

INTELLIGENT DECISION SUPPORT AND AGENT-BASED
TECHNIQUES APPLIED TO WOOD MANUFACTURING

by

Eman Elghoneimy
B.A.Sc., Cairo University, 1995

M.A.Sc., University of Waterloo, 2000

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

In the
School of Engineering Science

© Eman Elghoneimy 2010

SIMON FRASER UNIVERSITY

Summer 2010

All rights reserved. However, in accordance with the Copyright Act of Canada,
this work may be reproduced, without authorization, under the conditions for Fair
Dealing. Therefore, limited reproduction of this work for the purposes of private
study, research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

 ii

APPROVAL

Name: Eman Elghoneimy

Degree: Doctor of Philosophy

Title of Thesis: Intelligent decision support and agent-based
techniques applied to wood manufacturing.

Examining Committee:

 Chair: John Jones
Associate Professor of Engineering

 William A. Gruver
Senior Supervisor
Professor Emeritus of Engineering Science

 Shahram Payendah
Supervisor
Professor of Engineering Science

 Carlo Menon
Internal Examiner
Assistant Professor of Engineering Science

 Robert Brennan
External Examiner
Associate Professor of Mechanical and Manufacturing
Engineering
University of Calgary

Date Defended/Approved: June 2, 2010

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

 iii

ABSTRACT

A rough mill is a manufacturing facility where loads of lumber of

approximate dimensions are cut into components of specific sizes, priorities and

qualities. These components are used in making furniture, doors and windows.

Lumber is a very valuable natural resource and is a significant expense to

the rough mill. By improving the processes in the rough mill, the cost is reduced

and the waste of natural material is decreased.

In this research, the operations in a Canadian rough mill are described,

and the decisions that operators take are identified. The rough mill scheduling of

components on machines is a challenging problem that cannot be solved by

traditional methods because the defects in the wood are not known in advance.

In addition, the wood sizes are approximate and often inaccurate.

Scheduling algorithms are implemented using constraint satisfaction and

heuristic methods. An agent-based system for decision support and simulation is

designed and implemented.

Keywords: intelligent systems, decision support, multi-agent systems,
scheduling algorithms, operations research, wood manufacturing, rough mill
operations, cutlist scheduling, distributed intelligent systems

 iv

DEDICATION

To my family

 v

QUOTATION

“… and say, ‘My Lord, increase me in knowledge.’” (Qur’an, 20:114)

 vi

ACKNOWLEDGEMENTS

It is a pleasure to thank those who made this thesis possible. I would like

to thank Dr. Bill Gruver for his supervision and mentorship. I am grateful for Dr.

Ozge Uncu for his support. I would like to thank Dr. Robert Brennan for his

review of the thesis. I am indebted to many of my advisors and colleagues at the

National Research Council and at the Intelligent Distributed Enterprise

Automation Lab: Mr. Dilip Kotak, Dr. Yunli Wang, Martin Fleetwood, Hiroshi

Tamoto and Nestor Siu.

I would like to show my gratitude to my husband Dr. Mohamed Allam who

motivated me in many ways. My children Lobna Allam and Hassan Allam

managed to keep me inspired and delighted. I am grateful for their teachers who

filled in where I missed.

I am deeply grateful for my parents: Dr. Mohy Elghoneimy and Mrs.

Sawsan Mowafi for their encouragement and prayers. My sister Dr. Hanan

Elghoneimy and my brother Dr. Ayman Elghoneimy supported me throughout the

ups and downs of this process.

I am thankful for many advisors, colleagues, family members and friends

who encouraged me in their own ways.

 vii

TABLE OF CONTENTS

Approval .. ii

Abstract .. iii

Dedication .. iv

Quotation...v

Acknowledgements .. vi

Table of Contents .. vii

List of Figures..x

List of Tables ... xii

1: Introduction ...1

1.1 Problem description...1

1.2 Current solution in the rough mill ...1

1.3 Objectives of the rough mill production system..2

1.4 Existing agent and scheduling solutions for manufacturing......................................2

1.4.1 Why existing solutions are not fit for naturally-defective material..................3

1.5 Overview of thesis ...3

2: Wood manufacturing: Rough mills ..4

2.1 Introduction ...4

2.2 Information gathering...4

2.3 Rough mill operations..5

2.3.1 Lumber warehouse ..6
2.3.2 Ripsaw...7
2.3.3 Conveyor ...8
2.3.4 Chopsaw..9
2.3.5 Kickers...10

2.4 Decisions in the rough mill...10

2.4.1 Jag selection problem ..11
2.4.2 Rough mill cutlist scheduling problem ..13
2.4.3 Ripsaw settings..14
2.4.4 Thickness switch-over process ..16

2.5 Summary...16

3: History and joint work...18

3.1 Introduction ...18

3.2 Expected benefits..18

3.3 History ...19

3.3.1 Simulation..19
3.3.2 Jag selection: case-based reasoning ...22

 viii

3.4 Joint work ..23

3.4.1 Scheduling: Genetic algorithms..24
3.4.2 Jag Selection: MCDM and FMCDM ...25
3.4.3 Jag sequencing methods ...27

3.5 Goal of this research ...29

3.5.1 Agent-based system architecture...29
3.5.2 Scheduling ...29

3.6 Summary...29

4: Agent-based manufacturing systems..31

4.1 Introduction ...31

4.2 Agents and multi-agent systems..31

4.2.1 Artificial intelligence ...31
4.2.2 Agent definition ..32
4.2.3 Agent characteristics..32
4.2.4 MAS applications ...34

4.3 Background of Agent-Based Manufacturing Systems..35

4.3.1 Scope of the manufacturing systems ...35
4.3.2 Physical agents versus logical agents..36
4.3.3 Hierarchical, heterarchical, and hybrid architectures36
4.3.4 Learning ability...37

4.4 Agent-based systems in manufacturing ...37

4.4.1 Integrated systems...37
4.4.2 Scheduling, Planning and Control ..41
4.4.3 Holonic Manufacturing Systems...45

4.5 Summary...46

5: Agent-based decision support and simulaion system for rough mills................48

5.1 Introduction ...48

5.2 JADE and FIPA standards...48

5.3 RoughMill ontology..49

5.4 Prototype multi-agent system for one line of production ..51

5.4.1 System architecture ...51
5.4.2 User interface agents...53
5.4.3 Decision support agents...54
5.4.4 Simulation agents ..54
5.4.5 Evaluation ..56

5.5 Agent-based prototype for two lines of production ...59

5.5.1 System architecture ...60
5.5.2 Negotiation protocol ...61
5.5.3 Evaluation ..61

5.6 Multiple lines of production ..62

5.7 Rough Mill Decision Support and Simulation System (RMDSSS)63

5.7.1 System architecture ...63
5.7.2 Challenges of using real data...67
5.7.3 Evaluation ..68

5.8 Discussion of agent implementation ..69

 ix

5.8.1 Jamming detection...69
5.8.2 Synchronizing the simulation ...70
5.8.3 Simulation time calculation using bottleneck detection...............................70
5.8.4 Computational time..71

5.9 Evaluation of using the multi-agent paradigm ..71

5.10 Summary...73

6: The Rough Mill Scheduling Problem (RMSP) ..74

6.1 Introduction ...74

6.2 Problem description...74

6.2.1 Physical constraints ...75
6.2.2 Initial and replacement scheduling ...79

6.3 Theoretical background ...79

6.3.1 Scheduling problems ...79
6.3.2 Constraint Satisfaction Problems (CSP)...80
6.3.3 Search methods...80

6.4 Problem formulation: RMSP ..81

6.4.1 Configuration ...81
6.4.2 Exhaustive search..82
6.4.3 Partial search...83

6.5 Backtrack scheduling algorithm ...84

6.5.1 Backtrack initial scheduling algorithm for RMSP ..85
6.5.2 Complete-search replacement scheduling algorithm for RMSP..................87
6.5.3 Evaluation ..87

6.6 Heuristic scheduling ..90

6.6.1 Heuristic initial scheduling algorithm ..90
6.6.2 Heuristic replacement scheduling algorithm...92
6.6.3 Heuristic scheduling as a search method...93

6.7 Randomized heuristic scheduling ..95

6.7.1 Randomized heuristic n-initial scheduling algorithm96
6.7.2 Heuristic n-replacement scheduling algorithm..96

6.8 Evaluation of heuristic algorithms ..96

6.9 Summary...100

7: Conclusion...102

7.1 Summary...102

7.2 Contributions ...104

7.3 Future research ...105

7.3.1 Agent-based decision support and simulation ..105
7.3.2 Scheduling ...105

Reference List..107

 x

LIST OF FIGURES

Figure 2.1 Rough mill production lines: Forklifts transfer jags from the warehouse
to both ripsaws. Chopsaws cut wood into components of specific sizes.6

Figure 2.2 Flow of lumber in the rough mill ..8

Figure 2.3 Flow of information in the rough mill ...11

Figure 5.1 Protégé GUI showing the jag concept...50

Figure 5.2 SendJag message..51

Figure 5.3 System architecture showing different types of agents52

Figure 5.4 System architecture with agent communications ..53

Figure 5.5 Jade sniffer agent shows message exchange between agents.....................56

Figure 5.6 ACL message containing a strip sent from the conveyor agent to the
chopsaw agent ..58

Figure 5.7 A section of the output file of simulation with 100 strips59

Figure 5.8 System architecture of two lines of production ..60

Figure 5.9 Negotiation protocol log ..62

Figure 5.10 Three lines of production ..63

Figure 5.11 System architecture using real data..64

Figure 5.12 GUI for Jag Selection Agent ...65

Figure 5.13 GUI for Cutlist Recommend Agent..66

Figure 5.14 Package layout ...67

Figure 6.1 Rough mill cutlist scheduling...75

Figure 6.2 Search tree of three variables, with three domain values each82

Figure 6.3 Search tree for three variables: variable1 has three domain values,
variable2 has two domain values and variable3 has three domain
values..83

Figure 6.4 If one node is infeasible solution, the rest of the sub-tree nodes are
infeasible solutions too ..84

Figure 6.5 Backtrack search tree ...85

Figure 6.6 RMSP backtrack algorithm. Light grey nodes represent dummy
components or unscheduled kickers..86

Figure 6.7 Heuristic scheduling as a search problem...94

 xi

Figure 6.8 Repeating heuristic search with relaxed conditions results in assigning
more components..95

 xii

LIST OF TABLES

Table 6.1 Kicker (Sorting bin) configuration for production line number one76

Table 6.2 Kicker (sorting bin) configuration for production line number two76

Table 6.3 Backtrack results ...88

Table 6.4 Rescheduling test ..89

Table 6.5 Output of heuristic and randomized heuristic n-initial scheduling
(compNo/compLength) ..97

Table 6.6 Output of heuristic replacement and heuristic n-replacement
scheduling (compNo/compLength), done Kicker is K8, done
component number is 6 ...99

 1

1: INTRODUCTION

1.1 Problem description

Naturally-defective materials such as wood have defects for which

location, size and type are not known in advance. Moreover, the parameters of

the materials such as length, width and grade are approximate. A schedule for

cutting the material into defect-free fixed-size components cannot be done in

advance since the processing time of each task is unknown. Therefore,

scheduling cannot be done using traditional methods. Moreover, the schedule

has to be dynamically updated; once one task is done, the next is scheduled.

In addition to the above challenges, most factories have problems such as

adding or canceling orders, and jammed machines (breakdowns). This requires

flexibility in material selection and order scheduling processes. As factories grow

and upgrade its machines and tools, new solutions are required to be flexible,

adaptable and expandable.

1.2 Current solution in the rough mill

Current solutions depend on a human operator to create a schedule and

dynamically schedule a component on a machine once the previous component

is done. Such critical decisions are taken on the shop floor while the operator is

busy doing other tasks such as sorting cut components or supervising other

 2

workers. Such decisions are rarely optimal, which leads to wasted time and

materials, and therefore cost.

Material selection is also based on human operators. Fork-lift drivers

select material based on general recommendation from their supervisor.

1.3 Objectives of the rough mill production system

The objectives of a rough mill production system can be outlined as

follows:

• Decision support system, to give recommendations to operators for

scheduling and material selection.

• Scheduling jobs of unknown processing times, and dynamic replacement

scheduling.

• Ability to tolerate changed orders and jammed machines.

• Distributed system with ability to operate in different locations.

• Expandable to new machines or lines of production.

• Ability to upgrade to enterprise integration, monitoring over the Internet or

supply-chain management.

1.4 Existing agent and scheduling solutions for manufacturing

Agent-based systems are hailed as the next technology for manufacturing

systems due to their flexibility, fault-tolerance and expandability. Agents have

been used for manufacturing applications ranging from control, scheduling and

 3

planning to enterprise operations and supply-chain management. A survey of

agent-based manufacturing systems is presented in Chapter 4.

1.4.1 Why existing solutions are not fit for naturally-defective material

There is no agent-based solution that is fit for naturally-defective

materials. While some agent solutions feature dynamic scheduling, this actually

is in the context of fault-tolerance. If there is some interruption to the schedule,

then the schedule is modified dynamically. There is no current solution which

does scheduling where processing times are unknown in advance. Formally,

most manufacturing applications address the job shop scheduling problem, while

the problem at hand is parallel machine scheduling with unknown processing

times. In addition, decision support for material selection is not addressed in

existing agent-based manufacturing systems.

1.5 Overview of thesis

The following chapter presents background on rough mill operations in a

Canadian windows and doors manufacturing plant. Then, I present the history

and the joint work done on this rough mill project and define the scope of the rest

of the thesis and the two challenges that I am addressing. Chapter 4 provides a

survey of multi-agent systems in manufacturing. Chapter 5 addresses the first

challenge: designing and implementing an agent-based system for decision

support and simulation. Chapter 6 presents solutions to the rough mill scheduling

problem. Finally, a summary and conclusions are presented.

 4

2: WOOD MANUFACTURING: ROUGH MILLS

2.1 Introduction

In a rough mill, jags (bundles of lumber) are stored in a warehouse, and

then transferred to a ripsaw which cuts the boards into strips. Strips are cut by a

chopsaw into components of specific lengths. Components are then processed to

produce manufactured products such as furniture, windows and doors. One of

the most valuable resources in a rough mill is lumber. A small increase in the

overall yield results in large cost savings and better use of natural resources.

Lumber is a natural material which has a variety of defects that are not

known in advance. While lumber is usually stored as jags having boards with an

average length, width, and grade, these values are subjective and can vary from

one mill to another. Therefore, cutting lumber into components is a complicated

process that involves dealing with unknown or imprecise dimensions and random

defects.

2.2 Information gathering

I was introduced to the operations of the rough mill during an extended

visit to C.P. Loewen Enterprises Ltd., a Canadian windows and doors

manufacturing company in Steinbach, Manitoba. The purpose of this trip was to

gather information on the rough mill production system, with focus on the cutlist

scheduling process, the work done by operators, and the workflow between

 5

different operations [21]. I stayed there for two weeks to interview operators and

managers, document operations and work on the line to learn about the process

by practice [37]. This was a part of an NSERC project with the objective of

improving the operations in the rough mill.

2.3 Rough mill operations

As required, a jag is brought from the warehouse by a forklift to a lumber

feeder that presents one board at a time to the ripsaw which cuts the board

lengthwise into strips. Strips are inspected and sorted by an operator and are

passed through a conveyor belt one at a time to the chopsaw. The chopsaw cuts

the strips into components of different lengths, based on the nature of the defects

and the components being sorted. These components are routed to the

appropriate sorting bin called kicker. Finally, the components are inspected by

operators and are stacked into loads of components of equal dimensions. Figure

2.1 shows the operations in the rough mill with two lines of production.

 6

Figure 2.1 Rough mill production lines: Forklifts transfer jags from the warehouse to both
ripsaws. Chopsaws cut wood into components of specific sizes.

2.3.1 Lumber warehouse

Jags are stored in the warehouse. The jags are characterized by mill,

species, grade, width, and length. Forklift operators select jags from the

warehouse to present to the ripsaw feeder based on guidelines from their

supervisor.

L
u
m
b
e
r
W
a
re
h
o
u
s
e

Feeder

Board
Conveyor

Rip Saw
Strip

Conveyor

Chop Saw
Sorting Conveyor

Finger Joint

Waste

Scanner

Chop Saw
Sorting Conveyor

Finger Joint

Waste

Scanner

Feeder

Board
Conveyor

Rip Saw
Strip

Conveyor

 7

2.3.2 Ripsaw

The ripsaw processes the boards of the jag to produce strips which are

conveyed to the chopsaw as shown in Figure 2.2. The ripsaw cuts the boards of

lumber into strips of different widths. The commonly used widths are 57, 67 and

22 mm. The 22 mm strips (called rippings) are sent for manual chopping and

thus are not routed to the chopsaw. The cutting pattern of the board is based on

the pattern of the blades of the ripsaw. A fence automatically locates the board

across the saws to produce maximum board yield. The ripsaw scanner cameras

take a top view of each board to determine its exact dimensions.

An operator inspects and sorts the strips as they come out of the ripsaw.

57 and 67 mm are conveyed to the chopsaw and the 22 mm strips are

separated. Strips less than 22 mm wide are considered waste and are conveyed

to a wood grinder. The operator also inspects all the pieces and some of the

defective 57 and 67 strips are carried back to the ripsaw to form 22 mm strips,

other defective strips are thrown away as waste.

The operator enters the jag information to the software and attaches the

jag information to a marker board. This board is passed on to the chopsaw

indicating the end of the jag.

 8

Figure 2.2 Flow of lumber in the rough mill

2.3.3 Conveyor

There are four conveyors in series, each with different length and speed.

Conveyor one carries ripped strips parallel to the conveyor’s moving direction,

with several strips ripped from the same board placed side by side, and with one

foot space between the strips ripped from different boards. At conveyor two, the

orientation changes ninety degrees as strips are perpendicular to the moving

direction of the conveyor. Only one strip is moving at a time with a one foot space

between each strip. Conveyor three is similar to conveyor two except that it has a

different length and speed. Conveyor four is similar to conveyor one, except that

only a single strip is transferred at a time.

There is a photocell sensor in the buffer between the second conveyor

and third conveyor. If there is more than one strip in that buffer, conveyor three

and conveyor four keep moving while conveyor two stops. Conveyor one

continues to move until it is full, at which time the conveyor and ripsaw are

stopped.

Ware-
house

Ripsaw

Chop-
saw

Jag

Strips

Manual
Chopping

Waste

Components

Finger Joints

Manual Chopping

Waste

 9

2.3.4 Chopsaw

The chopsaw receives 57 and 67 mm wide strips from the ripsaw. The

chopsaw scanner views the four sides of the strip and detects the different types

of defects in the strip. According to the components scheduled on the line (cutlist

or cutting bill), the chopsaw cuts the strips into the desired lengths of

components, and chops off the defects into waste bins as shown in Figure 2.2.

Smaller components are cut as finger joints1, used for manual chopping or

collected as waste. Several operators inspect and sort the components into

loads. Defective components could be fed back to the chopsaw, sent for manual

chopping or thrown away as waste.

When the chopsaw operator receives the board marking the end of the

jag, he enters the jag number into the chopsaw optimization software to keep

track of the data per jag. This does not affect the process of scheduling

components on the cutlist.

The supervisor receives work orders with breakout due date within six

days. She assigns work orders - with the same thickness - that are due within

two days, to the chopsaw operator. These work orders form the order list. Usually

work orders are received at the chopsaw at the beginning of the shift. Rush

orders may be received during the shift.

The operator creates the cutlist based on information in the work orders,

according to certain decision criteria. When one or more of the components are

1
 Finger joints (FJ) are low priority products. There are quality numbers associated with FJ, each
with assigned thickness, width and grade. There is no specific length for finger joints, but a
range of 180 to 600 mm.

 10

done, a new component is scheduled based on the order list and the current

cutlist. The operator enters the components on the cutlist into the chopsaw

optimization software when they are scheduled. The new cutlist influences the

process of jag selection as well as the setup of the ripsaw.

2.3.5 Kickers

A kicker is a pneumatic arm that pushes the components from the

conveyor to sorting stations where they are inspected and sorted by the

operators.

Each kicker has its own properties that restrict the length of the

component assigned to it. This is due to the physical layout of the sorting

stations. For example, kickers close to each other with no barrier between them

are not assigned components with similar sizes so that they do not get mixed

together during sorting. Another example is that large components can pile up

against short ones and fall down, which creates a safety hazard. For each

production line, there are ten kickers for assignment to 20 - 25 components at the

same time (depending on quantities required, due dates and floor space).

2.4 Decisions in the rough mill

By observing the operations in the rough mill and talking to operators and

domain experts, I identified the exchange of information that takes place between

different rough mill operations as shown in Figure 2.3. It can be summarized as

follows: the order list is the list of all the components to be cut in the next few

days (work orders). The chopsaw operator selects a subset of these components

 11

(cutlist) and schedules them on the kickers of the chopsaw. Another operator

selects jags from the warehouse according to the cutlist. The ripsaw operator

sets the arbor and priority of the ripsaw based on the cutlist and the selected jag.

While the lumber processing starts with a jag at a ripsaw and ends with

cut components in the sorting stations, the decisions in the rough mill start at the

cutlist on the chopsaw, then the jag selection and the ripsaw settings.

Figure 2.3 Flow of information in the rough mill

2.4.1 Jag selection problem

Jags are received from different mills and stored in a warehouse. The

supervisor performs the jag selection process, and asks the forklift drivers to

bring jags from the inventory with the selected properties, and drive them to the

ripsaw as required. Each jag is identified by parameters such as width, length,

grade, mill, thickness, moisture level, and date received. One jag at a time is

selected from the warehouse and transferred by a forklift to the ripsaw feeder. A

Work orders
(order list)

Cutlist

(Chopsaw)

Kickers

Jag selection

Ripsaw
settings

Warehouse
inventory

Board width,
Thickness Date, Moisture,

Length, Grade,
Thickness

Date,
Quality,
Product,
Thickness,
Width,
Length,
Quality

Assignment Status
Strip Width

Thickness,
Date,
Quality

Max length

 12

solution of the jag selection problem requires choosing from the warehouse the

best jag that can be used to cut components scheduled on the chop line forming

the cutlist.

The jag selection is based on the following criteria:

1. The thickness of the jag must match the components in the work orders being

processed.

2. The length of the jag must be larger than the longest component in the cutlist.

For example, if the longest component was 10 ft long, the jag length would be

12-16 ft depending on the grade.

3. The moisture level of the jag must be between 8 and 12.

4. The date of receiving the jag: it is preferred to use older jags first.

5. Grade selection:

5.1. The quality2 of components in the work orders sometimes affects the

grade of lumber selected. For example, a good grade of lumber is

required when the cutlist includes large quantities of long components

that allow no defects.

5.2. The due date of components in the work order. If items on the cutlist are

due soon, a good grade of wood is used to finish the components quickly.

If the components are not due soon, it is ok to use lower grade even if it

takes longer.

2
 Quality is a code of the allowed type and location of the defects in cut components.

 13

5.3. For 6/4-thickness lumber: higher grades (clear, door and moulding)

should only compose 11% of the jags used, and 89% for shop grades.

Based on the above criteria, the supervisor would ask the forklift drivers to

bring jags with certain properties, for example, thickness 6/4, high grade, 14 or

16 ft long, with preference to older jags.

In case of changing jag width, the new width should be coordinated with

the ripsaw to change ripsaw parameters (arbor).

2.4.2 Rough mill cutlist scheduling problem

Components from several work orders are selected and grouped together

to form the order list. The chopsaw operator examines all the work orders and

adds up the quantities for components that have the same thickness, quality,

width and length.

All components in the cutlist must have the same thickness. This produces

component lists with same thickness but different quality, length, width and

quantity. Each kicker is assigned one or more of these component lists.

For example, line 2 is processing thickness 6/4 and kicker 3 is assigned

two components: The first has quality Q51, width 57, length 1180 and quantity

200. The second component on kicker 3 has quality Q21, width 67, length 1510

and quantity 100. Kicker 12 is assigned one component that has quality Q111,

width 67, length 480 and quantity 180. And so on with the rest of the kickers.

The operator keeps track of components belonging to different orders,

because they need to be handled separately by the forklift drivers. For example,

 14

if there are 50 components required for one order and 30 for another order, the

operator write it down as (50+30) not 80. Components with large quantities (more

than 400) are split into smaller groups to be easily handled by the forklift drivers.

For example, if the quantity required for a certain component is 1000, it is

scheduled on the chopsaw as 1000, but will be loaded as (250+250+250+250).

The cutlist is created when switching to a new width or thickness.

Otherwise, it is only updated when a kicker becomes available (when the

component assigned to it is done).

Components are chosen to be scheduled on the kickers based on the

decision criteria detailed in Chapter 6.

Therefore, the rough mill cutlist scheduling is the problem of selecting a

list of components to be scheduled on the chopsaw (cutlist) from the list of

several components to be cut in the next few days (order list). The cutlist should

present a good mix of components of different lengths to the chopsaw.

Components must be done by their due dates, while giving priority to certain

types of components. I present several solutions to this problem in Chapter 6.

2.4.3 Ripsaw settings

The ripsaw has control of two main parameters of operation: priority and

arbor selection.

 15

2.4.3.1 Priority

The priority selection is based entirely on the desired strip width. The

priority can be changed during the operation of the ripsaw. There are three

priorities for the ripsaw

1. P57: more 57 mm strips are desired

2. P67: more 67 mm strips are desired

3. YLD: both 57 and 67, maximum yield of the board is desired.

2.4.3.2 Arbor selection

Selecting one of several arbors sets the distance between the blades of

the ripsaw. The change of arbor requires extensive machine adjustment;

therefore it is preferred not to change it often. In practice, the priority and the

arbor are usually changed at the same time.

The operator selects the arbor based on the following jag parameters:

1. The board width code,

2. The strip width (priority), and

3. Thickness

The operator chooses the arbor based on a table. This table states the

arbor number recommended for each combination of the above parameters, in

order to provide maximum yield. For example, arbor 252 is recommended for

board width code of 20, thickness 6/4 and priority YLD. If only 57 or only 67 are

desired, the arbor must be changed (codes 263 and 267 respectively).

 16

Ripsaw settings are straight-forward and require only a look-up table,

therefore this decision in the rough mill is not investigated any further.

2.4.4 Thickness switch-over process

The switch-over process is carried out when a line of production is

switching from one thickness to another. The supervisor decides to switch to a

new thickness according to the work orders and their due dates. Both the ripsaw

and the chopsaw have to be adjusted to process the new thickness. Jags with

the new thickness are selected and presented to the ripsaw.

The switch-over process takes 20-30 minutes, therefore it is preferred not

to be done so often. Usually a line of production runs the same thickness for one

to three days.

If the quantity of components of a certain thickness is very small, e.g. 5/4

and 8/4, they are not processed until about one day before their deadline. This is

to process all of the components of that thickness together. If the quantity is less

than 800 components, the work orders are sent to manual chopping (rework)

instead of the chopsaw.

The switch-over process results in new order lists, which are considered

as the input to the scheduling. Therefore, this decision is not addressed in this

work.

2.5 Summary

In this chapter, the operations that take place in a rough mill were

described. Loads of lumber (jags) are stored in a warehouse. As required, one

 17

jag at a time is brought to a lumber feeder, which feeds one board at a time to a

ripsaw. The ripsaw cuts the boards into strips lengthwise. Strips are inspected

and sorted by an operator, then fed one at a time to the chopsaw. The chopsaw

cuts the strips into components of fixed lengths. The components are inspected

by operators and are sorted into loads.

Two major decision problems that are addressed by human operators are

defined: jag selection and cutlist scheduling. Ripsaw settings and thickness

switch-over are other decisions in the rough mill, but they are straight-forward

processes and therefore do not require further investigation.

 18

3: HISTORY AND JOINT WORK

3.1 Introduction

In this chapter expected benefits of developing a decision support and

simulation system are described. Next, I describe the previous work related to

the rough mill that has been done before I joined this project. I also describe the

joint work done with other researchers. The rest of the thesis contains my

individual contribution.

3.2 Expected benefits

The following are the expected benefits of developing a decision support

and simulation system for the rough mill:

• Cost savings through reducing wasted lumber;

• Cost savings by better utilization of grade;

• Time savings by automating (or providing support) for component

scheduling and jag selection decisions;

• Consistent and standardized decisions among different operators;

• It allows the system to be operated by inexperienced operators when

experienced operators are not available or busy;

• It can be used as a training tool for new operators;

 19

• Operators have the choice to change the recommendations of the system,

providing flexibility;

• The system can be used with a simulator, allowing the user to test the

outcome of suggested decisions before running it in production;

• Operations personnel can use it to examine their existing business rules

and discover new ways of operation;

• The system helps researchers understand operations in the rough mill;

and

• Researchers can use the simulation as a tool for evaluating different

methods to improve performance.

3.3 History

In the following subsections, I outline the work that was done by others on

this project before I started my research, namely, simulation and case-based jag

selection.

3.3.1 Simulation

The rough mill operation was analyzed using Quest software, which is

based on discrete- event simulation with 3D visualization [13]. An application

(Editor) developed in Delphi is used for user interface to the simulator. The rough

mill operator can plan operation in the rough mill using this package. By selecting

different jags and different component lists for running the simulation, the

operator can predict the outcome of the mill and run several what-if scenarios.

 20

The Quest simulation model was run at the National Research Council in

Vancouver, BC, and was used remotely by the rough mill operators. Later in this

project, the simulator and editor programs were re-engineered to Java to be able

to run locally in the rough mill, without the need for remote connection or special

licensed software. 3D simulation was not used, and run time of the simulation

was decreased from hours to a few seconds.

3.3.1.1 Ripsaw

The board generation is done by using two different random generations.

The width is derived from a specific width distribution that is linearly interpolated,

while the length of the board is done by using a triangular distribution that has a

base of one inch and center at the average length of the jag.

Once the board is created, it is ripped by the ripsaw according to the arbor

configuration. The arbor configuration includes two criteria: the arbor set and the

priority as described in section 2.4.3.

Once the arbor configuration is set, the boards are ripped by using a look-

up table. For each configuration set, there is a table that is ordered by the width

with number of resultant strips, and also includes associate value for each width

category. The look-up table technique involves finding the appropriate length

groups that allow the ripping to be possible, and then find the group with the

highest value to determine the number of strips to be produced.

The simulation rip time is five seconds per board, regardless of the

number of strips produced per board.

 21

3.3.1.2 Conveyor

The conveyor transfer strips from the ripsaw to the chopsaw. When the

conveyor is full, the ripsaw is blocked.

3.3.1.3 Chopsaw

The chopsaw cuts the strips crosswise into components with lengths and

values assigned to the kickers. Mathematically, this is known as the knapsack

problem. Due to defects in the wood and the desire for a fast algorithm for

simulation, a heuristic algorithm is used to simulate the chopsaw, which can be

summarized as follows:

For every strip, generate clear pieces randomly from a cumulative density

function which is based on historical data. If the clear piece is shorter than any

component in the cultist, it is used for finger joint or waste. For every clear piece

of lumber, find the component in the current cultist that yields the maximum value

that can be cut from the clear piece. Then, subtract the length of the component

from length of the clear piece and decrement the required quantity of the

component. Repeat for the remaining length of the leftover piece to cut more

components. If no component can be cut and there is leftover from the clear

piece, then the leftover is considered as finger joint or waste. More clear pieces

are generated in the same fashion until the sum of clear piece lengths exceeds

the strip length.

Simulation chop time is set to 0.5 seconds per cut.

 22

3.3.1.4 Other simulation systems

In this section, I mention other simulation systems that are available for

rough mills.

ROMI-RIP and ROMI-CROSS [25] are simulators for rip-first and cross-

first rough mills respectively, which were developed by the USDA Forest Service.

Rip-first processing involves gang ripping the board into strips. Next, these strips

are crosscut to primary part (component) lengths, either specified or random.

Chop-first processing cuts the boards to primary part lengths and removes any

wide defective areas. Next, the board segments are straight-line ripped to the

required widths, specified or random. Part (component) scheduling is done by

ranking of parts by the user. Another example of rough mill simulator is a

simulation system that was developed for crosscut-first (chop-first) roughmills

[38].

Since the simulation described earlier was developed for the particular

rough mill of interest (Loewen), I decided to use it in my research rather than

ROMI-RIP.

3.3.2 Jag selection: case-based reasoning

In this approach, historical data is used to select jag types that produce

similar length distributions as the cutlist. Jag types are defined by mill, grade,

production line, length code, and thickness. An ideal jag for a given cutlist

allocates production components equally over the entire production. Hence, a

similar proportion of produced components to the requirement of the cutlist

 23

corresponds to a suitable jag type. The length distribution is used to describe the

differences of production capabilities of jag types.

A distribution of the percentage of cut quantities in each predetermined

sort length bin is calculated for each jag type based on the average of historical

cut quantities achieved by using jags that belong to the corresponding jag type.

The case-based reasoning (CBR) algorithm can be summarized as follows

[99]. For a given cutlist, the distribution of the percentage of required quantities

for the components in the cutlist is created. The difference between the

distribution of the cutlist and the historical distribution of each jag type is

calculated. This difference, which can be considered as a penalty measure, is

used to sort the jag types. Starting from the most suitable jag type, the jags

available in the inventory (current data) are selected for each jag type until a

maximum allowed number of jags has been reached. The list of jags for each jag

type is sorted by using criteria such as age (it is preferred to use older jags to

increase the turnover in the inventory), proximity of the board footages (which is

a measure of volume used in lumber industry) of the jag and the cutlist, and the

suitability of the width of the selected jag for the given ripsaw arbor configuration

and priority. The sorted list of jags is presented to the user to select the jag.

3.4 Joint work

The following sections outline the work done in collaboration with other

researchers [21].

 24

3.4.1 Scheduling: Genetic algorithms

The scheduling problem can be viewed as the problem of searching for

one cutlist solution from a large solution space of possible cutlists. Genetic

Algorithms (GA) are a suitable approach for searching large solution spaces.

Therefore, GAs are used as a solution to the cutlist scheduling problem [58].

The objective function is chosen to represent the heuristic rules and the

constraints of the problem which is presented in detail in Chapter 6. The

objective function is composed of two functions: the first is the due date objective

that favours components that are due first, the second is the length distribution

objective that favours cutlists with good length distributions.

As a problem representation for the Simple Genetic Algorithm (SGA), a

variable xi was assigned to each entry in the order list, and it was set to 1 if the

item was chosen to be in the cutlist, and 0 if not. The xi variables were

concatenated together to form a binary solution string. To handle the kicker

constraints, a heuristic algorithm is used to pick the kicker assignments to satisfy

physical constraints. If the algorithm was unable to assign all the chosen items to

a kicker, the solution cutlist is deemed infeasible and discarded. Two way

tournament selection and single point crossover operators are used. To improve

the algorithm's performance, the order list items are pre-sorted by length.

The Ordering messy Genetic Algorithm (OmeGA), specialized for

permutation problems, searches through different orderings of a set of numbers

to obtain the best ordering. To use OmeGA, a method to decode the number

orderings into a cutlist with their kicker assignment was developed. Each number

 25

in the ordering represented an item in the cutlist. Beginning with the first item

specified by the first number in the ordering, it is assigned to an available kicker.

The next item in the ordering is then assigned to the best fitting kicker remaining.

This process continues until all available kickers are assigned. The solution

decoding process ensures that every sequence represents a valid cutlist, so all

solutions generated are feasible.

For replacement scheduling, the objective function used by the GA was

used. A single unscheduled component is added to the currently scheduled

components to form a temporary cutlist, and the objective function value is

calculated. The process is repeated and the unscheduled component that is part

of temporary cutlist with the highest objective function value is then chosen as

the replacement component.

3.4.2 Jag Selection: MCDM and FMCDM

Jag selection is a multi-criteria decision making process. There are four

criteria for selecting jags [98]

1. Yield: Yield is the volume of wood in the final product as a percentage of

volume of wood in a jag. A higher yield of a jag indicates higher volumetric

utilization of the wood. Average values of chopsaw yield of jag types in the

historical file are utilized to measure the yield.

2. Material Cost: Material cost of a jag is the standard cost (average unit cost

of that particular grade) times its board feet volume.

 26

3. Percentage of orders satisfied: Usually a cutlist is completed by using

several jags. Using one jag, only part of a cutlist could be produced.

Matching the produced cutlist, the cumulative length distribution of

components produced from each jag type, with the required cutlist can be

used to measure the percentage of orders satisfied for the jag.

4. Processing time: Production cost can be reduced by finishing orders with

processing time as short as possible. The average processing time of a

jag type indicates its potential capabilities in processing time.

The TOPSIS (Technique for Order Preference by Similarity to Ideal

Solution) multiple criteria optimization method is used to rank alternative

candidates. The chosen alternative has the shortest distance from the ideal

solution and the farthest distance from the negative-ideal solution. TOPSIS is a

fast method compared to methods such as dynamic programming.

Depending on the different situations, the importance of the above four

criteria may be different. If the cutlist includes many components that are urgently

required, the percentage of orders satisfied is more significant than other criteria.

If there is a longer lead time, then the yield and cost become more important. To

achieve overall optimization, an appropriate weight must be assigned to each

criterion.

The user is expected to input the weights for different criteria for each

cutlist. Then, the TOPSIS method is used to rank alternative jag types, thus

recommending jags that are most suitable to produce the input cutlist.

 27

In the above method, it might be difficult for the operator to set individual

weight values for each cutlist. In an alternative approach to solve the jag

selection problem, a fuzzy system is used to set the weights of the multiple

criteria using data from the cutlist and linguistic fuzzy rules. The fuzzy system is

fast and runs in real-time.

A Fuzzy Inference System (FIS) is used to set the pair-wise comparison

weights. The inputs of the fuzzy system are statistics from the cutlist. Since it is

difficult to make rules linking cutlist information directly to the weights, pair-wise

comparison values were used as an output of the FIS. Next, the AHP (Analytic

Hierarchy Process) method is used to convert these pair-wise comparison values

into individual weights to be used for the multiple criteria method described

above. The TOPSIS method mentioned above is extended to Fuzzy TOPSIS with

weights from the output of the AHP process.

3.4.3 Jag sequencing methods

Jag sequencing is the process of selecting a list of jags to be presented in

sequence on the ripsaw. Four alternative methods for jag sequencing are

discussed in this section [60]. The first method is ZI (Zero Intelligence), which

repeatedly selects jags based on the current cutlist. The second method uses

beam search based on a fitness function. Fuzzy rulebase based AHP is the third

method presented. The last jag sequencing method is weight determination using

fuzzy rulebase tuned by genetic algorithms.

 28

In the ZI method, the jags are selected repeatedly by using the CBR jag

selection approach until the order is fulfilled.

Beam search method: Current conditions are defined by the cutlist, order,

kicker assignments, ripsaw and chopsaw statistics. A new list of suitable jags is

created for each position in the sequence for which a jag is selected by using the

CBR jag selection algorithm. Beam search limits the window of neighborhood

creation to creating the ones for only q most suitable candidates in the current

state. The fitness function that is used to evaluate the candidates is based on the

statistics collected through the simulator [61].

Fuzzy rulebase based AHP (Simplified FMCDM) method utilizes

conventional AHP with fuzzy pair-wise comparisons. The weights are determined

by the Row Means of Normalized Columns method. The jag types with scores

calculated by using these weights are ranked by using the conventional TOPSIS

method as explained in a previous section.

AHP method is used to find the most suitable weights associated with the

decision criteria used to rank the jag types. The pair-wise comparisons of

importance of decision criteria under different cutlist characteristics, made by

domain experts, were used to determine these weights. The uncertainty in these

comparisons for different cutlist conditions is captured by using fuzzy rulebases.

Weight determination using fuzzy rulebase tuned by GA: GA metaheuristic

search mechanism is used to identify the most suitable weights associated with

the decision criteria without pair-wise comparisons acquired from experts. A

 29

fuzzy rulebase model is proposed to imply the crisp weights under different cutlist

conditions [59].

3.5 Goal of this research

Since the jag selection decision problem was addressed in detail, it will not

be further investigated in this research. Similarly, the simulation algorithms are

already developed and are not addressed. The rest of the thesis focuses on two

challenges: solving the scheduling problem as well as providing an agent-based

design and implementation to allow for flexibility and future enhancements.

3.5.1 Agent-based system architecture

Design overall system architecture using the multi-agent paradigm, and

implement it using existing simulation algorithms and new or previously

developed decision support algorithms.

3.5.2 Scheduling

The scheduling problem is a significant and complicated decision in the

rough mill. My second challenge is to develop scheduling algorithms that address

the unique features of the rough mill scheduling problem.

3.6 Summary

In this chapter, the history of this research was presented. The simulation

was first developed, and then some algorithms for decision support were

developed for the rough mill. The rest of this thesis focuses on two goals:

developing agent-based system architecture, and solving the scheduling

 30

problem. The next chapter provides a survey of agent-based manufacturing

systems.

 31

4: AGENT-BASED MANUFACTURING SYSTEMS

4.1 Introduction

Manufacturing is a highly dynamic process that requires real-time, flexible,

reactive decisions. This chapter presents a survey of agent technology and multi-

agent systems, and their suitability for manufacturing applications [20]. An

overview of agent technologies that have been developed for scheduling,

planning, and control of manufacturing systems is presented. Hierarchical,

heterarchical, and hybrid architectures for manufacturing systems, learning

methods, and features of selected technologies and applications are discussed.

Finally, Internet-enabled manufacturing systems and Holonic Manufacturing

Systems are discussed.

4.2 Agents and multi-agent systems

Agent-based computing is a multi-disciplinary field rooted in Distributed

Artificial Intelligence and distributed objects technologies [53].

4.2.1 Artificial intelligence

Artificial intelligence (AI) is a computing field that goes back to the 1950s.

Its goal is to understand and build intelligent entities [75]. AI currently

encompasses a large variety of sub-fields, ranging from learning and perception,

to game theory, proving mathematical theorems and diagnosing diseases.

Current research areas in AI include natural languages, machine learning,

 32

automated reasoning, computer vision, knowledge representation, robotics,

search methods, cognitive sciences and agents.

4.2.2 Agent definition

There are several definitions of an agent. A discussion of agent definitions

is presented by Franklin and Graesser [74]: “an autonomous agent is a system

situated and a part of an environment that senses that environment and acts on

it, over time, in pursuit of its own agenda and so as to affect what it senses in the

future.”

For the purpose of this work, I follow the approach of Jennings and

Woolridge [55] and Wooldridge [54], and define an agent as a software

component or entity that is capable of autonomous action, has partial control on

its environment, and can decide for itself what it needs to do in order to satisfy its

design objectives. An agent-based system is one in which the key abstraction is

that of an agent. Multi-agent systems (MAS) contain multiple agents interacting

together to pursue goals beyond their individual capabilities.

4.2.3 Agent characteristics

Agents are usually autonomous, intelligent, flexible, reactive, proactive

and social. An autonomous agent should be able to act without direct intervention

of humans or other agents and should have control over its own actions and

internal state. An intelligent agent is a system that is capable of flexible

autonomous action in order to meet its design objective. Flexibility of an agent

implies that an agent is responsive to the environment, user, or other agents. A

 33

proactive agent exhibits goal-directed behavior and takes initiatives. Social

agents interact together with other agents and humans to achieve their goals and

help others with their activities. Additional aspects of agents are mobility and

adaptability. Agents are also persistent and continuously perceive their

environment [75].

Lockemann [77] identify four properties of a software agent: it resides in

an environment and interacts continuously with it; it offers a useful service while

its internal processes remain encapsulated; it is capable of autonomous action in

order to meet its design objectives (provide its service); and the autonomy of the

software agent is guided by its own goals. Furthermore, intelligent software

agents are characterized by being reactive to the environment, and balancing

their goal and reactive behaviour. Intelligent software agents may also take

initiatives in pursuing their goals, and may interact with other agents to provide

their services.

Agents can be distinguished from objects in that they are autonomous

entities capable of exercising choice over their actions and interactions.

However, they may be constructed using object technology. Agents do not

invoke methods (actions) on agents, rather request actions to be performed. The

decision to act upon the request or not lies within the recipient. Moreover, agents

typically run in their own thread of control, as opposed to standard object

systems which have a single thread [48]. There are several agent-oriented

methodologies that can be used to develop multi-agent systems. These

methodologies are listed and compared in reference [6].

 34

4.2.4 MAS applications

Multi-agent systems are used in a wide range of applications requiring

flexibility and adaptability to a rapidly changing environment due to their

distributed nature, modularity, and ease of implementation. Examples of such

applications are [77] [1] process control, manufacturing, information

management, text and web searching, wireless sensor networks, nano-

technology, distributed energy management, e-commerce, health care including

patient management, intelligent personal assistant software, computer games, air

traffic control, satellite imaging data, network security and multi-robot teams.

In a manufacturing plant, new tasks are added during operation, machines

may fail unexpectedly, and order deadlines can change. In addition, several

machines could perform the same type of tasks and the number of tasks is

usually higher than the capacity of the machines. All the above factors make

manufacturing a highly dynamic process, which requires real-time, flexible,

reactive decisions. To meet these challenges in manufacturing, multi-agent

systems have been applied. An early use of agent-based systems in

manufacturing was introduced by Shaw [47] where distributed planning and

negotiation techniques were used for flexible scheduling and control.

Jennings and Bussmann [57] suggest that MAS have three key aspects

that make them suitable for control and software engineering in general. These

aspects are decomposition of large problems into smaller problems, abstraction

by defining a simplified model of the system, and organization by defining and

managing the relationship among different components.

 35

Agent technology is widely recognized as a promising paradigm for the

next generation of manufacturing systems [90]. Agent technology satisfies the

fundamental requirements of modern manufacturing, including enterprise

integration, distributed organization, agility, scalability, fault-tolerance and

integration of humans with software and hardware [49].

Holonic Manufacturing Systems (HMS) are based on highly decentralized

manufacturing control systems built from autonomous, cooperative intelligent

systems [72] [87] [35], and these can be viewed as a specialized type of multi-

agent system.

4.3 Background of Agent-Based Manufacturing Systems

Agent-based manufacturing systems can be classified according to

several criteria. In the following section, I present examples of agent-based

manufacturing systems and discuss them according to these criteria.

4.3.1 Scope of the manufacturing systems

Some manufacturing systems are concerned with supply-chain

management and integrating shop floor operations such as scheduling, order

management, material handling, monitoring, and simulation. I refer to these as

“integrated systems.”

Other systems are concerned only with scheduling. These systems might

also include planning and control. Shen provides an in-depth look at

manufacturing scheduling [89] and process planning and scheduling [93].

 36

In the following sections, I present examples of integrated systems, and

scheduling, planning and control systems. I focus on recent developments. Shen

and Norrie [88] describe earlier MAS projects in intelligent manufacturing.

4.3.2 Physical agents versus logical agents

In manufacturing systems, agents represent physical machinery, e.g.,

machine controllers, conveyors and automated guided vehicles. Agents can

directly connect to programmable logic controllers through a software wrapper.

Alternatively, agents represent operators or business processes. For example, a

scheduling agent can perform the task of an operator who is responsible for

scheduling. Several tasks are carried out logically at the same time.

4.3.3 Hierarchical, heterarchical, and hybrid architectures

MAS architectures can be classified in three categories. The first category

is a hierarchical architecture in which agents are arranged in a hierarchy with a

master-slave relationship. The second category is a heterarchical architecture in

which agents have a peer-to-peer relationship. This architecture is distributed,

with decentralized communication to avoid bottlenecks that occur in centralized

systems. It is frequently used for scheduling and control applications.

The third category is the hybrid architecture which has federating agents

that help with the communication of agents, and maintain a global view of the

system. Hybrid architectures also include modular systems such as integrated

systems.

 37

4.3.4 Learning ability

Learning is “the acquisition of new knowledge and motor and cognitive

skills, and the incorporation of the acquired knowledge and skills in future system

activities, providing that this acquisition and incorporation is conducted by the

system itself and leads to an improvement in its performance” [30]. Panait [43]

presents a survey of the applications of machine learning to such problems in the

MAS area.

Soft computing techniques such as fuzzy logic, neural networks, and

genetic algorithms are widely used in manufacturing applications of control and

decision support.

4.4 Agent-based systems in manufacturing

4.4.1 Integrated systems

The following describes examples of MAS used in integrating operations

and processes in manufacturing applications.

4.4.1.1 Super-agent architecture

Early systems involve a super-agent that supervises subagents. An

example of this approach includes subsystem agents for receiving, shipping, and

maintenance, and a super-agent that contains knowledge of the master

production interaction [68].

Marik et al. [84] present an integrated system at the control level. A meta-

agent organizes work and performs auto-configuration.

 38

4.4.1.2 Hybrid architectures

Since super-agents formed a bottleneck in the system, subsequent

systems moved towards a modular design or hybrid architecture. The following

are examples of such systems.

An MAS for printed circuit board manufacturing is presented by Sikora and

Shaw [70]. Agents represent physical entities as well as logical decision

modules. Agents exist on the system, process, and decision levels. Coordination

mechanisms for each level are detailed. A constantly updated knowledge base is

used for learning. Performance tests indicate that the MAS is superior to a

traditional system.

Shen et al. [91] presents a collaborative agent approach for an integrated

production planning system. Agents are categorized as interface, collaboration,

knowledge management, template mediator, dynamic mediator and product

model database.

Metamorph I is a planning and scheduling system with a hybrid

architecture. A mediator agent learns from history and propagates behaviors to

the future. This system was modified to produce Metamorph II that integrates

design, planning, simulation and execution for supplier, customer, and partners.

Shen et al. [92] includes an in-depth look at hybrid architectures.

An MAS for manufacturing integration is presented by Deen and Fletcher

[78]. Agents occur on three levels: coordination agents, skill agents, and class

minder agents. Rescheduling negotiation is done using a temperature model.

 39

ManAge is an agent based architecture for flexible manufacturing control

[82]. This framework was tested in an electronics manufacturing demonstration

test system. The agent architecture is based on the Planning, Execution,

Monitoring (PEM) concept. Agent models are implemented in Java using Visual

Café rapid application tools.

An MAS for order fulfillment in a virtual foundry fab is introduced by Yu

and Huang [12]. Agents represent subprocesses in the system. A direct

messaging protocol called GMPP (Generic Message Passing Platform) is used

for application-to-application communication. The system also includes a learning

agent that uses a distributed neural network model for on-line learning.

The PABADIS model is a distributed Manufacturing Execution System

(MES) with focus on production management functions: resource allocation,

scheduling, and dispatching [14]. Residential agents provide information about

resources to other agents. Product agents negotiate scheduling and resource

allocation of individual work-pieces using a simplified Contract Net Protocol.

Plant manager agents organize the process by performing quality management,

reporting, and monitoring. The system was developed using JINI, which

facilitates a “plug-and-participate” service.

IntaPS is an multi-agent system for process planning and scheduling that

features order, resource, and service (interface) agents [5]. It is implemented

using a FIPA-OS tool.

 40

Paolucci and Sacile [49] present PS-Bikes as a case study of a multi-

agent control system for manufacturing of custom bikes using Java Agent

DEvelopment Framework (JADE).

4.4.1.3 Supply-chain and Internet monitoring

Recent systems involve supply-chain management, virtual enterprise and

web-based monitoring and control.

A multi-agent framework for production planning, simulation, and supply-

chain management is introduced by Pechoucek et al. [50].

Agentsteel [76] is an agent-based online supply chain system for planning

and observation of steel production using an InteRRaP generic agent

architecture.

Wise-shopfloor is a real-time web-based monitoring and control for the

shop floor using Java 3D models which transmits only sensor data and control

commands and deploys control logic [45].

iShopfloor is an Internet-enabled agent-based intelligent shopfloor [94]. A

distributed control approach is applied from the virtual enterprise or supply chain

to the shop floor and also to each machine.

Shen et al. presents a service-oriented integration framework based on

software agents and web services to establish a dynamic collaborative

environment for inter-enterprise collaboration [95].

A survey of online simulation-based manufacturing systems (including

virtual manufacturing) is presented by Yoon and Shen [32] where simulation is

 41

based on historical data. Current data is used for simulation, and new decisions

according to simulation are directly transmitted to execution systems in the shop

floor.

4.4.2 Scheduling, Planning and Control

The following are examples of MAS that are used in scheduling, planning,

and control.

4.4.2.1 Control systems

A shop control system presented by Park et al. [33] includes one planning

agent, three manufacturing system agents, and one control agent.

A robotic manufacturing control system features three types of agents:

manufacturing agents, part agents, and interface agents [16]. The agents were

implemented using the JACK intelligent agent language in which agents have a

Believe-Desire-Intention (BDI) architecture.

A survey of intelligent MAS in control applications, involving fuzzy logic

and genetic algorithms is presented by Naso and Maione [17]. A simulation of a

benchmark system shows the superiority of the agent-based systems over

conventional systems.

Tichý et al. present a control and planning system based on a three-layer

modified hierarchal structure with directory facilitator agents [64].

 42

Marik et al. [86] describes an industrial control system with high-level

control agents implemented in JADE and low-level control agents in a

programmable logic controller.

Brennan [71] provides a survey of recent real-time control systems, and

evaluates them against several primary needs for next-generation systems.

Dynamically Integrated Manufacturing Systems (DIMS) [19] manage

optimal fulfillment of customer orders while simultaneously considering

alternative system structures to suit changing conditions by integrating

manufacturing planning and control decisions with systems reconfiguration and

restructuring.

A mobile agent-based framework supports dynamic deployment of control

algorithms and tasks in automation systems [80]. The framework is based on a

mobile agent system called Mobile-C and uses Ch, an embeddable interpretive

C/C++ environment for mobile agent execution.

4.4.2.2 Hybrid scheduling systems

The following systems include federating agents for scheduling and/or

control.

Ramos [10] describes a system for dynamic scheduling with resource

agents and task agents. A resource manager agent negotiates a schedule with

the resource agents. The negotiation process includes a re-negotiation phase

when exceptions occur. A task manager is responsible for generating task

 43

agents. This system was later modified to exclude the resource manager agent,

thus achieving a fully distributed architecture [11].

A market-based scheduling control system features product and resource

agents that negotiate a schedule [36]. A supervisor agent handles blocking and

delay situations.

Another system for scheduling, planning, and control has a hybrid

architecture with system and cell agents in addition to parts, machines, and

material handling agents [79]. In this system a modified contract net protocol is

used for negotiation. This paper also offers an overview of various MAS

architectures.

In Araujo et al. [42] a control scheduling system with hybrid architecture

features mediator agents that resolve conflicts among local agents. Scheduling

agents coordinate with process activities and resources agents to achieve global

process control. A human agent interfaces with the scheduling agent. Agents are

modeled using high-level Petri-nets.

4.4.2.3 Fully distributed scheduling systems

In a real-time heterarchical scheduling system [83], producer agents use a

game theory philosophy called “coopitition” in which agents simultaneously

compete and cooperate with other producer agents. Agents use a memory-based

reasoning technique for learning. The user is represented through a “human

agent.” The system was developed using the Java-based Voyager Platform.

 44

A fully distributed job shop scheduling system with auction-based

negotiation using Lagrangian relaxation is proposed by Dewan and Joshi [62].

Results show that the proposed system outperforms distributed dispatching

heuristics.

Bussmann and Schild [73] proposes a prototype for a self-organizing

Flexible Manufacturing System where work-pieces, machines, and switches

agents negotiate a schedule using auction-based protocols, where switches

move pallets across conveyors in order to bypass machines. To avoid deadlocks

resulting from capacity bottlenecks, a mechanism is introduced whereby

machines do not bid for new work-pieces when the machine’s output is blocked.

Tests show that the performance of the MAS is nearly optimal.

Another system for job shop scheduling (shop floor task allocation) is

presented by Glanzer et al. [40], a heterarchical system using Contract Net

Protocol. The system was implemented using the Zeus toolkit.

Csaji et al. [4] presents a machine learning functionality with reinforcement

learning neural networks to improve the scheduling in the PROSA holonic

architecture [34].

Another dynamic scheduling MAS with fully-distributed (heterarchical)

architecture from Liu et al. [56] features a hybrid auction/Lagrangian relaxation

approach with a rolling time horizon procedure for formulating and solving the

scheduling problem.

 45

The bottleneck station scheduling problem is addressed using Ant Colony

Optimization (ACO) to solve it metaheuristically [96]. The system was

implemented in an Intel chipset.

4.4.3 Holonic Manufacturing Systems

The concept of holons was first introduced by Arthur Koestler [3]. Holons

are collaborative self-configuring agents that are capable of communicating with

other holons to achieve overall system objectives [18]. In holonic systems, the

holons are organized in a hierarchical structure called a holarchy.

One of the most comprehensive treatments of holonic systems for

industrial applications was provided by the Holonic Manufacturing Systems

(HMS) Consortium, an international industrially driven project addressing

research, standards, pre-competitive development, deployment, and support of

architectures and technologies for open, distributed, intelligent, autonomous and

cooperative systems. During its ten-year program, more than 40 companies,

R&D laboratories, and universities developed specifications of holonic

architectures, a computer-aided environment for the encapsulation, reuse and

integration of holonic systems technologies, and libraries of demonstrated,

reusable technologies and tools for the construction of holonic manufacturing

systems. Details of the organization and the accomplishments of the HMS

Consortium are provided by Gruver et al. [87] and the Intelligent Manufacturing

Systems (IMS) web site [35].

 46

The extension of the original holonic visions, aimed at real-time low-level

control, towards production planning and scheduling, and supply chain

management issues covers the same area as current MAS research [85]. For

this reason, the technology and results achieved in MAS can be applied to

holonic system applications.

An example of a holonic manufacturing system is a planning, scheduling

and control system that uses fuzzy logic to model multi-agent systems with

holonic self-organizing systems [52]. The system has hybrid architecture with

mediator agents.

In another holonic system, resource and component agents integrated in a

holarchy perform scheduling using a distributed algorithm based on the theory of

constraints [41]. The system was implemented using the JADE platform.

Recently, there is a direction to combine service-oriented architecture with

MAS. In one application [39], a service-oriented agent acts as a mediator of a

virtual unidirectional conveyor to transport pallets from one port to another. The

agent communicates via service-orientation and controls the physical device. In

order for the agent to provide its service (transfer of pallets), it requests service

from a neighbouring device.

4.5 Summary

Manufacturing operation, scheduling, planning, and control are complex

issues, due to the highly dynamic nature of manufacturing. Because of their

 47

distributed characteristics, flexibility, abstraction, and ease of implementation,

MAS have been widely applied to manufacturing.

I presented examples of agent-based manufacturing systems developed

for the integration of several operations in manufacturing. Earlier systems

involved a super-agent that supervises sub-agents in a hierarchical architecture.

Subsequently, modular or hybrid architecture was used in integrated systems.

More recent systems involve virtual enterprise, supply-chain and Internet

monitoring and control.

I also provided examples of agent-based manufacturing systems that deal

with the scheduling, planning, and control. Those systems were classified into

control, hybrid architecture and heterarchical architecture. An heterarchical

architecture (fully-distributed approach) is typically used to solve the job shop

scheduling problem, especially in Flexible Manufacturing Systems (FMS).

Several MAS in manufacturing incorporate intelligence algorithms include neural

networks, optimization, and knowledge-base techniques.

 48

5: AGENT-BASED DECISION SUPPORT AND SIMULAION
SYSTEM FOR ROUGH MILLS

5.1 Introduction

In this chapter, I introduce agent-based solutions for the rough mill. Agents

represent the physical machines in the simulation such as the ripsaw, as well as

the business processes involved in the decision making such as scheduling.

The outline of this chapter is as follows: First, I introduce the agent-based

platform middleware that is used in developing the solutions. Then, a prototype

system is implemented to demonstrate the architecture and inter-agent

communication. This prototype is then extended to two lines of production and

the negotiation protocol used is presented. The possibility of extending to

multiple lines of production is discussed. The prototype is used to implement the

system with real data and full functionality and the challenges of implementing

the system are discussed. Evaluation of each of the three systems is presented

as verification and validation testing. Finally, a discussion of the agent-based

approach is presented as well as an evaluation of using the agent paradigm.

5.2 JADE and FIPA standards

Java Agent DEvelopment Framework (JADE) [26] [27] is a Java-based

open-source middleware for agent development and execution. It is compliant

with standards of the Foundation for Intelligent Physical Agents (FIPA) [69] [77].

FIPA is an IEEE Computer Society standards organization that promotes agent-

 49

based technology and the interoperability of its standards with other technologies

[29].

FIPA specifications define the reference model of an agent platform and a

set of services that should be provided to realize truly interoperable MAS. The

FIPA performatives and other features of FIPA standardization can be applied to

control problems, production planning and supply-chain management [85].

Using the JADE platform ensures following the FIPA standards, while

providing other features such as agent communications and a graphical user

interface (GUI) for monitoring agents. JADE provides the support to run agents

on several computers and mobile platforms over a network or the Internet. Java

is platform-independent which makes it a flexible and portable choice.

JADE has been used for several agent applications, such as providing e-

services to mobile users [63], integrating agents into distributed virtual

environments [44], reducing traffic in peer-to-peer systems [97], manufacturing

simulation for material handling [66] and mobile ad hoc information and services

[2].

5.3 RoughMill ontology

An application-specific ontology is developed for defining the concepts

and agent actions. An ontology provides a formal explicit description and a

common vocabulary of concepts and their properties and relations. An ontology

together with a set of individual instances of classes constitutes a knowledge

base [67].

 50

The ontology is generated using Protégé semantic editor [67] with a Bean

Generator plug-in reference [7]. This graphical tool is an open source ontology

editor and knowledge acquisition system that can be easily used to add

concepts, agent actions, and predicates. The ontology Java files are

automatically generated, facilitating future modification of the ontology. Figure 5.1

shows the jag concept in the Protégé GUI.

Figure 5.1 Protégé GUI showing the jag concept

Concepts used in the RoughMill ontology are item, strip, Jag and component.

Examples of agent actions are SendJag, SendStrip and SendRcmdCutList. Figure 5.2

shows the SendJag action as the content of an ACL (Agent Communication

Language) message sent from the ripsaw agent.

 51

Figure 5.2 SendJag message

5.4 Prototype multi-agent system for one line of production

5.4.1 System architecture

Figure 5.3 shows the system architecture for one line of production. There

are three categories of agents used in the proposed system: user interface,

decision support and simulation agents. Figure 5.4 shows the inter-agent

communications.

This design is a hybrid model, i.e., neither a master-slave super-agent

architecture, nor a fully-distributed peer to peer system. It has a modular

architecture where agents represent different physical and logical entities in the

((action

(agent-identifier

:name

RSA@eman:1099/JADE)

(SendJag

:ripJag

(Jag

:itemID 5

:jagLength 14.0

:jagVolume 2845.0

:jagGrade M

:jagNum 123423

:jagWidth 2.0))))

 52

rough mill such as chopsaw, ripsaw, and jag selection. The system was designed

to mimic the functionality of the real-life system.

The agents use JADE messaging system to send and receive messages.

All agents (except the start agent) check continuously on received messages.

Each agent has several templates of expected messages. When the agent

receives one of those messages, it takes action according to its internal logic. If

the message is unknown, the agent records the unknown message to the output

debug log. The block() function is used to keep the agent idle between receiving

messages.

Figure 5.3 System architecture showing different types of agents

User Interface

Jade
agents

GUI
agent

Jag Sel agent

Cutlist Rcmd agent

Chopsaw
agents

Ripsaw
agent

Conveyor
agent

Decision Support

Simulation

 53

Figure 5.4 System architecture with agent communications

Every JADE agent is composed of a single execution thread. In order to

be able to execute several tasks, the agent must be able to carry out several

concurrent tasks, each in its own behaviour. Cyclic behaviour, one shot

behaviour and simple behaviour are used to implement the agents. JADE

framework also provides other behaviours such as FSM behaviour and Parallel

behaviour.

5.4.2 User interface agents

5.4.2.1 Start/GUI agent (SA)

The GUI of the prototype is a simple GUI with start and end simulation

buttons. When the user presses the respective buttons on the GUI, this

agent sends start simulation and end simulation messages to the decision

support agents.

CSA RSA CVA JSA

GUI
agent

 54

5.4.2.2 JADE agents

JADE provides agents for debugging and platform management, e.g.,

remote management agent, dummy agent and sniffer agent.

5.4.3 Decision support agents

Decision support agents provide recommendation for selecting jags and

cutlists.

5.4.3.1 Jag selection agent (JSA)

This agent selects a jag and sends it to the ripsaw agent to start the

simulation.

5.4.3.2 Cutlist recommend agent (CRA)

The agent recommends a cutlist and sends it to the chopsaw for

simulation.

5.4.4 Simulation agents

These agents simulate the operations of the machines in the rough mill.

Agents representing the ripsaw, conveyor and chopsaw process selected jags

into individual components according to the required cutlist.

5.4.4.1 Ripsaw agent (RSA)

The ripsaw agent receives a message including the suggested jag. It

simulates cutting of the strips from boards of the jag. Generated strips are saved

in a linked list data structure in the agent knowledge base. Another behaviour

sends strips one by one to the conveyor agent as individual messages. The

 55

ripsaw agent stops/resumes processing a jag upon receiving a message from the

conveyor agent indicating jamming in the line (as discussed below).

5.4.4.2 Conveyor agent (CVA)

The conveyor agent acts as a buffer between the ripsaw agent and the

chopsaw agent, and represents the physical conveyor that exists in the rough

mill. When the conveyor agent detects jamming, it sends a message to the

ripsaw agent to stop. It sends another message to the ripsaw to resume when

the jamming has ended.

The conveyor agent receives strip messages from the ripsaw agents and

saves them to a strips buffer with a linked list data structure. It also receives

confirmation messages from the chopsaw for strips received. The conveyor

agent keeps track of the number of strips waiting on the conveyor as follows:

number of strips waiting on the conveyor = number of strips received from ripsaw -

number of strips confirmed by chopsaw

Another cyclic behaviour sends the strips to the chopsaw agent if there is

no jamming, or when it receives a strip acknowledgement message from the

chopsaw.

Jamming is detected if the number of strips waiting is greater than the max

number of strips waiting. This number is set as an arbitrary constant number in

the prototype. Using real data implementation (to be discussed later in this

chapter), this number is calculated based on the dimensions of the strips on the

conveyor.

 56

5.4.4.3 Chopsaw agent (CSA)

The chopsaw agent simulates chopping of strips into components. It

receives strip messages from the conveyor agent, sends confirmation message

back to the conveyor, and simulates chopping of strips into components of the

cutlist.

5.4.5 Evaluation

Figure 5.5 Jade sniffer agent shows message exchange between agents

In Figure 5.5, the JADE sniffer agent shows the messages exchanged

between agents during the simulation. Strip messages are generated by the

ripsaw agent (RSA), and sent to the conveyor agent (CVA), which in turn sends

the strip messages to the chopsaw agent (CSA). CSA then sends a confirm

 57

message back to the conveyor to keep track of the number of strips on the

conveyor.

The content of a message is displayed by double-clicking on the arrow

representing the message. Figure 5.6 shows the content of an ACL message

exchanged between CVA and CSA. The sniffer agent can be used to save a log

of all exchanged messages to a text file, as well as a snapshot of the session.

 58

Figure 5.6 ACL message containing a strip sent from the conveyor agent to the chopsaw
agent

The system is verified and validated using the sniffer agent, as well as a

debug output, as shown in Figure 5.7.

 59

Figure 5.7 A section of the output file of simulation with 100 strips

5.5 Agent-based prototype for two lines of production

In the rough mill, there are two lines of production. One warehouse stores

all the jags that are used for jag selection by both lines, and components can be

scheduled on either lines. Therefore, decision support agents (namely jag

 60

selection and cutlist recommend agents) of one line need to negotiate with

decision support agents from the other line.

However, the machines on the production line work in sequence, i.e., the

conveyor agent of line1 (CVA1) transfers strips from RSA1 to CSA1. Similarly, for

line2, CVA2 transfers strips from RSA2 to CSA2. Therefore, agents representing

machines of one line (namely ripsaw, chopsaw, and conveyor agents) do not

interact with agents from the other line.

5.5.1 System architecture

Figure 5.8 System architecture of two lines of production

Figure 5.8 represents the two-line prototype. Jag selection agents

negotiate together to avoid conflict over selected jags. Similarly, cutlist

recommend agents negotiate over components of the cutlist. Simulation agents

CSA1 RSA1 CVA1 JSA1 CRA1

CSA2 RSA2 CVA2 JSA2 CRA2

 61

do not interact with agents from the other line. The start agent (not shown in the

figure) sends start and end simulation messages to the four decision-support

agents.

5.5.2 Negotiation protocol

FIPA-Propose negotiation protocol is used. The initiator sends a propose

message indicating that it will propose some action. The participant (responder)

responds by accept or reject message. The initiator performs the action and

returns a status response message. This protocol is a direct negotiation protocol

with no need for moderators. Other FIPA interaction protocols supported by

JADE are contract-net, achieve rational effect, and subscribe.

5.5.3 Evaluation

Figure 5.9 shows the log of messages exchanged between the jag

selection agents of the two lines. JSA2 initiates of the protocol, JSA responds

with an accept message and JSA2 receives it and ends the protocol.

 62

Figure 5.9 Negotiation protocol log

5.6 Multiple lines of production

While the rough mill of interest has only two lines of production, it is

interesting to examine whether the system can be extended to more than two

lines of production. As seen in the previous section, the simulation agents of

each line of production are independent of agents of other lines. Only the

decision support agents (JSA and CRA) interact with agents from other lines.

The FIPA-Propose negotiation protocol can also be used since it is 1:N (the initiator

can handle several responders at the same time) [28]. Figure 5.10 is the

suggested design for three lines.

JSA Responder received the following message: (PROPOSE

 :sender (agent-identifier :name JSA2@Eman-Laptop:1099/JADE :addresses

(sequence http://192.168.199.25:7778/acc))

 :receiver (set (agent-identifier :name JSA@Eman-Laptop:1099/JADE))

 :reply-with R8549963_0 :protocol fipa-propose

 :conversation-id C8549963_1272134595062)

JSA2 Protocol finished. Received the following accept message: (ACCEPT-

PROPOSAL

 :sender (agent-identifier :name JSA@Eman-Laptop:1099/JADE :addresses

(sequence http://192.168.199.25:7778/acc))

 :receiver (set (agent-identifier :name JSA2@Eman-Laptop:1099/JADE

:addresses (sequence http://192.168.199.25:7778/acc)))

 :content “accept_proposal”

 :reply-with JSA2@Eman-Laptop:1099/JADE1272134595093 :in-reply-to

R8549963_0 :protocol fipa-propose

 :conversation-id C8549963_1272134595062)

 63

Figure 5.10 Three lines of production

5.7 Rough Mill Decision Support and Simulation System
(RMDSSS)

5.7.1 System architecture

The one-line prototype is extended by implementing it with real data and

algorithms. Figure 5.11 shows the RMDSSS system architecture.

The simulation described in Section 3.3.1 is used to develop the

simulation agents. The agents read historical data to generate boards, strips and

clear pieces as described earlier.

The case-based reasoning jag selection algorithm mentioned earlier in

Section 3.3.2 is used for jag selection. This algorithm reads historical data files

used for case-based reasoning. It also reads current data to get information

about jags in the warehouse.

CSA1 RSA1 CVA1 JSA1 CRA1

CSA2 RSA2 CVA2 JSA2 CRA2

CSA3 RSA3 CVA3 JSA3 CRA3

 64

For cutlist recommend, the heuristic algorithm proposed later in this thesis

(Sections 6.6.1 and 6.6.2) is used

Figure 5.11 System architecture using real data

Components can be added by the GUI to change the order list. The

production line configuration can also be changed through a configuration file to

reflect jammed machines (kickers).

Like most object-oriented programs, the code of the simulation and

decision support was divided into modules each with a specific functionality, such

as GUI, algorithms, parsers, etc. While it is possible to do an agent-wrapper for

each of these modules, this is not straightforward because most modules use

methods from other modules. It becomes necessary to re-design the system into

a more logical design that represents the physical system and the decisions in

the rough mill.

Implementing the full system with real data uncovered some information

that is missing from the prototype that is then added in RMDSSS, namely:

CSA RSA CVA JSA CRA

GUI
agent

GUI
agent

 65

1. The cutlist is required for JSA,

2. Exchange of cutlist between CSA and CRA for component

replacement,

3. RSA sends status update to JSA for GUI update, and

4. Some fields are missing from the ontology.

There are two GUIs for this system, which are slightly modified from the

original simulation Delphi simulator interface GUIs. The first one is for jag

selection and simulation (Figure 5.12), and the other GUI is for cutlist

recommend and simulation (Figure 5.13).

Figure 5.12 GUI for Jag Selection Agent

 66

Figure 5.13 GUI for Cutlist Recommend Agent

Figure 5.14 shows the package layout. The three main packages are

DecisionSupport, Simulation and config. This hierarchy is used to represent the

logical function of the classes implemented. For example CutlistRcmd is a

DecisionSupport package, that does not import any files from the JagSelection

package as well as the Simulation packages. Similarly, the chopsaw package does

not import any files from the conveyor or the ripsaw, as well as DecisionSupport. The

config package contains other files such as the ontology classes, configuration

and data files and the simulation report classes.

 67

Figure 5.14 Package layout

5.7.2 Challenges of using real data

Using real data and simulation algorithms rather than prototypes results in

the following challenges:

1. Following the agent paradigm on existing simulation code. In the

existing code, as with most object-oriented programs, one module

 68

directly uses the methods of another module. In agent-based

systems, one agent cannot directly manipulate another agent’s

logic as this contradicts the autonomy characteristic of the agent.

This requires reengineering the code to make sure the design

agrees with the agent paradigm. However, using the JADE

middleware made developing agents easier.

2. Discovering missing information that is not considered in the

prototype as described above.

3. GUI functions and display of progress to the user is more

complicated than the simple GUI of the prototype, which contains

only two buttons to start and end the simulation. In addition, there

are two GUI agents instead of one.

4. It is hard to trace the large number of messages exchanged

between agents, especially given the distributed characteristics of

the agent system. This challenge is the motivation for building the

prototype and verifying its function before implementing the system

with full functionality and real data.

5.7.3 Evaluation

The system is verified using the JADE GUI (for agent communication) and

debug status statements as in prototype evaluation. In addition, the simulation

report and the information displayed on the two GUIs (as shown in Figure 5.12

and Figure 5.13) and are both used for verification. The simulation is validated

 69

against the Quest model [22], which was used and tested for several years by

researchers and rough mill staff.

5.8 Discussion of agent implementation

In this section, some of the issues that resulted from the use of agent

technology are discussed.

5.8.1 Jamming detection

In the rough mill, conveyors transfer strips from the ripsaw to the chopsaw.

If the chopsaw is running slower than the ripsaw, jamming or congestion will

occur on the conveyor. A photocell is used to detect jamming. The ripsaw and

conveyor are stopped until the jamming ends.

The conveyor agent detects jamming by keeping track of the number of

messages (strips) it received from the ripsaw agent, and the number of

confirmation messages it received from the chopsaw agent. The difference

represents the number of strips waiting to be processed by the chopsaw. Given

the speed of the conveyors, and the dimensions of the strips sent to the

chopsaw, the maximum number of strips waiting to be processed (conveyor

capacity) can be calculated.

This process mimics the conveyor functionality in the rough mill. It also

provides approximate synchronization in the operation of the ripsaw and

chopsaw.

 70

5.8.2 Synchronizing the simulation

In order to achieve synchronized simulation, we can mimic discrete event

simulation by using an event-logger (supervisor or super-agent) to keep track of

the simulation events, and trigger each agent to perform its action in the correct

timing and the right sequence of events. However, such centralized approach

can cause bottleneck problems since one supervisor agent controls the rest of

the agents.

In addition, such time accuracy is not needed since the purpose of this

system is decision support and simulation rather than control. An approximate

synchronization is sufficient to provide consistent information about the ripsaw

and chopsaw progress, and display the progress on the GUI. Conveyor agent

jamming detection is used to approximately synchronize the simulation as

described above.

5.8.3 Simulation time calculation using bottleneck detection

Simulation time is the time it will take to run the operations in real-life. In

the previous discrete-event simulation system, simulation time is calculated

according to a model. In the agent-based system, ripsaw simulation time is

calculated based on the number of boards processed by the ripsaw, conveyor

simulation time is based on the velocity of the conveyor, and chopsaw simulation

time is based on the number of chops performed by the chopsaw.

Since all machines run simultaneously, simulation time is not simply

adding these values together. Discrete event simulation provides accurate

simulation time because a list of events can be tracked accurately and used to

 71

calculate the time. However, if we want to avoid a centralized supervisor agent

that runs the whole system, alternative approximations are necessary.

The proposed approach is to find out the bottleneck of operations. This

means that we decide which machine is slower, the chopsaw or the ripsaw. By

calculating the simulation time for the ripsaw and the simulation time for the

chopsaw and picking the higher number, we find out the approximate simulation

time. A problem arises is that since the system is not accurately synchronized (as

described above), we cannot use equal time intervals (such as the ticker

behaviour provided by JADE) to find out the bottleneck. Therefore, one jag is

used as the interval where the bottleneck is seeked. The ripsaw and the chopsaw

each send their simulation time per jag, the GUI agent pick the maximum of the

two numbers to calculate the simulation time displayed in the simulation report.

5.8.4 Computational time

Computational time is the time it takes to run the simulation on the

computer since agents run locally on one computer. It can be easily calculated

from the start until the end of the simulation. Several runs using RMDSSS with

real data show that this time is acceptable with a few seconds per jag.

5.9 Evaluation of using the multi-agent paradigm

The advantages of using agent-based design are as follows:

1. Modelling: In the rough mill, there is no single centralized entity

that controls the machines or the decisions in the rough mill. The

 72

agent design reflects the actual rough mill system as it exists in real

life, which provides a good model of how the rough mill operates.

2. Communication: Once the rough mill ontology of the agents is

defined and implemented, agents communicate easily with

messages that contain ontology elements. There is no discrepancy

even if multiple programmers are involved.

3. Integration: Similar to communication between agents in the

system, it is possible to add new agents and connect them to

existing agents.

4. Expandability: Agent design allows for expanding the current

system. For example moving from one line to two lines is facilitated

by using a standard negotiation protocol between the old and new

agents. Similarly, adding more lines or other rough mill operations

such as creating order lists from work orders can be integrated to

the system.

5. Mobility: JADE framework supports agent mobility, as agents can

exist on several JADE containers (different computers or PDAs).

For example, jag selection GUI can run on one container and cutlist

recommend GUI on another. It is also possible to allow for remote

or web monitoring.

On the other hand, the disadvantages of using agent-based systems are:

 73

1. Synchronization: It takes careful design and experimentation to

get the expected functionality of the system. In a centralized

system, one program controls the flow of the rest of the modules,

thus achieving the desired functionality. With a distributed

decentralized system, the control is shared among all running

agents, each running in its own thread. The desired functionality is

achieved by implementing several behaviours in each agent, for

example one behaviour to receive messages, and another to send

messages or do other tasks.

2. Paradigm-specific issues: The design and implementation of the

agent-based system required a learning process in several areas

such as AI, agent-based systems, distributed systems, ontologies,

FIPA standards and JADE framework.

5.10 Summary

In this chapter, three rough mill agent-based systems were presented and

evaluated using rough mill data. The first system is a prototype for one line of

production. The second one is an extension of the prototype for two lines of

production or more. The third system RMDSSS (Rough Mill Decision Support

and Simulation System) uses the prototype to implement a complete system with

real data, simulation algorithms and two GUIs. The purpose of these systems is

to present recommendation for the operators to select material and schedule

orders and to view the simulation. JADE framework is used for implementation,

as it is compliant with FIPA IEEE standards.

 74

6: THE ROUGH MILL SCHEDULING PROBLEM (RMSP)

6.1 Introduction

In this chapter, the second part of this work which is the scheduling

problem is investigated. In a previous chapter, the operations in the rough mill

are described, including scheduling. In the following sections the Rough Mill

Scheduling Problem (RMSP) is described in detail, followed by a problem

formulation of the RMSP as a search problem and Constraint Satisfaction

Problem (CSP). In the rest of the chapter I propose several solutions to the

problem including full search, domain search, backtrack, heuristic and

randomized heuristic methods. The implementation and evaluation of these

methods is presented.

6.2 Problem description

Figure 6.1 shows the inputs and outputs of the scheduling process. The

inputs are the components from the work orders (order list) and the current status

on the kickers. The outputs are new assignments to the kickers, maximum length

on the cutlist to the jag selection process and strip width to the ripsaw for arbor

setting.

 75

Figure 6.1 Rough mill cutlist scheduling

6.2.1 Physical constraints

Table 6.1 and Table 6.2 list the properties of kickers (sorting bins) of

production lines one and two respectively. Each kicker can be assigned more

than one component. The components are manually sorted and stacked into

loads. However, due to limited ground floor space and limited number of kickers,

usually 20 to 25 components are scheduled at one time. Since kickers can be

assigned more than one component, ‘logical’ kickers or sort numbers (kicker

numbers) are used to assign one component per logical kicker.

New assignments

Current Status

Scheduling
 (cutlist)

Order list

Kickers
Components

Max length
Strip width

Jag selection
and ripsaw

 76

Table 6.1 Kicker (Sorting bin) configuration for production line number one

 Sort # Length range (mm) Nbrhd

Kicker #3 1,2,3 300 – 800 1

Kicker #4 4,5,6 1815 – 3700 2

Kicker #5 7,8 1300 – 1810 2

Kicker #6 9,10 800 – 1299 2

Kicker #7 11,12,13 1815 – 3700 3

Kicker #8 14,15 1300 – 1810 3

Kicker #9 16,17 800 – 1299 3

Kicker #10 18,19,20 1815 – 3700 4

Kicker #11 21,22 1300 – 1810 4

Kicker #12 23,24,25 300 – 900 5

Table 6.2 Kicker (sorting bin) configuration for production line number two

 Sort # Length range (mm) Nbrhd

Kicker #2 1,2 1810 – 2599 1

Kicker #3 3,4 1300 – 1810 1

Kicker #4 5,6,7 300 – 1299 1

Kicker #5 8,9 1810 – 3610 2

Kicker #7 10,11 1300 – 1810 2

Kicker #8 12,13 1810 – 3610 3

Kicker #9 14,15 1300 – 1810 3

Kicker #10 16,17 900 – 1299 3

 77

Kicker #11 18,19 300 – 1200 4

Kicker #12 20 300 – 700 4

To formulate the physical constraints of close-by kickers, the concept of

neighbourhood is introduced. Kickers physically close-by are said to be in

proximity to each other and are assigned the same neighbourhood value (Nbrhd)

Nj as shown in Table 6.1. Components assigned to one kicker affect close-by

kickers in two ways. The difference in lengths between components assigned to

kickers in the same neighbourhood should not be too small (less than 100 mm)

because components can get mixed up during the manual sorting and loading

process. If the length difference between components on nearby kickers is too

big (greater than 2000 mm), it can form a hazard by stacking up and falling on

workers.

The neighbourhood conflict constraint for the two components Ci1 and Ci2

can be expressed as follows:

nLLn ii max21min | | <−< ∀ i (6.1)

where mmn 100min= and mmn 2000max=

For each kicker Kj, the minimum and maximum component length allowed

are Ljmin and Ljmax respectively, as shown in Table 6.1. The range of kicker Kj is

defined as follows:

 78

LLR jjj minmax−= ∀ j (6.2)

A valid kicker Kj for a component Ci is one for which the length of the

component Li falls within Kj’s range of valid lengths. The length constraint of

kicker Kj and component Ci can be expressed as follows:

LLL jij maxmin << ∀ i, j (6.3)

The maximum length represent the physical limit of the kicker, however,

the minimum length can be ignored to achieve a cutlist with more components.

0min=L j ∀ j (6.4)

In order to present a variety of component lengths to the chopsaw, it is

preferable to have a uniform length distribution of components. The Length

distribution constraint for components Ci1 and Ci2 can be expressed as follows:

GapLL ii min21 || <− ∀ i (6.5)

where mmororGap 550100
min

=

The value of Gapmin is not set to zero to prevent assigning same-length

components on two different kickers.

 79

6.2.2 Initial and replacement scheduling

The scheduling problem can be divided into two sub-problems. The first is

initial scheduling in which the chop line is empty, so we attempt to schedule as

many components as possible on the line at once. The second sub-problem is

replacement scheduling where the required quantity of one of the components

scheduled on the line is completed, and we need to replace it with another

component from the order list.

6.3 Theoretical background

6.3.1 Scheduling problems

Scheduling problems can be classified into the following major types:

single machine, parallel machine, flow shop, job shop and open shop [51].

In the single machine problem, the jobs are processed on one machine

only. In the parallel machine problem, there are m identical machines in parallel.

Job j requires a single operation and may be processed on any one of the m

machines or on any one that belongs to a given subset Mj.

In the flow shop problem, there are m machines in series, and each job j

has to be processed on each one of the m machines following the same route. In

the job shop problem, each job has its own pre-determined route to follow.

Finally, in the open shop problem, there are no restrictions on the routing of each

job through the machines and some machines may not be used.

 80

6.3.2 Constraint Satisfaction Problems (CSP)

CSP is defined by a set of variables V, a set of domain values D and a set

of constraints C (relations between these variables). A solution to the CSP gives

an assignment to variables of values that satisfy all the constraints [75].

If we add to the CSP an objective function f that can be used to evaluate

the solutions, we get the Constraint Optimization Problem (COP), which attempts

to find solutions to the CSP with optimum value of f.

6.3.3 Search methods

Search methods can be classified into two main categories: constructive

search and local search [31].

In constructive search, variables are assigned one by one until all the

variables are assigned. If we search through all the possible values of the

variables, the search is complete. A complete search discovers a solution if it

exists. In the case of optimization, a complete search finds the optimum value of

an optimization function.

On the other hand, local search methods start with an initial assignment of

all variables. The initial assignment can be an invalid solution, or a non-optimum

value in case of optimization search. Iteratively, the variable assignments are

changed according to the search algorithm, until a certain stopping criterion is

reached such as runtime limit, valid solution, or no change in the objective

function. Local search methods are not complete; a solution that exists can be

missed, or for optimization problems, the global optima can be missed.

 81

6.4 Problem formulation: RMSP

The RMSP is a parallel machine scheduling problem as several machines

(kickers) are available for processing the given jobs (components); each job

consists of a single operation that is performed by one machine. Furthermore,

the processing time of a job is independent of the machine on which it is

processed.

However, in the RMSP, due to the natural defects in the wood and

inaccurate dimensions of the wood, the processing time is unknown at the time of

scheduling. Therefore, the RMSP cannot be solved using traditional scheduling

methods that find the schedule by optimizing measures like the makespan or the

completion time of the jobs [31] [51].

6.4.1 Configuration

We can view the RMSP as a CSP with the following specifications:

• Variables are the kickers (sorting bins)

• Domain values are the components that can be assigned to the

kickers

• Constraints are the feasibility conditions namely, length of the

component in the range of the kicker, neighbourhood constraints,

and size distribution gap constraints according to Eq. (6.3), Eq.

(6.1) and Eq. (6.5) respectively.

 82

6.4.2 Exhaustive search

To find out all the possible cultists, we can conduct an exhaustive search.

The domain values of each kicker are all the components on the order list.

Let c be the number of components in the order list and k the number

kickers on the production line. Since unscheduled kickers can be a part of the

cultists, the effective number of components is (c+k). The total number of cultists

for c components and k kickers can be calculated as follows:

!

)!(

c

kc
Pk

kc +
=

+

 (6.6)

These are all the possible lists, but not all of them satisfy the constraints. By

conducting consistency checks on these lists, we can find out the feasible

cultists. This can be done by exploring a search tree as shown in Figure 6.2 of

three variables and three domain values.

Figure 6.2 Search tree of three variables, with three domain values each

 83

The time complexity [46] is calculated by specifying an upper bound of the

growth rate in terms of the order of the algorithm. The order of the search

algorithm for n variables and d domain values is:

T(n,d) is O(dn) (6.7)

6.4.3 Partial search

Given the physical constraints of the problem, we can find out all the valid

component of each kicker according to Eq. (6.3). In this case, the domain value

of each kicker is reduced to the number of valid components for that kicker,

which results in a smaller search tree as shown in Figure 6.3.

Figure 6.3 Search tree for three variables: variable1 has three domain values, variable2 has
two domain values and variable3 has three domain values

The order of the search for n variables, each with dv valid domain values,

can be calculated as follows:

 84

)(dO n
v
 where dd v≤ (6.8)

6.5 Backtrack scheduling algorithm

Backtrack algorithm is a complete search method; it produces all the

feasible solutions to the problem. One by one, the variables are assigned domain

values, which form a consistent solution. In RMSP, if one kicker assignment

results in an infeasible solution, further assignments to other kickers will produce

infeasible solutions as well as shown in Figure 6.4. In the backtrack algorithm, if

one solution is not feasible, we do not continue to search its sub-tree since all

solutions in the sub-tree are infeasible as well, as shown in Figure 6.5.

Figure 6.4 If one node is infeasible solution, the rest of the sub-tree nodes are infeasible
solutions too

 85

Figure 6.5 Backtrack search tree

6.5.1 Backtrack initial scheduling algorithm for RMSP

The notion of live domain is introduced. Each variable is assigned a live

domain of all the possible domain values still to be explored. Once a domain

value is checked, it is removed from the live domain of the variable.

For the backtrack algorithm, in order to assign one variable in the tree, the

variable before it should be assigned. However, some variables (kickers) may not

have any valid components to assign, i.e., left unscheduled. An unscheduled

kicker can be a part of a feasible cutlist. In order to implement this, the notion of a

dummy component is introduced. A dummy component has the component

number ‘-1’ and is added to the end of each variable live domain as shown in

Figure 6.6.

 86

Figure 6.6 RMSP backtrack algorithm. Light grey nodes represent dummy components or
unscheduled kickers

The backtrack algorithm can be outlined as follows:

Step 1. For all the variables (kickers), find all the domain values d =

valid comps for that kicker plus a dummy component to represent

unscheduled kickers

Step 2. Use depth first search to explore the tree:

a. If the solution is feasible: save or count the number of feasible

cutlists, explore the next node.

b. If the solution is infeasible: backtrack – do not explore the rest of

the subtree.

The order of the algorithm for k kickers, each with cf feasible components,

and cv valid components is as follows:

 87

)(cO k
f
 where ccc f v

≤≤ (6.9)

6.5.2 Complete-search replacement scheduling algorithm for RMSP

Replacement scheduling is triggered when one component on the line is

done. Since we only need to replace one component, replacement scheduling

can be done by complete search. The algorithm is as follows:

For each unscheduled kicker, test each valid component, if the cutlist is

feasible, add to a list of feasible replacement cultists.

6.5.3 Evaluation

To evaluate the backtrack algorithm, four order lists are used. The test is

repeated for 5,10,15,20 and 25 kickers. Gapmin is set to 100mm (Eq. (6.5)) and

Ljmin is not set to zero (Eq. (6.3)).

Table 6.3 shows the results of backtrack scheduling, where k is the

number of kickers, c is the number of components, TotalNum is the calculated

total number of lists for a complete search (according to Eq. (6.6)), Feasblnum is

the number of feasible lists, cc is the number of consistency checks, maxK is the

maximum number of scheduled kickers.

As the number of components and the number of kickers increase, the

number of feasible cultists and the runtime increase exponentially. This makes

this method not useful for large numbers, since it is impossible go through all the

nodes, as well as the impractical runtime. However, the production line contains

25 kickers, and the order lists used in testing are typical ones.

 88

The results show the complexity of the RMSP, as it is not a trivial problem

that can be solved by complete search methods. Therefore, it is not possible to

find all feasible cultists (or search for optimal cultists) through a complete search.

It is essential to develop other methods that find a reasonable number of cultists

in acceptable time.

Table 6.3 Backtrack results

k c TotalNum FeasblNum cc maxK runtime

Orderlist1 19 5.1*10
6
 241 576 4 0.0 sec

Orderlist2 51 4.6*10
8
 24,199 99,740 5 0.1 sec

Orderlist4 104 1.4*10
10
 2.9*10

5
 1.5*10

6
 5 2.5 sec

k
 =
 5

Orderlist5 207 4.1*10
11
 2.8*10

6
 5.4*10

6
 4 42.2 sec

Orderlist1 19 7.2*10
13
 2.6*10

5
 5.0*10

5
 8 0.8 sec

k
 =
 1
0

Orderlist2 51 3.3*10
17
 6.8*10

8
 1.2*10

9
 9 54.0 min

Orderlist1 19 2.4*10
21
 2.5*10

7
 1.1*10

8
 10 81.8 sec

k
 =
 1
5

Orderlist2 51 3.5*10
26
 > 4.8*10

10
 - - > 4 days

k = 20 Orderlist1 19 1.6*10
29
 4.4*10

8
 >2.1*10

9
 11 41.0 min

k = 25 Orderlist1 19 2.1*10
37
 4.4*10

8
 >2.1*10

9
 11 17.0 hrs

The complete-search rescheduling algorithm is tested using one random

test cutlist (cutlist number 121), unscheduling the first scheduled kicker. Gapmin is

set to 5mm (Eq. (6.5)). Table 6.4 shows the results; where InitialNumComp is the

number of components on the test cutlist before rescheduling and

 89

FeasblNumLists is the number of feasible replacement cultists, cc is the number

of consistency checks. runtime is 0.0 seconds for all tests.

Table 6.4 Rescheduling test

K InitialNumComp FeasblNumLists cc

Orderlist1 1 8 13

Orderlist2 3 12 23

Orderlist4 4 9 26 K
 =
 5

Orderlist5 3 22 66

Orderlist1 6 4 11

Orderlist2 8 5 15

Orderlist4 8 9 26 K
 =
 1
0

Orderlist5 7 51 113

Orderlist1 8 9 23

Orderlist2 10 14 39

Orderlist4 10 40 95 K
 =
 1
5

Orderlist5 12 52 135

Orderlist1 9 14 37

Orderlist2 10 28 77

Orderlist4 12 51 114 K
 =
 2
0

Orderlist5 14 106 261

Orderlist1 10 18 55

K
 =
 2
5

Orderlist2 11 34 143

 90

Orderlist4 13 82 244

Orderlist5 14 263 513

6.6 Heuristic scheduling

In this approach, scheduling is done using heuristic rules derived from

observing operations in the rough mill. These rules are implemented to meet

several heuristics that are specific to the RMSP such as physical constraints of

the sorting area, priority and due date of components, and maintaining a uniform

size distribution to provide the chopsaw with a variety of lengths.

This method is the one used by the cutlist recommend agent (CRA) in the

RMDSSS described in Chapter 5.

6.6.1 Heuristic initial scheduling algorithm

Step 1. Components in the order list are pre-sorted according to the

following criteria:

a. Due Date to reflect urgency

b. Priority (according to product type)

c. Quantity to allow higher quantities longer time for cutting

Step 2. For each component, all the valid kickers are determined

(based on each kicker’s length restrictions Eq. (6.3)). Valid kickers are

then sorted by range Rj (Eq. (6.2)).

Step 3. The longest and shortest components on the order list are

assigned. The longest component is given priority because it takes longer

 91

time to produce, while the shortest component helps in reducing waste. If

the second-shortest component has a closer due date than the shortest

component, and the difference between their lengths is less than 100 mm,

the second-shortest component is scheduled instead of the shortest one.

Step 4. The rest of components are scheduled to the first valid kicker

(the one with the smallest range). If that kicker is already scheduled for

another component, the next kicker is checked, and so on. Other

conditions for scheduling are:

a. Conflict in length with components scheduled to neighbouring

kickers according to Eq. (6.1), and

b. Conflict in length with other scheduled components (for a uniform

length distribution) according to Eq. (6.5). The minimum gap value

Gapmin is initially set to 100 mm.

Step 5. If the scheduling rate (number of assigned components) is

too low (less than 18 components3), the scheduling process is repeated

relaxing the length distribution restriction by setting Gapmin to 50 mm, then

5 mm.

Step 6. If the scheduling rate is still too low, the scheduling process

is repeated ignoring the minimum length requirement of the kickers,

keeping only the maximum length requirement (Eq. (6.4)) in order to allow

3
 Using the ROMI-RIP simulator, significant yield increases were observed as a result of
increasing sorting capacities (number of components in the cutlist). However, a plateau is
reached around 18 to 20 components, where additional sorting capacity increases result in
negligible yield gains [81].

 92

for more sorting locations to be used. Gapmin is set to 100 mm, 50 mm and

then 5 mm to relax the length distribution condition.

The order of the heuristic search algorithm for c components and kv valid

kickers is as follows:

)(22
ckcO v+

 (6.10)

And since mostly the number of components is greater than the number of

kickers and valid kickers (kv < c), the order of the algorithm can be approximated

to:

)(3
cO (6.11)

6.6.2 Heuristic replacement scheduling algorithm

Step 1. Order list components are pre-sorted according to the same

criteria used in step 1 of the initial scheduling algorithm.

Step 2. Search the sorted order list for a component similar to the

finished component (having the same length, width and quality

requirements). This is done in order to maintain the previous length

distribution and to ease the manual stacking process of components.

Terminate if a component is found, otherwise go to the next step.

Step 3. If the longest item is not currently on the cutlist, attempt to

schedule it, with minimal length distribution conditions (Gapmin=5mm).

Terminate if a component is found, otherwise go to the next step.

 93

Step 4. The shortest (or second-shortest as described above)

component is examined for scheduling with minimal length distribution

conditions. Terminate if a component is found, otherwise go to the next

step.

Step 5. Components are examined in the pre-sorted order, and are

assigned to available kickers using the same constraints of step 4 of the

initial scheduling algorithm (Eq. (6.1) and Eq. (6.5)).

Step 6. If there is no replacement component found, the above step

is repeated with less restrictions, similar to those of steps 5 and 6 of the

initial scheduling method.

6.6.3 Heuristic scheduling as a search method

Pre-sorted component represent the variables of the search tree. The

domain values are the valid kickers. Sorting the domain values represent a best-

first strategy for searching4. Heuristics focus on choosing the next neighbour in

the search to move to [65]. The first feasible domain value is selected and no

further domain values are explored. Figure 6.7shows an example of three pre-

sorted components, domain values represent sorted valid kickers, and light grey

nodes represent unassigned components.

4
 Assigning a component to the kicker with the smallest range is a best-fit strategy.

 94

Repeating the search is equivalent to relaxing the consistency check conditions.

In Figure 6.8, when the conditions are relaxed, more components are assigned

compared to Figure 6.7.

Figure 6.7 Heuristic scheduling as a search problem

C1=Kv1

C1=Kv1
C2=-

C1=Kv1
C2=-
C3=Kv1

 95

Figure 6.8 Repeating heuristic search with relaxed conditions results in assigning more
components

6.7 Randomized heuristic scheduling

In the above sections, it was shown that the backtrack algorithm finds all

feasible solutions, which can be a large number and take a long time to run. In

addition, a heuristic algorithm based on best-first search that provides one

solution was presented.

It is interesting to explore providing the user with alternative recommended

cutlists to choose from, all of which are feasible solutions. The randomized

heuristic algorithm is presented, which adds a random factor to explore different

areas of the search space.

C1=Kv1

C1=Kv1
C2=Kv2

C1=Kv1
C2=Kv2

C3=Kv1

 96

6.7.1 Randomized heuristic n-initial scheduling algorithm

Randomized heuristic scheduling algorithm is similar to the heuristic

algorithm, but instead of sorting the valid kickers of components by range, their

order is randomized (shuffled) to get a different solution every time. This is

repeated for n times and the schedules are presented to the user. Suggested

value of n is 5 to 20.

Therefore, the randomized heuristic algorithm is the same as the heuristic

algorithm listed in section 6.6.1, except for step 2:

Step 2. For each component, all the valid kickers are determined

(based on each kicker’s length restrictions). Randomize the order of the

valid kickers.

6.7.2 Heuristic n-replacement scheduling algorithm

The algorithm provides the first n replacement components according to

the heuristic replacement scheduling algorithm. This gives the user more options

to choose from.

6.8 Evaluation of heuristic algorithms

Both heuristic initial algorithm and randomized heuristic n-initial algorithms

were tested on dataset orderlist5 with number of components c = 207, number of

kickers k = 25, and number of lists n = 10. All the heuristic initial and replacement

algorithms provide instant results.

Output is shown in Table 6.5. Each cutlist is displayed in one column as a

list of components in the format of component number (unique number for each

 97

component) and component length (compNo/compLength). The heuristic initial

cutlist is displayed first (HL), followed by the 10 randomized heuristic initial

cultists (L1-L10). The results are validated by tracing debug statements, and

analyzing the order list and kicker information.

The randomized heuristic algorithm provided more choices of cultists,

some with more components than the heuristic method.

Table 6.5 Output of heuristic and randomized heuristic n-initial scheduling
(compNo/compLength)

 HL L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

K1 0 /
580

83 /
780

105 /
730

0 /
580

105 /
730

105 /
730

K2 83 /
780

0 /
580

105 /
730

105 /
730

105 /
730

0 /
580

170 /
673

83 /
780

K3

0 /
580

0 /
580

0 /
580

0 /
580

105 /
730

0 /
580

83 /
780

0 /
580

K4 13 /
2810

75 /
2110

75 /
2110

79 /
3010

54 /
2376

79 /
3010

54 /
2376

K5 54 /
2376

79 /
3010

13 /
2810

79 /
3010

54 /
2376

141 /
2010

141 /
2010

141 /
2010

13 /
2810

79 /
3010

K6 125 /
3610

125 /
3610

124 /
3551

125 /
3610

124 /
3551

125 /
3610

125 /
3610

124 /
3551

124 /
3551

125 /
3610

K7 6 /
1510

6 /
1510

72 /
1810

179 /
1410

115 /
1670

72 /
1810

6 /
1510

115 /
1670

28 /
1610

K8 179 /
1410

115 /
1670

179 /
1410

72 /
1810

72 /
1810

28 /
1610

179 /
1410

72 /
1810

6 /
1510

6 /
1510

K9 194 /
876

154 /
946

196 /
1086

175 /
1028

175 /
1028

66 /
1210

66 /
1210

175 /
1028

194 /
876

66 /
1210

196 /
1086

K10 175 /
1028

196 /
1086

194 /
876

66 /
1210

66 /
1210

175 /
1028

175 /
1028

194 /
876

196 /
1086

175 /
1028

66 /
1210

K11 79 /
3010

141 /
2010

79 /
3010

13 /
2810

141 /
2010

75 /
2110

13 /
2810

54 /
2376

13 /
2810

K12 75 /
2110

54 /
2376

141 /
2010

54 /
2376

13 /
2810

75 /
2110

54 /
2376

13 /
2810

79 /
3010

75 /
2110

141 /
2010

K13

124 /
3551

125 /
3610

141 /
2010

75 /
2110

13 /
2810

79 /
3010

125 /
3610

125 /
3610

141 /
2010

125 /
3610

 98

K14 72 /
1810

6 /
1510

28 /
1610

28 /
1610

179 /
1410

28 /
1610

179 /
1410

28 /
1610

115 /
1670

K15 28 /
1610

72 /
1810

28 /
1610

6 /
1510

179 /
1410

72 /
1810

6 /
1510

28 /
1610

179 /
1410

115 /
1670

K16 196 /
1086

175 /
1028

175 /
1028

196 /
1086

194 /
876

194 /
876

196 /
1086

66 /
1210

175 /
1028

194 /
876

194 /
876

K17 66 /
1210

66 /
1210

66 /
1210

194 /
876

196 /
1086

196 /
1086

194 /
876

196 /
1086

66 /
1210

196 /
1086

175 /
1028

K18 141 /
2010

75 /
2110

54 /
2376

141 /
2010

75 /
2110

54 /
2376

K19

13 /
2810

79 /
3010

13 /
2810

54 /
2376

75 /
2110

79 /
3010

75 /
2110

K20 124 /
3551

124 /
3551

125 /
3610

124 /
3551

124 /
3551

124 /
3551

124 /
3551

K21 115 /
1670

179 /
1410

115 /
1670

6 /
1510

115 /
1670

115 /
1670

72 /
1810

179 /
1410

28 /
1610

179 /
1410

K22

28 /
1610

115 /
1670

6 /
1510

115 /
1670

6 /
1510

72 /
1810

72 /
1810

K23 170 /
673

170 /
673

83 /
780

170 /
673

83 /
780

170 /
673

83 /
780

170 /
673

83 /
780

0 /
580

170 /
673

K24

170 /
673

170 /
673

83 /
780

170 /
673

105 /
730

K25

194 /
876

83 /
780

170 /
673

83 /
780

num 19 20 20 20 20 20 20 20 20 20 19

L10 in Table 6.5 is used as a test cutlist for replacement algorithms with

component on kicker number eight (K8) marked as done.

Table 6.6 displays the results of the heuristic replacement and n-

replacement algorithms in the same format as above. The heuristic replacement

results are displayed first (HL), followed by the ten replacement cultists (L1-L10).

The cultists are validated by examining the suggested replacement component

against the available unscheduled components in the order list.

 99

The heuristic n-replacement provided more choices for replacement

components, starting with components of the same length as the component that

was done.

Table 6.6 Output of heuristic replacement and heuristic n-replacement scheduling
(compNo/compLength), done Kicker is K8, done component number is 6

 HL L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

K1

K2
83 /
780

83 /
780

83 /
780

83 /
780

83 /
780

83 /
780

83 /
780

83 /
780

83 /
780

83 /
780

83 /
780

K3
0 /
580

0 /
580

0 /
580

0 /
580

0 /
580

0 /
580

0 /
580

0 /
580

0 /
580

0 /
580

0 /
580

K4
54 /
2376

54 /
2376

54 /
2376

54 /
2376

54 /
2376

54 /
2376

54 /
2376

54 /
2376

54 /
2376

54 /
2376

54 /
2376

K5
79 /
3010

79 /
3010

79 /
3010

79 /
3010

79 /
3010

79 /
3010

79 /
3010

79 /
3010

79 /
3010

79 /
3010

79 /
3010

K6

K7
28 /
1610

28 /
1610

28 /
1610

28 /
1610

28 /
1610

28 /
1610

28 /
1610

28 /
1610

28 /
1610

28 /
1610

28 /
1610

K8
138 /
1510

138 /
1510

181 /
1510

92 /
1510

48 /
1510

70 /
1510

160 /
1510

114 /
1510

201 /
1510

27 /
1510

26 /
1480

K9
196 /
1086

196 /
1086

196 /
1086

196 /
1086

196 /
1086

196 /
1086

196 /
1086

196 /
1086

196 /
1086

196 /
1086

196 /
1086

K10
66 /
1210

66 /
1210

66 /
1210

66 /
1210

66 /
1210

66 /
1210

66 /
1210

66 /
1210

66 /
1210

66 /
1210

66 /
1210

K11
13 /
2810

13 /
2810

13 /
2810

13 /
2810

13 /
2810

13 /
2810

13 /
2810

13 /
2810

13 /
2810

13 /
2810

13 /
2810

K12
141 /
2010

141 /
2010

141 /
2010

141 /
2010

141 /
2010

141 /
2010

141 /
2010

141 /
2010

141 /
2010

141 /
2010

141 /
2010

K13
125 /
3610

125 /
3610

125 /
3610

125 /
3610

125 /
3610

125 /
3610

125 /
3610

125 /
3610

125 /
3610

125 /
3610

125 /
3610

K14

K15
115 /
1670

115 /
1670

115 /
1670

115 /
1670

115 /
1670

115 /
1670

115 /
1670

115 /
1670

115 /
1670

115 /
1670

115 /
1670

K16
194 /
876

194 /
876

194 /
876

194 /
876

194 /
876

194 /
876

194 /
876

194 /
876

194 /
876

194 /
876

194 /
876

 100

K17
175 /
1028

175 /
1028

175 /
1028

175 /
1028

175 /
1028

175 /
1028

175 /
1028

175 /
1028

175 /
1028

175 /
1028

175 /
1028

K18

K19
75 /
2110

75 /
2110

75 /
2110

75 /
2110

75 /
2110

75 /
2110

75 /
2110

75 /
2110

75 /
2110

75 /
2110

75 /
2110

K20
124 /
3551

124 /
3551

124 /
3551

124 /
3551

124 /
3551

124 /
3551

124 /
3551

124 /
3551

124 /
3551

124 /
3551

124 /
3551

K21
179 /
1410

179 /
1410

179 /
1410

179 /
1410

179 /
1410

179 /
1410

179 /
1410

179 /
1410

179 /
1410

179 /
1410

179 /
1410

K22
72 /
1810

72 /
1810

72 /
1810

72 /
1810

72 /
1810

72 /
1810

72 /
1810

72 /
1810

72 /
1810

72 /
1810

72 /
1810

K23
170 /
673

170 /
673

170 /
673

170 /
673

170 /
673

170 /
673

170 /
673

170 /
673

170 /
673

170 /
673

170 /
673

K24

K25

6.9 Summary

In this chapter, the RMSP (Rough Mill Scheduling Problem) was

presented. The physical constraints and the unique characteristics of this

problem were described. Traditional methods cannot be applied to the problem

because of unknown processing times.

Backtrack, heuristic and randomized heuristic solutions were presented.

The backtrack solution provides all feasible cultists. However, the number of lists

is very large, and it takes a long processing time. The heuristic solution provides

one solution that can be used directly in the simulation (as in Chapter 5). The

randomized heuristic solution provides n solutions for decision support.

For component replacement, I presented a heuristic method that

suggested one replacement component, a full-search method that presented all

 101

possible replacement components and heuristic n-replacement method that

provides n replacement cutlists.

 102

7: CONCLUSION

In this section, a summary of the content of the thesis is presented and a

list of contributions is outlined. Finally, future research directions are suggested.

7.1 Summary

In a rough mill, boards of lumber of approximate sizes are cut to produce

components of fixed sizes and qualities. Improving the processes in the rough

mill provides cost-saving of expensive lumber and reduces the waste of natural

resources.

The operations in a Canadian rough mill are investigated and

documented. The decisions taken by operators are analyzed as well during a trip

to the rough mill. The two main decisions in the rough mill are the jag selection

problem (material selection) and the scheduling problem (component or part

scheduling).

The history of the project is outlined which starts with a 3D simulation of

the rough mill. Collaborative work is done in the areas of jag selection, jag

sequencing and scheduling. The goal of the rest of this research is defined with

two challenges: developing an agent-based decision support and simulation

system and developing scheduling algorithms to solve the initial and replacement

rough mill scheduling problem.

 103

Before tackling the first challenge of designing the agent-based system,

the concept of an agent is defined and a survey of agent-based manufacturing

systems is presented. Agents are used for several manufacturing applications

ranging from control, scheduling and planning to enterprise operations and

supply-chain management.

The agent solution is first implemented as a prototype or a framework for

one line of production. This prototype is used to develop and validate the

behaviours of the agents and the communications between them. The system is

composed of three simulation agents (ripsaw, conveyor and chopsaw) and two

decision support agents (jag selection and cutlist recommend). This prototype is

extended to two lines using a negotiation protocol.

The prototype is implemented into the Rough Mill Decision Support and

Simulation System (RMDSSS). Simulation agents use historical data to simulate

rough mill operations. Jag selection agent uses historical and current data to

select jags from the warehouse inventory. Cutlist Recommend Agent uses

heuristic scheduling to recommend cultists from a given order list.

Synchronization of the simulation is done using the conveyor, which

mimics the real conveyor behaviour that detects jamming and stops the ripsaw.

Simulation time is calculated using bottleneck detection. The pros and cons of

using the agent paradigm are discussed.

The second challenge is the Rough Mill Scheduling Problem (RMSP). The

problem is detailed and formulated. Natural defects in the wood and inaccurate

dimensions result in unknown processing times, therefore traditional scheduling

 104

methods cannot be used to solve this problem. The problem is formulated as a

constraint satisfaction and search problem. Backtrack search is implemented and

evaluated. The number of feasible solutions and the runtime grow exponentially

when increasing the number of components and kickers.

A heuristic method for scheduling is developed. It can be viewed as a

best-first search method. Pre-sorted components are assigned to the first valid

kicker with the smallest range. If the number of components on the list is small,

the search is repeated with relaxed parameters. A randomized heuristic method

is also implemented that assigns pre-sorted components to the first valid random

kicker, and n-solutions are presented to the user.

Three replacement scheduling algorithms are also developed to

dynamically replace components done on the line with new ones. The first

method presents all the feasible replacement components, the second method

selects one component, and the third method presents n-components.

7.2 Contributions

1. Identifying the operations and decisions in a Canadian rough mill.

2. Designing and developing a rough mill ontology.

3. Designing and implementing a decision support and simulation system

for rough mills.

4. Applying the multi-agent paradigm to rough mills.

5. Adding a second line of production that shares the same material

resources and orders.

 105

6. Formulating the problem of scheduling naturally-defective material.

7. Developing backtrack, heuristic and randomized heuristic scheduling

methods and evaluating them with rough mill data.

8. Jointly developing decision support algorithms.

7.3 Future research

7.3.1 Agent-based decision support and simulation

1. Agent-based implementation makes it easy to extend the system to

other operations in the rough mill such as generating the order list

from the work orders. Moreover, it is possible to run the agents on

several containers in a distributed fashion and provide remote or

web-based monitoring [45] [95].

2. Learning algorithms can be used to improve the simulation agents

[75].

7.3.2 Scheduling

1. Several local search methods with various objective functions can

be implemented and compared using the simulation. An example of

the objective function is the one used in [58] as described in

Section 3.4.1. Examples of local search methods that can be used

are taboo search [24], simulated annealing and constraint

optimization methods [31] [65]. It is also possible to apply swarm

intelligence as a local optimization method [8] [9], such as ant

 106

colony optimization, particle swarm optimization and intelligent

water drops.

2. Scheduling can gather data from the simulation and improve on

existing heuristics using learning methods such as the one

presented by Park et al. [15].

 107

REFERENCE LIST

[1] A. Abraham, K. Franke and M. Köppen, “Intelligent Systems Design and
Applications,” Third International Conference on Intelligent Systems Design
and Applications, Berlin, New York, Springer, 2003.

[2] A. Genco, S. Sorce, G. Reina and G. Santoro, “An agent-based service

network for personal mobile devices,” IEEE Pervasive Computing, vol. 5, pp.

54-61, 2006.

[3] A. Koestler, The Ghost in the Machine. New York: Macmillan, 1968.

[4] B. C. Csaji, B. Kadar and L. Monostori, “Improving multi-agent based
scheduling by neurodynamic programming,” Holonic and Multi-Agent Systems
for Manufacturing, Lecture Notes in Artificial Intelligence, vol. 2744, Springer-
Verlag, 2004, pp. 110-123.

[5] B. Denkena, M. Zwick and P. Woelk, “Multiagent-based process planning
and scheduling in context of supply chains,” Holonic and Multi-Agent Systems
for Manufacturing, Lecture Notes in Artificial Intelligence, vol. 2744, Springer-
Verlag, 2004, pp. 100-109.

[6] B. Henderson-Sellers and P. Giorgini, Agent-Oriented Methodologies.
Hershey, PA,Idea Group Pub., 2005.

[7] Beangenerator plugin, “Acklin BV – Beangenerator,”
http://acklin.nl/beangenerator, accessed July 7, 2005.

[8] C. Blum and D. Merkle, Swarm Intelligence: Introduction and Applications:
Swarm Intelligence in Optimization. Natural Computing Series, Springer,
2008.

[9] C. Lim, L. Jain and S. Dehuri, Innovations in Swarm Intelligence: A
Review of Particle Swarm Optimization Methods Used for Multimodal
Optimization, Springer-Verlag, Berlin, Heidelberg, 2009.

[10] C. Ramos, “An architecture and a negotiation protocol for the dynamic
scheduling of manufacturing systems,” Proc. of the IEEE International
Conference on Robotics and Automation, 1994, pp. 3161-3166.

[11] C. Ramos, “Task negotiation for distributed manufacturing systems,” Proc.
of the IEEE International Symposium on Assembly and Task Planning, 1995,
pp. 259-264.

 108

[12] C. Yu and H. Huang, “Development of virtual foundry fab based on
distributed multi-agents,” Proc. of the IEEE International Conference on
Systems, Man, and Cybernetics, 2001, pp. 1030-1035.

[13] D. B. Kotak, M. Fleetwood, H. Tamoto and W. A. Gruver, “Operational
scheduling for rough mills using a virtual manufacturing environment,” in Proc.
of IEEE International Conference on Systems, Man & Cybernetics, 2001, pp.
140-145.

[14] D. Diep, P. Massotte and A. Meimouni, “A distributed manufacturing
execution system implemented with agents: The PABADIS model,” Proc. of
the IEEE International Conference on Industrial Informatics, 2003, pp. 301-
306.

[15] D. E. Brown and W. T. Scherer, Intelligent Scheduling Systems. Boston,
Kluwer Academic Publishers, 1995.

[16] D. Jarvis, J. Jarvis, D. McFarlane, A. Lucas and R. Ronnquist,
“Implementing a multi-agent systems approach to collaborative autonomous
manufacturing operations,” Proc. of the IEEE Aerospace Conference, 2001,
pp. 2803-2811.

[17] D. Naso and G. Maione, “Recent developments in the application of
computational intelligence to multi-agent manufacturing control,” Proc. of the
IEEE International Conference on Fuzzy Systems, 2001, pp. 990-994.

[18] D. Sabaz, W. A. Gruver, and M. H. Smith, “Distributed systems with
agents and holons,” Proc. of the 2004 IEEE International Conference on
Systems, Man, and Cybernetics, October 2004, pp. 1958 - 1963 vol.2.

[19] D. Zhang, A. Anosike and M.K. Lim, “Dynamically Integrated
Manufacturing Systems (DIMS) - A multiagent approach,” IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 37, no.
5, 2007, pp. 824-850.

[20] E. Elghoneimy and W. A. Gruver, “Agent-based manufacturing systems: A

survey,” Proc. of the IEEE SMC International Conference on Distributed

Human-Machine Systems, 2008, pp. 127-132.

[21] E. Elghoneimy, “Loewen Windows rough mill production system:
Information gathering report,” Technical Report #204, Intelligent Robotics and
Manufacturing Systems Laboratory, Simon Fraser University, October 2004.

[22] E. Elghoneimy, O. Uncu, W. A. Gruver and D. B. Kotak, “Simulation and

decision support models for rough mills: A multi-agent perspective,” Proc. of

the IEEE International Conference on System, Man and Cybernetics, 2005,

pp. 3723-3728.

 109

[23] E. Elghoneimy, O. Uncu, W. A. Gruver, D. B. Kotak and M. Fleetwood, “An

intelligent decision-support system for rough mills,” International Journal of

Manufacturing Technology and Management, A. Ramirez-Serrano; R. W.

Brennan, (eds.), vol. 8, issue 1/2/3, Inderscience, 2006, pp. 203-225.

[24] E. Nowicki and C. Smutnicki, “A fast taboo search algorithm for the job
shop problem,” Management Science Journal, vol 42, issue 6, June 1996, pp.
797-813.

[25] E. Thomas and J. Weiss, “Rough mill simulator version 3.0: An analysis
tool for refining rough mill operations,” Forest Products Journal, 2006, pp. 53-
58.

[26] F. Bellifemine, A. Poggi, G. Rimassa, “Developing multi-agent systems
with a FIPA-compliant agent framework,” Software - Practice & Experience,
John Wiley & Sons, Ltd. vol 3, no. 3, 2001, pp. 103-128,.

[27] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, “JADE, a white
paper,” EXP, In Search of Innovation, vol. 3, no. 3, Telecom Italia Lab, Turin,
Italy, September 2003, http://jade.tilab.com/, accessed February, 2010.

[28] F. Bellifemine, G. Caire, T. Trucco, and G. Rimassa, “JADE programmer’s
guide,” http://jade.tilab.com/doc/programmersguide.pdf, accessed February,
2010.

[29] FIPA, “The Foundation of Intelligent Physical Agents,”
http://www.fipa.org/, accessed February, 2010.

[30] G. Weiss, Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. Cambridge, MA: MIT Press, 2000.

[31] H. H. Hoos, Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann / Elsevier, 2004.

[32] H. J. Yoon and W. Shen, “Simulation-based real-time decision making for
manufacturing automation systems: A review,” International Journal of
Manufacturing Technology and Management, vol. 8, 2006, pp. 188-202.

[33] H. Park and W. Lee, “Agent-based shop control system under holonic
manufacturing concept,” Proc. of the 4th Korea-Russia International
Symposium on Science and Technology, 2000, pp. 116-121.

[34] H. Van Brussel, J. Wyns, P. Valckenaers, L. Bongaerts and P. Peeters.
“Reference architecture for holonic manufacturing systems: PROSA,”
Computers in Industry, vol. 37, 1998, pp. 255-74.

[35] Holonic Manufacturing Systems Consortium. Available:
http://www.ims.org/sites/default/files/2.4.15.1%20Project%20Summary%20-
%20%20HMS%20PHASE%20I%20and%20II.pdf, accessed February 2010.

 110

[36] I. Dumitrache, S. I. Caramihai and A. M. Stanescu, “Intelligent agent-
based control systems in manufacturing,” Proc. of the 2000 IEEE International
Symposium on Intelligent Control, 2000, pp. 369-374.

[37] J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland and Tom Carey,
Human Computer Interaction. Addison Wesley, 1994.

[38] J. Wiedenbeck, “Simulation for rough mill options,” Wood & Wood
Products Journal, November 1992.

[39] J.M. Mendes, P. Leitão, F. Restivo and A.W. Colombo, “Service-oriented
agents for collaborative industrial automation and production system,” Proc.
of the 4th International Conference on Industrial Applications of Holonic and
Multi-Agent Systems, Linz, Austria, 2009, pp. 13-24.

[40] K. Glanzer, A. Hammerle and R. Geurts, “The application of ZEUS agents
in manufacturing environments,” Proc. of the 2001 Conference on Database
and Expert Systems Applications, 2001, pp. 628-632.

[41] L. B. Sheremetov, J. Martinez and J. Guerra, “Agent architecture for
dynamic job routing in holonic environment based on the theory of
constraints,” Holonic and Multi-Agent Systems for Manufacturing, Lecture
Notes in Artificial Intelligence, vol. 2744, Springer-Verlag, 2004, pp. 124-133.

[42] L. O. Araujo Jr., N. Maruyama, P. E. Miyagi, L. A. Moscato and D. J.
Santos F, “A control architecture for distributed production systems using a
virtual cellular manufacturing and agents society based approach,” Proc. of
the IEEE International Symposium on Industrial Electronics, 2003, pp. 862-
867.

[43] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of the
art,” Autonomous Agents and Multi-Agent Systems., vol. 11, 2005, pp. 387-
434.

[44] L. Wang, S. J. Turner and F. Wang, “Interest management in agent-based
distributed simulations,” Proc. of the IEEE International Symposium on
Distributed Simulation and Real-Time Applications, October 2003, pp. 20–27.

[45] L. Wang, W. Shen and S. Lang, “Wise-ShopFloor: A web-based and
sensor-driven shop floor environment,” Proc. of 7th International Conference
on Computer Supported Cooperative Work in Design,,2002, pp. 413-418.

[46] M. A. Weiss, Data Structures and Algorithm Analysis, Redwood City,
Calif.: Benjamin/Cummings Pub. Co., 1995.

[47] M. J. P. Shaw, “Distributed planning in cellular flexible manufacturing
systems,” INFOR Canadian Journal of Operational Research and Information
Processing, vol. 25, 1987, pp. 13-25.

 111

[48] M. Luck, R. Ashri and M. D’Inverno, Agent-Based Software Development.
Boston: Artech House, 2004, pp. 208.

[49] M. Paolucci and R. Sacile, Agent-Based Manufacturing and Control
Systems: New Agile Manufacturing Solutions for Achieving Peak
Performance. Boca Raton, FL: CRC Press, 2005, pp. 269.

[50] M. Pechoucek, J. Vokrinek and P. Becvar, “ExPlanTech: Multiagent
support for manufacturing decision making,” IEEE Intelligent Systems, vol. 20,
2005, pp. 67-74.

[51] M. Pinedo, Scheduling: Theory, Algorithms, and Systems. Upper Saddle,
N.J., Prentice Hall, 2002.

[52] M. Ulieru, D. Stefanoiu and D. Norrie, “Holonic self-organization of multi-
agent systems by fuzzy modeling with application to intelligent
manufacturing,” Proc. of the IEEE International Conference on Systems, Man,
and Cybernetics, 2000, pp. 1661-1666.

[53] M. Wooldridge and N. R. Jennings, “Intelligent agents: theory and
practice,” Knowledge Engineering Review, vol. 10, 1995, pp. 115-52.

[54] M. Wooldridge, “Intelligent agents: The key concepts,” Multi-Agent-
Systems and Applications II: 9th ECCAI-ACAI/EASSS, 2002, pp. 151-190.

[55] N. Jennings and M. J. Wooldridge, Agent Technology: Foundations,
Applications, and Markets. Berlin; New York: Springer-Verlag, 1998, pp. 325.

[56] N. Liu, M. A. Abdelrahman and S. Ramaswamy, “A multi-agent model for
reactive job shop scheduling,” Proc. of the Thirty-Sixth Southeastern
Symposium on System Theory, 2004, pp. 241-245.

[57] N. R. Jennings and S. Bussmann, “Agent-based control systems: Why are
they suited to engineering complex systems?” IEEE Control Systems
Magazine, vol. 23, 2003, pp. 61-73.

[58] N. Siu, E. Elghoneimy, Y. Wang, W. A. Gruver, M. Fleetwood and D. B.

Kotak, “Rough mill component scheduling: Heuristic search versus genetic

algorithms,” Proc. of the IEEE International Conference on Systems, Man and

Cybernetics, 2004, pp. 4226-4231.

[59] O. Uncu and E. Elghoneimy, W. A. Gruver, D. B. Kotak and M. Fleetwood,

“Identifying aggregation weights of decision criteria: Application of fuzzy

systems to wood product manufacturing,” in Forging New Frontiers: Fuzzy

Pioneers I: Studies in Fuzziness and Soft Computing, M. Nikravesh.; J.

Kacprzyk; L. A. Zadeh, (eds.), vol. 217, 2007, pp. 415-435.

[60] O. Uncu, E. Elghoneimy, W. A. Gruver, D. B. Kotak and M. Fleetwood, “A

model for identifying aggregation operator weights using a fuzzy rulebase and

 112

genetic algorithms: Application to the wood products manufacturing industry,”

Proc. of the Berkeley Initiative in Soft Computing Symposium, 2005.

[61] O. Uncu, E. Elghoneimy, W. A. Gruver, D. Kotak and M. Fleetwood, “Jag

sequencing in rough mill operations,” Proc. of the IEEE International

Conference on System, Man and Cybernetics,2005, pp. 300-305.

[62] P. Dewan and S. Joshi, “Distributed scheduling of job shop using
auctions,” Proc. of the Second International Workshop on Intelligent
Manufacturing Systems, 1999, pp. 33-40.

[63] P. Moraitis and N. Spanoudakis, “Combining Gaia and JADE for multi-
agent systems development,” 4th International Symposium ‘From Agent
Theory to Agent Implementation’ Proc. of the 17th European Meeting on
Cybernetics and Systems Research, Vienna, Austria, April 2004.

[64] P. Tichý, P. Slechta, F. Maturana and S. Balasubramanian, “Industrial
MAS for planning and control,” Multi-Agent Systems and Applications II,
Lecture Notes in Artificial Intelligence, vol. 2322, Springer-Verlag, 2002, pp.
280-295.

[65] P. V. Hentenryck and L. Michel, Constraint-Based Local Search.
Cambridge, MA, MIT Press, 2005.

[66] P. Vrba, “MAST: Manufacturing agent simulation tool,” Proc. of the IEEE
Conference on Emerging Technologies and Factory Automation, vol.1,
September 2003, pp. 282 - 287.

[67] Protégé ontology editor, “The Protégé ontology dditor and knowledge
acquisition system,” Stanford Medical Informatics, Stanford University School
of Medicine, http://protege.stanford.edu/, accessed February, 2010.

[68] R. D. Lathon, A. F. Claassen, D. M. Rochowiak and L. E. Interrante,
“Negotiation among scheduling agents to achieve global production goals,”
Proc. of the IEEE International Conference on Systems, Man, and
Cybernetics, 1994, pp. 1541-1546.

[69] R. H. Bordini, M. Dastani and J. Dix, A. E. Seghrouchni (editors), Multi-
Agent Programming : Languages, Platforms and Applications. New York,
Springer, 2005.

[70] R. Sikora and M. J. Shaw, “Coordination mechanisms for multi-agent
manufacturing systems: Applications to integrated manufacturing scheduling,”
IEEE Transactions on Engineering Management, vol. 44, 1997, pp. 175-187.

[71] R. W. Brennan, “Toward real-time distributed intelligent control: A survey
of research themes and applications,” IEEE Transactions on Systems, Man
and Cybernetics, Part C: Applications and Reviews, vol. 37, 2007, pp. 744-
765.

 113

[72] R. W. Brennan, J. H. Christensen, W. A. Gruver, D. B. Kotak, D. H. Norrie
and E. van Leeuwen, “Holonic manufacturing systems – A technical
overview,” The Industrial Information Technology Handbook, ed. Richard
Zurawski, CRC Press, 2005.

[73] S. Bussmann and K. Schild, “Self-organizing manufacturing control: An
industrial application of agent technology,” Proc. of the Fourth International
Conference on Multi Agent Systems, 2000, pp. 87-94.

[74] S. Franklin and A. Graesser, “Is it an agent, or just a program? A
taxonomy for autonomous agents,” Intelligent Agents III Agent Theories,
Architectures, and Languages, 1997, pp. 21-35.

[75] S. J. Russell and P. Norvig, Artificial Intelligence : A Modern Approach.
Upper Saddle River, N.J., Prentice Hall, 2010.

[76] S. Jacobi, C. Madrigal-Mora, E. Leon-Soto and K. Fischer, “AgentSteel:
An agent-based online system for the planning and observation of steel
production,” Proc. of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, 2005, pp. 114-119.

[77] S. Kirn, O. Herzog, P. Lockemann and O. Spaniol (editors), Multiagent
Engineering : Theory And Applications In Enterprises. Berlin, New York,
Springer, 2006.

[78] S. M. Deen and M. Fletcher, “Temperature equilibrium in multi-agent
manufacturing systems,” Proc. of the 11th International Workshop on
Database and Expert Systems Applications, 2000, pp. 259-264.

[79] S. S. Heragu, R. J. Graves, Byung-In Kim and A. St Onge, “Intelligent
agent based framework for manufacturing systems control,” IEEE
Transactions on Systems, Man and Cybernetics, Part A, vol. 32, 2002, pp.
560-573.

[80] S.S. Nestinger, B. Chen and H.H. Cheng, “A mobile agent-based
framework for flexible automation systems,” IEEE/ASME Transactions on
Mechatronics, to be published.

[81] T. Edward and B. John, “Determining the impact of sorting capacity on rip-
first rough mill yield,” Forest Products Society, vol. 53, no7-8, 2003, pp. 54-
60.

[82] T. Heikkila, “An agent architecture for manufacturing control: ManAge,”
Computers in Industry, vol. 46, 2001, pp. 315-31.

[83] T. Teredesai and V. C. Ramesh, “A multi-agent mixed initiative system for
real-time scheduling,” Proc. of the IEEE International Conference on
Systems, Man, and Cybernetics, 1998, pp. 439-444.

 114

[84] V. Marik, K. Kraus, O. Flek and J. Bezdicek, “Multi-agent decision making
architecture and distributed control,” Proc. of the 2nd IEEE/ECLA/IFIP
International Conference on Architectures and Design Methods for Balanced
Automation Systems, 1996, pp. 315-328.

[85] V. Marik, M. Pechoucek, P. Vrba and V. Hrdonka, “FIPA standards and
holonic manufacturing,” Agent Based Manufacturing: Advances in Holonic
Approach, Edited by S. M. Deen, Springer-Verlag, 2003, pp. 89-120.

[86] V. Marik, P. Vrba, K. Hall and F. Maturana, “Rockwell automation agents
for manufacturing,” Proc. of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, 2005, pp. 107-113.

[87] W. A. Gruver, D. B. Kotak, E. H. van Leeuwen and D. H. Norrie, “Holonic
manufacturing systems: Phase II,” Holonic and Multi-Agent Systems for
Manufacturing, Lecture Notes in Artificial Intelligence, vol. 2744, Springer-
Verlag, 2004, pp. 1-14.

[88] W. Shen and D. H. Norrie, “Agent-based systems for intelligent
manufacturing: A state-of-the-art survey,” International Journal of Knowledge
and Information Systems, vol. 1, 1999, pp. 129-156.

[89] W. Shen, “Distributed manufacturing scheduling using intelligent agents,”
IEEE Intelligent Systems, vol. 17, 2002, pp. 88-94.

[90] W. Shen, D. H. Norrie and J. Barthès, Multi-Agent Systems for Concurrent
Intelligent Design and Manufacturing. London; New York: Taylor & Francis,
2000, pp. 386.

[91] W. Shen, D. H. Norrie and R. Kremer, “Developing intelligent
manufacturing systems using collaborative agents,” Proc. of the Second
International Workshop on Intelligent Manufacturing Systems, 1999, pp.157-
166.

[92] W. Shen, F. Maturana and D. H. Norrie, “MetaMorph II: An agent-based
architecture for distributed intelligent design and manufacturing,” Journal of
Intelligent Manufacturing, vol. 11, 2000, pp. 237-251.

[93] W. Shen, L. Wang and Q. Hao, “Agent-based distributed manufacturing
process planning and scheduling: A state-of-the-art survey,” IEEE
Transactions on Systems, Man and Cybernetics, Part C: Applications and
Reviews, vol. 36, 2006, pp. 563-77.

[94] W. Shen, S. Y. T. Lang and L. Wang, “iShopFloor: An Internet-enabled
agent-based intelligent shop floor,” IEEE Transactions on Systems, Man and
Cybernetics, Part C: Applications and Reviews, vol. 35, 2005, pp. 371-81.

 115

[95] W. Shen, Y. Li, Q. Hao, S. Wang and H. Ghenniwa, “Implementing
collaborative manufacturing with intelligent web services,” Proc. of the Fifth
International Conference on Computer and Information Technology CIT,
2005, pp. 1063-9.

[96] Y. Song, M.T. Zhang, J. Yi, L. Zhang, and L. Zheng, “Bottleneck station
scheduling in semiconductor assembly and test manufacturing using Ant
Colony Optimization,” IEEE Transactions on Automation Science and
Engineering, vol. 4, no. 4, 2007, pp. 569-578.

[97] Y. Upadrashta, J. Vassileva and W. Grassmann, “Social networks in peer-
to-peer systems” Proc. of the Annual Hawaii International Conference on
System Sciences (HICSS '05), January 2005, pp 200c - 200c.

[98] Y. Wang, E. Elghoneimy, W. A. Gruver, M. Fleetwood and D. B. Kotak, “A

fuzzy multiple decision support for jag selection,” Proc. of the Annual Meeting

of the North American Fuzzy Information Processing Society, 2004, pp. 717-

722.

[99] Y. Wang, W. A. Gruver, D. B. Kotak, and M. Fleetwood, “A distributed

decision support system for lumber jag selection in a rough mill,” Proc. of the

IEEE International Conference on Systems, Man and Cybernetics, Vol. 1,

October 2003, pp. 616-621.

