
IMAGE INPAINTING

WITH THE COMPLEX GINZBURG-LANDAU

EQUATION

by

Sonoko Nakano

BS., Simon Fraser University, 2008

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the Department

of

Mathematics

c� Sonoko Nakano 2010

SIMON FRASER UNIVERSITY

Summer 2010

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Sonoko Nakano

Degree: Master of Science

Title of Thesis: Image Inpainting with the Complex Ginzburg-Landau Equa-

tion

Examining Committee: Dr. Paul Tupper

Chair

Dr. Manfred Trummer,

Senior Supervisor

Dr. Steve Ruuth,

Supervisor

Dr. JF Williams,

Internal/External Examiner

Date Approved:

ii

lib m-scan11
Typewritten Text
August 4, 2010

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

Image inpainting is the process of reconstructing lost or deteriorated parts of an image

or video. The topic of this thesis is a mathematical technique for inpainting based on

the Ginzburg-Landau equation (GL). This approach was first presented by Grossauer and

Scherzer. The Ginzburg-Landau equation is a classical equation in the field of electromag-

netism, introduced by V.L. Ginzburg and L.D. Landau in 1950. At first the Ginzburg-

Landau energy is discussed, and then it is shown how to obtain the GL equation by mini-

mizing this energy. This is followed by a brief discussion of the mathematical properties of

the GL equation. It is then shown how to apply the real and complex GL equation to in-

painting. Our approach is essentially to compute the steady state of an evolution equation.

Finite differences are employed to discretize the equation, and the stability and consistency

of an explicit and an implicit scheme is analyzed. Finally, some examples are presented, and

the performance of our inpainting method is discussed. A comparison between the GL-based

method and the one introduced by Bertalmio, Sapiro, Caselles and Ballester concludes the

presentation and indicates the GL approach is superior.

iii

Acknowledgments

I would like to give my sincere thanks to my supervisor Dr. Manfred Trummer for his

suggestion of the topic, for his patience, guidance and encouragement in the writing of this

thesis, and for the effort he made in reading and correcting my work. Without his support,

this thesis could not have been completed.

Special thanks to all members of my examining committee, Dr. Paul Tupper, Dr. Steve

Ruuth and Dr. JF Williams, for their invaluable comments and suggestions.

iv

Contents

Approval ii

Abstract iii

Acknowledgments iv

Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Ginzburg-Landau Energy . 2

1.2 Ginzburg-Landau Energy with Magnetic Field 2

1.3 Ginzburg-Landau Energy without Magnetic Field 3

1.4 Ginzburg-Landau Equation . 4

2 Minimizing the Ginzburg-Landau Energy 5

2.1 Euler Equation . 5

2.1.1 How to Calculate the Euler Equation 5

2.2 Ginzburg-Landau Equation . 7

2.2.1 u(x) is a real-valued function . 7

2.2.2 Inpainted images using the real-valued Ginzburg-Landau Equation . . 10

2.2.3 u(x) is a complex-valued function . 14

2.2.4 Co-dimension one phase transition problem 15

2.2.5 Co-dimension two phase transition problem 21

v

3 Implementation of the Algorithm 24

3.1 Implementation . 24

3.2 Explicit Discretization . 25

3.2.1 Time discretization . 25

3.2.2 Space discretization . 25

3.2.3 Convergence of Explicit method . 26

3.3 Implicit Discretization . 32

3.3.1 Fully Implicit discretization . 32

3.3.2 Newton’s method . 32

3.3.3 Semi-Implicit method . 34

3.3.4 Convergence of Implicit method . 35

4 Analysis of Results 40

4.1 Colour Images . 40

4.1.1 Using the max norm . 40

4.1.2 Hypothesis for the Spurious Colour . 41

4.1.3 Experimental result for the Hypothesis 41

4.1.4 Experiment with a Real Picture . 43

4.2 Size and Shape of the Inpainting Area . 45

4.2.1 Inpainting the missing region Γ when Γ is a white bar 46

4.2.2 Inpainting the missing region Γ when Γ has several levels of brightness 52

4.2.3 Inpainting the missing region Γ when Γ is a part of the circle 54

4.3 The relationship between the value of ε and the time step size ∆t 56

4.3.1 The results for the Explicit method 57

4.3.2 The results for the Semi-Implicit method 60

4.3.3 The results for the Fully Implicit method 64

4.4 Explicit method versus Implicit method . 67

5 Comparison with the BSCB method 71

5.1 Assumptions for Implementation . 71

5.1.1 The Process of Inpainting . 72

5.1.2 A Smooth Function g for the Anisotrpic Diffusion 72

5.1.3 The Euclidean curvature function κ for the Anisotrpic Diffusion . . . 73

5.2 Comparison in Programming . 73

vi

5.2.1 The equations to be defined for the BSCB algorithm 73

5.2.2 The equations to be defined for the Ginzburg-Landau Equation 75

5.3 Comparison of Inpainted Images . 75

5.3.1 Experiment 1 . 75

5.3.2 Experiment 2 . 81

5.3.3 Speeding up the BSCB method via methods in Fluid Dynamics 81

Bibliography 84

vii

List of Tables

4.1 Maximum values List for Colour Distribution of the whole image 45

4.2 Results of 4.4.1 . 59

4.3 Results of 4.4.2 . 63

4.4 Results of 4.4.3 . 66

viii

List of Figures

2.1 u is a Real-valued function Left: one-dimensional Right: two-dimensional . 10

2.2 Top: Original Image (left) and Mask Image (right) 11

2.3 Inpainted with the Real-valued GLE . 12

2.4 Left: Diffusion term only, Right: Via the complex-valued GLE 13

2.5 Plots of equation (2.25) with ε = 0.005, 0.01, 0.05 and 0.1 19

3.1 The 5-point stencil for the Laplacian about the point (i, j) 26

4.1 Original Image . 42

4.2 Left: ||u|| = max{|u(R)|, |u(G)|, |u(B)|}, Right: |u| 42

4.3 Original image (left) and mask image (right) 43

4.4 Inpainted image and Colour Distribution

Top: The max value is used

Bottom: Processed separately . 44

4.5 Left: Original Image (Ω:150-by-300, Line width: 50) Right: Inpainted image 46

4.6 Line width=30, Mask size: height = 250, width = 300, after 1600 iterations 47

4.7 Line width=50, Mask size: height = 310, width = 100, after 700 iterations . . 48

4.8 Line width=50, Mask size: height=150, width=80, after 140 iterations . . . 50

4.9 Line width=50, Mask size: height=130, width=100, after 180 iterations . . . 51

4.10 Top Left: Original Image with Line width=250, Right: Mask with height=48,

width=300, Bottom Inpainted Image Left: after 332 iterations, Right: after

600 iterations . 52

4.11 Left: Mask with height=100, width=300

Middle, Right: Inpainted Images after 332 and 600 iterations respectively . . 53

ix

4.12 Left: Mask with height=310, width=100

Middle, Right: Inpainted Images after 332 and 600 iterations respectively . . 54

4.13 Left: The original Image, Middle: The mask Image, Right: The image to be

inpainted . 54

4.14 Inpainted images and Energy plot

Top Left: after 100 iterations, Right: after 200 iterations

Middle Left: after 300 iterations, Right: after 400 iterations

Bottom: The energy plot . 55

4.15 Left : Ambiguous image, Right: via Ginzburg-Landau algorithm u 56

4.16 via Level set algorithm u1, u2 . 56

4.17 Inpainted Images

Left � : Expected results,

Middle � : grey square at the centre,

Right � : space in the vertical bar . 57

4.18 Energy Plots

Row 1: Iteration = 500, ∆t = 0.1, ε = {0.6, 0.7, 0.8, 0.9}
Row 2: Iteration = 500, ∆t = 0.05, ε = {0.6, 0.7, 0.8, 0.9} 58

4.19 Examples of the inpainted image with the semi-implicit method

Top: Left � : Expected result, Right ◦ : Good result

Bottom: − : No change from the beginning of the iteration 61

4.20 Energy Plots for the semi-implicit method

Row 1: Iteration = 100, ∆t = 0.05, ε = {0.5, 0.7, 0.9}
Row 2: Iteration = 100, ∆t = 0.1, ε = {0.5, 0.7, 0.9} 61

4.21 Examples of the inpainted image with the fully-implicit method

Left � : Expected Result, Right ⊗ : noise 65

4.22 Energy Plots for the fully implicit method

Row 1: Iteration = 50, ∆t = 0.2, ε = {0.5, 0.7, 0.9}
Row 2: Iteration = 50, ∆t = 0.3, ε = {0.5, 0.7, 0.9}, 65

4.23 Explicit method Left : Inpainted image with ∆t = 0.1, ε = 0.7, Top: 100,

Middle: 500, Bottom: 1000 iterations Right: The energy of the image . . . 68

4.24 Semi-Implicit method Left : Inpainted image with ∆t = 0.1, ε = 0.7, Top:

60, Middle: 100, Bottom: 200 iterations Right: The energy of the image . 69

x

4.25 Fully Implicit method Left : Inpainted image with ∆t = 0.1, ε = 0.7, Top:

100, Middle: 200, Bottom: 300 iterations Right: The energy of the image . 70

5.1 Smooth function g . 72

5.2 Left : Ambiguous image, Right: via Ginzburg-Landau algorithm u

from Section 4.3 . 75

5.3 The inpainted images of Ambiguous image by BSCB algorithm after 1000

iterations, Top: ∆t = 0.01 (left), 0.05 (right), Bottom: ∆t = 0.1(left), 0.2

(right) . 76

5.4 LW 50, Ω = height 150, width 300

Top Left: Original Image, Right: Mask Image

Bottom Left: via BSCB with 5000 iterations, Right: via GL equation

with 1000 iterations . 77

5.5 LW 50, Ω = height 310, width 100

Top Left: Original Image, Right: Mask Image

Bottom Left: via BSCB with 5000 iterations, Right: via GL equation

with 700 iterations . 78

5.6 Ω = height 48, width 300

Top Left: Original Image, Right: Mask Image

Bottom Left: via BSCB with 5000 iterations, Right: via GL equation

with 600 iterations . 79

5.7 Ω = height 310, width 100

Top Left: Original Image, Right: Mask Image

Bottom Left: via BSCB with 5000 iterations, Right: via GL equation

with 600 iterations . 80

5.8 The First example

Top: Left Original image with line width 20, Right Ω is grey region

Bottom: Left via BSCB algorithm, Right via Ginzburg-Landau equa-

tion . 82

xi

5.9 The Second example

Top: Left Original image, Right Mask image

Middle: Left Function g, Right Inpainted image via BSCB algorithm with

500 iterations,

Bottom: Left Ω set to be 0, Right Inpainted image via Ginzburg-Landau with

50 iterations . 83

xii

Chapter 1

Introduction

Image inpainting is the process of restoring lost or damaged parts of a picture, painting or

frame in a video. It has traditionally been performed by artists. Digital image inpainting,

first introduced in the paper of Bertalmio, Sapiro, Caselles and Ballester (SIGGRAPH 2000)

([1]), is done automatically by computer software.

The common use of digital inpainting is to restore missing data in the image, but in-

painting techniques have broad applications from restoring deteriorated paintings and pho-

tographs to removing or replacing selected objects in an image. There are many different

approaches proposed by different researchers.

This thesis describes inpainting using the Ginzburg-Landau equation based on the paper

by Grossauer and Scherzer [20]. Other methods are:

1. An inpainting algorithm based on level lines (proposed by Masnou and Morel) [25, 26]

2. A variational method (proposed by Ballester et al.) [9]

The algorithm solves a system of PDEs by using level sets of the image intensity

function.

3. An algorithm which is like a professional restorator’s work (proposed by Bertalmio et

al.) [11] (This method is described in Chapter 5.)

Let the region to be restored be Ω. The information surrounding Ω is prolonged into

Ω by extending the contour lines at the boundary of Ω . The algorithm is combined

with diffusion process to ensure a correct evolution of the direction field.

4. TV-inpainting (proposed by Chan and Shen) [14, 15]

1

CHAPTER 1. INTRODUCTION 2

The TV-inpainting model is closely connected to the total variation (TV) denoising

model.

5. A method of a fourth order PDE (proposed by Esedoglu and Shen) [16]

A fourth order PDE was derived from the combination of the Euler elastica functional

and the Mumford-Shah functional.

6. An inpainting algorithm which is optimized for speed (proposed by Oliveira et al.)

[27]

1.1 Ginzburg-Landau Energy

The Ginzburg-Landau equation is a classic equation arising in the physics of electric mag-

netism. According to the papers [20, 19] and a book [29], it was introduced in [18] by V.L.

Ginzburg and L.D. Landau in 1950. The original equation was for the Ψ-function for the

‘superconducting electrons’ [18], and the equation which was introduced in [18] is rather

complicated.

In [22], the original Ginzburg-Landau energy with the magnetic field is defined as

E(ψ,A) =

�

Ω
Fn + α|ψ|2 + β

2
|ψ|4

+
1

2m∗ |(−i�∇− e∗A

c
)ψ|2

+
|curlA|2

8π
,

where, ψ is the wave function for the particle of charge e∗ and mass m∗, c is the light

speed, � is the Planck constant, and A is the vector potential for the magnetic field h, i.e.

h = curlA.

Since the topic of this thesis is not superconductivity, we start with the model of the

Ginzburg-Landau energy as introduced in [30].

1.2 Ginzburg-Landau Energy with Magnetic Field

In [30], the Ginzburg-Landau energy with magnetic filed is introduced as

Gε(u,A) =
1

2

�

Ω
|∇Au|2 + |h− hex|2 +

(1− |u|2)2

2ε2
. (1.1)

CHAPTER 1. INTRODUCTION 3

• The unknown u is a complex valued function, and in [18], it is denoted as

Ψ, which is a characteristic parameter. For temperature above the critical

temperature, Tc, Ψ = 0 in the state of thermodynamic equilibrium, while

for temperature below Tc, Ψ �= 0.

The function u is normalized to be |u| ≤ 1, and where |u| � 1 the material

is in the superconducting phase, while where |u| = 0, it is in the normal

phase.

• The unknown A is the electromagnetic vector-potential of the magnetic

field, mapping from Ω to R2.

• The notation ∇A denotes the covariant gradient ∇− iA: ∇Au = ∇u− iAu.

Therefore, ∇Au is a vector with complex components ([30]).

• The parameter hex > 0 represents the intensity of the applied field.

• The parameter ε = 1
κ
is the inverse of the “Ginzburg-Landau parameter”,

κ, a dimensionless parameter in [18].

1.3 Ginzburg-Landau Energy without Magnetic Field

In [20], the Ginzburg-Landau energy functional is introduced as the functional which de-

pends on the order function u: Ω → C:

F (u,∇u) :=
1

2

�

Ω
| − i∇u|2� �� �
kinetic term

+α|u|2 + β

2
|u|4

� �� �
potential term

(1.2)

where, α = − 1
ε2

and β = −α.

In [30] as well as in [13, 22, 29], the Ginzburg-Landau energy without magnetic field is

introduced as

Eε(u) =
1

2

�

Ω
|∇u|2 + (1− |u|2)2

2ε2
. (1.3)

This equation is obtained by setting the magnetic potential A and the intensity of the

applied field hex in Gε(u,A) equal to zero in (1.1). If we expand the second term in (1.3)

and let α = − 1
ε2

and β = −α, we get,

Eε(u) =
1

2

�

Ω
|∇u|2 − α

2
+ α|u|2 + β

2
|u|2. (1.4)

CHAPTER 1. INTRODUCTION 4

F and Eε in (1.2) and (1.3) respectively differ only by a constant −α

2 in the energy term,

therefore, they are equivalent: Minimizing either term gives the same minimizer.

1.4 Ginzburg-Landau Equation

The Ginzburg-Landau equation is a model equation for “Superconductivity” and “Phase

transition”, and it is derived from the Ginzburg-Landau Energy functional (1.2) or (1.3).

(How to derive the Ginzburg-Landau equation from its energy functional is explained in the

next chapter.)

The time dependent Ginzburg-Landau equation is given by:

ψt = ∆ψ + κ2(1− |ψ|2)ψ.

The stationary case is therefore

0 = ∆ψ + κ2(1− |ψ|2)ψ,

where κ is a positive constant, and ψ is complex valued function.

According to [13], in superconductors, |ψ|2 is proportional to the density of supercon-

ducting electrons. i.e.

|ψ| ≈ 1 : Superconducting state,

|ψ| ≈ 0 : Normal state.

In superfluids, |ψ|2 is proportional to the density of the superfluid. Near the cores of the

vortices, the superfluid density |ψ|2 is almost zero; away from the cores, |ψ|2 ≈ 1.

Chapter 2

Minimizing the Ginzburg-Landau

Energy

2.1 Euler Equation

As mentioned in Chapter 1, [20] says that Ginzburg and Landau derived the approximation

for the corresponding energy functional, which depends on the order function u: Ω → C:

F (u,∇u) :=
1

2

�

Ω
| − i∇u|2� �� �
kinetic term

+α|u|2 + β

2
|u|4

� �� �
potential term

(1.2)

where, α = − 1
ε2

and β = −α.

The state of minimal energy satisfies the Euler equation of (1.2).

2.1.1 How to Calculate the Euler Equation

The Euler equation of an energy functional describes the stationary point of the energy

functional. The factor −i in the kinetic term is a holdover from quantum mechanics and is

not essential ([20]), hence we omit −i.

We apply calculus of variation as in [17]. We construct u�(x) = u(x) + �η(x), where

η(x) is continuously differentiable and η|∂Ω = 0. The quantity � is a parameter which is

independent of x. Substitution into (1.2) yields,

F = F (u+ �η,∇u+ �∇η)

=
1

2

�

Ω
|∇u+ �∇η|2 + α|u+ �η|2 + β

2
|u+ �η|4. (2.1)

5

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 6

In order for F to be stationary at � = 0, it is necessary that

dF

d�
|�=0 = 0. (2.2)

Therefore, we differentiate (2.1) with respect to �, and set � = 0.

0 =
dF

d�
|�=0

=
1

2

d

d�

��

Ω
(∇u∇u+ 2�∇u∇η + �2∇η2) + α(u2 + 2u�η + �2η2)

+
β

2
(u4 + 4u3�η + 6u2�2η2 + 4u�3η3 + �4η4)

�����
�=0

=
1

2

�

Ω

�
2∇u∇η + 2αuη +

β

2
4u3η

�

=

�

Ω

�
∇u∇η + αuη + βu3η

�
(2.3)

Using a single integration by parts for the first term, we let

w = ∇u, dv = ∇η

dw = ∇∇u = ∆u, v = η.

Then, since η|∂Ω = 0, we get,
�

Ω
∇u∇η = ∇uη

���
∂Ω

−
�

Ω
η∆u

= −
�

Ω
η∆u. (2.4)

Therefore, we plug (2.4) into (2.3) and we get

0 =

�

Ω

�
∇u∇η + αuη + βu3η

�

=

�

Ω

�
− η∆u+ αuη + βu3η

�

=

�

Ω

�
−∆u+ αu+ βu3

�
η. (2.5)

Because η is an arbitrary function, we must have:

−∆u+ αu+ βu3 = 0.

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 7

If we let α = − 1
ε2

and β = −α, then (2.5) becomes

∆u− αu− βu3 = 0

∆u+
1

ε2
u− 1

ε2
u3 = 0

∆u+
1

ε2
(1− u2)u = 0.

When we use a complex-valued function for u, the energy term must be a real number,

hence we have to use |u|2 for u2. Therefore, we get:

∆u+
1

ε2
(1− |u|2)u = 0. (2.6)

Hence (2.6) is the Euler equation of F (u,∇u) in (1.2). It is called the Ginzburg-Landau

Equation.

2.2 Ginzburg-Landau Equation

We take a closer look at the Ginzburg-Landau equation (2.6).

2.2.1 u(x) is a real-valued function

If u is a one-variable real-valued function, u : R → R, the second term of (2.6) equals 0

when u = ±1 provided ε �= 0. Since the solution to the first term is a harmonic function,

and since we are looking at a one-variable function, uxx = 0 implies u is a linear function.

As the second term favours to ±1, u = ±1 are the possible solutions.

One of the solutions for (2.6) is introduced in [20] as

u(x) =
e

√
2
ε x − 1

e
√
2
ε x + 1

= tanh
�√2

2ε
x
�
. (2.7)

(Note that the hyperbolic tangent is tanhx = e
2x−1
e2x+1 .) According to [2], the hyperbolic

tangent is the solution of the nonlinear boundary value problem

1

2
u

��
= u3 − u

u(0) = u
�
(∞) = 0.

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 8

Here, we will show that

u(x) = tanh
�√2

2ε
x
�
=

e
√
2
ε x − 1

e
√
2
ε x + 1

is the solution of u of

u
��
+

1

ε2
(1− u2)u = 0.

If we rewrite the second order equation as a first order system,

u̇ = U(u,w), ẇ = W (u,w)

then the phase paths belong to the family described by the equation ([23])

dw

du
=

W (u,w)

U(u,w)
.

In our case, we have the system u̇ = w, ẇ = 1
ε2
(u3 − u), and we want to show that the

solutions are given by u = ± tanh
�√

2
2ε x

�
.

The equilibrium points occurs when ẇ = 1
ε2
(u3 − u) = 0, i.e. a centre at (0, 0) and two

saddle points at (±1, 0). The phase path satisfies the separable differential equation

dw

du
=

1
ε2
(u3 − u)

w
.

When we integrate, we get

1

2
w2 =

1

ε2

�1
4
u4 − 1

2
u2 + C

�
, (2.8)

for some constant C. A homoclinic path, which is any phase path that joins an equilibrium

points to itself, can only be associated with the saddle point ([23]) at (±1, 0). Since the

phase paths approach to (±1, 0) only if C = 1
4 , we set C = 1

4 in the equation (2.8) and solve

for w to get:

1

2
w2 =

1

ε2

�1
4
u4 − 1

2
u2 +

1

4

�

⇒ 1

2
w2 =

1

ε2

�1
2
u2 − 1

2

�2

⇒ 1

2
w2 =

1

4ε2
(u2 − 1)2

⇒ w2 =
1

2ε2
(u2 − 1)2

⇒ w = ±
√
2

2ε
(u2 − 1).

(2.9)

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 9

Recall that u̇ = w, with u̇ = du

dx
. Hence, the solution for the homoclinic paths can be

found by integrating

w =
du

dx
= ±

√
2

2ε
(u2 − 1).

By separating the variables (for simplicity, we omit ± here), we get
�

1
√
2

2ε (u
2 − 1)

du =

�
dx.

Using the substitution u = tanh
�√

2
2ε y

�
, and du = sech2

�√
2

2ε y
�√

2
2ε dy, we get

� sech2
�√

2
2ε y

�√
2

2ε
√
2

2ε (tanh
2
�√

2
2ε y

�
− 1)

dy =

�
dx

⇒
� sech2

�√
2

2ε y
�√

2
2ε

√
2

2ε (− sech2
�√

2
2ε y

�
)
dy =

�
dx

⇒ −
�

dy =

�
dx

⇒ y = −x+ C1

Hence, a solution is u(x) = tanh
�√

2
2ε x

�
= e

√
2
ε x−1

e

√
2
ε x+1

. The solution with C1 = 0 changes rapidly

from −1 to +1 near its zero at x = 0. Other choices for C1 will produce translations of the

solution in the x-direction.

As we can see in (2.7), as x → +∞, u(x) → +1, and as x → −∞, u(x) → −1. The width

of the phase transition between ±1 is determined by the value of ε. As ε gets bigger, the

phase transition gets slower, whereas as ε gets smaller, the shape of the function approaches

the Heaviside function.

If u is a two-variable real-valued function, u : R2 → R, using Maple, we can find one of

the solutions for (2.6) as:

u(x, y) =
e

(x+y)
ε − 1

e
(x+y)

ε + 1
. (2.10)

Similarly to the one-dimensional case, we can see in (2.10), as x, y → +∞, u → +1, and as

x, y → −∞, u → −1. Also, the width of the phase transition between ±1 is determined by

the value of ε. As ε gets bigger, the phase transition gets slower, whereas as ε gets smaller,

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 10

Figure 2.1: u is a Real-valued function Left: one-dimensional Right: two-dimensional

the shape of the function approaches the Heaviside function. As we mentioned above, the

stationary points of the real-valued Ginzburg-Landau equation (2.6) are reached at u = ±1.

2.2.2 Inpainted images using the real-valued Ginzburg-Landau Equation

In this section, we will see inpainted images when we use the real-valued Ginzburg-Landau

equation. We use the images in Figure 2.2 for these experiments.

The original Lincoln and girls images and their mask images are from [3] (They were

originally from [4], but this is no longer available.), and the original parrot image and its

mask image are from [5]. The images in the top row in Figure 2.2 are the original Lin-

coln’s image and corresponding mask image. The original image was the sepia colour image

in [4], but here we treat it as a grey scale image. The images in the middle row are the

original girls’ image and corresponding mask image. The mask image shows the region to

be inpainted to be black. The images in the bottom row are the original parrot’s image

and corresponding mask image. The original image was the colour image in [4], but here we

treat it as a grey scale image. Also, the mask image shows the region to be inpainted in black.

As we will discuss the details of inpainting processes later in Chapter 3, we only introduce

the outline of the process here.

1. The images on the left-hand side of Figure 2.2 are the degraded images to be inpainted.

2. The images on the right-hand side of Figure 2.2 are the corresponding masks that

define the region to be fixed.

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 11

Figure 2.2: Top: Original Image (left) and Mask Image (right)

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 12

3. Scale the images between [−1, 1].

4. Iterate the Ginzburg-Landau equation with the explicit discretization until the maxi-

mum number of iterations is reached.

(a) For each iteration, the entire image is used to calculate the values of the Ginzburg-

Landau equation.

(b) After each iteration, only pixels defined by the mask are updated.

5. For these experiments, we use ε = 0.1 , ∆t = ε
2

4 and 1000 iterations.

Case 1 : First, we show what happens when we use the real-valued Ginzburg-Landau

equation for inpainting.

Figure 2.3: Inpainted with the Real-valued GLE

The results are shown in Figure 2.3. As expected, the regions to be inpainted are in-

painted by only black or white. The regions where the outside region is darker are filled

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 13

with black, and the regions where the outside region is brighter are filled with white. This is

because the stationary points of the real-valued Ginzburg-Landau equation (2.6) are reached

at u = ±1.

Case 2 : The inpainted images using only the diffusion term, and using the complex-

valued Ginzburg-Landau Equation

We use the same process in Case 1, but here, we scale the image between [−1, 1] and

calculate the imaginary part as I(u0) =
�
1−R(u0)2 where I and R are the imaginary

and real part of the image, respectively, and u0 is the input image.

Now, we closely look at equation (2.6). Note that the first term of (2.6), ∆u is to minimize

the kinetic term in (1.2), | − i∇u|. This term tries to minimize the gradient of u, hence the

image tends to blur. If we only use the first term of (2.6) ∆u, for inpainting, we get the left

image in Figure 2.4. We use the equation below with 1000 iterations to update the region

to be inpainted,
∂u

∂t
= ∆u. (2.11)

Figure 2.4: Left: Diffusion term only, Right: Via the complex-valued GLE

The left image in Figure 2.4 is the result when we use (2.11) over the entire image. As

we expected, the image gets blurred since the term ∆u tries to minimize the gradient of u.

The right image in Figure 2.4 is obtained when we use the complex-valued Ginzburg-

Landau equation. We notice that the complex-valued Ginzburg-Landau equation does not

lose the edges in the original image, hence the image does not get blurred. Also, since

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 14

there is no phase transition developed with the complex-valued Ginzburg-Landau equation,

the inpainted image does not look artificial. The phase transition is discussed in the next

section.

2.2.3 u(x) is a complex-valued function

If u is a complex-valued function, u : R2 → C, we seek the radial degree-one solution u

([30]) of

∆u+ (1− |u|2)u = 0 in R2 (2.12)

setting ε = 1 in (2.6). The solution u is called a degree-one radial solution of (2.12), if u

can be written in the form

u(r, θ) = f(r)eiθ, (2.13)

where (r, θ) are the polar coordinates in R2, and f is a scalar function f : R+ → R+.

If we change the Laplacian to polar coordinates, we get ([6])

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
. (2.14)

So, by using (2.14) we substitute (2.13) into (2.12), we get

∆u+ (1− |u|2)u = f
��
eiθ +

1

r
f

�
eiθ +

1

r2
i2eiθf + (1− |feiθ|2)feiθ

= (f
��
+

1

r
f

� − 1

r2
f)eiθ + (1− f2)feiθ

=
�
f

��
+

1

r
f

� − 1

r2
f + (1− f2)f

�
eiθ

= 0.

Since eiθ �= 0, f has to satisfy the second order ordinary differential equation,

f
��
+

1

r
f

� − 1

r2
f + (1− f2)f = 0. (2.15)

Then, according to [30] there exists a unique nonconstant degree-one radial solution u0

of (2.15), and f(r) → 1 as r → +∞.

This is explained also in [29], and the proof can be found in [21].

Therefore, if u is a complex-valued function, the minimum is attained when the values

of u are on the complex unit circle, hence u does not develop phase transition.

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 15

2.2.4 Co-dimension one phase transition problem

Here, the co-dimension one phase transition problems of Ginzburg-Landau equation are dis-

cussed from [22].

The co-dimension one phase transition is the phase transition between co-dimension one

objects. A co-dimension one object is represented by the zero isocontour of a function φ,

and zero isocontours are points in a one dimensional domain, curves in a two dimensional

domain, and surfaces in a three dimensional domain ([28]). We will look at a real-valued

order parameter function u in R1 and R2.

1. Steady state problems

According to [7], the order parameter is normally a quantity which is zero in one phase

and non-zero in the other. In our case, the order parameter takes −1 in one phase and

1 in the other. We consider the minimization of the energy below over the domain Ω

with the real-valued order parameter function u,

Eε(u) =
1

2

�

Ω
|∇u|2 + 1

2ε2
(u2 − 1)2dx. (2.16)

Here, ε is a small constant. The energy term, the double well potential (u2 − 1)2

will take the order parameter function u to be ±1, and the the term |∇u|2 is the

approximation of the surface energy ([22]) which makes the transition of u smooth.

• u is in R1

In the one dimensional case, let Ω = (0, 1), and let the boundary conditions be

u(0) = −1, and u(1) = 1. Then the energy minimizer has to satisfy the following

conditions with some fixed ε.

�
−uxx +

1
ε2
(u2 − 1)u = 0

u(0) = −1, u(1) = 1
(2.17)

Now, we multiply the differential equation (2.17) by ux and integrate it from 0

to x ∈ (0, 1).

If we multiply by ux, we get:

−uxxux� �� �
1�

+
1

ε2
u3ux����
2�

− 1

ε2
uux����
3�

= 0. (2.18)

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 16

By using the integration by parts, we get the following.

1�:
�

x

0
uxxux = u2x

���
x

0
−

�
x

0
uxxux

⇒ 2

�
x

0
uxxux = u2x(x)− u2x(0)

⇒
�

x

0
uxxux =

1

2
(u2x(x)− u2x(0)) (2.19)

2�:
�

x

0
u3ux = u4

���
x

0
− 3

�
x

0
u3

= [u4(x)− u4(0)]− 3
1

4
[u4(x)− u4(0)]

=
1

4
[u4(x)− 1] (2.20)

3�:
�

x

0
uux = u2

���
x

0
−
�

x

0
uux

⇒ 2

�
x

0
uux = u2(x)− u2(0)

⇒
�

x

0
uux =

1

2
(u2(x)− 1) (2.21)

Therefore, by using equations (2.19), (2.20) and (2.21), equation (2.18) becomes:

− 1

2
(u2x(x)− u2x(0)) +

1

ε2

�1
4
(u4(x)− 1)− 1

2
(u2(x)− 1)

�
= 0

⇒ −1

2
(u2x(x)− u2x(0)) +

1

ε2

�1
4
u4(x)− 1

2
u2(x) +

1

4
)
�
= 0

⇒ −1

2
(u2x(x)− u2x(0)) +

1

ε2

�1
2
u2(x)− 1

2

�2
= 0

⇒ −u2x(x) + u2x(0) +
1

2ε2
(u2(x)− 1)2 = 0

⇒ u2x(0) +
1

2ε2
(u2(x)− 1)2 = u2x(x). (2.22)

We look at the relation (2.22).

There are two cases:

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 17

(a) u2x(0) �= 0 :

Then we have u2x(x) �= 0 in all x ∈ (0, 1).

This means that there is no horizontal tangent in the interval (0, 1). Hence,

because of the boundary conditions at u(0) = −1 and u(1) = 1 , the mini-

mizer function u must be monotonically increasing.

(b) u2x(0) = 0 and

i. |u|(x) �= 1 for all x ∈ (0, 1) :

In this case, we have u2x(x) �= 0 for all x ∈ (0, 1). Again, it means there

is no horizontal tangent in the interval (0, 1). Hence, because of the

boundary conditions, the minimizer function u must be monotonically

increasing.

ii. |u|(ξ) = 1 for some ξ ∈ (0, 1) :

In this case, we have u2x(ξ) = 0 for some ξ ∈ (0, 1).

Without loss of generality, we assume u(ξ) = 1. Then, we define a new

function ũ(x) such that

ũ(x) =

�
u if x ∈ (0, ξ)

1 if x ∈ (ξ, 1).

Then, ũ has less energy than the minimizer function u, hence contra-

dicting the fact that u is the minimizer function. As we can see the

longer the interval of u = 1 is in ũ(x), the smaller the energy of ũ. So,

if we define a new function such that u ≡ 1 in all u ∈ (0, 1), then it has

the smallest energy. But in this case, the function u can not satisfy the

boundary conditions u(0) = −1 and u(1) = 1 at the same time. Hence,

we conclude that u(x) < 1 for all x ∈ (0, 1).

The symmetric argument holds for u(ξ) = −1. Hence, |u|(x) �= 1 in all

x ∈ (0, 1).

Therefore, the energy minimizer uε does not oscillate between −1 and 1. Hence,

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 18

we have shown that there exists a unique ξ0 ∈ (0, 1) such that as ε → 0,

uε(x) → −1 when x ∈ (0, ξ0)

uε(x) → 1 when x ∈ (ξ0, 1).

• u is in R2

In the two dimensional case, if we let the domain be Ω = (0, 1) × (0, 1), then

we need continuity at all edges of a rectangle formed by (0, 0), (1, 0), (0, 1), and

(1, 1). Hence, a Dirichlet boundary condition does not work anymore. So, we

impose a Neumann boundary condition. Then, in [22], the energy minimizer has

to satisfy the following conditions with some fixed ε,





−∆u+ 1
ε2
(u2 − 1)u = c

�
Ω u(x) = m

�
Ω dx

∂u

∂n = 0

(2.23)

with some constant m ∈ (−1, 1) and some unknown constant c.

In this case, the analogous result to the one dimensional case is : as ε → 0,

the minimizer of (2.16) tends to a function u0 almost everywhere such that Ω is

divided into two domains Ω1 and Ω2 and

u0(x) =

�
−1 x ∈ Ω1

1 x ∈ Ω2 ([22]).

Here, we do not prove this, instead, we will show these conditions on u0(x)

experimentally by plotting the function u which is a solution of the equation

∆u+
1

ε2
(1− |u|2)u = 0. (2.24)

We have confirmed with Maple that the two-variable real-valued function, u :

R2 → R,

u(x, y) =
e

(x+y−1)
ε − 1

e
(x+y−1)

ε + 1
(2.25)

satisfies the equation (2.24). We plot the function (2.25) in the domain of [0, 1]

× [0, 1] for ε = 0.005, 0.01, 0.05, 0.1, and see the following results in Figure 2.5.

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 19

Figure 2.5: Plots of equation (2.25) with ε = 0.005, 0.01, 0.05 and 0.1

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 20

The pictures on the left hand side are the images of domains Ω1 and Ω2, and the

pictures on the right hand side are the function in (2.25) . As we can see, clearly

u0(x, y) = 1 for (x, y) ∈ Ω1 and u0(x, y) = −1 for (x, y) ∈ Ω2. The regions Ω1

and Ω2 are separated by the line y = 1 − x. We observe that as the value of

ε gets closer to zero, the boundary of Ω1 and Ω2 gets sharper in the left hand

side of Figure 2.5. Also, as the value of ε gets smaller, the slope of the boundary

between Ω1 and Ω2 gets steeper in the right hand of Figure 2.5.

2. Long time behavior

In [22], the long-time behaviour of the minimizer of (2.16) is investigated. The main

result is that as t → ∞, the solution of the following problem





ut −∆u+ (u2 − 1)u = c(t), in Ω× (0,∞)
�
Ω u(x, t)dx = a = m

�
Ω dx, on (0,∞)

∂u

∂n = 0, on ∂Ω× (0,∞)

u(x, 0) = u0(x), in Ω,

(2.26)

where c(t) is a function of time, t only, a is a constant independent of time, t,

u0(x) ∈ H1(Ω) and |u0(x)| ≤ 1 for almost every x ∈ Ω,

converges to the set of solutions of the following problem,





−∆u+ (u2 − 1)u = c,
�
Ω u(x, t)dx = a = m

�
Ω dx,

∂u

∂n = 0,

(2.27)

for some suitable constant c.

We integrate the equation (2.26) by using the associated conditions. Then we get,
�

Ω
utdx

� �� �
1�

−
�

Ω
∆udx

� �� �
2�

+

�

Ω
(u2 − 1)udx

� �� �
3�

=

�

Ω
c(t)dx

� �� �
4�

. (2.28)

The left side:

1�:
�
Ω utdx = at = 0

Since
�
Ω u(x, t)dx = a, where a is a constant independent of time,

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 21

�
Ω utdx = d

dt

� �
Ω u(x, t)dx

�
= d

dt
(a) = 0.

2�: −
�
Ω∆udx = 0

Since by the boundary condition, we have ∂u

∂n = ∇u · n(x) = 0.

And by the divergence theorem,
�
Ω div∇u dΩ =

�
∂Ω∇u · n dS = 0,

where div∇u = ∆u.

Hence, we get,
�

Ω
(u2 − 1)udx =

�

Ω
c(t)dx

⇒
�

Ω
(u2 − 1)udx = c(t)

�

Ω
dx

⇒ c(t) =

�
Ω(u

2 − 1)udx�
Ω dx

. (2.29)

Also, according to [22], E(u)(t) = 1
2

�
Ω |∇u|2+ 1

2(u
2−1)2dx is the Lyapunov functional

for the problem (2.26).

Hence, we can conclude ([22]) that for any given smooth initial data u0, there exists

a constant C > 0 independent of time t, such that

||u||H1(Ω)(t) ≤ C,

|c(t)| ≤ C.

Using standard parabolic PDE theory ([22]), we have

||u||H2(Ω)(t) ≤ C.

Using standard ω-convergence theory ([22]), we have that as t → ∞, u(x, t) converges

to the set of solutions of (2.27). (The details of the proof for this are found in [22] .)

2.2.5 Co-dimension two phase transition problem

In this section, the co-dimension two phase transition problems of the Ginzburg-Landau

equation are discussed from [22].

Here, we represent co-dimension two geometry as the intersection of the zero isocontour

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 22

of a function φ1 with the zero isocontour of another function φ2. The intersection of points

that are zero isocontours of co-dimension one objects in R1 is the empty set in co-dimension

two objects. The intersection of curves that are zero isocontours of co-dimension one objects

in R2 is the point in co-dimension two objects. And, the intersection of surfaces that are

zero isocontours of co-dimension one objects in R3 is the curve in co-dimension two objects

([28]). Co-dimension two phase transition domains are also called vortices, and as explained,

they are points in R2 and curves in R3. We will look at a complex-valued order parameter

function u in R2.

1. Steady state problems

To describe co-dimension two phase transition, we need two co-dimension one objects

u1 and u2, which are real-valued functions. Then, we can minimize the energy of

1

2

�

Ω
|∇u1|2 + |∇u2|2 +

1

2ε2
((u21 − 1)2 + (u22 − 1)2)dx.

Since each of u1 and u2 has a co-dimension one phase transition region, the intersection

of these two co-dimension one regions might form a co-dimension two phase transition

region. But, since both function u1 and u2 take the value of ±1 near the co-dimension

one transition regions, we would have four phases (1, 1), (1,−1), (−1, 1) and (−1,−1)

near the intersection of co-dimension two phase transition region. As we can see this

is rather complicated, hence, we introduce a complex-valued order parameter function

u ([22]).

Then, the energy is:
1

2

�

Ω
|∇u|2 + 1

2ε2
(|u|2 − 1)2dx, (2.30)

and the corresponding Euler equation is

−∆u2 +
1

ε2
(|u|2 − 1)u = 0, (2.31)

for a complex-valued function u.

From the Euler equation (2.31), the minimizer of the energy term (|u|2 − 1)2 takes

|u| = 1. But, since it is on the unit circle, there is no transition phase developed like

for the real-valued function where the values of ±1 are isolated points.

CHAPTER 2. MINIMIZING THE GINZBURG-LANDAU ENERGY 23

The other extreme value of the energy term (|u|2 − 1)2 occurs at u equals 0. As we

can write u(r, θ) = g(r)eiθ for a scalar function g ≥ 0, we get

|u(r, θ)| = |g(r)eiθ| = |g(r)||eiθ| = g(r).

Hence f(u) = (|u|2 − 1)2 = (g2 − 1)2. If we take a first derivative, we get,

f
�
(u) = 2(g2 − 1)2g

= 4g3 − 4g,

and therefore, f
�
(0) = 0. If we take a second derivative, we get,

f
��
(u) = 12g2 − 4.

Thus, at u = 0, i.e. g = 0, f
��
(0) = −4 < 0. Therefore, 0 is a local maximum.

As the equation is unstable at u = 0, the order parameter function u does not take

the value of zero easily. Once u takes the value of 0, it leaves the value as soon as

possible. As a consequence, the order parameter u will minimize the region where it

has to take the value zero because of instability ([22]).

Also, the article [12] says that under certain conditions on u0, a minimizer uε of Eε(u),

where

Eε(u) =
1

2

�

Ω
|∇u|2 + 1

4ε2

�

Ω
(|u|2 − 1)2, (2.32)

converges to u0 as ε → 0.

2. Long time behaviour

According to [22], a similar argument as discussed in Section 2.2.4 can be applied to

the complex-valued order parameter u.

Let u(x, t) be the solution of

ut = ∆u− 1

ε2
(|u|2 − 1)u.

Then, the distance measured by H1 norms between u and the set of solutions of

−∆u+
1

ε2
(|u|2 − 1)u = 0

approaches zero as t → ∞ under appropriate boundary conditions and restrictions.

([22]).

Chapter 3

Implementation of the Algorithm

In this chapter, we present an algorithm for inpainting based on the Ginzburg-Landau

equation for a grey scale image.

3.1 Implementation

1. What we need for the implementation of the method

- an image u

2. What the user must define for the inpainting

- an inpainting domain Ω (i.e. an area to be inpainted)

3. How to implement the algorithm

(1) Define u0 by scaling u, so that the real part of u0 is defined as R(u0) ∈ [−1, 1].

The imaginary part of u0 is selected by I(u0) =
�
1−R(u0)2

so that u0 : D → C, and |u0(x)| = 1 for all x ∈ D.

(2) Set the area to be inpainted, Ω, to be 0 as initial value.

i.e. u0|Ω = 0.

(3) Use the steepest descent method to find the solution of (2.6) numerically

ut = ∆u+
1

ε2
(1− |u|2)u (3.1)

until a stopping criteria is satisfied.

We update only the values inside of the area to be inpainted, Ω.

24

CHAPTER 3. IMPLEMENTATION OF THE ALGORITHM 25

3.2 Explicit Discretization

The state of minimal energy of the Ginzburg-Landau equation satisfies the Euler equation

of F (u,∇u):

∆u+
1

ε2
(1− |u|2)u = 0. (2.6)

To find the solution of (2.6) with Dirichlet boundary condition numerically, we use the

steepest descent method to solve the differential equation

ut = ∆u+
1

ε2
(1− |u|2)u (3.1)

up to the stationary point in time. We discretize the equation (3.1) in time and space

according to [24].

3.2.1 Time discretization

We discretize time by using the forward Euler method. We replace ut = f by

un+1
i,j

− un
i,j

∆t
= f(uni,j). (3.2)

And when we solve (3.2) explicitly for un+1
i,j

in terms of un
i,j
, we get

un+1
i,j

= uni,j +∆tf(uni,j). (3.3)

If we let u0
i,j

be the initial data, from u0
i,j
, we compute u1

i,j
, then u2

i,j
up to the stationary

point. This is called a time marching method. ([24])

3.2.2 Space discretization

Now we discretize the equation (3.1) in space. When we discretize the right hand side of

the equation (3.1), we use the centred finite difference.

∆ui,j =
1

∆x2

�
uni−1,j − 2uni,j + uni+1,j

�

� �� �
x−direction

+
1

∆y2

�
uni,j−1 − 2uni,j + uni,j+1

�

� �� �
y−direction

,

if we let ∆x = ∆y = h,

∆ui,j =
1

h2

�
uni−1,j + uni+1,j + uni,j−1 + uni,j+1 − 4uni,j

�
. (3.4)

CHAPTER 3. IMPLEMENTATION OF THE ALGORITHM 26

� � � � �
xj−2 xj−1 xj xj+1 xj+2

�
�
�
�
�

yj−2

yj−1

yj

yj+1

yj+2

✛
✻

✲

❄

Figure 3.1: The 5-point stencil for the Laplacian about the point (i, j)

To simplify the notation, we assume that h = 1. Then, the above equation (3.1) can be

written as:

un+1
i,j

= uni,j +∆t[uni−1,j + uni+1,j + uni,j−1 + uni,j+1 − 4uni,j]

+
∆t

ε2

�
(1− |uni,j |2)uni,j

�
.

3.2.3 Convergence of Explicit method

In this section, we will check the convergence of the explicit finite difference method. Since

the convergence of a numerical method for a linear PDE requires consistency and stability,

we prove the consistency and the stability of the method.

1. Consistency of the explicit method

Let the discrete system





F∆x,∆y,∆t(u∆t

∆x,∆y
) = f∆x,∆y, x, y ∈ Ω∆x,∆y, t ∈ T∆t

Boundary conditions

Initial conditions

be used as a finite difference discretization for the parabolic problem





ut = L(u) + f, x, y ∈ Ω, t ∈ (0, T]

Boundary conditions

Initial conditions.

Here, Ω∆x,∆y is the spatial grid with mesh size ∆x in x-direction and ∆y in y-direction,

and T∆t is the time steps with T∆t = {0,∆t, 2∆t, · · · , T}.

CHAPTER 3. IMPLEMENTATION OF THE ALGORITHM 27

The scheme is said to be consistent with the differential equation and boundary con-

ditions if

τni,j := [F∆x,∆y,∆t(u(xi, yj , tn))− f∆x,∆y]− [ut − L(u)− f]
���
xi,yj ,tn

approaches zero as ∆x, ∆y and ∆t → 0.

We calculate the truncation error τn
i,j

by using the Taylor series expansion for u(xi, yj , tn).

Let un
i,j

be the discretized version of u(xi, yj , tn). Our equation

ut = ∆u+ f(u) (3.5)

can be written in the finite difference scheme as:

un+1
i,j

− un
i,j

∆t
=

un
i+1,j − 2un

i,j
+ un

i−1,j

∆x2
+

un
i,j+1 − 2un

i,j
+ un

i,j−1

∆y2
+ f(uni,j). (3.6)

Hence, the truncation error can be calculated as:

τn+1
i,j

:=
un+1
i,j

− un
i,j

∆t
−

un
i+1,j − 2un

i,j
+ un

i−1,j

∆x2
−

un
i,j+1 − 2un

i,j
+ un

i,j−1

∆y2
− f(uni,j)

− (ut −∆u− f(u))
���
xi,yj ,tn

,

CHAPTER 3. IMPLEMENTATION OF THE ALGORITHM 28

using Taylor series expansion,

τn+1
i,j

:=
1

∆t

�
u(xi, yj , tn) + ∆t ut(xi, yj , tn) +

∆t2

2
utt(xi, yj , tn) + · · · − u(xi, yj , tn)

�

− 1

∆x2

�
u(xi, yj , tn) + ∆xux(xi, yj , tn) +

∆x2

2
uxx(xi, yj , tn)

+
∆x3

6
uxxx(xi, yj , tn) +

∆x4

24
uxxxx(xi, yj , tn) · · ·

− 2u(xi, yj , tn)

+ u(xi, yj , tn)−∆xux(xi, yj , tn) +
∆x2

2
uxx(xi, yj , tn)

− ∆x3

6
uxxx(xi, yj , tn) +

∆x4

24
uxxxx(xi, yj , tn) · · ·

�

− 1

∆y2

�
u(xi, yj , tn) + ∆y uy(xi, yj , tn) +

∆y2

2
uyy(xi, yj , tn)

+
∆y3

6
uyyy(xi, yj , tn) +

∆y4

24
uyyyy(xi, yj , tn) · · ·

− 2u(xi, yj , tn)

+ u(xi, yj , tn)−∆y uy(xi, yj , tn) +
∆y2

2
uyy(xi, yj , tn)

− ∆y3

6
uyyy(xi, yj , tn) +

∆y4

24
uyyyy(xi, yj , tn) · · ·

�

− f(u(xi, yj , tn))

− (ut (xi, yj , tn)− uxx (xi, yj , tn)− uyy (xi, yj , tn)− f(u(xi, yj , tn))

=
∆t

2
utt(xi, yj , tn)−

∆x2

12
uxxxx(xi, yj , tn)−

∆y2

12
uyyyy(xi, yj , tn). (3.7)

Therefore,

|τni,j | ≤ |∆t

2
utt(xi, yj , tn)|+ |∆x2

12
uxxxx(xi, yj , tn)|+ |∆y2

12
uyyyy(xi, yj , tn)|

or

lim
∆x,∆y,∆t→0

|τni,j | = 0.

Hence, the scheme is consistent.

CHAPTER 3. IMPLEMENTATION OF THE ALGORITHM 29

2. Stability of the explicit method

In order to show the stability, we use the discrete von Neumann criterion for stability

([31]). To apply the discrete von Neumann criterion to a two dimensional problem,

we consider a discrete Fourier mode for the problem of the form

un
j,k

= ξneijpπ∆x+ikqπ∆y, (3.8)

where i2 = −1 and p, q are the wave numbers for x and y respectively. Then, we get

un+1
j,k

= ξn+1eijpπ∆x+ikqπ∆y, (3.9)

hence,
un+1
j,k

un
j,k

=
ξn+1eijpπ∆x+ikqπ∆y

ξneijpπ∆x+ikqπ∆y
= ξ. (3.10)

The von Neumann condition is that the amplification factor |ξ| ≤ 1. Since the von

Neumann condition guarantees the stability of a finite difference method, we will show

that |ξ| ≤ 1 for this scheme.

Equation (3.1) includes the nonlinear term 1
ε2
(1− |u|2)u. Since a complex-valued

solution u of (3.1) will have an absolute value of 1 almost everywhere except the region

to be inpainted, the nonlinear term is zero almost everywhere except the region to be

inpainted. Therefore, if ε is large enough, we can ignore this term. As 1− |u|2 ≤ 1 is

always true in (3.1), we see the relationship between the spacial step size h and the

size of ε in the following way.

Since 1− |u|2 ≤ 1 in (3.1), we get

un+1
i,j

− un
i,j

∆t
≤

un
i+1,j − 2un

i,j
+ un

i−1,j

∆x2
+

un
i,j+1 − 2un

i,j
+ un

i,j−1

∆y2
+

1

ε2
uni,j . (3.11)

And we plug the expression in (3.8) into it. This becomes

ξn+1eijpπ∆x+ikqπ∆y ≤ ξneijpπ∆x+ikqπ∆y

+
∆t

∆x2
[ξnei(j+1)pπ∆x+ikqπ∆y − 2ξneijpπ∆x+ikqπ∆y + ξnei(j−1)pπ∆x+ikqπ∆y]

+
∆t

∆y2
[ξneijpπ∆x+i(k+1)qπ∆y − 2ξneijpπ∆x+ikqπ∆y + ξneijpπ∆x+i(k−1)qπ∆y]

+
∆t

ε2
ξneijpπ∆x+ikqπ∆y. (3.12)

CHAPTER 3. IMPLEMENTATION OF THE ALGORITHM 30

By using the trigonometric identities cos(z) = e
iz+e

−iz

2 and cos(2x) = 1−2 sin2(x), we

simplify the equation (3.12), and we get

ξn+1eijpπ∆x+ikqπ∆y ≤

ξneijpπ∆x+ikqπ∆y

�
1 +

∆t

∆x2
(eipπ∆x − 2 + e−ipπ∆x) +

∆t

∆y2
(eiqπ∆y − 2 + e−iqπ∆y) +

∆t

ε2

�
.

Hence,

ξ ≤ 1 +
∆t

∆x2
(2 cos(pπ∆x)− 2) +

∆t

∆y2
(2 cos(qπ∆y)− 2) +

∆t

ε2

≤ 1 + 2
∆t

∆x2
(cos(pπ∆x)− 1) + 2

∆t

∆y2
(cos(qπ∆y)− 1) +

∆t

ε2

≤ 1 + 2
∆t

∆x2

�
1− 2 sin2(

pπ∆x

2
)− 1

�
+ 2

∆t

∆y2

�
1− 2 sin2(

qπ∆y

2
)− 1

�
+

∆t

ε2

≤ 1− 4
∆t

∆x2
sin2(

pπ∆x

2
)− 4

∆t

∆y2
sin2(

qπ∆y

2
) +

∆t

ε2
. (3.13)

Since | sin(x)| ≤ 1 for any argument x, we have |ξ| ≤ 1 as long as

|1−
�
4
∆t

∆x2
+ 4

∆t

∆y2

�
+

∆t

ε2
| ≤ 1

⇒ −1 ≤ 1−
�
4
∆t

∆x2
+ 4

∆t

∆y2

�
+

∆t

ε2
≤ 1. (3.14)

Then, there are two cases to consider.

CHAPTER 3. IMPLEMENTATION OF THE ALGORITHM 31

Case 1: 1−
�
4 ∆t

∆x2 + 4 ∆t

∆y2

�
+ ∆t

ε2
≤ 1

Then, we get,

−
�
4
∆t

∆x2
+ 4

∆t

∆y2

�
+

∆t

ε2
≤ 0

∆t

ε2
≤

�
4
∆t

∆x2
+ 4

∆t

∆y2

�

If we let ∆x = ∆y = h, we get

∆t

ε2
≤ 8

∆t

h2

Since ∆t �= 0, we get,

1

ε2
≤ 8

h2

ε2 ≥ h2

8

ε ≥ h

�
1

8
.

Therefore, ε is not allowed to be much smaller than h, which is a reasonable restric-

tion. In particular, if we let h = 1, then ε ≥
�

1
8 ≈ 0.3536 (a pessimistic bound). As

we mentioned above, we can ignore the nonlinear term if ε is large enough. Since if

∆x = ∆y = 1, ε has to be approximately ε ≥ 0.36, we have shown that we can ignore

this term in the stability analysis.

If we ignore the nonlinear term, i.e. ∆t

ε2
in Case 1, since 1−

�
4 ∆t

∆x2 +4 ∆t

∆y2

�
≤ 1 is always

true, we check the left side inequality in (3.14) as Case 2 (without the nonlinear term).

Case 2: −1 ≤ 1−
�
4 ∆t

∆x2 + 4 ∆t

∆y2

�

Then, we get,

− 1 ≤ 1−
�
4
∆t

∆x2
+ 4

∆t

∆y2

�

⇒ 4
� ∆t

∆x2
+

∆t

∆y2

�
≤ 2

⇒ ∆t

∆x2
+

∆t

∆y2
≤ 1

2
. (3.15)

Therefore, for the scheme to be stable, we need condition (3.15) and ε has to satisfy

the condition of ε ≥ h
�

1
8 when we assume ∆x = ∆y = h.

CHAPTER 3. IMPLEMENTATION OF THE ALGORITHM 32

3.3 Implicit Discretization

The implicit discretization is more complicated than the explicit one since the equation is

not linear. As before, we want to discretize

ut = ∆u+
1

ε2
(1− |u|2)u. (3.1)

We discretize the equation (3.1) in time and space according to [24].

3.3.1 Fully Implicit discretization

We discretize time by using the backward Euler method. We replace ut = f with:

un+1
i,j

− un
i,j

∆t
= f(un+1

i,j
)

or

un+1
i,j

= uni,j +∆tf(un+1
i,j

). (3.16)

Note that f is evaluated at the new time step. In the backward Euler method, we have to

solve for un+1
i,j

in (3.16) and f(u) is a nonlinear function. If we let the function G(un+1) =

un+1 − ∆tf(un+1) − un and look for a zero of G(un+1), then it can be approximated by

Newton’s method.

3.3.2 Newton’s method

Here, we consider the one variable real-valued function. Hence, u is a vector with the size

of m-by-1. We discretize the nonlinear problem

ut = ∆u+
1

ε2
(1− |u|2)u (3.1)

using the following approach.

CHAPTER 3. IMPLEMENTATION OF THE ALGORITHM 33

Let F (u) = 1
ε2
(1− |u|2)u, and rewrite the equation (3.1) by letting ∆t = k and ∆x = h:

un+1
i

− un
i

k
=

1

h2
(un+1

i−1 − 2un+1
i

+ un+1
i+1) + F (un+1

i
)

or

un+1
i

− uni =
k

h2
(un+1

i−1 − 2un+1
i

+ un+1
i+1) + kF (un+1

i
)

or

un+1
i

− k

h2
(un+1

i−1 − 2un+1
i

+ un+1
i+1)− kF (un+1

i
)− uni = 0. (3.17)

Now, this is a nonlinear system of equations of the form G(un+1) = 0. Hence, we use some

iterative method such as Newton’s method to solve for un+1. If un is the approximation to

u in step n, then Newton’s method is derived from Taylor series expansion about un+1, and

we get:

G(un+1) = G(un) +G
�
(un)(un+1 − un) + higher order terms.

By setting G(un+1) = 0 and dropping the higher order terms, we get:

0 = G(un) +G
�
(un)(un+1 − un).

Solving for un+1, we get

un+1 = un − [G
�
(un)]−1G(un),

(provided the inverse exists), which is Newton’s method.

In our case,

G(un+1
i

) = un+1
i

− k

h2
(un+1

i−1 − 2un+1
i

+ un+1
i+1)− kF (un+1

i
)− uni ,

with F (un+1
i

) = 1
ε2
(1− |un+1

i
|2)un+1

i
= 1

ε2
(un+1

i
− un+1

i
|un+1

i
|2), and since the discretization

matrix (which is an m-by-m matrix) for the one dimensional Laplacian looks like

A =





−2 1 0 . . .

1 −2 1 0 . . .

0 1 −2 1 . . .
...

...
...

...
. . .




,

we can write G(un+1
i

) as

G(un+1
i

) = (I − k

h2
A)un+1

i
− k

ε2
(un+1

i
− un+1

i
|un+1

i
|2)− uni ,

CHAPTER 3. IMPLEMENTATION OF THE ALGORITHM 34

where I is an m-by-m identity matrix. Hence,

G
�
(Un+1) = (I − k

h2
A)− k

ε2
(I − Jn+1)

where J is the m-by-m Jacobian matrix

J =





3|un+1
1 |2 0 0 . . .

0 3|un+1
2 |2 0 0 . . .

0 0 3|un+1
3 |2 0 . . .

...
...

...
...

. . .

0 0 0 0 3|un+1
m |2





.

So far, we looked at the case when u is an m-by-1 vector. Notice that since the image

is usually represented as an m-by-m matrix instead of a vector, if we use the fully implicit

method to solve the Ginzburg-Landau equation, we need m2-by-m2 matrices for a two-

dimensional Laplacian matrix, an identity matrix and a Jacobian matrix. We will see the

result of this method in Chapter 4, but if the size of an image is 350-by-350, then these

matrices are of size 122500-by-122500. This is too large to fit into RAM, so we have to use

matlab function sparse() to manipulate the matrices. Hence, it takes a long time to compute

the solution.

3.3.3 Semi-Implicit method

To avoid the use of the large Jacobian matrix of J , we will try the semi-implicit method

here. Again, we consider the equation:

ut = ∆u+
1

ε2
(1− |u|2)u. (3.1)

As before in the fully implicit scheme, we discretize ∆u with un+1, but for the nonlinear

term F (u), we discretize with un and un+1. More precisely, we let the discretization be

un+1
i,j

− un
i,j

∆t
=

un
i+1,j − 2un

i,j
+ un

i−1,j

∆x2
+

un
i,j+1 − 2un

i,j
+ un

i,j−1

∆y2
+

1

ε2
(1− |uni,j |2)un+1

i,j
. (3.18)

If we let the two-dimensional discretization matrix for the Laplacian be D, we get,

un+1 − un

∆t
= Dun+1 +

1

ε2
(1− |un|2)un+1, (3.19)

CHAPTER 3. IMPLEMENTATION OF THE ALGORITHM 35

where

D =





T I

I T I

I T I
. . .

. . .
. . .

I T





,

which is an m-by-m block diagonal matrix in which each block T and I is itself an m-by-m

matrix,

T =





−4 1

1 −4 1

1 −4 1
. . .

. . .
. . .

1 −4





,

and I is an m × m identity matrix ([24]).

Therefore, we can write the equation (3.19) as,

�
I −∆tD − ∆t

ε2
(I − |Un|2)

�
Un+1 = Un,

and in each step, we have to solve a linear system.

3.3.4 Convergence of Implicit method

Like for the explicit method in Section 3.2.3, to show the convergence of the method, we

will show the consistency and the stability of the method.

1. Consistency of the semi-implicit method

Since the scheme is implicit, we expand the difference equation about the point (i, j,

n+1) ([31]). Thus, we calculate the truncation error τn+1
i,j

by using the Taylor series

expansion for u(xi, yj , tn+1). Let un
i,j

be the discretized version of u(xi, yj , tn). Our

equation

ut = ∆u+ f(u)

CHAPTER 3. IMPLEMENTATION OF THE ALGORITHM 36

can be written in the finite difference scheme as:

un+1
i,j

− un
i,j

∆t
=

un+1
i+1,j − 2un+1

i,j
+ un+1

i−1,j

∆x2
+

un+1
i,j+1 − 2un+1

i,j
+ un+1

i,j−1

∆y2

+ f(uni,j , u
n+1
i,j

).

(3.20)

Hence, the truncation error can be calculated as:

τn+1
i,j

:=
un+1
i,j

− un
i,j

∆t
−

un+1
i+1,j − 2un+1

i,j
+ un+1

i−1,j

∆x2

−
un+1
i,j+1 − 2un+1

i,j
+ un+1

i,j−1

∆y2
− f(uni,j , u

n+1
i,j

)− (ut −∆u− f(u))
���
xi,yj ,tn

,

CHAPTER 3. IMPLEMENTATION OF THE ALGORITHM 37

using Taylor series expansion,

τn+1
i,j

:=
1

∆t

�
u(xi, yj , tn+1)

−
�
u(xi, yj , tn+1)−∆t ut(xi, yj , tn+1) +

∆t2

2
utt(xi, yj , tn+1) + · · ·

��

− 1

∆x2

�
u(xi, yj , tn+1) + ∆xux(xi, yj , tn+1) +

∆x2

2
uxx(xi, yj , tn+1)+

∆x3

6
uxxx(xi, yj , tn+1) +

∆x4

24
uxxxx(xi, yj , tn+1) · · ·

− 2u(xi, yj , tn+1)

+ u(xi, yj , tn+1)−∆xux(xi, yj , tn+1) +
∆x2

2
uxx(xi, yj , tn+1)

− ∆x3

6
uxxx(xi, yj , tn+1) +

∆x4

24
uxxxx(xi, yj , tn+1) · · ·

�

− 1

∆y2

�
u(xi, yj , tn+1) + ∆y uy(xi, yj , tn+1) +

∆y2

2
uyy(xi, yj , tn+1)

+
∆y3

6
uyyy(xi, yj , tn+1) +

∆y4

24
uyyyy(xi, yj , tn+1) · · ·

− 2u(xi, yj , tn+1)

+ u(xi, yj , tn+1)−∆y uy(xi, yj , tn+1) +
∆y2

2
uyy(xi, yj , tn+1)

− ∆y3

6
uyyy(xi, yj , tn+1) +

∆y4

24
uyyyy(xi, yj , tn+1) · · ·

�

− f(u(xi, yj , tn), u(xi, yj , tn+1))

− (ut (xi, yj , tn+1)− uxx (xi, yj , tn+1)− uyy (xi, yj , tn+1)− f(u(xi, yj , tn+1))

=
∆t

2
utt(xi, yj , tn+1)−

∆x2

12
uxxxx(xi, yj , tn+1)−

∆y2

12
uyyyy(xi, yj , tn+1)

− f(u(xi, yj , tn), u(xi, yj , tn+1)) + f(u(xi, yj , tn+1)). (3.21)

Since we know that as ∆t → 0, f(u(xi, yj , tn+1)) ≈ f(u(xi, yj , tn)), therefore,

|τn+1
i,j

| ≤ |∆t

2
utt(xi, yj , tn)|+ |∆x2

12
uxxxx(xi, yj , tn)|+ |∆y2

12
uyyyy(xi, yj , tn)|

+ |f(u(xi, yj , tn))− f(u(xi, yj , tn), u(xi, yj , tn+1))|

or

lim
∆x,∆y,∆t→0

|τn+1
i,j

| = 0.

CHAPTER 3. IMPLEMENTATION OF THE ALGORITHM 38

Hence, the scheme is consistent. If the scheme is fully implicit, in the last line of

(3.21), the last term f(u(xi, yj , tn), u(xi, yj , tn+1)) = f(u(xi, yj , tn)), thus the scheme

is consistent.

2. Stability of the implicit method

In order to show the stability, we again use the discrete von Neumann criterion for

stability ([31]). To apply the discrete von Neumann criterion to a two dimensional

problem, we consider a discrete Fourier mode for the problem of the form

un
j,k

= ξneijpπ∆x+ikqπ∆y (3.8)

where i2 = −1 and p, q are the wave numbers for x and y respectively.

As we explained in the stability analysis of the explicit method in Section 3.2.3, if ε

is large enough, we can ignore the nonlinear term in (3.1). A similar calculation for

the implicit method shows that ε has to satisfy the condition of ε ≥ h
�

1
8 . Hence, for

the stability analysis, we ignore the nonlinear term in (3.1).

If we plug the expression into the implicit equation (excluding the last term f(un
i,j
)),

un+1
i,j

− un
i,j

∆t
=

un+1
i+1,j − 2un+1

i,j
+ un+1

i−1,j

∆x2
+

un+1
i,j+1 − 2un+1

i,j
+ un+1

i,j−1

∆y2
(3.22)

becomes

ξn+1eijpπ∆x+ikqπ∆y = ξneijpπ∆x+ikqπ∆y

+
∆t

∆x2
[ξn+1ei(j+1)pπ∆x+ikqπ∆y − 2ξn+1eijpπ∆x+ikqπ∆y + ξn+1ei(j−1)pπ∆x+ikqπ∆y]

+
∆t

∆y2
[ξn+1eijpπ∆x+i(k+1)qπ∆y − 2ξn+1eijpπ∆x+ikqπ∆y + ξn+1eijpπ∆x+i(k−1)qπ∆y].

(3.23)

CHAPTER 3. IMPLEMENTATION OF THE ALGORITHM 39

With the trigonometric identities cos(z) = e
iz+e

−iz

2 and cos(2x) = 1 − 2 sin2(x), we

simplify the equation (3.23), and we get,

ξn+1eijpπ∆x+ikqπ∆y = ξneijpπ∆x+ikqπ∆y

+ ξn+1eijpπ∆x+ikqπ∆y

� ∆t

∆x2
(eipπ∆x − 2 + e−ipπ∆x) +

∆t

∆y2
(eiqπ∆y − 2 + e−iqπ∆y)

�
.

Hence,

ξ = 1 + ξ
� ∆t

∆x2
(2 cos(pπ∆x)− 2) +

∆t

∆y2
(2 cos(qπ∆y)− 2)

�

= 1 + ξ
�
2
∆t

∆x2
(cos(pπ∆x)− 1) + 2

∆t

∆y2
(cos(qπ∆y)− 1)

�

= 1 + ξ
�
2
∆t

∆x2

�
1− 2 sin2(

pπ∆x

2
)− 1

�
+ 2

∆t

∆y2

�
1− 2 sin2(

qπ∆y

2
)− 1

��

= 1− ξ
�
4
∆t

∆x2
sin2(

pπ∆x

2
) + 4

∆t

∆y2
sin2(

qπ∆y

2
)
�
.

If we solve for ξ, we get

ξ
�
1 + 4

∆t

∆x2
sin2(

pπ∆x

2
) + 4

∆t

∆y2
sin2(

qπ∆y

2
)
�
= 1.

⇒ ξ =
1

1 + 4 ∆t

∆x2 sin
2(pπ∆x

2) + 4 ∆t

∆y2
sin2(qπ∆y

2)
. (3.24)

Since 0 ≤ sin2(x) ≤ 1 for any argument x, we have always |ξ| ≤ 1.

Therefore, the scheme is unconditionally stable provided ε is in the allowed range.

Chapter 4

Analysis of Results

4.1 Colour Images

In this section, we focus on colour images. Mathematically, a colour image can be repre-

sented as a mapping

u : Ω → C3.

(Each of the three components refer to R(ed), G(reen), and B(lue), respectively.)

4.1.1 Using the max norm

[20] says that a common approach to inpaint colour images is to inpaint the colour com-

ponent separately, but since in real world images, the colour components are typically not

independent, a separation approach may lead to artifacts, like spurious colours or rainbow

effects. Therefore, if u is a colour image, it is better for the equation

∆u+
1

ε2
(1− |u|2)u = 0 (2.6)

to replace the Euclidian distance by an appropriate norm in Cn. For RGB colour images,

the maximum norm of the RGB-components is most appropriate. It is defined as:

||u(x)|| := max{|u1(x)|, |u2(x)|, |u3(x)|}.

The goal of this section is to show the difference in results when each component of the

colour image is processed separately and when the maximum component of the RGB colour

image is used as the norm instead.

40

CHAPTER 4. ANALYSIS OF RESULTS 41

4.1.2 Hypothesis for the Spurious Colour

When we take the maximum of colour components and replace |u| in (2.6) with ||u(x)|| :=
max{|u(R)|, |u(G)|, |u(B)|}, then the value of ||u|| in each component has the same value.

Therefore, ||u|| is always a grey scale image, and the largest value corresponds to white (1),

and the lowest value to black (0). Thus, 1−||u|| is also the grey scale image, and as a result,

it will not cause spurious colours.

On the other hand, when each colour is processed separately, the largest value of each

colour remains as it is. And, most likely, the highest or lowest value of each colour occurs on

a different pixel in different colour component, they will not cancel each other. Therefore,

the highest values are added during the iterations, and it might result in spurious colour or

rainbow effect.

Based on the hypothesis above, the following experiment was carried out.

4.1.3 Experimental result for the Hypothesis

For this experiment, we create a 10-by-10 colour image u. The image u has three com-

ponents R, B and G so that each component is a 10-by-10 matrix with random numbers

between 0 and 255. Then, we scale u to the complex value so that the same value in each

of three colour components of u in the range of [0, 255] is mapped to the same value in

the range of [−1, 1] to get the real part of R(u). And the imaginary part is calculated as

I(u) =
�
1−R(u)2.

Figure 4.1 is a 10-by-10 matrix created by random numbers between 0 and 255. Then, we

scale the image into the complex value as explained above. Only the real part is used to ob-

tain the image. The left image in Figure 4.2 is the image of ||u|| = max{|u(R)|, |u(G)|, |u(B)|},
and the right image in Figure 4.2 is the image of |u|. For the image of ||u||, since the max-

imum value among three components is used, all three components have the same value.

Therefore, the image which is the combination of three colour components is grey scaled.

On the other hand, for the image of |u|, since each colour component has different value, it

is a colour image.

From this experiment, at least we notice that the image of |u| tends to have more colours

than the image of ||u||. Also, we have tried many other experiments to see the differences

in these two methods. But, we could not find any clearer differences than this result. Now,

the question is how strongly image inpainting of a real picture is affected by this strategy.

CHAPTER 4. ANALYSIS OF RESULTS 42

Figure 4.1: Original Image

Figure 4.2: Left: ||u|| = max{|u(R)|, |u(G)|, |u(B)|}, Right: |u|

CHAPTER 4. ANALYSIS OF RESULTS 43

4.1.4 Experiment with a Real Picture

We repeat the experiment with a real picture. The original parrot image has the fence in

front of the parrot. We will use the Ginzburg-Landau equation to delete the fence. The

mask image is used to define the inpainting domain Ω. The process was iterated 500 times

with ε = 0.7 and the time step dt = 0.1.

Figure 4.3: Original image (left) and mask image (right)

Figure 4.4 shows the inpainted images when the maximum value is used for |u| (the top

row) and when colour components are processed separately, and combined after the process

(the bottom row).

We can hardly see a difference in these two images. But when we look at plots of colour

values in the right column of Figure 4.4, we notice that the final values of blue and green

are higher in the separated case than the ones when the maximum value was used. And

when we look at Table 4.1, we confirm that even though the final values of three colours in

both methods are very similar, the values of blue and green in the separated method are

higher than when the maximum value is used.

Therefore, we conclude that the inpainted image produced by using the method of as-

signing the maximum value of three colours is not very different from the one produced

by using the method of separating components first and combining later. But, when we

CHAPTER 4. ANALYSIS OF RESULTS 44

Figure 4.4: Inpainted image and Colour Distribution
Top: The max value is used
Bottom: Processed separately

CHAPTER 4. ANALYSIS OF RESULTS 45

Max Value Separated
Iteration R G B R G B

50 1.1457 0.8406 0.8630 1.1457 0.8633 0.8826
100 1.1531 0.8507 0.8406 1.1531 0.8744 0.8645
150 1.1535 0.8514 0.8343 1.1535 0.8752 0.8606
200 1.1536 0.8514 0.8340 1.1536 0.8752 0.8588
250 1.1536 0.8514 0.8340 1.1536 0.8752 0.8579
300 1.1536 0.8514 0.8340 1.1536 0.8752 0.8574
350 1.1535 0.8514 0.8340 1.1535 0.8752 0.8570
400 1.1535 0.8513 0.8340 1.1535 0.8751 0.8567
450 1.1535 0.8513 0.8340 1.1535 0.8751 0.8566
500 1.1535 0.8513 0.8340 1.1535 0.8751 0.8564

Table 4.1: Maximum values List for Colour Distribution of the whole image

check the value of each colour in the inpainted image, we notice that when the colours are

processed separately, we tend to have higher values of colour components.

4.2 Size and Shape of the Inpainting Area

In this section, we investigate how the size of the mask affects the region to be inpainted.

We let the region which is defined by a mask be Ω, and the missing part of the original

image be Γ here. All experiments in this section are done with ε = 0.1, ∆t = ε
2

4 if not

stated otherwise, and the algorithm was iterated until the indicated numbers.

If we use the complex-valued Ginzburg-Landau equation with 1000 iterations to inpaint

the image with a vertical white bar of the width 50 pixels, and a mask of size 150-by-300

pixels, we get the result in Figure 4.5.

As we can see from the inpainted image, the complex-valued Ginzburg-Landau equation

does not minimize the length of the missing region’s edges. Since the region to be filled-in

(Γ) has 150 pixels as the vertical length and 50 pixels as the horizontal length, if the equation

minimizes the length of the edges of Γ, the white vertical bar should be cut into two parts.

Here, we will investigate how the Ginzburg-Landau equation fills in the missing part.

CHAPTER 4. ANALYSIS OF RESULTS 46

Figure 4.5: Left: Original Image (Ω:150-by-300, Line width: 50) Right: Inpainted image

4.2.1 Inpainting the missing region Γ when Γ is a white bar

Now, we check how Ω is filled in during the iteration. We use the image of size 350-by-350

pixels.

Case 1 : The image with a vertical white bar

The following two examples are done for two white vertical bars of width 30 pixels

and 50 pixels, with Ω has height 250 and width 300 pixels, and height 310 and width 100

pixels, respectively. The algorithm was iterated for each case 1600 times and 700 times,

respectively.

As we can see in Figure 4.6 and 4.7, Ω is shrinking towards the centre of the square

by the same length vertically and horizontally. All blue, pink, green and yellow lines that

enclose the shrinking Ω are equally spaced. This is because the complex Ginzburg-Landau

equation is searching for the stable point in the complex unit circle, {x ∈ C : |x| = 1}. Ω

shrinks by the same amount (i.e. the same number of pixels) vertically and horizontally.

Since Ω shrinks by the same amount horizontally and vertically, we are concerned about

the square region located in the centre of the image. Let these squares of 30-by-30 pixels and

50-by-50 pixels in the centre of the white bar be Λ. The differences in the inpainted images

of Figure 4.6 and 4.7 are the size of Ω. If the size of Ω satisfies the following condition, the

vertical bar is recovered.

(Height of Ω) < (Width of Ω)− (Line width)

CHAPTER 4. ANALYSIS OF RESULTS 47

Figure 4.6: Line width=30, Mask size: height = 250, width = 300, after 1600 iterations

CHAPTER 4. ANALYSIS OF RESULTS 48

Figure 4.7: Line width=50, Mask size: height = 310, width = 100, after 700 iterations

CHAPTER 4. ANALYSIS OF RESULTS 49

As Ω shrinks by the same amount vertically and horizontally, if the vertical edges of Ω

touch Λ before the horizontal edges of Ω are being pushed down and pushed up towards

the centre of Λ, the vertical edges shrink towards Λ, and the result is Figure 4.7. If the

horizontal edges of Ω are pushed down from the top and pushed up from the bottom to the

centre of Λ before the vertical edges of Ω touch Λ, we recover the vertical white bar.

Case 2 : The image with a horizontal white bar

The symmetric argument holds for the image with a horizontal white bar. If the size of

Ω satisfies the following condition, the horizontal bar is recovered.

(Width of Ω) < (Hight of Ω)− (Line width)

As we can see in Figure 4.8 and 4.9 again, Ω is shrinking towards the centre of the square

by the same length vertically and horizontally. The experiments are done with ε = 0.5 and

∆t = 0.1. We notice that the bigger time step requires fewer number of iterations.

Here, we have checked the case when the object to be recovered was a line. If the region

to be recovered (Γ) is a square not a line, then as long as the mask covers Γ, the original

image is recovered.

CHAPTER 4. ANALYSIS OF RESULTS 50

Figure 4.8: Line width=50, Mask size: height=150, width=80, after 140 iterations

CHAPTER 4. ANALYSIS OF RESULTS 51

Figure 4.9: Line width=50, Mask size: height=130, width=100, after 180 iterations

CHAPTER 4. ANALYSIS OF RESULTS 52

4.2.2 Inpainting the missing region Γ when Γ has several levels of bright-

ness

Next, we investigate when the region to be inpainted has more than one level of brightness.

The original image has three levels of brightness, dark grey, bright grey and white. The

image is the size of 350-by-350 pixels. We divide it into 7 bars where each bar has a width

of 50 pixels (i.e. each bar has the same width). Therefore, in this case, the line width is 250

pixels.

The following two examples are done for this image with Ω which has height 48 and width

300 pixels, and height 100 and width 300 pixels, respectively. Experimentally, we have found

that the energy of the image with Ω which has height 48 and width 300 becomes negative

after 332 iterations. Therefore, we investigate the inpainted image after 332 iterations, and

the inpainted image after further iterations, in this experiment, we choose 600 iterations.

Figure 4.10: Top Left: Original Image with Line width=250, Right: Mask with height=48,
width=300, Bottom Inpainted Image Left: after 332 iterations, Right: after 600 iterations

CHAPTER 4. ANALYSIS OF RESULTS 53

In Figure 4.10, the length of the height (48) of Ω is less than the length of the width (300)

minus the line width (250). Therefore, the original image is recovered after 332 iterations.

(As we mentioned before, after this number, the energy becomes negative.) We notice that

if we iterate further until 600 iterations, the output image does not change from the output

image with 332 iterations.

Figure 4.11: Left: Mask with height=100, width=300
Middle, Right: Inpainted Images after 332 and 600 iterations respectively

On the other hand, in Figure 4.11, the length of the height (100) of Ω is greater than

the length of the width (300) minus the line width (250). Therefore, as soon as the vertical

edges of Ω touch the edge of the darker grey bars (this happens around 332 iterations) before

the horizontal edges of Ω being pushed down and pushed up 50 pixels towards the centre

of the image, the vertical edges of Ω shrink towards the centre. The result is not what we

expect for the inpainting after 600 iterations.

We can see the same phenomenon in Figure 4.12. This example shows when the mask

is vertically longer. The vertical edges of Ω touche the white bar around 322 iterations, and

after this, the bright grey part shrinks towards the centre.

CHAPTER 4. ANALYSIS OF RESULTS 54

Figure 4.12: Left: Mask with height=310, width=100
Middle, Right: Inpainted Images after 332 and 600 iterations respectively

4.2.3 Inpainting the missing region Γ when Γ is a part of the circle

In this section, we investigate the image with a circle. In this case, the region to be inpainted,

Ω is a square.

Figure 4.13: Left: The original Image, Middle: The mask Image, Right: The image to be
inpainted

The results and the energy plot are shown in Figure 4.14. We notice that after 200

iterations, the edge of the circle is inpainted with the straight line which is the diagonal of

the square in the left top image. From the energy plot, we notice that the energy value does

not change very much after 200 iterations. Hence, it converges after 200 iterations. If we

iterate further, the image gets blurred.

CHAPTER 4. ANALYSIS OF RESULTS 55

Figure 4.14: Inpainted images and Energy plot
Top Left: after 100 iterations, Right: after 200 iterations
Middle Left: after 300 iterations, Right: after 400 iterations
Bottom: The energy plot

CHAPTER 4. ANALYSIS OF RESULTS 56

4.3 The relationship between the value of ε and the time step

size ∆t

In [20], if the image is ambiguous (the left image in Figure 4.15), the noisy area should

be inpainted as the right image in Figure 4.15, and if the level set algorithm is used, the

inpainted image would be the ones in Figure 4.16.

Figure 4.15: Left : Ambiguous image, Right: via Ginzburg-Landau algorithm u

Figure 4.16: via Level set algorithm u1, u2

The inpainted image of this ambiguous image describes the peculiarity of the Ginzburg-

Landau equation. Therefore, in this section, the dependence of the Ginzburg-Landau equa-

tion and the value of ε, and the relationship between the value of ε and the time step size ∆t

are investigated experimentally for the explicit and implicit methods using this ambiguous

image in Figure 4.15.

CHAPTER 4. ANALYSIS OF RESULTS 57

4.3.1 The results for the Explicit method

For the explicit method, various values of time step size ∆t, ε and number of iterations are

used. We use the spatial step size ∆x = 1 and ∆y = 1.

• time step size: ∆t = {0.01, 0.05, 0.1, 0.2}.
Note: The time step size has to be ∆t

∆x2 + ∆t

∆y2
≤ 1

2 from the stability analysis.

Since ∆x = 1 and ∆y = 1, we need ∆t ≤ 1
4 .

• the values of ε = {0.01, 0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.
Note: ε has to satisfy ε ≥ h

�
1
8 if we let ∆x = ∆y = h from the stability analysis.

Since ∆x = 1 and ∆y = 1, we need ε ≥
�

1
8 ≈ 0.36.

• the number of iterations = {100, 500, 1000}

• The energy is plotted for ∆t = {0.05, 0.1} with the number of iterations = 500.

Results:

1. Examples of the inpainted image

Figure 4.17: Inpainted Images
Left � : Expected results,
Middle � : grey square at the centre,
Right � : space in the vertical bar

Note that Symbols �, � and � are used in Table 4.2.

CHAPTER 4. ANALYSIS OF RESULTS 58

2. Energy plot

Figure 4.18: Energy Plots
Row 1: Iteration = 500, ∆t = 0.1, ε = {0.6, 0.7, 0.8, 0.9}
Row 2: Iteration = 500, ∆t = 0.05, ε = {0.6, 0.7, 0.8, 0.9}

Summary:

• In general, for smaller ε, it is better to use smaller ∆t, and if ε is closer to 1, ∆t can

be close to the stability restriction 1
4 .

• When we look at the energy plots for ∆t = {0.05, 0.1} in Figure 4.18, the final values

of the total energy are exactly the same for ε = {0.7, 0.8, 0.9} as well as the output

images look very similar. In this case, the final energy of the inpainted image depends

on the values of ε not on the value of the time step ∆t.

CHAPTER 4. ANALYSIS OF RESULTS 59

values of ε 0.01 0.1 0.3 0.5 0.6 0.7 0.8 0.9 1

of iterations

∆t = 0.01 100 � � at 0.09 � � � � � � -

500 × ⊗ � � � � � � �

1000 × ⊗ � � � � � � �

∆t = 0.05 100 × × � � � � � � �

500 × × � � � � � � �

1000 × × � � � � � � �

∆t = 0.1 100 × × ⊗ � � � � � �

500 × × ⊗ � � � � � �

1000 × × ⊗ � � � � � �

∆t = 0.2 100 × × × × ⊗ ⊗ � � �

500 × × × × ⊗ ⊗ ⊗ ⊗ �

1000 × × × × ⊗ ⊗ ⊗ ⊗ �

Notation on the table:

× := black vertical bar, ⊗ := noise,
� := expected result, � := grey square at the centre,
� := space in the vertical bar, � := not checked,
− : = no change, � := vertical black bar is connected

Table 4.2: Results of 4.4.1

CHAPTER 4. ANALYSIS OF RESULTS 60

4.3.2 The results for the Semi-Implicit method

For the semi-implicit method, various values of time step size ∆t, ε and number of iterations

are used. We use the spatial step size ∆x = 1 and ∆y = 1.

• time step size: ∆t = {0.01, 0.05, 0.1, 0.3, 0.5, 0.9}.
Note: There is no restriction for the time step size for the implicit method, but ε has

to satisfy the condition below.

• the values of ε = {0.1, 0.3, 0.5, 0.7, 0.9, 1}.
Note: ε has to satisfy the condition of ε ≥ h

�
1
8 if we let ∆x = ∆y = h from the

stability analysis. Since ∆x = ∆y = 1, ε ≥
�

1
8 ≈ 0.36.

• the number of iterations = {50, 100}

• The energy is plotted for ∆t = {0.05, 0.1} with the number of iterations = 100.

We notice that we can use a wider range of ∆t with the implicit method than with the

explicit method. Also, we notice that the number of iterations required are fewer in the

implicit method.

Results:

1. Examples of the inpainted image

For the semi-implicit method, the expected result is that the vertical bar is connected

as the left image of Figure 4.19. In out experiment, we could not get any images that

had disconnected vertical black bars with this method.

2. Energy plots

With ε = {0.7, 0.9} with ∆t = 0.05, the inpainted images have grey squares at the

centre. As we can see from the energy plot in Figure 4.20, the energy has not reached

a stable condition yet.

CHAPTER 4. ANALYSIS OF RESULTS 61

Figure 4.19: Examples of the inpainted image with the semi-implicit method
Top: Left � : Expected result, Right ◦ : Good result
Bottom: − : No change from the beginning of the iteration

Figure 4.20: Energy Plots for the semi-implicit method
Row 1: Iteration = 100, ∆t = 0.05, ε = {0.5, 0.7, 0.9}
Row 2: Iteration = 100, ∆t = 0.1, ε = {0.5, 0.7, 0.9}

CHAPTER 4. ANALYSIS OF RESULTS 62

Summary:

• When we compare the results of the semi-implicit method and the explicit method, we

can see in the results in Table 4.3 that, with the semi-implicit method, we can use a

wider range of time step ∆t, in particular we can use larger ∆t. This is the advantage

of a implicit method. The other advantage of the implicit method is that the number

of iterations required is fewer than for the explicit method.

• The disadvantage of the semi-implicit method is that it takes a long time to run the

program. Since we are dealing with an image array not a vector, in order to solve the

linear system for Un+1, we have to convert the image into a vector. As the size of the

image gets larger, the size of the vector gets much larger. Here, we use the image of

size 350-by-350. Hence the corresponding vector size is 3502-by-1. It means that the

discretization matrix for the Laplacian is 3502-by-3502 which is a large sparse matrix.

Therefore, it takes time to calculate the value of Un+1 in matlab.

• Also, when we look at the results in Table 4.2 and 4.3, we notice that in order to

get the expected results with the semi-implicit method, it is better to use ∆t in the

range of 0.05, 0.1 or maybe 0.3. Since these values can be also used with the explicit

method, if we think about the computation time, even though the number of iterations

is fewer, there is no significant advantage to choosing the semi-implicit method over

the explicit method.

CHAPTER 4. ANALYSIS OF RESULTS 63

values of ε 0.1 0.3 0.5 0.7 0.9 1

of iterations

∆t = 0.01 50 G � � � � �

100 G � � � � �

∆t = 0.05 50 - � � � � �

100 - � � � � �

∆t = 0.1 50 - ⊗ � � � �

100 - - � � � �

∆t = 0.3 50 - G ⊗ ◦ � �

100 - B - ◦ ◦ ◦

∆t = 0.5 50 - G ⊗ ⊗ ◦ ◦

100 - G - ⊗ ◦ ◦

∆t = 0.9 50 - - G - ⊗ ◦

100 - - - - ⊗ ◦

Notation on the table:

�:= expected result, ◦ := good result,
�:= grey square at the centre, ⊗:= noise,
G := grey image, B := black image,
− : = no change

Table 4.3: Results of 4.4.2

CHAPTER 4. ANALYSIS OF RESULTS 64

4.3.3 The results for the Fully Implicit method

For the fully implicit method, various values of time step size ∆t, ε and number of iterations

are used. We use the spatial step size ∆x = 1 and ∆y = 1.

• time step size: ∆t = {0.05, 0.1, 0.2, 0.3, 0.5}.
Note: There is no restriction for the time step size for the implicit method, but ε has

to satisfy the condition below.

• the values of ε = {0.1, 0.3, 0.5, 0.7, 0.9, 1}.
Note: ε has to satisfy the condition of ε ≥ h

�
1
8 where ∆x = ∆y = h from the stability

analysis. Since ∆x = ∆y = 1, ε ≥
�

1
8 ≈ 0.36

• the number of iterations = {50, 100}

• The energy is plotted for ∆t = {0.2, 0.3} with the number of iterations = 50.

We notice that we can use a wider range of ∆t with the fully implicit method, the same

as with the semi-implicit method. Also, we notice that the number of iterations required is

fewer for the fully implicit method than for the explicit method.

As we mentioned in Chapter 3, the fully implicit method requires the discrete Laplacian

matrix, an identity matrix and a Jacobian matrix of the size m2-by-m2. Here, we use the

image of size 350-by-350. As we use 3502-by-3502 matrices, it takes a long time for the

computation.

Results:

1. Examples of the inpainted image

The same as the semi-implicit method, for the fully implicit method, the expected

result is that the vertical bar is connected. In our experiment, we could not get any

images that had disconnected vertical black bars with this method.

CHAPTER 4. ANALYSIS OF RESULTS 65

Figure 4.21: Examples of the inpainted image with the fully-implicit method
Left � : Expected Result, Right ⊗ : noise

2. Energy plot

Figure 4.22: Energy Plots for the fully implicit method
Row 1: Iteration = 50, ∆t = 0.2, ε = {0.5, 0.7, 0.9}
Row 2: Iteration = 50, ∆t = 0.3, ε = {0.5, 0.7, 0.9},

CHAPTER 4. ANALYSIS OF RESULTS 66

values of ε 0.1 0.3 0.5 0.7 0.9 1

of iterations

∆t = 0.05 100 - � � � � �

∆t = 0.1 50 - ⊗ � � � �

100 - ⊗ � � � �

∆t = 0.2 50 - ⊗ � � � �

100 - ⊗ � � � �

∆t = 0.3 50 - ⊗ ⊗ � � �

100 - ⊗ ⊗ � � �

∆t = 0.5 50 - ⊗∗ ⊗ ⊗ � �

Notation on the table:

�:= expected result, � := grey square at the centre,
⊗:= noise, − : = no change
∗:= The image is brighter.

Table 4.4: Results of 4.4.3

Summary:

• We can use larger ∆t with the fully implicit method than with the explicit method.

• With the fully-implicit method, we obtain more expected results than with the semi-

implicit method.

• The computation time for the fully-implicit method is even longer than for the semi-

implicit method.

CHAPTER 4. ANALYSIS OF RESULTS 67

4.4 Explicit method versus Implicit method

In this section, we will investigate differences in the inpainted images using the explicit and

the implicit method.

For the explicit and implicit methods, we use ∆t = 0.1, and ε = 0.7.

1. The explicit method

We notice that the vertical black bar is disconnected at the centre with 100 iterations,

and the final energy is about 180. If we iterate 500 times, the final energy drops to

175. It means by 400 more iterations, the energy changed only 5 units. Therefore, we

conclude that after around 100 times iterations, the inpainted image reaches a stable

condition. If we iterate 1000 times, the energy goes down further. When we look at

the left bottom image in Figure 4.23, the image is not blurred, but the black vertical

line is now connected.

2. The semi-implicit method

We notice that fewer iterations are required for the implicit method. Now, with the

semi-implicit method, we notice that the black vertical bar is connected in the middle.

(In this experiment, we could not obtain any inpainted images whose vertical black

bars were disconnected.) The output images with 60 and 100 iterations look similar.

If we iterate further until 200 times, the energy goes down further, but the output

image gets blurred.

3. The fully-implicit method

With the fully-implicit method, the inpainted image has not reached a stable condition

after 100 iterations. Hence, in this case, the rate of convergence is slower with the

fully-implicit method than with the semi-implicit method. When we iterate 200 times,

it seems that it has reached a stable condition. If we iterate further until 300 times,

the energy goes down further, but the output image starts getting blurred.

CHAPTER 4. ANALYSIS OF RESULTS 68

Figure 4.23: Explicit method Left : Inpainted image with ∆t = 0.1, ε = 0.7, Top: 100,
Middle: 500, Bottom: 1000 iterations Right: The energy of the image

CHAPTER 4. ANALYSIS OF RESULTS 69

Figure 4.24: Semi-Implicit method Left : Inpainted image with ∆t = 0.1, ε = 0.7, Top:
60, Middle: 100, Bottom: 200 iterations Right: The energy of the image

CHAPTER 4. ANALYSIS OF RESULTS 70

Figure 4.25: Fully Implicit method Left : Inpainted image with ∆t = 0.1, ε = 0.7, Top:
100, Middle: 200, Bottom: 300 iterations Right: The energy of the image

Chapter 5

Comparison with the BSCB

method

The BSCB method is based on the paper [11]. The BSCB algorithm performs the following

steps.

1. The structure of the area surrounding Ω is continued into the gap, contour lines are

drawn via the prolongation of those arriving at ∂Ω.

2. The different regions inside Ω, as defined by the contour lines, are filled with colour,

matching those of ∂Ω. ([11])

The codes are written based on the discretization of the algorithm given in [11]. In the

codes, the anisotropic diffusion (5.1) and the inpainting equation (5.2)

∂I

∂t
(x, y, t) = g�(x, y)κ(x, y, t)|∇I(x, y, t)|, ∀(x, y) ∈ Ω� (5.1)

In+1(i, j) = In(i, j) + ∆tInt (i, j), ∀(i, j) ∈ Ω (5.2)

are implemented alternately.

5.1 Assumptions for Implementation

Since [11] does not go into detail for the implementation, in order to implement the BSCB

algorithm, we make assumptions which are explained below. Our results are not necessarily

the same as obtained in other implementations, in particular the original paper [11].

71

CHAPTER 5. COMPARISON WITH THE BSCB METHOD 72

5.1.1 The Process of Inpainting

1. For each iteration of the inpainting process, the region under the mask is extracted

from Int (i, j), and added to In+1
t

(i, j).

2. As a preprocessing step, the whole original image undergoes the anisotropic diffusion

smoothing ([11]). As any specific number is not given in [11], this process is repeated

3 times.

5.1.2 A Smooth Function g for the Anisotrpic Diffusion

The details of the implementation of a smooth function g for the anisotropic diffusion are

not given in [11]. We define g as follows for this experiment:

1. The region Ω is dilated with � = 4. In order to make � = 4, the dilation is repeated 3

times with the structure element of disk with radius 1.

2. In order to make a smooth function g, the following values are assigned to each region.

(a) Ω : 1.0 (white region)

(b) Region between Ω and the first dilation : 0.75

(c) Region between the first and the second dilation : 0.50

(d) Region between the second and the third dilation : 0.25

(e) Outside of the dilated region : 0.0 (black region)

Figure 5.1: Smooth function g

CHAPTER 5. COMPARISON WITH THE BSCB METHOD 73

5.1.3 The Euclidean curvature function κ for the Anisotrpic Diffusion

Since the details of the implementation for the Euclidean curvature function κ is not given

in [11], we define κ as follows for this experiment.

κ =
Ïxxİ2y − 2İxİy Ïxy + Ïyy İ2x

(İ2x + İ2y)
3
2

where,

İx(i, j) =
(I(i+ 1, j)− I(i− 1, j))

2h
,

İy(i, j) =
(I(i, j + 1)− I(i, j − 1))

2h
,

İxx(i, j) =
(I(i+ 1, j)− 2I(i, j) + I(i− 1, j))

h2
,

İyy(i, j) =
(I(i, j + 1)− 2I(i, j) + I(i, j − 1))

h2
,

İxy(i, j) =
(I(i+ 1, j + 1)− I(i− 1, j + 1)− I(i+ 1, j − 1) + I(i− 1, j − 1))

4h
,

with h is the spacial step size ([8]).

5.2 Comparison in Programming

In this section, we look at the programming issues in the Ginzburg-Landau equation and

the BSCB algorithm.

5.2.1 The equations to be defined for the BSCB algorithm

First, the discrete inpainting equation

In+1(i, j) = In(i, j) + ∆tInt (i, j), ∀(i, j) ∈ Ω (5.2)

CHAPTER 5. COMPARISON WITH THE BSCB METHOD 74

consists of

• Int (i, j) =
�−−→
δLn(i, j) ·

−→
N (i, j, n)

|−→N (i, j, n)|

�
|∇In(i, j)| (5.3)

•
−−→
δLn(i, j) = (Ln(i+ 1, j)− Ln(i− 1, j), Ln(i, j + 1)− Ln(i, j − 1)) (5.4)

• Ln(i, j) = Inxx(i, j) + Inyy(i, j) (5.5)

•
−→
N (i, j, n)

|−→N (i, j, n)|
=

(−Iny (i, j), I
n
x (i, j))�

(Inx (i, j))
2 + (Iny (i, j))

2
(5.6)

• βn(i, j) =
−−→
δLn(i, j) ·

−→
N (i, j, n)

|−→N (i, j, n)|
(5.7)

and

• |∇In(i, j)| =






�
(In

xbm
)2 + (In

xfM
)2 + (In

ybm
)2 + (In

yfM
)2,when βn > 0

�
(In

xbM
)2 + (In

xfm
)2 + (In

ybM
)2 + (In

yfm
)2,when βn < 0

(5.8)

where, the subindices b and f denote backward and forward differences, respectively, while

the subindicesm andM denote the minimum or maximum, respectively, between the deriva-

tive and zero.

The anisotropic diffusion equation

∂I

∂t
(x, y, t) = g�(x, y)κ(x, y, t)|∇I(x, y, t)|, ∀(x, y) ∈ Ω� (5.1)

where Ω� is a dilation of Ω with a ball of radius �, consists of

• κ is the Euclidean curvature of the isophotes of I, (5.9)

and

• g� is a smooth function in Ω� such that






g�(x, y) = 0 ∈ ∂Ω�

g�(x, y) = 1. ∈ Ω

(5.10)

We have to code all these equations in order to use the BSCB algorithm.

CHAPTER 5. COMPARISON WITH THE BSCB METHOD 75

5.2.2 The equations to be defined for the Ginzburg-Landau Equation

In order to run the Ginzburg-Landau method with the explicit discretization scheme, what

we have to code is:

un+1
i,j

= uni,j +∆t[uni−1,j + uni+1,j + uni,j−1 + uni,j+1 − 4uni,j] +
∆t

ε2

�
(1− |uni,j |2)uni,j

�
.

Therefore, if we only look at the programming issue, the Ginzburg-Landau equation is

much easier to implement than the BSCB algorithm.

5.3 Comparison of Inpainted Images

5.3.1 Experiment 1

Now, we compare the inpainted images using the BSCB algorithm and the Ginzburg-Landau

equation. Since the BSCB algorithm prolongs the contour lines, the contour lines should be

somehow prolonged in the “expected” results.

1. The ambiguous image used in Section 4.3

Figure 5.2: Left : Ambiguous image, Right: via Ginzburg-Landau algorithm u

from Section 4.3

The experiments are done with the BSCB algorithm for ∆t = {0.01, 0.05, 0.1, 0.2} and

1000 iterations. When we look at Table 4.2, we notice that for the Ginzburg-Landau

equation, with ∆t = 0.01 and 1000 iterations, we get expected results. And also with

∆t = 0.05 and 500 iterations, except ε = 0.01 and 0.1, we get expected results. But

CHAPTER 5. COMPARISON WITH THE BSCB METHOD 76

with the BSCB algorithm with 1000 iterations, we do not see any contour lines pro-

longed. Therefore, we do not get an “expected” inpainted result.

Figure 5.3: The inpainted images of Ambiguous image by BSCB algorithm after 1000 iter-
ations, Top: ∆t = 0.01 (left), 0.05 (right), Bottom: ∆t = 0.1(left), 0.2 (right)

2. The images with a vertical white bar

This experiment is done with ∆t = 0.1.

(a) Line width 50, Ω = height 150, width 300 in Figure 4.5

Since (the height of Ω = 150) < (the width of Ω = 300)− (the line width = 50),

for the Ginzburg-Landau equation with 1000 iterations, we recover the white

vertical line. But for the BSCB algorithm, even we if iterate 5000 times, we

cannot recover the white vertical line.

CHAPTER 5. COMPARISON WITH THE BSCB METHOD 77

Figure 5.4: LW 50, Ω = height 150, width 300
Top Left: Original Image, Right: Mask Image
Bottom Left: via BSCB with 5000 iterations, Right: via GL equation with 1000 itera-
tions

CHAPTER 5. COMPARISON WITH THE BSCB METHOD 78

(b) Line width 50, Ω = height 310, width 100 in Figure 4.7

Since (the height of Ω = 310) ≮ (the width of Ω = 100)− (the line width = 50),

for the Ginzburg-Landau equation with 700 iterations, we do not recover the

white vertical line. For the BSCB algorithm, even if we iterate 5000 times, also

we cannot recover the white vertical line. But we notice that the Ginzburg-

Landau scheme has inpainted the vertical line with black colour, whereas, for the

BSCB algorithm, we have still Ω to be inpainted.

Figure 5.5: LW 50, Ω = height 310, width 100
Top Left: Original Image, Right: Mask Image
Bottom Left: via BSCB with 5000 iterations, Right: viaGL equation with 700 iterations

3. The images with several levels of brightness

This experiment is done with ∆t = 0.1.

(a) Line width 250, Ω = height 48, width 300 in Figure 4.10

Since (the height of Ω = 48) < (the width of Ω = 300)− (the line width = 250),

CHAPTER 5. COMPARISON WITH THE BSCB METHOD 79

for the Ginzburg-Landau equation with 600 iterations, we recover the vertical

white and grey lines. But for the BSCB algorithm, even if we iterate 5000 times,

we cannot recover the lines.

Figure 5.6: Ω = height 48, width 300
Top Left: Original Image, Right: Mask Image
Bottom Left: via BSCB with 5000 iterations, Right: via GL equation with 600 iterations

(b) Line width 250, Ω = height 310, width 100 in Figure 4.12

Since (the height of Ω = 310) ≮ (the width of Ω = 100)− (the line width

= 250), for the Ginzburg-Landau equation with 600 iterations, we do not re-

cover the white vertical line in the centre. For the BSCB algorithm, even if we

iterate 5000 times, we cannot recover the vertical line. But we notice that the

Ginzburg-Landau scheme has inpainted the white line in the centre with grey

colour, whereas, for the BSCB algorithm, we still have a large Ω to be inpainted.

CHAPTER 5. COMPARISON WITH THE BSCB METHOD 80

Figure 5.7: Ω = height 310, width 100
Top Left: Original Image, Right: Mask Image
Bottom Left: via BSCB with 5000 iterations, Right: viaGL equation with 600 iterations

CHAPTER 5. COMPARISON WITH THE BSCB METHOD 81

5.3.2 Experiment 2

From the results of Experiment 1 , we notice that the rate of convergence is slower for the

BSCB algorithm than for the Ginzburg-Landau equation. We will see how the convergence

rate differs by using a small Ω in the first example and an actual image in the second

example.

• The first example

We use the image with the vertical line width 20 and Ω of the height 20 and the width

50. For both the Ginzburg-Landau equation and the BSCB algorithm, ∆t = 0.1 is

used, and for the Ginzburg-Landau equation, ε = 0.5 is used.

The result is shown in Figure 5.8. For the Ginzburg-Landau equation, we iterated

100 times, and Ω is inpainted as we expected. For the BSCB algorithm, we iterated

5000 times, and still there is a small Ω to be inpainted. At least the Ginzburg-Landau

equation is 50 times faster to inpaint than the BSCB algorithm.

• The second example

We use the girls image in the second example. For both methods, ∆t = 0.1, and for

the Ginzburg-Landau equation ε = 0.5 are used.

The result is shown in Figure 5.9. For the Ginzburg-Landau equation, we iterated

50 times, and the image is inpainted pretty well. For the BSCB algorithm, we iterated

500 times, and still there is a grey line in the face of the middle girl. The Ginzburg-

Landau equation is at least 10 time faster for inpainting than the BSCB algorithm.

We conclude that the Ginzburg-Landau equation with explicit discretization is easier to

implement, and faster to inpaint than the BSCB algorithm.

5.3.3 Speeding up the BSCB method via methods in Fluid Dynamics

To increase the speed of the BSCB algorithm, a method based on the Navier-Stokes equa-

tions for Fluid Dynamics was introduced by Bertalmio, Bertozzi and Sapiro ([10]). Our

comparisons only refer to the original algorithm, and does not take into account the im-

provements in speed of [10].

CHAPTER 5. COMPARISON WITH THE BSCB METHOD 82

Figure 5.8: The First example
Top: Left Original image with line width 20, Right Ω is grey region
Bottom: Left via BSCB algorithm, Right via Ginzburg-Landau equation

CHAPTER 5. COMPARISON WITH THE BSCB METHOD 83

Figure 5.9: The Second example
Top: Left Original image, Right Mask image
Middle: Left Function g, Right Inpainted image via BSCB algorithm with 500 iterations,
Bottom: Left Ω set to be 0, Right Inpainted image via Ginzburg-Landau with 50 iterations

Bibliography

[1] online from http : //www.math.ucla.edu/ imagers/htmls/inp.html.

[2] online from http : //mathworld.wolfram.com/HyperbolicTangent.html.

[3] online from http : //www.boopidy.com/aj/cs/inpainting/.

[4] online from http : //www.cs.berkeley.edu/ aj/cs/inpainting
No longer available on February 25 2010.

[5] online from http : //www.greyc.ensicaen.fr/ jfadili/demos/WaveRestore
/EMInpaint/index.html.

[6] online from http : //en.wikibooks.org/wiki/Partial Differential Equations
/The Laplacian and Laplace%27s Equation.

[7] online from http : //en.wikipedia.org/wiki/Phase transition#Order parameters.

[8] online note from http : //www.bioen.utah.edu/wiki/images/6/6f/
Y ounesLectureNotes.pdf
Mathematical Image Analysis AMS493, Laurent Younes, Johns Hopkins University.

[9] Coloma Ballester, M. Bertalmio, V. Caselles, Guillermo Sapiro, and Joan Verdera.
Filling-In by Joint Interpolation of Vector Fields and Gray Levels. IEEE Transactions
on Image Processing, 10(8):1200–1211, 2001.

[10] M Bertalmio, A.L. Bertozzi, and G Sapiro. Navier-stokes, Fluid Dynamics, and Image
and Video Inpainting. Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference, 2001.

[11] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image Inpainting. SIGGRAPH,
2000.

[12] Fabrice Bethuel, Häım Brezis, and Frédéric Hélein. Asymptotics for the minimization
of a Ginzburg-Landau functional. Calculus of Variations and PDE 1, pages 123–148,
1993.

[13] Fabrice Bethuel, Häım Brezis, and Frédéric Hélein. Ginzburg-Landau Vortices.
Birkhäuser, 1994.

84

BIBLIOGRAPHY 85

[14] Tony F. Chan and Jianhong Shen. Non-Texture Inpainting by Curvature-Driven Diffu-
sions (CDD). Journal of Visual Communication and Image Representation, 12(4):436–
449, 2001.

[15] Tony F. Chan and Jianhong Shen. Mathematical Models for Local Nontexture Inpaint-
ings. SIAM Journal of Applied mathematics, 62(3):1019–1043, 2002.

[16] Selim Esedoglu and Jianhong Shen. Digital inpainting based on the Mumford-Shah-
Euler image model. European Journal of Applied Mathematics, 13:353–370, 2002.

[17] Marvin J. Forray. Variational Calculus in Science and Engineering. McGraw-Hill, 1968.

[18] V.L. Ginzburg and L.D. Landau. On the Theory of Superconductivity. Zh. Eksp. Teor.
Fiz.(ZhETF) 20, pages 1064–, 1950.

[19] Harald Grossauer. Digital Inpainting Using the Complex Ginzburg-Landau Equa-
tion. Institute of Computer Science Technikerstr. 25 A-6020 Innsbruck AUSTRIA,
harald.grossauer@uibk.ac.at.

[20] Harald Grossauer and Otmar Scherzer. Using the Complex Ginzburg-Landau Equation
for Digital Inpainting in 2D and 3D. Scale-Space, pages 225–236, 2003.

[21] R.M. Hervé and M. Hervé. Étude qualitative des solutions réelles d’une équation
différentiell liée à l’équation de Ginzburg-Landau. Ann. Inst. Henri Poincaré, Anal.
Non Linéaire, 11(4):427–440, 1994.

[22] K.-H. Hoffmann and Q. Tang. Ginzburg-Landau Phase Transition Theory and Super-
conductivity. Birkhäuser, 2001.

[23] Dominic W. Jordan and Peter Smith. Nonlinear Ordinary Differential Equations
An introduction for Scientists and Engineers. Oxford University Press, 2007.

[24] Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential
Equations. SIAM, 2007.

[25] Simon Masnou. Disocclusion : a variational approach using level lines. IEEE Transac-
tions on Image Processing, 11(2):68–76, 2002.

[26] Simon Masnou and Jean-Michel Morel. Level lines based Disocclusion. International
Conference on Image Processing, 3:259–263, 1998.

[27] Manuel M. Oliveira, Brian Bowen, Richard McKenna, and Yu-Sung Chang. Fast Dig-
ital Image Inpainting. Proceedings of the International Conference on Visualization,
Imaging and Image Processing (VIIP 2001), Marbella, Spain, pages 261–266, 2001.

[28] Stanley Osher and Ronald Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Springer, 2003.

BIBLIOGRAPHY 86

[29] Frank Pacard and Tristan Rivière. Linear and Nonlinear Aspect of Vortices The
Ginzburg-Landau Model. Birkhäuser, 2000.

[30] Etienne Sandier and Sylvia Serfaty. Vortices in the Magnetic Ginzburg-Landau Model.
Birkhäuser, 2007.

[31] J.W. Thomas. Numerical Partial Differential Equations Finite Difference Methods.
Springer, 1995.

