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Abstract

In peer-to-peer (P2P) swarm-based streaming systems, each video sequence is typically

divided into segments, which are then streamed from multiple senders to a receiver. The

receiver needs to coordinate the senders by specifying a transmission schedule for each of

them. Our goal is to compute the transmission schedules in order to maximize the video

quality at the receivers. We prove that this problem is NP-Complete. We present an Integer

Linear Programming (ILP) formulation for this problem. This optimal solution, however

is computationally expensive and is not suitable for real-time streaming systems. Thus,

we propose an approximation algorithm to solve this problem, which has an approximation

factor of 2. We implement the proposed algorithm in a P2P simulator and in a P2P prototype

system. Our evaluation results indicate that the proposed algorithm outperforms other

algorithms deployed in current systems.

Keywords: peer-to-peer; video streaming; segment transmission scheduling;
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Chapter 1

Introduction

In this chapter, we introduce the segment transmission scheduling problem in Peer-to-Peer

(P2P) streaming systems that we solve in this thesis and we summarize the contributions

of our work.

1.1 Introduction

P2P streaming systems [1–4] have been proposed to distribute multimedia contents at low

infrastructure costs. They can be built in two different ways [5]: (i) tree-based systems in

which one or more trees are constructed to connect peers for transferring contents [6–8], and

(ii) swarm-based systems in which each peer connects to a few neighboring peers without

an explicit network topology before exchanging data with each other [1,9,10]. We consider

swarm-based systems, because they incur lower maintenance overheads, adapt better to

network dynamics, are easier to implement [11], and lead to better perceived video quality

[12].

In swarm-based systems, a video sequence is partitioned into small segments, and seg-

ments are transmitted from multiple senders to a receiver. The receiving peer must coordi-

nate the segment transmission from its senders. More precisely, a receiver runs a scheduling

algorithm to compose a transmission schedule for its senders, which specifies for each sender

the assigned segments and their transmission times.

Previous works [13, 14] show that when resources (especially bandwidth) are enough to

stream videos in a P2P streaming system, almost all existing scheduling algorithms perform

equally well. While with the advent of more and more high quality video streams over

1



CHAPTER 1. INTRODUCTION 2

the Internet, resources are never sufficient, thus more intelligent scheduling algorithms are

needed to fully utilize those limited resources. Composing segment transmission schedules

is not an easy task, as P2P streaming systems impose time constraints on segment transmis-

sion. Segments arriving at the receiver after their decoding deadlines are not useful, because

they cannot be rendered to users for improving video quality. Hence, segment scheduling

algorithms should strive to maximize the perceived video quality delivered by the on-time

segments, which refer to those segments that meet their decoding deadlines. Optimally

constructing segment schedules is computationally expensive [9], and thus existing systems

either resort to simple heuristic algorithms [9,10,15], or assign each segment an ad-hoc util-

ity function and solve the simplified problem of maximizing the system-wide utility [16,17].

These algorithms provide no performance guarantees on the number of on-time delivered

segments, and may result in playout glitches and degraded video quality. A recent work [11]

pointed out that these existing algorithms might work in live streaming systems as peers in

these systems share a small scheduling window and are less sensitive to the performance of

scheduling algorithms; however, they may not work well in on-demand streaming systems,

especially when the system bandwidth resources are limited to satisfy all requests from all

peers.

1.2 Problem Statement and Thesis Contributions

We study the problem of transmitting a video stream from multiple senders to a receiver

in a P2P streaming system. This stream is divided into segments, which can contain one

or more video frames. We consider a general P2P streaming system that aggregates any

number of coded frames in each segment. Segments have different sizes because coded

frames in video streams typically vary in sizes. The receiver monitors its senders in terms

of segment availability and uploading bandwidth. Given this information, the problem is to

compute a segment transmission schedule for each scheduling window at the receivers, which

specifies from which senders to request which part of the data. Our goal is to construct

such schedules to maximize the number of segments that arrive on time at the receivers in

order to improve the video quality rendered to the users. We give a formal description of

the problem in Chapter 3.

We solve the problem of segment transmission scheduling in both live and on-demand

P2P streaming systems. In particular, the contributions of this thesis can be summarized
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as follows [18]:

• We propose an Integer Linear Programming (ILP) formulation for the segment trans-

mission scheduling problem so that it can be optimally solved using any existing ILP

solvers. However, directly solving the ILP problem may take prohibitively long time

and is not suitable for real-time P2P streaming systems.

• We propose an efficient approximation algorithm, which constructs transmission sched-

ules with performance guarantees on the number of on-time segments. We show that

the algorithm has an approximation factor of 2.

• We analyze the time complexity of the proposed approximation algorithm, and show

that it runs very fast, in polynomial time.

• We implement the proposed algorithm in a simulator for dynamic P2P systems. We

also implement recent scheduling algorithms used in current P2P systems and pro-

posed in the literature, and we compare our algorithm against them. The simulation

results show that our proposed algorithm consistently outperforms other scheduling

algorithms used in current systems and proposed in the literature.

• We design and implement a prototype P2P streaming system in which we implement

the proposed algorithm and other scheduling algorithms. We deploy the system on 500

nodes of the PlanetLab [19] wide area testbed, and we conduct extensive experiments

with multiple videos that have diverse characteristics. Our experimental results further

confirm that our algorithm outperforms the other algorithms.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides some background on

P2P systems and their applications, especially P2P media streaming applications. It also

summarizes the related work of the considered scheduling problem in the literature. In

Chapter 3, we describe the considered system model and the hardness of the segment

transmission schedules problem. We then formulate and solve the problem in Chapter 4.

Evaluation using simulation of the proposed algorithm is given in Chapter 5, and using

actual implementation in Chapter 6. We conclude this thesis in Chapter 7.



Chapter 2

Background and Related Work

In this chapter, we first give a brief introduction to P2P systems and their applications,

especially P2P media streaming applications. We then investigate the current state of re-

search on the segment transmission scheduling problem in P2P streaming systems proposed

in the literature.

2.1 Overview of P2P Systems

P2P systems are distributed systems in which peers interact with each other without the

need of centralized coordination systems. They are popularized mainly by P2P file sharing

systems, such as Bittorrent [20], but now have been used in a wide range of applications, in-

cluding distributed computing [21,22], networked storage systems [23,24], and media stream-

ing [25, 26]. The design and organization of P2P networks also inspired structures outside

the computer science area, including social networks like Facebook [27] and Consumer-to-

Consumer e-commerce like eBay [28]. The power of a P2P system comes from its utilization

of resources on large amount of end users, as opposed to traditional client-server network

structures. In a client-server network model, all clients make requests to use resources (such

as bandwidth and CPU time) on a server, which makes the server overwhelmed easily in

large scale applications. While in a P2P system, clients make requests to use resources on

each other, so that the load can be evenly distributed on all participants in the network,

making the system efficient and scalable.

4



CHAPTER 2. BACKGROUND AND RELATED WORK 5

2.2 Overlay Networks

P2P systems are usually constructed as overlays on top of existing physical networks in

the application layer of the Internet OSI model. Currently, there are two general overlay

construction methods for P2P networks: tree-based and swarm-based (also known as mesh-

based, unstructured). The traditional method is to build a multicast tree on the overlay

network. Christian in [29] introduces some algorithms for building multicast trees in IP

multicast, such as spanning tree, reverse-path forwarding and center-based tree algorithms.

Such algorithms can also be used in overlays. More complicated tree-based construction

algorithms include [30–32]. The main advantage of a tree-based structure is, once a tree is

built, data transmission can be simple and efficient: every node in the tree receives data

from its parent and forward them to its children. But a tree topology has the following

intrinsic defects:

• Load balancing: links near the source node have much higher traffic than those near

leaf nodes.

• Reliability: a single link failure near the source node can lead to disconnection for

many nodes.

• Scalability: whenever a node other than a leaf node leaves the multicast group, the

tree must be reconstructed.

• Complexity: to construct an optimal multicast tree, we need to solve a Min-cost Steiner

Tree problem, which is known to be NP-Hard.

All these defects of the tree-based structure have driven researchers to find more efficient

ways to construct the overlay. In recent years, a swarm-based construction method has

become more popular due to its simplicity and robustness [33–35]. In a swarm-based overlay,

a peer joins the network by sending a lookup message to a tracker, which keeps track of all

peers in the network. Then the tracker returns a list of potential neighbors according to

some peer matching algorithms. The peer then can connect to other peers in the returned

neighboring peer-list and exchange data with them. In this way, a highly resilient and

decentralized overlay network can be constructed. The swarm-based overlay structure avoids

many problems in the tree-based structure, with the cost of introducing some overheads

on neighborhood management and data exchange for individual peers. Fortunately, these
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overheads are small in practice. The swarm-based method is now being adopted by many

P2P systems, including Bittorrent [36], PPLive [25] and PPStream [26].

2.3 P2P Applications

Since the advent of the first popular P2P file sharing network, Napster [37], people have

developed many P2P applications beyond the classical file sharing scheme. Here we list

some popular P2P applications found in real systems.

2.3.1 P2P Computing

P2P technology can be used in distributed computing. In such a scenario, peers first sign up

(usually voluntarily) for a computing project. A large and computationally hard problem is

then decomposed into many small and independent problems by a centralized server, which

are then distributed to all the peers in the network. Each peer carries out the computing

tasks assigned to it, and once done, it sends the results back to the centralized server

for further integration. There are two main benefits for this computing model. First, it

utilizes the resources (CPU time, memory, etc.) on individual peers that would otherwise

be wasted. Second, it is more robust than centralized computing, since individual peer

failures can be recovered quickly, without affecting results computed on other peers. Such

projects include SETI@Home [21], which is targeted to search for outer space intelligence

and Einstein@home [22], which is used in searching for spinning neutron stars. Other similar

projects can be found at BONIC [38].

2.3.2 P2P Storage

Traditional file storage systems use centralized access control to dedicated servers. P2P

technology can be used to build distributed file systems that are more robust and have much

larger storage space than traditional file storage systems. In such a system, data are stored

on individual nodes of the P2P overlay network, and accessed by a global lookup scheme,

such as Distributed Hash Table (DHT). A major difference between P2P file sharing systems

and P2P storage systems is that P2P file sharing systems do not guarantee the availability

and durability of the resources. While in a P2P storage system, resources are persistently

stored in the network and can be accessed at any time. Examples of such applications are
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Freenet [39], Cooperative File System (CFS) [23] and PATS [24]. Issues on designing a

P2P storage system include redundancy management, access control, load balancing and

fast resource location. Hasan et al. [40] give a survey on current P2P storage systems and

analyze their advantages and disadvantages.

2.3.3 P2P Media Streaming

Media streaming is a special case of file sharing, in which peers consume data in real time

when they download the media data from each other. The intrinsic real-time characteristic

enforces more constrains on P2P media streaming systems than ordinary P2P file sharing

systems. Since we focus on scheduling problems in P2P media streaming systems in this

thesis, we discuss it in more details in the next section.

2.4 P2P Media Streaming Systems

The use of P2P technology to stream media contents, especially video programs, has gained

much attention both in industry and in academia in recent years. Many P2P streaming

systems have been deployed. In this section, we discuss some design alternatives and the

main issues on designing an efficient P2P streaming system.

2.4.1 Live and On-demand Streaming

Current P2P media streaming systems can be categorized into two general types: live

streaming and on-demand streaming, according to different types of services. In a P2P

live streaming system, a program is usually created and streamed to clients synchronously.

All peers (clients) watch the same part of the program at the same time. They can not

pause and watch the same content in a later time, and they can not roll back to watch some

previously missed parts. Such systems include CoolStreaming [9] and PULSE [41]. While

in a P2P on-demand streaming system, media contents are usually pre-stored on media

servers. Peers can join a streaming session at any time and start watching from any part of

the program. They can also do operations like pause and roll back. Such systems include

PPLive [25], PPStream [26], and UUsee [42]. The main difference between live streaming

and on-demand streaming is that peers in live streaming systems are more synchronized

than those in on-demand streaming systems, which can lead to different performance of the
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segment transmission scheduling algorithms as we will discuss later.

2.4.2 Tree-based and Swarm-bashed Structures

As we have stated before, P2P networks can be constructed in two different ways: tree-

based and swarm-based. P2P streaming systems can be built on both structures. In view of

the problems of tree-based structures as we have mentioned above, most of the recent P2P

streaming systems, including PPLive and CoolStreaming, adopt swarm-based structure. We

will use swarm-based structure to design and evaluate our proposed segment transmission

scheduling algorithm in this thesis.

2.4.3 Push-based and Pull-based Protocols

Besides the different structures of P2P overlay network construction, there are two different

ways of disseminating data in a P2P network: push-based protocol and pull-based protocol.

In a push-based protocol, peers do not explicitly request data from others. After joining

a streaming session, they just receive data from their upstream peers and forward them

to their downstream peers in the network topology. Push-based protocol is usually used

in conjunction with tree-based overlay structure, in which the peer in the root of the tree

acts as a seeding peer, and pushes data down to the leaves of the tree, while other peers

receive data from their parents and forward a copy of each received data to their children.

This simple structure is efficient under the condition that the network topology does not

change very often. While in practice P2P networks are quite dynamic. Peers join and leave

a network session independently and frequently. This causes many P2P systems to resort

to another data disseminating protocol: pull-based protocol. In a pull-based protocol, each

peer explicitly requests data from its neighbors, and sends data to other neighbors that

requesting data from it. In this way, peers pull data from others according to their own

needs.

Compared to push-based protocol, the pull-based protocol incurs more overheads in the

data requesting procedure, but it adapts much better to network dynamics. Whenever a

neighbor fails or leaves, a peer can just redirect the requests to some other neighbors without

affecting other peers in the network. Most of the swarm-based P2P networks use a pull-based

protocol to exchange data among peers. Zhang et al. [14] provide a detailed analysis on the

performance of the pull-based protocol in swarm-based P2P streaming systems. They also
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propose a hybrid push-pull protocol to improve the performance of the original pull-based

protocol. Some other works also try to combine these two protocols to achieve the efficiency

of push-based protocol and the flexibility of pull-based protocol, including [43] and [44]. In

this thesis, we use pull-based protocol for exchanging data in our system.

2.4.4 Peer Matching

In a swarm-based P2P media streaming system with pull-based data dissemination protocol,

each peer needs to find a list of neighbors that it can request data from. This process is

called peer matching. Efficient peer matching can increase the efficiency of the system, and

reduce the costs on Internet Service Providers (ISPs). Generally, an efficient peer matching

algorithm tries to match peers that are close to each other to avoid long distance data

transmission. A straightforward peer matching algorithm is random peer matching, in which

each peer randomly selects a subset of peers in the network as its neighbors, and requests

data from them. The random peer matching algorithm is used in some P2P systems for

simplicity, but may not work well in practice. More intelligent peer matching algorithms are

proposed in the literature in recent years. Bindal et al. [45] propose to select most neighbors

within the same Anonymous System (AS) to reduce inter-ISP traffic. Choffnes et al. [46]

suggest to use Content Delivery Networks (CDNs) in helping to find peers close to each

others, and in [47], Hsu and Hefeeda propose two ISP-friendly peer matching algorithms

that leverage publicly available information to infer the network topology for optimizing

matching. Since in this thesis, we focus on the segment scheduling part rather than the peer

matching part of the system, we use random peer matching in our system for simplicity.

2.4.5 Segment Transmission Scheduling

After a peer has found all the senders (neighbors), it has to decide from which senders to

request which part of the data, in order to receive as many on-time data as possible in a P2P

media streaming system. This is the scheduling problem that we have already introduced

in the introduction chapter and we will analyze it in details in the following chapters.
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2.5 Related Work

A measurement study on PPLive streaming system [25] reports that users suffer from long

start-up delays and playout lags, and suggests that better segment scheduling algorithms

are required [48]. Optimally computing segment schedules to maximize the perceived video

quality, however, is computationally complex [9]. Therefore, many P2P streaming systems,

such as [9, 10, 15, 49], resort to simple heuristics for segment scheduling. Pai et al. [10]

propose to randomly schedule segment transmission, where each receiver randomly decides

what segments to request from their neighbours. Zhang et al. [9] assume that segments with

fewer potential senders are more likely to miss their deadlines, and propose to schedule the

segments with fewer potential senders first. Agarwal and Rejaie [15] describe a weighted

round-robin algorithm based on senders’ bandwidths. In their algorithm, the number of

segments assigned to each sender is in proportion to its bandwidth. In other words, senders

with higher bandwidths will be assigned more segments than those with lower bandwidths.

Kowalski and Hefeeda [49] propose to assign each segment to the sender that will deliver it

the earliest. All these heuristic algorithms do not provide any performance guarantees on

perceived video quality, and may not perform well in on-demand streaming systems [11].

One way to cope with the hardness of the segment scheduling problem is to simplify the

objective function from the perceived video quality to the sum of ad-hoc utility functions

[16, 17]. Zhang et al. [16] define a utility for each segment as a function of the rarity,

which is the number of potential senders of this segment and the urgency, which is the time

difference between the current time and the deadline of that segment. They then transform

the segment scheduling problem into a min-cost flow problem. We note that although the

min-cost flow problem can be optimally solved, the resulting schedules do not maximize the

perceived video quality, which is the objective of the original problem.

Chakareski and Frossard [17] formulate an optimization problem to maximize the per-

ceived video quality, and they solve it using an iterative descent algorithm. This algorithm,

however, is computationally expensive and cannot be used in real-time systems. Therefore,

they simplify the original formulation by proposing an ad-hoc utility function for each seg-

ment, which defines the multiplication of each segment’s R-D (rate-distortion) efficiency,

rarity, and urgency as its utility. They then greedily schedule the segments, i.e., they sched-

ule the segments with higher utility values first. This greedy algorithm does not produce

optimal schedules, nor does it provide any guaranteed performance. The works in [16,17] are
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different from our work in the sense that we solve the original segment scheduling problem,

and we propose efficient approximation algorithm with guaranteed performance.

Several other works are related to the segment scheduling problem, but they do not

directly solve it. Cai et al. [50] propose a P2P system that measures the time required to

download the entire video from a number of senders and uses this information to choose

senders from a large group of potential senders. Annapureddy et al. [11] propose using

network coding to bypass the scheduling problem among small blocks belonging to the same

relatively large segment by allowing all nodes to produce encoded data blocks. However,

employing network coding may impose higher processing overhead on peers, which may

require special hardware to speed up the decoding process [51], and is not easy to deploy.

Several segment scheduling algorithms, such as [52], have been proposed for tree-based

systems. They are, however, not applicable to swarm-based systems, in which peers have

no knowledge on the global network topology.



Chapter 3

Segment Transmission Scheduling

Problem

In this chapter, we first provide an overview of the P2P system model employed in this thesis.

We then describe the segment transmission scheduling problem and show its hardness. For

a quick reference, we list all symbols used in the thesis in Table 3.1.

3.1 System Model

We consider swarm-based P2P streaming systems, which are widely deployed currently over

the Internet. Examples of such systems include CoolStreaming [9], PPLive [25], UUSee [42],

SopCast [53], and TVAnts [54]. In these systems, peers form swarms for exchanging video

data. Each swarm contains a subset of the peers, and a peer may participate in multiple

swarms. Data availability on peers is propagated through exchanging control messages, such

as buffer maps which indicate which video segments peers currently have in their buffers.

Using these buffer maps, peers pull video segments from each other. More specifically, a

receiving peer simultaneously requests segments from different sending peers. This is done

by forming a segment transmission schedule by which the receiver specifies for each sender

which segments to transmit and when to transmit. In video streaming systems, the arrival

times of segments are critical, as segments arriving after their decoding deadlines cannot be

rendered to users and are essentially useless.

The problem addressed in this thesis is to compute transmission schedules for receivers

12
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Table 3.1: List of symbols used in the thesis.
Symbol Description

δ scheduling window size
F frame rate
G number of frames in each segment
M number of senders
N number of segments
T number of time slots
mi sender i
ni segment i
ti transmission time for segment i
ui whether segment i arrives on-time
bm bandwidth of sender m
Qm schedule for sender m
sn size of segment n
wn weight or value of segment n
dn deadline of segment n

an,m availability of segment n on sender m
xn,m,t variable for m to transmit n at time t

α perceived video quality
β continuity index
γ load balancing factor
z total weight of ontime segments

xn,m assignment variable of segment n for sender m

Current data requesting window

Current scheduling window

Time

Figure 3.1: Two sliding windows in the system.
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in order to optimize the number of on-time segments. Transmission schedules are computed

for recurring sliding time windows, whose lengths are in the order of seconds. There are

two sliding windows in the system: (i) the current data requesting window in which the

receiver is requesting and receiving data from its senders, and (ii) the current scheduling

window in which the scheduling algorithm is running to compute a transmission schedule,

as illustrated in Fig. 3.1. The scheduling algorithm is running in a separate thread and is

invoked several sliding windows ahead of the current data requesting window, so that when

the data requesting and receiving thread receives all the data in the current sliding window

and goes on to request data in the next sliding window, it does not need to wait for the

scheduling results. But on the other hand, the current scheduling window should not be

too far from the current data requesting window to avoid the situation that, at the time

the scheduling algorithm is invoked, most of the segments are not available on its senders

yet. As long as the scheduling algorithm runs faster than the data transmission speed, the

client can continuously request data from its senders.

Our problem formulation and solution employ a realistic model for P2P streaming sys-

tems. Thus our proposed algorithm can readily be implemented in current swarm-based

P2P streaming systems to improve their performance. Particularly, we assume that P2P

streaming systems are highly dynamic and peers join and leave the systems frequently.

Thus, we design our algorithm to be light-weight and can be invoked whenever such events

occur in order to quickly recompute a new transmission schedule. In addition, the dynamic

propagation and replication of video segments in the P2P streaming system can easily be

handled by our algorithms. This is because segment propagation will trigger peers to update

their buffer maps to reflect the availability of the newly acquired segments. When these

buffer maps are exchanged among peers in control messages, our scheduling algorithms will

account for the new segments in computing new transmission schedules.

It is important to emphasize that our work in this thesis focuses on a single, but critical,

component of the P2P streaming system, which is the transmission scheduler. We present

rigorous design of this component with mathematical formulation, complexity analysis, an-

alytical guarantee on the performance of the computed schedules, and extensive simulations

and experiments. We are not proposing a new, complete, P2P streaming system. However,

we do not impose any assumptions on the other components of the system, e.g., the overlay

management, peer matching, control messages exchange , churn handling, and incentive

schemes. We assume that these components will function according to whatever protocols
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dictated by the specific P2P streaming system and eventually a set of potential senders will

be presented to a receiver for requesting the video data. Given the data availability on each

sender, our work is to make the best out of this set of senders for the receiver.

3.2 Problem Statement

We study the problem of transmitting a video stream from M senders to a receiver in a

P2P streaming system. This stream consists of a series of coded video frames at frame

rate F fps (frames per second), where each frame has a decoding deadline. Coded video

frames that arrive at the receiver after their decoding deadlines are useless. To efficiently

transmit video frames over the network, multiple consecutive coded frames are aggregated

into a segment, which is the smallest transmission unit. Segment sizes are flexible and can

be chosen based on the structure of the video stream. For example, one P2P streaming

system may choose to construct a segment for each video frame for fine-grained scheduling,

while another system may prefer to create a segment for every GOP (group-of-picture) for

lower overhead. We consider a very general P2P streaming system that aggregates G coded

frames in each segment, where video frames can have different sizes. We let N be the

number of segments in the whole video stream. Since each segment consists of G coded

frames, it has a playout time of G/F . Furthermore, segments are in different sizes because

coded frames in video streams typically vary in sizes. We let sn Kb be the size of segment

n, where 1 ≤ n ≤ N . Segment n has a decoding deadline dn = (n− 1)G/F sec, which is the

decoding deadline of the first video frame in that segment.

To generate feasible schedules, the receiver monitors its senders in terms of segment

availability and uploading bandwidth. We let an,m be the availability of segment n (1 ≤

n ≤ N) on sender m (1 ≤ m ≤ M). The receiver sets an,m = 1 if sender m has a copy

of segment n, and an,m = 0 otherwise. We let bm Kbps be the uploading bandwidth of

sender m. With the segment availability and senders’ bandwidth information, the receiver

composes a segment schedule for a sliding window of δ sec, where δ is a system parameter,

then it can request data according to the schedule, and senders transmit segments following

the requests.

Our goal is to maximize the number of on-time segments. We exclude late segments as

they cannot be used toward video quality improvement. With these notations, we formally

describe the scheduling problem in the following.
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Problem 1 (Segment Transmission Scheduling). We consider the segment transmission

scheduling problem of video sequences in P2P streaming systems. The problem is to construct

an optimal transmission schedule Qm = {<m, n, tn>, 1 ≤ n ≤ Nm} for each sender m in

a scheduling window of δ sec, where m indicates the sender, n represents the segment, tn is

the starting transmission time of segment n on this sender, and Nm is the total number of

segments scheduled to sender m. A segment n is said to be on-time if and only if tn+sn/bm ≤

dn. The objective is to maximize the number of segments that arrive on time at the receiver.

3.3 Hardness

In the next theorem, we prove that solving the segment scheduling problem is computation-

ally expensive.

Theorem 1 (Hardness). The segment transmission scheduling problem defined in Problem 1

is NP-Complete.

Proof. We reduce the NP-Complete parallel machine scheduling problem [55, Sec. 5.3] to

the segment scheduling problem. The machine scheduling problem schedules J jobs on K

identical machines, and each job j (1 ≤ j ≤ J) takes time pj to complete. Each job can

be scheduled on one machine and can not be preempted, and each machine can process

one job at a time. The goal is to minimize the makespan Cmax, which is the maximal

completion time of all jobs, and the problem is to determine whether there exists a schedule

that Cmax ≤ c0, for some given constant c0.

For each machine scheduling problem, we construct a segment transmission scheduling

problem as follows. Let the number of senders M = K, and the number of segments N = J .

For each segment n (1 ≤ n ≤ N), let sn = pj , and dn = c0. We let bm = 1 for all

1 ≤ m ≤ M , and un = 1 if segment n arrives on-time at the receiver from any of its senders,

and un = 0 otherwise. Finally, the problem is to determine whether there exists a schedule

that achieves
∑N

n=1
un ≥ N . Since the segment scheduling problem is constructed and can

be verified in polynomial time, and Cmax ≤ c0 ⇐⇒
∑N

n=1
un ≥ N , it is NP-Complete.



Chapter 4

Proposed Approximation

Algorithm

In this chapter, we first formally formulate the segment transmission scheduling problem,

then introduce our approximation algorithm. A proof of its performance and complexity is

then presented. We also design a load balancing mechanism for our scheduling algorithm

at the end of this chapter.

4.1 Problem Formulation and Optimal Solution

In [56], Hsu and Hefeeda propose a formulation for the segment transmission scheduling

problem. In their formulation, video segments are given different weights, which represent

the relative importance of the segments for the rendered video quality. We call it the

weighted version of the problem. They also present an approximation algorithm for the

weighted segment transmission scheduling problem. The proposed algorithm in this thesis is

totally different from the algorithm in [56]. First of all, our algorithm has an approximation

factor of 2 while the algorithm in [56] has an approximation factor of 3. In addition, our

algorithm is more computationally efficient, since it does not require solving any linear

programming optimization problems. Furthermore, our algorithm optimizes the number of

on-time segments and it does not need to compute the visual distortion in video frames

contained in each segment, which is an expensive operation.

The problem we solve in this thesis can be considered as a special case of the problem

17
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proposed in [56], in which every segment is assigned a unit weight. We call it the unweighted

segment transmission scheduling problem. We start by presenting the formulation for the

weighted segment transmission scheduling problem. Then we present the formulation for

the unweighted segment transmission scheduling problem considered in this thesis. In the

evaluation chapters, we compare the performance of the proposed algorithm with the one

in [56], and we show that both algorithms produce close results to the optimum and both

outperform other algorithms proposed in the literature.

The weighted segment transmission scheduling problem can be formulated as a time-

indexed ILP problem. Time-indexed formulations discretize the time axis into T time slots,

where T is large so that the time slots are fine enough to represent any feasible schedule

without reducing the value of the objective function. Let xn,m,t be a 0-1 variable for each

n = 1, 2, . . . , N , m = 1, 2, . . . , M and t = 1, 2, . . . , T , where xn,m,t = 1 if segment n is

scheduled to be transmitted by sender m at time t, and xn,m,t = 0 otherwise. Let wn be the

weight for segment n. Let an,m = 1 if sender m holds a copy of segment n, and an,m = 0

otherwise. Notice that, according to the definition, while the transmission of a segment

often spans over several time slots, only the first time slot has an x value of 1. The weighted

problem in [56] then can be formulated as:

z = max
N

∑

n=1

M
∑

m=1

min{dn−
sn

bm
, T}

∑

t=1

wnxn,m,t (4.1a)

s.t. xn,m,t ≤ an,m (4.1b)

N
∑

n=1

t
∑

j=t−
si

bm
+1

xn,m,j ≤ 1 (4.1c)

M
∑

m=1

T
∑

t=1

xn,m,t ≤ 1 (4.1d)

xn,m,t ∈ {0, 1}, an,m ∈ {0, 1},

∀ n = 1, 2, . . . , N, m = 1, 2, . . . , M, t = 1, 2, . . . , T. (4.1e)

In this formulation, the objective function in Eq. (4.1a) is to maximize the sum of weights

of all on-time segments, where the three summations iterate through all segments, senders,

and time slots, respectively. Note that the last summation stops at time dn − sn/bm if
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dn − sn/bm < T , or T otherwise, because scheduling segment n after that time result in

a late segment, which cannot improve video quality, and in each scheduling period we are

only interested in scheduling segments within the scheduling window. The constraint in

Eq. (4.1b) makes sure that we always schedule a segment to a sender who holds a copy of

it, as it prevents the combination of xn,m,t = 1 and an,m = 0 for all t = 1, 2, . . . , T . In

Eq. (4.1c), observe that any segment n scheduled on sender m between time t − sn/bm + 1

and t would occupy the time slot t as transmitting segment n takes time sn/bm. Therefore,

by considering all these segments, the constraint in Eq. (4.1c) ensures that at most one

segment is scheduled on each sender at any time t. Last, the constraint in Eq. (4.1d)

prevents segments from being scheduled on more than one sender.

The unweighted problem can be formulated in various ways, e.g., we can still use the

time-indexed formulation as in Eq. (4.1). Just let wn = 1 for all segments. However,

doing so may prevent us from utilizing some unique properties of the unweighted scheduling

problem. More specifically, we notice that the unweighted segment scheduling problem has

the following property: Assuming Nm segments can be optimally scheduled to sender m

(i.e., all of them arrive on time), scheduling these Nm segments in ascending order of their

deadlines is one of the optimal schedules. We formally describe this property in the next

theorem.

Theorem 2. For Nm segments that can be scheduled on sender m, the schedule Q∗
m =

{<m, n, tn>, 1 ≤ n ≤ Nm and tn =
∑n−1

i=1
si/bm} is an optimal schedule, where segments

are sorted in ascending order on their deadlines.

Proof. Let Q̄m be any optimal solution that maximizes the number of on-time arrival seg-

ments from sender m. We first eliminate any idle time in Q̄m by shifting all segments to

their left whenever possible. This preprocessing step does not affect the optimality of Q̄m

because all on-time segments complete no later than before. Next, if segments in Q̄m are

sorted in ascending order on deadlines, letting Q∗
m = Q̄m yields the theorem. Otherwise,

we recursively apply the transformation described below.

Let 1 ≤ n1, n2 ≤ Nm be two arbitrary segments in Q̄m, where n1 is scheduled before

n2, but dn1
> dn2

. We update Q̄m using the following steps. First, we remove the segment

n1 from Q̄m, which creates an idle time period. Second, we shift segments between n1

(exclusive) and n2 (inclusive) to their left for sn1
/bm sec. Third, we schedule n1 immediately

after the new location of n2. Note that the new Q̄m is still optimal, because the shifted



CHAPTER 4. PROPOSED APPROXIMATION ALGORITHM 20

segments, except n1, complete earlier, and the new n1 still completes on time as dn1
> dn2

.

We repeat these three steps until the segments in Q̄m are sorted, and we let Q∗
m = Q̄m.

This theorem shows that the segment assignment determines the optimality of segment

schedules. This enables us to transform the segment transmission scheduling problem into

an assignment problem, which is less complicated. Before presenting the formulation, we

mention that similar theorems have been used to formulate machine scheduling problems,

e.g., in [57, Sec. 3.3] and [58].

Theorem 2 states that sorting segments in ascending order on deadlines does not affect

the existence of optimal schedules. Therefore, in the rest of this section, we assume d1 ≤

d2 ≤ · · · ≤ dN . Otherwise, we sort and relabel the segments. We let xn,m (1 ≤ n ≤

N and 1 ≤ m ≤ M) be the assignment variable, where xn,m = 1 if segment n is assigned to

sender m, and xn,m = 0 otherwise. We then formulate the problem as follows:

z = max
N

∑

n=1

M
∑

m=1

xn,m (4.2a)

s.t. xn,m ≤ an,m (4.2b)
n

∑

i=1

(si/bm)xi,m ≤ dn (4.2c)

M
∑

m=1

xn,m ≤ 1 (4.2d)

xn,m ∈ {0, 1}, an,m ∈ {0, 1},

∀ n = 1, 2, . . . , N and m = 1, 2, . . . , M. (4.2e)

In this formulation, by adding up all the assignment variables in Eq. (4.2a), the objective

function is to maximize the number of on-time arrival segments. The first constraint in

Eq. (4.2b) ensures that we always schedule a segment to a sender that holds a copy of it, as

it prevents the combination of xn,m = 1 and an,m = 0. The second constraint in Eq. (4.2c)

computes the accumulated transmission time of sender m up to and including segment n,

and checks whether segment n is completed before its deadline. In the third constraint in

Eq. (4.2d), for each segment n, by adding up all its assignment variables on all senders

and ensuring that it is less or equal to 1, it avoids assigning the segment to more than one
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sender. Notice that, compared to time-indexed formulation in Eq. (4.1), this formulation

utilizes the unique property (Theorem 2) of the unweighted scheduling problem, and has

fewer variables and constraints.

4.2 Overview of the Proposed Algorithm

For an optimal segment schedule, we can use any ILP solver to solve the optimization prob-

lem in Eq. (4.2). While this method may solve small scale segment scheduling problems, it

cannot handle large problems in real time. Therefore, we present an efficient approximation

algorithm in the following. The idea of our algorithm can be described as follows. For each

scheduling period, the receiver takes all the segments in the current scheduling window and

all its senders as input to the scheduling algorithm, and invokes it to compute a schedule

for each sender sequentially. That is, the algorithm first tries to assign as many segments

as possible to the first sender, then to the second sender and so on. On each sender, the

algorithm repeatedly schedules the segment with the shortest transmission time first among

all the segments that: (i) have not been scheduled to any senders and (ii) can be transmitted

entirely by the current sender before their deadlines. The algorithm stops and returns the

computed schedules for each sender when all the segments have been scheduled or when

the bandwidths on all senders have been used up. The receiver then can request data from

its senders according to the scheduling results, and the senders send data to the receiver

according to the requests. Since the proposed algorithm sequentially schedules on senders,

we call it Serialized Shortest Transmission-time First (SSTF) algorithm.

Fig. 4.1 presents a high-level pseudocode of the SSTF algorithm. This algorithm puts

all segments in the set of N̄ in line 2, and sorts these segments in ascending order on

segment size in line 3. Sorting segments allows us to efficiently locate the segment with

the shortest transmission time from any sender m. This is because the bandwidth bm

is independent from which segment to send, and thus the transmission time of different

segments on the same sender is proportional to the segment size. The algorithm then

considers each sender sequentially in the for-loop from lines 4 to 11. The foreach-loop

between lines 5 and 11 iterates through N̄ in ascending order on segment size, and the

if-statement in line 7 identifies possible assignment by checking: (i) is segment n available

on sender m, and (ii) can segment n be transmitted by sender m arrive on time? If both

conditions hold, the algorithm schedules segment n on sender m by moving that segment
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SSTF: Serialized Shortest Transmission-time First Algorithm

INPUTS:
(i) Segment sizes and deadlines in current scheduling window
(ii) Sender bandwidths and availability information
OUTPUT:
A schedule for each sender: Q1,Q2, . . . ,QM

1. let Qm = ∅, where m = 1, 2, . . . , M
2. let set N̄ consists of all remaining segments
3. sort segments increasingly in N̄ on segment size
4. for m = 1 to M // sequentially considers sender m
5. let t = 0 // consumed transmission time
6. foreach segment n ∈ N̄ // from small to large
7. if an,m = 1 and t + sn/bm ≤ dn

8. // segment n is available and can be transmitted on time
9. add segment n to Qm

10. remove segment n from N̄
11. let t = t + sn/bm

12. return Q1,Q2, . . . ,QM

Figure 4.1: The proposed approximation algorithm SSTF.



CHAPTER 4. PROPOSED APPROXIMATION ALGORITHM 23

from N̄ to Qm. It also updates t, which represents the amount of time on sender m that

has been consumed. Finally, the algorithm returns the segment transmission schedule in

line 12.

4.3 Approximation Factor and Time Complexity

The proposed SSTF algorithm is an approximation algorithm with an approximation factor

of 2 as will be shown in Theorem 3. We first present the formal definition of approximation

factor in the following:

Definition Let Π be an optimization problem and let π be an instance of Π. Given an

algorithm A for Π, let A(π) denote the value of the solution returned by A on instance π.

Also, let OPT (π) denote the optimal value for instance π.

Then, an approximation algorithm A for a maximization problem Π has an approxima-

tion factor of r if the following condition holds for all instances π of problem Π:

OPT (π)

A(π)
≤ r

Now, we analyze the approximation factor of the SSTF algorithm in the following the-

orem:

Theorem 3 (Approximation Factor). The SSTF algorithm given in Fig. 4.1 has an ap-

proximation factor of 2 for the segment transmission scheduling problem.

Proof. We first consider a specific sender m in the for-loop between lines 4 and 11. We let Sm

be the set of segments for schedule Qm produced by the SSTF algorithm, and Ŝm = N̄\Sm

be the set of segments for any schedule for sender m among the remaining segment list

after the schedule of Qm. In addition, we use |Sm| and
∣

∣

∣
Ŝm

∣

∣

∣
to represent the number of

segments in these two sets. We draw two observations. First, for any segment ŝ ∈ Ŝm,

there exists no segment s ∈ Sm, such that the transmission time interval of ŝ is a proper

subset of that of s. Otherwise, ŝ would be in Sm as the foreach-loop in lines 6–11 schedules

the segment with the smallest segment size, which is equivalent to the shortest transmission

time. Second, for any segment ŝ ∈ Ŝm, there exists at least one segment s ∈ Sm such that

the transmission time intervals of s and ŝ overlap. Otherwise ŝ would also be in Sm because

of the foreach-loop. Combining these two observations, we have
∣

∣

∣
Ŝm

∣

∣

∣
≤ |Sm|.
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Next, let S =
⋃M

m=1
Sm and S∗ =

⋃M
m=1

S∗
m, where Sm and S∗

m are the set of segments

for schedules Qm and Q∗
m of sender m determined by the SSTF and the OPT algorithms,

respectively. We define P = S
⋂

S∗ and R =
⋃M

m=1

(

S∗
m \ S

)

. Therefore, we have S∗ =

P
⋃

R and P ⊆ S. Next, because S∗
m\S is a schedule for sender m, we have |S∗

m \ S| ≤ |Sm|

per the inequality developed in the previous paragraph. Since S1,S2, . . .SM are mutually

disjoint and
(

S∗
1 \ S

)

,
(

S∗
2 \ S

)

, · · ·
(

S∗
M \ S

)

are also mutually disjoint, we have |R| ≤ |S|.

Finally, we have |S∗| = |P
⋃

R| ≤ |P| + |R| ≤ |S| + |S| = 2 |S|.

Next, we show that the SSTF algorithm is efficient.

Theorem 4 (Time Complexity). The SSTF algorithm given in Fig. 4.1 runs in time

O(MN + N log N), where M is the number of senders and N is the number of segments.

Proof. Sorting segments in line 3 takes time O(N log N). In addition, observe that the for-

loop in lines 4–11 repeats for M times, and the foreach-loop in lines 6–11 iterates for up to

N times. Thus, the time complexity of the SSTF algorithm is O(M)O(N) + O(N log N) =

O(MN + N log N).

We notice that M and N are typically small values. This is because M is the number of

potential senders for a given receiver, which is in the order of tens of senders, and N is the

number of segments in each scheduling window, which is also in the order of a few tens of

segments. For example, previous study [59] shows that there is a sweet range of M between

6 and 14, where the delivered quality to the majority of peers is high, and a typical value of

N is 60 as used in CoolStreaming [9]. Thus, our algorithm can easily run in real time and

can be invoked frequently to handle the high dynamics of P2P streaming systems.

4.4 Discussion

Although the SSTF algorithm achieves a small approximation factor, senders may be under

diverse loads due to its serialized nature. More precisely, the SSTF algorithm may lead to

unbalanced schedules, where senders 1, 2, . . . , m − 1 (1 ≤ m ≤ M) are fully loaded while

senders m + 1, m + 2, . . . , M are idle. Such unbalanced schedules are not desirable, because

they discourage heavily-loaded senders from contributing, and underutilize the bandwidth

of lightly-loaded senders. Fortunately, the load balancing issue only arises when all segments
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are scheduled by the SSTF algorithm; otherwise, the bandwidths of all senders are used up,

and the loads are already balanced.

To address the potential load balancing issue, we modify the SSTF algorithm as follows:

We search for a maximum transmission time c of all senders, which is long enough to transmit

all segments on time, yet short enough to prevent idle time on senders. We initialize c = δ.

Then we add another condition t + sn/bm ≤ c to line 7 in Fig. 4.1, which limits the total

transmission time, and thus the load on each sender. We run this modified SSTF algorithm

several times, and search for the optimal transmission time c∗ using binary search. More

specifically, we start from interval [cl = 0, c∗ = δ]. We then let c = (cl + c∗)/2 and run

the SSTF algorithm with the new c value to check whether all segments can be scheduled

on time. We update the interval with [c, c∗] if not all segments are on time, otherwise we

update it with [cl, c]. We stop the search once reaching the maximum number of iterations

I, and we return the segment schedule corresponding to the current c∗. Since the typical

scheduling window is short, the binary search usually stops after very few rounds. We set

a conservative value of I to be 8 in our implementation. Since I is a small constant, this

modification can be applied to the SSTF algorithm, which has a very low time complexity

as shown in Theorem 4.



Chapter 5

Evaluation Using Simulation

In this chapter, we first describe the setup of our simulation and define several perfor-

mance metrics used in the evaluation. We then present the evaluation results of the SSTF

algorithm, and compare them with the results of some existing scheduling algorithms.

5.1 Simulation Setup

We have implemented an event-driven simulator in Java to evaluate the performance of

the proposed segment scheduling algorithm. Five scheduling algorithms are implemented

in this simulator: RF [9], MC [16], SSTF, WSS [56] and OPT [56]. The RF algorithm

implements the rarest first algorithm. It schedules the segment with the fewest potential

senders first, and among multiple senders, the one with highest bandwidth and enough

available time first. RF is a fairly common algorithm used in several widely deployed P2P

systems, such as CoolStreaming [9] and PPlive [25]. MC is a quite sophisticated algorithm

that has recently been proposed in the literature.

The MC [16] algorithm is based on an ILP formulation, which is converted into a min-

cost flow problem and solved by combinatorial algorithms. While we employ the same utility

function defined in the evaluation section of [16], the original algorithm can only schedule

transmission of fixed-size blocks. We, therefore, extend that algorithm to support variable-

size segments by: (i) dividing each segment into blocks, (ii) solving the block transmission

problem using their algorithm, and (iii) for each segment, we try to schedule it on the

sender which has been assigned the most number of blocks. If that sender has used up all

the bandwidth, we then try to schedule it on the sender which has been assigned the second

26
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Table 5.1: List of video parameters used in the thesis.
Video Name SonyDemo Terminator 2

Resolution CIF 352*288 HD 1280*720p

Frame Rate (fps) 30 30

Number of Frames 9012 9010

Group of Pictures (GOP) 16 12

Quantization Parameter (QP) 16 28

Frame Size (bits): min / max / mean 136 / 524416 / 73260 592 / 530664 / 85048

PSNR (dB): min / max / mean 41.9 / 49.1 / 45.0 36.0 / 54.1 / 40.7

Mean Bitrate (Kbps) 2200.8 2554.3

Table 5.2: Peer uploading bandwidth distribution.

Distribution (%) 10.0 14.3 8.6 12.5 2.2 1.4 6.6 28.1 16.3

Total Bandwidth
(Kbps)

256 320 384 448 512 640 768 1024 > 1500

Contributed
Bandwidth
(Kbps)

150 250 300 350 400 500 600 800 1000

most number of blocks and so on.

SSTF is the implementation of our approximation algorithm and WSS is the implemen-

tation of the algorithm proposed in [56] . In the OPT algorithm, we directly solve the

ILP formulation 4.1 offline with an ILP solver CPLEX. In particular, the CPLEX package

provides a set of Java class libraries that allow us to specify and solve our problems using

Java syntax through JNI (Java native interface).

We choose two high quality videos with different characteristics from the Arizona State

University video trace library [60] in the simulation to analyze the performance of our al-

gorithm. Table 5.1 summarizes the main parameters of the videos. We use PSNR (Peak

Signal-to-Noise Ratio) as the perceived video quality metric and as the segment weight (wn)

in our simulation. The simulator puts every GOP (Group-of-Picture) into one segment, so

that segment n has a decoding deadline of G(n−1)/F , where n = 1, 2, . . . , N . Packing each

GOP into a scheduling unit ensures that every received segment can be decoded indepen-

dently at the receiver, since dependency among video frames is restricted within a GOP.

Some previous algorithms, like the original MC algorithm proposed in [16], divide videos
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into fixed size blocks as scheduling units. This can cause segments not to be decodable,

because even if a very small part of a segment is not received on time, the whole segment

cannot be decoded, which results in degraded video quality.

We simulate a dynamic system with a total number of 2,000 peers. We initially pre-

deploy the video sequences on only 1% of the peers chosen randomly, which forms the

initial seeding peers. We run the simulation for 24 hours for each algorithm. Individual

peers dynamically join and leave a swarm at different times during the streaming of a video

sequence. The joining and leaving times are randomly chosen from the whole simulation

time period following a uniform distribution. Upon joining a swarm, each peer is instructed

to stream the video sequence. We also simulate dynamic replication of video segments as

peers can upload segments as soon as they have downloaded those segments from other

peers. We consider a peer matching service that randomly provides each new peer up to 10

senders. Each new peer then connects to these senders, runs the scheduling algorithm, and

requests segments following the scheduling results. We set the scheduling window to be 10

sec in the simulation.

The simulator determines each sender’s uploading bandwidth following the distribution

given in Table 5.2. This bandwidth distribution is proposed in a recent paper [61] based on

various measurement studies on both corporate and residential users. We note that peers

would not contribute all their bandwidth to P2P streaming, because doing so would slow

down other Internet applications such as email and Web. The contributed bandwidth of each

class of peers is also given in this table as recommended in [61]. With the randomly chosen

bandwidth, the simulator fairly distributes available bandwidth among all connections, and

predicts the transmission time for each packet accordingly. Finally, in the OPT and WSS

algorithms, the system parameter T is set to be 100, which means the time slots are 100

msec long in our formulation.

We run the simulator independently for each considered algorithm on a commodity PC,

with a 2.66GHz Quad-Core Intel Xeon CPU and 8GB memory. We define three perfor-

mance metrics: the average perceived video quality α, the continuity index β, and the load

balancing factor γ. The average perceived video quality is computed by assuming that all

late segments result in zero PSNR, and defining α =
∑N

n=1
wnun/N , where wn is the av-

erage perceived video quality of video frames in segment n. In our setup, it is the average

PSNR value of the segment. We define the continuity index as the number of segments

that arrive by their decoding deadlines over the total the number of segments in the video.
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Figure 5.1: Overall comparison of the proposed (SSTF) algorithm and the Rarest First (RF)
algorithm used in several deployed systems and the Min-Cost flow based (MC) algorithm
and the Weighted Segment Scheduling (WSS) algorithm recently proposed in the literature
and the optimal algorithm (OPT) solved directly from the ILP formulation. (Terminator 2
video)

That is, β =
∑N

n=1
un/N . Last, we define the load of sender m as its uploading bandwidth

utilization, which is
(

∑

n∈Qm
sn/δ

)/

bm, where
∑

n∈Qm
sn accounts for the total size of all

segments scheduled on that sender in one scheduling period and δ is the length of scheduling

window. The load balancing factor γ is then computed as the standard deviation of loads

for all scheduling periods on that sender. Similar performance metrics are used in other

works in the literature, such as [9, 62].

5.2 Simulation Results

Overall Comparison. For each simulation, we calculate the average performance for

each peer across all the scheduling periods. We iterate through all peers and compute the

CDF (Cumulative Distribution Function) curves of each performance metric. We repeat the

same computation for each scheduling algorithm. The results are summarized in Fig. 5.1.

In the first simulation using video Terminator 2, we plot the video quality in Fig. 5.1(a).

This figure shows that the WSS and SSTF algorithms substantially outperform the other

two heuristic algorithms RF and MC, and they stay very close to the OPT. First, for the

lowest 5% of the peers in terms of perceived video quality, the WSS and SSTF algorithms
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Figure 5.2: Load balance and running time of the WSS, SSTF, RF, MC and OPT algorithms.
Note: the running time curves for the SSTF and RF algorithms are not visible in the figure
because they are very close to 0. (Terminator 2 video)
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Figure 5.3: Overall comparison of the proposed (SSTF) algorithm and the Rarest First (RF)
algorithm used in several deployed systems and the Min-Cost flow based (MC) algorithm
and the Weighted Segment Scheduling (WSS) algorithm recently proposed in the literature
and the optimal algorithm (OPT) solved directly from the ILP formulation. (SonyDemo
video)
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Figure 5.4: Load balance and running time of the WSS, SSTF, RF, MC and OPT algorithms.
Note: the running time curves for the SSTF and RF algorithms are not visible in the figure
because they are very close to 0. (SonyDemo video)

achieves an average perceived video quality of at least 27 dB and 28 dB, respectively, where

the optimal solution achieves 29 dB, while the MC and RF algorithm can only achieve 16 dB

and 17 dB at that level. Second, both the WSS and SSTF algorithms achieve more uniform

and higher video quality for all peers compared to the other two heuristic algorithms. This

is shown by the concentration of the CDF curves between 25 dB and 35 dB by the two

algorithms, while the CDF curves of the other two heuristic algorithms are spread over

larger ranges, from 15 dB to up to 30 dB.

This simulation results show that WSS performs a little better than SSTF, but notice

that the computational complexity of the WSS algorithm is much larger than that of the

SSTF algorithm. WSS works very well on fast machines with enough computing power, but

may not perform well on slow machines with limited computational resources. We will see

this point in the next chapter.

We then report the continuity index in Fig. 5.1(b). This figure illustrates that the

WSS and SSTF algorithm results in much higher continuity index than the RF and MC

algorithms. For example, more than 98% of the peers observe a continuity index of at

least 60% using the SSTF and WSS algorithm, while less than 40% of the peers observe

that continuity index for the RF and MC algorithms. This means employing the WSS and

SSTF algorithms significantly reduces the playout glitches at receivers. We also notice that

the results of the unweighted video quality metric (continuity index) is very similar to the
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results of the weighted video quality metric. This indicates that our previous assumption

that all segments have same weight is reasonable in practice. This is because we stream

single layered videos in our model and the weights of segments are close to each other in

single layered videos. Fig. 5.1 clearly shows that the proposed SSTF algorithms results in

much higher and smoother video streaming quality, compared to the MC algorithm and the

widely deployed RF algorithm, and performs very close to the WSS algorithm, but much

faster.

We next plot the load balancing factor in Fig. 5.2(a). Excessive load balancing factor

may slow down some senders, which could discourage users from contributing to the P2P

network. This figure illustrates that the WSS algorithm achieves at most 29% deviation,

and thus distributes the transmission load fairly among senders; The SSTF algorithm occurs

a little bit higher load balancing factor, but still within 35% deviation, and at the same time

they produce better video quality and higher continuity index as shown in Figs. 5.1(a) and

5.1(b). While the other two algorithms result in similar diversity in the load imposed on

peers but worse video quality as shown in the figures.

Last, we plot the average running time across all the scheduling periods on each sender in

Fig. 5.2(b). We can see that the SSTF and RF algorithms run much faster than the others.

Notice that the running time curves for the SSTF and RF algorithms are not visible in the

figure because they are very close to 0. On the other hand, except for the OPT algorithm,

all the other algorithms can run in the scale of milliseconds, which is small compared to

the scheduling window. For the MC algorithm, although the min-cost flow problem can

be solved in polynomial time, converting the ILP problems to min-cost flow problems as

proposed in [16] can result in large number of nodes in the model, thus it runs much slower

than the SSTF and RF algorithms. Notice that for the OPT algorithm, we set a bound on

the maximum number of iterations for the ILP solver to prevent it from taking too long to

solving the ILP problem, and we omitted such cases in the figure. In summary, the figure

shows that our proposed algorithm can easily run in real time. In contrast, computing a

schedule using the OPT algorithm may take a long time, especially for those slow machines.

Figs. 5.3 and Figs. 5.4 show the results for the second simulation using video SonyDemo.

We can observe that using videos with different characteristics, the overall results are not

changed much.

Segment level Comparison. Next we iterate through all the video frames, and

compute the average PSNR in each segment for every receiving peer. We then compute
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the average video quality across all peers. We repeat the computation for all scheduling

algorithms. To clearly show the results of the whole video sequence, we aggregate every

10 segments and compute their average PSNR. Results are shown in Fig. 5.5(a) for the

first simulation (with video Terminator 2). The figure shows that the WSS and SSTF

algorithms perform much better than the other two heuristic algorithms throughout the

whole video period. We notice that there are a number of short-period drops in the whole

sequence. These are caused by the missed or late segments. The figure shows that the

number of missed segments (quality drops) is much smaller in SSTF and WSS compared to

RF and WC. To clarify it further, we zoom in several regions of the Fig. 5.5(a) to individual

segment level, and extract three intervals from the whole sequence: The first 50 segments,

50 segments from the middle, and 50 segments from the last part of the video, and plot

them in Fig. 5.5(b), Fig. 5.5(c) and Fig. 5.5(d), respectively. These figures clearly show

that the SSTF and WSS algorithms result in higher perceived video quality. The RF and

MC algorithms lead to too many quality drops, which degrade user experience. In summary,

Fig. 5.5 confirms that employing the WSS and SSTF algorithms yield higher perceived video

quality and fewer playout glitches, compared to the RF and MC algorithms.
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Figure 5.5: Segment level comparison of the proposed (SSTF) algorithm and the Rarest
First (RF) algorithm used in several deployed systems and the Min-Cost flow based (MC)
algorithm and the Weighted Segment Scheduling (WSS) algorithm proposed in the literature
and the optimal algorithm (OPT) solved directly from the ILP formulation. (Terminator 2
video)



Chapter 6

Evaluation Using Prototype

Implementation

In order to evaluate the proposed algorithm in a real system, we have developed a prototype

P2P streaming system and deployed it on PlanetLab [19]. We have also implemented the

WSS, RF and MC algorithms in the prototype. In this chapter, we first describe our

experimental setup and then present our results.

6.1 Experimental Setup

Fig. 6.1 shows the high level diagram of our prototype system implementation. The system

consists of one tracker and a set of peers interested in streaming a video file (only two peers

are shown in the figure). The tracker is used to coordinate all peers. It keeps a list of

all currently active peers in the peer manager module and does peer matching in the peer

matching module when a peer asks for a list of neighbours. There are several peer matching

algorithms proposed in the literature, such as [47] and [46]. Since in this thesis we mainly

focus on the scheduling part of the system, we use a random peer matching algorithm just

for its simplicity. That is, the tracker randomly selects a list of peers in the peer list and

returns them to the requesting peer.

On the peer side, each peer contains three main modules: the peer manager module that

establishes and maintains connections with other peers; the buffer map manager module that

keeps track of the availability of segments on this peer; and the scheduler module that does

35
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Figure 6.1: A high level diagram for the prototype P2P streaming system implementation.



CHAPTER 6. EVALUATION USING PROTOTYPE IMPLEMENTATION 37

segment transmission scheduling based on its neighbourhood information and buffer map

availability information.

The system works as follows:

1. The tracker starts by listening on a port that is known to all the peers.

2. All peers start by first connecting to the tracker in time randomly distributed across

the whole experiment period. The first small part of the peers connected to the tracker

will be set to the seeding peers, which have the whole video sequence. The rest of

peers get a list of neighbours once they have connected to the tracker according to the

peer matching algorithm, and start to exchange data with their neighbours.

3. On each peer, for each scheduling period, the scheduler computes a segment trans-

mission schedule based on the senders and segments information and then the peer

requests data from its senders accordingly. The received data is put into the buffer

for playout and the buffer map is then updated according to the received data for the

next scheduling period. This process continues until the end of the streaming session.

4. For buffer map exchange, we use a periodic broadcasting scheme: each peer periodi-

cally checks its own buffer map (in our setup, every 5 sec). If the buffer map is updated

since last time checked, the peer broadcasts the updates to all its receiving peers. In

this way, the buffer map availability information is exchanged between the peers.

5. The experiment stops when all peers have reached the end of the streaming session or

when the experiment period expires.

The experiments involved 500 PlanetLab nodes distributed across the world. We stream

the SonyDemo video that we used in the simulation. We initially pre-deploy the video on

5% of the nodes, and let other nodes join and leave the P2P network at time randomly

distributed during the whole experiment period. We set the number of senders to 10 and

use a random peer matching algorithm to find senders for each receiver. We use a scheduling

window of 5 sec, and an initial delay of 2 sec for all algorithms. These are typical system

parameters as suggested in previous works [9,16,59]. The current sending rate of a sender is

estimated from its previous sending rates in a moving window manner, which is a commonly

used technique for bandwidth estimation.
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Figure 6.2: Overall comparison in PlanetLab-based experiments. (SonyDemo video)
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video)
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6.2 Experimental Results

We first plot the video quality in Fig. 6.2(a). This figure shows that the SSTF algorithm

achieve better quality than the other three. For example, at the quality level of 30 dB,

there are approximately 90%, 75%, 65% and 65% peers achieved that level, for the SSTF,

WSS, RF and MC algorithms, respectively. Another thing we notice is that, compared to

the results from simulation, the SSTF algorithm performs better than the WSS algorithm.

This is because some of the nodes on PlanetLab are quite busy, their CPU times are shared

by many other users. As we have stated before, the WSS algorithm involves solving a set

of linear programming problems, which usually requires considerable computation. The

scheduling algorithm runs several scheduling windows ahead of current data requesting

window, and if the algorithm runs slower than the data transmission speed, the receiver

have to wait for the scheduling results, which will degrade the performance of the algorithm.

During the experiment, we observed that such situation happens occasionally on some of

the slow machines on PlanetLab. In summary, SSTF performs very close to WSS on faster

machines, and much better than WSS on slow machines, as we can see from the results of

both simulation and experiment.

We then report the continuity index in Fig. 6.2(b). This figure illustrates that the SSTF

algorithm results in much higher continuity index than others: more that 90% of the peers

can achieve a continuity index of at least 80%. The WSS algorithm comes next: more

than 74% of the peers achieve the same continuity level. While the other two lead to poor

continuity: approximately 60% for both RF and MC, at the continuity level of 80%. We

next plot the load balancing factor in Fig. 6.3(a). This figure illustrates that the SSTF

algorithm distributes the transmission load across senders in a fairer manner than the other

three algorithms. Last, we we plot the average running time in Fig. 6.3(b). It shows that

the SSTF algorithm runs faster than any of the other algorithms, thus can be used on slow

machines that have limited computational resources.

In summary, both the results from simulations and experiments show that our proposed

SSTF algorithm can achieve better video quality and more balanced load compared to other

widely used algorithms for the segment scheduling problem in P2P streaming systems.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

We studied the segment transmission scheduling problem in P2P video streaming systems,

where a receiver periodically computes a transmission schedule for all its senders to maximize

the number of on-time segments. We consider both live and on-demand P2P streaming

systems. We proved that this problem is NP-Complete. We formulated the considered

problem with an Integer Linear Programming (ILP) formulation. Optimally solving this

ILP problem, however may take prohibitively long time, and is not suitable for P2P video

streaming systems. Thus we proposed an efficient approximation algorithm and formally

showed that it provides an approximation factor of 2 in the worst case. To the best of our

knowledge, this is the best approximation factor achieved so far for the segment transmission

scheduling problem in P2P streaming systems.

We implemented an event-driven simulator as well as a P2P prototype running on Plan-

etLab, and conducted extensive simulations and experiments to evaluate the proposed al-

gorithm. The results showed that the proposed algorithm achieves much higher perceived

video quality and continuity index and fairer load balancing across senders compared to

other algorithms used in current systems.

In summary, the proposed algorithm not only provides analytical guarantees on the

worst-case performance, but it also has superior average-case performance in practice com-

pared to other scheduling algorithms proposed in the literature and used in the deployed

P2P streaming systems. Furthermore, our algorithm is computationally efficient and thus

can be implemented in actual P2P streaming systems for both live and on-demand services.

40
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7.2 Future Work

This work can be extended in several directions. One possible extension is to implement the

scheduling algorithms as plugins for some existing P2P systems, such as Vuze [63], and get

some results from these already-deployed systems. Furthermore, our current algorithm only

works for single-layered videos. Another possible extension is to design scheduling algorithms

for scalable video streams with guaranteed performance. In this case, the scheduling problem

is more complicated, since there is no easy way to pack frames from different layers into

segments so as to achieve both efficiency and scalability. Furthermore, frames in scalable

video streams have different degrees of importance to the perceived quality of the video,

i.e., frames from the base layer are more important than those from the enhancement layer.

More intelligent scheduling algorithms are needed to tackle these problems. Finally, in our

prototype system, we only implemented simple algorithms for the other parts of the systems,

such as the random peer matching algorithm. It will be interesting to study the interaction

of the proposed algorithm with other parts of the P2P streaming system, such as better

peer matching algorithms.
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