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Abstract

The fruitful relation between the theory of symmetric functions and that of D-finite power

series was first introduced by Goulden and Jackson in 1980, and later extended by Ges-

sel, who stated two important results that provide closure properties of D-finite symmetric

series under the scalar and inner products. These products are very important from the

computational and combinatorial points of view, as a prime tool for coefficient extraction

in symmetric series. Gessel presented some enumerative problems that can be better un-

derstood using his results on D-finiteness. We connect these notions with Scharf, Thibon

and Wybourne’s results on reduced Kronecker products. Also, we extend the necessary con-

ditions on one of Gessel’s theorems and determine some consequences in Young Tableaux

enumeration.
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Chapter 1

Introduction

Symmetric functions are classic mathematical objects which serve as powerful devices for

establishing deep relations between areas of mathematics. These are simply multivariate

power series that are invariant under any permutation of their variables. The Kronecker

product (also referred to as inner product) and the scalar product, which can be defined

by bilinearity from their definition on some of the five widely known bases {pλ}, {mλ},
{hλ}, {eλ} and {sλ} of the space Λ of symmetric functions, are of special importance in

the theory of representations of symmetric groups, and are also helpful in the resolution of

some combinatorial problems involving coefficient extraction from symmetric series. There

are numerous open problems involving these products and their study is a very active topic

in algebraic combinatorics. Our interest here is mostly related to enumerative applications.

1.1 D-finite symmetric functions

Information on the coefficients of a power series may sometimes be translated into the

solution to an enumerative problem. Gessel [7] applied this idea to symmetric functions,

where coefficient extraction is achieved through the use of the scalar and inner products.

In further sections we present some of the enumerative problems tackled by Gessel. In

some cases it may not be possible to obtain explicit formulas for the coefficients of a given

symmetric function, but we can get some of its analytic properties. For this purpose, Gessel

resorted to the theory of D-finite formal series. A power series in one variable is D-finite if it

satisfies a linear homogenous differential equation with polynomial coefficients. It is possible

to extend this concept to more than one variable and also to an infinite number of variables.

1



CHAPTER 1. INTRODUCTION 2

Gessel considers symmetric functions as objects that exist as a series inQ[[p1, p2, . . . , pn, . . .]],

and defined a symmetric function to be D-finite whenever it is D-finite with respect to the

pi’s, viewing each pi as a formal variable. The importance of D-finiteness in enumeration

comes from the fact that a generating function in one variable is D-finite if and only if its

coefficients are P-recursive, i.e., they satisfy a linear recursion with polynomial coefficients.

Gessel [7] showed sufficient conditions for a scalar product and an inner product of

symmetric functions to be D-finite. We state his results briefly here:

1. If f and g are symmetric functions that are D-finite in the pi’s (and maybe in some

other variable t), then f ∗ g is D-finite in these variables.

2. If f and g are D-finite with respect to the pi’s and another variable t, g involves only

a finite number of pi’s, and ⟨f, g⟩ is well-defined as a formal power series in t, then

⟨f, g⟩ is D-finite with respect to t.

One of our main motivations is to find weaker sufficient conditions for the second part.

We show some fairly general families of symmetric functions that do not satisfy these con-

ditions and whose scalar product is still D-finite.

1.2 Computations and applications of D-finite symmetric func-

tions

Mishna [15] and Chyzak, Mishna and Salvy [5] developed algorithms that compute a system

of differential equations satisfied by the Kronecker product of two symmetric functions given

the differential equations satisfied by each of these functions. In [16], Mishna introduced

a family of Kronecker product identities that were obtained using a Maple package that

implements these algorithms, and a multiplicativity property of the Kronecker product. We

use the same methods in order to obtain a family of D-finite scalar products that does not

satisfy Gessel’s conditions. These identities may suggest some ideas concerning the desired

weaker conditions for a scalar product of symmetric functions to be D-finite.

1.3 Reduced Kronecker product

The coefficients that arise from expanding (in terms of Schur functions) the regular multi-

plication of Schur functions are known as the Littlewood-Richardson coefficients, and they
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can be interpreted combinatorially by applying the well known Littlewood-Richardson rule.

On the other hand, the coefficients that arise from the Kronecker product of Schur func-

tions, which are called Kronecker coefficients (and can be proven to be positive integer using

representation theory), have remained a mystery for many years, as no one has been able

to find a general combinatorial interpretation or a closed formula for them. However, there

have been some recent research on the reduced Kronecker product, which was introduced

by Murnaghan in 1938, producing the reduced Kronecker coefficients, which may shed some

light on the nature of the Kronecker coefficients. Murnaghan’s work focuses mainly on the

reduced Kronecker product of Schur functions. Thibon [24] exploited the bialgebra and Hopf

algebra structure given by the Kronecker product and reduced Kronecker product of sym-

metric functions in order to extend Murnaghan’s work and obtain very general Kronecker

product identities. We do not develop Thibon’s theory here, but we present his results and

show that an important particular case of his main theorem can be obtained using the al-

gorithms from [15] and [5]. We conjecture that a more general case could be deduced using

these algorithms. We also show how Thibon’s results may help us obtain an extension of

Gessel’s theorem on the closure properties of D-finiteness under the scalar product.

1.4 An outline

We recollect in Chapters 2 and 3 the basic concepts on generating functions and symmetric

functions. Most of the notation we use is based on Stanley [22] and Macdonald [14]. Also,

we recall the notion of D-finiteness in Chapter 4 along with the extension to symmetric

functions. In Chapter 5 we state Gessel’s closure properties of D-finiteness with respect to

the scalar and Kronecker products. Then we present an extension of it in Chapter 6 together

with the reduced notation of symmetric functions and some of Thibon’s results. Also, we

explain one of his results from the D-finiteness point of view and state some open problems

for future research.



Chapter 2

Generating Functions

Generating functions play an essential role in combinatorics, by encoding counting infor-

mation of combinatorial classes. They are of special importance in the study of operations

between classes as is the case in the theory of combinatorial structures. They are also useful

in the absence of a general closed formula for the number of objects of a given size in a

combinatorial class.

2.1 Basics

A combinatorial class is a pair (C, |·|) where C is a finite or denumerable set and the mapping

| · | : C 7→ Z≥0 assigns to every element c ∈ C a nonnegative integer called the size of c,

denoted by |c|, such that the number of elements of any given size is finite. It becomes

natural then to consider the sequence (Cn)n≥0, where Cn denotes the number of elements

of size n in C.
A formal power series is defined as an infinite formal sum of monomials in some set of

variables. The notion of convergence are not of foremost importance in our current work.

Formal power series are defined over a ring of coefficients. We are going to be working

mainly on the ring Q of rational numbers. In the univariate case, power series are added

and multiplied in a natural way as follows:∑
n≥0

fnz
n

+

∑
n≥0

gnz
n

 =
∑
n≥0

(fn + gn)z
n.

4
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∑
n≥0

fnz
n

×

∑
n≥0

gnz
n

 =
∑
n≥0

(
n∑

k=0

(fkgn−k)

)
zn.

The coefficient of zn in a formal power series f(z) is denoted by [zn]f(z).

Generating functions are particular cases of formal power series that depend on combi-

natorial classes. Given a class C, its ordinary generating function is defined by:

C(z) =
∑
n≥0

Cnz
n,

where Cn is the number of elements of size n in C. Also define the exponential generating

function of the class C as the formal power series

C̃(z) =
∑
n≥0

Cn
zn

n!
.

Ordinary generating functions are normally used for classes of unlabelled objects while

exponential generating functions are used to count classes of labelled objects.

Example 2.1. Denote by P the class of all the permutations of sets of the form {1, 2, . . . , n},
where the size of a permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n} is n. The number of objects

of size n is Pn = n(n − 1) · · · 1 = n!, since a permutation of size n is a bijection of the set

{1, . . . , n} into itself. There are n possibilities for the image of 1, then n− 1 for the image

of 2 and so on. Thus we get the sequence (Pn)n≥0 = 1, 1, 2, 6, . . . n!, . . .. The ordinary and

exponential generating functions of P are given respectively by:

P (z) =
∑
n≥0

n!zn,

P̃ (z) =
∑
n≥0

n!
zn

n!
=
∑
n≥0

zn =
1

1− z
.

Notice that the ordinary generating function does not have a simple expression, while the

exponential one does, which suggests it may be the more relevant series to study.

Multivariate formal power series are also important in combinatorics and serve to keep

track of additional parameters. Consider a class (C, | · |) and a family of parameters χi :

C → Z≥0, i = 1, . . . , d. Let u = (u1, u2, . . . , ud) be an ordered set of formal variables and for

any k = (k1, k2, . . . , kd) ∈ Nd denote uk = uk11 · · ·ukdd . A multivariate generating function
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(MGF), either ordinary or exponential, of the combinatorial class C, is a formal power series

in two or more variables z, u1, u2, . . . , ud, defined by
f(z,u) =

∑
n,k

fn,ku
kzn, (ordinary BGF),

f̃(z,u) =
∑
n,k

fn,ku
k z

n

n!
, (exponential BGF).

where fn,k is the multi-index sequence of the number of objects φ in the class C, such that

|φ| = n and χj(φ) = kj for 1 ≤ j ≤ d.

2.2 Classes of generating functions

In this section we define some useful classes of generating functions in enumerative com-

binatorics. Namely the rational, algebraic and differentiably finite (or D-finite) generating

functions. The importance of these categories of generating functions is the fact that they

all imply the existence of a relatively simple recurrence relation on their coefficients. A

generating function, or more generally a formal power series, F (x) is rational if there exist

polynomials r(x), t(x) ∈ Q[x] such that

F (x) =
r(x)

t(x)
, (2.1)

where t(0) ̸= 0. As a simple example consider F (x) =
∑

n≥1 x
n = x

1−x , which is a rational

function.

A formal power series F ∈ Q[[x]] is algebraic if

tk(x)F (x)k + tk−1(x)F (x)k−1 + · · ·+ t0(x) = 0, (2.2)

for some polynomials t0(x), . . . , tk(x) ∈ Q[x] with tk ̸= 0. The degree of F (x) is the smallest

positive integer k for which an equation of the form (2.2) is satisfied. An example of an

algebraic power series is

F (x) =
1√
1− x

=
∑
n≥0

(−1)n
(
−1/2

n

)
xn,

where −1+ (1−x)F (x)2 = 0, so the polynomials corresponding to equation 2.2 are t0(x) =

−1, t1(x) = 0, t2(x) = 1− x and ti(x) = 0 for i > 2. Notice that F (x) has degree 2.
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An example of a formal power series that is not algebraic is the following:

F (x) = exp(x) =
∑
n≥0

xn

n!
.

To prove that exp(x) is not algebraic, suppose that it is, and let d be the smallest degree

of a polynomial equation

a0 + a1 exp(x) + · · ·+ ad exp(dx) = 0,

satisfied by exp(x). Differentiating this polynomial equation we obtain another one

a1 exp(x) + · · ·+ dad exp(dx) = 0,

and by subtracting the first equation times d to the second one, we obtain one with degree

smaller than d, which is a contradiction.

It is easy to see that any rational power series is also an algebraic power series. It is well

known that the coefficients of both rational and algebraic generating functions satisfy simple

recursions (Stanley [22]). The class of D-finite functions was introduced in 1980 by Stanley

[21], given by generating functions whose coefficients satisfy more general recursions. A

generating function is differentiably finite if all of its derivatives span a finite-dimensional

vector space. We give a more formal definition of differentiably finite generating functions in

Section 4.1. This formal definition easily extends to multiple variables, an infinite number

of variables and to the notion of D-finite symmetric functions.



Chapter 3

Symmetric functions

As stated in the introduction, we are mainly interested in improving our understanding

of the scalar and inner products of symmetric functions. We define a symmetric function

on x1, x2, . . . , xn, . . . as a formal power series that is invariant under any (possibly infinite)

permutation of variables. Let Q be a field of characteristic zero and consider the space of

symmetric functions of degree n over Q, denoted by Λn. If we take the direct sum of the

Λi’s, i.e: Λ =
⊕

i≥0 Λ
i, we obtain the space of all the symmetric functions, which is also a

graded algebra.

3.1 Partitions

Both the inner and scalar products of symmetric functions are often defined by setting the

value of these operations on the relevant bases of Λ given in Section 3.2. All of these bases

are indexed by integer partitions, so let us first recall some elementary concepts concerning

partitions. A partition λ = (λ1, . . . , λk) of a nonnegative integer n is a non-increasing

sequence of integers λi (parts) such that
∑

i λi = n. We write λ ⊢ n and |λ| = n and we say

that n is the size of λ. The empty partition is denoted by (0) ⊢ 0 and is assumed to have

zero parts. Other important parameters of the partition λ are denoted by l(λ) and mi(λ)

(or simply mi), where l(λ) is known as the length of λ and counts the number of nonzero

parts of λ, while mi denotes the number of parts of λ that are equal to i. Using this last

parameter, we can write a partition using another notation λ = 1m12m2 · · · rmr , which is

frequently convenient. Let us now define the integers zλ = 1m1m1!2
m2m2! · · · rmrmr! and

ελ = (−1)m2+m4+···. Also set P :=
∪

n≥0 P(n) with P(n) denoting the set of all partitions

8
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Young diagram of λ. Diagram of shape λ′.

Figure 3.1: Young diagram of shape λ = (7, 6, 4, 3, 3, 2, 1, 1, 1) and its conjugate.

of n.

A partition can be visually represented as a Young diagram. A Young diagram is a finite

collection of boxes into rows, where the number of boxes in each row is greater than or equal

to the number of boxes in the next one below. Each part of a partition is equal to the number

of boxes in the corresponding row of its Young diagram. Notice that this representation is

well-defined and unique. Define now the conjugate, also known as transpose, of a partition

λ, as the partition obtained by reflecting the Young diagram of shape λ along its main

diagonal. We denote it by λ′.

Figure 3.1 shows the Young diagrams of the partition λ = (7, 6, 4, 3, 3, 2, 1, 1, 1) =

132132416171 of size 28 and length 9 and its conjugate λ′ = (9, 6, 5, 3, 2, 2, 1).

A standard Young tableau (SYT) of size n is a Young diagram of a partition λ ⊢ n

combined with a labelling of each box by the numbers 1 to n such that these integers are

strictly increasing both in every row (from left to right) and in every column (from top to

bottom). If we relax the strictly increasing condition in the rows so that these are weakly

increasing, and we allow the labels to be positive integers without additional restrictions,

we obtain what is called a semi-standard Young tableau (SSYT). The partition λ is called

the shape of the SSYT (or SYT), and the labels of the boxes are its entries. Also, we say

that a SSYT T has type α = (α1, α2, . . .) if T has exactly αi entries equal to i. Notice that

a SYT is simply a SSYT of type (1, 1, . . . , 1).

Example 3.1. Consider the same partition λ = (7, 6, 4, 3, 3, 2, 1, 1, 1) from Figure 3.1. A

SSYT of shape λ is illustrated in Figure 3.2.

Given two partitions λ and µ such that µ ⊆ λ (this is µi ≤ λi for all i) define a skew shape
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Figure 3.2: SSYT of shape λ = (7, 6, 4, 3, 3, 2, 1, 1, 1) and type (2, 3, 3, 4, 5, 3, 2, 2, 2, 1, 0, 1).

Figure 3.3: SSYT of skew shape λ/µ = (7, 6, 4, 3, 3, 2, 1, 1, 1)/(3, 3, 1, 1)

as the diagram λ/µ obtained after deleting the cells corresponding to the Young diagram of

µ, from the Young diagram of λ. A SSYT of skew shape λ/µ is defined the same way as a

SSYT of a non-skew shape. See Figure 3.3 for example.

Finally recall that a composition α |= n of a nonnegative integer n is simply a finite

sequence α = (α1, . . . , αk) of nonnegative integers that add up to n. A composition is said

to be weak if at least one of its parts is equal to 0.
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3.2 Some important symmetric functions

In this subsection we present some of the most important families of symmetric functions.

The first relevant family is that of monomial symmetric functions, which are denoted by

mλ(x) (where x = (x1, x2, x3, . . .) and λ = (λ1, λ2, . . . , λk) is a partition), and are given by:

mλ(x) :=
∑

i1,i2,...,ik≥1
all different

xλ1
i1
xλ2
i2

· · ·xλk
ik

with m(0) = 1.

The second family consists of the power sum symmetric functions which are given by:

pn(x) :=
∑
i≥1

xni for n ≥ 1 and p0 = 1;

pλ(x) := pλ1 · · · pλk
.

The elementary symmetric functions eλ are defined as the sum:

en(x) :=
∑

i1<i2<···<in

xi1xi2 · · ·xin for n ≥ 1 and e0 = 1;

eλ(x) := eλ1 · · · eλk
.

Now we define the complete homogeneous symmetric functions hλ by the formulas:

hn(x) :=
∑

i1≤i2≤···≤in

xi1xi2 · · ·xin for n ≥ 1 and h0 = 1;

hλ(x) := hλ1 · · ·hλk
.

Notice that the complete homogenous symmetric function indexed by n is the sum of all

possible monomials of degree n, while the elementary are the sum of only the monomials of

degree n where each variable does not appear more than once. In other words:

hn =
∑
λ⊢n

mλ and en = m1n .

Last, but not least important, are the Schur symmetric functions, which can be defined

as follows:

sλ(x) :=
∑
T

xT.
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where the sum is over all SSYT of shape λ, and xT denotes the monomial xr11 xr22 · · · , where
ri is the number of times the entry i appears in T. For instance, for the SSYT of Figure

3.1 we have:

xT = x21x
3
2x

3
3x

4
4x

5
5x

3
6x

2
7x

2
8x

2
9x10x12,

which would be one term in the expansion of s(7,6,4,3,3,2,1,1,1)(x).

Notice that the monomial symmetric functions and the Schur functions do not satisfy

the nice multiplicative property that defines the elementary, power sum and complete ho-

mogenous symmetric functions. We will study Schur functions more deeply in Section 3.4.

Example 3.2. Some examples of the symmetric functions defined above are the following:

• m(0) = p0 = h0 = e0 = s(0) = 1.

• m1 =
∑
i

xi,

m(2,1) = x21x2 + x1x
2
2 + x21x3 + x1x

2
3 + · · · =

∑
i ̸=j

x2ixj .

• p2 = x21 + x22 + x23 + · · · =
∑
i

x2i .

p(2,1) = p2p1 = x31 + x21x2 + x21x3 + · · ·+ x22x1 + x32 + x22x3 + · · · =
∑
i

x3i +
∑
i̸=j

x2ixj

= m(3) +m(2,1).

• e2 = x1x2 + x1x3 + x1x4 + · · · =
∑
i<j

xixj .

e(2,1) = e2e1 = x21 + x1x
2
2 + x1x2x3 + x21x3 + x1x2x3 + · · · = m(2,1) + 3m(1,1,1).

• h2 = x21 + x1x2 + x1x3 + x1x4 + · · ·+ x22 + x2x3 + x2x4 · · · = m(1,1) +m(2).

h(2,1) = h2h1 = x31+x21x2+x21x3+ · · ·+x21x2+x1x
2
2+x1x2x3+ · · ·+x21x3+x1x2x3+

x1x
2
3 · · · = 3m(1,1,1) + 2m(2,1) +m(3).

• pn(x) = mn(x).

As suggested by the previous examples, it is always possible to write the symmetric

functions from each of these families in terms of the others. In fact, the sets {mλ}λ⊢n,
{eλ}λ⊢n, {hλ}λ⊢n, {pλ}λ⊢n and {sλ}λ⊢n are all linear bases of Λn over Qn.

Theorem 3.1 (Symmetric functions fundamental theorem [22]). Every set {mλ : λ ⊢ n},
{eλ : λ ⊢ n}, {hλ : λ ⊢ n}, {pλ : λ ⊢ n}, {sλ : λ ⊢ n} forms a linear basis for Λn.
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The complete proof of this theorem is omitted, but it can be found in [22].

Corollary 3.2 ([22]). Every set {mλ : λ ∈ P}, {eλ : λ ∈ P}, {hλ : λ ∈ P}, {pλ : λ ∈ P},
{sλ : λ ∈ P}, where P is the set of all partitions, forms a linear basis for Λ.

3.3 Relations between the bases of Λ

In this section we show the relations between power sum, elementary and complete sym-

metric functions with monomial symmetric functions among other relations between them.

Denote by Mλµ (where λ, µ |= n) the number of matrices A = (aij)i,j where aij ∈ {0, 1}
such that the sum of the entries of the rows of A is λ (row(A) = λ) and the sum of the

entries of the columns of A is µ (col(A) = µ). Notice that we may assume these matrices

to be infinite, since we can always write any finite matrix as an infinite one by completing

it with zeros.

Example 3.3. Set λ = (4, 3, 3, 2) and µ = (4, 2, 2, 3, 1). A matrix satisfying row(A) =

(4, 3, 3, 2) and col(A) = (4, 2, 2, 3, 1) is given by:

A =


1 0 1 1 1

1 1 1 0 0

1 1 0 1 0

1 0 0 1 0

 .

Now denote by Nλµ the number of matrices A = (aij)i,j where aij ∈ N such that

row(A) = λ and col(A) = µ and by Rλµ the number of ordered set partitions π =

(B1, . . . , Bk) of the set [l(λ)] = {1, . . . , l(λ)} such that µj =
∑

i∈Bj
λi.

Proposition 3.1 (see Stanley [22]).

1. The coefficient of xα in eλ, where α is a weak composition and λ is a partition, is

equal to Mλα, i.e:

eλ(x) =
∑

µ⊢n=|λ|

Mλµmµ(x).

2. The coefficient of xα in hλ, where α and λ are given as before, is equal to Nλα, this

is:

hλ(x) =
∑
µ⊢n

Nλµmµ(x).
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3. The coefficient of xµ in pλ for µ a partition is equal to Rλµ, i.e:

pλ(x) =
∑
µ⊢n

Rλµmµ(x).

Proof. (Sketch) We are going to present the idea for the first part of the proposition, as

the other ones follow from the same type of argument. The idea of the proof is to find a

bijection between the (0, 1)-matrices A = (aij)i,j with row(A) = λ and col(A) = α and

the monomials xα that appear in the expansion of eλ. Given a (0, 1)-matrix, the condition

row(a) = λ means that we are choosing λ1 entries from the first row, λ2 from the second

and so on. This is equivalent to selecting a term from eλ1 , one from eλ2 , etc. If we multiply

all of them, we get a term of eλ. On other hand, the condition col(A) = α means that we are

taking x1 exactly α1 times, x2 exactly α2 times, etc. In other words, the product is exactly

xα. Conversely, any monomial in eλ corresponds to such matrix (see [22] for a proof of this

correspondence). We have proven that every (0, 1)-matrix with these conditions corresponds

to an occurrence of the term xα in the expansion of eλ. Therefore, the coefficient of xα is

equal to the number of such matrices. See Stanley [22] for more details. ♣

The equalities Mλ,µ = Mµ,λ and Nλ,µ = Nµ,λ are a direct result from the definitions

above, which tells us that the matrices of change of basis between {eλ} and {mλ}, and
between {hλ} and {mλ} are symmetric.

Corollary 3.3.

•
∏
i,j

(1− xiyj)
−1 =

∑
λ,µ

Nλµ∈Pmλ(x)mµ(y) =
∑
λ∈P

mλ(x)hλ(y).

•
∏
i,j

(1 + xiyj) =
∑

λ,µ∈P
Mλµmλ(x)mµ(y) =

∑
λ∈P

mλ(x)eλ(y).

Other important relations that we are going to be using are those between complete,

elementary and power sum symmetric functions.

Proposition 3.2 (see Stanley [22]).∏
i,j

(1− xiyj)
−1 =

∑
λ

z−1
λ pλ(x)pλ(y). (3.1)

∏
i,j

(1 + xiyj) =
∑
λ

z−1
λ ελpλ(x)pλ(y). (3.2)

where zλ = 1m1m1!2
m2m2! · · · rmrmr!.
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Proof. (Sketch)

log
∏
i,j

(1− xiyj)
−1 =

∑
i,j

log((1− xiyj)
−1)

=
∑
n≥0

1

n

(∑
i

xni

)∑
j

ynj


=

∑
n≥0

1

n
pn(x)pn(y).

This result can be used to prove Equation 3.1 (see Stanley [22]). In a similar way we

can prove (3.2). ♣

Corollary 3.4.

hn =
∑
λ⊢n

z−1
λ pλ. (3.3)

en =
∑
λ⊢n

ελz
−1
λ pλ. (3.4)

Proof. To prove (3.3), use the first part of Corollary 3.3 and set y1 = t, y2 = y3 = · · · = 0.

Then use formula (3.1). Similarly for (3.4) but using the second part of Corollary 3.3 and

formula (3.2) instead. ♣

Example 3.4. For example:

h4 =
∑
µ⊢4

pµ
zµ

=
p41
24

+
p21p2
4

+
p1p3
3

+
p22
8

+
p4
4
.

Define the following two symmetric series in Λ(t) :

h(t) :=
∑
n≥0

hnt
n and e(t) :=

∑
n≥0

ent
n.

Using Corollary 3.4, the notation λ = 1m12m2 · · · rmr and the definition of zλ, these have

simple expressions in the power sum basis:

h(t) =
∑
n≥0

hnt
n = exp

∑
k≥1

pkt
k

k

 , (3.5)

e(t) =
∑
n≥0

ent
n = exp

∑
k≥1

(−1)k−1 pkt
k

k

 . (3.6)
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Particularly, denote h = h(1) and e = e(1).

Some connection coefficients have been conveniently omitted from this section. One of

the most complete references on this subject is [22].

3.4 Schur functions

Schur functions are considered among the most important families of symmetric functions,

mainly due to their connection with representation theory and other algebraic topics, which

have led to several generalizations. Here we show one of their most relevant generalizations

(skew Schur functions) and a more general algebraic definition which expresses them in

terms of the complete homogeneous symmetric functions. Recall from the beginning of this

section the combinatorial definition of the Schur symmetric function indexed by a given

partition λ. With this definition, it is natural to define Schur functions indexed by skew

shapes λ/µ. These symmetric functions are known as skew Schur functions. Formally:

sλ/µ(x) :=
∑
T

xT. (3.7)

summed over all SSYTs T of shape λ/µ. Notice that this is a more general form of Schur

function, since sλ/(0) = sλ.

From the combinatorial definition it is not obvious that sλ is a symmetric function.

However, a key theorem due to Jacobi expresses the Schur functions in terms of the com-

plete homogeneous symmetric function basis. For any partition λ = (λ1, . . . , λn) and

µ = (µ1, . . . , µn) ⊆ λ, we have:

sλ/µ = det (hλi−µj−i+j)
n
i,j=1

.

where h0 = 1 and hk = 0 for k < 0. This is known as the Jacobi-Trudi identity and it can

be proven by either a combinatorial or an algebraic argument [22]. Notice that by using

this formula the definition of Schur functions can be extended to weak compositions (that

is, to the case where the sequence λ1, λ2, . . . is not necessarily decreasing).

Example 3.5. Consider λ = (3, 3, 1) and µ = (0). We have

sλ = s(3,3,1)/(0) =

∣∣∣∣∣∣∣∣
h3 h4 h5

h2 h3 h4

0 1 h1

∣∣∣∣∣∣∣∣ = h5h2 + h23h1 − h3h4 − h2h4h1.
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We remark that expanding the complete symmetric functions in the monomial symmetric

functions basis will give

s(3,3,1) = m(3,3,1) +m(3,2,2) + 3m(2,2,2,1) + 2m(3,2,1,1) + 6m(2,2,1,1,1) + 3m(3,1,1,1,1)

+11m(2,1,1,1,1,1) + 21m(1,1,1,1,1,1,1).

By Equation (3.7), there are 6 SSYT of shape (3, 3, 1) and type (2, 2, 1, 1, 1). Thus, the

coefficients of the sum above are the number of SSYT of shape (3, 3, 1) and type equal to

the partition indexing the corresponding monomial symmetric function.

3.5 Operations on symmetric functions

As pointed out before, a better understanding of the scalar and inner product of symmetric

functions is one of the key aims of algebraic combinatorics, and in general terms the moti-

vation of our work. These two products are defined in the next subsections, along with the

notion of plethysm.

3.5.1 Plethysm

Plethysm is a composition of symmetric functions, which corresponds to a sort of combina-

torial composition. Let f(x) be a symmetric function. Define:

pn[f ](x) := f(xn1 , x
n
2 , . . .).

This definition can be extended by linearity and multiplicativity to any symmetric func-

tion, since {pλ : λ ∈ P} forms a basis for Λ. Indeed, given any two symmetric functions

f, g ∈ Λ such that f =
∑

λ aλpλ, we have:

f [g] =
∑
λ

aλpλ[g] =
∑
λ

aλ

l(λ)∏
i=1

g(xλi
1 , xλi

2 , . . .).

The following properties are satisfied by plethysm:

• pn[f + g] = pn[f ] + pn[g].

• pn[fg] = pn[f ]pn[g].

• pn[c] = c, for any constant c.
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• pn[pm] = pnm. Moreover, pλ[pm] = pmλ, for any integer partition λ and any integer

m ≥ 1, where mλ denotes the integer partition of m|λ| obtained by multiplying each

part of λ by m.

The following are some useful identities involving plethysm:

Proposition 3.3 (Important identities I, Macdonald [14]).

h[h2] =
∏
i≤j

(1− xixj)
−1, h[e2] =

∏
i<j

(1− xixj)
−1,

e[h2] =
∏
i≤j

(1 + xixj) and e[e2] =
∏
i<j

(1 + xixj).

where h =
∑

n≥0 hn and e =
∑

n≥0 en.

Proof. We show that

h[e2] =
∑
n≥0

hn[e2] =
∏
i<j

(1− xixj)
−1.

By using Corollary 3.4 we have:∑
n≥0

hn[e2] =
∑
n≥0

∑
λ⊢n

z−1
λ pλ[e2]

=
∑
n≥0

∑
λ⊢n

z−1
λ pλ[e2]pλ[1]

=
∑
λ

z−1
λ pλ[e2]pλ[1]

=
∑
λ

z−1
λ pλ(x1x2, x1x3, x1x4, . . .)pλ(1, 0, 0, 0, 0, . . .)

=
∏
i<j

(1− xixj)
−1 by equation (3.1).

Similarly, we can prove the rest of the identities. ♣

Corollary 3.5 (Important identities II, Macdonald [14]).∑
λ

sλ = h[e1 + e2].

Proof. It is known that∑
λ

sλ =
∏
i

(1− xi)
−1
∏
i<j

(1− xixj)
−1 (see Macdonald [14]).



CHAPTER 3. SYMMETRIC FUNCTIONS 19

Then it suffices to show that

h[e1 + e2] =
∏
i

(1− xi)
−1
∏
i<j

(1− xixj)
−1.

Indeed:

h[e1 + e2] =
∑
n≥0

hn[e1 + e2] =
∑
n≥0

hn(x1, x2, . . . , x1x2, x1x3, . . .).

Since any monomial in {x1, ..., x1x2, ...} is a monomial in {x1, x2, ..}, times a monomial

in {x1x2, x1x3, ...}, then:

∑
n≥0

hn(x1, x2, . . . , x1x2, x1x3, . . .) =

∑
n≥0

hn[e1]

∑
n≥0

hn[e2]

 .

By the previous proposition
∑

n≥0 hn[e2] =
∏

i<j(1− xixj)
−1. On the other hand:∑

n≥0

hn[e1] =
∑
n≥0

hn

=
∑
n≥0

∑
λ⊢n

z−1
λ pλ

=
∑
λ

z−1
λ pλ(x1, x2, . . .)pλ(1, 0, 0, . . .)

=
∏
i

1

1− xi
.

Therefore,

∑
n≥0

hn[e1 + e2] =

∑
n≥0

hn[e1]

∑
n≥0

hn[e2]


=

∏
i

(1− xi)
−1
∏
i<j

(1− xixj)
−1,

and the result follows. ♣

3.5.2 Scalar product of Symmetric functions

The scalar product on Λ is a symmetric bilinear operation ⟨, ⟩ : Λ×Λ → Q such that {mλ}
and {hµ} are adjoint bases, i.e:

⟨mλ, hµ⟩ = δλµ = 1 if λ = µ and 0 otherwise.
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Also it can be shown that:

⟨pλ, pµ⟩ = δλµzλ, and ⟨sλ, sµ⟩ = δλµ.

where zµ = 1m1m1!2
m2m2! · · · rmrmr! for µ = 1m12m2 · · · rmr . Notice that {pλ} and {pλ/zλ}

are also adjoint bases.

Recall that any symmetric function can be written as a linear combination of the mono-

mial basis, and that ⟨f, hλ⟩ is the coefficient of mλ in the monomial basis expansion of f ;

thus the scalar product can be used to get coefficients of a particular monomial in a given

symmetric function. Also using the orthogonality of the power sums, one can produce ex-

plicit formulas for the coefficients of some monomials. These facts provide some methods

of coefficient extraction. We will state in Section 5.4 some of the results that Gessel [7] has

obtained using such methods applied to interesting enumerative problems.

3.5.3 Application to Schur functions

From the definition of Schur functions given by Equation (3.7), we can write the skew Schur

functions in terms of the monomial basis as follows:

sλ/µ =
∑
ν

Kν
λ/µmν

where Kν
λ/µ denotes the number of SSYT of shape λ/µ and type ν. These coefficients are

known as the skew Kostka numbers. It is possible to write these coefficients as a scalar

product using the orthogonality of the monomial and complete homogeneous symmetric

functions as follows:

Kν
λ/µ = ⟨sλ/µ, hν⟩.

For example K1n

λ = ⟨sλ, hn1 ⟩, is the number of SYT of shape λ. The generating function of

the class of all SYT is then,

Y (t) =
∑
n

(∑
λ⊢n

K1n

λ

)
tn =

∑
n

⟨∑
λ⊢n

sλ, h
n
1

⟩
tn =

⟨∑
λ

sλ,
∑
n

hn1 t
n

⟩
. (3.8)

This generating series was studied by Bender and Knuth [3] and Gordon [8] in the case that

λ is of bounded height. Their work gave a closed form in terms of Bessel functions. Gessel

connected these results with his definition of D-finite symmetric functions and obtained

equivalent results for bounded height partitions. But we will see more on this generating

function in Chapter 5 where we study the D-finiteness of different SYT generating functions.
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3.5.4 Kronecker product of symmetric functions

The remaining relevant operation of symmetric functions that we work with is called the

Kronecker product, also known as the inner product, which was first introduced in 1927 by

Redfield [19] and is defined by:

pλ ∗ pµ = δλµzλpλ.

Notice that if we set pλi
= 1 for all i after applying the Kronecker product we get the

scalar product. This idea is going to be useful later. Also, this product can be extended by

linearity. In particular, for Schur functions, we have that

sλ ∗ sµ =
∑
ν

Cν
λµsν ,

for some positive integer coefficients Cν
λµ which have been studied by Murnaghan for par-

ticular shapes. There are currently no explicit formulas for these coefficients. We are going

to study this with more detail in Chapter 6.

Example 3.6. Consider the following Kronecker products of Schur functions,

• s(2) ∗ s(1,1) = s(1,1).

• s(4,2,1,1) ∗ s(4,4) = s(6,1,1) + s(5,3) + 2s(5,2,1) + s(5,1,1,1) + 2s(4,3,1) + s(4,2,2) + 4s(4,2,1,1) +

s(4,1,1,1,1) + 2s(3,3,2) + s(3,3,1,1) + 2s(3,2,2,1) + 2s(3,2,1,1,1) + s(3,1,1,1,1,1) + s(2,2,2,1,1).

Remark 3.1. It is worth pointing out that Λ with the Kronecker product forms a commu-

tative ring with identity h =
∑

n hn. In fact:

h ∗ pµ =

(∑
λ

pλ
zλ

)
∗ pµ

=
∑
λ

pλ ∗ pµ
zλ

=
∑
λ

δλµzλpλ
zλ

.

Therefore,

h ∗ pµ = pµ. (3.9)



Chapter 4

D-finite functions

We already defined rational and algebraic generating functions in Section 2.1. Here we

focus our attention on the more general D-finite (differentiably finite) generating functions

in one variable, which were introduced by Stanley [21] in 1980. Two years later this concept

was generalized to the multivariate case by Zeilberger [25]. And after ten years, Gessel

[7] developed a D-finiteness theory for symmetric series. In this chapter we recall all these

definitions and some important results concerning the closure properties of D-finiteness with

respect to scalar and inner products.

4.1 Definitions

Consider any field Q with characteristic 0 and Q[[x]] the ring of formal power series in x.

We say that a power series F ∈ Q[[x]] is D-finite (differentiably finite) in a variable x if F

and all of its derivatives F (n) = dnF
dxn (n ≥ 1) span a finite-dimensional vector subspace of

Q[[x]] over the field Q(x) of rational functions. It is proven in [22] that this is equivalent to

saying that there exist finitely many polynomials q0(x), . . . , qk(x), with qk ̸= 0, such that:

qk(x)F
(k) + qk−1(x)F

(k−1) + · · ·+ q0(x)F = 0. (4.1)

where F (k) denotes the k-th derivative of F .

As with the rational and algebraic generating functions, it turns out that the coeffi-

cients of a D-finite generating function satisfy a recurrence relation. A function f : N −→
Q is P -recursive (polynomially recursive) if there exists a finite number of polynomials

22
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a0(n), . . . , ak(n), with ak ̸= 0, such that for all n ∈ N:

ak(n)f(n+ k) + ak−1(n)f(n+ k − 1) + · · ·+ a0(n)f(n) = 0. (4.2)

Proposition 4.1. The power series F =
∑

n f(n)x
n ∈ Q[[x]] is D-finite if and only if f(n)

is P-recursive.

The proof of the only-if implication is obtained by noticing that the coefficient of xn+k

in the left hand side of equation (4.1) is equal to the right hand side of equation (4.2), for

some polynomials ai that depend on the qi. The other implication is proven by using the

fact that (n + i)j (the jth descending factorial of (n + i)), for j ≥ 0 forms a Q-basis for

the space Q[n] and so each ai(n) (equation 4.2) will be a linear combination of them (see

Stanley[22]).

Example 4.1. Consider the formal power series F (x) = exp(x) =
∑

n≥0
xn

n! . We have that

F (x) is D-finite since all its derivatives are equal to exp(x), so they form a 1-dimensional

vector space. Equivalently, F (x) satisfies the differential equation F ′(x)− F (x) = 0. Also,

f(n) = 1/n! is P-recursive, since nf(n)− f(n− 1) = 0.

Using a similar argument we can prove the following proposition:

Proposition 4.2. Let p(x) be a polynomial in Q[x]. Then exp(p(x)) is D-finite.

We can extend the definition of D-finite power series to multiple variables x1, . . . , xn.

To do this, consider the ring Q[[x1, x2, . . . , xn]] of power series in x1, . . . , xn. A function

F ∈ Q[[x1, x2, . . . , xn]] is D-finite in the variables x1, x2, . . . , xn if the set of all its partial

derivatives ∂i1+i2+···+inF

∂x
i1
1 ∂x

i2
2 ···∂xin

n

spans a finite-dimensional vector space. Moreover, a formal power

series F is D-finite over an infinite number of variables Ω if for any subset of variables

S ⊂ Ω the function F obtained after setting x = 0 for all x ∈ Ω − S is D-finite. It can be

shown that a function F ∈ Q[[x1, x2, . . . , xn]] is D-finite if and only if F satisfies a system

of n linear differential equations with polynomial coefficients, each equation having partial

derivatives with respect to only one of the variables x1, x2, . . . , xn. That is:

qi,k
∂kF

∂xki
+ qi,k−1

∂k−1F

∂xk−1
i

+ · · ·+ qi,0F = 0, i = 1, 2, . . . , n, (4.3)

for some polynomials qi,j in the variables x1, x2, . . . , xn such that not all of the polynomials

qi,0, qi,1, . . . , qi,k are zero.
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The combinatorial application below is related to the hook formula. Given the Young

diagram T = T(µ) corresponding to a partition µ, and a cell x ∈ T, denote by hook(x)

the hook length of x (the number of cells in the same row to the right of x or in the same

column below x, plus x itself). Then, K1n
µ the number of standard Young tableaux of shape

µ is equal to

K1n

µ =
n!∏

x∈T hook(x)
,

where K1n
µ is the Kostka number of shape µ and type 1n. This formula has been proven in

many different ways, from both algebraic and combinatorial points of view. We direct the

reader to the recent proof [2] by Bandlow.

Proposition 4.3. Denote by am the number of standard Young tableaux of shape (m−|λ|, λ),
for a fixed partition λ. Then {am}m≥0 is P-recursive.

Proof. Using the hook formula we get:

am =
m!∏

x∈T(m−|λ|,λ) hook(x)

=
m!

m−|λ|∏
i=1

(λ′
i +m− |λ| − i+ 1)

∏
x∈T(λ)

hook(x)

=
K1|λ|

λ

|λ|!
· m!
m−|λ|∏
i=1

(λ′
i +m− |λ| − i+ 1)

.

Set Cλ =
K1|λ|

λ

|λ|!
. Then,

am = Cλ
m!

l(λ′)∏
i=1

(λ′
i +m− |λ| − i+ 1)

m−|λ|∏
i=l(λ′)+1

(m− |λ| − i+ 1)

= Cλ
m!(

λ1∏
i=1

(λ′
i +m− |λ| − i+ 1)

)
(m− |λ| − λ1)!

(|λ|+ λ1)!

(|λ|+ λ1)!
, using l(λ′) = λ1.

= Dλ

(
m

|λ|+ λ1

)
1

λ1∏
i=1

(λ′
i +m− |λ| − i+ 1)

, for Dλ = Cλ(|λ|+ λ1)!
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We claim that any rational sequence in one variable is P-recursive. To see this, suppose

that w(n) =
u(n)

v(n)
, where u and v are polynomials. Then we have u(n − 1)v(n)w(n) =

u(n)v(n− 1)w(n− 1) which proves that w(n) is P-recursive. Hence am, which is a rational

function on m, is P-recursive and therefore its generating function is D-finite. The linear

recursion for am is given by:

Dλ

(
m− 1

|λ|+ λ1

) λ1∏
i=1

(λ′
i +m− |λ| − i+ 1)am = Dλ

(
m

|λ|+ λ1

) λ1∏
i=1

(λ′
i +m− |λ| − i)am−1.

which can be simplified by removing the constant factor Dλ on both sides and by expanding

the binomial coefficients:

(m− |λ| − λ1)

λ1∏
i=1

(λ′
i +m− |λ| − i+ 1)am = m

λ1∏
i=1

(λ′
i +m− |λ| − i)am−1.

Notice that the generating function for am is given by

Kλ(t) =
∑
m

amtm =
∑
n,m

⟨sn,λ, hm1 ⟩tm

=

⟨∑
n

sn,λ,
∑
m

hm1 tm

⟩
.

Because the coefficients are P-recursive, this generating function is D-finite in t.

♣

We find a more general consequence of Proposition 4.3 in Chapter 5.

Example 4.2. For the case λ = (2, 1), the previous recurrence becomes,

(m− 5)(m− 1)(m− 3)am = m(m− 2)(m− 4)am−1.

Using Maple we can find the differential equation satisfied by the generating function f(t),

which in this case is given by,

(−3t− 15)K(2,1)(t) + (3t2 + 15t)
dK(2,1)(t)

dt
− 6t2

d2K(2,1)(t)

dt2
+ (t3 − t4)

d3K(2,1)(t)

dt3
= 0.
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4.2 Closure Properties

As we said before, D-finiteness gives information about the simplicity of the coefficients of a

power series. If a power series in one variable is D-finite, then its coefficients satisfy a linear

recursion with polynomial coefficients, which means that there exists a closed formula or

a polynomial time algorithm to calculate these coefficients. This makes D-finiteness very

important in enumerative combinatorics. Operations between power series often have a

combinatorial meaning, whether it is just coefficient extraction or more complex operations

between combinatorial classes, which makes the study of closure properties of D-finitness a

natural and very relevant addition to the theory of D-finite power series.

We denote by D the set of all D-finite power series in x. The following theorem summa-

rizes some of the operations under which D-finiteness is preserved.

Theorem 4.1 (Closure properties, univariate case. Stanley[22]).

1. If F (x), G(x) ∈ D then αF (x) + βG(x) ∈ D and F (x)G(x) ∈ D, for α, β ∈ Q;

2. If F (x) is algebraic then F (x) ∈ D;

3. If F (x) ∈ D and G(x) is an algebraic power series with G(0) = 0, then F (G(x)) ∈ D.

Proving that a power series is D-finite can be done by either finding the explicit dif-

ferential equations or by showing that the space where the derivatives of the function lie

is finite-dimensional. For the first part, the proof is done by showing that the dimensions

of the spaces containing the derivatives of αF (x) + βG(x) and those of F (x)G(x) are both

finite. In the same manner we can prove parts 2 and 3 (see Stanley [22]).

Example 4.3. Take F (x) = exp(x) and G(x) = 1√
1−x

. Using part 1 of Theorem 4.1, we

have that L(x) = exp(x)√
1−x

is D-finite.

From the second part of Theorem 4.1 we have that the coefficients of an algebraic power

series are P-recursive as was mentioned in Section 1.

Theorem 4.2 (Closure properties, multivariate case. Zeilberger[25]).

1. If F is D-finite with respect to x1, x2, . . . , xn, then F is D-finite with respect to any

subset of x1, x2, . . . , xn. The same holds when F is D-finite with respect to an infinite

number of variables.
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2. If F (x1, x2, . . . , xn) is D-finite in x1, x2, . . . , xn and for each k, uk is a polynomial

in the variables y1, y2, . . . , ym, then F (u1, u2, . . . , un) (as long as it is well-defined as

a formal power series) is D-finite in y1, y2, . . . , ym. In other words we may replace

the variables x1, . . . , xn for polynomials in another finite set of variables preserving

D-finiteness. This holds also when F is D-finite with respect to an infinite number of

variables, but the replacement can only be made on a finite subset of these variables.

These statements can be proven using the same type of techniques used for the univariate

closure properties (Theorem 4.1).

The Hadamard product (⊙) of two power series F (x) =
∑

i aix
i and G(x) =

∑
j bjx

j

(where i = (i1, . . . , in) and xi = xi11 x
i2
2 · · ·xinn ) with respect to x is defined as follows:

F (x)⊙G(x) :=
∑
i

aibix
i.

What is the effect of the Hadamard product on D-finite power series? This question was

answered by Lipshitz in 1988:

Lemma 4.1 (Lipshitz [12]). Suppose that F and G are D-finite in x1, x2, . . . , xm+n. Then

the Hadamard product F ⊙ G with respect to the variables x1, x2, . . . , xn is D-finite in

x1, x2, . . . , xm+n.

In this section we have presented a reasonable collection of tools that allow us to show

that a given power series or generating function is D-finite. However, we do not have many

general techniques to prove that a formal power series is not D-finite. Usually a good

argument is by contradiction, as illustrated in Example 4.4.

Example 4.4. Consider the function F (x) = exp (exp (x)). We claim that F (x) is not

D-finite. Suppose, in order to obtain a contradiction, that F (x) is D-finite. Thus the vec-

tor space V spanned by the derivatives of all orders of F (x) is of finite dimension d. We

claim that exp(nx) exp(exp(x)) ∈ V for all n ∈ {0, 1, 2, . . .}. Clearly exp(0x) exp(exp(x)) =

F (x) ∈ V . Inductively if exp(nx) exp(exp(x)) ∈ V , then its derivative n exp(nx) exp(exp(x))+

exp((n+ 1)x) exp(exp(x)) is also in V , and so exp((n+ 1)x) exp(exp(x)) ∈ V . Hence there

is a nontrivial linear combination of {exp(nx) exp(exp(x))}0≤n≤d which is equal to 0. That

is: (
d∑

n=0

an exp(nx)

)
exp(exp(x)) = 0,
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for some scalars an. Since exp(exp(x)) ̸= 0, we have that exp(x) satisfies a nontrivial

polynomial of degree d, which implies that exp(x) is algebraic, contradicting an example

mentioned in Section 2.2.

There exists another argument based on singularity analysis to prove that a function is

not D-finite. As an example of this, consider:

Theorem 4.3 (Folklore). The number of partitions of n, denoted by p̂(n), is not P-recursive.

In order to prove this, it suffices to show that the ordinary generating series∑
n≥0

p̂(n)tn =
∏
k

1

1− tk

is not D-finite. For this, notice that such generating function has an infinite number of

singularities, which is not possible for a D-finite power series. We do not cover this type of

analysis in our work, the reader is directed to Flajolet and Sedgewick [6] for further details.

4.3 Symmetric Series

The last extension of this definition applies to symmetric functions. Consider the power

sum symmetric functions as formal variable and the ring Q[[p1, p2, . . . , pn, . . .]] of symmetric

power series. A symmetric series f ∈ Q[[p1, p2, . . . , pn, . . .]] is D-finite if it is D-finite with re-

spect to any finite subset of the pi’s, after setting pj = 0 for every pj that is not in the subset.

Equivalently, after setting pi = 0 for i ≥ n+1, the set of all its partial derivatives with respect

to the pi’s spans a finite-dimensional vector subspace of Q[[p1, p2, . . . , pn]]. Moreover, if we

consider the ring Q[[t, p1, p2, . . . , pn, . . .]], then a symmetric series f ∈ Q[[t, p1, p2, . . . , pn, . . .]]

is D-finite if it is D-finite with respect to t and the pi’s.

Example 4.5. Recall that h =
∑

n≥0 hn = exp
(∑

k≥1
pk
k

)
(Equation 3.5). If we set pk = 0

for k > n0 for some n0 ∈ N, we get

h|n0
= exp

(
n0∑
k=1

pk
k

)
which is clearly D-finite with respect the pi’s. Notice that F = exp(h) is D-finite with

respect the hi’s, but we cannot say the same with respect to the pi’s, because

F = exp

exp

∑
k≥1

pk
k

 ,
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is not D-finite in the pi’s (set pk = 0 for k ≥ 2 to obtain exp(exp(p1)) which is not D-finite

by Example 4.4).

Proposition 4.4. Let g ∈ Q[t, p1, p2, . . . , pn] then exp (g) is D-finite with respect to t and

the pi’s.

The proof is straightforward since the derivative of a polynomial is a polynomial.

Example 4.6. For instance, the symmetric series,

w(t) = exp

(
m∑
k=1

pkt
k

k

)

is D-finite with respect to t and the pi’s. The system of differential equations satisfied by

w(t) is given by: 
∂w(t)

∂pk
− w(t)

tk

k
= 0 for 1 ≤ k ≤ m,

∂w(t)

∂t
− w(t)

m∑
i=1

ti−1pi = 0.

4.4 Plethysm

Next we present some examples and results that reflect the relations between the notion of

plethysm and the theory of D-finiteness of symmetric functions.

Theorem 4.4 (Gessel[7]). If g is a symmetric polynomial then h[g] and e[g] are D-finite.

Proof. Let g be a symmetric polynomial of degree d. Hence, we can write g in terms of the

power sum basis g =
∑

|λ|≤d aλpλ. We obtain:

h[g] =
∑
n≥0

hn[g] = exp

∑
k≥0

pk[g]

k

 , since h = exp

(∑
k

pk
k

)
.

= exp

∑
k≥0

g[pk]

k


= exp

∑
k≥0

g(xk1, x
k
2, . . .)

k

 .
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Let us write g(xk1, x
k
2, . . .) =

∑
|λ|<d aλpλ(x

k
1, x

k
2 . . .). Then:

h[g] = exp

∑
k≥0

∑
|λ|<d

aλpkλ
k

 .

Where kλ = (kλ1, kλ2, . . . , kλl) for any given partition λ = (λ1, λ2, . . . , λl). Now set

pi = 0 for i > m:

h[g]|pi=0, i>m = exp

 m∑
k=0

∑
|λ|<d

aλpkλ
k

 .

Since pkλ = pkλ1 · · · pkλl
and hence pkλ = 0 for k > m. Thus the symmetric series∑

n≥0 hn[g] is D-finite in {p1, p2, . . . , pm} by Proposition 4.4 and therefore it is D-finite in

{p1, p2, . . . }. ♣

Example 4.7. Some examples of D-finite symmetric functions using plethysm are as follows:

• Consider the symmetric polynomials h2 =
p21+p2

2 . and e2 =
p21−p2

2 . Recall the identities:

h[h2] =
∏
i≤j

(1− xixj)
−1, h[e2] =

∏
i<j

(1− xixj)
−1,

e[h2] =
∏
i≤j

(1 + xixj), e[e2] =
∏
i<j

(1 + xixj).

These symmetric series are all D-finite in the pi’s.

• Also,
∑

λ sλ = h[e1+e2] is D-finite. More generally, for a fixed partition µ,
∑

λ sλ/µ =

h[e1 + e2]
∑

λ sµ/λ is D-finite.

These identities were shown in Subsection 3.5.1. The coefficient of each monomial in the

expansion of these symmetric series has a nice combinatorial interpretation. We will state

this in Chapter 5, where we relate these coefficients to a graph enumeration problem that

was studied by Goulden and Jackson [11].

4.5 Schur Functions

In this subsection, we present some examples of D-finite symmetric series that were not

considered by Gessel. They play an important role in Chapters 5 and 6.
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Lemma 4.2. For a fixed partition λ, the symmetric series
∑

m sm−|λ|,λt
m =

∑
n sn,λt

n+|λ|

is D-finite in {t, p1, p2, . . .}.

Proof. Let λ = (λ1, λ2, . . . , λr) be a partition of length r. Recall that sµ = det (hµi−i+j)
n
i,j=1.

Thus:

sn,λ =

∣∣∣∣∣∣∣∣∣∣∣

hn hn+1 . . . hn+r

hλ1−1 hλ1 . . . hλ1+r−1

... . . .
. . .

...

hλr−r hλr−r+1 . . . hλr

∣∣∣∣∣∣∣∣∣∣∣
= hnsλ − hn+1sλ/1 + hn+2sλ/12 − · · ·+ (−1)rhn+rsλ/(1)r .

As it was observed by Thibon[24],∑
n

sn,λt
n+|λ| = t|λ|

∑
n

(hnsλ − hn+1sλ/1 + hn+2sλ/12 − · · ·+ (−1)rhn+rsλ/1r)t
n

= tr
∑
k,m

(−1)khmsλ/1kt
m

= tr

(∑
m

hmtm

)(∑
k

(−1)ksλ/1kt
λ

)

= trh(t)
r∑

k=0

(−1)ksλ/1k .

Now we recall that h(t) is D-finite with respect to t and the pi’s. Also,
∑r

k=0 (−1)ksλ/1k is D-

finite in the pi’s, because it is a finite polynomial in the Schur functions, which implies that

it is also finite in terms of the pi’s. Therefore
∑

n sn,λt
n+|λ| is D-finite in {t, p1, p2, . . .}. ♣

Example 4.8. Set λ = 1 in the previous lemma:∑
n≥0

sn−1,1t
n =

∑
n≥0

(hn−1h1 − hn)t
n

= (p1t− 1)
∑
n≥0

hnt
n

= (p1t− 1) exp

∑
k≥1

tk
pk
k


= (p1t− 1)h(t),

which is D-finite, because it is the product of two D-finite symmetric functions.
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Lemma 4.3. For a fixed nonnegative integer k, the symmetric series
∑

n snktkn is D-finite

in {t, p1, p2, . . .}.

Proof. Let µ be a partition of length n. Recall that sµ = det (hµi−i+j)
n
i,j=1. Let Sn be the

permutation group of n elements. Denote by sgn(σ) the sign of a permutation σ ∈ Sn.∑
n

snktn =
∑
n

det (hn−i+j)
k
i,j=1t

kn

=
∑
n

∑
σ∈Sk

sgn(σ)
k∏

i=1

hn−i+σ(i)

 tkn

=
∑
σ∈Sk

sgn(σ)
∑
n

(
k∏

i=1

hn−i+σ(i)

)
tkn.

Using the Hadamard product we can write the sum over n as k Hadamard products.

∑
n

(
k∏

i=1

hn−i+σ(i)

)
tkn =

k⊙
i=1

(∑
n

hn−i+σ(i)t
kn

)
.

Now, ∑
n

hn−i+σ(i)t
kn = tki−kσ(i)

∑
m

hmtkm = tki−kσ(i)h(tk),

D-finite with respect to t and the pi’s, since the t → tk preserves D-finiteness. The result

follows from Theorem 4.1. ♣

Example 4.9. Set k = 2 in the previous Lemma:∑
n≥0

s(n,n)t
2n =

∑
n≥0

(h2n − hn−1hn+1)t
2n

=
∑
n≥0

h2nt
2n −

∑
n≥0

hn−1hn+1t
2n.

We have that ∑
n≥0

h2nt
2n =

∑
n≥0

hnt
2n ⊙

∑
n≥0

hnt
2n

is D-finite. On the other hand, since∑
n≥0

hn−1hn+1t
2n =

∑
n≥0

hn−1t
2n ⊙

∑
n≥0

hn+1t
2n,

is D-finite because
∑

n≥1 hn−1t
2n = t2

∑
m≥0 hmt2m and

∑
n≥1 hn+1t

n = 1
t2
∑

m≥1 hmt2m

are D-finite, then
∑

n≥0 s(n,n)t
2n is a D-finite symmetric series.
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Theorem 4.5. Let λ and µ be fixed partitions and k a fixed nonnegative integer. Then the

symmetric series
∑

n s(nk,λ)/µt
kn+|λ|−|µ| is D-finite in {t, p1, p2, . . .}.

Proof. Set ρi = n if 1 ≤ i ≤ k and ρi = λi−k for k + 1 ≤ i ≤ k + r. We obtain∑
n

s(nk,λ)/µt
kn+|λ|−|µ| =

∑
n

det (hρi−µj−i+j)
k+r
i,j=1t

kn+|λ|−|µ|

=
∑
n

 ∑
σ∈Sk+r

sgn(σ)
k∏

i=1

hn−µσ(i)−i+σ(i)

k+r∏
i=k+1

hλi−k−µσ(i)−i+σ(i)

 tkn+|λ|−|µ|

=
∑

σ∈Sk+r

sgn(σ)
∑
n

(
k∏

i=1

hn−µσ(i)−i+σ(i)

k+r∏
i=k+1

hλi−k−µσ(i)−i+σ(i)

)
tkn+|λ|−|µ|.

Let us denote

Rσ =
∑
n

(
k∏

i=1

hn−µσ(i)−i+σ(i)

k+r∏
i=k+1

hλi−k−µσ(i)−i+σ(i)

)
tkn+|λ|−|µ|.

Since the sum over σ ∈ Sk+r is finite, we only need to show that Rσ is D-finite. Indeed

using the Hadamard product on the variable t:

Rσ =

(
k+r∏

i=k+1

hλi−k−µσ(i)−i+σ(i)t
|λ|−|µ|

)∑
n

(
k∏

i=1

hn−µσ(i)−i+σ(i)

)
tkn

=

(
k+r∏

i=k+1

hλi−k−µσ(i)−i+σ(i)t
|λ|−|µ|

)
·

k⊙
i=1

(∑
n

hn−µσ(i)−i+σ(i)t
kn

)
.

which is a D-finite symmetric function by the same argument as Lemma 4.3. ♣

This last theorem will play an important role in Chapter 5, where we find generating

functions of SSYT restricted to specific families of shapes.



Chapter 5

D-finiteness and the scalar and

Kronecker products

In this chapter we present a few closure properties of D-finiteness under the scalar and

Kronecker products of symmetric functions. We study some identities that suggest the

possibility of an extension of these closure properties.

5.1 Kronecker product

Recall that the Kronecker product of symmetric functions is given by pλ ∗ pµ = δλµzλpλ. In

Gessel’s treatise on D-finite symmetric functions, most of the results stem from the following:

Theorem 5.1 (Gessel [7]). If f and g are symmetric functions that are D-finite in the pi’s

(and maybe in some other variable t), then f ∗ g is D-finite in these variables.

Proof. Let f =
∑

λ aλpλ and g =
∑

µ bµpµ be symmetric functions and set v =
∑

γ zγpγ .

We have that

f ∗ g =
∑
λ

aλbλzλpλ = f ⊙ g ⊙ v.

On the other hand, recalling that zλ = 1r1r1!2
r2r2! · · · we can write v as follows:

v =
∑

r1,r2,...

1r1r1!2
r2r2! · · · pr11 pr22 · · ·

=

(∑
r1

r1!(1p1)
r1

)(∑
r2

r2!(2p2)
r2

)
· · ·

= A(1p1)A(2p2) · · · .

34
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where A(y) =
∑
n≥0

n!yn is a D-finite generating function since its coefficients are P-recursive.

Thus v is D-finite by using part 1 of Theorem 4.1. We have obtained that f , g and v are

D-finite. Hence Theorem 4.1 provides the desired result. ♣

5.1.1 Some Kronecker product identities

In this subsection we present some useful identities involving Kronecker products.

Lemma 5.1 (Mishna [16]). If f and g are two symmetric functions such that f(p1, p2, . . .) =∏
i≥1

ai(pi) and g(p1, p2, . . .) =
∏
j≥1

cj(pj). Then f ∗ g =
∏
m≥1

am(pm) ∗ cm(pm).

Proof. We write ai(pi) =
∑
k≥0

aikp
k
i and ci(pi) =

∑
k≥0

cikp
k
i ,

f ∗ g =

∏
i≥1

ai(pi)

 ∗

∏
j≥1

cj(pj)


=

 ∑
k1,k2,...≥0

a1k1a2k2 · · · p
k1
1 pk22 · · ·

 ∗

 ∑
k1,k2,...≥0

c1k1c2k2 · · · p
k1
1 pk22 · · ·


=

∑
k1,k2,...≥0

z1k12k2 ···a1k1c1k1a2k2c2k2 · · · p
k1
1 pk22 · · ·

=
∏
i≥1

∑
k≥0

k!ikaikcikp
k
i

=
∏
i≥1

ai(pi) ∗ ci(pi).

♣

As stated in [16], this lemma in combination with the algorithms of Chyzak, Mishna and

Salvy [5] (which are implemented in Maple) calculate the differential equations satisfied by

the Kronecker product f ∗ g (for f and g as above) when the ones satisfied by f and g are

known. Their algorithm computes Grobner basis in the Weyl algebra, and a description is

beyond the scope of this thesis.

The following is an example of a symmetric function which can be decomposed as in

Lemma 5.1:
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Example 5.1. Consider

h[e2] = exp

∑
k≥1

pk[e2]

k

 .

We can write this symmetric function as a product of functions depending on only one of

the pi’s. Indeed:

h[e2] = exp

∑
k≥1

pk
k

[
p21
2

− p2
2

]
= exp

∑
k≥1

p2k
2k

− p2k
2k


=

∏
k≥1

exp

(
p2k
2k

− p2k
2k

)

=
∏

k even
exp

(
p2k
2k

− pk
k

) ∏
k odd

exp

(
p2k
2k

)
.

More generally, if g is a sum of symmetric functions, each depending on only one of

the pi’s, then the plethysms h[g] and e[g] can be written as a product of functions, each

depending on only one of the pi’s. Indeed, if g =
∑

k≥1 gk(pk), then

h[g] = h

∑
k≥1

gk(pk)


= exp

∑
i≥1

pi

[∑
k≥1 gk(pk)

]
i


= exp

∑
i≥1

∑
k≥1 gk(pki)

i


= exp

∑
i,k≥1

gk(pki)

i

 ,

which gives the desired result by grouping similar terms in the exponent. The plethysm e[g]

is verified in a similar way.
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The following identities (Macdonald [14]) are satisfied:

h(t) =
∑
n

hnt
n = exp

(∑
n

pnt
n

n

)
,

e(t) =
∑
n

ent
n = exp

(∑
n

(−1)n−1 pnt
n

n

)
,

s(t) =
∑
λ

sλt
|λ| = exp

(∑
n

p2nt
2n

2n
+

p2n−1t
2n−1

2n− 1

)
,

s(t)e(t)−1 =
∑
λ∈Ev

sλt
|λ| = exp

(∑
n

p2nt
2n

2n
+

p2n−1t
2n−1

2n− 1
+

(−1)npnt
n

n

)
,

s(t)h(t)−1 =
∑

λ′∈Ev

sλt
|λ| = exp

(∑
n

p2nt
2n

2n
+

p2n−1t
2n−1

2n− 1
− pnt

n

n

)
.

where Ev := {λ : all parts of λ are even}. Also, with the notation s = s(1), se−1 =

s(1)e(1)−1 and sh−1 = s(1)h(1)−1, we have the following result:

Theorem 5.2 (Kronecker product identities, Mishna [16]). The identities from Table 5.1

are satisfied, where

modd(even)(t) = exp

 ∑
n odd(even)

pnt
n

n(1− pntn)

 ,

q(t) = exp

(∑
n

p2nt
2n

2n(1− p2nt
2n)

)
,

j(t) = exp

( ∑
n even

pnt
n

n(1 + pntn)

)
,

l(t) =
∏
n≥1

(1− p2nt
2n)−1/2.

Proof. The first line of the table is obtained by using the fact that h = h(1) is the identity

with respect to the Kronecker product (Equation (3.9)). The rest of the identities are proved

by using Lemma 5.1 and algorithms from [5]. As in [16], we present a typical argument for
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∗ h(t) e(t) s(t) s(t)h(t)−1 s(t)e(t)−1

h h(t) e(t) s(t) s(t)h(t)−1 s(t)e(t)−1

e h(t) s(t) s(t)e(t)−1 s(t)h(t)−1

s l(t)modd(t) l(t)q(t) l(t)q(t)

sh−1 l(t)meven(t) l(t)j(t)

se−1 l(t)meven(t)

Table 5.1: A family of Kronecker product identities

one of the products that can be adapted to show the remaining ones;

e ∗ sh−1 =
∏
k

exp
(
(−1)k−1 pk

k

)
∗
∏
l

exp

(
p2l
2l

+
p2l−1

2l − 1
− pl

l

)
=

∏
k odd

exp
(pk
k

)
∗ exp

(
p2k
2k

+
pk
k

− pk
k

)
·
∏

k even

exp
(
−pk

k

)
∗ exp

(
p2k
2k

− pk
k

)
, by Lemma 5.1.

=
∏
k odd

g(pk)
∏

k even

f(pk),

where g(pk) = g1(pk) ∗ g2(pk), f(pk) = f1(pk) ∗ f2(pk) and g1, g2, f1, f2 are the exponentials

above. Then using Maple (algorithms in [5]), we get the differential equations satisfied by

each of these Kronecker products,
−pkg(pk)− k

∂(g(pk))

∂pk
= 0 for k odd,

(pk + 1)f(pk)− k
∂(f(pk))

∂pk
= 0 for k even.

These equations can be solved in Maple, yielding:

e ∗ sh−1 =
∏
k odd

exp

(
p2k
2k

) ∏
k even

exp

(
p2k
2k

+
pk
k

)
= se−1.

We have that e∗sh−1 = se−1 and we wish to obtain the more general equality e∗s(t)h(t)−1 =

s(t)e(t)−1. In general if u, v and w are symmetric functions with u ∗ v = w, then u ∗ v(t) =
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w(t) where v(t) and w(t) denote the replacement pk → tkpk in v and w respectively. This

can be easily shown by writing u =
∑

λ aλpλ, v =
∑

µ bµpµ. In the particular case u = e,

v = sh−1 we obtain

e ∗ s(t)h(t)−1 = s(t)e(t)−1

as desired. ♣

5.2 Scalar product

Concerning the closure properties of the scalar product, Gessel proved the following result:

Theorem 5.3 (Scalar Product, Gessel[7]). If f and g are symmetric functions such that:

1. f and g are D-finite with respect to the pi’s and another variable t.

2. g involves only a finite number of pi’s.

3. ⟨f, g⟩ is well-defined as a formal power series in t.

Then

⟨f, g⟩ is D-finite with respect to t.

Proof. Using Theorem 5.1, we know that f ∗ g = u(t, p1, p2, . . .) is D-finite. Also notice that

this Kronecker product involves only a finite number of pi’s since g does. Write f ∗ g =

u(t, p1, p2, . . . , pm) for some m ∈ N. Setting pi = 1 for all i:

f ∗ g|pi=1 = u(t, 1, 1, . . . , 1) = ⟨f, g⟩

By using part 2 of Theorem 4.2, we get the desired result. ♣

Remark 5.1. It is worth pointing out that in general by setting pi = 1 for a finite number

of values of i, D-finiteness is preserved. This is a clear consequence of Theorem 4.2.

Notice that the conditions of Theorem 5.3 are sufficient but they are not all necessary.
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Indeed,

⟨h, h(t)⟩ = h ∗ h(t)|pi=1

= h(t)|pi=1

= exp

(∑
n

pnt
n

n

)∣∣∣∣∣
pi=1

= exp

(∑
n

tn

n

)

= exp

(
log

(
1

1− t

))
=

1

1− t
,

which is a rational function of t and so it is D-finite. However, neither of the symmetric

functions in the scalar product involves a finite number of variables, that is, the second

condition of Theorem 5.3 is not satisfied. This suggests the idea that these conditions may

be relaxed.

It is not always true that the scalar product of two symmetric series that are D-

finite in the pi’s and t is a D-finite power series. For example, let d(n) be any non-P-

recursive sequence. Notice that
∑
n

d(n)pn and
∑

m
pmtm

m are D-finite, but
∑

n d(n)t
n =⟨∑

n d(n)pn,
∑

m
pm
m tm

⟩
is not D-finite.

Now we present a consequence of Theorem 5.5 given by Gessel, that can be applied to

enumerative problems. We use this result in Sections 5.3 and 5.4.

Corollary 5.4 (Gessel). Let f be a D-finite symmetric function and let B be a finite set of

positive integers. Define integers bn as follows: bn is the sum over all tuples (λ1, . . . , λn) ∈
Bn of the coefficient of xλ1

1 · · ·xλn
n in f . Then B(t) =

∑
n≥0 bnt

n is D-finite.
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Proof. By definition we have that bn =
∑

λ∈Bn⟨f, hλ⟩. Therefore,

∑
n≥0

bnt
n =

∑
n≥0

⟨
f,
∑
λ∈Bn

hλ

⟩
tn

=

⟨
f,
∑
n≥0

∑
λ∈Bn

hλt
n

⟩

=

⟨
f,
∑
n≥0

(∑
i∈B

hit

)n⟩

=

⟨
f,

(
1− t

∑
i∈B

hi

)−1⟩
.

And the result follows from Theorem 5.3. ♣

5.2.1 Extension of closure properties for D-finite scalar products

In Theorem 5.3 the finiteness condition over the number of pi’s involved in g is too restrictive.

There are many examples of D-finite scalar products not satisfying this condition. The

following theorem involves some pairs of symmetric functions that do not satisfy the second

condition of Theorem 5.3 but their scalar product is still D-finite.

Theorem 5.5. The identities from Table 5.2 are satisfied.

Proof. For the first two lines of this table, it suffices to make the replacement pi = 1 in the

first two lines of Theorem 5.2. For the last three lines we do not make this substitution, as

the sums become too complicated. Instead we use the orthogonality of the Schur functions.

For instance,

⟨s, s(t)⟩ =

⟨∑
λ

sλ,
∑
µ

sµt
|µ|

⟩
=

∑
λ, µ

⟨sλ, sµ⟩t|µ|

=
∑
λ, µ

δλ,µt
|µ|

=
∏
k

1

1− tk
.

Similarly for the other products. ♣
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<,> h(t) e(t) s(t) s(t)h(t)−1 s(t)e(t)−1

h
1

1− t
1 + t

1

1− t
1

1

1− t2

e
1

1− t

1

1− t

1

1− t2
1

s
∏
k≥0

1

(1− tk)

∏
k≥0

1

(1− t2k)

∏
k≥0

1

(1− t2k)

sh−1
∏
k≥0

1

(1− t2k)

∏
k≥0

1

(1− t4k)

se−1
∏
k≥0

1

(1− t2k)

Table 5.2: A family of scalar product identities.

Remark 5.2. Notice that the scalar products in the first two lines are all D-finite. However,

the remaining ones are not, following Theorem 4.3 on the generating function of partitions.

The first two lines of Table 5.2 may suggest that in fact we can extend Gessel’s result

by relaxing the conditions for a scalar product to be D-finite and the last three suggest care

is needed. As a first step towards this goal, we prove in the next chapter:

Theorem 6.8. Let f, g be polynomials in the pi’s and possibly another variable t. Then

⟨hf, h(t)g⟩ is D-finite as a function of t.

5.3 Applications to tableaux enumeration

Recall from Section 3.5.3 the scalar product

Y (t) =
∑
n

ynt
n =

⟨∑
λ

sλ,
∑
n

hn1

⟩
,

where yn represents the number of SYT of size n. Since∑
λ

sλ = h[e1 + e2]
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is D-finite as shown in Section 4.4, and by Corollary 5.4 we have that Y (t) is D-finite.

Similarly, if for some family F of partitions it is true that∑
λ∈F

sλ

is D-finite, then as a consequence of Corollary 5.4, the ordinary generating function of the

number of SSYT of shape λ ∈ F and type of the form (jn) (j fixed) is D-finite. More

generally, for any fixed partition µ, if ∑
λ∈F

sλ/µ

is D-finite, then the ordinary generating function for the number of SSYT of shape λ/µ for

λ ∈ F and type of the form (jn) is also D-finite. When F is the family of all partitions, we

have: ∑
λ

sλ/µ = h[e1 + e2]
∑
λ

sµ/λ

which is D-finite, since h[e1 + e2] is D-finite and the second sum over λ is a finite sum of

Schur functions (λ is bounded by µ) so it is a polynomial in the pi’s. A more restrictive

family F is reviewed in the following example:

Example 5.2. Let r be a fixed integer, for F = {λ : λ has at most r rows}(known as the

partitions of bounded height) and a fixed partition µ, Gessel proved that the symmetric

series

Br(µ) =
∑
λ∈F

sλ/µ

is D-finite. In 1968, Gordon and Houten [9] and Bender and Knuth [3] had given a formula

for this series, and two years later Gordon [8] published a simplification of this formula.

Gessel connected this results with his results for the case µ = (0). However, we do not

present these formulas here, as they are beyond the scope of our current research.

On the other hand, recall from Chapter 4 that the series
∑

n s(nk,λ)/µt
nk+|λ|−|µ| is D-

finite and so
∑

n s(nk,λ)/µ is D-finite as well, since it results from setting t = 1 in the first

sum. Being consistent with the notation above, this sum corresponds to the family F of

partitions of the form (nk, λ). Notice that only a finite number of Schur functions in that

sum are indexed by compositions that are not partitions, and that adding or subtracting

any finite sum of Schur functions has no effect over the D-finiteness of a symmetric function.

As a consequence of Corollary 5.4, the following result arises,
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Corollary 5.6. The number of SSYT of type (jn) and shape (mk, λ)/µ is a P-recursive

function of n, for λ, µ, j and k fixed.

In particular the number of SYT of shape (mk, λ)/µ is a P-recursive function of m. We

are interested in finding a closed formula for the ordinary generating function⟨∑
m

smk,λ,
∑
n

hnj t
n

⟩
of the SSYT mentioned in Corollary 5.6. We can obtain a general formula for the recurrence

satisfied by its coefficients in the case j = 1, as a direct consequence of the hook formula,

in the same manner we did for the case k = 1, j = 1 in Section 4.1.

We believe that it is not always the case that any sum of sλ’s (for a particular family of

partitions λ) is D-finite. Consider the following problems.

Problem 5.1. Are the symmetric series
∑

n sn,n−1,n−2,...,1 and
∑

n snn D-finite with respect

to the pi’s?

Problem 5.2. What are some sufficient conditions for the sum of all Schur functions

indexed by the skew partitions in a given family F to be D-finite? Notice that this can be

applied to tableaux enumeration (as in Section 5.3) by showing the P-recursiveness with

respect to n of the number of SSYT of type jn and shape in F , for any fixed j.

5.4 Other applications

In 1986, Goulden and Jackson [10] introduced a solution to the problem of counting a

particular class of graphs using Grobener bases. Four years later, Gessel solved the same

problem in a simpler way by using symmetric functions. We present here a biref summary

of his work.

Consider the combinatorial structure of labeled graphs with vertices 1, 2, . . . , n. Define

the weight of one such graph as the monomial on x1, x2, . . . , xn where the exponent of xi

is the degree of the vertex i in the graph. Hence if we consider the infinite formal sum of

all these weights for a given set of graphs, the coefficient of the monomial xλ1
1 xλ2

2 · · ·xλn
n

represents the number of graphs in that set where the degree of the vertex i is λi.

Recall the D-finite plethysms considered in Sections 3.5.1 and 4.4. Each of these sym-

metric functions represents the generating function (sum of all the weights) of a different

class of graphs, as presented in Table 5.3.
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Class of labeled graphs. Formula for the generating function.

Graphs with multiple edges and loops

(a loop contributes 2 to the degree of its vertex). h[h2] =
∏
i≤j

(1− xixj)
−1.

Graphs with multiple edges but no loops. h[e2] =
∏
i<j

(1− xixj)
−1.

Graphs with loops but no multiple edges. e[h2] =
∏
i≤j

(1 + xixj).

Graphs with no multiple edges and no loops

(simple labeled graphs). e[e2] =
∏
i<j

(1 + xixj).

Table 5.3: Classes of labelled graphs.

The following is a direct consequence of Corollary 5.4,

Corollary 5.7 (Gessel [7]). The number of graphs in any of the classes above, on an n-

element set, such that all the degrees are in a given finite set B, is P-recursive.

Notice that the case B = {j} in Corollary 5.7 allows us to show that the number of j-

regular graphs on n vertices, which is the coefficient of (x1x2 · · ·xn)j in each of the symmetric

functions above, is P-recursive in n.

Since any symmetric function can be written as a linear combination of the monomial

basis, the scalar product may be used to get coefficients of a particular monomial in a given

symmetric function as well. Gessel [7] worked on some enumerative results such as counting

alternating permutations and increasing support sequences, all of which involved coefficient

extraction using the scalar product.

In some cases it is not easy to find a formula for the number of combinatorial structures

of certain type and size. However, if we can find a closed form for its generating function,

we have all the information about its coefficients as well. In his paper, Gessel [7] pro-

vided a simple way using symmetric functions to obtain the generating functions of certain
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combinatorial structures, such as partitions of multisets and nonnegative integer matrices.



Chapter 6

Reduced Kronecker product

In 1938, Murnaghan [17] introduced the concept of reduced notation for Schur functions.

In 1991 Thibon [24] introduced a more general approach to reduced notation of symmetric

functions using the theory of Hopf algebras. Thibon’s work has found several applications

to areas such as quantum electronics and molecular science. One of our most important

contributions consists establishing a connection between Thibon’s work and the notion of

D-finiteness. In this chapter, we summarize Murnaghan’s and Thibon’s results and connect

them with the theory of D-finite symmetric functions.

6.1 Reduced Kronecker coefficients

The coefficients Cν
λµ that arise when the product sλ ∗ sµ is expressed in terms of Schur

function, are known as Kronecker coefficients. No one has been able to find a general

combinatorial or algebraic formula for these coefficients. Murnaghan showed the stability

of the coefficients appearing in the Kronecker products between certain families of Schur

functions, and he called these coefficients the reduced Kronecker coefficients (C
γ
λµ). These

coefficients were studied by Briand, Orellana and Rosas [4] as a way to gain information

about the Kronecker coefficients. Define λ[n] = (n − |λ|, λ1, λ2, . . .) (for a partition λ =

(λ1, λ2, . . .)), which is a partition only if n ≥ |λ|+ λ1.

Theorem 6.1 (Murnaghan [18]). There is a family of non-negative integers (C
γ
λµ), indexed

by triplets of partitions (λ, µ, γ) such that only a finite number of terms C
γ
λµ are nonzero

for λ, µ fixed, and for all n ≥ 0 sufficiently large:

47
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sλ[n] ∗ sµ[n] =
∑
γ

C
γ
λµsγ[n].

Moreover, the coefficient C
γ
λµ is nonzero only when all the inequalities: |λ| ≤ |µ| + |γ|,

|µ| ≤ |λ|+ |γ| and |γ| ≤ |λ|+ |µ| are satisfied.

In the case where λ[n] is not a partition, the Schur function sλ[n] can always be written in

terms of Schur functions indexed by partitions using the Jacobi-Trudi identity. The objects

s•,λ = sλ[n] are often called reduced Schur functions.

Example 6.1. Consider the partitions λ = (2) and µ = (1, 1). Using the package [23] in

Maple, we get the following (for simplicity, we omit the brackets from the partitions indexing

Schur functions):

For n = 5 : s3,2 ∗ s3,1,1 = s4,1 + s3,2 + 2s3,1,1 + s2,2,1 + s2,1,1,1

n = 6 : s4,2 ∗ s4,1,1 = s5,1 + s4,2 + 2s4,1,1 + s3,3 + 2s3,2,1 + s3,1,1,1 + s2,2,1,1

n = 7 : s5,2 ∗ s5,1,1 = s6,1 + s5,2 + 2s5,1,1 + s4,3 + 2s4,2,1 + s4,1,1,1 + s3,3,1 + s3,2,1,1

n = 8 : s6,2 ∗ s6,1,1 = s7,1 + s6,2 + 2s6,1,1 + s5,3 + 2s5,2,1 + s5,1,1,1 + s4,3,1 + s4,2,1,1

n = 9 : s7,2 ∗ s7,1,1 = s8,1 + s7,2 + 2s7,1,1 + s6,3 + 2s6,2,1 + s6,1,1,1 + s5,3,1 + s5,2,1,1

We can see that for n ≥ 7, the reduced Kronecker coefficients stabilize. We have, for

example, C
(3)
(2),(1,1) = 1 and C

(2,1)
(2),(1,1) = 2. We can deduce that:

n ≥ 7; s•,2 ∗ s•,1,1 = s•,1 + s•,2 + 2s•,1,1 + s•,3 + 2s•,2,1 + s•,1,1,1 + s•,3,1 + s•,2,1,1.

There exists a general formula for the number n at which the Kronecker product s•,λ ∗
s•,µ = sλ[n] ∗ sµ[n] stabilizes and it was given by Briand, Orellana and Rosas in [4]. For a

fixed positive integer n, consider the linear operator given by sγ = sγ[n].

Example 6.2. If n = 10, then s4 + s4,2,1 = s6,5 + s2,4,3,1, where (6, 5) is a partition, but

(2, 4, 3, 1) is not. By applying the Jacobi-Trudi identity we obtain that s2,4,2,1 = −s3,3,3,1.

Thus s4 + s4,2,1 = s6,5 − s3,3,3,1.

Littlewood found the following general formula for the Kronecker product of two reduced

Schur functions.
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Theorem 6.2 (Littlewood[13]). For two fixed partitions λ, µ with |λ| = |µ| and a fixed

nonnegative integer n ≥ 0:

sλ[n] ∗ sµ[n] =
∑
α,β,γ

sλ/αγsµ/βγ(sα ∗ sβ).

where αγ = (α1 + γ1, α2 + γ2, . . .), the sum is over all partitions α, β and γ with |α| = |β|,
and sθ = sθ[n] for any partition θ.

Example 6.3. Let us illustrate Theorem 6.2 for λ = 3, µ = 2. Considering all the possible

partitions α, β, γ we obtain:

For α = β = γ = 0 s3s2

For α = β = 0 and γ = 1 s2s1(s0 ∗ s0) = s2s1.

For α = β = 0 and γ = 2 s1s0(s0 ∗ s0) = s1

For α = β = 1 and γ = 0 s2s1(s1 ∗ s1) = s2s1s1.

For α = β = 1 and γ = 1 s1s0(s1 ∗ s1) = s1s1.

For α = β = 2, where necessarily γ = 0, s1s0(s2 ∗ s2) = s1s2.

Thus, adding up all these terms,

s3[n] ∗ s2[n] = s3s2 + s1s2 + s1 + s1s1s2 + s1s1 + s1s2,

expanding the products,

s3[n] ∗ s2[n] = s5 + s4,1 + s3,2 + s1 + s4 + 2s3,1 + s2,2 + s2,1,1 + s2 + s1,1 + 2s3 + 2s2,1.

Hence for n=6, by linearity of the over line operator,

s3[6] ∗ s2[6] = s1,5 + s1,4,1 + s1,3,2 + s5,1 + s2,4 + 2s2,3,1 + s2,2,2 + s2,2,1,1 + s4,2 + s4,1,1

+2s3,3 + 2s3,2,1,

Now using the Jacobi-Trudi identity,

s3[6] ∗ s2[6] = −s4,2 − s3,2,1 − s2,2,2 + s5,1 − s3,3 + s2,2,2 + s2,2,1,1 + s4,2 + s4,1,1

+2s3,3 + 2s3,2,1

= s5,1 + s4,1,1 + s3,3 + s3,2,1 + s2,2,1,1.
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Partition λ Reduced Kronecker coefficients

λ = (m) C
λ
k,l =

1

2
(l − k +m+ 2) for k > m.

1

2
(l + k −m+ 2) for m ≥ k.

λ = (m, 1) C
λ
k,l = l − k +m+ 1 for k > m.

l + k −m for m ≥ k.

λ = (m, 12) C
λ
k,l =

1

2
(l − k +m+ 1) for k > m+ 1.

1

2
(l + k −m+ 2) for m ≥ k − 1.

λ = (m, l) Algorithm.

λ = (m, l, n) Algorithm.

Table 6.1: Coefficients for two-row shape Schur functions

Some work has been done to characterize the coefficients that appear in the Kronecker

product of reduced Schur functions indexed by two-row partitions. In particular:

Corollary 6.3 (Two-row shape partitions, Scharf, Thibon and Wybourne [20]). For k ≥ l

fixed:

sk[n] ∗ sl[n] =
∑
λ

C
λ
k, lsλ[n] =

l∑
p=0

p∑
q=0

sk−psl−psp−q.

Scharf, Thibon and Wybourne gave explicit formulas and algorithms to calculate the

coefficients that appear in this case by noticing that λ can have at most three rows, which re-

sults from the Littlewood-Richardson multiplication rule of Schur functions. We summarize

their results in Table 6.1.

Other authors such as Rosas and Remmel have extended these results from combinatorial

and algebraic points of view. However, there is no existing work relating them to the notion

of D-finiteness.

Problem 6.1. Can we explain the Kronecker product of two-row shape Schur functions

(see Scharf, Thibon and Wybourne [20]) using D-finiteness, more specifically by using the

algorithms by Mishna [15] and Chyzak, Mishna and Salvy [5]?

6.2 Adjoint multiplication

The adjoint operator to multiplication with respect to the scalar product has a very nice

characterization, and is important in the study of reduced Kronecker products. Recall that
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Λ denotes the space of all symmetric functions and consider f ∈ Λ. Define the adjoint

multiplication of f as the homomorphism Df : Λ → Λ, such that for all g1, g2 ∈ Λ:

⟨Dfg1, g2⟩ = ⟨g1, fg2⟩.

It is not immediately obvious that this defines the operator Df uniquely. For this notice

that the coefficient of mµ in Dfpλ is given by ⟨Dfpλ, hµ⟩ = ⟨pλ, fhµ⟩, so the expansion of

Dfpλ in terms of the monomial basis can be obtained entirely from the property above.

It is possible to find an explicit formula for the adjoint multiplication of each of the well

known bases of the space Λ (see Macdonald [14]). Particularly, we are interested in the

adjoint multiplication of sλ, which is given by Dsλsµ = sµ/λ and the adjoint multiplication

of the power symmetric functions pn, which is Dpn(f) = n ∂f
∂pn

. We show this last equality,

for which it suffices to prove it for f = pλ. Consider two partitions λ and µ, such that

µ = 1r12r2 · · ·nrn · · · . By definition we have,

⟨Dpnpλ, pµ⟩ = ⟨pλ, pnpµ⟩ =

{
0 if λ ̸= (1r12r2 . . . nrn+1 . . .).

zλ if λ = (1r12r2 · · ·nrn+1 · · · ).

Hence, Dpnpλ = zλ
pµ
zµ

if λ = (1r12r2 · · ·nrn+1 · · · ). Since zλ = 1r1r1!2
r2r2! · · ·nrn+1(rn +

1)! · · · we have that zλ
zµ

= n(rn + 1). Therefore,

Dpnpλ = n(rn + 1)pµ = n
∂pλ
∂pn

pλ.

as wanted.

In general, for any f ∈ Λ, the adjoint multiplication of f amounts to a substitution:

Df = f |pi=i ∂
∂pi

.

This results from the equalities Dfg = DfDg and Df+g = Df + Dg, which are direct

results of the definition of the adjoint multiplication.

Example 6.4. To clarify this definition and the properties above, consider the following

examples:

• Dp2(e5) = Dp2

(
1

5
p5 −

1

4
p1p4 −

1

6
p3p2 +

1

6
p3p

2
1 +

1

8
p1p

2
2 −

1

12
p2p

3
1 ++

1

120
p51

)
= −1

3
p3 +

1

2
p1p2 −

1

6
p31.

• Ds3,1(s4,3,2) = s4,3,2/3,1.
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• The symmetric function e =
∑

n en is equal to exp
(∑

k≥1(−1)k−1 pk
k

)
, from which we

obtain

De = exp

∑
k≥1

(−1)k−1 ∂

∂pk

 .

• Similarly for h =
∑

n hn = exp
(∑

k≥1
pk
k

)
:

Dh = exp

∑
k≥1

∂

∂pk

 .

6.3 Applying the adjoint multiplication

As we mentioned before, we are interested in weakening Gessel’s conditions for the scalar

product of two symmetric function to be D-finite. In order to obtain a fairly general example

of a D-finite Kronecker product for which these conditions are not all satisfied, we need to

recall one of the main results published by Thibon in 1991.

Theorem 6.4 (Main theorem, Thibon [24]). Let {uλ}, {vλ} be adjoint bases1 of Λ and

f, g ∈ Λ, and let h =
∑

n hn. Then,

hf ∗ hg = hΦ,

where Φ =
∑

λ,µ(Dvλf)(Dvµg)(uλ ∗ uµ) and the sum is taken over all partitions λ, µ.

The proof of this theorem can be found in [24]. It uses some properties of the bialgebra

structure provided by the Kronecker product of symmetric functions. Following the same

steps from this proof, the following more general result can be shown:

Theorem 6.5. Let {uλ}, {vλ} be adjoint bases of Λ and f, g formal power series in the pi’s

and possibly another variable t. Then,

hf ∗ h(t)g = h(t)Φ(t),

where Φ(t) =
∑

λ,µ(Dvλf)(Dvµg)(uλ ∗ uµ) and h(t) =
∑

n hnt
n.

1Recall that two bases {uλ} and {vλ} are said to be adjoint if ⟨uλ, vµ⟩ = δλµ for all partitions λ and µ.
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Example 6.5. Set f = g = pk, vλ = pλ and uλ = pλ
zλ

in Theorem 6.5,

hf ∗ h(t)g = hpk ∗ h(t)pk = h(t)
∑
λ,µ

Dpλ(pk)Dpµ(pk)

(
pλ ∗ pµ
zλzµ

)
= h(t)

∑
λ

Dpλ(pk)Dpλ(pk)
pλ
zλ

= h(t)
(
Dp(0)(pk)Dp(0)(pk)p(0) +Dpk(pk)Dpk(pk)

pk
k

)
= h(t)(p2k + kpk).

Denote by Λ∗ the algebra of symmetric power series. The map ⟨⟨⟩⟩ : Λ → Λ∗ given by

⟨⟨sλ⟩⟩ =
∑

n sλ[n], is called the reduced notation for sλ, which can be extended by linearity,

since the Schur functions form a basis of Λ. We have the following characterization for the

reduced notation of symmetric functions:

Proposition 6.1 (Thibon[24]). For any f ∈ Λ:

⟨⟨f⟩⟩ = hDe(f),

where De =
∑

n(−1)nDen .

Proof. It suffices to prove this for f = sλ. Using the same idea from Lemma 4.2:

⟨⟨f⟩⟩ =
∑
n

sλ[n] = h
∑
k

(−1)ksλ/1k .

Since sλ/1k = Ds
1k
sλ and ek = s1k :

⟨⟨sλ⟩⟩ = h
∑
k

(−1)kDeksλ.

And the result follows by linearity. ♣

A reduced notation version of Theorem 6.2 is as follows:

Theorem 6.6 (Littlewood[13]). For two fixed partitions λ, µ:

⟨⟨sλ⟩⟩ ∗ ⟨⟨sµ⟩⟩ =

⟨⟨∑
α,β,γ

sλ/αγsµ/βγsα ∗ sβ

⟩⟩
,

where αγ is defined as before (Theorem 6.2).
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Corollary 6.7 (Thibon [24]). For any f, g ∈ Λ we have

⟨⟨f⟩⟩ ∗ ⟨⟨g⟩⟩ =

⟨⟨∑
λ

(Dpλf)(Dpλg)
pλ[x+ 1]

zλ

⟩⟩
.

The proof of this Corollary follows from using Proposition 6.1 and setting uλ = pλ
zλ

and

vλ = pλ in Theorem 6.4.

6.4 Relation to D-finiteness

In this section we state our main results relating the previous notions with the theory of

D-finite power series.

Theorem 6.8. Let f, g be polynomials in the pi’s and possibly another variable t. Then

⟨hf, h(t)g⟩ is D-finite as a function of t.

Proof. Set pi = 1 for all i in Theorem 6.5, which gives:

⟨hf, h(t)g⟩ = 1

1− t
(Φ(t))pi=1 =

1

1− t
ϕ(t),

where 1/(1− t) is D-finite and ϕ(t) is a polynomial in t, because f and g are polynomials.

The result follows from the basic properties of D-finiteness. ♣

We now present an additional proof to the previous theorem using a property of the

adjoint multiplication of h.

Additional proof. From the definition of adjoint multiplication,

⟨hf, h(t)g⟩ = ⟨f,Dhh(t)g⟩.

Notice now that f is a polynomial and so it is D-finite in the pi’s and t, and it involves

a finite number of pi’s. Then it remains for us to show that Dhh(t)g is D-finite. Indeed:

Dhh(t)g =
∑
n

tnDh(hng),

=
∑
n

tn(hng)[x+ 1], since Dh(g) = g[x+ 1], see [24]

=
∑
n

tnhn[x+ 1]g[x+ 1],
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where g[x+ 1] is a D-finite polynomial and

∑
n

tnhn[x+ 1] = exp

(∑
k

tk(pk + 1)

k

)
,

= exp

(∑
k

tk
pk
k

)
exp

(∑
k

tk

k

)
,

= h(t)
1

1− t
, which is D-finite.

By Theorem 5.3 we have that ⟨hf, h(t)g⟩ is D-finite as wanted. ♣

Notice that this proof holds also if f and g involve a finite number of pi’s but are not

necessarily polynomials. In this case g[x + 1] results from replacing pi → pi + 1 in g for a

finite number of pi’s, which preserves D-finiteness by Theorem 4.2. In a similar way using

that De(f) = f [x− 1], we have the following result:

Proposition 6.2. Let f, g be D-finite in the pi’s and another variable t, such that they both

involve a finite number of pi’s, and define e, h, e(t)h(t), s(t), s(t)e(t)−1 and s(t)h(t)−1 as

in Theorem 5.2. Then the scalar products ⟨ef,G⟩ and ⟨hf,G⟩ with

G ∈ {e(t)g, h(t)g, s(t)g, s(t)e(t)−1g, s(t)h(t)−1g}

are all D-finite as functions of t.

Both Theorem 6.8 and Proposition 6.2 provide large families of examples of D-finite

scalar products for which Gessel’s conditions are not satisfied. However we would like to

answer more general questions in future research:

Problem 6.2. Let F , G, f and g be series in the pi’s and another variable t such that f

and g involve a finite number of pi’s, and ⟨F,G⟩ is D-finite in t. Then is ⟨Ff,Gg⟩ D-finite

in t as well? Which hypotheses can be added so that this statement is true?

Problem 6.3. Can we characterize precisely the pairs of formal power series f(t, p1, p2, . . .),

g(t, p1, p2, . . .) whose scalar product is D-finite? In other words, can we weaken the conditions

on Theorem 5.3 such that they are sufficient and necessary?

Proposition 6.3. If f and g are two D-finite symmetric functions then hf ∗ hg = hΦ is

D-finite. Moreover, Φ is D-finite.
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Proof. Use the closure properties of D-finiteness. Since h is D-finite, we have that hf and hg

are D-finite as well. By Theorem 5.1, hΦ is D-finite. On the other hand, h = exp
(∑

k
pk
k

)
and h−1 = exp

(
−
∑

k
pk
k

)
, which is also D-finite, and so

Φ = exp

(
−
∑
k

pk
k

)
hf ∗ hg is D-finite.

♣

The symmetric function Φ is known as the Smash product of f and g. See the work by

Marcelo Aguiar [1] for more on this operation.

Some of the original results from this section need Theorem 6.4 for their proof. However

they do not require the whole statement, as the case uλ = pλ/zλ, vλ = pλ is sufficient for all

of them. In order to avoid dependance on the theory of Hopf algebras, and to illustrate the

deep relationship between the theory developed by Thibon, and that of D-finite symmetric

functions, we provide below and much simpler original proof of this particular case, making

use of Maple and the algorithms [5] .

Theorem 6.9. The following relation is always satisfied:

(hpλ) ∗ (hpµ) = h
∑
γ

Dpγ (pλ)Dpγ (pµ)
pγ
zγ

. (6.1)

Generally for any two symmetric functions f and g we have:

(hf) ∗ (hg) = h
∑
γ

Dpγ (f)Dpγ (g)
pγ
zγ

. (6.2)

Proof. Equation 6.2 is a result of Equation 6.1 so we only need to prove equation 6.1. Take

pλ = pr11 pr22 · · · prnn and pµ = ps11 ps22 · · · psmm . The left hand side can be simplified as follows

(hpλ) ∗ (hpµ) =

exp
∑

i≥1

pi
i

 pr11 pr22 · · · prnn

 ∗

exp
∑

j≥1

pj
j

 ps11 ps22 · · · psmm

 .

Then,

(hpλ) ∗ (hpµ) =

∏
i≥1

exp
(pi
i

)
prii

 ∗

∏
j≥1

exp

(
pj
j

)
p
sj
j


=

∏
i≥1

(
exp

(pi
i

)
prii

)
∗
(
exp

(pi
i

)
psii

)
, by Lemma 5.1.
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Using Maple, we get that each term of the form L = exp
(pk

k

)
prkk ∗ exp

(pk
k

)
pskk satisfies the

differential equation:

(krksk − pk)L+ kp2k
∂2L

∂p2k
+ (kpk − p2k − krkpk − kskpk)

(
∂L

∂pk

)
= 0. (6.3)

Then it remains to show that the right hand side of 6.1 satisfies these equations as well.

After differentiating, this right hand side can be written as:

h
∑
ti
ti≤ri
ti≤si

∏
i

ititi!(ri)ti(si)ti
ti!

pri+si−ti
i ,

where (ri)ti represents the descending factorial. We proved that for each k, the expression

above satisfies Equation 6.3, for which we simply expand the result in terms of the power

sum basis and verify that all the coefficients are 0. We omit the mechanical calculation

here. ♣

Problem 6.4. Can we prove the statement of Theorem 6.9 by using these algorithms, or

an extended form involving D-finiteness with respect to the general adjoint bases {uλ} and

{vλ}?
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Conclusion

7.1 Summary

The following is a summary of the original results obtained in the previous chapters.

D-finite sums of Schur functions and Tableaux (Corollary 5.6) The symmetric se-

ries
∑

m s(mk,λ)/µ is D-finite. Hence, the number of SSYT of type (jn) and shape

(mk, λ)/µ is a P-recursive function of n, for λ, j and k fixed. Particularly, the number

of SYT of shape (mk, λ)/µ is a P-recursive function of m.

Some scalar product identities (Table 5.2) Mishna [16] provided a family of Kronecker

products identities by using the theory of D-finite symmetric functions. From this ta-

ble we were able to produce a family of scalar products identities (Table 5.2). The

pairs of symmetric functions corresponding to the first two lines of this table have D-

finite scalar products, yet they do not satisfy the second of Gessel’s conditions, which

suggests that such condition may be extended (see Problem 6.3).

D-finite scalar products (Theorem 6.8 and Proposition 6.2) Let f, g be power se-

ries in the pi’s and another variable t, involving only a finite number of pi’s. Then

⟨hf, h(t)g⟩ is D-finite as a function of t. Moreover, the scalar products ⟨hf,G⟩ and

⟨ef,G⟩ are D-finite for G = h(t)g, e(t)g, s(t)g, s(t)e(t)−1g, s(t)h(t)−1g. This result pro-

vides an extension of Gessel’s Theorem 5.3 by weakening the conditions for a scalar

product to be D-finite. We present a more general result which would imply the

D-finiteness of these products (see Problem 6.2).

58
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D-finiteness of Smash product (Proposition 6.3) If f and g are two D-finite symmet-

ric functions then hf ∗ hg = hϕ is D-finite. Moreover, ϕ is D-finite.

New proof of a particular case of Theorem 6.9 For λ and µ fixed, the following rela-

tion is satisfied:

(hpλ) ∗ (hpµ) = h
∑
γ

Dpγ (pλ)Dpγ (pµ)
pγ
zγ

.

Generally for any two symmetric functions f and g we have:

(hf) ∗ (hg) = h
∑
γ

Dpγ (f)Dpγ (g)
pγ
zγ

.

Our proof of this result uses only the theory developed by Mishna [15] and Chyzak,

Mishna and Salvy [5]. In fact it depends almost entirely on their algorithms imple-

mented in Maple. This is our most important result relating the theory of D-finite

symmetric functions with Thibon’s work and it may suggest an even deeper relation

between these areas (see Problem 6.4).

7.2 Open problems

The following are some of the open problems that we propose as a possible extension of our

current work.

It seems to us, as suggested by our proof of Theorem 6.9, that many of the results

obtained by Thibon [24] and Scharf, Thibon and Wybourne [20] can be explained using the

theory of D-finite symmetric series. This opens up a door to a new theory on the connections

between D-finiteness and these other areas of research.

Problem 1. Can we explain the Kronecker product of two-row shape Schur functions (see

Scharf, Thibon and Wybourne [20]) using D-finiteness, more specifically by using the

algorithms by Mishna [15] and Chyzak, Mishna and Salvy [5]?

Problem 2. Can we prove the statement of Theorem 6.9 by using these algorithms, or an

extended form involving D-finiteness with respect to the general adjoint bases {uλ}
and {vλ}?

Concerning an extension of Theorem 5.3, we present the following open problems:
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Problem 3. Let F , G, f and g be series in the pi’s and another variable t such that f and

g involve only a finite number of pi’s and ⟨F,G⟩ is D-finite in t. Then is ⟨Ff,Gg⟩ is
D-finite in t as well? Which hypotheses can be added so that this statement is true?

Problem 4. Can we characterize precisely the pairs of formal power series f(t, p1, p2, . . .),

g(t, p1, p2, . . .) whose scalar product is D-finite? In other words can be weaken the

conditions on Theorem 5.3 such that they are sufficient and necessary?

Regarding the D-finiteness of sums of Schur functions, we ask the following questions:

Problem 5. Are the symmetric series
∑

n sn,n−1,n−2,...,1 and
∑

n snn D-finite with respect

the pi’s?

Problem 6. What are some sufficient conditions for the sum of all Schur functions indexed

by the skew partitions in a given family F to be D-finite? Notice that this applies

directly to tableaux enumeration (as in Section 5.3) by showing the P-recursiveness

with respect to n of the number of SSYT of type jn and shape in F , for any fixed j.
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