
SHARING AWARE SCHEDULING ON MULTICORE

SYSTEMS

by

Ali Kamali

B.Sc., Sharif University of Technology, 2008

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

c© Ali Kamali 2010

SIMON FRASER UNIVERSITY

Summer 2010

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Ali Kamali

Degree: Master of Science

Title of Thesis: Sharing Aware Scheduling on Multicore Systems

Examining Committee: Dr. Ke Wang

Chair

Dr. Alexandra Fedorova, Professor, Computing Sci-

ence

Simon Fraser University

Senior Supervisor

Dr. Greg Mori, Professor, Computing Science

Simon Fraser University

Supervisor

Dr. Hao Zhang,

Professor, Computing Science

Simon Fraser University

Examiner

Date Approved:

• •
11

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

Multicore processors are becoming more and more widespread, specially in the server market.

Data centers can harvest the power of multicore systems once proper scheduling methods

are comprehended. Current operating systems do not consider all characteristics of the ap-

plications that are being scheduled and therefore cannot make optimal scheduling decisions.

This will waste the power of multicore systems and increase the costs of a data center.

The idea explained in this thesis is to solve one of the problems of scheduling on multicore

systems. Using the methods introduced in this thesis, operating systems can detect data

sharing between different threads of a multithreaded application and make better schedul-

ing decisions. Sharing aware scheduling can improve the performance of applications by up

to 42%. The scheduler can detect data sharing dynamically just by monitoring hardware

performance counters.

Keywords: Multicore systems, sharing aware, scheduler, CMP, operating system, MESI,

data sharing, snoop, hardware performance counters

iii

To my family, Leila, and all my friends in Vancouver

iv

“I can no other answer make, but, thanks, and thanks.”

— William Shakespeare

v

Acknowledgments

I would like to thank my senior supervisor, Sasha Fedorova, who helped me through my

studies and guided me in the realms of multicore systems! I would also like to thank my

colleagues at SFU.

vi

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Contents vii

List of Tables ix

List of Figures x

1 Introduction 1

2 Related Work 3

3 Basic concepts 6

3.1 Multicore Systems . 6

3.1.1 AMD Cache Architecture . 6

3.1.2 Intel Xeon and Intel Nehalem Cache Architecture 7

3.2 Types of Cache Misses . 9

3.2.1 Conflict Misses . 9

3.2.2 Capacity Misses . 9

3.2.3 Compulsory Misses . 9

vii

3.2.4 Coherency Misses . 9

3.3 The MESI Protocol . 10

3.4 Read and Write Sharing . 12

3.4.1 How does MESI protocol fit here? . 14

3.5 Sources of Coherency Misses . 15

3.6 Why AMD systems do not benefit from sharing 16

3.7 Summary . 17

4 Measuring the Amount of Sharing 18

4.1 Monitoring Coherency Protocol Events . 18

4.2 Experimental Setup . 21

4.3 Experimental Plan . 21

4.3.1 SwapTest Results . 24

4.3.2 BucketSort Results . 26

4.3.3 NetworkTest . 26

4.3.4 MySqlTest . 27

4.3.5 Looking at Hardware Performance Counters 27

4.4 Summary . 32

5 Analysis and Implementation 34

5.1 Model . 34

5.2 Linear Regression . 36

5.3 Designing the Scheduler . 40

5.4 Testing the Scheduler . 41

5.5 Summary . 43

6 Conclusion and Future Work 45

Bibliography 47

viii

List of Tables

3.1 The MESI protocol state machine . 11

4.1 SwapTest running on a shared last level cache versus running on separate

chips. Lower ratio means a higher benefit from being placed on a shared cache. 25

4.2 Execution time of Network test on a shared last level cache versus separate

caches . 26

4.3 Execution time of MySqlTest on a shared last level cache versus separate caches 27

4.4 Snoops and L3 misses for SwapTest . 28

4.5 SwapTest Snoop and Cache Miss Analysis . 30

4.6 NetworkTest Snoop and Cache Miss Analysis 32

4.7 MySqlTest Snoop and Cache Miss Analysis 32

4.8 BucketSort Snoop and Cache Miss Analysis 33

5.1 SwapTest-No Data Sharing Snoop and Cache Miss Analysis 36

5.2 Regression Statistics . 37

5.3 Analysis of Variance . 37

5.4 Linear Regression Coefficients . 37

5.5 memcached Snoop and Cache Miss Analysis 38

5.6 Real runtime improvements versus predicted runtime improvements 38

5.7 Real runtime improvements versus predicted runtime improvements for Net-

workTest, MySqlTest, LinearRegression, and SpecJBB 39

ix

List of Figures

3.1 AMD Cache Architecture . 7

3.2 Shared L2 Cache . 8

3.3 Intel Nehalem Architecture . 8

4.1 NUMA - two node example . 20

4.2 SwapTest Runtime on a Shared Cache and on Separate Caches 26

4.3 BucketSortTest Runtime on a Shared cache and on Separate Caches 27

4.4 SwapTest Analysis - Runtime Ratio and SMR Separate 29

4.5 SwapTest Analysis - MPmI Separate and MPmI Shared 31

5.1 Real Improvements vs Predicted Improvements Using Our Model 39

5.2 Real and Predicted Runtime Ratio for BucketSort-NoSharing 40

5.3 Runtime improvements with our sharing aware scheduler compared to the

default scheduler . 42

x

Chapter 1

Introduction

Increasing clock speed of microprocessors is reaching diminishing returns. Newer processors

are increasing the number of cores per chip and multicore systems are becoming more and

more widespread. Operating systems however, are not advancing with the same pace. Op-

timal scheduling on multicore systems is still an open problem.

In order to understand why scheduling on multicore systems is a challenging task first

we need to understand how multicore systems work. Multicore systems have more than one

core on each chip and each system can contain one or many chips. These cores need to

access the main memory which is quite slow compared to the processing power of each chip.

Cores usually waste a lot of cycles waiting for the data to be fetched from the memory. To

address this problem multiple level of data and instruction caches were introduced. Each

core has a private L1 data and instruction cache. Depending on the architecture each core

can either have a private L2 cache or share it with other cores. Some newer architectures

have introduced a L3 cache which is always shared among all the cores on each chip. On

each access to the memory, local caches are searched first and if the data is not present in

those caches a request will be sent to the memory to fetch the data. If the data is actually

present in any of the caches then there will be no need to send a request to the memory, and

since delay of accessing caches is much less than the delay of accessing the main memory,

cores will save some cycles.

In order to maintain a coherent system cores need to talk to other cores on the same chip

and the cores on other chips so that all of them access up-to- date data. Each time a core

1

CHAPTER 1. INTRODUCTION 2

modifies some data it needs to notify all other cores that the data was changed. This is done

via cache coherency protocols such as the MESI protocol. Sending coherency messages cross-

chips is very expensive and affects the overall performance of the processors[12, 11, 7, 4].

Cross-chip coherency messages can be avoided by placing the threads on the same chip so

that the threads share the last level cache.

The size of caches on each chip is limited. Cores compete with each other for cache re-

sources. There is also only one memory controller per chip and cores need to use the

memory controller each time they access data in the memory. These are the common prob-

lems that applications that run on multicore systems face. The coherency messages that

the cores send to each other will also affect the performance of applications [5].

An operating system scheduler needs to consider these bottlenecks and make intelligent

decisions on how to place the threads on different cores. The way the scheduler decides to

place the threads on the cores will impact the overall performance of the system. Different

applications with different characteristics will run on the system and the scheduler needs to

monitor the behavior of these applications and make its decisions based on that. To facili-

tate this process for schedulers, modern processors provide invaluable information about the

performance of each core via hardware performance counters. Hardware performance coun-

ters are special purpose registers put into the processors to reflect the activities of each core.

In this thesis we focus on reducing the number of messages due to the coherency proto-

col. We exploit some of the performance counters to gain knowledge about the amount of

data sharing among threads. Using this knowledge we design a scheduler that intelligently

schedules the threads that are sharing data onto a single chip so that the threads share their

data on the shared last level cache. Hence, they no longer need to send messages across chips

to maintain their coherency. We call this behavior being sharing-aware, and the placement

that the scheduler chooses is a sharing-aware placement. Just using this technique we show

that the runtime of multithreaded applications that share data can be improved by up to

42%.

Chapter 2

Related Work

The work by Tam et al. [8] is the closest to the work that has been done in this thesis.

In their work, the authors use hardware performance counters to analyze the stall cycles

of each core. If cross-core communication is among the sources of stalls they monitor all

threads in the system to gather information about the data regions accessed by the threads

that caused cross-chip communication. That is done with data sampling capabilities of

hardware performance counters. Then they cluster the threads that access the same data.

Their scheduler tries to schedule the threads close to each other based on the cluster groups.

Although this work showed improvements of up to 7% in some workloads, their method can-

not be used on Intel processors and does not allow the schedulers to predict the benefits

from sharing-aware placement.

Bellosa and Steckermeier [1] introduce a new scheduling architecture with the goal of re-

ducing the number of cache misses. They started by using hardware performance counters

to identify data sharing between the threads. However due to the limitation of hardware

performance counters and the delay of acessing them at the time of their work they could

not obtain good results. Weissman [11] requires users to identify the shared regions. Based

on the information that the users provide and the cache miss information data gathered by

hardware performance counters, he designs a portable parallel system that eliminates a lot

of cache misses.

Thekkath and Eggers [9] hypothesized that they can reduce cache interference and improve

3

CHAPTER 2. RELATED WORK 4

the overall performance by co-locating the threads that share data on the same proces-

sor. They used a parallel tracing tool called MPtrace to gather information about sharing

characteristics of their workloads. To test their hypothesis the authors compared a variety

of thread placement algorithms via simulation. Simulation results showed that compulsory

and invalidation misses did not decrease with any of the thread placement algorithms. They

could not show any benefit from co-locating the threads on the same processor. They con-

cluded that they could not show any benefit because of the way their benchmarks were

accessing the memory and the fact that the data sharing between the threads was insignifi-

cant. In this thesis we do not use offline analysis, we rely on hardware performance counters

to obtain online data and we dynamically make our decisions.

Zhuravlev et al. [13] tried to minimize the number of cache misses by reducing the con-

tention for accessing the shared resources, such as memory controller and shared caches.

They designed a new scheduler that uses a heuristic algorithm based on the cache miss

rate of applications and they showed that the scheduler performs within 2% of the optimal

scheduler. In their work, however, the authors only studied the applications that suffer from

running on a shared cache. They did not consider the fact that some applications benefit

from running on shared caches. Similarly Chandra et al. [2] used stack distance profile and

stack distance competition to predict the effects of sharing a cache between cache intensive

applications. In this thesis we do not study the effects of contention separately. We intro-

duce a model that accounts for the effects of cache contention while providing the scheduler

with the information about data sharing.

Sridharan et al. [7] proposed that threads must be migrated to ”lock hot” processors.

They argued that by migrating threads to such processors threads can reuse the critical

section data that is already in the processor’s cache, and therefore synchronization can be

done faster. To achieve their goal they modified the user level libraries to help them identify

user level locks. After finding out which locks are being accessed the most the threads that

are accessing them will be migrated to the same processor to exploit the shared last level

cache. That approach requires modifications to the application libraries. Our approach

required no modification to the applications.

Zhang et al. [12] studied the effects of cache sharing on multicore systems. The authors

CHAPTER 2. RELATED WORK 5

claim that the placement of threads does not have an impact on the overall performance of

PARSEC, a recently released benchmark for multicore systems. After analyzing the access

patterns of the benchmarks, the authors concluded that the benchmarks would not bene-

fit from intelligent placement because of three reasons. First, the data sharing is uniform

among threads, meaning that all threads share the same amount of data with each other,

and it is difficult (or impossible) to place all threads on the same chip. Second, the amount

of shared data is insignificant since data is partitioned. And third, the working set of the

benchmarks is usually larger than the cache size. The authors modify some benchmarks

from PARSEC so that the data sharing is no longer uniform. With the new set of bench-

marks they showed that a sharing aware scheduler can improve the performance by up to

36%.

Torellas el al. [10] analyzed six applications and studied the effects of false sharing on

the miss rate. The authors proposed changes to the compilers so that they would place the

data structures with a different layout in the caches to prevent false sharing. Eggers and

Katz [4] studied the effects of sharing on the performance of the bus and on the perfor-

mance of parallel applications. Their study showed that parallel programs produce more

cache misses, and better compiler technology and better software development techniques

can improve the performance of parallel applications by organizing the data differently in

the memory.

Chen et al. [3] evaluated the performance of two greedy schedulers. Parallel Depth First

(PDF), a scheduler designed for constructive cache sharing, and a traditional scheduler.

Their study showed that using PDF off-chip traffic is reduced and runtime improvements

of up to 60% can be gained. Jeleel et al. [6] proposed the use of binary instrumentation to

characterize cache performance. Instead of using trace-driven simulators, the authors used

Pin (a binary instrumentation tool by Intel) to study the performance of the memory. Their

simulator, CMP$im, was a parallel memory system simulator that could model any kind of

cache hierarchy. Using CMP$im the authors could measure the amount of data sharing in

detail. Their analysis however had to be done offline and therefore their method cannot be

used in an online scheduler.

Chapter 3

Basic concepts

This chapter describes different types of systems, and some of the reasons behind choosing

the correct hardware performance counters. It begins with describing how cores and caches

are connected, what is a local hit, a local miss, a remote hit, and a remote miss. Then it

will explain what types of misses there are, and why we are focusing on one particular type

of miss in this thesis.

3.1 Multicore Systems

The architecture of multicore systems has been improved a lot since the introduction of the

first system in 2001. Different vendors follow different methodologies. These methodologies

had a great impact on the performance of the CPU. In this thesis we studies two different

common architectures.

3.1.1 AMD Cache Architecture

AMD introduced on chip L3 caches and a private L2 cache for each chip (as shown in figure

3.1).

L2 and L3 caches on AMD systems are victim caches (they are not inclusive). Whenever

there is a cache miss1, the CPU brings the data directly to the L1 cache, skipping the others.

1A cache miss is when a core tries to access a data, and it cannot find the data in its cache. The core
misses its cache and needs to fetch the data from the main memory.

6

CHAPTER 3. BASIC CONCEPTS 7

Figure 3.1: AMD Cache Architecture

The data will only be loaded to the L2 cache when it is evicted from the L1 cache, and it

is loaded into the L3 cache only when it is evicted from the L2 cache.

3.1.2 Intel Xeon and Intel Nehalem Cache Architecture

First dual core CPUs only had L1 and L2 caches. There was a L1 cache for each core and

a L2 cache was shared among the two cores on the chip (figure 3.2).

In the later designs a L3 cache was introduced and added to the same bus. In some

quad core designs, two cores would share the same L2 cache, and all the cores would share

the L3 cache. The limitation of this design was the memory bus for accessing the L2 cache

and the memory controller. When the traffic goes up, the performance of the bus limits the

performance of the CPUs.

By introducing the Nehalem architecture, Intel redesigned its CPUs and introduced

private L2 caches for cores and a unified L3 cache shared for all of the cores (figure 3.3).

This design reduces the latency for accessing the caches. L3 caches are inclusive in the

Intel design. It means that if data is not present in the L3 cache, it is assured that the data

cannot be present in L2 and L1 caches above, and if data is present in a L2 or a L1 cache,

it can be found in the L3 cache as well.

CHAPTER 3. BASIC CONCEPTS 8

Figure 3.2: Shared L2 Cache

Figure 3.3: Intel Nehalem Architecture

CHAPTER 3. BASIC CONCEPTS 9

3.2 Types of Cache Misses

For reducing the number of cache misses we need to find out the source of a cache miss:

3.2.1 Conflict Misses

Conflict misses happen when multiple memory locations get mapped to the same line in

the cache. This type of cache miss can be resolved by increasing the cache size, and by

increasing the associativity.

3.2.2 Capacity Misses

Capacity misses are due to the size of the cache. The cache is not big enough to hold the

data while it is being referenced again. This type of cache miss can be resolved by increasing

the cache size.

3.2.3 Compulsory Misses

Compulsory misses happen with the first reference to the requested data. The data is simply

not in the cache and the CPU needs to load it for the first time. Prefetching helps to some

degree. This type of cache miss is not a major problem.

3.2.4 Coherency Misses

Coherency misses only happen in multiprocessors and multicore systems. In single core pro-

cessors when data is loaded into the cache, it will remain the same until that core changes

it. In multicore processors however, the data can be modified by other cores while it is in

the cache of a specific core. Since the data is modified by other cores, it is no longer valid

and should not be used by the core that does not have a recent copy of the modified data.

The data in the old cache is invalidated, therefore the next reference to that data will miss

the cache. This type of misses are because of coherency messages and are called coherency

misses. To resolve this problem, whenever a core modifies a data in its private cache, it

invalidates the data in all the other caches. On the next reference to that data, the other

cores will miss in their cache and have to reload it from either the main memory or from

other caches.

CHAPTER 3. BASIC CONCEPTS 10

The main focus of this thesis is on reducing the number of coherency misses. To understand

coherency misses better, we need to understand how the coherency protocol works. The

most common protocol used in the recent architectures is the MESI protocol. Each vendor

has made a slight modification to the MESI protocol so that it suits their architecture.

3.3 The MESI Protocol

The MESI (modified, exclusive, shared, invalid) cache protocol maintains consistency be-

tween cache lines of different processors. Each cache line is in either modified, exclusive,

shared, or invalid state. The state of a cache line is updated whenever one of the cores try

to access that cache line:

• Invalid: A cache line is in invalid state when the data in that cache line does not

represent any data in the memory.

• Exclusive: A cache line will be tagged as exclusive when a core loads the data into

its cache for the first time and the data is not present in the private cache of any other

core, and is not present in the shared cache of other chips.

• Shared: When a cache line is in shared state, it means that the cache line represents

the latest value for that memory location, and the data might be found in the private

cache of other cores, or might be present in the shared cache of other chips.

• Modified: A modified cache line is a cache line that was in exclusive mode, but

the data has been modified by the core that owned the cache line and it no longer

represents the data that is in the memory. The value of a cache line that is in modified

mode must be written back to memory whenever the cache line is evicted or its state

is changed.

Table 3.1 presents a summary of the MESI protocol and explains how the MESI protocol

decides about the state of each cache line.

The important thing to notice in this protocol is that whenever a core that does not own

a cache line (meaning that the cache line is not in exclusive or shared state) tries to modify

it, it will result in sending an invalidation message to the other caches. This will result in

all the other cores missing the data in their caches on their next reference.

CHAPTER 3. BASIC CONCEPTS 11

Table 3.1: The MESI protocol state machine
Old MESI state Event What to do New state

Invalid Read miss, data found
in other caches

Load cache line Shared

Read miss, data not
found in other caches

Load cache line Exclusive

Write miss Invalidate data in other
caches, load cache line,
modify cache line

Modified

Shared Read hit Shared
Write hit Invalidate data in other

caches
Modified

Read snoop hit Shared
Invalidate snoop hit Invalidate the cache line Invalid

Exclusive Read hit Exclusive
Write hit Modified
Read snoop hit Shared
Invalidate snoop hit Invalidate the cache line Invalid

Modified Read hit Modified
Write hit Modified
Read snoop hit Write the cache line

back to memory
Shared

Invalidate snoop hit Write the cache line
back to memory

Invalid

Eviction Write the cache line
back to memory

Invalid

CHAPTER 3. BASIC CONCEPTS 12

Because of the way that the MESI protocol works, cores will send snoop messages to each

other to find the status of data in their caches. For example whenever there is a cache miss,

there will be an snoop message (read snoop) sent to all the other caches. All caches will

listen to the snoop messages. They will decide what to do based on their current state and

the snoop message. If other cores have the data, then the cache line will be marked as shared.

The snoop messages cause a lot of traffic on the bus. One of the reasons that Intel and

AMD decided to disconnect the L3 cache from the shared bus for the L2 cache, was to

reduce the contention for the bus. The caches do not compete with each other to access the

cache anymore. Different studies have shown the effect of bus contention on the performance

of the CPU.

3.4 Read and Write Sharing

Let’s see how an application’s performance can change depending on how it is being sched-

uled on the cores. An application might either benefit from read or write sharing.

Read sharing Read sharing happens when one core prefetches some data for the other

cores. For example assume that two threads are going to read an array and do some

arithmetic operations on it.

If the cores do not share a cache, then the first reference to a data will miss the

cache of the core that is trying to access the data. When the other core tries to access

the data, it will miss its cache as well. In this case the missing data can either be

loaded from the other cache via interconnects (cache to cache transfer), or it can be

loaded from the memory.

If the cores share a cache the first reference to the data will miss the cache and

will cause the data to be loaded into the cache. When the other core tries to access

the same data, it will no longer miss the cache since the data has already been loaded

to the cache.

CHAPTER 3. BASIC CONCEPTS 13

In practice however, read sharing is not something that applications can benefit from.

We believe so because the working set of applications either fits into the shared cache

or it does not. If it fits into the shared cache, then co-locating the threads onto a

shared cache might actually hurt their performance since they have to split the cache

for the part of the data that is not shared. It is better to schedule them on separate

chips, each thread will load all its data into its own last level cache and will not miss

the data anymore. If the working set does not fit into the shared cache (which is the

case most of the times), the threads need to be synchronized to be able to benefit

from read sharing. Because once one thread loads some data into the cache, the other

thread might access it so late that the data is evicted from the cache. In this case

the threads will only benefit from sharing if they agree on which parts of the data

they are going to read. This agreement requires synchronization which will hurt the

performance of the threads.

Write sharing This type of sharing happens when two cores modify the same line in the

cache. As an example assume that two threads are going to increase a shared counter.

If the cores do not share a cache, the first core that tries to write to the counter

will probably miss the cache, because it needs to read the value of the counter first

in order to increase it. When the other core tries to increase the value, it will miss

the cache as well. The data will be loaded into the second cache. When the second

core increases the value of the counter it will invalidate the data in the first cache.

Consequently when the first core tries to increase the counter, it will again miss the

cache since its data has been invalidated.

If the cores share a cache there will be a miss only for the first reference to the

data. The first miss is a compulsory miss. The first core will load the data into the

shared cache and it will modify it. When the second core tries to increase the value

of the counter it will no longer miss the cache since the data is already there. It will

just increase the value of the counter.

CHAPTER 3. BASIC CONCEPTS 14

3.4.1 How does MESI protocol fit here?

Let’s examine each case in detail and see how the MESI protocol works.

• Read sharing on separate caches The first core will try to read the data. The

data is not present in its cache. This core sends a snoop message to the other caches

to see if there is a copy anywhere. If there is a copy in any of the other caches, those

copies will be marked as Shared (remember the MESI protocol line states). If there is

a copy in another cache and it is in Modified state, that copy will be written back to

the memory first, and then it will be marked as Shared.

When the second core tries to access the same data, the exact same process will

happen. A snoop message will be sent on the bus and the copy of the data in the

other cache will be marked as Shared if it is not in that state. Depending on the

cache-to-cache transfer latency the missing cache might either load the data from the

other caches, or load the data directly from the memory.

• Read sharing on a shared cache Similar to the case of separate caches, the first

core will try to read the data and will miss the cache. A snoop message will be sent

to all the other caches to see if there is a copy.

The second core however, will not miss the cache when it tries to access the data.

Since the data is already in the shared cache and is in either Shared or Exclusive

state, no snoop messages will be sent.

• Write sharing on separate caches Write sharing in this case is really expensive.

Let’s assume that the cores will just write to the shared value, meaning that they will

not read the value first in order to change it. On the first write access the first core

sends out a RFO2 message. This message will invalidate the data in all other caches

and will bring the data to the cache of the first core in an Exclusive state. If there is

a Modified copy of the data in other caches, it will be written back to the memory.

After the data is loaded to the cache, the core can modify the value of the data in its

cache. This will cause the cache line to go to the Modified state. Consecutive writes

to that location by the first cache will not produce any miss or snoops.

2Read For Ownership

CHAPTER 3. BASIC CONCEPTS 15

When the second core tries to modify the data, it will send a RFO message, caus-

ing the first cache to write the data back to the memory and invalidating the cache

line. Then the data will be loaded into the second cache and will be modified by the

second core. Since the data is invalidated in the first cache, the next write to the data

will result in the first core sending out another RFO message invalidating the data in

the second cache.

• Write sharing on a shared cache When the cores are sharing a cache, everything is

much simpler. The first access will send a RFO message to all the caches. Consecutive

modifications by either of the cores will not result in a miss or a RFO message. The

data will just be modified in the shared cache. The data will be written back to the

memory when it is being evicted due to a conflict, or due to a RFO message from

another cache.

3.5 Sources of Coherency Misses

All operations that end in a coherency miss can be classified as following.

• False Sharing In most modern architectures cache lines are 64 bytes3. It means

that regardless of the type of the data that a core is trying to access (4 byte integer,

or an 8 byte double) 64 bytes of data will be loaded into the cache. False sharing

happens when two cores try to access different parts of a line in the cache. Consider

the following example:

int first_variable;

int second_variable;

void first_core_worker(){ ... } // modifies first_variable

void second_core_worker(){ ... } // modifies second_variable

3On some architectures it is 128 bytes

CHAPTER 3. BASIC CONCEPTS 16

Logically each core is modifying its own data and there is no sharing between the

threads. However when this application is compiled and running, those two variables

may be mapped to a single cache line. When each core writes to its variable it will

cause the value (and hence the cache line) to be invalidated in all the other caches.

Since the other variable is on the same cache line, it will be invalidated in all the

caches. If the cores are not sharing a cache, the other core will miss the cache when

it tries to access its data.

In this case the programmer unintentionally created a sharing. This type of shar-

ing is called false sharing. This is a very common mistake among programmers (or

compilers). The cache misses due to false sharing can be avoided by profiling the ap-

plication and avoiding the false sharing by aligning each variable to a different cache

line. Of course this solution is not practical when the source code is not available.

• True Sharing True sharing happens when the value that is being invalidated in the

other caches is actually the value that is being used by all the cores. The following

example is a case of true sharing:

int shared_variable;

void first_core_worker(){ ... } // modifies shared_variable

void second_core_worker(){ ... } // modifies shared_variable

The only way to avoid true sharing is to change the algorithm of the application,

although changing the algorithm is not always feasible.

Note that in both cases we have write sharing. As we will see later, cache misses due to

both true and false sharing can be avoid using a shared cache.

3.6 Why AMD systems do not benefit from sharing

While we were studying the cache architecture of AMD systems we noticed that they might

not be able to benefit from sharing at all. On AMD architecture, after a cache miss the data

CHAPTER 3. BASIC CONCEPTS 17

will be directly loaded into the L1 cache, bypassing L2 and L3 caches. When two threads

running on a shared cache on a AMD system, the first reference to the data by the first core

will result in the data being loaded into the private L1 cache of the first core. When the

second core accesses the same data it will miss the cache as well, because the data is not

present in the shared cache. It will be present in the shared cache whenever it is evicted

from L1 cache due to a capacity or a conflict miss. But a capacity or a conflict miss will

never happen on the first core since the data that is in the private cache will be invalidated

as soon as the second core tries to modify the data.

Basically since the shared cache is not inclusive the modified values will be invalidated

in the private caches without being written into the shared cache. This will cause the cores

to miss each time they try to modify a shared cache line.

3.7 Summary

In order to reduce the number of misses due to the coherency protocol we want the threads

that are sharing data to be scheduled on the same chip so that they can share their data

on the last level cache. The challenge is to automatically detect data sharing between the

threads as well as estimating whether data sharing is significant enough that it is worth

relocating the threads onto the same cache. Addressing this challenge is the subject of this

thesis.

Chapter 4

Measuring the Amount of Sharing

This chapter explains the experiments that were run in order to create our model later. We

will begin by describing the counters that we studied and our experimental setup. We then

describe the benchmarks that we used. We conclude by explaining our model for predicting

the benefits of sharing for a multithreaded application.

In order to find a way to measure the amount of sharing we first run some benchmarks

that do benefit from sharing a cache. Then we measure the properties of those benchmarks

using hardware performance counters, and based on the results we try to figure out a way

to measure the amount of data sharing.

4.1 Monitoring Coherency Protocol Events

To measure the amount of sharing between two threads we decided to monitor the amount

of traffic between the caches when the threads are running on separate caches. From under-

standing how the MESI protocol works we know that whenever there is a cache miss, the

originating core will send a snoop message to all the other cores to find out if there is a copy

of the data in any of the other caches. Each time a Shared or an Exclusive copy is found

the responding core will increase the SNOOP HIT counter1. Each time a Modified copy is

found in a cache, the responding core will increase the SNOOP HITM counter.

1This counter exists on Intel Xeon architecture.

18

CHAPTER 4. MEASURING THE AMOUNT OF SHARING 19

By measuring SNOOP HIT and SNOOP HITM we can get a general understanding of

how much applications are sharing data. If two threads of an application are running on

separate caches and there are no SNOOP HIT or SNOOP HITM responses, it means that

the data that either of the cores are requesting or modifying is not found in the other

cache. If there are a lot of SNOOP HIT responses it means that most of the data that is

being requested by one of the cores is found in the other core’s cache. If there are a lot of

SNOOP HITM responses it means that there is write sharing. Usually write sharing is sym-

metrical, because for generating a SNOOP HITM both cores must write to the same address.

Unfortunately AMD systems do not provide information about the events of their coherency

protocol. On Intel Xeon architecture such information is available. However after studying

the counters and talking with an engineer from Intel we concluded that the data that the

counters are providing is not valid and is useless. The Intel engineer advised us to use a

Nehalem server as this problem is fixed on that architecture. Intel Nehalem systems provide

similar information but with more detail. One of the main differences of Intel Nehalem

architecture with the older architectures is that it supports the NUMA2. In the NUMA

architecture memory is divided into a few banks, each bank is assigned to a chip and is

considered that chip’s local memory. Memory access latency to local memory is smaller

than the access latency to a remote memory bank. Accesses to a remote bank are done via

interconnects between the chips. The NUMA architecture allows the memory size and the

number of cores to grow. NUMA effects add to the complexity of studying data sharing.

Therefore we disabled NUMA when we ran our experiments.

There are two types of counters on Nehalem systems:

• Regular counters: This counters provide information per core. Each core has its own

set of counters. L1 cache misses, number of instructions retired, number of branches

decoded, etc are some examples of regular counters.

• Uncore counters: Uncore counters provide information about the chip as a whole.

The events that these counters count might have been triggered by any of the cores

of that chip. L3 cache misses (the last level shared cache), number of global queue

2Non-Uniform Memory Access

CHAPTER 4. MEASURING THE AMOUNT OF SHARING 20

Figure 4.1: NUMA - two node example

allocations, interconnect traffic monitoring counters, etc are some examples of uncore

counters.

Counters of interest for measuring sharing are:

• UNC SNP RESP TO LOCAL HOME: This counter counts the number of times

that cores (of other chips) miss in their private L1 and L2, as well as the shared last

level L3 cache, and the data which that core is requesting is found in the current chip’s

L3 cache. In addition to that the original copy of the data in the cache is fetched from

the local memory bank of the originating chip.

For example in figure 4.1 if core 0 of node 0 tries to access a memory address that

can be found in the local memory bank (memory of node 0) and misses its shared L3

cache (of node 0), a snoop message will be sent to node 1. Node 1 has the data, so it

will trigger the ”snoop response to local home” event3.

3Remember that caches on Intel systems are inclusive. It means that if a data cannot be found in the L3

CHAPTER 4. MEASURING THE AMOUNT OF SHARING 21

• UNC SNP RESP TO REMOTE HOME: The only difference between this counter

and the previous one is that this counter only counts the snoop responses that the

original copy of the data in the memory is fetched from a remote memory bank.

Similar to the previous example, if core 0 of node 0 tries to access a memory ad-

dress that can be found in the remote memory bank (memory of node 1) and misses

its caches, it will send a snoop message. If a copy is found in the other node’s L3

cache, the other chip will trigger this event.

4.2 Experimental Setup

We used an Intel Nehalem system as for experimental machine:

• Two four-core Intel Xeon E5520, total of 8 cores, working at 2.2 GHz.

• Each core has a 32 KB instruction cache and a 32 KB data cache.

• Each core has a private 512 KB L2 cache.

• 8 MB of shared L3 cache between the four cores of each chip.

• 12 GB of memory.

Intel Nehalem architecture supports NUMA. Again, in this setup we have disabled NUMA

by interleaving the memory.

4.3 Experimental Plan

To find out how sharing a cache can help different threads of a multithreaded application first

we need to find out applications that would actually share data between different threads.

This was not an easy task. Programmers usually try to avoid sharing any data between the

threads because they want to minimize the traffic between the cores. Therefore, most of the

known applications are designed so that the threads share minimum data in order for the

benchmark to be scalable. We could not find any well known benchmark that could benefit

cache, it cannot be found in L1 and L2 caches of that chip. Compared to AMD systems this greatly reduces
the number of snoops required to find out if there is a copy.

CHAPTER 4. MEASURING THE AMOUNT OF SHARING 22

from sharing a last level cache.

In order to study the effects of data sharing between the threads we wrote several sim-

ple benchmarks that made it easy to isolate and understand this effect (some are real

applications or just slight modifications to real applications):

• SwapTest: This benchmark runs with two threads and it is highly configurable. Upon

start up a main thread initializes an integer array of predefined size. For each item

in the array a spin lock is initialized. Then the main thread creates two threads and

passes the integer array and the array of locks to the two threads.

The task of each thread is to randomly select two items in the integer array and

swap them. In order to swap the items the thread first needs to lock the two items

and then swap the numbers. In order to avoid deadlocks each thread locks the num-

ber with the lower index first and then locks the other item. The number of swaps is

predefined. Each thread is bound to a specific core.

The two threads are sharing the integer array and the array of locks. When a thread

(remember that each thread is bound to a core) modifies its data by locking and mod-

ifying an item, it causes the data in the other core’s cache to get invalidated. The

next time the other core needs to read the data it will miss its cache. This benchmark

is designed carefully so that the threads affect each other only by changing the shared

arrays. Meaning that there are no hidden cache misses due to false sharing or due to

unsafe C system function calls.

One needs to be careful while setting the size of the integer array. If the size of

the array is so small that the whole array fits into a single cache line, each access to

the array will result in a cache miss. If the size of the array is so big that it will not

fit in the last level cache, then the misses will not be only coherency misses, there will

be some capacity misses as well. In the latter case the number of coherency misses

will decrease greatly because the chances of the two threads choosing the same item

in the array decreases.

CHAPTER 4. MEASURING THE AMOUNT OF SHARING 23

• BucketSortTest: This benchmark implements a bucket sort. On start up a main

thread initializes an array of integers and passes it to two threads. Each thread will

run the bucket sort algorithm on a portion of the shared array. In order to increase

the value of the bucket counter the threads need to lock a mutex.

• NetworkTest: NetworkTest is a benchmark designed to test the effects of data shar-

ing in the internal operating system buffers. This benchmark runs a server and a client

thread. The server thread listens to an incoming port. When it receives some data on

the incoming port it will write the same data back to the network socket.

The client thread connects to the server thread and sends a string of predefined size

to the server. The number of times the message is sent to the server can be configured

as one of the parameters to this benchmark.

• MySqlTest: This benchmark is designed to measure the effects of data sharing in

a MySql server. The benchmark creates a table with four columns (first column is a

string, the rest are numbers) and two indices. Then two threads are spawned.

Each thread inserts some random values to the table that the main thread creates.

MySql server needs to update the indices based on the data that each thread inserts

into the table.

• Memcached: Memcached is a memory caching system for databases. It uses a hash

table and can distribute the data across multiple machines. This application is used

by well-knows sites such as YouTube, Reddit, Facebook, and Twitter. Memcached

server accepts messages from the network. Each client can ask the server to store

some data. In order to use this benchmark we modified the memcached server so that

instead of waiting for the clients to send some data, it will generate some data itself.

In this way we by pass the need for the clients and the effects of internal operating

system buffers.

• LinearRegression: LinearRegression was taken from the examples of the Phoenix

MapReduce API developed in Stanford University. This sample application does a lin-

ear regression analysis on a bunch of random generated points. Pthread-ed version of

the LinearRegression example is suffering from false sharing due to poor programming.

CHAPTER 4. MEASURING THE AMOUNT OF SHARING 24

This is a real world example of applications that operating system can help improve

the performance without the need to modify the source code. In this case, of course,

the source code is available and improvements will be much more if a programmer

could fix the problem of false sharing.

• SpecJBB: This benchmark is designed by SPEC to measure the performance of

server-sid Java. This benchmark ”emulates a 3-tier system which is the most common

type of server-side Java applications”4. This benchmark is designed so that the threads

do not share much data and therefore cannot benefit from sharing the last level cache.

In the first set of experiments we wanted to see if these benchmarks could benefit from a

shared last level cache. To test this we ran each benchmark with two different configura-

tions. In the first configuration the threads of each benchmark are bound to the cores that

share a last level cache, and in the other configuration the threads are bound to cores in

separate chips.

4.3.1 SwapTest Results

Table 4.1 compares the execution time of the SwapTest benchmark when the threads were

bound to a single chip (thus a shared last level cache) versus when the threads were bound

to cores on separate chips.

The last column of 4.1 is the ratio of the runtime on a shared cache to the runtime

on separate chips. Lower ratio means that the benchmark can benefit more from being

placed on a shared cache. As the table shows the benefits of running on a shared last level

cache decreases as the shared data size increases. This is because when the shared data size

does not fit the last level cache most of the misses will be due to limited cache size. It is

unlikely that the cores modify the same item. Therefore the number of coherency misses

will dwindle and the benchmark will not benefit from running on the shared cache. This is

shown visually in figure 4.2.

4From the homepage of SpecJBB

CHAPTER 4. MEASURING THE AMOUNT OF SHARING 25

Table 4.1: SwapTest running on a shared last level cache versus running on separate chips.
Lower ratio means a higher benefit from being placed on a shared cache.

Array Size Runtime on
a Shared

Cache

Runtime on
Separate

Chips

Ratio

10 7.18 11.96 0.60
25 7.08 12.20 0.58
100 6.02 9.61 0.63
400 5.18 7.18 0.72
800 4.49 5.84 0.77

2,000 4.98 6.60 0.75
4,000 4.36 5.50 0.79
8,000 3.98 4.78 0.83
16,000 3.72 4.22 0.88
40,000 4.17 4.85 0.86
100K 4.68 5.70 0.82
200K 4.60 5.40 0.85
400K 4.77 5.28 0.90
800K 5.10 5.48 0.93
1M 6.03 6.69 0.90
2M 10.09 10.16 0.99
4M 12.28 12.26 1.00
8M 13.65 13.51 1.01
16M 15.69 16.03 0.98

CHAPTER 4. MEASURING THE AMOUNT OF SHARING 26

2

4

6

8

10

12

14

16

18

R
u
n
ti
m
e
 (
se
co
n
d
s)

Shared Cache

Separate Caches

0

2

4

6

8

10

12

14

16

18

40 100 400 1.6K 3.2K 8K 16K 32K 64K 160K 400K 800K 1.6M 3.2M 4M 8M 16M 32M 64M

R
u
n
ti
m
e
 (
se
co
n
d
s)

Shared data size

Shared Cache

Separate Caches

Figure 4.2: SwapTest Runtime on a Shared Cache and on Separate Caches

4.3.2 BucketSort Results

Figure 4.3 shows the execution time of the BucketSort benchmark when it is running on a

shared last level cache versus when it is running on separate chips. As the results show,

regardless of the parameters this benchmark always benefit from running on a shared last

level cache.

4.3.3 NetworkTest

Table 4.2: Execution time of Network test on a shared last level cache versus separate caches
Buffer Size Runtime on

a Shared
Cache

Runtime on
Separate
Chips

Ratio

25 Bytes 15.49 23.75 0.65

Table 4.2 shows the execution time of NetworkTest when running on a shared last level

cache versus running on separate chips.

CHAPTER 4. MEASURING THE AMOUNT OF SHARING 27

0

10

20

30

40

50

60

70

80

90

R
u
n
ti
m
e

Shared Cache

Separate Caches

0

10

20

30

40

50

60

70

80

90

R
u
n
ti
m
e

Benchmark configuration

Shared Cache

Separate Caches

Figure 4.3: BucketSortTest Runtime on a Shared cache and on Separate Caches

Table 4.3: Execution time of MySqlTest on a shared last level cache versus separate caches
Number of rows Runtime on

a Shared
Cache

Runtime on
Separate
Chips

Ratio

1M 10.59 14.83 0.71

4.3.4 MySqlTest

Table 4.3 shows the execution time of MySqlTest when running on a shared last level cache

versus running on separate chips.

4.3.5 Looking at Hardware Performance Counters

The execution times for the four benchmarks that we ran shows potential benefits of schedul-

ing threads that share data on cores that share the last level cache. We need to find a dy-

namic way for detecting that threads are sharing data and report proper information to the

operating system to help it make scheduling decisions. As explained earlier some hardware

performance counters seem promising for this goal.

Table 4.4 shows the preliminary results for SwapTest when it is being run on separate

chips. L3 MISSES is the number of last level cache misses, this includes the misses due

CHAPTER 4. MEASURING THE AMOUNT OF SHARING 28

to the coherency protocol. Total uncore sharing snoops is UNC SNP RESP TO LOCAL

HOME + UNC SNP RESP TO REMOTE HOME. It shows the total number of snoops

that were hit in the other cache.

As the results show when the size of the shared data increases the number of hit snoops

Table 4.4: Snoops and L3 misses for SwapTest
Array Size Total uncore sharing snoops L3 MISSES

10 (40 bytes) 160.17M 196.99M
25 (100 bytes) 261.28M 284.44M

100 (400 bytes) 245.52M 255.17M
400 (1.6 KB) 189.90M 192.31M
800 (3.2 KB) 122.24M 123.40M
2,000 (8 KB) 180.76M 181.24M

4,000 (16 KB) 122.66M 122.89M
8,000 (32 KB) 68.38M 68.57M

16,000 (64 KB) 40.14M 40.22M
40,000 (160 KB) 71.54M 71.61M
100K (400 KB) 117.73M 117.90M
200K (800 KB) 73.00M 73.20M
400K (1.6 MB) 41.14M 41.43M
800K (3.2 MB) 22.17M 27.53M

1M (4 MB) 71.30M 94.67M
2M (8 MB) 32.16M 202.25M

4M (16 MB) 15.08M 284.28M
8M (32 MB) 9.01M 324.81M

16M (64 MB) 7.55M 352.61M

decrease. We have already explained why this happens. Last level cache misses however,

have an interesting trend. They go down as we increase the data size, then they go up again

as the data size goes beyond the last level cache size. When the data size is small almost

every access results in an invalidation and thus a miss in the other cache. This happens

because all data can be fit into a few cache lines. Each core chooses a number (which is in

one of the cache lines) randomly. Therefore the chances that the two cores choose the same

cache line is high. When the data size increases, the number of cache lines that the cores

access increases as well. Therefore the chances of picking the same cache line reduces and

not every access results in an invalidation, which decrease the number of cache misses. As

the data size goes beyond the cache size, capacity misses start to dominate the misses.

CHAPTER 4. MEASURING THE AMOUNT OF SHARING 29

Table 4.5 shows how we analyze this data. To understand this table we need to under-

stand what each column means:

• Runtime Improvement: Ratio of execution time when threads are bound so that

they share a last level cache to execution time when threads are not sharing a last level

cache. Lower ratio means better improvement from co-locating on a shared cache.

• SMR Separate: Ratio of the total number of snoops to the total number of last level

cache misses when threads are not sharing a last level cache(#Snoops
#Misses Separate)

• MPmI Shared: Cache misses per million instructions when running on a shared

cache configuration.

• MPmI Separate: Cache misses per million instructions when running on a separate

cache configuration.

Looking closely at the values for SMR Separate we notice that when the array size is small

the value for SMR Separate is a little below one. This is unexpected according to our

understanding of the caches and the coherency protocol. We do not know the reason behind

this, one guess is that the processor is doing some kind of an optimization when it notices

the high coherency miss on a single cache line.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0

0

0
 K K K K K K K K K M M M M M M M

R
at
io

Runtime Ratio

SMR Separate

0.00

0.20

0.40

0.60

0.80

1.00

1.20

40

10
0

40
0

1
.6
K

3
.2
K

8
K

1
6
K

3
2
K

6
4
K

1
6
0
K

4
0
0
K

8
0
0
K

1.
6
M

3.
2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

R
at
io

Shared data size

Runtime Ratio

SMR Separate

Figure 4.4: SwapTest Analysis - Runtime Ratio and SMR Separate

CHAPTER 4. MEASURING THE AMOUNT OF SHARING 30

Table 4.5: SwapTest Snoop and Cache Miss Analysis

Array Size
Runtime
Ratio

SMR Sepa-
rate

MPmI Shared MPmI Separate

10 0.60 0.81 44.39 12777.78
25 0.58 0.92 42.39 18918.50

100 0.63 0.96 28.92 17557.87
400 0.72 0.99 30.71 13364.19
800 0.77 0.99 27.08 8589.03

2,000 0.75 1.00 25.75 12591.11
4,000 0.79 1.00 25.71 8541.74
8,000 0.83 1.00 21.66 4767.78

16,000 0.88 1.00 22.05 2796.47
40,000 0.86 1.00 27.79 4975.74
100K 0.82 1.00 27.04 8187.09
200K 0.85 1.00 30.29 5080.35
400K 0.90 0.99 29.57 2871.82
800K 0.93 0.81 305.90 1903.60

1M 0.90 0.75 2345.27 6536.19
2M 0.99 0.16 13077.79 13874.62
4M 1.00 0.05 19050.76 19260.97
8M 1.01 0.03 21545.35 21485.22

16M 0.98 0.02 22203.29 22246.62

CHAPTER 4. MEASURING THE AMOUNT OF SHARING 31

0.00

5.00

10.00

15.00

20.00

25.00

0

0

0
 K K K K K K K K K M M M M M M M

Th
o
u
sa
n
d
s

MPmI Separate

MPmI Shared

0.00

5.00

10.00

15.00

20.00

25.00

4
0

1
0
0

4
0
0

1
.6
K

3
.2
K

8
K

1
6
K

3
2
K

6
4
K

1
6
0
K

4
0
0
K

8
0
0
K

1
.6
M

3
.2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

Th
o
u
sa
n
d
s

Shared data size

MPmI Separate

MPmI Shared

Figure 4.5: SwapTest Analysis - MPmI Separate and MPmI Shared

We know that SwapTest shares data between the threads and can benefit from being

scheduled on a shared cache configuration. By looking at figure 4.5 MPmI Shared and

MPmI Separate clearly show that if SwapTest get scheduled on separate chips the num-

ber of cache misses for it will increase (and therefore its performance will decrease). As

the shared data size increases there is no difference between the number of misses of the

two configurations. The runtime ratio shows no improvement as well (as shown in figure 4.4).

The problem with just looking at MPmI is that for an unknown application we cannot

differentiate the cache misses due to coherency and the cache misses due to capacity misses.

For differentiating these two we need to look at other counters. Here is where SMR Separate

comes in handy. As the data shows SMR Separate is close to one when the data fits the

cache. When the data gets bigger SMR Separate decreases until it reaches zero. When the

value of SMR Separate is close to one it means that for most of the misses there has been

a snoop. When it is close to zero it means that misses are happening without a snoop hit,

therefore we can safely assume that this kind of misses are capacity misses.

Tables 4.8, 4.6, and 4.7 show the same analysis for BucketSort, NetworkTest and MySqlTest

respectively.

CHAPTER 4. MEASURING THE AMOUNT OF SHARING 32

Table 4.6: NetworkTest Snoop and Cache Miss Analysis

Buffer Size
Runtime
Ratio

SMR Sepa-
rate

MPmI Shared MPmI Separate

25 0.65 0.98 14.56 6715.25

Table 4.7: MySqlTest Snoop and Cache Miss Analysis

Number of Rows
Runtime
Ratoi

SMR Sepa-
rate

MPmI Shared MPmI Separate

1M 0.71 0.90 325.42 2511.96

4.4 Summary

All the values in the tables can be obtained online. Now we understand that SMR Separate

and MPmI Separate can somehow be used to identify data sharing. In the next chapter we

explain how we can use these two to measure the amount of data sharing and to predict the

benefits of co-locating threads on a shared cache.

CHAPTER 4. MEASURING THE AMOUNT OF SHARING 33

Table 4.8: BucketSort Snoop and Cache Miss Analysis

Parameters
Runtime
Ratio

SMR Sepa-
rate

MPmI Shared MPmI Separate

2/2/320K 0.68 0.70 122.82 12839.89
2/2/640K 0.65 0.71 94.44 12263.37

2/2/1M 0.71 0.68 93.08 11441.84
2/2/4M 0.70 0.66 894.31 13860.12
2/2/8M 0.69 0.66 862.53 13798.97

2/2/16M 0.70 0.61 884.43 10424.24
2/2/32M 0.72 0.62 1043.45 11011.04
2/2/64M 0.76 0.61 875.13 10682.40

2/4/320K 0.52 0.81 87.51 16183.83
2/4/640k 0.52 0.80 92.58 16520.24

2/4/1M 0.50 0.81 90.44 15666.56
2/4/4M 0.51 0.78 871.22 18488.75
2/4/8M 0.53 0.76 891.89 17428.12

2/4/16M 0.55 0.74 930.21 14060.15
2/4/32M 0.55 0.73 911.39 13972.09
2/4/64M 0.55 0.73 893.38 13956.24
2/8/320k 0.44 0.90 105.93 22297.98
2/8/640k 0.45 0.90 71.43 22195.36

2/8/1M 0.42 0.90 69.95 22303.48
2/8/4M 0.43 0.87 879.87 23769.65
2/8/8M 0.44 0.87 898.21 22341.02

2/8/16M 0.47 0.85 908.58 17737.25
2/8/32M 0.46 0.84 904.72 17739.00
2/8/64M 0.48 0.83 894.97 17589.47

2/16/320k 0.48 0.92 76.15 20021.04
2/16/640k 0.47 0.91 74.49 20016.00

2/16/1M 0.47 0.92 77.31 20220.40
2/16/4M 0.45 0.89 886.63 21874.99
2/16/8M 0.46 0.88 902.29 20695.63

2/16/16M 0.53 0.86 905.40 16086.24
2/16/32M 0.49 0.84 1087.48 16362.63
2/16/64M 0.50 0.84 895.15 16345.60
2/32/320k 0.48 0.94 74.52 22416.70
2/32/640k 0.44 0.94 69.43 22477.71

2/32/1M 0.42 0.94 65.21 22516.82
2/32/4M 0.42 0.91 885.06 24295.00
2/32/8M 0.43 0.90 902.45 22809.68

2/32/16M 0.46 0.89 919.60 17919.49
2/32/32M 0.45 0.89 909.93 17952.25
2/32/64M 0.48 0.89 896.39 17965.93

Chapter 5

Analysis and Implementation

In this chapter we analyze the data we have gathered and build a model that will help us

predict to what extent threads will benefit from sharing-aware placement. We explain what

tools we used to make our sharing aware scheduler and how it works.

5.1 Model

From the results of the previous section we already know that we can detect whether two

threads are sharing any data or not by looking at SMR Separate and MPmI Separate. In

this section we introduce a way to predict how much performance will improve if we migrate

the threads to share the last level cache.

Table 4.5 shows the performance improvements of SwapTest along with the analysis of

the snoops and the number of last level cache misses. From that table we understand that

the bigger the SMR Separate the more the threads are sharing data and the more the perfor-

mance will improve if we migrate the threads to a shared cache. Looking at SMR Separate

alone however, is not enough.

Consider a case where an application does not have a lot of cache misses. The only few

cache misses that it generates are because of sharing. In this case SMR Separate will be

close to one since all the misses are due to sharing. But the application cannot benefit from

a shared last level cache, because it is not generating a lot of cache misses and resolving

those few misses will not have a great impact on the performance of the application. Due

34

CHAPTER 5. ANALYSIS AND IMPLEMENTATION 35

to this problem we need to look at both SMR Separate and MPmI Separate.

When SMR Separate is close to one and there are a lot of cache misses (MPmI Sepa-

rate is large) it means that the application is generating a lot of misses and those misses are

coherency ones. So the performance of the application will improve if the scheduler migrates

the threads into a shared cache.

If there are a lot of cache misses but SMR Separate is close to zero, it means that the

cache misses are not due to coherency invalidations. In this case if the scheduler migrates

the threads into a shared cache the application might suffer. If the misses are due to ca-

pacity, by migrating the threads into a shared cache the scheduler is forcing the threads to

share a cache, which will result in less capacity for each thread, and therefore an increased

number of capacity misses.

We decided to do a linear regression analysis on SMR Separate, MPmI Separate, and the

execution time. To do the analysis we needed a complete data set. We need to run the

linear regression analysis to get the coefficients for our model:

Runtime Ratio = x ∗ (SMR Separate) + y ∗ (MPmI Separate) + C

We already had the data for the correlation of SMR Separate and MPmI Separate when

the performance improves. For a complete data set we needed some data for when the

performance does not improve.

To gather this data we modified our benchmarks to do the exact same operation on their

data, but the data would not be shared between the threads. The array was shared be-

tween the threads by the main thread. The main thread would allocate an array and would

pass it to the two threads. After the modification, the main thread allocates two arrays

and passes each array to one thread. In this way the threads will do the exact same thing,

but on different data. Obviously in this case the benchmarks could not benefit from sharing.

Table 5.1 shows the results of SwapTest after we modified it. Note that for small array

sizes SMR Separate is close to one, but there is no significant performance improvements

CHAPTER 5. ANALYSIS AND IMPLEMENTATION 36

because MPmI Separate is small. Also note that how SMR Separate will go to zero as MPmI

Separate increases. The small values for MPmI Separate when the data size is small means

that the threads are not invalidating the data in other caches (compare these values to those

of table 4.5).

Table 5.1: SwapTest-No Data Sharing Snoop and Cache Miss Analysis

Array Size
Runtime
Improve-
ment

SMR Sepa-
rate

MPmI Shared MPmI Separate

10 0.95 0.92 28.70 26.96
25 0.95 0.85 28.17 29.80

100 0.96 0.79 28.50 29.09
400 0.95 0.97 27.21 310.04
800 0.97 0.82 26.23 27.83

2,000 0.95 0.97 23.03 25.37
4,000 0.97 0.96 23.18 23.90
8,000 0.99 0.83 21.89 36.40

16,000 0.99 0.96 23.12 27.37
40,000 0.97 0.97 23.57 24.06
100K 0.96 0.91 27.60 31.21
200K 0.97 0.88 27.38 25.59
400K 0.97 0.73 180.40 36.12
800K 0.98 0.04 922.31 888.78

1M 1.06 0.02 6921.20 2608.85
2M 1.01 0.00 14494.20 13120.57
4M 1.01 0.00 19502.31 19189.99
8M 1.01 0.00 22004.41 21461.18

16M 1.01 0.00 22854.76 22606.72

Similar results were obtained for BucketSort.

5.2 Linear Regression

Data was gathered for sharing and non-sharing SwapTest and BucketSort. They were run

with different parameters. Table 5.2, 5.3, and 5.4 show the results of linear regression anal-

ysis.

CHAPTER 5. ANALYSIS AND IMPLEMENTATION 37

Table 5.2: Regression Statistics
Regression Statistic

Multiple R 0.90
R Square 0.81
Adjusted R Square 0.81
Standard Error 0.10
Observations 104

Table 5.3: Analysis of Variance
df SS MS F Significance F

Regression 2 4.58 2.29 215.80 3.43E-37
Residual 101 1.07 0.01
Total 103 5.65

Table 5.4: Linear Regression Coefficients
Coefficients Standard Error

Intercept 1.044417 0.01784
MPmI Separate -0.000013 0.00000
SMR Separate -0.296878 0.03065

CHAPTER 5. ANALYSIS AND IMPLEMENTATION 38

Now that we have the coefficients of the variables (table 5.4) we can create our model that

predicts the performance improvements of a migration. We used the data from SwapTest

and BucketSort to create our model. Now we can test our model on the rest of the bench-

marks: NetworkTest, MySqlTest, and memcached, LinearRegression, and SpecJBB.

Table 5.5 shows the hardware performance analysis of memcached. We measured the run-

time improvement by comparing the average service time for each request when running on

a shared cache versus running on separate chips.

Table 5.5: memcached Snoop and Cache Miss Analysis

MemSize
Runtime
Ratio

SMR Sepa-
rate

MPmI Shared MPmI Separate

1 MB 0.70 1.00 20.51 3105.32
2 MB 0.67 1.00 19.91 2973.12
4 MB 0.69 1.00 20.40 3132.60
8 MB 0.66 1.00 19.36 3016.21

16 MB 0.74 1.00 21.21 3040.51
32 MB 0.72 1.00 20.67 2862.99
64 MB 0.69 1.00 20.97 2859.36

Table 5.6 compares the prediction of our model with the real runtime improvements of

memcached.

Table 5.6: Real runtime improvements versus predicted runtime improvements
Real Runtime Ratio Predicted Runtime Ratio

0.70 0.71
0.67 0.71
0.69 0.71
0.66 0.71
0.74 0.71
0.72 0.71
0.69 0.71

Table 5.7 shows how our model works for predicting the performance of NetworkTest,

MySqlTest, LinearRegression, and SpecJBB.

CHAPTER 5. ANALYSIS AND IMPLEMENTATION 39

Table 5.7: Real runtime improvements versus predicted runtime improvements for Network-
Test, MySqlTest, LinearRegression, and SpecJBB

Benchmark Real Runtime Ratio Predicted Runtime Ratio

NetworkTest 0.65 0.67
MySqlTest 0.71 0.74
LinearRegression 0.63 0.55
SpecJBB 1.00 0.96

Figure 5.1 summarizes the results that we got from trying out model.

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Im
p
ro
ve
m
e
n
t
R
at
io

Real Improvements

Predicted Improvements

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Im
p
ro
ve
m
e
n
t
R
at
io

Benchmark

Real Improvements

Predicted Improvements

Figure 5.1: Real Improvements vs Predicted Improvements Using Our Model

Some configurations of BucketSort-NoSharing not only do not benefit from running on a

shared cache, but they actually suffer from it. This is because the threads of this benchmark

are competing for the limited shared resource. They can run faster alone if they are given

the whole cache. As figure 5.2 shows, when BucketSort-NoSharing runs on a shared cache,

the real runtime ratio is larger than 1. Meaning that the benchmark run slower then it was

coscheduled on a shared cache. Our model predicts the runtime ratio to be slightly over 1. It

means that our model can still work correctly for the applications that suffer from a shared

cache. Our model predicts no performance improvements from running on shared cache

CHAPTER 5. ANALYSIS AND IMPLEMENTATION 40

(actually slightly over 1 means that the model predicts a little decrease in performance!),

and therefore the threads must not be scheduled together. An agnostic scheduler might

schedule the threads together which will cause the application to suffer.

1.20

1.10

1.15

1.20

1.05

1.10

1.15

1.20

Real Runtime Ratio

Predicted Runtime Ratio

0.95

1.00

1.05

1.10

1.15

1.20

2/8/32MB 2/16/MB

Real Runtime Ratio

Predicted Runtime Ratio

0.95

1.00

1.05

1.10

1.15

1.20

2/8/32MB 2/16/MB

Real Runtime Ratio

Predicted Runtime Ratio

0.95

1.00

1.05

1.10

1.15

1.20

2/8/32MB 2/16/MB

Real Runtime Ratio

Predicted Runtime Ratio

0.95

1.00

1.05

1.10

1.15

1.20

2/8/32MB 2/16/MB

Real Runtime Ratio

Predicted Runtime Ratio

Figure 5.2: Real and Predicted Runtime Ratio for BucketSort-NoSharing

5.3 Designing the Scheduler

We implemented our scheduler using the model that we made with the coefficients of the

linear regression analysis. The general flow of the scheduler is pretty simple. The scheduler

needs to constantly monitor the running threads and measure the performance counters.

Having MPmI Separate and SMR Separate the scheduler can decide whether it makes sense

to migrate the threads on to a shared cache or not.

We implemented our scheduler using the perfmon library. The perfmon library helps the

developers program the hardware performance counters of CPUs. For measuring the uncore

events on Intel Nehalem architecture the scheduler needs to create a system wide monitoring

session, and for monitoring the per-CPU events it needs to create a per-thread monitoring

session. With a system wide monitoring session the scheduler can gather data about a whole

chip while with per-thread monitoring session the scheduler can gather detailed information

about each thread that is running on a core. Gathering information per thread is preferred,

CHAPTER 5. ANALYSIS AND IMPLEMENTATION 41

but due to the limitation of the hardware performance counters some events cannot be mea-

sured per thread.

The scheduler starts by attaching to all the threads, call the proper perfmon functions

to load the monitoring contexts, and then it starts gathering data. To start a system wide

monitoring session the scheduler needs to pause all running threads, unload all per-thread

monitoring contexts, and load a system wide context. This is done every second. The follow-

ing shows the general flow of the scheduler:

loop

Pause Threads();

if Is System Wide Context Loaded() then

Unload System Wide Context();

end if

Load PerThread Contexts();

Resume Threads();

threads← Monitor PerThread Data(); {for one second}
Pause Threads();

Unload PerThread Contexts();

Load System Wide Context();

Resume Threads();

systemWide← Monitor Uncore Events(); {for one second}
runtimeRatio← Predict(threads, systemWide);

if runtimeRatio ≤ threshold then

Migrate Threads();

end if

end loop

5.4 Testing the Scheduler

The scheduler was implemented on our Intel Nehalem server. We compare our scheduler

with the default scheduler of Linux. Each benchmark was run three times. Figure 5.3 shows

the runtime improvement of the benchmarks running with our sharing aware scheduler ver-

sus the default scheduler. We ran the benchmarks one at the time. Each benchmark was

CHAPTER 5. ANALYSIS AND IMPLEMENTATION 42

configured to use only two threads. We could not set the benchmarks to run with more

than two threads because our technique cannot determine which threads are sharing if there

are more than two threads. This is due to limitation of uncore events. Uncore events are

per-chip and do not provide information per thread. Therefore if there are more than one

threads running on a chip the scheduler cannot simply figure out which threads are gener-

ating those uncore events. We used our Intel Nehalem server to test out scheduler. Our

Intel Nehalem server has the following configuration:

• Two four-core Intel Xeon E5520, total of 8 cores, working at 2.2 GHz.

• Each core has a 32 KB instruction cache and a 32 KB data cache.

• Each core has a private 512 KB L2 cache.

• 8 MB of shared L3 cache between the four cores of each chip.

• 12 GB of memory.

As we can see from the figure the scheduler can successfully identify that the benchmarks

are sharing and is scheduling the threads on a shared cache. For testing the scheduler we

added Intel.Fibonacci which is one of the examples of parallel programming using Intel TBB.

The process of monitoring the threads, loading up some contexts, pausing and resuming

the threads introduces some overhead. To measure this overhead we ran our SwapTest

benchmark and disabled the data sharing (SwapTest-NoSharing). In this case the scheduler

will constantly monitor the threads, but it finds out that the thread are not sharing data,

meaning that the runtime ratio is close to one. Therefore it does not schedule the threads

together. When our scheduler does not coschedule the threads on the same chip, it acts like

the default scheduler. Both schedulers schedule the threads the same way. However our

sharing-aware scheduler does more processing than the default scheduler, and since there

are no benefits from our scheduler in this case, all that remains are the negative effects

of the extra processing. As we can see in figure 5.3 SwapTest-NoSharing suffers from this

overhead. However this overhead is about 2% and is negligible.

CHAPTER 5. ANALYSIS AND IMPLEMENTATION 43

28

42

33
31

36

5 00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

e
m
e
n
t
ra
ti
o
 c
o
m
p
ar
ed

 t
o
 d
e
fa
u
lt
 s
ch
e
d
u
le
r

28

42

33
31

36

‐2‐5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Im
p
ro
ve
m
e
n
t
ra
ti
o
 c
o
m
p
ar
ed

 t
o
 d
e
fa
u
lt
 s
ch
e
d
u
le
r

Figure 5.3: Runtime improvements with our sharing aware scheduler compared to the default
scheduler

5.5 Summary

In this chapter we described how we create our model based on MPmI Separate and SMR

Separate. Using our model we designed a sharing-aware scheduler that can successfully

identify sharing and migrate the threads to a shared cache if there is data sharing.

Our scheduler constantly monitors hardware performance counters to find out if there is any

data sharing between the threads. If there is data sharing between the threads the sched-

uler places the threads onto a shared cache to reduce the coherency misses and cross-chip

coherency messages. Just by using this technique our scheduler improved the performance

of the benchmarks by up to 42%. Our scheduler only uses hardware performance counters,

does not rely on the user to provide any information, does not require modifications to user

libraries, and it does everything online.

Due to the limitation of the amount of information that the hardware performance coun-

ters provide us there are some cases which determining which threads are sharing is not a

CHAPTER 5. ANALYSIS AND IMPLEMENTATION 44

straightforward task. Since the counters for measuring the number of snoops on each chip

give information about the chip as a whole (and not per core), if more that two threads are

sharing on the system we cannot figure out which threads are sharing. We can of course

detect that there is some data sharing between the threads, but we will not be able to detect

which threads are sharing. One solution to this problem might be shuffling the threads on

the cores and observing their performance. This can be done by moving threads around

the chips and constantly monitoring the performance and the counters. The scheduler can

intelligently pick the placing that results in the best performance. In such implementation

the scheduler needs to periodically check its decision and monitor the threads again since

the applications might have changed their phases or sharing behavior. The overhead of

context switching and migrating the threads will be insignificant compared to the benefits

that the scheduler will have.

The other limitation of our scheduler is that we need to have the coefficients for the current

architecture. We did not have access to different architectures to study whether our coeffi-

cients would work well on all architectures.

Chapter 6

Conclusion and Future Work

Scheduling applications on multicore systems is a challenging task. In this thesis we pro-

vided a way to solve one of the many challenges that operating system schedulers face when

it comes to optimal scheduling. The default schedulers of Linux and Solaris are sharing

agnostic and therefore cannot schedule the threads so that they could benefit from data

sharing. Using the hardware performance counters, we provided a model to not only detect

data sharing between threads, but to predict the runtime improvements of scheduling the

threads that share data on a shared cache configuration.

To detect the data sharing we used the performance counters relating to cache coherency

protocol and observed that applications that share data produce a lot of snoop hits. To

create our model we also monitored number of last level cache misses and found out that

there is a relation between the ratio of snoops to misses, the total number of last level cache

misses per million instructions, and the runtime of an application. We designed a model

that could be used in the scheduler to detect among threads and co-locate threads that

share data on the same chip. Our scheduler uses perfmon library to monitor the behavior

of the threads in the system. It uses our model to determine whether some threads will

benefit from being scheduled on a shared cache configuration, and will schedule them in

that manner if the model predicts runtime improvements. Using our scheduler we were

able to achieve runtime improvements of up to 42%. This potential improvements come

with our scheduler only for applications that the amount of data sharing is significant. For

the applications that do not share data, our sharing-aware scheduler acts like the default

scheduler, but has an overhead of 2%.

45

CHAPTER 6. CONCLUSION AND FUTURE WORK 46

Bibliography

[1] Frank Bellosa and Martin Steckermeier. The performance implications of locality infor-
mation usage in shared-memory multiprocessors. J. Parallel Distrib. Comput., 37:113–
121, August 1996.

[2] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting inter-thread
cache contention on a chip multi-processor architecture. High-Performance Computer
Architecture, International Symposium on, 0:340–351, 2005.

[3] Shimin Chen, Phillip B. Gibbons, Michael Kozuch, Vasileios Liaskovitis, Anastassia
Ailamaki, Guy E. Blelloch, Babak Falsafi, Limor Fix, Nikos Hardavellas, Todd C.
Mowry, and Chris Wilkerson. Scheduling threads for constructive cache sharing on
cmps. In SPAA ’07: Proceedings of the nineteenth annual ACM symposium on Parallel
algorithms and architectures, pages 105–115, New York, NY, USA, 2007. ACM.

[4] S. J. Eggers and R. H. Katz. The effect of sharing on the cache and bus performance of
parallel programs. In ASPLOS-III: Proceedings of the third international conference on
Architectural support for programming languages and operating systems, pages 257–270,
New York, NY, USA, 1989. ACM.

[5] W.-K. Hong, N.-H. Kim, and S.-D. Kim. Design and performance evaluation of an
adaptive cache coherence protocol. Parallel and Distributed Systems, International
Conference on, 0:33, 1998.

[6] Aamer Jaleel, Robert S. Cohn, Chi keung Luk, and Bruce Jacob. Cmp$im: A bi-
nary instrumentation approach to modeling memory behavior of workloads on cmps.
Technical report, 2006.

[7] S. Sridharan, B. Keck, R. Murphy, S. Chandra, , and P. Kogge. Thread migration to
improve synchronization performance. In Workshop on Operating System Interference
in High Performance Applications, 2006.

[8] David Tam, Reza Azimi, and Michael Stumm. Thread clustering: sharing-aware
scheduling on smp-cmp-smt multiprocessors. SIGOPS Oper. Syst. Rev., 41(3):47–58,
2007.

47

BIBLIOGRAPHY 48

[9] R. Thekkath and S. J. Eggers. Impact of sharing-based thread placement on mul-
tithreaded architectures. In ISCA ’94: Proceedings of the 21st annual international
symposium on Computer architecture, pages 176–186, Los Alamitos, CA, USA, 1994.
IEEE Computer Society Press.

[10] J. Torrellas, H. S. Lam, and J. L. Hennessy. False sharing and spatial locality in
multiprocessor caches. IEEE Trans. Comput., 43(6):651–663, 1994.

[11] Boris Weissman. Performance counters and state sharing annotations: a unified ap-
proach to thread locality. In ASPLOS-VIII: Proceedings of the eighth international
conference on Architectural support for programming languages and operating systems,
pages 127–138, New York, NY, USA, 1998. ACM.

[12] Eddy Z. Zhang, Yunlian Jiang, and Xipeng Shen. Does cache sharing on modern
cmp matter to the performance of contemporary multithreaded programs? In PPoPP
’10: Proceedings of the 15th ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 203–212, New York, NY, USA, 2010. ACM.

[13] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing shared
resource contention in multicore processors via scheduling. In ASPLOS ’10: Proceedings
of the fifteenth edition of ASPLOS on Architectural support for programming languages
and operating systems, pages 129–142, New York, NY, USA, 2010. ACM.

