student: A|SO%T—%T.

Okay, yes. What is logical and worksbut the real thing is that this
guestion comes up so much. What about thiSh 9:+%? It's these

two. Now my diagram is all messy. Here, do someaey. Well, 30°
reference angle, so you have to know. You haventmkthese things, you

have to spot them. This ing well that's one of your answers. This is 1-2-
3-4- 5—”, or6—n less one. S8~ and5—n.
6 6 6 6

This will come up actually more, even more in teeand trig unit. Oh
yes, very much.

...there is another way to do this. Well, now thati yltave a graphing
calculator capability, except that this can be dbyénand, what you are

actually being asked is, “where is gthequal to% ?” Here and here. So

what are these two angles? Well, thisgisand this is%r. so it could be
done on a graphing calculator, but you'll get dedimnswers. Sitill,
though, that’'s what you're being asked, where ﬂs@qual%, but you

should understand this representation.

TRANSCRIPT 5: Evaluating Sine and Cosine for0°

That will be a question that many others of youl Wadve. The special
angles 0°, 90°, 180°, 270° and 360°, but reallyadians! 7—27 11, this one,

what's that? 270° ... you need to start knowing tR@0°, radians? 3 of
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those, isn't it? & You will have to think in radians. O.K., the sdc
angles — they'’re not 30’s, 60’s, 45’s. We lookedhat 30’s, 60’s, 45’s and
all through your chart you should have seen a icepiaenomenon and I'll
just add one more: zero degrees. So we’ll havezeww degree triangle,
have a good look!

What do you think of it? It's impossible! Butitfwas zero degrees, how
long would this be? Get it? This would be zerd@taufong if that was
really zero degrees. Are you with me? How lonthis and this? Yeah, |
don’t know. They could be anything. But you're rigthey’re the same.
But this isx and this ig and | know if you collapse this point here then
andx would be the same.

So, knowing that stuff, the sine of zero and ths(io@) of zero, and I've
been talking about radians. This over this is time ®f the angle zero
degrees, zero over anything is zero, the sine is ...

Student: Zero.

Cosine is this over this, but this is the saméness.t
Student: One.

Tangent —

Student: Undefined.

...l don’t think so, it's zero over something...

Student: Zero.
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TRANSCRIPT 6: Sketching Trigonometric Functions

yess i3]

Your job or our job is to sketch a graph of thigthh one complete cycle,
at least one complete cycle. Sketch at least onglete cycle. | suggest
graph paper or you are wasting your time. One cetaptycle and label
the important points. Now you might think it's up you to decide which
points are important, but whatever points you pickvant to see those
five. | want to see 1-2-3-4-5, the start of youcley the top of your cycle,
back to the central axis, down to the minimum aadkbup to the central
axis, for a sine graph. Those are the five I'mitajkabout.

So what are you going to do first? You figure aitat's going on. The
thing I'd like you to do the most is the period. 8¥l the period? See this

1.5? I'd rather like to think of it as; That right? So it equa%. That
3

is 27T><§, which is%r. What's that in degrees?

Student: 240°.

It's 240°, yeah. If | were you, I'd be convertingdk and forth until |
really...you may not have enough time to really get a haodleadians so
your best bet is to work in conversions to degheesk and forth. But you
can see that if this is 1.5, then the period shbeldivided by 1.5, sor..
seems about right, it's shorter than it should bamnally. | wonder how
we’re going to deal with that. That is the lengthooe complete cycle.
And what does this do? Amplitide is 3. So we thid and this. What does

that do? That's the phase shift. Which directidf@s,g that way, which

is left, the opposite of that. And this? Plus Erfical up one. That's it.
So. | have ax-axis. It's greenish. | probably will give you this so that
| don’t have 50 million versions of it. But | hate draw one complete

cycle of it and one complete isgll’s. So I'm thinking of how | should do
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my axis so that | can actually get those point# because later I'm going
to cut this period in quarters. I'm going to cuinitquarters so that | can do
the thing | told you, so that | can go up-down-demynin the quarters, but
| need to start somewhere. So here is what | recamdm

One, do all that stuff we just did. I'd call thah# of an analysis. | looked
at the four things. That, what does it do, thatatMoes it do, that, what
does it do, and that, what does it do?

Secondly, find what | call the starting point, ahdre’s what | mean.
Assuming that someone gave you an axis, and ymitdidve to worry

about that. So, do an axis here. | wonder if | naake thisg’s so this

would bej—;, and that means one of thesegis So, 1’—;, 27—;, 3’—;, which

IS TL, 47—37’5, 5 — I don’t know if I need that. What do yourtk of my axis?
. T, . T, : T

Does that look alrlght?g s, I’'m using 3 s because I've got a3— phase

shift and a 4;;[ period. So we phase shift that way, and %Zs and then

we go one up.7—3T and let’s say that’s one. Then 1-2-3-4, that wdddwo

and 1-2-3-4, that would be negative one. So wotlidive nice if someone
already did that for you? ...So the phase shift dhd vertical
displacement, phase shift that way, and 1 up, ihahy starting point.
Central axis was on theaxis, we raise it up one so the central axis i8 no
here. Are you with me? This is where | start rmesgraph. It's gong to
start on the central axis and go up-down-down-upt Bmay run into
problem and you should have noticed. If | gave tfos graph you could
tell me the range right now without doing any woltks up 1 but then
from 1 its up 3 and down 3, the amplitude is 3n&t bigger than normal.
Normal is 1. That means I'm going to go up to 4 dogn to—2. So the
graph will look like that.

I don’t think its going to fit. What should | do®’s going to go up to 4.
My graph, | don’t even get to 3. Should | adjust weytical scale? Make
it smaller? Well, | hope you can deal with thabng central axis then. |
don’t want to waste another sheet. Anyone haveeadit? So maybe |
should make it 1, 2, 3, 4 so | know and 1,2,3 ahd-2. We are going to
be between these two points in the y —that’s yange. So the central axis
is now here, ignore this one. Now where’s my stgrppoint again, shifted

7—3T that way, 1 up. Let’s use blue. Here’s my starpogt. So have | done
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what | said, find a starting point? This take®iatcount phase shift and
vertical displacement. Now mark out one period fritra starting point.

What's the period?%T. Isn’t it nice that my axis is in;—T’s? So from

here, 17—; 2, 3, 4. My graph will be in this box. Now, yoordt have to

draw a box, and this is the central axis of thelra..we start here. In the
first quarter, we’re up at the top, in the secondrtger, we're back to the
central axis, in the third quarter we'’re at thetdaot and in the fourth
qguarter we finish. And you draw it. ...it doesn’t gto It actually keeps

going, but | have drawn one cycle. I've taken iatcount the amplitude is
3 from the central axis, 1,2,3 up, 1,2,3, downidl the phase shift. | did
the compression by plotting one period. Cut it ifbor, first quarter,

second quarter, third quarter, fourth quarter. Deamice sine graph. And
now finish it. Sketch at least one complete cychkbel coordinates of the
important points. | should be able to read them off

TRANSCRIPT 7: The Reciprocal of the Sine Function

We’re going to use this now. We already have be8me, cosine and
tangent. Sine and cosine: So what you got oubaif thing is this: Sine.
Y equals sine of what?

Student: Theta.

Theta. Then that means that this axis is thetadd&gou know what it is
you actually graph? You graph the function. If \siart at zero, it goes to
21 (one cycle), but it actually keeps going. ThatBywmy markers run
out. It goes on forever, both directions. Goodriow. So we’re looking at
a part of it. So this should e half. This should be half of that, and this
should be half of that. So what are those, radians?

Student: Quadrants?

No, thex or theta coordinates. What are the anglje;s?lwo of them, three

of them,?’?n, alias 90°, 180°, 270°, 0° to 360°, and we camdre, but

that'll be good enough for now. So way back inhets of time, we did a
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thing that looked like this. Let me sge= 0, so one over zero becomes a
vertical asymptote. What is that thing where weode over every point?
What is thisy-coordinate? You should be well acquainted with.tk¢hat

is it? You graphed it. No, what is thatoordinate?

Student: Oh, one.

One. What is the reciprocal of one?

Student: One.

What is the reciprocal of negative one?

Student: Negative one.

I’'m doing the reciprocal oy = sine of theta. Now, these values are being
less than, well they are actually greater than tnegane, but they're

getting smaller. When you do the reciprocal, whapgens to these
points? Will they start going down here? Will ithdup here? This, let's

say atIZT. What is this y coordinate? Sine e’j you should know it.

Really you should. The sine of 45° is what I'm agkyou, the sine 0114—7

You need to know it.

Student:i )

V2

You need to know instantl;sing, sinlzr, oh, I know, | took your tables
/A , . . ,
away. smg, smE, sin0. That's asking you for the sine of 30°, that’s

asking you for the sine of zero, zero. Sine of %O?sine of 45°,i, sine

J2
of, well, you do that, what'’s sine of 60°, {793??
...anyway, you have to unify this graph with theseasl So what was |

asking before | went off on this thing is whattihe sine of 45°’?i.

V2

When you graphed it, what was the decimal? O.Z\%, 0.707. Anyway,

this is i That's the sine of 45°. What's the reciprocaljtlzk? J21

NA

Isn’t that nice — which is approximately 1.414. iBs up here. So what
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I’'m getting at is since you've already done recgais, the reciprocal of
sine theta end up looking like — it's there, and y@ave one of those other
arches here. This is also an asymptote, right? ¢fatsl there, and goes up.
And everytime it repeats itself, you'll get a repeéthis arch here, and
this arch here, and we have a name for this funcfilne name for that,

the reciprocal of sine. So we are doingl—g is called cosecardl. Well,
sin

short form for cosecant - csc - cosecant, reciprotaine. So | could

leave off they =, we have one over cosine called secant, andawe dne

over tangent called cotangent. So now there’s |ixe, cosine, tangent,
cosecant, secant, cotangent.

So the cosecant Gg is one over the sine og and the sine 0{3—7 is the

sine of 30° is%. So the cosecant eg is one over one over two which is
2.

...What is the range of = sin &? What's range? Verticalnesy.is greater
than-1 but less than +1. It's betweefi and +1. What is the range of its
reciprocal, they = cscé, of which we’ve drawn, at least one little bitibf
You guys with graphing calculators, you could graphyou could just

graphy :_i. What's stopping you? Good thing I'm not askingi yor
sinx

the domain. That would be trouble. Wow. | guesshaee to talk about it
now. But what is the range gt cscé, which I've drawn here? Range of
cosecant, well its everything below there and etwng above there,
right? This is no-man’s land. Favourite questiontests. The answer ig,

is less than or equal tel ory is greater or equal to +1. That should do it.
Isn’t it interesting?

The domain: What is the domain of sih Yes, it’s all, it's everything. All
real numbers. Domain gf= sinx and therefore also casbut not tangent
of x because tangent has asymptotes. | hope you seleit you graphed
it. x is all real numbersxR, so that’s the lingo. Or you just say all real
numbers, or you could say all reals. The domaiit’sfreciprocal, the
domain ofy = cscé - I'm switching betweerx and 6. | hope that’s okay.
It's still an angle on this axis. Well, every sdesf we have an asymptote.
Well, every how often? Evengwe have an asymptote. How can | say that
forever? Well, we have this interesting way of gpforever. It's actually
kind of simple. Domain of cosecant xsis all real numbers...but not -
because it has a few exceptions. The asymptoteplaces where the
domain doesn't exist. But everywhere else thanetiegted lines, and it's
everyT, so why don’t we call it “n” timest, where n is an integer, or you
say where n is any integer, because that takes afaal positive and
negative multiples oft
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What do you think? And the short form of that woblel n is an integer,
nl. And in other countries than Canada, they use rZtlie set of
integers, so we accept that. We use |, becauseihteger. Anyone seen
z?

So, this is a concept going to infinity, plus arebative. So this tells you
that every integer multiple aft you have a vertical asymptote, can’t be
part of the domain. What do you think? We’ll usaekt unit.

So what is the domain of one of it's cousins? Sgcajust let me say if
cosine is only this graph moved 90° this way sa thia point goes here,
then shouldn't it’s reciprocal just be moved also?

...S0 what is important is cosine is sine, same grah shifted, and so
it's reciprocal looks like that. So the ranges dodhains, sorry the ranges
are the same. ...The ranges of sine and cosine argathe, so the ranges
of the reciprocals are the same. If anyone eves gk, and | will, the

domain though: It's a{g or 90° where you have these vertical asymptotes
now because those are the roots of cosine Snesg ... I don’t know

because if you do n is an integer timiegsthat means I'll have... and |
don’t want all those. | only want this one and thieis one. So like | want
onei—T and 37” | think the next one will beszz. So | have to find a way

to do that.
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