AN IMPROVED DATA STREAMING MODEL FOR
SYNTHETIC SYSTEM-ON-CHIP BENCHMARK CIRCUIT
GENERATION

by

Jankiben Patel
B.E, Gujarat University, 1998

PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING

In the
School of Engineering Science

© Jankiben Patel 2010
SIMON FRASER UNIVERSITY
Summer 2010

All rights reserved. However, in accordance with the Copyright Act of Canada,
this work may be reproduced, without authorization, under the conditions for Fair
Dealing. Therefore, limited reproduction of this work for the purposes of private
study, research, criticism, review and news reporting is likely to be in accordance
with the law, particularly if cited appropriately.

APPROVAL

Name:
Degree:
Title of Project:

Examining Committee:

Chair:

Date Defended/Approved:

Jankiben Patel
Master of Engineering

An improved data streaming model for Synthetic
System-on-Chip benchmark circuit generation

Dr. Rick Hobson, P.Eng
Professor, School of Engineering Science

Dr. Lesley Shannon, P.Eng
Senior Supervisor
Assistant Professor, School of Engineering Science

Dr. Marek Syrzycki
Supervisor
Professor, School of Engineering Science

Dr. Glenn Chapman, P.Eng
Internal Examiner
Professor, School of Engineering Science

July 20, 2010

SF SIMON FRASER UNIVERSITY
LIBRARY

Declaration of
Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Last revision: Spring 09

ABSTRACT

Field Programmable Gate Array (FPGA) researchers aim to improve the
quality of the Computer-Aided Design (CAD) tools used to map designs onto
FPGAs and evaluate different possible architectures. To test new architectures
and CAD tools, researchers need to use benchmark circuits representative of
realistic applications, which are not freely available. Therefore, researchers have
considered randomly-generated benchmark circuits that can model the
complexities of real systems. We use the existing Benchmark Circuit Generator
(BCGEN), which generates circuits with System-on-Chip (SoCs) architectures.
While BCGEN provides a good framework for circuit generation, the existing
dataflow communication patterns have some limitations. Specifically, they have
large numbers of inputs-outputs (1/Os) which is not scalable, and do not support
data-buffering. We aim to improve BCGEN'’s dataflow communication model by
reducing the number of 1/0Os. Hence, they will be scalable and include data
buffering capabilities between logic stages which is typical for data-streaming

applications.

Keywords: Field Programmable Gate Array; Computer-Aided Design; System-
on-Chip; Synthetic Benchmarks

ACKNOWLEDGEMENTS

I am heatrtily thankful to my supervisor Dr. Lesley Shannon for this project.
I would have been lost without her kind support and knowledge. | would also like
to thank Dr. Steve Wilton (University of British Columbia) and his student Cindy
Mark for sharing their work on the Benchmark Circuit Generator and for their

permission to carry on the project which made this work successful.

| am also thankful to my husband Jasbir and my son Shubham for
supporting me throughout my work and dealing with my absence from home to
make this work successful. | would also like to thank to my all lab members
(especially David, Jason and Jian) for their kind support in different fronts

whenever | needed.

TABLE OF CONTENTS

APPIOVAL e i
Y o 1= = T ST iii
F o3 g Lo NV T=T o Vo 1= 0 =T) R iv
TADIE OF CONTENTS ...ttt %
LISt Of fIQUIES i Vi
LiSt Of tADIES .o viii
€1 0BT 1Y PSPPSR iX
L CRAPLET Lot 1
T 1o T 11X 1o o PR 1
0 A 1Y o 117> 4T o S 2
1.2 ODJECHIVE ..ottt 3
R T o 11] 11 1 [o S 4
R O o T- 0| = (o] o D PP PP P PP PPPPPPPPPPPP 5
B2 O 0 -] = 6
[T Tod (o [(o 11 1 [o PSR 6
R e o © 7 N N o 011 =T o) (1 6
FZZ O 2 I I o T 3 9
12 =T O €1 = 10
2.4 Existing Synthetic Benchmark Circuit GENeratorsccccccvvveeeeeeeeeceiviiiee e, 12

2.4. 1 GEN oo 12

2.4.2 GNL oo 13

2.4.3 Other GENEIALOIS.cceeieeeeeiieee e e e e e ettt e e et et e e s e e e e e e eeaeaeaaaaaeeaeeeeannes 13
G T O g =10] 1= G PO USUPPPPRPPPN 14
Data Streaming MOGEL.........ccooiiiiiiiie e 14
3.1 Updates in the BCGEN Data Streaming Model ... 14
3.2 Details of data streaming modifiCation................cooiiiiiiiiiiii e 15

R J0 0t R |V 11 1]] (= <= PSP 16

3.2.2 DIMURIPIEXE ...ttt 17

I TS = I = PRSPPI 18
S O g =T] =] OSSPSR 19
Updates to the BCGEN COUE BASE.......cccoeeiiiiiiiiieeeeieeiee e 19
4.1 Software OrganiZatioN.........c.cuuiiiiiiiiii e e e e e 19

N © 18| G (oo [} iTo7= 1 (o) o F- TR 21

o O - o1 (= S T 23
Testing and DiSCUSSION Of RESUIES............uuuuiiiiiiiiiiii e 23
ST I IV =1 1 g To o (o] (o o | PP TSP TP ST TP PPPTRTRRTTRNt 23
T2 = Y] U] | TP 24
L O g =T o (= S TSRS 28
CoNCIUSIONS AN FULUIE WOTK . .eveieeie ettt et et e e e e e e e e e e e e e e e e e reenns 28
70 A @ o] (o1 (6= o =TT 28
ST 11U IR0 PP 28
REFE R EN CES 30
YA d o = 15] PR 32
Our Modified Source code for BCGEN dataflow patternccccuvvveeiiiiiiiiiiiiiiiinnnn. 32

Vi

LIST OF FIGURES

Figure 2.1: Architecture of a 10giC DIOCK [12]........ccovviiiiiiiiiiiiiiiiiiiiieeeeee 6
Figure 2.2: Architecture of an Island Style FPGA [12].........coovvviiiiiiiiiiiiiiiiiiiiiieeieeeeeeeee 7
Figure 2.3: Typical CAD FIOWccoiiiiiiiiiiiiieieeeeeeeeeeeeeee e 8
Figure 2.4: Dataflow connection in original BCGEN............cccccccviiiiiiiiiiiiiiiiiiee 12
Figure 3.1: Proposed dataflow connection in the BCGEN............cccccvviiviiiiiiiiiiiiiiiiiee, 15
Figure 3.2: Modules connected using MURIPIEXENcovvviiiiiiiiiiiiiiiiiieeee 17
Figure 3.3: Modules connected using demultipleXer ..., 17
Figure 4.1: Software organization flow for the BCGENcvvviiiiiiiiiiiiiiiiiiiiiiiiiee 20
Figure 5.1 RESUIS OF 1/O ..cooiviiiiiiiiiiiiiieeeeeeeeeeeee e 27
Figure 5.2 Results of Rent Parameters. ... 27
Figure 5.3 Results 0f NO. Of CIUSTEI'Sccovviiiiiiiiiiiiiiiiieeeeeeeeeeeee e 27

Vii

LIST OF TABLES

Table 5.1: Results from our work and original BCGEN for the Dataflow network

viii

GLOSSARY

ASIC
BCGEN
BLIF
CAD
DEMUX
FIFO
FPGA
HDL

IC

I/O

IP

LUT
MCNC
MUX
NoC
SoC

Application-Specific Integrated Circuit
Benchmark Circuit Generator
Berkeley Logic Interchange Format
Computer-Aided Design
Demultiplexer

First-In-First-Out

Field Programmable Gate Array
Hardware Description Language
Integrated Circuit

Input/Output

Intellectual Property

Look-Up Table

Microelectronic Center of North Carolina
Multiplexer

Network-on-Chip

System-on-Chip

1: CHAPTER 1

Introduction
Field Programmable Gate Arrays (FPGASs) are Integrated Circuits (ICs)
that can be configured by the user after manufacturing. The user describes a
design using a Hardware Description Language (HDL), such as VHDL or verilog,
which runs through a Computer Aided Design (CAD) flow to generate a bitstream

for the FPGA configuration.

FPGAs have become a very popular implementation technology for digital
circuits, an attractive alternative to Application-Specific Integrated Circuits
(ASICs) due to their lower volume costs. ASICs are mainly used for implementing
a high volume/high speed/low power designs, as FPGAs now have sufficient
logic density to implement System-on-Chips (SoCs). FPGAs are used in many
applications, including wireless applications [1], biomedical imaging [2], digital

signal processing [3], automotive electronics [4] and computer vision [5].

In the past two decades, the logic capacity of FPGAs has increased
dramatically. The FPGA market increased from $1.9 billion in 2005 to $2.75
billion by the year 2010 [6]. This increase is due to their increased logic density,
performance capabilities and lower development costs. The performance of
circuits on a FPGA is based on the quality of the FPGA architecture, the FPGA’s
hardware fabric, and quality of the Computer-Aided Design (CAD) tools used to

map circuits onto the FPGA.

FPGA CAD tool research aims to improve the quality of the final design
mapped onto a FPGA via improving the algorithms that convert the HDL design
into the final bitstream. Similarly, new FPGA architecture is analyzed using these
CAD tools. CAD tools are used to implement different circuits to the new FGPA
architecture. To evaluate new CAD algorithms and architectures, a number of
test circuits required, known as benchmark circuits. The benchmark circuits are
mapped, placed and routed onto the different FPGA architectures using different
CAD algorithms. The quality of the architecture is evaluated based on the area

and delay measurement for the different benchmark circuits.

1.1 Motivation

There are many benchmark circuits available that can be implemented on
an FPGA. Many vendors have their own large databases of such benchmark
circuits. However, such vendor specific circuits are not freely available to
researchers and access to the source code is restricted. To overcome this
limitation, randomly generated benchmark circuits can be used for research. In
such circuits, random netlists are generated from parameters specified by the
user. Large numbers of test circuits can be generated using a benchmark circuit
generator because they do not require any design time. Previously introduced
benchmark circuit generators are GEN [7] and GNL [8]. More recently,
Benchmark Circuit Generator (BCGEN), a stochastical benchmark circuit
generator developed by Cindy Mark (UBC) [9], was created to generate circuits
that are designed to emulate Systems-on-Chip (SoC). BCGEN creates circuits by
connecting intellectual property (IP) modules, such as processors and memory,

2

using different communication patterns, including bus, star and dataflow

communication patterns.

The BCGEN tool provides a good framework for generating benchmark
circuits. However, there are limitations when generating circuits with a dataflow
communication pattern. In the existing dataflow communication pattern, the
number of Inputs and Outputs (I/Os) in the final circuit increases dramatically,
and there is no support for data buffering. Hence, our aim is to reduce the
number of inputs and outputs and augment the BCGEN tool to include the data

buffering capability in the dataflow communication pattern of the BCGEN tool.

1.2 Objective

The main objective of this project is to improve the representation of the
dataflow system in BCGEN by including data buffering capabilities and
minimizing 1/0O growth. Limiting the number of I/Os is achieved by inserting
multiplexer and demultiplexer nodes between the original nodes (stages).
Additionally, inserting a FIFO (First-In-First-out) between the original nodes
provides communication media for data storage, which enables data buffering

between stages.
The original BCGEN tool has the following characteristics:

e The final circuits are generated by stitching modules together using different
communication patterns such as star, bus or dataflow.
e The component circuits are selected from existing benchmarks (such as

circuits from the MCNC benchmark suite) or from other existing generators.

e The final circuits are generated based on either user selectable parameters or
default parameters.
e The generator is able to handle combinations of multiple communication

patterns in a single circuit.

Our modifications to the existing generator aim to improve the dataflow

modelled circuits.
The characteristics of the modified dataflow pattern are:

e Multiplexer and Demultiplexer nodes are used in between the existing nodes
to reduce the 1/0 count.
¢ FIFO modules are inserted in between the existing nodes (stages) to

implement data buffering, typically found in dataflow designs.

1.3 Contribution

Contributions for this work are as follows:

1) Firstly, multiplexer and demultiplexer modules are designed such that
they are able to produce the desired number of output connections from
the given number of input connections.

2) Secondly, FSL FIFO module is used for data buffering. Source code is
obtained from Open Core [10].

3) Thirdly, a more accurate and scalable representation of the dataflow
communication pattern is implemented by stitching multiplexer,

demultiplexer and FIFO modules between the original modules.

The existing BCGEN tool is improved by integrating the above mentioned
modifications. After successful implementation, the circuits generated using the
improved BCGEN are tested using T-V pack and VPR [11]. The test results are
compared with the circuits generated using the original BCGEN. The analysis
showed that the circuits generated using the improved BCGEN has fewer 1/O

connections than the previously generated circuits (using original BCGEN).

1.4 Organization

The background information related to this work including the FPGA
architecture, CAD tools and previous work in the synthetic circuit generator as
well as detailed functionality of the BCGEN is described in Chapter 2. Chapter 3
details our updates for BCGEN to improve the dataflow circuit models. Finally,
Chapter 4 covers system verification and testing followed by Chapter 5, which

concludes this report and suggests possible future work.

2: CHAPTER 2

Background

This chapter provides an overview of FPGA architecture as well as
information about its CAD flow. The chapter also summarizes previous work

done in the synthetic benchmark circuit generators including BCGEN.

2.1 FPGA Architecture

FPGASs have three main components: logic blocks, programmable routing
fabric and, input/output (1/0) blocks. Logic blocks are mainly used for
implementing the combinational and sequential logic functionality for the desired
circuit. Typically, a logic block contains Look-Up Tables (LUTSs), Flip-Flops (FFs)

and 2-to-1 multiplexers. Figure 2.1 shows a simple architecture of a logic block.

Y

MUX

—» 4input output
Inputs —3 YT o FF >
’ Clock —)

Figure 2.1: Architecture of a logic block [12]

Figure 2.1 shows a 4-input LUT, a Flip-Flop and a 2-to-1 multiplexer based
logic block. An N input LUT is implemented as a N-bit addressable 2" x1

memory. Each single bit memory can store two different values. Therefore, 2"

bits can be used to store 27" different combinations representing 22" different
6

logic functions. The flip-flop is used for implementing the sequential logic in a
design. Finally, the multiplexer selects whether the implemented logical function
is purely combinational or sequential. The programmable routing fabric is used to
provide the interconnect between the logic blocks, or between the logic blocks
and the I/O blocks. 1/0 blocks behave as an input or output pads as per the

circuit requirement. FPGA architectures are mainly classified as:

e |Island-Style FPGA
e Row-Based FPGA

e Hierarchical FPGA

As the Island-Style FPGA architecture (see Figure 2.2) is the most popular

for researchers, we provide a detailed discussion in the following.

(1] [[[e—

blocks
NN .

S < S _ Switch block

Routing Channels

Logic Block

Figure 2.2: Architecture of an Island Style FPGA [12]

As shown in Figure 2.2, “channels” of routing wires surround the logic
block on all sides (hence it is known as the “Island-Style FPGA”). Logic blocks
are connected to the routing wires via a connection block (not shown in Figure
2.2). The switch block is a set of programmable switches, which allows the
appropriate connection between a source and the related sinks (see Figure 2.2).
Logic blocks are typically grouped in clusters and the connections made within
these grouping are known as intra-cluster connections. Conversely, the
connections made between different clusters are known as the inter-cluster
connections. Generally, the intra-cluster connections are faster than inter-cluster
connections. The following section describes how a user programs the device to

implement a design.

BCGEN

i1

Initial Logic Technology
Design Entry) Optimization) Mapping

Partitioning

FPGA] Placement
Programming Routing < :

Unit

Figure 2.3: Typical CAD flow

2.2 CAD Tools

An FPGA user designs a digital circuit using either a Hardware Description
Language (HDL) or schematic entry. Subsequently, the CAD tools are used for
converting from this high level designs (HDL and schematic) into a bit stream file
which is used to program the FPGA. Typical CAD tool flow is shown in Figure
2.3. In CAD tools, high level synthesis converts the VHDL/Verilog circuit into the
register transfer level (RTL) description. Logic optimization performs required
logic simplification. In the subsequent step, a netlist of logic gates is mapped into
a netlist of logic blocks (LUTs + FFs) to implement the logic function, which is
known as technology mapping. Then, the logic blocks are packed into the
clusters. Next, the clusters are placed onto a virtual mapping of the device. The
cluster placement is optimized such that the connection length between the
connected clusters will be minimized. Once the location of the cluster has been
decided, the router determines the specific routing resources (wire tracks and
switches) that should be used to connect all the logic blocks’ input and output
pins as required by the circuit. Finally, the circuit is converted into the bit stream,

which is used to program an FPGA.

Placement and routing are important aspects in CAD tools for FPGAs.
There have been many algorithms developed for efficient placement and routing.
To test these CAD algorithms accurately, large benchmark circuits are required
to map onto an FPGA. Most researchers use the MCNC (Microelectronics Center
of North Carolina) benchmark circuits for this purpose. However, the largest

benchmark circuit is unrealistically smaller than the circuits implemented on

modern commercial FPGAs. Other benchmark circuits are also available, but
they also have size limitations. An efficient solution to this problem is to use
randomly generated benchmark circuits. These randomly generated circuits
behave like the real circuits. This study explores functionality of the BCGEN
(existing benchmark circuit generator) and presents an improvement for the large
dataflow circuits of the existing BCGEN. These circuits usually use a common
format known as the Berkeley Logic Interchange Format (BLIF) to encapsulate

the netlist of the circuit.

2.3 BCGEN

Mark [10] has developed a benchmark circuit generator (BCGEN) that
generates the benchmark circuits by combining a number of randomly selected
logic blocks from the given MCNC library. The benchmark circuit is generated
using hierarchical SoC technique. In today’s FPGAs, the implemented circuits
contain Intellectual Property (IP) modules, including processor modules that are
connected using buses and on-chip networks. Similarly, BCGEN generates the
benchmark circuits that can have many types of IP modules connected using
bus, star or dataflow network connection pattern. The circuits are generated
using different hierarchical levels and different network connection patterns
based on the user requirement. The library of MCNC benchmark circuits and the

user constraint file are used for building the synthetic benchmark circuits.

The MCNC benchmark circuit library is divided into different sub-
categories such as processors, interfaces, and controllers. The final circuit

construction is done in three stages. In the first stage, the values for primary

10

parameters such as hierarchical depth, number of networks, number of leaf
modules and bus width are selected. These primary parameters are important to
decide the shape and the size of the final circuit. In the second stage, the circuit
is constructed by selecting the size and the network pattern to connect the
modules at each hierarchical level. Finally, the leaf module pins are connected as

appropriate to other module pins to realize the desired benchmark circuit model.

For the bus network type, one sub-module is selected as a master and all
other sub-modules are selected as slaves. All these slave modules are
connected to the master module using the bus network interface. In the star
network type, one of the modules is selected as a head sub-module and all other
modules are selected as tail sub-modules. The input and output communications

between these modules are handled by an algorithm [13].

The dataflow network connection is illustrated in Figure 2.4. In this network
pattern, connections are made between adjacent sub-modules. However, if a
module has more output connections (e.g. module Q) than the input connections
of the next module (e.g. module R), the additional connections can be skipped to
the subsequent module (e.g. module T) because the sub-module (module T) has
more input connections than the output connections of the preceding module
(module S). Moreover, the connections can be made as a feedback loop between
the stages (e.g. the Q and R sub-modules). Finally in the first/last stage, any
unconnected I/Os (if feedback of stage skipping is not possible) are become
primary 1/Os for the final generated circuit. The resultant generated circuits are

then validated using the T-V pack and VPR [11].

11

- /] [~

Figure 2.4: Dataflow connection in original BCGEN

v T

2.4 Existing Synthetic Benchmark Circuit Generators
This section describes the properties of the existing synthetic benchmark

circuit generators:

e GEN
e GNL

e Other generators

Now, each of these generators is discussed in detail.

24.1 GEN

GEN benchmark generator was originally designed by Hutton [7] in 1997.
The CIRC tool analyzes the existing circuit and provides information about the
circuit characteristics. The tool uses MCNC benchmark circuits as input circuits
and measures the circuit properties in the form of a specification file.
Subsequently, GEN uses this specification file as an input and builds a “clone”
(circuit) according to the user specification. The post routing results of the cloned
circuit are compared with the result of the original circuits using the VPR tool.

Later on the GEN benchmark generator was modified to produce both

12

combinational and sequential logic circuits [14]. Additionally, Kundarewich et al.
[15] extended the GEN such that it can use partitioning information to develop the

hierarchical circuits.

2.4.2 GNL

This generator, developed by Stroobandt et al. [8] in 1999, generates the
benchmark circuit using an analytical method. This method is based on the rent
rule and ratio of the circuit’s multi-terminal nets. The tool uses the user-defined
constraints such as the value of rent parameter, the ratio of input and output pins,
and the number of input and output pins. The generator uses bottom up
clustering approach to generate circuits. However, the delay characteristics are

not controlled using the tool.

2.4.3 Other Generators

The method described by Tom et al. [16] in 2005 generates larger circuits
by randomly stitching the BLIF circuits. This method generates a circuit with a
large number of inputs and outputs. Furthermore, Grant et al. [17] uses an edge
swapping method to generate benchmark circuits. This method tries to preserve
properties of the original circuits in the newly generated circuit. Moreover,
Harlow’s method [18] generates a set of Binary Decision Diagrams (BDDs). One
more generator, Partgen is developed by Pistorius et al. [19] in 2000. This
generator generates circuits from the library, which already has several kind of
circuits such as regular and combinational, memory, controller and irregular, and

combinational.

13

3: CHAPTER 3

Data Streaming Model

In this chapter, the details of our contributions are discussed. The
modifications done in the existing dataflow pattern of the BCGEN are also

explained.

3.1 Updates in the BCGEN Data Streaming Model

As described in Chapter 2, the dataflow network of the original BCGEN
(see Figure 2.4) is designed such that the additional connections to those directly
connected sub-modules can be either skipped or connected as a feedback loop if
input or output pins remain unconnected on the sub-module. Remaining
unconnected inputs and outputs are converted to adjacent module’s primary
input or output pins. Because of this implementation, the resultant circuit has a
large number of 1/0s. To restrict the number of 1/0Os in the resultant circuit,
additional multiplexer and demultiplexer modules are inserted in between the
existing sub-modules. Furthermore, data buffering capability is added by using
Shift Register Logic First In-First Out (SRL FIFO) [10]. This results in a more
accurate and scalable representation of the dataflow communication pattern by
stitching multiplexers, demultiplexers, and FIFO modules between the original

modules to represent the Data Streaming.

14

3.2 Details of data streaming modification

The proposed modification in the existing dataflow connection is illustrated

in Figure 3.1.

XCzZO

Figure 3.1: Proposed dataflow connection in the BCGEN

\xcz/

As shown in Figure 3.1, the P and Q modules are selected from the
MCNC library for the dataflow network connection using the original BCGEN.
However, our proposed modification inserts a multiplexer, demultiplexer and
FIFO between the P and Q modules. The P module has 30 input pins and 20
output pins. On the other hand, the Q module has 42 input pins and 25 output
pins. To connect modules P and Q using the dataflow connection (see Figure
3.1), the module Q has 22 more input connections than the output connections of
the module P. In the original BCGEN, these additional input connections are
connected to the additional output connections of any subsequent module that
has more output connections than the following module or as primary outputs of
the final circuit. In the original implementation, the former is the more likely, such

that the connections are made by either feedback loop or skipping the modules.

In our approach, the feedback loops and skipping between the stages in

the dataflow implementation are avoided. To simplify this, all the module outputs

15

are first converted (using multiplexer or demultiplexer) into the user defined bus
width. Similarly, all the module inputs are converted (using demultiplexer or
multiplexer) from the bus width. Additionally, a FIFO is connected between these
mux/demux or demux/mux modules that is designed according to the databus
width. By using this approach, the inequality of the input and output connections
between the modules can be efficiently handled without using feedback loops
and skipping between stages. This reduces the number of input and output

connections in the final circuit.

3.2.1 Multiplexer

The multiplexer module is designed such that the number of connections
between two modules are reduced according to the system requirement. The
multiplexer unit is mainly used where the output connections of a module are
more than the input connections of a subsequent module. The multiplexer can be
customized to obtain any number of output connections from the given number of
input connections. For example, if two BLIF modules are selected from the
MCNC library to join side by side using the BCGEN'’s data path algorithm. One
module has 32 output pins and the subsequent module has 23 input pins. Hence,
nine extra connections should be reduced to efficiently connect the two modules.
This is easily achieved using different combinations of the multiplexers (as shows

in Figure 3.2).

16

Sub- olp ilp Sub-
> module | 32 MUX 23 > module 11 >

Figure 3.2: Modules connected using multiplexer

3.2.2 Demultiplexer

The demultiplexer module is designed such that it increases the number of
connections between two modules according to the system requirement. The
demultiplexer unit is mainly used where the number of output connections of a
module is less than the input connections to subsequent module. Any number of
output connections can be generated from the given number of input
connections. For example, the demultiplexer is used if two BLIF modules are
selected from the MCNC library to join side by side using the BCGEN'’s data path
algorithm where one module has 23 output pins and the subsequent module has
32 input pins. Hence, additional nine connections should be generated to
efficiently connect the two modules. This is easily achieved using different

combinations of the demultiplexers (as shows in Figure 3.3).

Sub- olp ilp Sub-
> module | 23 DMUX 32 > module 11 >

Figure 3.3: Modules connected using demultiplexer

17

3.2.3 SRL FIFO

Shift Register logic FIFO (SRL FIFO) is mainly used for data buffering and
data overflow prevention. The VHDL code for the SRL FIFO is obtained from an
open cores website [10]. This FIFO from the open core website is 8-bit wide and
32 bit long. However, it has been modified such that the user specified bus-width
is used as the FIFO width in the proposed system. Furthermore, the clock and
the reset signals of the FIFO are connected to the system clock and reset signals

to synchronize with the over-all system.

18

4: CHAPTER 4

Updates to the BCGEN Code Base

This chapter gives a detailed description of the BCGEN software
organization and highlights our contribution to BCGEN. The programming
language for the original BCGEN is C, within which we made all our modifications
to implement our proposed data streaming functionality. The updated source
code of the modified BCGEN is given in the Appendix. We have added
approximately 1165 lines of code in the original BCGEN to implement modified

dataflow communication pattern and size of our code is approximately 41 KB.

4.1 Software Organization

Figure 4.1 describes how BCGEN generates synthetic circuits based on
user constraints. As shown in the figure, BCGEN has two sets of inputs for the
circuit generation, the first is the library of the MCNC benchmark circuits and the
other is the user constraints file. The user is able to specify different primary
parameters, such as the number of networks, the number of leaf modules, the
hierarchy depth and bus width in the form of a user constraints file. These
parameters describe the overall size and shape of the generated circuit. If the
user does not provide any of these parameters, BCGEN uses the default
parameters for the circuit’s generation. The library of MCNC benchmarks
contains different BLIF modules including processors, interfaces and controllers,

which are used by BCGEN as the component modules for the final circuit.

19

A 4

A\ 4

User Constraints File
network

Library of MCNC
benchmarks

Leaf module [Cores, Processors,
hierarchy depth Interfaces, Controllers]

Bus width

A 4

Framework

Construct Specified network

A

A 4

Select Leaf module s accordin
probability function

gto

A\ 4

Generate Communication Network |

i N

STAR BUS

DATAFLOW

\v/

Attach Leaf Modules

Require additional
Communication
Network?

Generate System Level
Circuitry (attach Clock and
Reset)

Figure 4.1: Software organization flow for

20

the BCGEN

Using these two sets of inputs, BCGEN constructs the user specified
network framework by arranging different randomly selected modules from the
MCNC library in the form of a tree. During this framework arrangement, BCGEN
assigns the top hierarchy level to a network and the remaining networks are
assigned to a random hierarchy level. Now, the algorithm selects each leaf
module for the networks according to the probability function and generates
different communication patterns depending on the user’s specifications. The
user is able to choose any combination from the available star, bus and dataflow
communication patterns in a single design. The star, bus and dataflow network
patterns generated according to the original BCGEN algorithm [13] is detailed in

Section 2.3.

After generating the appropriate communication network, the algorithm
attaches different leaf modules to the specified network and checks whether
additional communication patterns are required. If additional communication
patterns are required, then the algorithm goes back to generate another
communication pattern as shown in Figure 4.1. After all the required
communication patterns are generated, the algorithm generates system level
circuitry and attaches the clock and reset signals to the final generated circuit.
The format of the final generated circuit is BLIF, which is used as an input to T-V

pack.

4.2 Our Modifications
Our modifications to the original BCGEN logic flow are highlighted in

Figure 4.1 using bold and italics font. Detailed descriptions of our modification to

21

the dataflow network generation are described in Chapter 3. The other significant
modification was to enable the dataflow communication pattern to support fixed
bus widths. Based on the original method of stitching dataflow modules together,
bus widths between modules were random. By using the multiplexers and
demultiplexers to reduce or increase the number of 1/0Os, the bus width specified
in the user constraint file is used as the width of the FIFO block. The different
benchmark circuits generated using the dataflow communication pattern for our
modified version and the original version of BCGEN are compared in the next

Chapter.

22

5: CHAPTER 5

Testing and Discussion of Results

In this chapter, the details of our test parameters, results and the
evaluation of our updates to the dataflow communication pattern of the original
BCGEN are provided. To do this, we generated a set of circuits using both our
updated version and the original version of BCGEN and compared the results of
both circuit generation methods. The user constraints file and the MCNC library
remain same for both versions. We have used T-VPACK and VPR5.0 [11] for

mapping each circuit into a minimum-sized FPGA.

5.1 Methodology

In this section, the details of the test parameters used for verification of
both modified and old BCGEN are described. We have used the same test
parameters as the ones used for testing the original BCGEN. Hence, we can
have precise comparison of the performance of both the BCGEN
implementations. First of all, a clustered architecture is used, where each cluster
(i.e. logic block) contains four 4-input LUTs and four FFs. Each cluster has 10
inputs and 4 outputs. The routing segments are uniform spanning four logic
blocks in this architecture. T-VPACK is used to pack LUTs and FFs into the logic
blocks. Generally, VPR recognizes the ".net' format so T-VPACK converts a netlist
of blif format to the '.net' format. Throughout the testing process, clustering,

placement and routing are timing-driven. For placement and routing, each circuit

23

is first converted into a netlist (.net) format using T-VPACK. Finally, the circuit is

placed and routed into an FPGA architecture using VPR tool.

5.2 Results

The results obtained for 12 circuits generated with the dataflow
communication pattern using the modified BCGEN, as well as from the original
BCGEN, are tabulated in Table 5.1. In Column 2, rows with ‘M’ (Modified version)
denote our results and rows with ‘O’ (Original version) denote the results
obtained for the original BCGEN. Column 3 and 4 in Table 5.1 show that the
number of 1/0s generated using our version of BCGEN in the final generated
circuits are fewer than the number of I/Os generated using the original BCGEN.
Figure 5.1 shows a graphical representation of I/Os, where I/P BCGEN Modified
indicates inputs generated using our version, I/P BCGEN Original indicates
inputs generated using BCGEN original dataflow pattern and O/P BCGEN
Modified gives outputs generated using our versions whereas O/P BCGEN
Original givers outputs generated using BCGEN Original dataflow pattern. This
demonstrates that the addition of the multiplexers and demultiplexers in between

the existing modules has the desired effect of reducing the number of I/Os.

Rent’s rule is given in Equation 1 below for the given sub-circuit, which is
known as the relationship between the number of external I/Os and number of

modules in the given sub-circuit.

A =xB” (1)

24

Table 5.1: Results from our work and original BCGEN for the Dataflow network

Circuit | BCGEN | Input | Output Rent No. of Avg. Channel | Critical
Version Parameter | Clusters Net Width Path
Length Delay
1 Mod. 47 11 0.466 984 8.82 18 41
Orig. 47 39 0.656 93 6.82 13 18.7
2 Mod. 14 11 0.429 936 8.35 19 37.9
Orig. 17 11 0.529 45 5.78 10 20
3 Mod. 31 15 0.461 961 8.44 19 44.3
Orig. 31 40 0.581 74 5.55 11 19.6
4 Mod. 22 18 0.531 1949 8.97 21 52.7
Orig. 44 45 0.574 159 7.81 16 36.5
5 Mod. 46 56 0.519 503 7.68 17 42
Orig. 70 56 0.545 239 6.98 17 25.5
6 Mod. 29 20 0.521 1741 8.93 19 41.9
Orig. 46 55 0.6 328 8.29 17 37
7 Mod. 71 116 0.701 9682 21.32 48 85.1
Orig. 71 277 0.707 8742 21.96 45 86.8
8 Mod. 257 26 0.582 2708 14.48 32 62.2
Orig. 257 238 0.651 1737 19.27 27 70
9 Mod. 76 138 0.698 8654 22.43 48 85.6
Orig. 76 259 0.708 7565 25.57 50 102
10 Mod. 230 8 0.693 9722 16.39 44 225
Orig. 230 418 0.705 7820 18.08 44 227
11 Mod. 261 306 0.725 13142 19.48 45 226
Orig. 261 633 0.729 12791 20.47 45 226
12 Mod. 169 22 0.700 9079 19.50 48 82.8
Orig. 169 231 0.708 7589 21.27 47 82.2

partitioning and B is the number of modules in a given sub-circuit after

In Equation 1, A is the number of external pins in a given sub-circuit after

partitioning where « is known as the Rent’s constant and p is known as the Rent

parameter. The Rent parameter indicates the complexity of interconnects in a

circuit. The Rent parameter depends on the circuit structure and selected

partitioning algorithm. In the original BCGEN, the Rent parameter is calculated

using a recursive Fiduccia-Mattheyses partitioning algorithm. We have used the

same method to calculate the Rent parameter for the final circuits generated

using the modified BCGEN. To reduce the congestion in the circuit layout, the

Rent parameter should be lower. The results given in Table 5.1 and graphical

25

representation of results drawn in Figure 5.2 clearly show that the Rent
parameter generated from our circuits is less than the circuits generated using
the original BCGEN because of reduced I/Os using the modified BCGEN. Lower

Rent parameters reduce congestion in the layout.

Average post-routing net length affects the number of routing resources
used by a net to connect to the logic blocks. Net length is defined as the number
of consecutive clusters covered by a net. From the tabulated results (Table 5.1),
the results obtained using the modified BCGEN have higher average net lengths
because these circuits have greater internal connectivity due to added
multiplexers, demultiplexers and FIFO blocks in between the original sub-
modules during our circuit generation. Results generated for No. Of Clusters is
graphically represented in Figure 5.3, where BCGEN original represents the
result of number of clusters for original version and BCGEN modified represents
the result of number of clusters for our modified version. To route a circuit, VPR
uses only the required routing resources, resulting in an FPGA architecture with a
minimum channel width. As mentioned above, higher average net length requires
more routing resources, which tends to increase the minimum channel width.
Therefore, our circuits result in mapping with larger channel widths. The
maximum speed for a circuit is generally determined by the critical path delay,
which is predominantly due to its routing. As such, the critical path delay for the
modified BCGEN is more than the original implementation as they have longer

internal nets (see Avg. Net Length, Table 5.1).

26

700

Results of /O

al/P BCGEN Modifed = /P BCGEN Original
OO/P BCGEN Meodifed OO/P BCGEN Original M

600

500

400

300

Inputs and Qutputs

200

100

1 2 3 4 5 [s] 7 g 9 10 11 12

No. Of Circuits

Figure 5.1 Results of I/O

Results of Rent Parameter

OBCGEN Modifed @BCGEN Original

Rent Parameter
(=] =) (=] [
(] L 4= o

=]

14000

12000

10000

8000

No. Of Clusters

5000

4000

2000

|

1 2 3 4 5 6 7 8 9 10 1 12

No. Of Circuits

Figure 5.2 Results of Rent Parameters

Results of No. Of Clusters

OBCGEN Modifed

00 D.J:LT l:

1 2 3 4 5 & T g 9 10
No. Of Circuits

Figure 5.3 Results of No. Of Clusters
27

6: CHAPTER 6

Conclusions and Future Work

This chapter concludes our work and provides some suggestions for

possible future work.

6.1 Conclusions

Our work improves the dataflow communication pattern of the original
BCGEN to better model real circuits. This is achieved by inserting multiplexer and
demultiplexer modules between the original modules (stages). Using the
proposed approach, the number of 1/Os in the generated circuit are reduced
using the modified BCGEN. Additionally, the data buffering capability is also
added by inserting the FIFO modules. As a result, the Rent parameter using the
modified BCGEN is reduced by limiting the number of 1/Os in the final generated
circuit. This should allow circuit sizes to scale to better represent actual SoCs.
Furthermore, the inclusion of buffering between stages is a key component in
actual data-flow circuits again improving the quality of the synthetic data

streaming benchmarks.

6.2 Future work

For future work, the star communication pattern should be updated to
include real Network-on-Chip (NoC) architectures (mesh, torus etc.) as well as

the ability to represent application specific topologies in the BCGEN. BCGEN

28

should also include the ability to generate circuits comprising multiple clock
domains. Finally, in the original BCGEN, bus networks support only single master
architectures whereas, based on design trends, multi-master bus architectures

would be useful.

29

REFERENCES

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

Xilinx Inc, “Enabling Wireless-Solution around the world,” Online:
http://www.xilinx.com/esp/wireless/index.htm

M.Leeser, S. Loric, E. Miller, H. Yu and M. Trepanier, “Parallel-Beam
Backprojection: An FPGA Implementation Optimized for Medical Imaging,”
Journal of VLSI Signal Processing, 39(3):295-311, 2005.

G. R. Goslin, “A guide to Using Field Programmable Gate Arrays (FPGAS)
for Application-Specific Digital Signal Processing Performance,” Xilinx Inc,
1995.

S. Sharma and W. Chen, “Model-Based Design to Accelerate FPGA
Development for Automotive Applications,” SAE International Journal of
Passenger Cars, 150-158, October 2009.

R. Bianchil and A. H. Reali, “Implementing Computer-Vision Algorithms on
Hardware: an FPGA/VHDL-based vision System for Mobile Robot,”
RoboCup 2001: Robot Soccer World Cup V, Springer-Verlag, 281-286,
2002.

D. McGrath, “FPGA Market to Pass $2.7 Billion by '10. In-Stat Says,” EE
Times, May 24, 2006.

M. Hutton, “The Circuit Characterization and Generation Project at the
University Of Toronto,”
http://www.eecg.toronto.edu/_mdhutton/gen/index.html.

D. Stroobandt, J. Depreitre, and J. Van Campenhout, “Generating new
benchmark designs using a multi-terminal net model,” INTEGRATION: the
VLSI Journal, 27(2):113-129, 1999.

C. Mark, A. Shui, S. Wilton, "A System-Level Stochastic Circuit Generator
for FPGA Architecture Evaluation,” in International Conference on Field-
Programmable Technology, December 2008.

Open Cores FIFO Source Code: http://opencores.org/project,srl_fifo

J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W.M. Fang, and J. Rose,
“VPR 5.0: FPGA cad and architecture exploration tools with single-driver
routing, heterogeneity and process scaling,” Proceeding of the ACM/SIGDA
international symposium on FPGAs, pages 133-142, 2009.

V. Betz, J. Rose, and A. Marquardt, “Architecture and CAD for Deep-
Submicron FPGASs,” Norwell, MA: Kluwer, 1999.

30

http://www.eetimes.com/news/design/business/showArticle.jhtml?articleID=188102617
http://www.eecg.toronto.edu/_mdhutton/gen/index.html
http://opencores.org/project,srl_fifo

[13]

[14]

[15]

[16]

[17]

[18]

[19]

C. Mark, “A System-Level Synthetic Circuit Generator for FPGA
Architectural Analysis Project at the University of British Columbia,” 2008.
Online: http://www.ece.ubc.ca/~stevew/circuit/circuit_agreement.html

M. Hutton, J. Rose, and D. Corneil, “Automatic generation of synthetic
sequential benchmark circuits,” IEEE Transactions on Computer-Aided
Design, 21(8):928-940, 2002.

P. Kundarewich and J. Rose, “Synthetic circuit generation using clustering
and iteration,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 23, no. 6, pp.869-887, June 2004.

M. Tom and G. Lemieux, “Logic block clustering of large designs for
channel-width constrained FPGASs,” Proceedings of the 42nd annual Design
Automation Conference, 2005.

D. Grant and G. Lemieux, “Perturb+mutate: Semi-synthetic circuit
generation for incremental placement and routing,” ACM Transactions on
Reconfigurable Technology and Systems, 1(3): 1-24, 2009.

J. Harlow and F. Brglez, “Synthesis of ESI equivalence class combinational
circuit mutants,” Technical Report 1997-TR@CBL-07-Harlow, North
Carolina State University, October 1997. Also available at
http://www.cbl.ncsu.edu/publications.

J. Pistorius, E. Legai, and M. Minoux, “Partgen: A generator of very large
circuits to benchmark the partitioning of FPGAs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 19(11):1314—
1321, 2000.

31

APPENDIX

Our Modified Source code for BCGEN dataflow pattern

As discussed in Chapter 4, here is the source code we added/updated to implement our desired
changes. Details are given in terms of the specific file listed below:

e GENERATE_CIRCUIT.C

This is an existing file from the original BCGEN, to which we have added code to update the
dataflow pattern. When invoked, it adds multiplexers, demultiplexers and FIFOs between existing
modules to reduce the number of 1/0Os and to include data buffering capabilities.

e MODIFIED_DATAFLOW.C

This is our additional code for the modified data flow pattern to reduce the number of I/Os and to
add the data buffering capability by adding multiplexers, demultiplexers and FIFOs between
existing modules.

e DATA _MUX.C

This code is used to generate multiplexers and demultiplexers to produce required number of
outputs from the given number of inputs.

GENERATE_CIRCUIT.C

/* This is existing case in Original BCGEN where we have added call for our modified
method for BCGEN*/
case e DATAFLOW:

//original code for DATAFLOW... here...

//retval = generate dataflow subcircuit (fpout, inst, structure, handle);

//clock test code..ADDED MODIFIED VERSION OF DATAFLOW

retval = generate dataflow subcircuit clocktest (fpout, inst, structure, handle);
break;

MODIFIED_DATAFLOW.H

//header file for method description
circuit_t *generate dataflow_subcircuit clocktest (FILE *fpout, instance_ t *inst,
structure t *structure, char *handle);

MODIFIED_DATAFLOW.C

#include "../include.h"

//janki's code

circuit node t *generate dataflow multiplexer (FILE *fpout,int flag,char *handle,int
no_input,int no_output);

circuit t *generate dataflow fifo(FILE *fpout,int flag,char *handle,int no_input, int
no_output) ;

void create fifo(int in nol,int out nol,char *name);

//CODE FOR MODIFIED DATAFLOW COMMUNICATION PATTERN

circuit_t *generate_dataflow_subcircuit_clocktest (FILE *fpout, instance_t *inst,
structure t *structure, char *handle)

{

//here for test flag =0 then multiplex signals(means input number in data mux.c is greater
than output...

//and when flag =1 then demultiplex signals...mean input number is smaller than
output....

//when flag =2 then add fifo..

32

int flag;

// variable from original code

int buswidth;

int temp;

int clock;

int fifo flag;

int i, j, k, m, n; // counters

int node index; // static

int total_nodes; // constant

char *name; // string holder

char *copy handle;

int counter;//added for modified version for increamenting node value...
int rem opins, common, min; // local variables

int *inter level empty input pins, *inter level empty output pins;
BOOL finished inputs, clock pin, irupt ctrl;

int ffs[BUFFERLENGTH], num ffs;

structure node t *s node; // pointers

circuit t *circuit,*fifo circuit;

circuit node t *node, *irupt ctrl node;

circuit node_t *fifo circuit node;

circuit edge t *edge;

int reset source index, reset latch node;

int irupt sink index, irupt latch node, irupt ctrl node index;
circuit node t *node 1,*node 2, *node 3;

structure node t *fifo node; // added for modified version (for fifo)

//added for FIFO (modified version)...
int fifo counter,*f node;

f node = (int*) my malloc(sizeof (int));
fifo counter=0;

// index is allocated after order is generated
fifo node = (structure node t *) my malloc (1 * sizeof (structure node t));
fifo node->circuit = NULL;

fifo node->numNodesI = 0;

fifo node->numNodesO = 0;

fifo node->nodesI = NULL;

fifo node->nodesO = NULL;

fifo node->rem ipins = 0;

fifo node->rem opins = 0;

fifo node->clock = FALSE;

//end of node initialization for fifo...

fifo flag =0;
num ffs = 0;
total nodes = structure->num blocks + structure->num structures;
node index = total nodes;
s_node = structure->nodes;
name = (char *) my_malloc(STRING*sizeof(char));

copy handle =(char *) my malloc(STRING*sizeof (char)); //mem allocation for copy handle
inter level empty output pins = (int *) my malloc (structure->length * sizeof
(int));
inter level empty input pins = (int *) my malloc (structure->length * sizeof
(int));
buswidth =
counter =0;
for (i = 0;

{

inst->constraints.bus width;
i < structure->length; i ++)

inter level empty output pins[i] = 0;
inter level empty input pins[i] = 0;
}
buswidth = inst->constraints.bus_width;
printf ("\n bus width =%d",buswidth) ;
sprintf (name, "s %d", structure->index);

circuit = circuit alloc_and init (name, total nodes, 0, 0, 0);
reset source index = -1;

reset latch node = -1;

irupt_sink index = -1;

irupt latch node = -1;

for (i = 0; i < total nodes; 1 ++)

{

33

if (s_node[i].substructure == inst->reset source)
{
reset source index = i;
}
if (s_node[i].substructure == inst->interrupt sink)
{
irupt sink index = i;
}
if (structure->nodes([i].type == e BLOCK)
sprintf (name, "b_ %d", ((block t *)structure->nodes[i].substructure)-
>index) ;
else
sprintf (name, "s_%d", ((structure t *)structure->nodes[i].substructure)-
>index) ;
node = circuit node alloc and init from subcircuit (structure->nodes[i].circuit, name, O,
0, &i, &i);
circuit set node(circuit, node, 1i);

}

// generate outputs from the previously indicated sources to the indicated sinks
for (i = 0; i < total nodes; 1 ++)
{
if (s_node[i].numNodesO == 0)
{
// if it is at the end of the sequence allocate the output nodes
if (s_node[i].sequence == structure->length - 1)
{
for (k = 0; k < s _node[i].rem opins; k ++)
{
node index = generate node add external o(circuit, node index, 1i);
}
s node[i].rem opins = 0;
}
// else
// this is a node with no outputs, leave until later to maybe fill in gaps
}//end of if
else if (s_node[i].numNodesO == 1)
{
counter++;
sprintf (copy handle, "%s_%d",handle, counter) ;
printf ("\n name of copy handle =%s",copy_ handle);
if (s _node[i].rem opins > buswidth) //demultiplex
{
flag =0;
}
else //multiplex..

{
flag =1;

}
node l=generate dataflow multiplexer (fpout, flag,copy handle,s node[i].rem opins,buswidth);
circuit add node(circuit,node 1);

for (j = 0; j < s_node[i].rem opins; j ++)
{
edge = circuit edge alloc and init (1, 1, 1, NULL);
circuit add edge(circuit, edge);
circuit edge set source node(edge, 0,1);
circuit edge set sink node(edge, 0, node index);
circuit node add out(circuit get node(circuit, i), edge-
>net) ;
circuit node_add fanin(circuit get node(circuit,
node index), edge->net);
}

node_ index++;

///add fifo here... between two node... code for test...
counter++;

sprintf (copy handle, "%s_%d",handle, counter) ;

flag =2;

f node[fifo counter] = node index;

34

fifo counter =fifo counter+l;
f node = (int*) my realloc(f node,sizeof (int)* (fifo_counter+l));
//here node_index will be 3

//store node index value to some variable so that it can be use to add reset and clock...
later on..
fifo circuit =

//check for clock....

generate dataflow fifo(fpout, flag,copy handle,buswidth,buswidth);

//if circuit does not have clock this function returns -1 otherwise it returns clock pin
number

fifo circuit_node =

OI

NULL, NULL);

clock = circuit has clock pin(fifo circuit);

if (clock != -1)

{

fifo node->clock = TRUE;

circuit swap input order (fifo circuit, clock, fifo circuit-
>num_inputs - 1);

}

//end of check for clock
// convert into a node

circuit node alloc_and init from subcircuit (fifo circuit, "FIFO", O,

circuit add node(circuit, fifo circuit node);

fifo flag=1;

for (j = 0; J < buswidth; j ++)

{
edge = circuit edge alloc_and init (1, 0, 1, NULL);
//original
circuit add edge(circuit, edge);
circuit edge set source node(edge, 0, node index-1);
circuit edge add sink(edge, node index);
circuit node add out (circuit get node(circuit, node index-
1), edge->net);
circuit node add fanin(circuit get node(circuit,node index),
edge->net) ;

}

for (j=0;3<2;j++) //which will add two additional input to fifo...

{

circuit edge add sink(edge, node index);

circuit node add fanin(circuit get node(circuit,node index), edge-

>net) ;

}

node index++;

//end of fifo..

//here (nodeindex-1) = fifo node number

for (j=0;3j<3;Jj++)//connect three output from fifo to cindy's block..

{
edge = circuit edge alloc _and init (1, 0, 1, NULL);
circuit add _edge(circuit, edge);
circuit_edge_set source node(edge, 0, node_index-1);
circuit edge_add sink(edge, s node[i].nodesO[0]->index);
circuit node add out(circuit get node(circuit, node index-
1), edge->net);
circuit node_add fanin(circuit get node(circuit,
s _node[i].nodesO[0]->index), edge->net);

}

s node[i].nodesO[0]->rem ipins =s node[i].nodesO[0]->rem ipins -3;
//because of connection from fifo to cindy's node..

if (buswidth >s node[i].nodesO[0]->rem ipins)

{

flag =0;
}
else
{

flag =1;
}
counter++;

sprintf (copy handle,"%s %d",handle, counter);

node 3 =generate dataflow multiplexer (fpout, flag, copy handle,buswidth,s node[i].nodesO[0]-
>rem_ipins);

35

circuit add node(circuit,node_ 3);

for (j = 0; j < buswidth; J ++)

{

edge = circuit edge alloc and init (1, 0, 1, NULL); //original
circuit add edge(circuit, edge);

circuit edge set source node(edge, 0, node index-1);
circuit edge add sink(edge, node index);

circuit node add out(circuit get node(circuit, node index-1), edge-

>net) ;

circuit node add fanin(circuit get node(circuit,node index), edge-
>net) ;

}

for (j = 0; j < s_node[i].nodesO[0]->rem ipins; J ++)

{
edge = circuit edge alloc and init (1, 0, 1, NULL);
circuit add edge(circuit, edge);
circuit edge set source node(edge, 0, node_ index);
circuit edge add sink(edge, s node[i].nodesO[0]->index);
circuit node add out(circuit get node(circuit, node index), edge-
>net) ;
circuit node add fanin(circuit get node (circuit,
s node[i].nodesO[0]->index), edge->net);
}
s node[i] .nodesO[0]->rem ipins = 0;
s node[i].rem opins = 0;
node_ index++;

}//end of else if

else// outputs to many blocks
{

for (j = 0; j < s_node[i].numNodesO; j ++)
{
if (s_node[i].rem opins != 0)
{
ounter++;

printf (copy handle,"%s %d",handle,counter);
printf ("\n name of copy handle =%s",copy handle);
if (s _node[i].rem opins > buswidth) //demultiplex
{
flag =0;
}
else //multiplex..
{
flag =1;
}
node 1 generate dataflow multiplexer (fpout, flag,copy handle,s node[i].rem opins,buswidth);
circuit_add node(circuit,node_1);

for (k = 0; k < s_node[i].rem opins; k ++)

{

edge = circuit edge alloc _and init (1, 1, 1, NULL);
circuit add _edge(circuit, edge);
circuit_edge_set source node(edge, 0, 1);
circuit edge set sink node(edge, 0, node index);
circuit node add out(circuit get node(circuit,

s node[i].index), edge->net);

circuit node_add fanin(circuit get node(circuit,
node index), edge->net);

}

node_ index++;

///add fifo here... between two node... code for test...
counter++;
sprintf (copy handle, "%s_%d",handle, counter) ;
flag =2;
f node[fifo counter] = node index;
fifo counter =fifo counter+l;
f node = (int*) my realloc(f node,sizeof (int)* (fifo_counter+l));

fifo circuit = generate dataflow_ fifo(fpout, flag,copy handle,buswidth,buswidth);
//check for clock....

36

//if circuit does not have clock this function returns -1 otherwise it returns clock pin

//number

fifo circuit node
0, NULL, NULL);

clock = circuit has clock pin(fifo circuit);
if (clock != -1)

{

fifo node->clock = TRUE;

circuit swap input order (fifo circuit, clock,
fifo circuit->num inputs - 1);

}

//end of check for clock
// convert into a node

circuit node alloc_and init from subcircuit (fifo circuit, "FIFO", O,

circuit_add node(circuit,fifo_circuit_node);
fifo flag=1;
for (j = 0; J < buswidth; j ++)
{
edge = circuit edge alloc and init (1, 0, 1, NULL);
circuit add edge(circuit, edge);
circuit edge set source node(edge, 0, node index-1);
circuit edge add sink(edge, node index);
circuit node add out (circuit get node(circuit, node index-
1), edge->net);
circuit node add fanin(circuit get node(circuit,node index),
edge->net) ;
}
for (j=0;3<2;j++) //which will add two additional input to fifo...
{
circuit edge add sink(edge, node index);
circuit node add fanin(circuit get node(circuit,node index), edge-
>net) ;
}
node index++;
//end of fifo..for second node...
//here (nodeindex-1) = fifo node number
for (3=0;3<3;j++)//connect three output from fifo to cindy's block..
{
edge = circuit edge alloc _and init (1, 0, 1, NULL);
circuit add _edge(circuit, edge);
circuit_edge_set source node(edge, 0, node_index-1);
circuit edge add sink(edge, s node[i].nodesO[0]->index);
circuit node add out(circuit get node(circuit, node index-1), edge-
>net) ;
circuit node_add fanin(circuit get node(circuit,
s _node[i].nodesO[0]->index), edge->net);

}

s node[i] .nodesO[0]->rem ipins =s node[i].nodesO[0]->rem ipins -3; //because of connection
//from fifo to cindy's node..

//for second node...

if (buswidth >s node[i].nodesO[j]->rem ipins)
flag =0;

}

else

{
lag =1;

}

node 2 =generate dataflow multiplexer (fpout, flag,copy handle,buswidth,s node[i].nodesO[]]-

>rem ipins);

circuit add node(circuit,node_ 2);

for (k = 0; k < buswidth; k ++)

{

edge = circuit edge alloc and init (1, 1, 1, NULL);
circuit add edge(circuit, edge);

circuit edge_ set source node(edge, 0, 1i);

circuit edge set sink node(edge, 0, node index);

circuit node add out(circuit get node(circuit, node index-1), edge-
>net) ;

circuit node_add fanin(circuit get node(circuit, node index), edge-
>net) ;

37

}
for (k = 0; k < s node[i].nodesO[j]->rem ipins; k ++)
{
edge = circuit edge alloc and init (1, 1, 1, NULL);
circuit add edge(circuit, edge);
circuit edge set source node(edge, 0, 1i);
circuit edge set sink node(edge, 0, s node[i].nodesO[j]->index);
circuit node add out(circuit get node(circuit, node index), edge->net);
circuit node add fanin(circuit get node(circuit, s node[i].nodesO[]j]-
>index), edge->net);

}

s node[i].nodesO[j]->rem ipins = 0;
s node[i].rem opins = 0;
node index++;
}//end of if.
else
{
s node[i].numNodesO = j;
s node[i].nodesO[j]->numNodesI --;
}//end of else
}//end of for..
} //end of else
}//end of for...

// intra_level assignments
for (i = 0; 1 < structure->length; i ++)
{
for (j = structure->order([i]; J < structure->order[i + 1]1; J ++)
{
if (s_node[j].rem opins != 0)
{
// the last nodes in the sequence should never reach here b/c opins
// should always be asserted
for (m = structure->order[i + 1]; m < structure->order[i + 2]; m ++)
// search for input pins
{
if (s_node[m].rem ipins != 0)
{
counter++;
sprintf (copy handle, "%s_%d",handle, counter) ;
printf ("\n name of copy handle =%s",copy handle);

if (s_node[]j].rem opins > buswidth)
//demultiplex
{
flag =0;
}
else //multiplex..
{
flag =1;

}

node l=generate dataflow multiplexer (fpout, flag,copy handle,s node[]j].rem opins,buswidth);

circuit add node(circuit,node 1);

for (n = 0; n < s_node[j].rem opins; n ++)
{
edge = circuit edge alloc and init (1, 1, 1, NULL);
circuit add edge(circuit, edge);
circuit edge_ set source node(edge, 0, J);
circuit edge_set sink node(edge, 0, node index);
circuit node add out(circuit get node(circuit, s node[]j].index),
edge->net) ;
circuit node_add fanin(circuit get node(circuit, node index), edge-
>net) ;
}
node index++;
counter++;
sprintf (copy handle,
flag =2;

no

%s_%d",handle, counter) ;

38

f node[fifo_counter] = node_ index;

fifo counter =fifo counter+l;

f node = (int*) my realloc(f node,sizeof (int)* (fifo counter+l));
fifo circuit = generate dataflow fifo(fpout,flag,copy handle,buswidth,buswidth);

clock = circuit has clock pin(fifo circuit);

if (clock != -1)

{

fifo node->clock = TRUE;

circuit swap input order (fifo circuit, clock, fifo circuit-

>num_inputs - 1);

}

fifo circuit node = circuit node alloc_and init from subcircuit(fifo circuit, "FIFO", O,
0, NULL, NULL);
circuit_add node(circuit,fifo_circuit_node);
fifo flag=1;
for (j = 0; J < buswidth; j ++)
{
edge = circuit edge alloc and init (1, 0, 1, NULL); //original
circuit add edge(circuit, edge);
circuit edge set source node(edge, 0, node index-1);
circuit edge add sink(edge, node index);
circuit node add out(circuit get node(circuit, node index-1), edge-
>net) ;
circuit node_add fanin(circuit get node(circuit,node_index), edge-
>net) ;
}
for (j=0;3<2;j++)
{
circuit edge add sink(edge, node index);
circuit node add fanin(circuit get node(circuit,node index), edge-
>net) ;
}
node index++;
for (3=0;3<3;J++)
{
edge = circuit edge alloc and init (1, 0, 1, NULL);
circuit add edge(circuit, edge);
circuit edge set source node (edge, 0, node index-1);
circuit_edge_add_sink(edge, s _node[i].nodesO[0]->index);
circuit node_add out (circuit get node(circuit, node_ index-1), edge-
>net) ;
circuit node add fanin(circuit get node(circuit,
s _node[i].nodesO[0]->index), edge->net);
}

s _node[i].nodesO[0]->rem ipins =s node[i].nodesO[0]->rem ipins -3;
//for second node...

if (buswidth >s node[m].rem ipins)
{
flag =0;

}

else

{

flag =1;

}
node_2=generate dataflow multiplexer (fpout, flag, copy handle,buswidth,s node[m].rem ipins);
circuit add node(circuit,node 2);

for (n = 0; n < buswidth; n ++)

{

edge = circuit edge_alloc_and init (1, 1, 1, NULL);

circuit add edge(circuit, edge);

circuit edge set source node(edge, 0, 1i);

circuit edge_set sink node(edge, 0, node index);

circuit node_add out(circuit get node(circuit, node index-1), edge-
>net) ;

circuit node_add_fanin(circuit_get node(circuit, node_index), edge-
>net) ;

}

for (n = 0; n < s _node[m].rem ipins; n ++)

39

{

edge = circuit edge alloc_and init (1, 1, 1, NULL);
circuit add edge(circuit, edge);

circuit edge set source node(edge, 0, 1i);

circuit edge set sink node(edge, 0, s node[m].index);

circuit node add out(circuit get node(circuit, node_ index), edge-
>net) ;

circuit node add fanin(circuit get node(circuit, s node[m].index),
edge->net) ;

}

s node[m].rem ipins
s node[j].rem opins
node_ index++;
}//end of if..

}// for input pins in the next level

break; // ie no more empty ipins in the next level to be allocated

0;
0;

node index = generate structure add external io(structure, circuit, node index);
// INTERRUPT
irupt ctrl = TRUE;

if (structure->level != inst->constraints.hier depth) {
// HACK - THIS ASSUMES THERE IS ALWAYS AT LEAST 2 NODES ON EACH NETWORK
if (irupt sink index == -1){
if (total nodes == 1) {

irupt ctrl = FALSE;
}

else{
irupt ctrl node = generate interrupt controller node (fpout, circuit, node index,
total nodes, handle);
circuit_add node(circuit, irupt ctrl node);
irupt ctrl node index = node_ index;
node index ++;
node index = generate node add external o(circuit,
node index, irupt ctrl node index);
}
}
elsef{
i = total nodes - 1 + (structure->level != 0); // -1 for sink, +1

//for the upper level

if (1 > 1){

irupt_ctrl node = generate_ interrupt controller node (fpout,
circuit, node_index, i, handle);

circuit add node(circuit, irupt ctrl node);

irupt ctrl node index = node index;

node_index ++;

if (structure->level != inst->level interrupt sink) {
edge = circuit edge alloc and init (1, 1, 1,
"irupt");

circuit add _edge(circuit, edge);
generate new_edge_ connection(circuit, edge,
irupt ctrl node index, irupt sink index);

else{
irupt latch node = node index;
node index =
generate node add flipflop to output (circuit,
node index, irupt ctrl node index);
edge = circuit edge alloc_and init (1, 1, 1,
"irupt");
circuit add edge(circuit, edge);
generate new edge connection(circuit, edge,
irupt latch node, irupt sink index);

}

if (structure->level != 0){
node_index = generate node_add external 1i(circuit,
node index, irupt ctrl node index);

40

}

else{ // only happens if there are 2 nodes and on the Oth level

irupt ctrl = FALSE;

if (structure->level == inst->level interrupt sink) {

irupt latch node = node index;
node_index =

generate node add flipflop to input(circuit,

node index, irupt sink index);

for (1 = 0; i < total nodes; i ++){

if (i != irupt sink index) {
sprintf (name, "b_ %d irupt", 1i);
edge = circuit edge alloc and init(l, 1, 1, name);
circuit add edge(circuit, edge);
if (lirupt ctrl){
if (irupt latch node == -1){
if (irupt sink index == -1){
circuit remove edge(circuit, circuit->num edges - 1);

node index = generate node add external o(circuit,

node index, 1i);
}

else{

generate new edge connection(circuit, edge, i,

irupt sink index);
}
}

else{

generate new edge connection(circuit, edge, i,

irupt latch node);
}

else
generate new edge connection(circuit, edge, i,
irupt ctrl node index);
}
}
}
else{
if (irupt_sink index != -1){
irupt latch node = node index;
node index = generate node add flipflop to input(circuit,
node_index, irupt sink_ index);
node_index = generate node_add external i(circuit, node_index,
node index - 1);
}
}
// RESET
if (reset source index == -1)//this cond.. does not satisfy second time..
{
node_index = generate node add external i(circuit, node_index, 0);
edge = circuit get edge(circuit, circuit->num edges - 1);
for (1 = 1; i < total nodes; i ++){
circuit edge add sink(edge, 1i);
circuit node_add fanin(circuit get node(circuit, i), edge->net);
}
}
else(
if (structure->level == 0){ // if the source is at the top level
reset latch node = node index;

node index = generate node add flipflop to output (circuit,

node index, reset source index);

edge = circuit edge alloc_and init(1, 0, 1, "reset");

circuit add edge(circuit, edge);

circuit edge set source node(edge, 0, reset latch node);

circuit node add out(circuit get node(circuit,
edge->net) ;

}

else{ // if not at the top level

41

reset latch node),

if (structure->level
// add a latch at the source to prevent combinational cycles

}

clock _pin

for

{

if

}

for

(1

== inst->level reset source)

{//this executes first time...

reset latch node = node index;

node_index = generate node add flipflop to output (circuit,
node index, reset source index);

node index = generate node add external o(circuit, node index,
node index - 1);

edge = circuit get edge(circuit, circuit get edge(circuit, circuit-
>nodes[reset latch node]->outs[0])->net);

}

else{ // add the output to the upper level

node index = generate node add external o(circuit, node_ index,
reset source_ index);

edge = circuit get edge(circuit, circuit->num edges - 1);

}

= 0; 1 < total nodes; i ++) // add sinks to the rest of the nodes on

//this level

{

}

if (1 != reset source index)

{

circuit edge add sink(edge, 1i);

circuit node add fanin(circuit get node(circuit, i), edge->net);

}

if (fifo flag ==1)

{

for (j=0;j<fifo counter;j++)

{

circuit edge add sink(edge, f node[j]);

circuit node add fanin(circuit get node(circuit, f node[j]), edge-
>net) ;

}

FALSE;

(1 = 0; i < total nodes; i ++)

if (s_node[i].clock == TRUE)

{
if (!clock pin)
{
node_index = generate node add external i(circuit, node_index, 1i);
edge = circuit->edges[circuit->num edges - 1];
clock _pin = TRUE;
}
else
{
circuit edge_add_sink(edge, 1i);
circuit node add fanin(circuit get node(circuit, i), edge->net);
}

}

if (fifo node->clock == TRUE)

{
for (j=0;j<fifo counter;j++)
{
circuit edge add sink(edge, f nodel[]j]);
circuit node_add fanin(circuit get node(circuit, f node[j]), edge-
>net) ;
}

}

(irupt latch node != -1){

42

}

if (!clock pin) {
node index = generate node add external i(circuit, node_ index,
irupt latch node);
clock pin = TRUE;
}
elsef
edge = circuit get edge(circuit, circuit->num edges - 1);
circuit edge add sink(edge, irupt latch node);
circuit node add fanin(circuit get node(circuit, irupt latch node), edge-
>net) ;
}
}
if (reset latch node != -1){
if (!clock pin) {
node index = generate node add external i(circuit, node index,
reset latch node);
clock pin = TRUE;
}
else(
edge = circuit get edge(circuit, circuit->num edges - 1);
circuit edge add sink(edge, reset latch node);
circuit node add fanin(circuit get node(circuit, reset latch node), edge-
>net) ;
}
}
for (i = 0; i < num ffs; i ++){
if (!clock pin) {
node index = generate node add external i(circuit, node index, ffs[i]);
clock pin = TRUE;
}
elsef
edge = circuit get edge(circuit, circuit->num edges - 1);
circuit edge add sink(edge, ffs[i]);
circuit node add fanin(circuit get node(circuit, ffs[i]), edge->net);
}
}
circuit sanity(circuit, fpout, TRUE);
free (f node);

free (name) ;

free (inter_ level empty output pins);
free (inter level empty input pins);
return circuit;

//end of code to change...

circuit node_t *generate dataflow multiplexer (FILE *fpout,int flag,char *handle,int
no_input,int no_output)

{

FILE *fp;

char *cmd string, *filename;
circuit t *mux circ;

circuit node_t *mux node, *demux_node;
char *name;

int clock;

int count;

name =(char *) my malloc (2*STRING*sizeof (char));

cmd string = (char *) my malloc (2*STRING*sizeof (char));
filename = (char *) my malloc (2*STRING*sizeof (char));
count =0;

printf ("\n number of input =%d",no_input);
printf ("\n number of output =%d",no output);
if (flag==0)

{

printf (name, "mux_%s",handle);

sprintf (filename, "multiplexer %s", handle);

create mux(no_input,no output, filename);

#ifdef WIN32

SetCurrentDirectory ("C:\\Docume~1\\jjpll\\desktop\\research\\bcgen\\bcgen\\BUS_ GEN
ERATOR") ;

43

sprintf (cmd_string, "perl module gen janki.pl --filename=%s --entityname=mux_ %s --

design=%s > $%$s.output 2>&1",filename, filename, filename, filename);
system (cmd string);

SetCurrentDirectory("..");

fendif

sprintf (filename, "BUS GENERATOR/multiplexer $s.blif", handle);

fp = fopen(filename, "r");

if (fp == (FILE *) NULL) fprintf (fpout,"Error generating multiplexer block\n");

else

{

mux circ = read blif (fp, fpout, filename, FALSE, TRUE);
fclose (fp);
if (mux circ == (circuit_t *)NULL)
{
fprintf (fpout, "Error reading mux block\n");
}
}

// convert into a node

mux node = circuit node alloc_and init from subcircuit (mux circ, name, 0, 0, NULL, NULL);

}//end of if for flag =0

// flag =1 then demultiplex signals...mean input number is smaller than output....
if (flag ==1)
{
sprintf (name, "demux %s",handle);
sprintf (filename, "demultiplexer %s", handle);
create mux(no_ input,no output, filename);
#ifdef WIN32

SetCurrentDirectory ("C:\\Docume~1\\jjpll\\desktop\\research\\bcgen\\bcgen\\BUS_ GEN

ERATOR") ;

sprintf (cmd string, "perl module gen janki.pl --filename=%s --entityname=mux %s --

design=%s > $%$s.output 2>&1", filename, filename, filename, filename);

system (cmd string);
SetCurrentDirectory("..");

#endif

sprintf (filename, "BUS GENERATOR/demultiplexer $s.blif", handle);

fp = fopen(filename, "r");

if (fp == (FILE *) NULL) fprintf (fpout,"Error generating demultiplexer
block\n");

else

mux_circ = read blif (fp, fpout, filename, FALSE, TRUE);
fclose (fp);
if (mux circ == (circuit t *)NULL)
{
fprintf (fpout, "Error reading demux block\n");
}
}

// convert into a node

mux_node = circuit node alloc and init from subcircuit (mux circ, name, 0, 0, NULL, NULL);

}//end of if for flag =1
// flag =1 then demultiplex signals...mean input number is smaller than output....
free (cmd string);
free(filename) ;
return mux node;
}//end of generate dataflow multiplexer function...
circuit t *generate dataflow fifo(FILE *fpout,int flag,char *handle,int no_input,int
no_output)

{

FILE *fp;
char *cmd string, *filename;

44

circuit t *mux circ;
char *name;
int clock;
int count;

name =(char *) my malloc(2*STRING*sizeof (char));
cmd_string = (char *) my malloc (2*STRING*sizeof (char));
filename = (char *) my malloc (2*STRING*sizeof (char));
count =0;

printf ("\n number of input =%d",no_input);
printf ("\n number of output =%d",no_output);
//flag ==2 ..for fifo core...
if (flag ==2)
{
sprintf (name, "fifo %s",handle);
sprintf (filename, "fifo core %s", handle);
create fifo(no input,no output, filename);
#ifdef WIN32
SetCurrentDirectory ("C:\\Docume~1\\jjpll\\desktop\\research\\bcgen\\bcgen\\BUS_ GEN
ERATOR") ;
sprintf (cmd string, "perl module gen janki.pl --filename=%s --entityname=mux %s --
design=%s > $s.output 2>&1", filename, filename, filename, filename) ;
system (cmd string);
SetCurrentDirectory ("..");

#endif

sprintf (filename, "BUS GENERATOR/fifo core %s.blif", handle);
fp = fopen(filename, "xr");

if (fp == (FILE *) NULL)

{
fprintf (fpout, "Error generating fifo block\n");
}
else
{
mux circ = read blif (fp, fpout, filename, FALSE, TRUE);
fclose (fp);
if (mux circ == (circuit t *)NULL)
{
fprintf (fpout, "Error reading fifo block\n");
}
}

}//end of if for flag =2
free (cmd string);
free(filename) ;
return mux_circ;

}//end of function

//CODE FOR SRL FIFO (VHDL code borrowed from OPEN CORE) ..
void create_fifo(int in nol, int out nol,char *name)
{

int in no,out no;

char *Hameicogy;

FILE *f;

SetCurrentDirectory ("C:\\Docume~1\\jjpll\\desktop\\research\\bcgen\\bcgen\\BUS_GEN
ERATOR") ;

name copy = (char *) my malloc (2*STRING*sizeof (char));

printf ("\n name of the file =%s",name);
strcpy (name_copy, name) ;

strcat (name_ copy,".vhd");

in_no =in_nol;

out_no = out _nol;
f= fopen (name_copy, "w") ;
if (£==NULL)

{

printf ("An error has occurred.\n");

return 1;

}

//start of vhdl file printing........
fprintf (£, "library IEEE;\n");

fprintf (f, "use IEEE.STD LOGIC 1164.ALL;\n");
fprintf (£, "use IEEE.STDiLOGlciARITH.ALL;\n");

45

fprintf (£, "use IEEE.STD_LOGIC_UNSIGNED.ALL;\n“);
fprintf (£, "use IEEE.NUMERIC_STD.ALL;\n");
fprintf (f,"\n entity %s is \n",name);

fprintf (£," \ngeneric(width integer := %d); -- set to how wide fifo is to
be",in no);

fprintf (£, "\nport (\n");

fprintf (f, "\ndata_in in std _logic vector (width -1 downto 0);");

fprintf (£, "\ndata out out std logic vector (width -1 downto 0);");
fprintf (£, "\nreset in std logic;");

fprintf (£, "\n write in std logic;");

fprintf (f,"\n read : in std_logic;");

fprintf (f, "\nfull out std logic;");

fprintf (f,"\n half full out std_logic;");

fprintf (f, "\ndata present : out std_logic;");

fprintf (£, "\nclk in std logic");

fprintf (£,"\n);");
fprintf (f,"\n end %s ;",name);

fprintf (f,"\n architecture behavioural of %s is ",name);

fprintf (£f,"\n constant srl length integer := 32; -- set to srl
32 bit length");

fprintf (£, "\n constant pointer vec integer := 5;

needed to store pointer = log2(srl length)");

fprintf (£, "\n type srl array is array (srl length - 1 downto

STD LOGIC VECTOR (WIDTH - 1 downto O);");
fprintf (£f,"\n signal fifo store
fprintf (f,"\nsignal pointer

srl array;");

fprintf (£, "\nsignal pointer zero std logic;");
fprintf (£, "\nsignal pointer full std logic;");
fprintf (£, "\nsignal valid write std logic;");

fprintf (£, "\nsignal

0):")s

fprintf (£, "\nsignal empty

fprintf (£, "\nsignal valid count

fprintf (£, "\nbegin") ;

fprintf (f,"\n-- Valid write,

fprintf (f,"\nvalid write <= '1' when (read 'l

fprintf (£,"\n or (write 'l'" and pointer full = '0'

fprintf (f,"\n-- data store SRL's");

fprintf(f,"\ndataisrl :process(clk)");

fprintf (£, "\nbegin");

fprintf (f,"\nif rising edge(clk) then");

fprintf (£, "\nif valid write = '1' then");

fprintf(f,"\nfifoistore <= fifo store(fifo store'left - 1 downto 0)

fprintf (£, "\nend if;");

fprintf (£, "\nend if;");

fprintf (£, "\nend process;");

fprintf (f,"\ndata out <= fifo store(pointer);");

fprintf (£, "\nprocess(clk)");

fprintf (£, "\nbegin");
(
(
(
(
(
(
(
(
(
(
(
(

half full int

std logic := "'"1';");

std logic ;");

= '1')

and write
) else

std logic vector(pointer

0" ;

'type' 16 or

-- set to number of bits

0

) of

integer range 0 to srl length - 1;");

vec - 1 downto

high when valid to write data to the store.");

")

’

& data_in;");

fprintf (f,"\nif rising edge(clk) then");

fprintf (f,"\nif reset = '1' then");

fprintf (£, "\nempty <= '1';");

fprintf (f,"\nelsif empty = 'l' and write = '1' then");

fprintf (£, "\nempty <= '0';");

fprintf (£, "\nelsif pointer zero = 'l' and read = 'l' and write = '0'" then");
fprintf (£, "\nempty <= '1';");

fprintf (£, "\nend if;");

fprintf (f,"\nend if;");

fprintf (£, "\nend process;");

fprintf (£, "\n-- w R Action");

fprintf (£, "\n-- 0 0 pointer <= pointer");

fprintf (£, "\n-- 0 1 pointer <= pointer - 1 Read, but no write, so
less data in counter");

fprintf (£, "\n-- 1 0 pointer <= pointer + 1 Write, but no read, so
more data in fifo");

fprintf (£, "\n-- 1 1 pointer <= pointer Read and write,

so same number of words in fifo");
fprintf (£, "\nvalid count <= 'l' when
fprintf (f,"\n(write = '1' and read
)"

fprintf (£, "\nor") ;

(")
'0' and pointer full

= '0' and

46

empty = '0'

fprintf (£, "\n(write = '0' and read = 'l' and pointer zero = '0')");
fprintf (£,"\n) else '0';");

fprintf (f, "\nprocess(clk)");

fprintf (£, "\nbegin") ;

fprintf (£, "\nif rising edge(clk) then");

fprintf (£, "\nif valid count = 'l1' then");

fprintf (f,"\nif write = '1' then");

fprintf (f, "\npointer <= pointer + 1;");

fprintf (£, "\nelse");

fprintf (£, "\npointer <= pointer - 1;");

fprintf (£, "\nend if;");

fprintf (£, "\nend if;");

fprintf (£f,"\nend if;");

fprintf (£, "\nend process;");

fprintf (f,"\n-- Detect when pointer is zero and maximum");
fprintf (£, "\npointer zero <= 'l' when pointer = 0 else '0';");
fprintf (£, "\npointer full <= 'l' when pointer = srl length - 1 else '0';");
fprintf(f,"\n -- assign internal signals to outputs");
fprintf (£, "\nfull <= pointer full; ");

fprintf (£, "\nhalf full int <= std logic vector (to unsigned(pointer,
pointer vec));");

fprintf (£, "\nhalf full <= half full int(half full int'left);");
fprintf (£, "\ndata present <= not(empty);");

fprintf (£, "\nend behavioural;");

fclose (f);

}

DATA_MUX.C

#include "../include.h"
//CODE TO CREATE MULTIPLEXER AND DEMULTIPLEXER
void create mux(int in nol, int out nol,char *name);

void create mux(int in nol, int out nol,char *name)
{
int in no,out no,divl result,div2 result,div3 result,mod,diff,value,rem line,diffl;
int flag, check;
int val, temp_val,no,M;
int var, counter;
int *input =(int*)malloc (sizeof (int));
int *output=(int*)malloc (sizeof (int));
int copy_ input, copy output;
int 1i,J,count, temp value;
char *mux name, *name_ copy, *COpy mux name;
FILE *f,*f1;
SetCurrentDirectory ("C:\\Docume~1\\jjpll\\desktop\\research\\bcgen\\bcgen\\BUS_GEN

ERATOR") ;

name copy = (char *) my malloc (2*STRING*sizeof (char));

mux _name = (char *) my malloc (2*STRING*sizeof (char));
copy mux name = (char *) my malloc (2*STRING*sizeof (char));

printf ("\n name of the file =%s",name);
strcpy (name_copy, name) ;
sprintf (mux name, "mux %s",name_ copy) ;
strcat (name_copy,".vhd");
strcpy (copy mux_ name,mux_name) ;
strcat (copy mux_name,".vhd");
//code for 2 to 1 mux...
in_no =in_nol;
out_no = out _nol;
*input =in no;
*output = out no;
//case 1 when where *input > *output...
if (*input>*output)
{
//start of mux.vhd...
fl=fopen (copy mux name,"w");
if (£1==NULL)
{

printf ("An error has occurred.\n");

47

return 1;
}
fprintf (f1,"library IEEE;\n");
fprintf (f1, "use IEEE.STD LOGIC 1164.ALL;\n");
fprintf (£1, "use IEEE.STD_LOGIC_ARITH.ALL;\n");
fprintf (£1, "use IEEE.STD_LOGIC_UNSIGNED.ALL;\n");
fprintf (f1,"\n entity %s is \n",mux name);
fprintf (f1, "port\n(\n") ;
fprintf (£1,"X : in std logic;\n");
fprintf (£1,"Y :in std logic;\nS : in std logic;\n ");
fprintf (£1,"Z : out std logic \n);\nend %s;\n ",mux name);
fprintf (f1, "architecture Behavioral of %s is \n ",mux name) ;
fprintf (f1, "begin \n ");

fprintf(fl," Z2 <= X when S = '0' else Y; \n ");
fprintf (f1,"end Behavioral;\n ");
fclose (f1l);

//end of mux.vhd file....
//now create another file for reducing the signal by multiplexing...by connecting to
//mux.vhd using port map....
f= fopen (name copy,"w");
if (£==NULL)
{
printf ("An error has occurred.\n");
return 1;
}
//start of vhdl file printing........
fprintf (£, "library IEEE;\n");
fprintf (£, "use IEEE.STDiLOGIC71164.ALL;\n");
fprintf (£, "use IEEE.STDiLOGIciARITH.ALL;\n");
fprintf (£, "use IEEE.STD_LOGIC_UNSIGNED.ALL;\n");
fprintf (£f,"\n entity %s is \n",name);
//end of file printing
printf ("welcome to program...");

[/ PRINTING TO FILENAME.VHD FILE----—-——————————————————————————————
fprintf (f, "generic \n(\n M : integer := %d ;\n N : integer := %d\n);", in no ,
out no);
fprintf (£, "\nport (\nA : in std logic vector (0 to %d); \nB : out std logic vector(
0 to %d)\n);",in no-1,out no-1);

fprintf (£,"\n end %s;",name) ;

fprintf (£, "\narchitecture Behavioral of %s is",name);
fprintf (f, "\ncomponent %s",mux name) ;

fprintf (£, "\n port (\nX : in std logic;\nY :in std logic;\nS : in
std logic;\nZz : out std logic\n);");

fprintf (£, "\nend component;");

no=2;

count =1;

M=in no%2;

for (i=in no/2;i>=1;i=1i/2)

{

out no = out no-1;

if (out_no >=i)
{
break;
}
count=count+1;
M=1%2;
}//end of for...
printf ("\n count =%d",count);
printf ("\n out no =%d",out no);
temp_val=1;
for (i=1;i<=count;i++)
{//generate internal signals
fprintf (£, "\nsignal X %d : std logic vector (0 to %d);",i, (in_no/temp val-
1));
temp_val=temp val*2;
}
fprintf (£, "\nbegin") ;
fprintf (f,"\n J :for i in 0 to %d generate",in no-1);

48

fprintf (£, "\nX 1(i) <= A(i);");
fprintf (£, "\nend generate J;");
val =2;
for (i=1; i<=count;i++)
{
M= in no%2;
if (1>1)
{
//gives in no input to multiplexer...
fprintf (£, "\nG%d: for i in 0 to %d generate",i-1,in no-1);
fprintf (£, "\nU%d : %s port map(X =>X %d(i*2) ,Y => X %d((i*2)+1), S =>X %d(i*2), Z =>
X %d(i));",i-1,mux name,i-1,i-1,i-1,1i);
fprintf (£, "\nend generate G%d;",i-1);
}
if (M!=0)
{
fprintf (£, "\nB(%d) <= X %d(%d);", *output-1,i,in no-1);
*output = *output-1;
}
in no = in no/2;
val =val*2;
}//end of for loop...

diff = (in no*2) - out no;
value =diff *2;//number of input goes to multiplexer...
rem_line = (in_no*2) -value;//out_no = rem line +diff.

fprintf (f,"\n G: for i in 0 to %d generate",diff-1);
fprintf(f,"\n U : %s port map (X =>X %d(i*2) ,Y => X %d((i*2)+1), S

=>X %d(i*2),Z => B(i));",mux name,count, count,count);
fprintf (£, "\nend generate G ;");
j=value;

for(i = diff ;i <out no;i++)
{

fprintf (£, " \n B(%d) <= X %d(%d);",i,count,j);
J4+; -
}
fprintf (£f,"\n end Behavioral;");
fclose(f); //CLOSE THE FILE
}//end of case 1..*input > *output..

//case 2.. where *inputl < * input2 THEN demultiplex signals....
if (*input<=*output)
{

diffl= *output-*input;

flag =1;

check=1;

counter =0;

var =0;

f= fopen (name_copy, "w") ;
if (£==NULL)

{
printf ("An error has occurred.\n");
return 1;
}
//start of vhdl file printing........
fprintf (£, "library IEEE;\n");
fprintf (f,"use IEEE.STD LOGIC 1164.ALL;\n");
fprintf (£, "use IEEE.STDiLOGlciARITH.ALL;\n");
(fl
(

fprintf "use IEEE.STDiLOGlciUNSIGNED.ALL;\n");

fprintf (£,"\n entity %s is \n",name);

//means I need to increase wires upto diffl....from the *input..

/) ——————————————— PRINTING TO FILENAME.VHD FILE--—-—-———————————-—-—-—-—-—
fprintf (f, "generic \n(\n M : integer := %d ;\n N : integer := %d\n);",

in no , out no);
fprintf (£, "\nport (\nA : in std logic vector (0 to %d);\n B : out
std logic vector(0 to %d)\n);",in no-1,out no-1);
fprintf (£,"\n end %s;",name) ;
fprintf (£, "\narchitecture Behavioral of %s is\n",name);
fprintf (£, "begin\n ");
//if diffl is zero means both are same values ...so just connect from A to B...

49

if(diffl == 0)
{
var= var+l;
fprintf (f,"\n B(0) <= A(0) xor A(1l);\n");
fprintf (£, "K%d:for i in 1 to %d generate \n",var,in no-1);
fprintf (£f,"B(i) <= A(i);\n ");
fprintf (f," end generate;\n");

£,
£,
}

//else means diffference is greater than zero so we have to make copy of //wires...which
//can connect to B
else
{
fprintf (£,"\n B(0) <= A(0) xor A(l);\n");
do
{
var = var +1;
if (check ==1)

fprintf (£, "K%d:for 1 in 1 to %d generate
\n",var,in no-1);

else

{
fprintf (£, "K%d:for 1 in 0 to %d generate
\n",var,in no-1);

}

check =0;

fprintf (£, "B(i+%d) <= A(i);\n",counter);
fprintf (£f," end generate;\n");
if(flag ==0)
{
diffl=diffl-in no;
}
flag=0;
counter=counter+ (in no);
}while (diffl > in no);

if (diff1<0)
{
diffl = (-diffl);
}
var = var +1;
fprintf (f,"K%d:for 1 in 0 to %d generate \n",var, (diffl-1));
fprintf (£f,"B(i+%d) <= A(i);\n",counter);
fprintf (£f," end generate;\n");
}//end of else
fprintf (£, "end behavioral;\n");
fclose (f);
}//end of if... case 2.....

}//end of function create mux...

50

