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Abstract

It is observed that coherent motions like bird flocks and fish schools are common phenomena

in biology. Recently, many mathematical models have been developed in order to under-

stand the mechanisms that lead to such coordinated motions. In this thesis I consider two

models based on the Langevin equation with different external forces. In these Lagrangian

models the motion of the group is determined by pairwise interactions. For the first model

we perform an H-stability analysis, recover a wide range of interesting patterns and study

the state transition induced by noise. The second model contains a different interaction

potential. We perform a weak noise limit and study the case when the potential has ran-

dom coefficients. We also derive the continuous versions of the deterministic cases of these

models by using statistical mechanical theory.

Keywords: Aggregation; Individual-based and continuum models; Attractive-repulsive

potentials; Noise induced transitions.
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Chapter 1

Collective Motion in Animal

Groups

A swarm describes an aggregate of animals of similar size and body orientation, moving as a

single coherent entity. Swarm studies can be applied to insects, birds, fish, various microor-

ganisms such as bacteria, and people [3,22,31]. In the last years the aggregation phenomena

(a) (b)

Figure 1.1: (a) Surf Scoters in English Bay,Vancouver,Canada [44] (b) Diver in the middle
of school of fish [50]

on animal groups have received much attention and has become one of the hottest topics in

the mathematical biology literature. It is a paradigmatic example of self-organization and

grouping behaviour in the absence of centralized control. This mechanism of group forma-

tion goes beyond the level of analysis of individuals, because it studies the transition of the

local rules for the individuals to a coherent global state. There are many different scales at

1



CHAPTER 1. COLLECTIVE MOTION IN ANIMAL GROUPS 2

which social aggregations can appear, from microscopic populations of cells to macroscopic

bird flocks, buffalo herds, insect swarms, and fish schools. Scales of different swarms may

vary widely, from 10−10m2 in cells and bacteria, spanning up to 108m2 in cross-sectional

area for African migratory locust swarms [19]. Groups may also have different dimensional-

ities, for example the three-dimensional rolling structure formed by the locusts and the two

dimensional flat structure of vortex-like ant mills.

There are some interesting advantages of swarming that have been found recently. For

example, Oxford university research on locusts [41] has found that swarming behaviour ad-

dresses overcrowding. Also, flying in flocks help birds save energy. For instance, flying in a

V-formation leads to energy savings which have been estimated in the range 12 − 20% [7].

There are many benefits for fish from schooling behaviour that include better defense against

(a) (b)

Figure 1.2: (a) Swarming locusts [43] (b) A flock of geese flying in a V-formation [45]

predators, enhanced foraging success, better prey detection, and higher success in finding a

mate. Swarm behaviour also emerges in groups of people, such as soldiers swarming over

parapets. In Cologne, Germany, two biologists from the University of Leeds [48], demon-

strated a flock-like behaviour in humans. The behavioural pattern of people has similarities

with that of a flock, in which a change in direction of five percent of the group will result

in the whole group to follow. If everyone were distanced from one person, called predator,

the flock behaved very much like a school of fish.

There are also some disadvantages to being in a group, primarily through increased com-

petition for resources. Competing influences of selective cost and advantage conferred by
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the aggregate determines the size of the group during time evolution. The most interesting

situations, and even surprising, in swarming is where no “leader” with specific properties is

present in the group and interactions are short-range [34,38].

One of the primary tools for exploring the connection between individual properties and

group properties is mathematical models. These models enable researchers to test sets of

interaction mechanisms and visualize the resulting group behaviour which are generally not

directly predictable from the rules alone.

In their simplest and most general form, the mathematical models of animal swarms

represent individual animals that follow three rules: (i) move in the same direction as the

neighbours, (ii) stay close to neighbours, (iii) avoid hitting neighbours. Variations on these

rules are used in different models. These are usually implemented by considering concentric

“zones” around each individual as follows [6,12,13,42]:

1. Zone of Repulsion: a close region around the individual that causes other individuals

to move away once they get into this region, due to its closeness to the individual.

2. Zone of Alignment: a close region contain the zone of repulsion with in which the

individuals seek to align its direction of motion with its neighbours.

3. Zone of Attraction: a larger region extends as far away from the individual as it is

able to sense; the individual will seek to move towards a neighbour.

Note that the models usually produce motion that “looks like” that of a swarm of locusts,

a school of fish, or a flock of birds, but the similarities are difficult to quantify and therefore

the models mostly do not provide clear predictive power [32,40].

There are two types of mathematical models for collective motions, Lagrangian and Eu-

lerian models [9,17,20,27]. Tracking positions and velocities of individuals forms the essence

of Lagrangian models. This is in contrast with Eulerian models where the local flux of

individuals via population density is used.

The Lagrangian models consist of high dimensional coupled ordinary differential equa-

tions (ODEs), whereas Eulerian models are described in terms of advection-diffusion partial

differential equations (PDEs) [1,21,24, 27]. Eulerian models correspond better to very large
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(a) (b) (c)

Figure 1.3: (a) A school of fish swimming in spherical formation [49] (b) A 3-dimensional
fish school [47] (c) Starling swarming [46]

populations (insects, bacteria, etc.), while Lagrangian models better describe smaller groups

with distinguishable individuals. Indeed, by an Eulerian approach some important aspects

of the dynamics may be omitted [26].

The stochastic versions of Lagrangian models, under suitable approximations, may lead

to Eulerian models which are easier for analysis in many cases using tools of partial differ-

ential equations [8,17]. But Lagrangian models contain more information about individuals,

at the expense of analytical difficulty due to their high dimension.

From the ecological point of view the dynamics of “group properties”, such as popula-

tion density, are more important descriptions of aggregated spatial distributions compared

to individual movements and positions [17]. However, in many situations where a continu-

ous description of the swarm is not appropriate (e.g., when the number of organisms in the

swarm is small), then the Lagrangian approach, following the coordinates of individuals is

preferable [25,36].

The numerous interactions between the individual units increase the complexity of La-

grangian models. While the interactions may be relatively simple, some feedbacks are

created by a complicated network of interactions in the system. These feedbacks make the

emergent group properties difficult to predict. We note that in order to simplify the system
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of equations of motion, some assumptions are made which are not very realistic. For exam-

ple, one of the most important assumptions is that individual members of a population are

considered identical. In general this not the case, as individuals are unique and characterized

by variables such as age, size, fertility, internal structure, etc. A typical Lagrangian model

is based on the Newtonian mechanics equations of motion with acceleration, frictional drag,

and a variety of forces causing net motion, alignment, velocity matching, as well as mutual

interactions [25].

The study of swarms is also important from the application point of view; multi-robot

systems may be used in underwater or space exploration missions, or for the completion of

military and other dangerous tasks, such as land-mine detection and removal or earthquake

recovery [2]. Additionally the swarm study has strong impact on ecology: fish schools have

been very efficiently exploited by fishers, sometimes leading to extinction.

In Chapter 2, we consider the model

dxi
dt

= vi, mi
dvi
dt

= αvi − β|vi|2vi −∇Ui

which we will call model I. Here, xi and vi are the position and velocity of the individual i

with mass mi. The third term on the right hand side of the vi equation is the external force;

and Ui is an interaction potential which depends only on the positions xi. In this chapter

we do some stability analysis and will explore how rules and interactions at the individual

level lead to some interesting patterns at the group level. Various aggregation geometries

will be presented and we explore a state transition from translational motion to rotational

motion.

In Chapter 3, we study a Lagrangian model of N self-propelled particles of the form

dxi
dt

= vi, m
dvi
dt

= Fi(vi)− ω2(xi −R(t)) + ξi(t)

which we call model II. Here, xi and vi are the position and velocity of particle i with mass

m, Fi is the dissipative force and R(t) is the position of the center of mass at time t. This

model includes stochastic forces, ξi(t), and considers fluctuations in the behaviour of indi-

viduals. Following [15] we discuss the weak noise limit and conclude that in the weak noise

limit the longitudinal dispersion of the swarm, along the direction of its translational motion,
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is much smaller than its orthogonal dispersion. We also derive new solutions for a differ-

ent potential, scaling the diameter of some solutions and end up with a transition behaviour.

In chapter 4 we present, using methods from statistical mechanics, the derivation of the

continuum versions of the deterministic cases of the above models. The continuum equations

corresponding to model II are

∂ρ

∂t
+∇ · (ρu) = 0,

∂u
∂t

+ u · ∇u = αu− β|u|2u− 1
m2
∇

∫
Rd

V (x− y)ρ(y; t)dy.

Here, ρ and u are the density and velocity fields and V is the potential function. Note

that there are no explicit solutions for these model equations, and existence steady-state

and stability analyses typically cannot be performed. Eulerian models have been studied

primarily by simulation quantifying the changes in the model output which come from

parameter variation, and categorizing different types of behavior exhibited by the model;

we do not present these kinds of results in the thesis. The weakness of such efforts is to

lose the clarity afforded by analytical observations, where the relationship between model

parameters and group-level properties is made clear.



Chapter 2

A Lagrangian Model of

Self-Propelled Particles

2.1 Introduction

Self-organization and pattern formation in systems of self-propelled entities are ubiquitous

in nature. Recently the problem of swarming, in which a large number of moving particles

(e.g., fish or birds) remain coherent over long times and distances, has attracted consider-

able attention. Here, we need to accurately predict the geometry and stability of swarming

systems and our method is to apply the fundamental principles from statistical mechan-

ics. Specifically, we consider N self-propelled particles powered by biological or mechanical

motors that experience a frictional force, leading to a preferred characteristic speed. The

particles also interact by means of an interaction potential called Morse potential.

2.2 The Model I

We make the following assumptions [20,37]:

1. The population is conserved; birth, death, immigration, and emigration of organisms

are negligible on the time scale of the swarming dynamics.

2. Interactions between organisms are pairwise.

7
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3. Interactions depend only on the distance between organisms and become weaker with

increasing distance.

4. The interaction must not cause the collapse of infinitely many particles into a bounded

region of Rd.

The discrete particle model we describe here, which satisfies all the conditions in the

above, consists of N particles with mass mi, positions xi and velocity vi. The following

equations of motion describe the model [4,5,50]

dxi
dt

= vi, mi
dvi
dt

= αvi − β|vi|2vi −∇Ui, i = 1, 2, ..., N. (2.1)

Here Ui is the interaction potential and the terms αvi and −β|vi|2vi are self-acceleration

and deceleration which give the particles a tendency to travel close to an equilibrium speed

veq =
√

α
β . Note that the self-propelling mechanism allows the direction of motion changes

but tends to fix the magnitude of the velocity. In our simulations we have two major solu-

tions which mostly dependent on the initial conditions: circular motion or a coherent agent

drift. The potential Ui describes the interaction of particle i with the other particles.

The potential we use here is the Morse potential given as

Ui = U(xi) =
∑
j 6=i

(−Cae−
|xi−xj |

la + Cre
−
|xi−xj |

lr ). (2.2)

This formula assumes that the N -body interactions are insignificant and only pairwise in-

teractions are considered. We assume N ≥ 3 not to deal with trivial cases. The pairwise

interaction consists of attraction and repulsion with Ca and Cr specifying their respective

strengths and la, lr their effective interaction length scales. The potential (2.2) is a combi-

nation of other attractive and repulsive terms lead to collective trends and gives interesting

aggregation patterns. For simplicity, we only consider a 2D description and focus on iden-

tical mass particles.
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We can non-dimensionalize the equations of motion by substituting t′ = (mi/l
2
aβ)t,

xi′ = xi/la, and thus, vi′ = (laβ/mi)vi into equations (2.1) and (2.2)

dxi′

dt′
= vi′,

dvi′

dt′
= α′vi′ − |vi′|2vi′ −

1
m′i
∇xi

′U ′i (2.3)

U ′i =
∑
j 6=i

(−e−|xi
′−xj

′| + Ce−
|xi
′−xj

′|
l ) (2.4)

where α′ = (αβl2a)/m
2
i , m

′
i = m3

i /(βCal
2
a), C = Cr/Ca, and l = lr/la; hence, the model is

essentially a 4-parameter one.

In our simulations we also use white noise. In this case the particles are subject to

stochastic white forces ξi of strength D which are independent for different particles and

are characterized by the correlation functions

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = 2Dδ(t− t′)δij

Therefore our stochastic differential equation model becomes

dxi′

dt′
= vi′,

dvi′

dt′
= α′vi′ − |vi′|2vi′ −

1
m′i
∇xi

′U ′i + ξi(t). (2.5)

2.3 Stable Interactions

In this section we apply fundamental principles from statistical mechanics to be able to

analyze and predict the geometry of swarming systems. Here we follow closely the work

of [35]. For N particles located at x1, ...,xN ∈ Rd, consider the potential U(x1, ...,xN )

which takes values in R ∪ {∞}, i.e., the value ∞ is permitted for the potential energy. We

assume that the potential is invariant under permutation of its arguments; because we don’t

have any preferences in the ordering of our particles and also we follow with its physical

meaning (potential energy). Furthermore, we assume that U is invariant under translations:

if a ∈ Rd, then

U(x1 + a, ...,xN + a) = U(x1, ...,xN )

If U does not take the value ∞, we may write

U(x1, ...,xN ) =
∑
k

∑
1≤i1<...<ik≤N

Φk(xi1 , ...,xik). (2.6)
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Here we assume that the functions Φk are real-valued, invariant under permutations of

their arguments and under translations. Equation (2.6) uniquely determines (by induction

on k) the k-body potential Φk. If U is allowed to take the value ∞, we shall also assume

the form (2.6) where Φk is now also allowed to take the value ∞. We assume Φk to be

Lebesgue measurable. Because of translation invariance Φ1 is a constant; conventionally,

we take Φ1 = 0. Altogether we assume the summation in (2.6) is over k ≥ 2.

A sequence (Φk)k≥2 of k-body potentials is called an interaction. The 2-body potential

Φ2 is also known as a pair interaction. Notice that Φ2(x1,x2) due to translation invariance

and therefore it depends only on x1 − x2; we shall write Φ2(x1,x2) = Φ(x2 − x1). Now

because of invariance under permutation of x1 and x2, we have thus Φ(−x) = Φ(x). Finally

if a pair potential Φ has compact support then we say Φ is finite range.

Definition. We say that the interaction (Φk)k≥2 is H-stable if there exists B ≥ 0 such

that

U(x1, ...,xN ) ≥ −NB (2.7)

for every N ≥ 1 and x1, ...,xN ∈ Rd.

H-stability is actually one of the important constraints which enable us to have a smooth

passage from microscopic interactions, obeying the laws of statistical mechanics, to the

thermodynamic limit, as volume and individual number tend to infinity. Here we give

a useful criteria for the H-stability of pair interactions. Let Λ be a bounded Lebesgue

measurable subset of Rd with volume (=Lebesgue measure) V (Λ); define

ΞΛ = 1 +
∞∑
n=1

zn

n!

∫
Λn

exp[−βU(x1, ...,xN )]dx1...dxN ,

with β > 0, z > 0. H-Stability implies that
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1 +
∞∑
n=1

zn

n!

∫
Λn

exp[−βU(x1, ...,xN )]dx1...dxN ≤

1 +
∞∑
n=1

zn

n!
V (Λ)n exp(nβB) = exp[zV (Λ) exp(βB)]. (2.8)

Therefore the series defining ΞΛ is convergent.

Now we need to find a simple criterion to check H-stability; because of this, we con-

sider a class of pair interactions as follows which is pretty large. Let Φ be a real upper

semicontinuous function on Rd such that Φ(−x) = Φ(x). Define:

U(x1, ...,xN ) =
∑

1≤i<j≤N
Φ(xj − xi).

Proposition. Let the pair potential Φ be absolutely integrable. If∫
Φ(x)dx < 0 (2.9)

then we may choose Λ bounded such that ΞΛ diverges.

Proof. The exponential function is convex thus

V (Λ)−n
∫

Λn exp[−βU(x1, ...,xN )]dx1...dxN ≥ exp[−βV (Λ)−n
∫

Λn U(x1, ...,xN )dx1...dxN ]

= exp[−β n(n−1)
2 V (Λ)−2

∫
Λ2 Φ(x2−x1)dx1dx2].

It follows from (2.8) that if we choose for Λ a sufficiently large cube then

−ε = V (Λ)−2

∫
Λ2

Φ(x2 − x1)dx1dx2 < 0,

hence

ΞΛ ≥
∞∑
n=1

zn

n!
V (Λ)n exp[β

n(n− 1)
2

ε] = +∞. �

If we apply this proposition to the potential given by (2.4) where

Φ(x) = −e−|x| + Ce−
|x|
l ,
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then U is not H-stable if
∫

Rd Φ(x)dx ≥ 0. We compute that∫
R2

Φ(x)dx =
∫ 2π

0
dθ

∫ ∞
0
−re−r + Cre−r/ldr

= 2π(re−r + e−r − Clre−r/l − Cl2e−r/l)|∞0
= 2π(Cl2 − 1).

Therefore the separatrix between stable and non-stable, catastrophic, regions is Cl2 = 1 in

the Cl-plane. Note that in Model I we have many coupled ordinary differential equations

and if this system obeys the laws of statistical mechanics, thermodynamics is expected to

emerge as the number of individuals tend to infinity. In order to get to this limit, H-

stability is necessary to the existence of thermodynamics, i.e. if a system is not H-stable,

the thermodynamic limit does not exist. The most important property is that H-stability

ensures that particles will not collapse onto themselves as N → ∞. If the d-dimensional

integral of the potential is negative, the system is catastrophic. In this case, as N increases,

particles collapse into a dense body with energy per particle proportional to N .

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

0

1

2

3

x

Φ

Pair Interaction

 

 

Cl2<1

Cl2>1

Cl2=1

Figure 2.1: Pair interactions, Φ(x) (in one dimension), for different C and l values.
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2.4 Numerical Results

2.4.1 Deterministic Case

In this case we simulate the model by using equations (2.3) and (2.4) where particles are

identical, i.e. mi = 1 for all i. With random initial conditions and free boundaries, in-

tegration of model I numerically enables us to distinguish different aggregation regimes in

the {C, l} phase space. In Figure 2.2, we see the biologically relevant region that con-

sist of a long-range attraction and a short-range repulsion corresponding to the parameter

space where C > 1 and l < 1. Three regions I, II and III are distinguished there for

{l < C}, {l = C} and {l > C}. Regions IV, V, VI and VII correspond to the regimes

{C < 1 < l},min{l, C} > 1, {1/
√
C < l < 1} and {l < 1/

√
C < 1}.

Figure 2.2: H-stability diagram of the Morse potential (taken from [5]). The catastrophic
regions correspond to parameter ratios l = lr/la and C = Cr/Ca for which the thermody-
namic limit does not exist. The separatrix is Cl2 = 1.
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In region I, a potential minimum exists and by creating multiparticle clumps, the N par-

ticles self-organize themselves. The individuals have collective translational motions within

each clump and rotate about their center of mass. Two examples are shown in Figure 2.3(c)

and (d). In region II, the potential minimum is zero and rings develop. For l > C in region

III, clumped rings appear although there is no minimum in potential [29]. In this case, the

clumps are superimposed particles traveling around a ring. See Figure 2.4(c). In region IV,

the observed behaviour is similar to what is described in region III but the potential defines

a maximum [30]. In regions III and IV, the collective motion is a way to minimize the total

energy while keeping a constant speed [29,30]. For more information about Figure 2.2 see

[5,29,30].

Regions I through IV of the phase diagram define catastrophic potentials and structures

decrease in size as N increases. In region V the particles will tend to occupy the entire

volume at their disposal as N →∞ [29].
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Figure 2.3: Aggregation geometries for different parameters of equations (2.1) and (2.2) for
N = 100 individuals at time t = 100 except in (d) where time t = 400. (a) translational
motion (b) a flock (c) rotating clumps (d) rotating double-clumps. In (a) and (b) C = 2, l =
0.25, α = 1, β = 0.5 and in (c) and (d) C = 0.6, l = 0.5, α = 1, β = 0.5.
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Figure 2.4: Aggregation geometries for different parameters of equations (2.1) and (2.2) for
N = 100 individuals at time t = 100. (a) ring (b) double-ring (c) ring clump (d) vortex
or rotational motion. In (a) and (b) C = 0.5, l = 0.5, α = 1, β = 0.5 but different initial
conditions; in (c) C = 0.6, l = 1.2, α = 1, β = 0.5 and in (d) C = 2, l = 0.25, α = 1, β = 0.5.

Regions VI and VII are the most interesting regions in the Figure. For relatively low

values of α/β rigid-like motion, like a flock or disk, can form and for the high values of

α/β individuals disperse. For region VII, additionally, rotating vortices may be generated

for intermediate values of α/β [29]. In Figure 2.3(b), a coherent flock and in Figure 2.4(d)

a vortex are shown. Time evolution of a vortex solution with random initial conditions is

shown in Figure 2.5.
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(c) t = 20
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(d) t = 40

Figure 2.5: Rotational solution in the catastrophic regime. There are N = 3000 individuals
and the parameters are C = 2, l = 0.25, α = 1.6, β = 0.5 at different times.

An interesting phenomenon here is that when we increase the number of individuals,
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the diameter of the solutions in the catastrophic region decreases. For example, in Figure

2.4(a), if we plot the radius of the rings versus the number of individuals, we get the Figure

2.6 below, in which the circles are the numerical solution of the radius and the best fit curve

is R(N) = 0.8484N−.5669 as a function of the number of individuals N . Note that time

here is t = 40 for each N . We expect that by plotting the radius for larger values of N

we will approach the analytical result N6−.5 obtained in [30]. Similarly if we increase the

10
2.2

10
2.3

10
2.4

10
2.5

10
2.6

10
2.7

10
−2

10
−1

10
0

Number of individuals

Ra
di

us
 o

f t
he

 ri
ng

s

Figure 2.6: Ring size decreases with agent number in the catastrophic regime. The circles
are the numeric solution and the curve is the analytic solution. The parameters are the
same as in Figure 2.3(a) and time is t = 40.

number of individuals in the vortex solution, the diameter and therefore the area decreases.

The diameters in (a)-(d) of Figure 2.6 are approximately 2.6336, 2.0321, 1.9289 and 1.9131,

respectively.
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Figure 2.7: Vortex size decreases with agent number in the catastrophic regime. (a)-(d) N =
100, 300, 800 and 1500 individuals respectively. The parameters are C = 2, l = 0.25, α =
1.6, β = 0.5 and time t = 40.

In Figure 2.8 the area of the vortex solutions versus the number of individuals is



CHAPTER 2. A LAGRANGIAN MODEL OF SELF-PROPELLED PARTICLES 17

illustrated. The circles are from the numerical solution and the analytical solution is

A(N) = 5.033 exp(−.0111N) + 2.8518 as a function of the number of individuals N .
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Figure 2.8: Vortex area decreases with agent number in the catastrophic regime. The circles
are from the numerical solution and the curve is the analytic solution. The parameters are
the same as in Figure 2.6 and time is t = 40.

We may also find the inner radius and the outer radius of the vortex solution for dif-

ferent number of individuals. In Figure 2.9, the numerical solution for the outer radius is

represented by circles and the analytical solution is OR(N) = .8516 exp(−.0111N) + .9565.
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Figure 2.9: Outer radius decreases with agent number in the catastrophic regime. The circles
are from the numerical solution and the curve is the analytic solution. The parameters are
the same as in Figure 2.6 and time is t = 40.

To find the inner radius IR(N), as a function of the number of individuals N , we can

write

IR(N) =
√

(πOR(N)2 −A(N))/π
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2.4.2 Noise-induced Case

One of the most interesting aspects of many particle systems is that they exhibit a com-

plex cooperative behaviour during phase transition. When we increase the noise strength

transitions could happen. For example, below we see the transition from a translational

solution to a rotational solution. The following graph shows the transition with the above
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Figure 2.10: Noise induced phase transition for N = 100 individuals. (a) initial configura-
tion with random positions and fixed velocity. (b)-(d) solution at time= 100 corresponding
to D = 0, 0.06 and 0.07, respectively. The other parameters are C = 2, l = 0.25, α = 1, β =
0.5.

parameters. The translational motion breaks down when a critical intensity is reached and

instead the swarm goes into a rotational mode.
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Figure 2.11: Time average of Euclidean norm of mean velocity, V(t) = (1/N)
∑

i vi(t),
versus noise strength, upto time t = 300.
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As we see, there are some bumps in the transition diagram, Figure 2.11. At the bottom

of each bump the solution is rotational, as in Figure 2.10(d), and at the top the solution

is semi-translational, as in Figure 2.10(c). Figure 2.11 is different from the similar one in

[15], where there is exactly one sharp jump rather than several fluctuations. Note the state

transition from a translational state, |V | ' 1.3 to a rotational state, |V | ' 0.01 that occurs

at the interval [0.04, 0.09]. Our numerical experiments with various different realizations of

the noise, taking time averages over times up to 600, have not shown a systematic reduction

of the parameter interval in D over which the transition occurs; and further ensemble

averaging appears to smear out the transition. In our computations we have not observed

a single sharp transition, as seen in [15] but the results are preliminary and inconclusive.

The following figure shows the evolution of the size of mean velocity in time for different

noise strengths. In Figure 2.12, as we expect from Figure 2.11, the mean velocity suddenly

decreases for the D values corresponding to the rotational solutions. These figures are for

single realization.
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(b) D = 0.005
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(c) D = 0.06
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(d) D = 0.07

Figure 2.12: norm of mean velocity, V = (1/N)
∑

i vi(t) , versus time for different values of
the noise strength D.



Chapter 3

A Stochastic Model of Interacting

Particles

3.1 Introduction

In this chapter we consider a model of a population of self-propelled particles interacts

via a parabolic interaction potential corresponding to linear attracting forces between the

pairs [14,23]. In the absence of noise, this dynamical system has two kinds of attractors,

corresponding, respectively, to a compact traveling state of the entire population and to a

state where it rotates as a vortex without any global translational motion [14]. We see that

the system is highly sensitive to stochastic forces. When noise is present, the traveling swarm

is a cloud of particles characterized by different dispersions in the directions parallel and

transverse to the direction of translational motion. When the noise is increased, the swarm

gradually acquires a more symmetric shape. For strong noise, we find that the translational

motion of the swarm is replaced by a rotational regime with a vortex flow. We also present

an extension of this model in which we use random attraction coefficients. We find new

solutions and a transition behaviour and consider Voronoi diagrams.

20
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3.2 Model II

In this chapter we mostly are interested in rotational motions that are excited by negative

velocity-dependent linear friction terms and interaction forces that can be described by a

mean field. In the book of Okubo and Levin [28], it is discussed that animal groups have

three typical modes of motion: (i) translational motion, (ii) rotations or (iii) amoeba-like

motions.

The simple and interesting model we consider here composed of active Brownian parti-

cles. Active Brownian particles are Brownian particles with the ability to take up energy

from the environment and use it for acceleration [14]. Therefore, in our case, the self-

propulsion is modeled by active Brownian particles with negative friction which are capable

of converting stored internal energy into motion.

We consider a swarm formed by N point masses m with the numbers 1, 2, ..., N via linear

pair interactions ω2(ri − rj). The coefficient ω2 identifies the intensity of interactions and

also as a parameter can specify the strength of coupling in population [10,23]. The dynamics

of the system is given by the following equations of motions:

ṙi = vi, mv̇i = Fi(vi)− ω2(ri −R(t)) + σ2(vi −V) + ξi(t), (3.1)

where the center of mass is defined by R(t) = 1
N

∑N
j=1 rj and the dissipative forces are

Fi(vi) = −mγ(v2
i )vi.

The function γ denotes a velocity-dependent friction, and we use the traditional Ansatz

proposed already by Rayleigh [33]:

γ(v2) = −(α− β|v|2).

We see that the zero of the friction γ(v2) = 0 exists which in the velocity space is an at-

tractor of motion. The term V models a weak global coupling to the average velocity of the

swarm V = 1
M

∑
mivi. We also make another assumption that the global coupling of the

velocities will be neglected, σ = 0.
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As in the previous section, the particles are subject to stochastic white noise forces ξi
of strength D which are independent for different particles and are characterized by the

correlation functions, first and second moments:

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = 2Dδijδ(t− t′),

where the average 〈·〉 is an average with respect to the distribution of the realization of the

stochastic variable ξ(t).

3.3 The Weak Noise Limit

Here we will restrict our attention to the case of weak driving forces and follow the work

of Erdmann et al [15]. Due to the anisotropic motion of a swarm in the presence of noise,

we need to somehow measure their dispersions to the direction of its instantaneous mean

velocity V. We define parallel dispersion (S||) and orthogonal dispersion (S⊥) as

S||(t) =
1

NV 2(t)

N∑
i=1

{[ri(t)−R(t)] ·V(t)}2

S⊥(t) =
1

NV 2(t)

N∑
i=1

{[ri(t)−R(t)]×V(t)}2,

where V = |V|. In this section when the noise intensity is small, D → 0, we find some

analytical expressions for S|| and S⊥.

By using the fact that the motion of the center of mass will remain approximately linear [15],

we consider the coordinate system in such a way that its x axis is parallel to the direction

of the swarm motion and its y axis is orthogonal to it. For particle i, write

xi = X + δxi, yi = Y + δyi

where (X,Y ) are the coordinates of the center of mass R. By construction we assume that

Y = 0. We notice that

X(t) =
1
N

N∑
i=1

xi(t) = 〈xi(t)〉;

therefore the equations of motion are

Ẍ + ¨δxj = α(Ẋ + ˙δxj)− β((Ẋ + ˙δxj)2 + ˙δyj
2
)(Ẋ + ˙δxj)− ω2δxj + ξxj (t),

¨δyj = α ˙δyj − β((Ẋ + ˙δxj)2 + ˙δyj
2
)( ˙δyj)− ω2δyj + ξyj (t).
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By neglecting the higher order terms in the first equation, we get

Ẍ + ¨δxj = α(Ẋ + ˙δxj)− β(Ẋ3 + 2Ẋ2 ˙δxj + 3Ẋ ˙δxj
2

+ ˙δyj
2
Ẋ)− ω2δxj + ξxj (t), (3.2)

¨δyj = α ˙δyj − β(Ẋ2 ˙δyj + 2Ẋ ˙δxj ˙δyj + ˙δyj
3
)− ω2δyj + ξyj (t),

and now if we take the average of equation (3.2) over all indices j, we have

Ẍ = (α− βẊ2)Ẋ − 3βẊ〈 ˙δxj
2〉 − βẊ〈 ˙δyj

2〉, (3.3)

¨δyj = (α− βẊ2) ˙δyj − 2βẊ ˙δxj ˙δyj − β ˙δyj
3 − ω2δyj + ξyj (t). (3.4)

Note that when a swarm travels then Ẋ = V 6= 0 and in the steady state Ẋ = V = const;

from equation (3.3) we compute that

V 2 =
α

β
− 3〈 ˙δxj

2〉 − 〈 ˙δyj
2〉. (3.5)

Now by subtracting equation (3.3) from equation (3.2) we get the evolution equation for

δxj ,
¨δxj = α ˙δxj − 2βẊ2 ˙δxj − ω2δxj + ξxj (t),

so we see that the fluctuations of xj(t) are not coupled to the δyj ’s . Similarly, in equation

(3.4), if we neglect the higher order terms, we would have,

¨δyj − (α− βẊ2) ˙δyj + ω2δyj = ξyj (t).

According to [15] we cannot neglect the higher order terms in the above equation and

〈 ˙δyj
2〉 � 〈 ˙δxj

2〉 holds in the weak noise limit. Hence, from equation (3.5) we may write

V 2 = α
β − 〈 ˙δyj

2〉 and equation (3.4) becomes

¨δyj − β(〈 ˙δyj
2〉 − ˙δyj

2
) ˙δyj + ω2δyj = ξyj (t),

and we see that this SDE does not include longitudinal fluctuations δxj . In the above

equation the particles are decoupled; therefore by dropping the indices we get

δ̈y − β(〈δ̇y2〉 − δ̇y2
)δ̇y + ω2δy = ξ(t) (3.6)

where 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′).

Now we introduce the slowly varying amplitudes

δy(t) = η(t)eiωt + η∗(t)e−iωt,
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where η(t) = µ(εt), ε is a small constant and to derive a solution we assume that ω � 1.

By starting from

δy = µ(εt)eiωt + µ∗(εt)e−iωt,

and taking the derivative of this equation, we get

δ̇y = εµ̇(εt)eiωt + iωµ(εt)eiωt + εµ̇∗(εt)e−iωt − iωµ∗(εt)e−iωt.

In the following steps, we retain those terms that eventually appear in the coefficient of eiωt.

Ignoring the terms with higher powers of ε we get

δ̇y
2 ∼ 2iωεµµ∗ − 4iωεµ̇µ∗ + 2ω2µµ∗ ∼ 2ω2|µ|2,

and similarly

δ̇y
3 ∼ (iωµeiωt − iωµ∗e−iωt)3 ∼ 3iω3µ|µ|2eiωt;

also, taking ensemble averages implies that

δ̇y〈δ̇y2〉 ∼ 2iω3〈|µ|2〉µeiωt.

We also similarly take the second derivative

δ̈y ∼ d

dt
(εµ̇(εt)eiωt + iωµeiωt) ∼ 2iωεµ̇(εt)eiωt − ω2µeiωt.

Therefore we can rewrite equation (3.6) as

2iωεµ̇(εt)eiωt − 2iβω3〈|µ|2〉µeiωt + 3iω3µ|µ|2eiωt = ξ(t)

or

η̇ = βω2η〈|η|2〉 − 3
2
ω2η|η|2 + ζ(t),

where the complex-valued white noise ζ(t) has correlation functions

〈ζ(t)〉 = 0, 〈ζ(t)ζ(t′)〉 = 0, 〈ζ(t)ζ∗(t′)〉 =
D

2ω2
δ(t− t′).

Now to be able to use the numerical data in [15], we assume that α = β = 1. To derive the

Fokker-Planck equation for this stochastic Langevin equation with the probability density

P = P (η, η∗, t), we note that for the SDE

dX

dt
= 5ψ(X(t)) +

√
2
B
ζ(t),
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the corresponding Fokker-Planck equation is

∂P

∂t
= −div(5ψ(X)P ) +

1
B
4 P,

and the stationary solution is

P̄s(x) = z−1 exp(−Bψ(x)),

where z =
∫
<N exp(−Bψ(x))dx [16]. In our case, we have X = (η, η∗) and

ψ(X) = ω2〈|η|2〉|η|2 − 3
4
ω2|η|4,

therefore,

∂P

∂t
= − ∂

∂η
[ω2(〈|η|2〉η − 3

2
|η|2)ηP ]

− ∂

∂η∗
[ω2(〈|η|2〉η − 3

2
|η|2)η∗P ]

+
D

2ω2

∂2P

∂η∂η∗
.

The stationary solution of the Fokker-Planck equation is

P̄ =
1
Z

exp[
−ω4

D
(−4〈|η|2〉|η|2 + 3|η|4)]

where

Z =
∫
<N

exp[
−ω4

D
(−4〈|η|2〉|η|2 + 3|η|4)]d2η;

note that here, d2η = dη1dη2 for η = (η1, η2). Now the second statistical moment is given

by

〈|η|2〉 =
∫
|η|2P̄ (η, η∗)d2η. (3.7)

Let η = ρeiφ, then d2η = ρdρdφ, and we can rewrite equation (3.7) as

〈ρ2〉 =

∫∞
0 ρ3 exp[−ω

4

D (−4〈ρ2〉ρ2 + 3ρ4)]dρ∫∞
0 ρ exp[−ω4

D (−4〈ρ2〉ρ2 + 3ρ4)]dρ
.

By taking u = ρ〈|η|2〉−1/2, this equation becomes

1 =

∫∞
0 u3 exp[−ν(−4u2 + 3u4)]du∫∞
0 u exp[−ν(−4u2 + 3u4)]du

(3.8)
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where ν = ω4

D 〈|η|
2〉2 and ν ≈ 0.22 [15]. Therefore

〈|η|2〉 = ν1/2D1/2ω−2.

It can be easily shown that S⊥ = 〈δy2〉 = 2〈|η|2〉 and S|| = 〈δx2〉. Hence,

S⊥ = κ
D1/2

ω2
,

where κ = 2ν1/2 ≈ 0.94, and

S|| =
D

2ω2

We see that in the limit D → 0 the transversal dispersion depends on
√
D but the parallel

dispersion depends linearly on D. Therefore when D is small number, S⊥ is much larger

than S||. When the noise strength D increases, the shape of the motion becomes more

symmetric and it changes from translational solution to rotational solution. In this case,

the transversal dispersion approaches the dispersion along the direction of translational

motion.

3.4 The Extended Model II

We consider a swarm formed by N identical self-propelled particles of unit mass interacting

via an attractive parabolic pair potential. The dynamics of the system is given by the

following set of evolution equations:

ṙi = vi, v̇i = αvi − β|vi|2vi −
ai
N

N∑
j=1

(ri − rj) + ξi(t), (3.9)

for i = 1, 2, ..., N , where α and β are constants, ai’s are random and ξi(t)’s are stochastic

white forces of strength D which are independent for different particles and are characterized

by the correlation functions

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = 2Dδijδ(t− t′).

The only difference this model has with the model II is the attraction coefficients

ai which are different for individuals. We generate these coefficients such that are nor-

mally distributed. In all the figures below, we have 100 individuals; 10 are black with

{ai}10
1 ∼ 500 +N (0, 1), 10 are red with {ai}20

11 ∼ 100 +N (0, 1) and the rest are green with
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{ai}100
21 ∼ 3 + N (0, 1). By this choice of the values of ai we are going to illustrate that

the magnitude of ai is an important scale that the diameter of the solutions of this model

depend on. Here we have three different magnitudes for ai which are 500, 100 and 3.

There are some new solutions that this model gives us. In Figure 3.1, we have a semi-

translational motion. Individuals of the same colour group together and each group has

a coherent motion which is almost translational. Another interesting solution is the triple

double-mill shown in Figure 3.2(b). Individuals of the same colour (same magnitude of ai)

group together and have a double mill motion as we may have for the model II (a double-

mill solution is a vortex with some particles moving clockwise and the rest moving counter

clockwise). Note that because we start with three different magnitudes for ai, we end up

with three double-mills. If we start with for example 10 different magnitudes, we get 10

double-mill solutions.
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Figure 3.1: Semi-translational solution. N = 100 individuals with random initial positions
and constant velocity, shown in (a), evolving according to the equation (3.9). There are
10 black and 10 red individuals and the rest are all coloured green. The parameters are
α = 2, β = 1. ai is approximately 500, 100 and 3 for the black, red and green arrows,
normally distributed, respectively. Here, the noise strength is D = 0.
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Figure 3.2: Triple double-mill solutions. N = 100 individuals with random initial condi-
tions, shown in (a), evolving according to the equation (3.9). There are 10 black and 10 red
individuals and the rest are all coloured green. Time= 100 and the other parameters are
α = 2, β = 1 but in (d) α = 20. ai is approximately 500, 100 and 3 for the black, red and
green arrows, normally distributed, respectively.

In all the figures in this section, the individuals with higher value of ai have a higher

velocity. The lengths of arrows indicating velocities in the triple double-mill solutions have

been rescaled for illustration purposes. This model is more robust compared to model II in

the sense of not changing the type of motion by increasing the noise strength. In Figure 3.2,

we see that when the noise is D = 0.15 we still have triple-double-mill solutions whereas we

could not have this for model II. We also note that if we increase the value of α, we need a

much larger noise strength, D = 0.4 than before to break down the solution.

As we see in Figure 3.3 and 3.4, by increasing the noise strength, the motion changes type

from semi-translational to triple double-mill solutions. We obtained a bifurcation diagram

similar to the one presented in Figure 2.7 obtained for model I. In addition, numerical

experiments suggest that model II may experience a different type of state transition, where

by increasing the noise strength, the motion changes first from semi-translation to triple

double-mill, then changes back to semi-translation, and finally returns and remains in the

triple double-mill state.
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Figure 3.3: N = 100 individuals with random initial conditions, shown in (a), evolving
according to the equation (3.9). There are 10 black and 10 red individuals and the rest are
all coloured green. The parameters are α = 2, β = 1 in (b)-(d). Here ai are approximately
500, 100 and 3 for the black, red and green arrows, normally distributed, respectively, and
the noise strength is D = 0.01
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Figure 3.4: N = 100 individuals with random initial conditions, shown in (a), evolving
according to the equation (3.9). There are 10 black and 10 red individuals and the rest are
all coloured green. The parameters are α = 2, β = 1 in (b)-(d). Here ai are approximately
500, 100 and 3 for the black, red and green arrows, normally distributed, respectively, and
the noise strength is D = 0.02
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In Figure 3.5 the radius in the double-mill solution versus the attraction coefficients is

shown for numerical simulations with a common fixed value of ai for all i and for N = 200;

figures for other N look similar. The circles are from the numerical solutions and the best

fit curve is R(a,N) = C2(N)aC1(N) as a function of the attraction coefficient a and the

number of individuals N , where C1(N) = 1.6962 × 10−8N − 4.8438 × 10−1 and C2(N) =

1.6159 × 10−6N + 1.3774, for N varying between 50 and 600, and for a ranging from 1 to

680.

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

Attraction coefficient a

R
ad

iu
s 

of
 d

ou
bl

e−
m

ill

Figure 3.5: The radius in the double-mill solution versus a for constant attraction coefficients
a and N = 200.

Figure 3.6 shows a similar calculation, in the case in which the values ai are randomly

distributed about a common mean a, with a distribution ai ∼ a(1 + 0.1N (0, 1)). In this

case, we fit the radius with R(a,N) = C2(N)aC1(N) where C1(N) = −3.4987 × 10−6N −
4.8623×10−1 and C2(N) = 1.5033×10−4N + 1.5048, and observe the good agreement with

the deterministic case shown in Figure 3.5.
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Figure 3.6: The radius in the double-mill solution versus a for random attraction coefficients
a and N = 200.

Voronoi Diagram Now consider a triple-double-mill solution and its Voronoi diagram

for the green individuals (see Figure 3.5(a)). Each individual i has a Voronoi cell consisting

of all points closer to i than to any other individual. We have drawn these Voronoi cells

in Figure 3.5(a). Now consider the bounded regions and compute their areas. For any

noise strength, find the median of the areas of these cells. We find out that the median

is increasing by increasing the noise strength and it is almost constant in time for a fixed

noise strength. In biology, see for example [39], each cell is called a “domain of danger”

and a hidden predator will attack the nearest animal. Figure 3.5(b) might say that if some

predators attack a group of animals, in some situations, each prey in the group will distance

itself from the others although we can consider them still as a swarm. Therefore, for some

animals which follow the extended model II, they follow this strategy of moving away from

each other when a predator attacks.
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Figure 3.7: Voronoi diagram for N = 100 individuals. There are 10 black and 10 red
individuals and the rest are all coloured green. The parameters are α = 1.5, β = 1 and
time= 100. Here ai are approximately 500, 100 and 3 for the black, red and green arrows,
normally distributed, respectively. (a) The Voronoi diagram for the green individuals, (b)
the increase of the median of area of Voronoi cells by increasing noise strength.



Chapter 4

Continuum limits

4.1 Introduction

When we consider massive movements of populations on the ecological scales, the con-

tinuum approach is widely adopted for modeling swarming systems which is easy and more

suitable for theoretical analysis especially when N goes to infinity.

As we know there is a gap between the individual rules and continuum fluxes and most

continuum models in the literature are constructed on the basis of heuristic arguments. To

attempt to find a connection, here we derive a continuum model by explicitly calculating

the ensemble average of the models I and II by using a probability distribution function.

By starting from a microscopic collection of N particles, we derive the continuum hydrody-

namic equations.

Before getting to the statistical mechanical theory, we briefly derive fluid dynamics

equations, i.e. the continuity equation, the hydrodynamical equation of motion and the

energy transport equation. The presentation follows very closely the work of [18]. Consider

a continuous fluid consisting of a single chemical component with mass density ρ(x; t) and

local velocity u(x; t) at the point x and at the time t. Somewhere in the interior of the fluid,

take ω as a fixed region. As we know, the mass of the fluid within ω is given by
∫
ω ρ(x; t)dω.

The influx of fluid through the boundary causes the increase of mass∫
ω

∂

∂t
ρdω = −

∫
S
ρu · dS = −

∫
ω
∇x · [ρu]dω,

33
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where S is the boundary of ω and the surface integral has been converted to a volume

integral by Gauss’ theorem. Finally, since ω is arbitrary, we get the continuity equation by

equating the integrals
∂

∂t
ρ(x; t) = −∇x · [ρ(x; t)u(x; t)]. (4.1)

To derive the hydrodynamical equation of motion, we should equate the the rate of

change of momentum within ω, plus the rate of flow of momentum out through the surface

of ω, to the sum of the forces acting on the fluid within ω. These forces are the body force

and the surface force. Therefore we have∫
ω

∂

∂t
[ρ(x; t)u(x; t)]dω +

∫
S
ρ(x; t)u(x; t)u(x; t) · dS =

∫
ω

X(x; t)dω +
∫
S
σ(x; t) · dS,

or

∫
ω

∂

∂t
[ρ(x; t)u(x; t)]dω +

∫
ω
∇x · [ρuu]dω =

∫
ω

X(x; t)dω +
∫
ω
∇x · σdω,

where X is the force per unit volume due to external sources and σ is the symmetric stress

tensor. Since ω is arbitrary, the resulting differential equation is

∂

∂t
[ρu] +∇x · [ρuu] = X +∇x · σ. (4.2)

To derive the energy transport equation, we need to define the internal energy density,

E(x; t), which consists of three parts the interaction potential energy density, EV (x; t), due

to interactions between fluid particles; the kinetic energy density, EK(x; t); and the potential

energy density, Eψ(x; t), due to external sources, assumed to be conservative.

E = EV + EK + Eψ. (4.3)

The rate of change of internal energy within ω is
∫
ω
∂
∂tE(x; t)dω and the rate of flux of

energy from ω is ∫
S

[E(x; t)u(x; t) + q(x; t)] · dS =
∫
ω
∇x · [Eu + q]dω,

where Eu is the convective energy current and q is the conductive heat current. The work

done per unit time by the fluid within ω on the rest of the system is

−
∫
ω

u · σ · dS = −
∫
S
∇x · (u · σ)dω.
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According to the law of conservation of energy, the sum of these three rates must vanish.

Since ω is arbitrary, the sum of the integrals must also vanish, giving the energy transport

equation
∂

∂t
E +∇x · [Eu + q− u · σ] = 0. (4.4)

4.2 Distribution Function and Expectation Values

In statistical mechanical theory, we consider a system consisting of N molecules each hav-

ing two degrees of translational freedom (but for the sake of simplicity, no other degrees

of freedom) and therefore we no longer deal with a continuous fluid. Assume that the po-

sitions of these molecules are x1,x2, ...,xN , and their momenta are p1,p2, ...,pN which

are the coordinates of the 4N−dimensional phase space. The probability distribution func-

tion (relative density of representative points in phase space) we denote by f(Γ, t) where

Γ(t) = (x1(t),x2(t), ...,xN (t),p1(t),p2(t), ...,pN (t)) is the phase space vector, satisfying the

normalization condition
∫
fdΓ = 1, where dΓ is the volume element in the configuration-

momentum space.

The well-known Liouville equation governs the evolution of the distribution f in time.

Assume that U is the potential energy of the entire system. By using the fact that ẋk =

pk/mk and ṗk = −∂U/∂xk, we have

∂f

∂t
= −

N∑
k=1

[ẋk · ∇xk
f + ṗk · ∇pkf ] =

N∑
k=1

[− pk
mk
· ∇xk

f +∇xk
U · ∇pk

f ].

Now we define the expectation value given at time t for any dynamical variable, α(Γ),

with the distribution f as follows

〈α; f〉 =
∫
α(Γ)f(Γ; t)dΓ.

This is merely the inner product of α and f taken over phase space. Now we want to find

the rate of change of the expectation value of α. First of all we compute that

∂

∂t
〈α; f〉 = 〈α;

∂f

∂t
〉 =

N∑
k=1

[〈α;− pk
mk
· ∇xk

f〉+ 〈α;∇xk
U · ∇pk

f〉];
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and by Green’s theorem applied in the space of xk

〈α;− pk
mk
· ∇xk

f〉 = 〈 pk
mk
· ∇xk

α; f〉.

In the above equations, we assume that α does not depend on time explicitly and the system

is bounded or f falls off sufficiently rapidly as xk →∞. Similarly, since∇xk
U is independent

of momentum pk, and since f falls off rapidly as pk → ∞, use of Green’s theorem in the

momentum space of pk yields

〈α;∇xk
U · ∇pk

f〉 = −〈∇xk
U · ∇pk

α; f〉,

thus
∂

∂t
〈α; f〉 =

N∑
k=1

〈 pk
mk
· ∇xk

α−∇xk
U · ∇pk

α; f〉. (4.5)

Therefore the expectation value of the dynamical variable

N∑
k=1

[
pk
mk
· ∇xk

α−∇xk
U · ∇pk

α],

is the rate of change of the expectation value of α.

4.3 Statistical Mechanical Expressions For Densities

As we have seen in the introduction, the equations of hydrodynamics 4.1,4.2 and 4.4 are

concerned with densities in ordinary 2-space, i.e., mass density, momentum density, and

energy density. We now present these as the expectation values of dynamical variables over

an ensemble having distribution function f . By definition we note that the probability per

unit volume that the kth molecules be at xk is∫
f(Γ; t)dx1...dxk−1dxk+1...dxNdp1...dpN ,

and also the probability per unit volume that the kth molecule be at x at time t in terms of

Dirac’s δ−function is

〈δ(xk − x); f〉 =
∫
δ(xk − x)f(Γ; t)dΓ.
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The total mass density at x due to all molecules is thus given at time t by

ρ(x; t) =
N∑
k=1

mk〈δ(xk − x); f〉.

The mean momentum of the kth molecule, providing it is at x and the locations of the others

are unspecified, is given by the ratio∫
pkδ(xk − x)f(Γ; t)dΓ∫
δ(xk − x)f(Γ; t)dΓ

=
〈pkδ(xk − x); f〉
〈δ(xk − x); f〉

.

The total momentum density at x is thus given at time t by

ρ(x; t)u(x; t) =
N∑
k=1

〈pkδ(xk − x); f〉,

where u(x; t), thus defined, is the mean fluid velocity at x.

Since the kinetic energy of the kth molecules is p2
k/2mk (where pk is the magnitude of

the vector pk), its contribution to the kinetic energy density at x is 〈(p2
k/2mk)δ(xk − x); f〉,

and the entire kinetic energy density at x is given at the time t by

EK(x; t) =
N∑
k=1

〈
p2
k

2mk
δ(xk − x); f〉.

Now we assume the potential energy, U , of the system to be of the form

U =
N∑
k=1

ψk(xk) +
1
2

∑
k

∑
j 6=k

Vjk,

where ψk(xk) is the potential energy of the kth molecule in an external field of force, and

Vjk is the mutual potential between the jth and kth molecules, depending on the location

of both the jth and the kth molecule. The potential energy ψk(xk) may quite naturally

be considered localized at xk, the location of the kth molecule . Hence, the total potential

energy density at x associated with the interaction of molecules with the external field is

Eψ(x; t) =
N∑
k=1

〈ψk(xk)δ(xk − x); f〉 =
N∑
k=1

ψk(x)〈δ(xk − x); f〉.

Similarly the force on the kth molecule due to external sources is −∇xk
ψk(xk), and the

external force (body force) per unit volume at x is

X(x; t) = −
N∑
k=1

〈[∇xk
ψk(xk)]δ(xk − x); f〉 = −

N∑
k=1

[∇xψk(x)]〈δ(xk − x); f〉.
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According to [18], half of the energy Vjk resides in each molecule of the pair and therefore

the total interaction potential energy residing in the kth molecule is

1
2

∑
k

∑
j 6=k

Vjk,

and the total interaction potential energy density at x is

EV (x; t) =
1
2

∑
k

∑
j 6=k
〈Vjkδ(xk − x); f〉.

Finally we define the pair density, ρ(2)(x,x′; t), as the probability per (unit volume)2

that one molecule (any molecule) will be at x and another will be at x′. It is given by

ρ(2)(x,x′; t) =
∑
k

∑
j 6=k
〈δ(xj − x)δ(xk − x′); f〉.

The pair density is a symmetric function of its two arguments, x and x′.

4.4 The Equation of Continuity and the Hydrodynamical

Equation of Motion

We now use what have developed so far to derive our desired equations. Let α be

α =
N∑
j=1

mjδ(xj − x),

then
pk
mk
· ∇xk

α−∇xk
U · ∇pk

α = pk · ∇xk
δ(xk − x) = −∇x · [pkδ(xk − x)],

and finally according to equation (4.5)

∂

∂t
ρ(x; t) =

∂

∂t
〈α; f〉 =

N∑
k=1

〈−∇x · [pkδ(xk − x)]; f〉 = −∇x · [ρ(x; t)u(x; t)],

which is the equation of continuity, equation (4.1).
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To derive the hydrodynamical equation of motion, we generalize equation (4.5) to find

the expectation value of a vector β having components αν . According to equation (4.5), for

ν = 1, 2, 3,
∂

∂t
〈αν ; f〉 =

N∑
k=1

〈 pk
mk
· ∇xk

αν −∇xk
U · ∇pk

αν ; f〉.

These three equations may be written in dyadic notation as

∂

∂t
〈β; f〉 =

N∑
k=1

〈( pk
mk
· ∇xk

)β − (∇xk
U · ∇pk

)β; f〉.

We now take β to be

β =
N∑
j=1

pjδ(xj − x).

Then

(
pk
mk
· ∇xk

)β − (∇xk
U · ∇pk

)β = (
pk
mk
· ∇xk

)pkδ(xk − x)− (∇xk
U · ∇pk

)pkδ(xk − x)

= −∇x · [
pkpk
mk

δ(xk − x)]− (∇xk
U)δ(xk − x)

= −∇x · [
pkpk
mk

δ(xk − x)] + ṗkδ(xk − x).

From the definition of momentum density, we have

〈β; f〉 = ρ(x; t)u(x; t).

Therefore,

∂

∂t
[ρ(x; t)u(x; t)] =

N∑
k=1

[−∇x · 〈
pkpk
mk

δ(xk − x); f〉+ 〈ṗkδ(xk − x); f〉].

The first term of the right hand side of this equation may be modified by noting that

N∑
k=1

mk〈(
pk
mk
− u)(

pk
mk
− u)δ(xk − x); f〉 =

N∑
k=1

〈pkpk
mk

δ(xk − x); f〉 − u
N∑
k=1

〈pkδ(xk − x); f〉

= −
N∑
k=1

〈pkδ(xk − x); f〉u + uu
N∑
k=1

mk〈pkδ(xk − x); f〉

=
N∑
k=1

〈pkpk
mk

δ(xk − x); f〉 − ρuu.
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hence,
∂(ρu)
∂t

+∇x · (ρuu) = −∇x · σK(x; t) +
N∑
k=1

〈ṗkδ(xk − x); f〉. (4.6)

where

σK =
N∑
k=1

mk〈(
pk
mk
− u)(

pk
mk
− u)δ(xk − x); f〉.

4.5 Continuum Versions of Models I and II

4.5.1 Model I

From equation (2.1) we have

ṗk = αpk − β
|pk|2

m2
k

pk −∇Uk(xk).

Now substitute this explicit form of ṗk into the second term of equation (4.6)

N∑
k=1

〈ṗkδ(xk − x); f〉 =
N∑
k=1

〈(αpk − β
|pk|2

m2
k

pk −∇Uk(xk))δ(xk − x); f〉

= αρu−
N∑
k=1

〈β |pk|
2

m2
k

pk; f〉+ FV ,

where FV (x; t) =
∑N

k=1〈−∇Uk(xk)δ(xk − x); f〉 . To simplify more, we compute that

N∑
k=1

〈β |pk|
2

m2
k

pkδ(xk − x); f〉 = β

N∑
k=1

〈 |pk|
2

m2
k

pkδ(xk − x); f〉 − β
N∑
k=1

〈 |pk|
2

mk
uδ(xk − x); f〉

+ β
N∑
k=1

〈mk(−2
pk
mk
· u + |u|2)(

pk
mk
− u)δ(xk − x); f〉

+ 2βEKu− 2βu · σK + β
N∑
k=1

〈mk|u|2(
pk
mk
− u)δ(xk − x); f〉

= 2β
N∑
k=1

〈mk

2
| pk
mk
− u|2(

pk
mk
− u)δ(xk − x); f〉+ 2βEKu− 2βu · σK

= 2βqK + 2βEKu− 2βu · σK .

where

qK =
N∑
k=1

〈mk

2
| pk
mk
− u|2(

pk
mk
− u)δ(xk − x); f〉,
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and EK = ρ|u|2/2 is the kinetic energy [5].

As a result, equation (4.6) can be written as

∂(ρu)
∂t

+∇ · (ρuu) +∇ · σK = αρu− 2βEKu− 2βqK + 2βu · σK + FV . (4.7)

which is the momentum transport equation.

Now we consider the case of identical masses, mk = m. According to [5], by simulating

the discrete model, the magnitude of qK and σK are negligible with respect to the other

terms on the right hand side of equation (4.7). Thus

∂ρ

∂t
+∇ · (ρu) = 0, (4.8)

∂

∂t
(ρu) +∇ · (ρuu) = αρu− 2βEKu + FV . (4.9)

According to equation (2.2) of chapter 2, we have Ui(xi) =
∑N

j 6=i V (xi − xj) where

Φ(xi − xj) = −Cae−
|xi−xj |

la + Cre
−
|xi−xj |

lr ; (4.10)

therefore,

FΦ(x; t) =
N∑
i=1

N∑
j=1

〈−∇xiΦ(xi − xj)δ(xi − xj); f〉.

Using the fact that an arbitrary function F (x),x ∈ Rd, can be written as

F (x) =
∫

Rd

F (y)δ(x− y)dy,

we have

FΦ(x; t) =
N∑
i=1

N∑
j=1

∫
Rd

dy × 〈−∇xiΦ(xi − y)δ(xi − x)δ(xj − y); f〉

=
∫

Rd

−∇xΦ(x− y)
N∑
i=1

N∑
j=1

dy × 〈δ(xi − x)δ(xj − y); f〉

=
∫

Rd

−∇xΦ(x− y)ρ(2)(x,y; t)dy. (4.11)

Note that we should take the ensemble average on a scale considerably larger than

the spacing between particles. If the particles are quite dispersed, the suitable scale may be
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much larger than the characteristic lengths of the interaction force (−∇Φ in equation (4.11)),

rendering it localized. In this case, the continuum approach cannot capture the swarming

characteristics occurring on the interaction scale and fails to describe the individual-based

model on such a scale. This is what occurs in the H-stable regime.

For identical particles, the pair density can be written as

ρ(2)(x,y; t) =
1
m2

ρ(x; t)ρ(y; t)g(2)(x,y),

where the correlation function g(2)(x,y) = 1 when the particles have no intrinsic correlation.

By using this assumption,

ρ(2)(x,y; t) =
1
m2

ρ(x; t)ρ(y; t),

and

FΦ(x; t) =
∫

Rd

−∇xΦ(x− y)
1
m2

ρ(x; t)ρ(y; t)dy.

If we further substitute the interaction potential into the above equation, we get

FΦ(x; t) = −ρ(x; t)∇
∫

Rd

(−Ca
m2

e−
|xi−xj |

la +
Cr
m2

e−
|xi−xj |

lr )ρ(y; t)dy.

Without loss of generality we choose m = 1; since all particles have identical masses. By

simplifying equation (4.9) like dividing by ρ on both sides, we obtain a more conventional

expression

∂ρ

∂t
+∇ · (ρu) = 0, (4.12)

∂u
∂t

+ u · ∇u = αu− β|u|2u− 1
m2
∇

∫
Rd

Φ(x− y)ρ(y; t)dy. (4.13)

4.5.2 Deterministic Version of Model II

According to equation (3.1), the equations of the motions for N identical particles of the

deterministic version of model II are

ẋi = vi,

v̇i = vi − |vi|2vi −∇Ui(xi)
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where U(xi) =
∑N

j 6=i Φ(xi − xj) and Φ(x) = a
2N |x|

2. Therefore, according to section 4.5.1,

we derive equation (4.1) similarly for this model and provided in equation (4.7), qK and σK
are negligible then according to equation (4.13) for m = 1, we get

∂u
∂t

+ u · ∇u = u− |u|2u−∇
∫

Rd

V (x− y)ρ(y; t)dy

= u− |u|2u− a

N

∫
Rd

(x− y)ρ(y; t)dy. (4.14)

The continuum models are more suitable for theoretical analysis especially where N is

large or massive movements of populations are considered. In [5], it is proved that when

the interaction potential is H-stable, the derived continuum version of model I, equations

(4.12) and (4.13), does not approximate the individual dynamics. Therefore, further analysis

on the continuum versions show that when these versions are comparable to the discrete

models.



Conclusions and Future Work

Individual-based modeling has become a promising tool in mathematical biology from which

complex behaviours of the individuals can be understood. In this thesis, we considered two

individual-based models, model I and model II. For model I, we derived some interesting

aggregation geometries and we considered the H-stability of the model. We also obtained

the transition behaviour in the corresponding noisy system. For model II, we showed that

the longitudinal dispersion of a swarm depends linearly on the noise intensity D whereas

the transverse dispersion increases as
√
D. We also considered an extension of model II for

which we derived new solutions, scaling the diameter and illustrated a transition behaviour.

Finally in chapter 4, we used the classical statistical theory to derive the continuum versions

of these models.

It should be interesting to identify the other types of transition behaviour in Model I

which could exist among different aggregation geometries, for example, a transition from a

clump solution to a vortex. Another issue of relevance is finding the critical noise strength

that breaks down the semi-translational solution in the extended model II. We might also

look for similar results obtained for the extended model II with other potential forces with

random attraction coefficients. Another interesting problem is adding some terms to the

equations of the extended model II representing the act of predators in a population with

preys and predators.
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