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Abstract

Image processing is an important tool in research and treatment design in the medical in-

dustry. One area of image processing is segmentation: the process of finding objects in

an image. This thesis develops a segmentation algorithm for finding the eyeballs in 3D

MRI human brain images. An integral part of this is the prior knowledge of the general

position, shape, and size of the eyeballs. The segmentation is done in two stages: first, the

most likely position of the eyeballs is found using a shape prior (a representation of two

spherical objects with specific size and distance apart), followed by a stage of more precise

active contour segmentation in the relevant area. The design process of this algorithm can

be used to develop a similar segmentation procedure to look for different objects in the

human brain, or in other types of images.

Keywords: image processing; medical imaging; segmentation; active contours; shape pri-

ors;
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Chapter 1

Introduction

Image processing is a well developed field which has existed for centuries. The original

setting for this was to create and restore art, historical documents, etc. – these are physi-

cal images. However, in the last few decades, with the emergence of computers and their

powerful influence on technological advancement, image processing has expanded into far

more. Application areas are being opened up whenever image data can be gathered.

1.1 The Segmentation Problem

In the context of computing science, (digital) image processing encompasses image en-

hancement, restoration, and the extraction of some useful attribute/information. An exam-

ple of the latter is image segmentation. Segmentation is a process applied to an image,

which aims to produce a separation of the image into regions, called objects. A simple ex-

ample of this is illustrated in Figure 1.1: we have an image containing a person and wish to

separate the person from the background. The figure shows a few steps of a segmentation

algorithm, with the blue curve indicating the separation of two regions: one is the person,

and the other is the background. The background itself is also considered an object. The

first snapshot of the algorithm shows an initial curve placed overtop of the image, to indi-

cate our “guess” for what the segmentation is. The following two instances demonstrate

how the curve evolves, using constraints induced by the particular segmentation algorithm

and the image itself. The final shows the result: the desired separation of the man from the

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Segmentation: separating objects in an image

background has been achieved.

Image segmentation is a tool used in various applications – image editing software

such as Photoshop; facial recognition software; video tracking; airport security and oth-

ers. Medicine is another major field which has greatly benefited from computerized image

processing. Segmentation in particular is used as an aid in pathology, computer assisted

surgery, tumour detection, diagnosis and more. The difficulty of finding objects in an im-

age varies greatly with the specific application. In medical imaging the main difficulties

come from various sources: poor image quality due to noise or acquisition limitations,

anatomical structures that naturally overlap, and great variability of shapes. The quality of

a segmentation algorithm will be partially determined by how it handles these problems.
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1.2 Existing Approaches for Segmentation

Many different approaches exist for the segmentation problem. One of the simplest and

most intuitive is intensity based segmentation [11]. Here image pixels are grouped together

(into objects) directly based on their intensity values. A more sophisticated approach, also

based on pixel-by-pixel operations, involves morphological operations [11]. This approach

relies heavily on treating pixels using elementary set operations and encompasses a num-

ber of tools, such as erosion and dilation, which are applied to neighbourhoods of pixels to

group like-pixels together. This is followed by a labelling sweep of the transformed image,

to assign like-pixels membership to the objects that result.

Other approaches have to do with direct transformations of the image data – eg. spher-

ical wavelet transformations for 3D segmentation [18]. Statistical tools and theory can also

contribute to developing segmentation algorithms. Principal component analysis (using

eigenvalue analysis) is a statistical tool which aims to represent an image by few but inte-

gral pieces of information, which in turn provide information about what the major objects

in the image are. A popular approach which shares this idea is k-means segmentation [10].
This is a combination of a statistical approach and intensity based segmentation. Another

way statistics can be used is by modelling a posteriori position and shape of objects in algo-

rithms which simultaneously use shape information and local segmentation techniques [13].

Although the above approaches describe powerful segmentation methods, this thesis

explores a different category of procedures. Image gradient based edge detector algorithms,

in particular, motivate the ultimate segmentation method used here – Chan and Vese’s active

contours without edges [5]. These are discussed in more detailed in Chapter 2.

1.3 Motivation for Deformable Models

To motivate the choice of Chan and Vese’s algorithm, we first consider some major draw

backs of the previously mentioned approaches for our chosen application. The nature of

medical images makes it difficult to employ straight forward pixel-by-pixel based tech-

niques. These images tend to be noisy and involve many overlapping objects. Many of the
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above methods are sensitive to noise. Classical edge-detection approaches (eg. gradient

based edge detection) can fail when the objects do not have clearly defined sharp bound-

aries, or have discontinuous boundaries. For these reasons, deformable models offer a more

robust approach.

Deformable models use curves (surfaces when working with 3D images) to represent

the desired segmentation. These curves are evolved iteratively based on some internal and

external forces. The internal forces are dependent on the state of the evolving curve and are

specified by the particular segmentation method selected – eg. conditions can be imposed

to retain a level of smoothness for the curve at every iteration. This is done, for example,

to keep the curve from becoming too jagged, even if the object we are trying to find has

an artificially jagged edge (due to low image quality resulting in pixelated boundaries).

The external forces define the portion of the segmentation method that depends on the

particular image we are segmenting. These also vary from method to method, but must

utilize information from the original image to guide the curve towards the object. By

having both internal and external forces, we maintain a smooth curve being evolved and

guided towards the areas deemed by the procedure to be objects. In this way, sensitivity to

noise is minimized and problems due to object boundary discontinuity are avoided.

1.4 Notation and Main Approach

We now introduce some notation to make the above more explicit. Consider a 2D grayscale

image, I0. The quantity I0(x,y) represents the intensity value (a number between 0 and 255)

at pixel location (x,y): the xth row, yth column of the image. One way to represent the de-

sired segmentation is using level sets. We define a function φ within the domain of the

image, Ω, whose zero level set will represent the object boundaries. We choose it to be

positive “inside” an object, and negative “outside”. This is illustrated in Figure 1.2: the

image contains one object, in yellow, and the segmentation φ is defined on the whole do-

main. Here C is the curve we are really interested in, represented by the zero level set of φ.

This function is what we evolve according to some internal and external forces, yet to be

specified. Since we are evolving φ, we introduce an artificial time, t, into the procedure.
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Figure 1.2: Curve C representing the boundaries of our object, implicitly defined as the

zero level set of a function φ

In addition to the segmentation φ, this method also uses shape information particular to

our application. We will therefore need to use a representation of a target shape that con-

tains information about what we are looking for. This can be naturally defined in a similar

fashion as φ, where the zero level set will represent the boundaries of the shape object we

want to find. We call this shape representation ψ.

The particular application considered here is looking for eyeballs in human brain im-

ages. The images used are assumed to have been centered, cropped, and oriented the same

way. A 2D slice of a full brain MRI image is shown in Figure 1.3. Assuming this is the

case for all of our images, we can make an educated guess as to the definition of the shape

object, ψ. Based on the relative size of the image, we create a level set representation of

ψ, and position it somewhere on the right hand side of the image. We now perform a few

iterations of an energy minimization evolution, to attract the shape prior to a more suitable

position close to the actual eyeballs. We will allow translation of ψ, without any scaling

or rotation. This is sufficient based on the assumptions that the images have been properly

pre-processed, and the variation in eyes in humans is not great enough to affect this step [7].

Once we have found the general area in which the eyeballs are located, we aim to find

a more precise boundary definition. Now, we constrict our domain to be only within a

region encompassing the eyes, hence ignoring all the other objects in the brain. At this
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Figure 1.3: Pre-processed brain image: centered, cropped, oriented with eyes on the right

point we evolve φ for a few iterations, using the current definition of our shape prior ψ as

an initialization for φ. This is indeed our best guess for where the object we aim to find is.

The algorithm used here is the Chan and Vese active contours without edges segmentation

method [5]. This involves a definition of the previously mentioned internal and external

forces – specifying smoothness for the segmentation φ, and using appropriate information

of the active image domain, to accurately outline the eyes in the brain image.

The purpose for getting an accurate segmentation of the eyes is to allow medical re-

searchers to explore variability in human eyes. By segmenting a large number of images,

we are, for example, able to get a distribution of the average size, shape, and position of

the eyeballs. This could be useful in medical research to try and correlate these results

with certain disorders, or to diagnose abnormalities, etc. Moreover, we are interested in

generating robust algorithms which can be applied to identify a generic anatomical fea-

ture in a large set of data. To be practical, our approach needs to be able to handle noisy

data and provide an easy way to switch the target shape from eyeballs to something else,

defined by the particular anatomical feature. Another important attribute is computational

efficiency. This thesis aims to segment images in 3D, and this increases the amount of work

our method will do drastically: a simple 100 by 100 pixel image in 2D has a total of 104
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pixels; however, in 3D we may be dealing with 100 by 100 by 100 pixel data, translating to

a total of 106. In fact, our images are 160 by 256 by 256 pixels (for a total of approximately

107 pixels) for the 3D experiments.

The organization of this thesis is as follows. Chapter 2 explores the details of the

Chan and Vese segmentation algorithm in more depth and presents some examples of the

segmentation process. Chapter 3 discusses the use of shape information, and different

approaches used in practice. A final model resulting in the combining of the Chan and

Vese segmentation with the shape information incorporated is presented for 2D images.

Chapter 4 generalizes this model to 3D and shows some results. Chapter 5 concludes the

thesis and includes a discussion about suggested future research, which can improve the

overall quality of the method.

1.5 A Note on Computations

All numerical computations presented in this thesis were performed on a laptop using Mat-

lab. The focus of this thesis is to present a proof of concept algorithm rather than develop

an optimal one. All timings are preliminary and presented merely as a way to compare

approaches and not to make definitive claims about the speed of this approach.



Chapter 2

Chan and Vese’s Active Contours
Without Edges

This segmentation method finds all objects in an image, where boundaries of objects are

not necessarily defined by gradient (a sharp jump in intensity values). The optimal seg-

mentation arises from minimizing an energy, and is arrived at by evolving a level set curve.

To facilitate smoothness in the curve evolution, a motion by mean curvature is employed.

A Partial Differential Equation (PDE) formulation of the problem is presented, followed

by an iterative method for solving the PDE numerically using finite differences. The ben-

efits of this algorithm over others of its class include the flexibility of having objects with

or without sharp edges, placing the initial curve anywhere, automatically finding interior

contours, and low sensitivity to noise.

2.1 Motivation for the Algorithm

In the classical segmentation approaches using curve evolution, we begin with a curve C,

defined over the domain of our image, I0. We then evolve the curve according to some con-

straints imposed by the particular image, to obtain a final state of the curve. This final curve

will define the boundaries of the objects found by the procedure. One of the original algo-

rithms in this category is the classical snakes model [12]. In this model the parametrized

curve, C(s) : [0,1]→ R2, is found to minimize the energy E1(C) :

8
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E1(C) = α

∫ 1

0
|C′(s)|2ds+β

∫ 1

0
|C′′(s)|2ds−λ

∫ 1

0
|∇I0(C(s))|2ds (2.1)

Here α, β, and λ are constant (positive) parameters. Since we are trying to minimize

E1(C), we want to make the first two terms as small as possible, and the third as large as

possible. The first two define the previously mentioned internal forces, imposing smooth-

ness on our curve. The last term is the only one which depends on the particular image we

are working on. This is the external force guiding the segmentation process. In the case of

the classical snakes model, this is directly related to the gradient of the image. The reason

for this is that we expect to see a sharp edge along the boundary separating two objects,

and hence resulting in a large gradient in that area. By “edge” here we refer to a curve

segment defining the separation of one object from another. So, we expect this energy to

be minimized along such a boundary, while maintaining a smooth curve resting along it.

The constant parameters can be chosen in a way defining the trade-off between how much

we care about smoothness versus precision of the resulting curve that defines our segmen-

tation. Looking at the energy terms above, we see that the larger we choose the parameter

λ to be, the more sensitive the procedure will be to image gradient without much regard

for maintaining a smooth segmentation curve. On the other hand, by choosing α and β to

be large, we enforce smoothness of the curve. Some smoothness is necessary to keep the

segmentation procedure from degrading and failing – this depends on the particular method

used as well as on the nature of the objects in the given image.

The basic idea behind snakes, whose name comes from the similarity between a moving

snake and the evolving curve over time, can be extended to more sophisticated methods in

a variety of ways, resulting in a class of snake models, most of which are heavily reliant on

gradients. More generally, an edge detector function can be defined to drive the speed of the

smoothly evolving curve, such that it vanishes at edges (defining a divider between objects

in the original image). Gradient based segmentation involves defining such a function,

g(|∇I0|), with the property that it is positive in regions with low gradient, and vanishes in

regions with high gradient: lim
x→∞

g(x) = 0. With this property we expect the curve to stop

exactly at places with high gradients – this is where we expect the boundary of an object to

be. A simple example of a class of functions with this property is:
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g(|∇I0|) =
1

1+ |∇I0|p
, p ≥ 1 (2.2)

To consider ways which drive the motion of the curve C (eg. in the normal direc-

tion), we first consider how to define it. Various methods define the curve we are inter-

ested in as the zero level set of a function, φ(x,y, t), as mentioned in Chapter 1: C(t) =
{(x,y)|φ(x,y, t) = 0}, where t is the artificial time introduced for the evolution procedure.

With this definition, we can evolve C in its normal direction with speed F by solving the

following PDE:

∂φ

∂t
= |∇φ|F

φ(x,y,0) = φ0(x,y) (2.3)

Here φ0(x,y) is an initial “guess” for the segmentation. A common choice for F is mo-

tion by mean curvature, in which the normal velocity of the curve equals its mean curvature

[23]. This amounts to setting F = div
(

∇φ

|∇φ|

)
. One straightforward way to combine mo-

tion by mean curvature and gradient based edge detectors is to multiply the right hand side

of equation (2.3) by a function g(|∇I0|), so that the velocity of the curve becomes 0 where

g is 0 – along a boundary. This results in the equations:

∂φ

∂t
= g(|∇I0|)|∇φ|

(
div
(

∇φ

|∇φ|

))
φ(x,y,0) = φ0(x,y) (2.4)

One issue that comes up from using an edge detector g is that it depends on a gradient

that is evaluated numerically on a discrete grid. This means that g will never be exactly

zero, so the curve’s speed may never be exactly zero. This allows for the curve to some-

times accidentally pass through the boundary of an object and entirely miss that object –

this is particularly problematic with explicit time stepping methods. Another issue with

these edge detectors is that if the object has a smooth or blurry boundary, although the

curve may slow down as it enters the boundary region, it is difficult to define a stopping
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Figure 2.1: Noise sensitivity of a simple gradient based segmentation method, contrasted

with Chan and Vese’s method

criterion that will be consistent for other objects in the same image. Yet another issue is

noise: the gradient around noisy pixels is misleadingly high, causing these methods to clas-

sify noise clusters as objects, or incorrectly stopping the curve evolution prematurely. One

solution that is employed in these methods is smoothing the image I0 before applying the

segmentation procedure. For example, a convolution with a Gaussian is commonly used

in practice. This can get rid of noise, but will also smooth the edges that are so essential

to gradient based methods. An example of a poorly smoothed image is shown in the third

picture of Figure 2.2.

An example of the problem with noise sensitivity for gradient based methods is shown

in Figure 2.1. In the first picture we evolve a curve according to equation (2.4), with the

function g as in (2.2) with p = 2. We can see that the small amount of noise close to the

left side of the boundary of the object causes the evolving curve to stop prematurely. This

evolution took approximately 3,000 iterations (10 minutes). In contrast, the Chan and Vese

method is shown in the second picture. We can see that the object is accurately found in

spite of the noise present. The parameter values for this computation, to be described in

more detail in the following section, are: ε = 1,µ = 1000,λ = 0.1,∆t = 0.001, 15 iterations

(3 seconds).

Using the main ideas of the snakes method, Chan and Vese’s segmentation model is
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Figure 2.2: Piecewise constant approximation to a brain image compared to a smoothed

version of the same image

based on the Mumford-Shah energy functional [17], which uses piecewise smooth (con-

stant in our case) approximations to regions of the image I0 to determine the proper seg-

mentation of objects. This is essentially intensity based segmentation, which can capture

objects with or without sharp boundaries. It is not particularly sensitive to noise, as the

piecewise constant approximation will not be affected by a few noisy pixels. The Mumford-

Shah functional is:

EMS(I0,C) = µ Length(C)+λ

∫
Ω

|I0(x,y)− IMS(x,y)|2 dxdy

+
∫

Ω C
|∇IMS|2 dxdy (2.5)

The aim is to minimize this with respect to IMS, which is the desired piecewise constant

approximation of the original image, I0. An illustration of this idea is shown in Figure 2.2,

where the first picture is the original image, the second is the piece-wise constant approxi-

mation to it using only two separate regions (brain and background) obtained by Chan and

Vese’s method, and the last is a heavily smoothed version of the original image using a

Gaussian filter. The last image is included to illustrate the dangers of smoothing an image

prior to segmenting it – some gradient based methods do this to decrease noise sensitivity,

but this may also result in loss of edge information.

Chan and Vese’s method also employs an implicit level set definition for the evolving

curve C. This has two major benefits: the initial curve imposed by choosing φ0(x,y) can

be anywhere in the image domain. The level set formulation also allows for automatic
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detection of interior contours: eg. if the object we are looking for is an annulus, we can

have a zero level contour along both circles defining the boundaries of the annulus, without

special alterations to the code. Some simple edge detector based algorithms might start

with the curve C encompassing the whole annulus, and iteratively shrink until it reaches

the outer boundary of the annulus, and terminating as the gradient would be high along this

outer edge. These types of methods are called balloons or bubbles [21], and can in certain

cases be sufficient depending on the application. It should be noted that the gradient-based

segmentation algorithms have a nice intuitive interpretation as well, and so does Chan

and Vese’s method, as will be described in the next section. We aim to use the idea of

representing an image by regions of constant intensity, as in the middle picture of Figure

2.2, by formulating it in mathematical terms.

2.2 The Model

2.2.1 Simple Case: Binary Image

Mathematically, Chan and Vese’s method arises from an energy minimization problem.

To help better explain the intuition behind it, let us first look at a very simple version of

the segmentation problem. Consider an image I0(x,y), with the image domain denoted

by Ω. Suppose I0 is composed of a constant intensity background and one object, of a

different constant intensity. Denote these by Io
0 and Ii

0, with superscripts denoting outside

and inside the object, respectively. Let C0 be the curve describing the desired segmentation:

the boundary of the object. Now, to consider the basic idea of the model, we look at an

appropriate energy we wish to minimize. For some curve C in the image domain Ω, we

define the energy associated with this curve as:

E(C) = Einside(C) +Eoutside(C)

=
∫

inside(C)
|I0(x,y)− c1|2dxdy

+
∫

outside(C)
|I0(x,y)− c2|2dxdy (2.6)
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where

c1 =average intensity of I0 inside C,

c2 =average intensity of I0 outside C.

Notice that E(C)≥ 0 for any curve C in Ω, and in particular, E(C0) = 0, indicating that

C0 indeed achieves the optimal solution in the minimization problem. To better illustrate

the nature of this energy, we consider the four possible unique placements of a curve C in

the image, and examine the values of the terms Einside(C) and Eoutside(C):

• Case 1: The curve C is outside the object, encompassing the entire object and some

background area. In this case, Eoutside(C) = 0, as the average intensity outside the

curve is precisely Io
0 . However, Einside(C) > 0, since the intensity inside the curve

will be a weighted average of Io
0 and Ii

0, with weights determined by the respective

areas of background and object.

• Case 2: The curve is strictly inside the object. This is essentially Case 1 in reverse.

Here we have Einside(C) = 0, but Eoutside(C) > 0.

• Case 3: The curve partially encompasses the object and some of the background. In

this case both Einside(C) > 0 and Eoutside(C) > 0.

• Case 4: The final case is when the curve lies on the boundary of the object, ie.,

C = C0. In this case we have that both components of the energy are 0.

This is illustrated in Figure 2.3 and provides a natural interpretation of the basic idea

behind Chan and Vese’s method. Notice that this does not involve the gradient of the

original image, but simply the distribution of intensity values within the image domain.

Another point that comes out of this formulation is that this method is inherently insensitive

to noise: one can imagine adding a few yellow pixels to the background in the image in

Figure 2.3, and still Case 4 is optimal out of the ones presented. Theoretically, the absolute

minimum would require the curve to break up into a few pieces, one of which is as in Case

4 and the others encompassing each (or connected groups) of the noise pixels. This can be

easily addressed by adding some further conditions on the curve C.
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Figure 2.3: Illustrating the basic idea behind Chan and Vese’s method: four scenarios

showing how the energy is minimized

2.2.2 Adding Regularization

Using the idea illustrated here as a starting point, we can now begin to add some regular-

ization to the segmentation procedure to arrive at the complete model. To this effect, Chan

and Vese introduce two additional terms into the energy. The first is meant to minimize the

length of C. This is to ensure that as the curve evolves, it does not get too wiggly – this

could happen due to low image quality compromising the integrity of the boundary of an

object, or if significant noise is present. The other term is to minimize the area inside C

– this can force the larger “object” to be deemed background. Also, if we are looking for

more than one object, which requires a multiphase approach using this algorithm [6], this

can reduce the clustering of nearby objects as one. The multiphase approach aims to look

for more than a single object in an image, for example for two objects, by evolving two

separate segmentation curves at the same time – this can be easily achieved by evolving

two separate functions φ1 and φ2, whose respective zero level sets represent each of the two

curves.

Including these two terms, the full energy becomes:
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ECV (c1,c2,C) = µ ·Length(C)+ν ·Area(inside(C))

+λ1

∫
inside(C)

|I0(x,y)− c1|2dxdy+λ2

∫
outside(C)

|I0(x,y)− c2|2dxdy

(2.7)

We have parameters µ≥ 0, ν≥ 0, λ1 , λ2 > 0. In this thesis the term corresponding to

the area inside C will be ignored: ν = 0. This is because the length term gives more infor-

mation about the regularity of the curve C – consider a region encompassed by a smooth

curve vs. jagged curve, with the area remaining unchanged. Also, there is an inequal-

ity bounding the area from above by the length squared [5]. Consider a curve of length

L = 2π r. A circle maximizes the area of an object with boundary of a fixed length, so we

have that A≤ π r2 =
L2

4π
. Therefore, minimizing the length of the curve also provides some

regularization for the area of the object bounded by it. Furthermore, there is no intuitive

reason in our application to want to minimize the area of our object, but there is to mini-

mize the length – indeed the eyeballs are circular (spherical in 3D, where the length of our

segmentation becomes surface area) and with smooth boundary.

The choice for the rest of the parameters describes the balance of importance of each of

the respective terms in the energy. In particular, for our application we set λ1 = λ2 for now,

to indicate that being inaccurate (w.r.t. the piecewise constant approximation to I0) inside

and outside the object should be penalized equally. Looking at the length term, we can see

that making µ large will force the evolving curve to stay as short as possible. An example of

this is mentioned above: adding a few noisy pixels may seem as though we will incorrectly

classify them as objects if we only kept the two terms Einside(C) and Eoutside(C), but with

this regularization, the curve will be discouraged from splitting up in such a way. On the

other hand, if we expect our image to have many small objects, we want to avoid grouping

clusters of nearby objects together, so we will have to choose a small value for µ.

To build the Chan and Vese energy ECV , we start with the simplest example where we

have an image I0 with two distinct intensity values, Io
0 and Ii

0. This, of course, does not hap-

pen naturally, so we now consider how the basic idea generalizes to more typical grayscale
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images. This borrows the ideas from Mumford and Shah’s functional for segmentation

[17]. The main goal here is to find the best piece-wise constant approximation to an im-

age I0, such that each region of constant intensity represents one object (or background).

Let this approximation be IC, where the subscript C corresponds to the curve defining the

boundary of separation between these regions. We can define this more precisely for any

curve C, and we aim to find the best curve (as C0 above) to make our approximation IC
match I0 best. Let c1 be the average intensity of the pixels in the image I0 located inside

the region defined by C, and c2 be the average intensity of I0 outside the curve C. Then the

definition of the piecewise constant approximation of I0 defined by C becomes:

IC =

 c1, for pixels inside C,

c2, outside C.
(2.8)

2.2.3 Full Energy

With this description of the general grayscale image problem, the generalization of the

simple case is natural. So, our energy ECV remains unchanged, and we have yet to explicitly

state the two terms µ ·Length(C) and ν ·Area(inside(C)). In order to do that, two support

functions are introduced. First, recall how our curve C is defined:

inside(C) = {(x,y) ∈Ω | φ(x,y) > 0}

outside(C) = {(x,y) ∈Ω | φ(x,y) < 0}

C = {(x,y) ∈Ω | φ(x,y) = 0}

In order to track the curve C as it evolves, we really need to track φ(x,y) and refer to

its zero level set to extract C. With this in mind, we wish to specify the length and area

terms in the energy, but also translate the remaining two integrals into a convenient form.

For this reason we introduce two support functions: the Heaviside function, H(s), and the

delta function, δ(s):

H(s) =

 1 if s ≥ 0,

0 if s < 0 .
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We define δ(s) =
d
ds

H(s) : the derivative of the Heaviside function, in the sense of

distributions. This provides a simple way to represent the regions inside(C) and outside(C).

From the definition of C and from Figure 1.2, we can see that these regions are equivalent

to H(φ(x,y)) and (1−H(φ(x,y))), respectively. This helps us with the last two integrals in

the energy ECV : we can now integrate over the whole domain Ω by multiplying each of the

integrands by the respective Heaviside function terms. For the first two terms, length and

area, we now have explicit expressions:

Length(C) =
∫

Ω

|∇H(φ(x,y))|dxdy

=
∫

Ω

δ(φ(x,y))|∇φ(x,y)|dxdy (2.9)

and

Area(C) =
∫

Ω

H(φ(x,y))dxdy (2.10)

The length term arises from noticing the fact that H(φ(x,y)) only changes (has nonzero

gradient) across the boundary of the curve C – when φ goes from negative to positive. The

area term can be easily established from Figure 1.2: the area inside(C) is precisely the

area where φ > 0. Putting everything together, we now have a complete expression for the

energy:

ECV (c1,c2,φ) = µ
∫

Ω

δ(φ(x,y))|∇φ(x,y)|dxdy

+ν

∫
Ω

H(φ(x,y))dxdy

+λ1

∫
Ω

|I0(x,y)− c1|2H(φ(x,y))dxdy

+λ2

∫
Ω

|I0(x,y)− c2|2(1−H(φ(x,y)))dxdy (2.11)

Now that the full model is developed, it can be transformed into a numerical problem

and solved using finite differences or any other robust discretization method. Before pre-

senting the numerical scheme used here, we first discuss the existence of a minimum for the
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energy (2.11). Intuitively, we can refer to the simplest version of the model: for a simple

image of two distinct intensities (Io
0 , Ii

0), with µ = ν = 0, we find that φ defined so that it is

0 along the boundary of the single object makes the energy 0, giving us the desired mini-

mum. In the more general case where the image I0 is not necessarily piecewise constant,

and the length and area terms are included (µ,ν 6= 0) there are rigorous proofs available

to assert existence [16], [14]. As well as formal treatment, this includes an extension to

approximated versions of these types of problems [14].

In [16], for example, a proof is provided for the existence of a minimum of a closely

related functional:

E(u,B) = ‖u−g‖L2(R) + l(B) (2.12)

The set-up of the problem is as follows:

• R is a rectangle – this is satisfied as Ω, our image domain, is indeed a rectangle.

• B is a finite set of curves in C1, defined on R – these are the possible curves defined

by the zero level set of our segmentation φ.

• u is piecewise constant on R − B – this is equivalent to the piecewise constant ap-

proximation of I0 in the Mumford and Shah formulation of the segmentation problem.

This has been referred to as IC in (2.8).

• g is a bounded function on R – our image I0

• l(B) here is equivalent to a regularization of the curve (the zero level set of φ). In

particular, the case when l(B) is the length of B is covered in [16].

As well as the above, Mumford and Shah also provide a proof of existence [17]. We

can now proceed to look at a numerical version of the problem.
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2.3 Euler-Lagrange formulation and Numerical Scheme

2.3.1 Heaviside function approximation

In order to minimize the energy (2.11), we first find the Euler-Lagrange equations associ-

ated with it and then discretize them accordingly. Before proceeding with this, a special

treatment of the Heaviside function and the delta function is necessary – we need a regular-

ized version of these in order to be able to set up a scheme. To maintain the regularized delta

function in C1 (with one continuous derivative), for example, we require that the Heaviside

function regularization stays in C2. One example of a regularized version of H(s), with

small parameter ε, is proposed in [24] as follows:

H1
ε (s) =


1 if s > ε ,

0 if s <−ε ,
1
2

[
1+

s
ε

+
1
π

sin
(

πs
ε

)]
if |s| ≤ ε.

(2.13)

Then the associated approximation to the delta function, δ1
ε(s) =

dH1
ε (s)

ds
, becomes:

δ
1
ε(s) =

 0 if |s|> ε ,
1
2ε

[
1+ cos

(
πs
ε

)]
if |s| ≤ ε.

(2.14)

Chan and Vese use a different approximation, which is a C∞(Ω) regularization:

H2
ε (s) =

1
2

[
1+

2
π

arctan
( s

ε

)]
, and

δ
2
ε(s) =

1
πε

ε2

ε2 + s2 . (2.15)

Both of these approximations are valid, as they both have the property that as ε→ 0,

Hε(s)→H(s). These are illustrated in Figure 2.4. The parameter ε describes the “amount”

of regularization applied, and choosing it to match the spatial discretization cell size, ∆x,

means that the support of the regularized functions is on the same order as our discretiza-

tion – ie. the effect of applying either one of these functions to φ is reflected on just a few

pixels close to its 0 level set. Since our discretization is naturally provided by the pixelation
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Figure 2.4: Comparing two regularizations of the Heaviside and respective delta functions

of the image, we take ε = ∆x = 1. For the purposes of comparison, in the figure we have

used ε = 1 for the first definition of the delta function, and ε =
1
π

for the second – this is

simply a scaling factor between the two versions.

To see why the second choice of regularization is best for us, we consider the differences

between the two, with the nature of our equations in mind. As will be shown below, the

Euler-Lagrange equations have a δε(φ) dependence, which causes our update equations to

only apply in regions where our regularization has support. We can see that the first option

for regularizing the Heaviside function results in the delta function being nonzero only on

the interval [−ε,ε] (2.14). This means that only the level set curves in a neighbourhood

around the zero level set of φ will be evolved. Although this may sound computationally

desirable, it has one major drawback, forcing us to choose (2.15): evolving only a few level

sets can lead to a local minimum of our energy. The C∞ regularization allows us to evolve

our equation on all level set curves simultaneously, as δ2
ε is never 0, and this makes the

method more flexible and more likely to find a global minimum. Therefore, this has the

benefit of making our method insensitive to initial conditions and capable of automatically

detecting interior contours. These are desirable features for any segmentation algorithm.
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2.3.2 Euler-Lagrange Equations

With this choice of regularization, we will now drop the subscript and use Hε,δε as de-

fined in equations (2.15). Now the Euler-Lagrange equations can be derived using these

functions. Recall the full energy as before:

ECV (c1,c2,φ) = µ
∫

Ω

δ(φ(x,y))|∇φ(x,y)|dxdy

+ν

∫
Ω

H(φ(x,y))dxdy

+λ1

∫
Ω

|I0(x,y)− c1|2H(φ(x,y))dxdy

+λ2

∫
Ω

|I0(x,y)− c2|2(1−H(φ(x,y)))dxdy (2.16)

To obtain an appropriate update equation for c1 and c2 we hold φ fixed, we minimize

ECV with respect to each of c1 and c2 by differentiating it appropriately and setting the

derivative to 0. We show the details of this computation for c1 and simply state the resulting

equation for c2 and the Euler-Lagrange equation for φ(x,y, t) (recall t is an artificial time

for the purposes of evolving the segmentation curve, and we may drop the absolute value

as the terms are squared):

∂ECV

∂c1
=−λ1

∫
Ω

2 (I0− c1) H(φ) dxdy = 0∫
Ω

I0 H(φ) dxdy− c1

∫
Ω

H(φ) dxdy = 0 , by absorbing all constants into the RHS∫
Ω

I0 H(φ) dxdy = c1

∫
Ω

H(φ) dxdy

c1 =
∫

Ω
I0 H(φ) dxdy∫

Ω
H(φ) dxdy

(2.17)

This gives a nice expression for c1 in terms of φ. In a similar fashion, we obtain expres-

sions for c2 and φ, with natural boundary conditions arising from the energy minimization,

and a predefined initial condition:

c2 =
∫

Ω
I0 (1−H(φ)) dxdy∫
Ω
(1−H(φ)) dxdy

(2.18)
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∂φ

∂t
= δε(φ)

[
µ div

(
∇φ

|∇φ|

)
−ν−λ1 (I0− c1)2 +λ2 (I0− c2)2

]
, t > 0

φ(x,y,0) = φ0(x,y) , in Ω

δε(φ)
|∇φ|

∂φ

∂~η
= 0 , on the boundary of Ω (2.19)

Here~η denotes the exterior normal to the boundary of our domain, so that the term
∂φ

∂~η
is the normal derivative of φ at the boundary. This is the PDE we will solve numerically

over the image domain to obtain the segmentation defined by the stationary state of φ.

2.3.3 Numerical Scheme

We now consider how to discretize the above equations. It is important to keep in mind

that although this discussion is in 2D, we wish to generalize to 3D and we must consider

speed of computations as a significant factor in designing a numerical scheme. First, we

denote by ∆x the spatial discretization step, both in the x and y directions. We take this to

be naturally dictated by the image pixelation as 1 – the “length” of a single pixel. Similarly,

denote by ∆t the artificial time step. Let the size of the image be m pixels by n pixels, i be

the index along the x direction and j along the y, so that I0,i, j denotes the intensity of the

image I0 at position x = i,y = j. Similarly, we index time by superscript k.

For the time derivative we use a simple forward Euler discretization. Although this is

not the best choice for 2D in terms of accuracy and stability, the purpose of this thesis is

to develop an approach for segmentation which works in 3D. For this reason, we focus on

the simplest approach to perform our experiments, and any improvements made to the time

and space derivative discretization in the future are encouraged. Also, this is in fictitious

time and we are looking for steady states, so the temporal accuracy is not important. Thus,

we approximate the LHS of the equation (2.19) as:
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∂φ(x,y, t)
∂t

≈
φ

k+1
i, j −φk

i, j

∆t
(2.20)

Next, we consider how to discretize the divergence term by first writing it as:

div
(

∇φ

|∇φ|

)
=

∂

∂x

(
φx

(φ2
x +φ2

y)
1
2

)
+

∂

∂y

(
φy

(φ2
x +φ2

y)
1
2

)
(2.21)

We will discretize the above piece-by-piece, by first introducing the following notation:

• ∆x
−φi, j = φi, j−φi−1, j, a backward difference

• ∆x
+φi, j = φi+1, j−φi, j, a forward difference

• ∆
y
−φi, j = φi, j−φi, j−1

• ∆
y
+φi, j = φi, j+1−φi, j

Notice that each of these are first derivative approximations, as our ∆x = 1, and that

∆x
−(∆x

+φi, j) results in a centered difference estimating the second x derivative of φ at the

point x = i,y = j. Examining the divergence equation, if we only had div(∇φ), we could

replace the term
∂

∂x
φx with ∆x

−(∆x
+φi, j), to obtain a centered difference. As the problem

that we are solving is parabolic, for the divergence term it is most suitable to stick to

centered differences. Due to the symmetry of equation (2.21) of interchanging x to y, let us

only consider the first half of it. Since we now have a term in the denominator, it is most

straightforward to replace all x derivatives inside the brackets by ∆x
+, so that combined

with the ∆x
− in front of the bracket we will get centered differences. However, to deal with

the φy term, we must immediately use a centered difference, since the partial outside the

bracket is with respect to x, not y, so that φy(i, j)≈ 1
2 (φi, j+1−φi, j−1) in the first half of the

divergence term. Combining these arguments, we get the following approximation to the

first portion of the divergence term:

∂

∂x

(
φx

(φ2
x +φ2

y)
1
2

)
≈ ∆

x
−

 ∆x
+φi, j(

(∆x
+φi, j)2 + 1

4 (φi, j+1−φi, j−1)2
) 1

2

 (2.22)
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By the symmetry of the divergence term we have, we can do the same for the y-portion:

replace the outer partial derivative with a backward difference, all the inside y-derivatives

with forward differences, and use a centered difference for the x derivative in the denomi-

nator. All the rest of the terms in the full equation for φ (2.19) follow naturally, to give the

full discrete version of the equation as:

φ
k+1
i, j −φk

i, j

∆t
= δε(φk

i, j) ·

µ ∆
x
− ·

 ∆x
+φk

i, j(
(∆x

+φk
i, j)2 + 1

4(φk
i, j+1−φk

i, j−1)2
) 1

2



+µ ∆
y
− ·

 ∆
y
+φk

i, j(
1
4(φk

i+1, j−φk
i−1, j)2 +(∆y

+φk
i, j)2

) 1
2


−ν−λ1

(
I0,i, j− c1(φk)

)2
+λ2

(
I0,i, j− c2(φk)

)2
]

(2.23)

This discretization of the divergence term is proposed in [19] with some minor dif-

ferences. However, Chan and Vese use an implicit scheme: they replace the terms in the

numerator of the fractions with their respectives at time step k+1. We cannot afford to use

an implicit scheme, as pointed out in the start of this subsection, as we will be general-

izing this scheme for 3D. From the experiments that follow, the fully explicit version of

this scheme used here performs well and in reasonable time (seconds in 2D, minutes in

3D). There are some stability issues that arise, and care needs to be taken with parameter

choice. Notice that any restrictions imposed by the forward Euler time discretization are

further affected by our choice for the parameter µ. Indeed, our choice for µ varies from

1 to 1000, and if the image at hand requires a large µ we are forced to lower our ∆t to

retain stability. This is mostly done by experimenting with various parameter values and

by visual inspection of the algorithm’s step-by-step progress. A more detailed discussion

of parameter choice is presented in the following section along with some segmentation

examples.

The natural boundary condition in (2.19) is implemented at each iteration by forcing

the values of the outer-most pixels to be the same as their immediate neighbours: the left-
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most column of pixels take on the same values as the column immediately next to it, and

the top row copies the values of the second row. Similarly for the right and bottom pieces

of the boundary of the image domain. This is done immediately following the update for

φ, as in Step 2 below. We now proceed to formulate the iterative method for evolving φ

numerically, as used by Chan and Vese:

• Initialization: Define an initial guess for the segmentation, φ0, defined over the whole

image domain.

• Step 1: Compute c1(φk) and c2(φk) as defined in equations (2.17) and (2.18). We

replace integration with summation over all the pixels in the domain.

• Step 2: Compute φk+1 for the whole domain using equation (2.23) and apply bound-

ary conditions. Note that this equation can be easily rearranged to isolate φk+1 on the

LHS and the remaining terms are already computed for the current time level. Also

note that computing δε(φk
i, j) is simply done by plugging the value of φ at the respec-

tive pixel at coordinates (i,j) into our approximation to the delta function; similarly

for the Heaviside function when computing c1 and c2.

• Repeat Step 1 and 2 for next time level until the desired segmentation is achieved.

Since we are aiming to arrive at a stationary point of the above procedure, a possible

stopping condition is to look at some norm of φt and compare it to some small threshold

value close to 0. This, however, can be unreliable depending on the particular image we

have and the result we are looking for. This stopping criterion would be appropriate in the

continuum but does not necessarily apply for our application – our problem is inherently

discrete and it is difficult to estimate a reliable threshold which would hold for all images.

Since we are dealing with pixels, the “final” position of φ’s 0 level set may oscillate some

distance of order 1 – our discretization size. For this thesis, the above iterative procedure

is terminated after a preset number of iterations, determined by visual inspection and ex-

periments. By running the procedure on a training set of images, we are able to estimate

the total number of iterations necessary to reach our goal segmentation. At this stage of the

method developed in this thesis, computations in 2D tend to take seconds, so this is feasi-

ble. However, a better stopping criterion will be greatly beneficial in the future to facilitate
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Figure 2.5: An intermediate step in Chan and Vese’s segmentation method

the automated processing of large data sets.

Another point made by Chan and Vese is the possible need to reinitialize φ every few

iterations. This arises from the use of the delta function in the update equation for φ – the

nature of the delta function can cause φ to become flattened, and this can translate to losing

important information about the current state of the segmentation procedure. One option is

to reset φ to a signed distance function from its zero level set. This may not be necessary

depending on the application and number of iterations necessary to arrive at a satisfactory

solution, and reinitializing too often can prevent interior contours from developing (ie. a

brand new zero level set from arising, as opposed to the “old” one simply moving along).

For now, we will not consider reinitializing. We now proceed to some examples.

2.4 Segmentation Examples

To demonstrate how the curve is guided by the above procedure, we consider a simple ex-

ample in Figure 2.5 (photograph provided by photographer and digital artist Krystal Shea).

In the first picture, we superimpose the zero level set of the initialization, φ0, followed

by the second and third iterations of the method. The final picture shows the piecewise
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Figure 2.6: Exploring the parameter µ in a 2D brain image

constant approximation to the original image resulting from our segmentation. For this

experiment the image size is 395 by 535 pixels, we take ε = 1 (equal to the spatial dis-

cretization step size), µ = 100, λ = 1 and ∆t = 0.01. For this simple image only 3 iterations

are sufficient to arrive at the final segmentation, and the computation time is approximately

1 second.

The choice of parameters was determined through experiments, but the intuition be-

hind these values is also important: the larger µ is, the more our energy is penalized for a

large length of the curve described by the zero level set of φ – this means that the method

favours larger objects and hence bypasses small features that may be present in the starfish,

or noise in the background. The value of λ being 1 results from the fact that we essentially

only require two parameters to scale the problem (ignoring ε): µ and ∆t. The time step

value could have been chosen to be larger, but that would cause the method to find the

correct segmentation in one step; so, for illustration purposes we have set it to 0.01.
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Figure 2.7: Segmenting a spiral with boundaries not defined by gradient, with µ = 1000

To further explore the various options for selecting the parameter µ, we show an exam-

ple of the same image of a 2D slice of a brain MRI image segmented using three different

values for µ: 1,10, and 100, shown in Figure 2.6. The size of the image is 128 by 201 pixels

and we use ε = 1 (from now on this will be the choice for ε, unless otherwise stated). In this

case we set λ to 0.1 in order to keep ∆t at 0.01 and maintain the desired numerical stability.

We require 10 iterations to arrive at each segmentation, with approximately 20 seconds of

computation time for each case. We can see that the case with µ = 1 gives the most detail

sensitive segmentation, while µ = 100 gives a more “rough” approximation to what is the

object and what is the background in the image. The middle case with µ = 10 illustrates

the continuum of segmentations available across all values of µ in between. This example

illustrates that it is important for the segmentation procedure to have some previous knowl-

edge about the specific application at hand: we need to combine experiments with different

parameter values and knowledge of the nature of the object we are looking for.

Now we consider the flexibility of this algorithm to handle images with objects whose

boundaries are not defined by gradient but by cognitive boundaries (ones humans can see,

but computers have a hard time recognizing). The example is Figure 2.7: an image tested

by Chan and Vese of a spiral constructed by chunks of darker intensities, on a background

of lighter chunks. The domain size is 289 by 329 pixels with µ = 1000 – a large value com-

pared to experiments with other images – selected in hopes of discouraging our curve from

breaking up to encompass each of the small chunks of dark intensity pixels, and encourage
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Figure 2.8: Demonstrating the importance of choosing an appropriate value for µ: spiral

image segmentation with µ = 1

it to rather stay connected and further bunch all of these chunks together. The first window

of the figure shows the original image. We have not superimposed the zero level set of φ

for visual clarity, but the second window shows the piecewise constant approximation to

the image defined by our φ. In contrast, Figure 2.8 shows what happens if we instead set

µ = 1: now the energy prefers to optimize the piecewise constant approximation and allow

the length of the curve to grow by allowing many splits. For both of these we have set λ =

0.5 and ∆t to 0.001. For the first case we require 55 iterations (120 seconds), and we only

run the second case for 15 iterations to demonstrate the difference between large and small

µ.

Now we consider a blurred version of the same image to ensure we obtain (almost) the

same segmentation, and to provide another example of intermediate steps of the procedure.

This image is the same size, and we use the same parameter values (µ = 1000): see Figure

2.9.

There is one important issue with Chan and Vese’s method. It is important to understand

that the method is designed to separate the image domain into exactly two distinct objects,

solely based on intensity. So, if we have an image with two entirely separate objects but

which happen to have similar intensities, different enough from the background intensity,
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Figure 2.9: Intermediate steps shown for blurred spiral image

Chan and Vese’s method will group those two as a single object. Two examples of this

issue are shown below. In the first, we have three geometrical shapes and a background:

shown in Figure 2.10. What we may first expect to see is all three shapes grouped together

as one – this will be most people’s intuition, to separate the objects from the background.

However, the computer will see it a different way. What is going on here is that the inten-

sity of the partial rectangle is much closer to that of the background than to the circle and

triangle. This results in a greater benefit for the rectangle to be grouped together with the

background. More precisely, the intensity of the background in the original image is 156,

while the intensity of the background in the resulting piecewise constant approximation is

159 – they are nearly the same, indicating that our energy was not particularly affected by

merging the white rectangle in with the background. This issue can be easily remedied by

the multiphase approach of evolving more than one segmentation function φ [6], so that

we have an opportunity to further minimize the energy. Another example of this issue is

shown in Figure 2.11 (photograph by Krystal Shea): the silhouette of a woman in the mirror

is grouped together with the frame of the mirror, for similar reasons – their intensities are

very similar. It is important to understand the difference between what humans consider an
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Figure 2.10: Example of limitations to using one curve – forcing the method to find only a

single object as defined by intensity and “miss” an object

object and what the method deems an object.

These examples give a better idea for the motivation behind the main approach of this

thesis. If we consider our ultimate goal – to find the eyeballs in a 3D brain image – we can

see that we cannot simply apply the Chan and Vese algorithm to the whole volume. This

would result in finding a large number of features, either separated or grouped together,

due to the complex nature of a human brain. Instead, we must find a way to narrow down

our search to a very small region, preferably containing no other objects or features aside

from the eyeballs. Once we have this smaller section of our image we can more confidently

proceed with Chan and Vese’s segmentation procedure to accurately extract the eyeballs
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Figure 2.11: Another example of what the method considers to be one object, disagreeing

with human intuition

from this isolated piece in the brain image. The next task becomes: how do we find this

piece of the brain? The answer lies in using prior knowledge of human physiology, and in

the particular case of the eyeballs – knowing the basic shape of a human eyeball. The next

chapter explores how using this knowledge can formally lead us to the correct region and

provide a good starting point for running the final segmentation procedure.



Chapter 3

Shape Priors

3.1 Introduction to Shapes

3.1.1 Motivation

The complex nature of the segmentation problem requires the use of high level informa-

tion to guide it to success and shape priors offer just that. Our application is looking for

the eyeballs in the human brain – this in itself builds an expectation for our object to be

of a particular shape, so incorporating this information into the segmentation procedure

is natural. Another example of how shape priors can be useful is facial recognition using

feature templates. Here one could consider the specific shape of some important feature in

a person’s face (eg. mouth) and can use this to search through a database of face images

for a specific person, by matching this precise shape (mouth) to the best candidate.

Shape priors can be used in other areas of image processing, aside from segmentation –

for example, in image registration. This is the process of aligning a set of related images in

a consistent manner. In fact, this thesis uses brain images that are assumed to have already

gone through this procedure. Registration typically involves matching up a set of individ-

ual points amongst all the images. For example, if we had a number of images of the same

object, but cropped, resized and perhaps rotated differently, we may wish to standardize the

position and orientation of the object in all of these. This can be done by manually selecting

points in all of the images that correspond to the same physical aspect in the object – eg.

34
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if it were a person, specifying the location of the person’s left eye, right eye and nose in

all images could be sufficient to design a transformation to straighten out the person in all

images, crop the image to center the person, etc.

This is a tedious process and can be inaccurate in certain applications. A large num-

ber of registration techniques have been developed – intensity based, feature based, etc. A

detailed overview of approaches is available in [4]. Much like segmentation, registration

is a difficult problem that benefits from application specific information. Another example

in the medical field is working with functional MRI images (fMRI). These are time series

images typically used to detect activity in the human brain, for example, used to assess

brain functionality or aid studies in behavioral sciences. Normally in such studies a sub-

ject is exposed to some baseline conditions, followed by activation conditions which are

determined by the design of the study [8]. Then, the activity in the different parts of the

brain can be observed through the time series MRI images taken in the process. The dif-

ficulty of dealing with these images comes from the fact that the process takes some time,

and slight movements of the subject during image acquisition are unavoidable. This results

in misalignment of the images at each time snapshot, and requires registration to have an

accurate compilation of the subject’s reaction. Using the registration method mentioned

above, as well as intensity based registration can be less than satisfactory in practice – the

first due to its manual and time consuming nature, and the second due to the variations in

intensity distribution from image to image. In this situation shape priors can provide a more

reliable and robust method for alignment. Locating a specific feature in the brain in all of

the images, we can estimate the “amount” of misalignment (eg. angle of rotation, specific

translation) and correct for it. That is, by estimating the transformation parameters for the

same feature in two images, we hence estimate the transformation parameters for the entire

images.

Introducing shape information to existing segmentation techniques, such as Chan and

Vese’s method, provides for more control and flexibility in the segmentation procedure. We

can create methods with the efficiency and precision of Chan and Vese, while suppressing

objects that are not similar to the shape prior we use. We can also allow for the search

of all objects, but require the recognition of the specific shape we are looking for. Some
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flexibility is introduced through a parameter that can be chosen to specify the importance

of the shape similarity – ie. we can decide how much we want our object to be defined by

intensity (Chan and Vese’s method), and how much we require this object to, at the same

time, stay true to the shape prior. This allows us to look for objects similar to a particular

shape, with the freedom to specify various levels of “similarity,” depending on the type of

application we are working with.

3.1.2 Definition of Shape

To define a shape in mathematical terms, we adopt the representation used in [7]. Using a

similar idea as the definition for our segmentation φ in Chapter 2, we define the shape of

an object, S, as a function ψ that is positive inside the object and negative outside. More

specifically, we use a signed distance function here – the unique regularized solution to the

following problem:

|∇ψ|= 1

ψ(x,y)


> 0 (x,y) ∈ S\δS

= 0 (x,y) ∈ δS

< 0 (x,y) ∈ R2\S.

(3.1)

The nature of the signed distance function is that it is close to 0 near the boundaries

of the 0 level set (the boundary of the object), gets more and more positive towards the

interior of the object, and more and more negative the farther away we get outside of the

object. One way to interpret the use of a distance function intuitively is to compare it to a

statistical representation of a shape. Consider a similar shape positioned somewhat overtop

of our shape ψ. The probability of a point somewhere in the interior to coincide for both

shapes is high compared to the probability of a point closer to the edge to coincide. For

example, if we have a shape of an apple and wish to compare it to that of a slightly different

apple, we expect the differences to be mostly evident around the boundaries of the apples

– hence the probability of matching in that area will be low, and its proximity to the 0 level

sets combined with the definition of the distance function reflect this property. Having the

values of ψ be positive and negative simply allows us to easily classify points as “inside”
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Figure 3.1: Two objects with the same shape: translation, scaling, and rotation invariance

or “outside” of the object, which suggests the use of a signed distance function.

Now we consider how to compare two objects and determine if they have the same

shape. We choose to specify that shape is scale, translation and rotation invariant. That

is, magnifying an object, translating it in the image domain and/or changing its orientation

should not be considered to change the shape of that object. More formally, we say that

two objects have the same shape if their representation functions, say ψ1 and ψ2, can be

related by the following equation:

ψ2(x,y) = r ψ1

(
(x−a)cos(θ)+(y−b)sin(θ)

r
,
−(x−a)sin(θ)+(y−b)cos(θ)

r

)
(3.2)

Here (a,b) represents the translation, θ the rotation angle and r is the scaling factor,

that need to be applied to ψ1 to obtain ψ2. An example of two objects with the same shape

is shown in Figure 3.1. Here we take a simple object, translate it by 20 units to the right,

15 units down, rotate it by 30◦, and rescale it by a factor of 1.2. Note that some cropping is

done at each stage to maintain same size domains for both, for comparison purposes.
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3.1.3 Obtaining a Useful Shape Prior

In practice, we need to ensure that incorporating a shape prior will make the segmentation

procedure better, not worse. It is important to select an accurate shape representation of our

target object. The simplest approach would be to manually segment a single image con-

taining the object we are looking for, and extract a shape function ψ using the segmentation

curve as an outline for our object boundary, and then solving the signed distance function

equation. Another approach, mentioned in [8], is to construct a statistical model for shape

variation across a training set of images, using sets of points in each image that correspond

to each other (ie. registration points.) These points are combined and a Gaussian (or other)

model can be fit to them in order to extract the boundary of the desired object.

Another approach used in practice is to use a training set of images which already have

the correct segmentation (eg. in terms of level sets) and take the average of the contours.

This can be done in different ways, one of which is implemented in [8]: having contours

C1,C2, · · · ,Cn representing the same shape but in different position/size/rotation, we fix C1,

find the transformation parameters (a,b,r,θ) so that C1 can be expressed in terms of C2

in the “best” way – by maximizing the area of overlap and minimizing area of no over-

lap between the two objects. Denote this “best” approximation of C1 with C2 by Cnew
2 .

Then the same procedure is done for the remaining curves, and the average is defined as

Caverage = (C1 + ∑
n
j=2Cnew

j )/n. Furthermore, if the training set contains high variation in

shapes, a clustering technique can be used to extract meaningful information (details in

[8]). Other approaches for obtaining a good shape prior include looking at the Fourier co-

efficients of the contours, or principal component representations, etc.

In the case of this thesis, the shape prior is quite simple due to the simple anatomical

structure of the eyeballs. We approximate the eyes by circles in 2D and spheres in 3D. In

2D we look at four images, manually measure the approximate radius of an eye in each

image (by counting pixels), and take the average. Next, we again manually measure the

approximate distance between the centers of the two eyes and average. Taking advantage

of the fact that this data set is already aligned in a consistent manner (registered), we also

average the pixel coordinates that would be a best location for placing the initial shape
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Figure 3.2: Designing a shape prior for 2D image of eyes: constructed manually using

averaged data over a sample of images

prior in the images. Another benefit of the registration of the images we have is that we

only need to worry about the translation parameters in shape representation – ie. we can

assume no rescaling or rotation of our prior is necessary to match the shape of the eyes in

all of the images. This idea will also be extended to 3D using spheres.

It is important to note that this approach is by no means robust and would likely cause

problems if we look for more complex anatomical features, but is sufficient for now. The

reason is that we will use a two stage segmentation procedure. Only the first stage relies on

this shape prior information – we use it to narrow down the search region for the eyeballs,

but we do not expect the final result of this stage to be an accurate segmentation on its own.

The second stage applies the Chan and Vese procedure (without a shape prior) to this newly

restricted region of the image domain. Figure 3.2 shows the shape prior which resulted from

the above procedure. We can see that in some of the images it already provides what we

are looking for (I2, for example), and the purpose of this shape prior stage of the method

is exactly to ensure we have estimated the location of the eyes to the best of our abilities.

Once that is achieved, we can pass the end result to the Chan and Vese algorithm to obtain

the final refined segmentation.
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3.2 Incorporating Shape Priors into the Segmentation Pro-
cess

We now consider different approaches for incorporating the information that a shape prior

can provide into the segmentation procedure. The simplest approach is to minimize an

energy involving only the shape prior, ψ, by translating it over the image domain. Most

common approaches aim to add an energy term involving ψ directly into the Chan and

Vese energy, (2.11), and alter the update equations for all variables accordingly. A new

idea described in [3] builds on the shape prior framework and incorporates an appearance

prior to provide not only shape information, but appearance information into the overall

segmentation procedure – this can involve specifying a particular intensity we expect the

object we are looking for to have, position, orientation and more. First, let us consider the

simplest scenario with a purely shape prior-driven method.

3.2.1 Translating Prior

For our purposes, recall that we are ignoring rescaling and rotation of our shape prior. Thus,

we are looking for a particularly shaped object in our image, and we only aim to find its

location by translating our shape prior in the x and y directions. Borrowing the ideas of

Chan and Vese, we begin with a similar energy:

Eψ = λ1

∫
Ω

(I0− c1)2H(ψ) dxdy+λ2

∫
Ω

(I0− c2)2(1−H(ψ)) dxdy (3.3)

Here c1 and c2 are the average intensities of our image I0 inside ψ (ie. where ψ > 0),

and outside, respectively. The parameters λ1 and λ2 determine the importance of having

low variation in intensity of the image inside vs. outside of the 0-level set of ψ. We

again employ the regularized version of the Heaviside function, Hε, as before, but drop the

subscript from here on. Notice we do not have a length minimizing term, as the length of the

0-level set of our prior is fixed in advance. The only way to evolve ψ is to translate it in both

the x and y directions. So, the end result for ψ in our method will have the same shape as

our starting prior, ψ0. Using the definition of shape, we can write ψ(x,y) = ψ0(x−a,y−b),
for some a,b ∈ R. Replacing ψ with this in equation (3.3) above, we can now minimize
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Eψ with respect to c1, c2, a and b. For the first two, we get equations similar to those in

Chapter 2:

c1 =
∫

Ω
I0 H(ψ) dxdy∫

Ω
H(ψ) dxdy

c2 =
∫

Ω
I0 (1−H(ψ)) dxdy∫
Ω
(1−H(ψ)) dxdy

(3.4)

Now to obtain an update equation for ψ, we minimize the energy for the translation

values a and b. The details for a are shown here:

∂Eψ

∂a
=−

∫
Ω

λ1(I0− c1)2
δ(ψ0(x−a,y−b)) ψ0x(x−a,y−b) dxdy

+
∫

Ω

λ2(I0− c2)2
δ(ψ0(x−a,y−b)) ψ0x(x−a,y−b) dxdy

=
∫

Ω

[
−λ1(I0− c1)2 +λ2(I0− c2)2]

δ(ψ(x,y)) ψx dxdy (3.5)

The corresponding equation for b becomes:

∂Eψ

∂b
=
∫

Ω

[
−λ1(I0− c1)2 +λ2(I0− c2)2]

δ(ψ(x,y)) ψy dxdy (3.6)

We can now employ the usual gradient descent method for solving these equations itera-

tively until we reach a minimum of the energy, by evolving
∂a
∂t

=−∂aEψ and
∂b
∂t

=−∂bEψ.

The time derivatives are discretized using a first order forward Euler scheme for now (al-

though this will be changed in the final model), and spatial derivatives using centered dif-

ferences. To avoid function values growing and causing numerical instability, we may wish

to re-initialize ψ to a signed distance function at every iteration, or at every few iterations.

For the examples in this section we do this at every iteration. The procedure for minimizing

Eψ is as follows:

• Specify a starting shape prior, ψ0, initialize a = b = 0

• Compute the values for c1 and c2 at the current time step, using equations (3.4)



CHAPTER 3. SHAPE PRIORS 42

Figure 3.3: The translating prior method: evolution over a simple binary image

• Update the values for a and b using the corresponding discretization of equations

(3.5) and (3.6)

• Transform the current shape prior as ψ(x,y) = ψ0(x−a,y−b)

• Re-initialize ψ to a signed distance function, by solving equation (3.1)

• Iterate the last three steps for the preset number of iterations determined by a training

set of experiments

Although this is very similar to Chan and Vese’s method, the key difference is the fact

that with the active contours, we were able to evolve all of φ’s level sets, which was im-

portant in working towards a global minimum without necessarily getting stuck at a local

minimum. This also meant that the starting position for φ is not critical. However, with the

shape prior, we are only moving a few pixels at a time, based on local information deter-

mined by intensities, and starting position can make a big difference. To be able to achieve

our goal of roughly locating the eyes, we must be particularly careful to avoid getting stuck

at one of the many undesirable local minima that brain images tend to have.
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Figure 3.4: A local minimum in shape prior method (energy at global minimum ≈ 440)

To illustrate how it works, we consider two simple cases. The first is shown in Figure

3.3 – we have one object (the black square), and we place the starting shape prior some-

where in the domain, with a shape matching the square perfectly. We let the method run for

80 iterations, using parameter values: ∆t = 0.1, λ1 = 1, λ2 = 2. The reason for choosing

λ2 > λ1 is that in most of the image domain, the value of I0 = c1 precisely and the first

term in the energy is 0, so entering into the black square would cause this to change and

hence ψ is repelled away from the square. However, the second term is nonzero, and giv-

ing it more importance forces ψ to move towards whatever is causing this inconsistency in

intensities – ie. ψ is attracted towards the square. It should be noted that the choice for the

two parameters λ1 and λ2 is not particularly sensitive: we could use λ1 = 0.5, λ2 = 1, for

example, or λ1 = 10, λ2 = 100, as long as we adjust ∆t accordingly, to maintain stability.

We can see that the method does what it is supposed to in this simple case. However,

to illustrate the problem with getting stuck at local minima, we now add a smaller black

square in close proximity to the original one, and place the starting shape prior such that

it has to go through the small square in order to reach the larger one. We use the same

parameter values as above. Figure 3.4 shows the result – as expect, we are stuck at the

smaller square, as leaving it would increase the current energy.
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For the reasons mentioned above, relying on an evolution guided only by the shape

prior is less than satisfactory in most situations. To benefit from the advantages of Chan

and Vese’s model, we now consider adding a term to their energy that incorporates the

shape prior, in hopes that we will once again have low sensitivity to initial conditions and

decrease the likelihood of getting stuck at a local minimum.

3.2.2 Combining Chan and Vese’s Method with Shape Priors

The idea here is to use the shape prior information, ψ, to enhance Chan and Vese’s seg-

mentation procedure. We begin with Chan and Vese’s energy, omitting the length term for

now, and consider adding a term which penalizes the segmentation φ for being different

from the prior, ψ. The straight forward thing to do here is to have this term be of the form∫
Ω
(φ−ψ)2 dxdy, but this would only make sense if both φ and ψ are signed distance func-

tions. This condition is not required for φ and to avoid unnecessary computational expense,

we must use a different term for comparing the two. We note that we only care about the

region (area) that our object occupies and again employ the use of the Heaviside function in

order to compare only the region where φ > 0 with the region where ψ > 0 – in the optimal

scenario, we would like these to coincide. In light of this, we construct the energy term

Eψ =
∫

Ω
(H(φ)−H(ψ))2 dxdy [7]. Including this into the existing Chan and Vese energy

(without length term), we arrive at the following:

ECV SP = ECV +Eψ

= λ1

∫
Ω

(I0− c1)2 H(φ) dxdy+λ2

∫
Ω

(I0− c2)2 (1−H(φ)) dxdy

+ λψ

∫
Ω

(H(φ)−H(ψ))2 dxdy (3.7)

This energy will allow for the evolution of both φ and ψ in a coupled way, taking ad-

vantage of both Chan and Vese’s idea about intensity-based segmentation, and combining

it with the shape fidelity term to narrow down the search for objects. The parameter λψ

can be chosen to represent the importance placed on the shape prior, whereas λ1 and λ2, as

before, represent the importance of minimizing the within region pixel variation inside and
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outside the object, respectively.

Recall that the only evolution permitted for ψ is translation, with translation parameters

a and b. Once again we can replace ψ(x,y) by ψ0(x− a,y− b) and minimize the above

energy with respect to c1, c2, a, b, and φ. Employing Euler-Lagrange and gradient descents,

as usual, we arrive at equations for c1 and c2 as in Chapter 2, equations (2.17), and (2.18).

For a and b we have:

∂a
∂t

=
∫

Ω

(H(ψ)−H(φ)) ψx δ(ψ) dxdy

∂b
∂t

=
∫

Ω

(H(ψ)−H(φ)) ψy δ(ψ) dxdy (3.8)

These provide for the evolution of ψ. The Euler-Lagrange equation for φ now becomes:

∂φ

∂t
=−{λ1 (I0− c1)2−λ2 (I0− c2)2 +2 λψ (H(φ)−H(ψ))} δ(φ) (3.9)

These equations are discretized in the same way as before. However, the nature of this

energy is to simultaneously aim to segment the image based on intensities and attempt to

keep the shape of the segmentation similar to the shape prior. This results in more iterations

to achieve a stationary solution. However, as suggested in [10], there is a faster approach

available for updating φ. Recall that we only care about the 0-level set of φ, and spending

time on updating all values of φ can become inefficient. The information essential to us is

only the sign of φ – this will give us all the information necessary to locate the 0-crossing.

To this effect we also consider the following update equation for φ instead of 3.9:

φ = sign[−{λ1 (I0− c1)2−λ2 (I0− c2)2 +2 λψ (H(φ)−H(ψ))}] (3.10)

This is also employed in [7], where a proof is provided to show that in the case of Chan

and Vese without length term, using the update procedure based on the c1 and c2 equations

(2.17, 2.18), and the original Chan and Vese equation for φ without length or area term (

2.19 with µ and ν = 0) is equivalent to using the same equations for c1 and c2, and the

corresponding fast version of the equation for φ using the sign function (3.10 with λψ = 0).
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This could be particularly important for our method, as it will be extended to 3D where

computational efficiency is critical.

However, for our purposes we omit the use of the sign function and stick to the update

equation (3.9), since the sign function is very sensitive to the naturally noisy images we are

dealing with, and we would like to keep as much information from the original image as

possible. Also, the use of the sign function can cause some issues in determining when a

stationary solution is reached. This is because numerically, even very small values, close to

0, can switch between positive and negative, misleading us to believe that φ is still rapidly

changing. For this reason, it may be preferred to use the translation parameters a and b

to determine when the shape prior has found its final position – ie. consider when these

parameters become stationary as a stopping criterion.

An important point to consider is the fact that we are omitting the length term from Chan

and Vese’s method. The length term was meant to keep the 0-level contour of φ smooth

by minimizing its length. Including this term would undermine the goal of increasing

computational efficiency, but at the same time we expect that the restriction imposed by the

shape energy term, Eψ, will provide enough regularization for the 0-level contour of φ. This

is because the boundaries of our shape prior are already smooth, and the shape comparison

term forces φ to look like ψ. Thus, the procedure employed to minimize this energy is as

follows (with appropriate discretization):

• Initialize ψ and φ to ψ0 and φ0 – these could be identical

• Calculate the values for c1 and c2 using (2.17) and (2.18)

• Update the values for a and b using (3.8)

• Compute ψ by translating the initial prior ψ0 using the values for a and b, and redis-

tance by solving the signed distance equation

• Find the current φ using equation (3.9)

• Repeat the last four steps until a stationary solution is achieved, or for a preset number

of iterations
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Figure 3.5: Adding a shape prior to Chan and Vese: find only the object we are interested

in

To demonstrate how this method works, we first look at a simple case shown in Figure

3.5. Here we have a simple binary image containing two objects: two rectangles of dif-

ferent dimensions. The shape prior (and φ) are initialized to have the same shape as the

smaller rectangle, but different position. The desired outcome is to suppress the larger rect-

angle, in spite of its intensity being the same as that of the smaller rectangle. The parameter

values for this experiment are λ1 = 0.01, λ2 = 1, and λψ = 5. We take ∆t = 0.3 and run

the algorithm for 350 iterations. The reason for choosing λ1 so small is the same as in the

previous subsection and is due to the simplicity of the binary image causing the first term

in our energy to be 0 in most of the image domain.

Now consider a more complicated image: a 2D brain slice. The issue with using the

shape prior only in the previous subsection was that we can easily get stuck at the first local

minimum we encounter. Here, we must consider the many local minima present due to the

nature of the image itself. These images have plenty of possible positions for ψ that are

local minima, resulting once again in sensitivity to initial conditions. A couple of things we



CHAPTER 3. SHAPE PRIORS 48

Figure 3.6: Chan and Vese with shape prior: a 2D brain image with a “good” and a “bad”

result

can do in an attempt to combat this issue is to first roughly crop the image to the relevant

region (where we expect to see the eyes), and then turn the grayscale image into a black and

white image. We do this by thresholding: we select a “nice” intensity value using Otsu’s

method [11], and map the grayscale image to a binary one, by turning pixels of intensity

≤ this thershhold value to 0 (black), and pixels with intensity > that value, to 1 (white).

Otsu’s method is described in more detail in the next chapter, as this technique is also used

in 3D. Even with this simplified version of the image, choosing the parameters to obtain a

satisfactory result is difficult, and starting position is still critical.

This problem is illustrated in Figure 3.6. The initial position of ψ is shown in blue, and

its final position is in green. Parameter values for both images are: λ1 = λ2 = 1, λψ = 1.5,

∆t = 0.3, and 50 iterations. In the first image, we can see that starting close enough to

the eyes results in the desired final position. The reason is that if we consider the intensity

inside ψ0 (which is the same as φ0), we note that the pixels are mostly black. So, moving

towards a region that is black will be beneficial – ie. moving all the way inside the eyes. In
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the second image, however, the intensity inside our starting position is mostly white. This

results in ending up at another local minimum which is completely in the wrong region.

It is important to realize that this is the wrong region for us, but is perfectly reasonable

for φ and ψ. To combat this issue we wish to somehow incorporate the information that

our final object is expected to be of black (0) intensity. This would attract our shape prior

towards black regions as opposed to white regions. This idea will be developed later on in

this chapter.

3.2.3 Selective Shape Prior using Static and Dynamic Region Labelling

Some of the issues that still remain, even with the shape prior information, come from the

fact that all of the above shape terms are defined on the whole image domain, which may

contain many objects. Assuming we are only interested in one of these objects, of a partic-

ular shape, we can make an adjustment to the segmentation with shape prior model (3.7),

in order to further narrow down the region in the image where our object of interest is lo-

cated. This can be done by means of a labelling function, L. This function defines a region

of the image domain where the shape prior is enforced. The idea of a labelling function is

introduced in [9] and developed further in [7].

The simplest way to incorporate this idea into the Chan Vese with shape prior model

is to define L to be +1 inside a region containing our object, and −1 outside. Using this

definition, we start with the Chan and Vese energy and add a modified shape energy term

to it. Cremers et. al. in [9] have the following resulting energy to be minimized:

E = ECV +λψ

∫
Ω

(φ−ψ)2(L+1)2 dxdy (3.11)

Note that their shape term does not impose the Heaviside function to compare the seg-

mentation φ with the shape prior ψ. This, however, imposes the necessity for both of these

to be signed distance functions. To avoid this, [7] incorporates the labelling function as the

following:
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E = ECV +λψ

∫
Ω

(H(φ) H(L)−H(ψ))2 dxdy (3.12)

Note that their definition of the shape term differs slightly from [9], but the important

point still holds: this forces the shape prior to only be applied to the region where L > 0

and φ > 0. We expect the region where L > 0 to include the region where ψ > 0, otherwise

our labelling is incorrect, as it does not include the object we are looking for. For this

idea of the labelling region, ψ is assumed stationary (ie. placed in the correct position to

start with.) This shape term allows for the model to find the object inside this region that

resembles our shape prior, but still find the correct segmentation of other objects outside

of this region, without being restricted with information from the shape prior. However, in

this definition of the labelling function we assume that the location of this region of inter-

est is known in advance and constant throughout the evolution of φ and ψ. This is called

static labelling. This may not be the case in all applications, but in many medical image

processing problems it is reasonable. Similarly to a physician looking at medical images,

we can use our general knowledge of anatomy to be able to know the relative location of

some anatomical feature – such as the eyeballs. Furthermore, in our case we are working

with registered images, so that we have a reasonable assumption for the cropping and ori-

entation of the brain. Because of this, we are able to make a good guess as to how to define

our labelling function L.

To this end, we may in fact incorporate this idea into our model, but in the form of

cropping. Instead of running our segmentation algorithm on the whole domain, we will

consider a cropped version of the image, such that we are certain that the eyeballs are com-

pletely contained inside the resulting image. The reason we will crop instead of explicitly

defining a labelling function and running the segmentation procedure on the whole domain

is that we do not require a segmentation of all objects in the brain – we only want one. The

more unrelated information we can ignore, the faster and more efficient our final method

will be. As well, this means that we can use our translating prior model as is, on the already

cropped image. We will do this in 2D and 3D.

For some applications, even in a medical image setting, a static labelling is hardly
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useful. An extension to this idea, known as dynamic labelling, allows for the labelling

region itself to evolve in an unsupervised manner. This involves adding more terms to the

energy which will help guide the function L naturally. In Cremers et. al. [9], two more

terms are added, resulting in the following:

E = ECV +λψ

∫
Ω

(φ−ψ)2(L+1)2 dxdy+
∫

Ω

λ
2(L−1)2 dxdy+ γ

∫
Ω

|∇H(L)| dxdy

(3.13)

To understand what this model does, first consider the last two terms. The first of those

is meant to maximize the area of {L > 0}. This is because we want to ensure that the

labelling region does not become so small that it no longer contains our target object. The

last is a regularizing term, minimizing the length of the separation curve for the region

where the labelling function is active and the region where it is not. Qualitatively, if we

hold φ constant and consider the area term, we can see the meaning of the parameter λ:

L→+1 if |φ−ψ|< λ

L←−1 if |φ−ψ|> λ

Alternatively, in [7], employing the Heaviside function again, the energy has a similar

interpretation but slightly different form:

E = ECV +λψ

∫
Ω

(H(φ)H(L)−H(ψ))2 dxdy

+µ1

∫
Ω

(1−H(L)) dxdy+µ2

∫
Ω

|∇H(L)| dxdy (3.14)

However, the parameter choice for µ1 and µ2 is difficult using only the above. To help

alleviate that issue, in [7] another term involving ψ is added to the energy, in hopes that

the interaction between ψ and L in the first part of the shape term above will provide more

information for the desired evolution of L. This term comes from the expectation that at

the desired segmentation, the shape prior ψ should approximately segment the image in

a reasonable manner. Then the term added to 3.14 becomes ν
∫

Ω
(I0− c1)2H(ψ) + (I0−

c2)2(1−H(ψ)) dxdy, where all parameters above are greater than or equal to 0, and c1 and
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c2 are the same Chan and Vese constants as before.

This dynamic labelling component is able to separate the image domain actively into

regions containing objects similar to the shape prior, from those containing background and

possibly other objects. This can be useful in a situation where simply cropping the image is

not reliable – ie. if we are looking for an object in a large database of images, but we do not

have a reliable registration, or the anatomical nature of the object is such that a good guess

for the cropping is not possible. Still, even in our case, the variety of brain images and

richness of features present force us to use a cropping region that does not guarantee that

the eyeballs are the only object left. In fact, there is some area of approximately constant

intensity just behind the eyes that may confuse our shape prior if we do not start mostly

inside the eyes. This problem is shown in Figure 3.6, and cannot be solved reliably using

cropping as the only approach. The final piece to consider adding to our segmentation

procedure is introduced next – the appearance prior.

3.2.4 Appearance Prior

Even with the help of shape priors and a labelling function, the nature of medical images

still makes the segmentation problem difficult. The presence of many local minima can be

difficult to overcome without requiring supervision. In the particular application of finding

the eyeballs in a brain MRI image, we look for two circles (in 2D) of a certain radius and

distance apart, such that the intensity values of the image inside and outside the shape prior

boundary have minimum variance. However, there is some tissue behind the eyeballs of

higher intensity that is a local minimum for our shape prior model. Since this tissue is

directly behind the eyes, our model encounters an ambiguity, since as far as the energy is

concerned, both “objects” are simply two local minima to settle for.

The main difference between the two minima: eyes vs. tissue behind eyes, is the dif-

ference in intensity. The eye balls in an MRI image appear with black intensity, while the

tissue has a light gray intensity. This important distinction is just the right thing to add to

our model, in the form of an appearance prior. An appearance prior incorporates knowl-

edge beyond the target shape – one could specify expected intensity, orientation, scaling,
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Figure 3.7: Using an appearance prior to match both shape and intensity for an object

etc. of the object in the image. For example, if we have a picture containing a white square

and a black square on a gray background, and we have a shape prior matching both squares,

we could specify exactly which kind of square we would like to look for by incorporating

the information about our desired intensity. This simple scenario is illustrated in Figure 3.7.

This idea is developed in [3] by incorporating information about the expected intensity

of our object. However, it is possible to specify more information to alleviate ambiguity

arising in the particular application of image segmentation. For our case, intensity is all

we need. Formally, we build on the energy models above by having Chan and Vese’s

segmentation energy, adding some shape prior energy term chosen from earlier in this

section, and add a final appearance term. First, suppose we have an image defined on

the prior shape domain, Ip. Define the embedded prior image as follows:

Iψ =

Ip(x,y) if ψ≥ 0 (inside object)

c ∈ [0,1] if ψ < 0 (outside object).
(3.15)

Here Ip can be obtained from similar images that have been manually segmented, in

the same way that the shape prior ψ is obtained. The constant value c is an intensity value,

used to define Iψ over the whole image domain. If we have no expectation as to what the

average intensity outside of our object should be, we can set this value to Chan and Vese’s
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c2 defined by the boundary of our shape prior. This way we are really only comparing the

inside of the object in our image with that of the appearance prior. In fact, since there is

no need to compare the image outside the object with this value, we will use a Heaviside

function to ensure we are only looking inside the object. In the case of our application, we

already have our shape prior, and we know that we are looking for an object which matches

the shape prior but also has intensity close to 0. Therefore, in the above formulation for Iψ,

we can use a constant value of 0 for Ip. Note that as the shape prior ψ evolves by translat-

ing, so does the appearance prior.

It should be noted that in [3], the underlying segmentation method used is based on

an edge detector using a function based on the image gradient. This method is described

in some detail at the beginning of Chapter 2. Regardless, any segmentation idea can be

combined with the shape prior and appearance prior ideas by forming a linear combination

of the appropriate energy terms. The term we add as an appearance similarity measure is:

EAp =
∫

Ω

(I0− Iψ)2 H(ψ) dxdy

=
∫

Ω

(I0− Iψ0(x−a,y−b))2 H(ψ0(x−a,y−b)) dxdy (3.16)

Keeping in mind that this term is to be added to an already existing shape prior model,

we consider minimizing it with respect to the translation parameters a and b, to be able to

update our gradient descent equations for these. Let us minimize the above with respect to

a by first writing Iψ as Iψ = c2(1−H(ψ0(x−a,y−b))):

EAp =
∫

Ω

(I0− c2(1−H(ψ0(x−a,y−b))))2 H(ψ0(x−a,y−b)) dxdy

∂EAp

∂a
=−2

∫
Ω

(I0− c2(1−H(ψ0(x−a,y−b))))

·δ(ψ0(x−a,y−b)) ψ0x(x−a,y−b) H(ψ0(x−a,y−b) dxdy

−
∫

Ω

(Io− c2(1−H(ψ0(x−a,y−b))))2
δ(ψ0(x−a,y−b)) ψ0x(x−a,y−b) dxdy

=
∫

Ω

[−2(I0− Iψ) H(ψ)− (I0− Iψ)2] δ(ψ) ψx dxdy (3.17)
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Figure 3.8: Comparing the translating prior model with and without an appearance term in

a 2D black and white brain image.

This equation and its equivalent for b can simply be added to the shape prior model.

Note that if we choose to use a model that combines all three – segmentation, shape prior

and appearance prior – the last of these does not involve φ, so no modification is necessary

to its update equation. This simple yet powerful addition to the model gives much more

robust results compared to a shape prior only model. To demonstrate how this term affects

the segmentation process, consider the simple situation with the two squares, in Figure 3.7.

Note that the shape prior is repelled away from the white square thanks to using an appear-

ance prior of constant intensity 0 (black).

Now to test this on a brain image. Consider the problem illustrated in Figure 3.6: de-

pending on the initial position, the shape prior either moves towards the black region (eyes),

or the light gray tissue behind the eyes, as both of these positions satisfy the shape match-

ing. By adding the 0 (black) appearance prior the shape prior should be repelled away from

the light gray region and towards the black – the eyes. The model implemented here is

the translating shape prior – the simplest shape prior model discussed in the beginning of

this chapter, with parameters λ1, λ2, and λψ, the last one corresponding to the weight of

the appearance prior. Figure 3.8 shows what happens with the same initial condition, with

λ1 = λ2 = 1, but λψ = 0 in the first picture and λψ = 2 in the second.

To better compare the shape model with and without appearance prior, let us do an ex-

periment. We start with a grayscale 2D brain slice image and place the shape prior where
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Figure 3.9: Comparing the translating prior model with and without an appearance term:

Energy

the eyes are. Now we move the shape prior along the image domain and evaluate the en-

ergies for both models at the different positions of the shape prior. In order to be able to

compare these in a simple way, we only move the prior in the x direction. Figure 3.9 shows

a few of the positions considered for the prior, with the first plot (in blue) showing the en-

ergy of the model including the appearance prior, and in the second plot (red) the energy of

the model without. We can see that this makes a great difference when it comes to the gray

tissue behind the eyes: adding the appearance prior has indeed successfully eliminated that

region as a local minimum.

Now that we have found a way to drive the shape prior towards black regions over gray,

we can use a black and white version of the image with more confidence that we will end
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up in the black region. Using black and white for the shape and appearance prior stage

of our procedure will speed up the process – the gray version of the image has too much

detail which causes the shape prior to move slowly compared to only two levels of intensity.

However, for the final stage of the segmentation, the Chan and Vese model, we would like

to have as much accuracy as possible, and for this reason we will keep the original gray

version of the image to retain as much detail as possible.

3.3 Final Shape and Appearance Model

Now that we have all the pieces, we consider building the model best suited to our appli-

cation. Recall that the full segmentation procedure is done in two stages: first, we find a

rough location for the eyeballs using a shape model, and second, we send this information

to Chan and Vese’s active contours model to get the final eyeball segmentation. There are

many options for building the shape portion of the model, as discussed in this chapter. We

have to choose between a simple translating prior model, a model which couples Chan and

Vese’s method with the shape prior, a model with a dynamic labelling function, and possi-

bly adding an appearance prior.

The method taken here, for the shape stage of the segmentation process, is a linear com-

bination of the translating prior and the appearance prior. This is a straight forward model

for finding an object of a particular shape in an image, and is sufficient for the purpose of

this thesis. The benefits of choosing this over a method which involves both φ and ψ at

the same time are few. One is that our parameter selection becomes easier. In a method

involving both φ and ψ it is often difficult to find a suitable parameter to define the trade-

off between the two. In many situations the intensity-driven segmentation, φ, is pulling

the overall process in one direction, while the shape prior ψ disagrees with that direction,

and depending on the trade-off parameter, both move in a similar direction but very slowly.

This is not robust and many experiments are necessary to select the “correct” parameter

values in such a model.

Another reason for choosing the simple translating prior model is that we do not expect

a highly accurate segmentation to result from this stage of the overall process. We only
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need an approximate location for the eyes to be used as an initialization for φ in the active

contours without edges method. Just as any alternative approach, this translating prior

model is prone to getting stuck at local minima. This issue is addressed by adding the

appearance prior discussed in the previous section. Combining these two ideas together,

we turn our problem into trying to find two circular regions some distance apart that have

a low intensity variance inside and outside the object boundary, and the intensity inside

should be close to 0 (black). More formally, the energy we are minimizing becomes:

Eshape = λ1

∫
Ω

(I0− c1)2 H(ψ) dxdy+λ2

∫
Ω

(I0− c2)2 (1−H(ψ)) dxdy

+λψ

∫
Ω

(I0− Iψ)2 H(ψ) dxdy (3.18)

Here Iψ is defined as in (3.15) – 0 inside the object described by ψ. This appearance

prior moves with ψ by translation only, with translation parameters a and b. Rewriting the

shape prior ψ(x,y) = ψ0(x−a,y−b) as before, we can minimize the above with respect to

a and b in order to obtain the associated gradient descent equations that we use to evolve

ψ. The final resulting equations are:

∂a
∂t

=
∫

Ω

λ1 (I0− c1)2−λ2(I0− c2).2 +λψ(I0− Iψ)2) δ(ψ)ψx dxdy

+2
∫

Ω

λψ(I0− Iψ) H(ψ) δ(ψ) ψx dxdy

∂b
∂t

=
∫

Ω

λ1 (I0− c1)2 +λ2(I0− c2).2 +λψ(I0− Iψ)2) δ(ψ)ψy dxdy

+2
∫

Ω

λψ(I0− Iψ) H(ψ) δ(ψ) ψy dxdy (3.19)

In order to ensure that when solving these equations we are moving as fast as we can

in a way that gives opportunity for both directions to evolve, we employ a quasi-adaptive

time stepping. The size of the images we are dealing with restricts us as to how fast we can

move, and to ensure that we do not push our prior out of the domain by taking large steps,

the following scheme is used to update a and b:
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anew = aold +∆t · A
max(A, B, 1)

bnew = bold +∆t · B
max(A, B, 1)

(3.20)

Here A is the magnitutde of the right hand side of the descent equation for a, and B –

the equivalent for b. We ensure our prior is moving as fast possible without flying out of

the domain by scaling our update step by the largest “speed,” and we need to compare these

with the number 1 in case our A and B are� 1, to avoid speeding ourselves up artifically.

In this way we can more comfortably choose a small but fixed ∆t to maintain stability in

most scenarios (∆t is usually set to 0.005). The rest of the terms are discretized as before,

making use of the regularized versions of the Heaviside and delta functions.

The overall shape and appearance model then becomes the following:

• Define an initial shape prior and appearance prior using one of the methods listed in

the beginning of the chapter. For our application, we take four 2D images, find the

approximate radius of an eye in each image, the approximate distance the eyes are

apart, and the approximate location of the center of one eye. We then average all of

this data and create a shape prior based on this information. The appearance prior is

simply set to intensity 0 (black) in the region where the shape prior function ψ0 > 0.

• The image domain along with the shape and appearance functions is roughly cropped

to a smaller size containing the eyes. The image is also transformed to a black and

white (binary) image using Otsu’s thresholding method.

• The update procedure is initialized and ψ is translated over the domain by the update

equations (3.20) until a stationary solution is reached (ie. until the translation param-

eters a and b become stationary). This concludes the shape stage of our method.

Passing this resulting shape prior to Chan and Vese’s segmentation algorithm should

greatly aid in the final segmentation of the eyes. At this final stage, we take circles of a

larger radius than the shape prior’s, centered at the current shape prior location, and set the

intensity of the image outside to c2. This way, the only region we expect to have intensity 0
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Figure 3.10: 2D brain image: starting position of shape and appearance prior on black and

white image, and resulting shape prior used as initialization for Chan and Vese’s method,

on a grayscale image

is the eyes, and the gray tissue right behind the eyes should now blend in with the “outside”

region. At this stage of the procedure, c2 is our best approximation to the average intensity

in the image outside of the eyes. This c2 is the same Chan and Vese value, but calculated

on the grayscale image based on the current position of the shape prior. As well, the nose

cavity (which is also approximately black in an MRI image, located between the eyes) is

eliminated by the use of these bigger circles. Hence, the result from this stage should be

the final product we are looking for.

Figure 3.10 shows this link between the shape stage and the Chan and Vese stage of our

model. The first image is the black and white version of the original image, and the blue

corresponds to the initial shape prior position. The second image shows the transformation

of the grayscale image by the use of the circles of radius twice as large as that of our shape

prior, with the outside region set to intensity c2. In yellow, we have the final shape prior

position after the shape and appearance procedure, and this is the image to be passed to

Chan and Vese’s algorithm with initial segmentation φ0 defined by this yellow prior.
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Figure 3.11: Demonstrating the full shape, appearance, and active contour model for a 2D

brain image

Putting this together, Figure 3.11 shows, in blue, the starting position of a shape prior

(ψ0), the final result of the shape and appearance model that we use (yellow), and having

passed this information to initialize the segmentation (φ0), the final Chan and Vese method

result is shown in green. We now need to translate the above procedure to generalize to 3D

and apply it on a set of 3D images.



Chapter 4

Extension to 3D

The application which motivated this research needs the final segmentation method to be

implemented in 3D – so, we start with the 2D model described in the previous two chapters

and extend the ideas to 3D. Results will be presented at the end of this chapter for the final

information extracted from some brain MRI images, describing the eyeballs. These results

are meant to demonstrate a proof of concept, and the conclusion to be drawn from this is

that the equations used to solve this particular segmentation problem indeed achieve their

goal. The numerical approach for solving these equations can be improved and further

analyzed in the future; however, for this thesis we leave all discretization explicit without

much analysis, to be able to test the concept and conclude that it is worth developing further

and refined in terms of numerical set-up.

4.1 Chan and Vese’s Model Revisited

All of the ideas in the full shape prior, appearance prior, and active contours without edges

segmentation model naturally generalize to any dimension. The nature of the energy func-

tionals involved in building the model makes this straightforward. The interpretation of

individual pieces of the model also hold, leaving our intuition about how the model works

unchanged. First, recall the full Chan and Vese energy arising from trying to find the best

piecewise constant approximation to the original image, while maintaining some desirable

regularization conditions (re-written in 3D):

62
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ECV (c1,c2,φ) = µ
∫

Ω

δ(φ(x,y,z))|∇φ(x,y,z)| dxdydz

+ν

∫
Ω

H(φ(x,y,z)) dxdydz

+λ1

∫
Ω

|I0(x,y,z)− c1|2 H(φ(x,y,z)) dxdydz

+λ2

∫
Ω

|I0(x,y,z)− c2|2 (1−H(φ(x,y,z))) dxdydz (4.1)

The only difference from 2D is that instead of a two dimensional image with pixels,

where I0(x,y) denotes the intensity of the image at pixel coordinates (x,y), we now have

a 3D volumetric image with voxels, such that I0(x,y,z) denotes the intensity of the image

at voxel location (x,y,z). As well, when evolving the segmentation φ, instead of a 0 level

set curve, we now have a 0 level set surface (isosurface). This still defines the boundary of

our object, and we still define φ > 0 inside the object and < 0 outside. The first term in the

energy aims to minimize the surface area of the segmentation φ, while the second minimizes

the volume. With this simple adjustment in mind, we now look at the corresponding Euler-

Lagrange equations for c1, c2, and φ. These essentially remain unchanged:

c1 =
∫

Ω
I0 H(φ) dxdydz∫

Ω
H(φ) dxdydz

c2 =
∫

Ω
I0 (1−H(φ)) dxdydz∫
Ω
(1−H(φ)) dxdydz

∂φ

∂t
= δε(φ)

[
µ div

(
∇φ

|∇φ|

)
−ν−λ1 (I0− c1)2 +λ2 (I0− c2)2

]
, t > 0

φ(x,y,z, t = 0) = φ0(x,y,z) , in Ω

δε(φ)
|∇φ|

∂φ

∂~η
= 0 , on the boundary of Ω (4.2)

We employ the same regularized versions of the Heaviside and delta functions, and we

still set the parameter controlling the volume of our object (area in 2D), ν, to 0. Looking at

the first two equations above, for c1 and c2, we see that we can once again evaluate these in

the same way as in 2D. The boundary conditions remain as zero Neumann, and are imple-

mented as in 2D. The discretization of the update equation for φ is also a natural extension
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to 3D: we employ the same notation for forward difference ∆x
+φi, j,k = φi+1, j,k−φi, j,k, and

backward difference ∆x
−φi, j,k = φi, j,k− φi−1, j,k, with the index k corresponding to the z-

direction now. The numerical scheme for updating φ then becomes (with superscript t

denoting the current time level):

φ
t+1
i, j,k−φt

i, j,k

∆t
= δε(φt

i, j,k)·µ ∆
x
− ·

 ∆x
+φt

i, j,k(
(∆x

+φt
i, j,k)

2 + 1
4(φt

i, j+1,k−φt
i, j−1,k)

2 + 1
4(φt

i, j,k+1−φt
i, j,k−1)

2
) 1

2



+µ ∆
y
− ·

 ∆
y
+φt

i, j,k(
1
4(φt

i+1, j,k−φt
i−1, j,k)

2 +(∆y
+φt

i, j,k)
2 + 1

4(φt
i, j,k+1−φt

i, j,k−1)
2
) 1

2



+µ ∆
z
− ·

 ∆
z
+φt

i, j,k(
1
4(φt

i+1, j,k−φt
i−1, j,k)

2 + 1
4(φt

i, j,k+1−φt
i, j,k−1)

2 +(∆z
+φt

i, j,k)
2
) 1

2


−λ1

(
I0,i, j,k− c1(φt)

)2 +λ2
(
I0,i, j,k− c2(φt)

)2
]

(4.3)

Notice once again that Chan and Vese use an implicit scheme, while we use a fully

explicit one, in order to be able to easily implement the full model in 3D and validate our

concept. This particular discretization of the divergence term is similar to the one proposed

in [19], and a convergence analysis for another similar numerical scheme is available in [1]

(for the implicit scheme in 2D). With the scheme 4.3 in mind for the Chan and Vese portion

of the full energy model, we now move on to consider how to extend the shape prior to 3D.

4.2 Shape and Appearance Prior Model in 3D

Recall that we rely on Chan and Vese’s segmentation method to provide a final accurate

segmentation of the eyeballs in a brain image. Incorporating shape and appearance infor-

mation into the first stage of our full procedure is simply meant to provide a good starting
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position for φ. In 3D we still need a good definition for an initial shape prior. This can be

obtained in the same way as in 2D: using a previously segmented image, or an average of

existing segmentations of the desired object shape. Another possibility is again segment-

ing an image by hand. In 3D this can be done by segmenting individual 2D slices of a 3D

volume, and compiling the slices back together.

In the case of searching for eyeballs in a 3D brain image, we are able to simply use two

spheres. We once again look at a few images and average the radius for each sphere and

the distance the two spheres should be placed apart. Our images are still registered, and

hence aligned and cropped in a consistent manner, so we can ignore rotation and scaling

for the evolution of the shape prior ψ. To aid in removing the many local minima present

in these images, we again perform a rough cropping of the full image to a smaller portion

containing the eyeballs – and hopefully not much else.

The problem with gray tissue directly behind the eyes providing an unwanted local min-

imum is addressed by the appearance prior. In the same way as before, we can specify that

we expect our desired object to have the same shape as the shape prior ψ, but translated by

(a,b,c) units in the x, y, and z directions, respectively, and with intensity of approximately

0 (black) inside. We expect this to be sufficient to push our shape prior towards the black

region defined by the eyeballs, and to speed this process up we once again use a black and

white version of the image.

The procedure we use to turn a grayscale image into a black and white (binary) one

is based on Otsu’s method [11]. As mentioned in the previous chapter, transforming a

grayscale image to binary involves defining a threshold value which separates all the pixels

in the image into two classes: those that map to 0 (black) and those that map to 1 (white).

Consider a grayscale image I0 with gray level intensities between 0 and 1. Selecting a

value that is between 0 and 1 to define this class separation can be difficult. What Otsu’s

method does is try to define this threshold value in a way that the between-class variance is

maximized.

The method operates directly on the histogram of an image, so it easily generalizes to
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Figure 4.1: Turning a grayscale image to binary using Otsu’s thresholding method

any dimension. The idea is to find a threshold value, c, and classify all pixels with intensity

≤ c to 0 and the rest to 1. Otsu’s method uses statistical tools to find the value of c which

most clearly separates the pixels into these two classes – ie., we want the least amount of

pixels that are on the border of belonging to one or the other class. We want the mean of the

original intensities of the pixels which get mapped to 0 to differ as much as possible from

the corresponding mean of the pixels which get mapped to 1. This should then provide a

black and white version of the original image which would be most recognizable by the

human eye.

To illustrate this point, consider Figure 4.1. We can see a 2D slice of a brain image:

the first instance is the original grayscale image, the second is a blind thresholding at level

0.5 (medium gray) and the third is the binary image obtained using Otsu’s method. Notice

in particular that for us, this gives a very nice separation of the eyes from the gray tissue

behind the eyes which was causing problems as a local minimum. An important point to

mention is that this threshold value c should be obtained based on the entire image, not the

cropped region containing the eyes only – the full histogram provides the optimal value,

specifically for our application.

As in the 2D model, we use this black and white image in the shape prior stage. Recall

the energy:
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Eshape = λ1

∫
Ω

(I0− c1)2 H(ψ) dxdydz+λ2

∫
Ω

(I0− c2)2 (1−H(ψ)) dxdydz

+λψ

∫
Ω

(I0− Iψ)2 H(ψ) dxdydz (4.4)

We again use the regularized versions for the Heaviside and delta functions, and all

terms can be computed as in 2D. We minimize this energy with respect to the translation

parameters (a,b,c) by re-writing the shape prior ψ at any given iteration of our method

as ψ(x,y,z) = ψ0(x−a,y−b,z− c) as before, and end up with the same gradient descent

equations for each parameter (with one extra for the z-direction). We also use the same time

stepping scheme as in the 2D case to ensure we translate the prior at a reasonable speed

without letting it move out of our domain.

After obtaining the final position of ψ, we expect to have found roughly the location of

the eyeballs. Now we pass this information to Chan and Vese’s procedure in 3D to initialize

φ0 = ψ. Similarly to 2D, we now return to using the original grayscale version of the image

in order to obtain as accurate a final segmentation as Chan and Vese can give us, by using

all the information we have in the image. To simplify this and further eliminate possible

local minima, we define two spheres, each centered at one of the two spheres from ψ, but

with radii twice as large. Everything in the image outside of these spheres is set to its

average intensity, and we expect to be left with the eyeballs alongside pieces of the gray

tissue behind them and some other elements contained in the brain image. Now we are

ready to use the active contours without edges model to arrive at the final product. Some

examples of our results in 3D are shown next.

4.3 Results

Visualizing results in 2D is straightforward, but there are a few options in 3D. In 2D, the

final segmentation curve is easily shown using a contour plot overtop of a 2D image, where

φ = 0. For 3D, the final segmentation is represented by the isosurface φ = 0. We can extract

this data and create a surface plot showing the eyeballs in 3D, and this way we can ensure

no irrelevant pieces of noise/objects have been grouped together with the eyeballs as our
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Figure 4.2: Two sets of extracted eyeballs. Note: the voxelization is due to how the pictures

are made, not φ (see slices below)

final object. However, this does not provide convincing information that indeed the seg-

mentation is “correct.” To be able to compare carefully the segmentation with the original

image, we can take 2D slices of our volumetric brain image and superimpose, just as in 2D,

a 0 level contour plot of the corresponding slice of φ. Finally, to see things in perspective,

we can render a “see-through” version of the original image of the brain together with the

eyeballs, as discovered by our procedure.

First, let us compare two surface plots of the resulting eyeballs. In Figure 4.2 we see

the results in two different images. Note that the surface of the eyes appears rough – this is

an image quality problem. The size of the cropped region our computations take place on

is roughly 100x60x40 voxels, and the eyeballs appear as spheres of radius approximately
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Figure 4.3: The anatomy of an eyeball

8 voxels. We can see that the two individuals have slightly different eyeballs, as expected,

and there is some interesting features to be noticed. Firstly, there seems to be a piece of the

eyeball “missing.” This is actually a natural anatomical feature of the eye – the lens. The

nature of MRI imaging causes the lens to appear with different intensity from black, so it

is no surprise that our method does not find it. To compare these results to a diagram of an

eyeball, we include Figure 4.3. In the left-hand eye of the first set of eyeballs we have so

far, there is a piece of tissue sticking out and wrapping around the front of the eye. Looking

again at the diagram, we can see that this is likely the anterior chamber. Depending on what

specific purpose the full eyeball segmentation is used for, we can fine-tune the parameters

in our model to either capture this feature or dismiss it. As well, note that in this thesis,

although we refer to our desired object as the eyeballs, it is actually the vitreous humour

that we find.
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Figure 4.4: 2D slices of two brain images with their corresponding segmentations of the

eyes, in the neck-up direction

To be able to view the two segmentations alongside their original images, we consider

taking a few slices through the full image and placing the 0 level contour of the correspond-

ing slice of φ. Figure 4.4 shows, on the first row, three slices of the image corresponding

to the first set of eyeballs above, and the second row corresponds to the second set of eye-

balls. The direction along which the slices are extracted is going from the neck towards the

top of the head: ie. horizontally slicing the brain from ear to ear, essentially. The specific

slices correspond to the same values for both images, and we can see that the location of

the eyeballs is slightly “higher” in the second image. We also see in the first image that the

eyes are not perfectly level – this could either be indeed the case for this individual, or an

imperfection in the registration of this particular image.
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Figure 4.5: 2D slices of a brain image with its corresponding segmentation of the eyes, in

the direction going from the back of the head to the front

Next, let us examine a few slices in the other two directions. These will only be shown

for the second image. Figure 4.5 shows three slices coming from the back of the head to-

wards the front. The first slice is somewhere in the middle of the eyeball, and we can see

from the contour that the boundary appears to be found very well, as in the 2D case. The

second slice is at the very front of the eyeballs and they appear as half moon shapes. This

is the same phenomenon as in the surface plots of Figure 4.2. The last slice is just past

the front of the eyeballs, and we can see in the middle region, both in the second and this

third slices, the nasal cavity – it appears black. If our procedure did not include the stage of

using two larger spheres to define our active domain for Chan and Vese’s segmentation, this

region would have caused some issues due to its intensity, and would likely have required

some post-processing or extensive search for the “correct” parameters.

Finally, Figure 4.6 shows some slices taken along the direction connecting both ears.

The first column shows two slices of one of the eyes, while the second column shows two

slices of the second eye. It is possible to create these kinds of 2D plots at every slice in the

image, for all three directions (neck to top of head, back of head to front, one ear to the

other), and to compile these and view them as a movie. This visualization provides a good
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Figure 4.6: 2D slices of a brain image with its corresponding segmentation of the eyes, in

the direction going from one side of the head/ear to the other

option for visually validating the results of the segmentation.

The above results let us take a close look at how our method performs on 3D images,

and the results are encouraging. To put all of this in perspective, we consider the full

3D volume of the brain. To be able to see what is going on inside, we give every voxel

in the image some transparency, and display here a 2D projection of the 3D data viewed

from some angle. Since the brain has much detail, it is difficult to define a particularly

clear color scheme to display the final result, so we include two versions of the rendering:

one using a blue-to-red colour map, and a black and white map. The blue and the black

both correspond to values of low intensity, while the red and white correspond to high

intensity. These are shown in Figures 4.7 and 4.8. The first image in both those figures is

the transparent rendering of the original brain MRI image. The second image corresponds

to the original MRI image with the eyeballs found by our method inserted, set to the highest

intensity only for the purposes of visualization. We can see that in the original image alone,

since the MRI process does not capture any information for the eyeballs, it is difficult to
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Figure 4.7: A transparent 3D volume image: finding the eyeballs

Figure 4.8: A transparent 3D volume image: finding the eyeballs, a black and white version

look at this image and decide exactly where they belong and how much space they take up.

In contrast, the results we have obtained fit well with our intuition about what we expect to

find.



Chapter 5

Conclusion and Future Research

5.1 Method Summary and Generalization to Other Appli-
cations

Image segmentation is a difficult problem to solve. Building a successful model is heavily

reliant on knowledge about the particular application at hand. The method in this thesis

incorporates both shape information and appearance information into a segmentation pro-

cedure that is appropriate for the types of images used.

The two stage procedure proposed here aims to find the eyeballs in a 3D brain MRI

image. We use Chan and Vese’s active contours without edges segmentation algorithm,

combined with shape information about the object we wish to find – the eyeballs. The

way in which the model was built can apply to other segmentation problems where a good

estimate for the location of the target object and its shape are known in advance – this is

particularly common for medical images, where anatomical knowledge can be very helpful

in this regard. This information is used in the first stage of our procedure, to help better

specify the location of the object we look for. This information is then used in the second

stage: using Chan and Vese’s method to get an accurate final segmentation. With this final

segmentation, medical researchers are able to extract useful information to be utilized in

various ways, depending on the particular application.

74
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At the heart of our method lies the splitting of the procedure into two stages: a search

for an object of a particular shape, and a full segmentation based on intensity. However,

any different segmentation procedure can be used in substitution for the Chan and Vese

procedure. For example, the gradient based edge detector algorithm described in the be-

ginning of Chapter 2 can be used instead. Depending on the application at hand, it may be

more suitable to use a method other than Chan and Vese’s.

Recall that in our method, the shape prior ψ was only allowed to translate over the

image domain. This can easily be extended to rotation and scaling of the shape prior. Con-

sider scaling parameter r and rotation angle θ. For 2D, we can rewrite:

ψ(x,y) = rψ0

(
(x−a)cos(θ)+(y−b)sin(θ)

r
,
−(x−a)sin(θ)+(y−b)cos(θ)

r

)
Now the shape energy can be minimized with respect to the four-tuple (a,b,r,θ) in a

similar fashion as before. Then, at every iteration the current shape prior is updated by

transforming ψ0 using the corresponding parameters. The same approach holds in 3D. In

fact, different transformations can also be incorporated – eg. one could allow for different

scaling in the x and y directions.

For our application and many others the shape prior may not be enough on its own to

find the target object. For this reason we introduced the appearance prior into the first stage

of our method. For the eyeballs this was simple – we specified that the intensity inside

the object is expected to be 0 (black). It is possible to incorporate much more information

into the appearance prior. Recall that in the full shape energy, the appearance prior is

compared to the original image in the region inside the shape prior’s current position. In

some applications it may be the case that the object we are looking for is expected to have

a particular distribution of intensities. Instead of comparing the intensity of the original

image to some constant value incorporated into our appearance prior, we could compare

the histograms of the image in the relevant region to that of a previously defined appearance

prior. For example, if we are dealing with a mostly medium gray image but expect our

object to contain high contrast (many white and black pixels, but few gray ones), we could

define an appearance prior with a similar amount of white and black pixels. However,



CHAPTER 5. CONCLUSION AND FUTURE RESEARCH 76

comparing these directly to the image will be misleading – we do not expect these pixels

to coincide precisely, but using a histogram comparison instead should achieve our goal.

In this way, our shape prior should favour regions of high contrast over regions of mostly

gray pixels. This is only one example of how appearance information can be incorporated

into the model.

5.2 Extracting Useful Information

Once the final segmentation is obtained, medical researchers can decide on what kind of

information they want to extract depending on what goals they want to achieve. With the

eyeballs, for example, the volume of individual eyeballs can be calculated from the segmen-

tation φ. Then the volume of one eyeball can be compared to the other, within the same

person, or size distribution can be estimated based on a large data set of segmentations.

To aid in diagnosis, for example, physicians could track changes in a particular anatomical

feature in a patient – change in size, position, even appearance.

For the eyeballs specifically, recall that the final segmentation shows the eyeballs as

approximate spheres, but with a “missing” region in the front – the lens. This information

can be used to determine the direction in which the person is looking. This may be useful

in studies that rely on fMRI data (time series MRI). Any kind of feature can be tracked

over time, provided that it does not change position significantly. In some cases it may

even be possible to only require the shape stage of the method to be applied to one image,

in particular if the various images taken over time are of the same person.

Another area of research in image processing could also benefit from this – image met-

rics [15]. Defining an image metric involves finding some suitable way to compare images

by using a measure of “distance”. Some existing image metric approaches start with one

segmented object (template) and calculate (in various ways) how much this curve needs to

be deformed to fit to another object. Using this information, the distance between these

two objects can be defined. Our transformation parameters could aid the definition of some

measure of distance between images, with respect to a particular anatomical feature. This

can then be used to sort a large set of images by their proximity to some base image that
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physicians have deemed to be “normal”. In this way images that end up being classi-

fied as “far” from normal can be flagged, requiring the immediate attention of a medical

professional. Using the information from the segmentation in this way can help increase

efficiency and add some objectivity in current practices for diagnosis – it is often subjec-

tive for a medical professional to look at an image and decide whether it is normal or not,

although the value of a human being’s opinion will likely never be replaced in medical

applications.

5.3 Method Design Improvements

The purpose of this thesis was to provide a proof of concept for the specific procedure for

segmentation used here. The results suggest that it is worthwhile to develop this method

further, and there is much room for improvement. In particular, the method would greatly

benefit from a more automatic cropping procedure for the images. Recall the black space

present on the right-hand side of a brain image. With a large number of images, it is pos-

sible that the starting position of the shape prior could land exactly in that region, and will

stay there, as it is a local minimum. One way this issue could be addressed in a more auto-

matic way that takes the variation across images into account, is to turn the image to binary

(using Otsu’s method) and locate the right-most white pixel in the image. Now the image

can be cropped to there, and we expect that this will eliminate the problem.

Another issue that comes up in many segmentation procedures is parameter selection.

In particular, the parameter µ in Chan and Vese’s algorithm is meant to control the length

of the segmentation curve (surface area in 3D), and has notable influence on the size of

the objects found. We can avoid noise by increasing this parameter, but we run the risk

of missing our object entirely if it happens to have small features that are important to us.

One idea to address this issue is, for a particular application or type of image, to find some

critical value or values of µ to define some state space based on the largest size of object

ignored by the method. This would also improve automation and help any segmentation

algorithm to be applied comfortably to a large set of images.
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Going back to our choice of shape model, we chose to have this stage not use any

guidance from Chan and Vese’s method. However, there were a few options mentioned

for methods which combine both stages of our procedure into one, by introducing a shape

energy term into the Chan and Vese energy, and minimizing the resulting full equation.

In [3], a model is built using gradient based segmentation combined with a shape and ap-

pearance prior. A similar approach can be constructed with Chan and Vese’s segmentation

algorithm. All of these changes are potential improvements to our method so far.

5.4 Numerical Considerations

As mentioned before, not much emphasis has been placed on choice of numerical scheme.

There may be a better choice for minimizing our energy numerically, and the correspond-

ing implementation can be optimized to greatly improve the performance of our method.

Improving the stability by implementing a different scheme, or our scheme in its implicit

form as in [5], would provide more reliable results. As well, this could go as far as allowing

us to use the sign function for updating φ instead of the traditional gradient descent with

higher accuracy. This would be a significant improvement in speed, allowing the method

to be applied to a large set of 3D images easily.

One idea for speeding up Chan and Vese’s method on its own arises from asymptotics

[2]. Recall that Chan and Vese’s update for φ has two different pieces: one is based on the

image intensity, and the other is a regularization. In some applications it may be possible to

rescale the problem in a way that ends up requiring a small µ to obtain satisfactory results.

In such a case, an asymptotic analysis can be performed on the equation for φ where µ→ 0,

and the final update equation can be split into two pieces: within the iteration loop, we

first update φ according to intensity information only, and then we perform a small motion

by mean curvature step to ensure φ’s 0 level curve stays somewhat smooth. Some further

analysis on this point could lead to yet another way to speed up the overall process.

Even without these possible improvements, the method at its current stage performs

fairly well on small sets of images – even in 3D processing a single image takes seconds.

The final segmentation results, however, tend to be rough due to the low quality of the
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image – one eyeball has a radius of approximately 8 voxels, not allowing us to resolve the

detail of the eyeball very well. In order to make the method able to handle high quality

images, however, improvements as suggested above (or otherwise) would be necessary to

achieve a final usable product, able to handle many of these high quality images, so that it

may become useful in practice for medical research purposes.



Bibliography

[1] G. Aubert and L. Vese. A variational method in image recovery. SIAM J. Numer.

Anal., 34(5):1948–1979, Oct. 1997.

[2] D. Auroux. From restoration by topological gradient to medical image segmenta-

tion via an asymptotic expansion. Mathematical and Computer Modelling, 49(11-

12):2191–2205, 2008.

[3] R. Ben-Ari and D. Aiger. Geodesic active contours with combined shape and appear-

ance priors. ACIVS, LNCS 5259:494–505, 2008.

[4] L. Brown. A survey of image registration techniques. ACM Computing Surveys,

24(4):325–376, 1992.

[5] T. Chan and L. Vese. Active contours without edges. IEEE Transactions on Image

Processing, 10(2):266–277.

[6] T. Chan and L. Vese. A multiphase level set framework for image segmentation using

the Mumford and Shah model. Int. J. Comput. Vis., 50(3):271–293, 2002.

[7] T. Chan and W. Zhu. Level set based shape prior segmentation. IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2:1164–1170, 2005.

[8] Y. Chen, H. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson, K. Gopinath, R. Briggs,

and E. Geiser. Using prior shapes in geometric active contours in a variational frame-

work. Int. J. of Comp. Vis., 50(3):315–328, 2002.

80



BIBLIOGRAPHY 81

[9] D. Cremers, N. Sochen, and C. Schnorr. Towards recognition-based variational seg-

mentation using shape priors and dynamic labeling. L. Griffith, M. Lillholm, editors,

Int. Conf. on Scale Space Theories in Computer Vision, LNCS, 2695:388–400, 2003.

[10] F. Gibou and R. Fedkiw. A fast hybrid k-means level set algorithm for segmentation.

4th Annual Hawaii International Conference on Statistics and Mathematics, pages

281–291, 2005.

[11] R. Gonzalez and R. Woods. Digital Image Processing. Prentice Hall, 3 edition, 2008.

[12] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. Int. J.

Comput. Vis., 1:321–331, 1988.

[13] M. Leventon, W. Grimson, and O. Gangeras. Statistical shape influence in geodesic

active contours. Comp. Vision and Patt. Recon., CVPR, 2000.

[14] G. Maso, J. Morel, and S. Solimini. A variational method in image segmentation:

existence and approximation results. Acta Matematica, 168:89–151, 1992.

[15] M. Miller, A. Trouve, and L. Younes. On the metrics and euler-lagrange equations of

computational anatomy. Annu. Rev. Biomed. Eng., 4:375–405, 2002.

[16] J. Morel and S. Solimini. Segmentation of images by variational methods: a construc-

tive approach. Revista Matematica Universidad Complutense de Madrid, 1:169–182,

1988.

[17] D. Mumford and J. Shah. Optimal approximation by piecewise smooth functions and

associated variational problems. Commun. Pure Appl. Math, 42:577–685, 1989.

[18] D. Nain, S. Haker, A. Bobick, and A. Tannenbaum. Shape-driven 3D segmentation

using spherical wavelets. Lecture Notes in Computer Science, 4190:66–74, 2006.

[19] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal

algorithms. Phys. D, 60:259–268, 1992.

[20] M. Rumpf and B. Wirth. A nonlinear elastic shape averaging approach. SIAM J.

Imaging Sciences, 2(3):800–833, 2009.



BIBLIOGRAPHY 82

[21] H. Tek and B. Kimia. Image segmentation by reaction–diffusion bubbles. Proc. Int.

Conf. Computer Vision, pages 156–162, 1995.

[22] C. Xu, D. Pham, and J. Prince. Medical image segmentation using deformable mod-

els. SPIE Handbook on Medical Imaging, 3:129–174, 2000.

[23] N. Yip. Stochastic motion by mean curvature. Arch. Rational Mech. Anal., 144:313–

355, 1998.

[24] H. Zhao, S. Osher, B. Meriman, and M. Kang. A variational level set approach to

multiphase motion. J. Comput. Phys., 127:179–195, 1996.




