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ABSTRACT 

A rough mill is a manufacturing facility where loads of lumber of 

approximate dimensions are cut into components of specific sizes, priorities and 

qualities. These components are used in making furniture, doors and windows. 

Lumber is a very valuable natural resource and is a significant expense to 

the rough mill. By improving the processes in the rough mill, the cost is reduced 

and the waste of natural material is decreased. 

In this research, the operations in a Canadian rough mill are described, 

and the decisions that operators take are identified. The rough mill scheduling of 

components on machines is a challenging problem that cannot be solved by 

traditional methods because the defects in the wood are not known in advance. 

In addition, the wood sizes are approximate and often inaccurate. 

Scheduling algorithms are implemented using constraint satisfaction and 

heuristic methods. An agent-based system for decision support and simulation is 

designed and implemented. 

 

Keywords: intelligent systems, decision support, multi-agent systems, 
scheduling algorithms, operations research, wood manufacturing, rough mill 
operations, cutlist scheduling, distributed intelligent systems 
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1: INTRODUCTION 

1.1 Problem description 

Naturally-defective materials such as wood have defects for which 

location, size and type are not known in advance. Moreover, the parameters of 

the materials such as length, width and grade are approximate. A schedule for 

cutting the material into defect-free fixed-size components cannot be done in 

advance since the processing time of each task is unknown. Therefore, 

scheduling cannot be done using traditional methods. Moreover, the schedule 

has to be dynamically updated; once one task is done, the next is scheduled. 

In addition to the above challenges, most factories have problems such as 

adding or canceling orders, and jammed machines (breakdowns). This requires 

flexibility in material selection and order scheduling processes. As factories grow 

and upgrade its machines and tools, new solutions are required to be flexible, 

adaptable and expandable. 

1.2 Current solution in the rough mill 

Current solutions depend on a human operator to create a schedule and 

dynamically schedule a component on a machine once the previous component 

is done. Such critical decisions are taken on the shop floor while the operator is 

busy doing other tasks such as sorting cut components or supervising other 
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workers. Such decisions are rarely optimal, which leads to wasted time and 

materials, and therefore cost. 

Material selection is also based on human operators. Fork-lift drivers 

select material based on general recommendation from their supervisor. 

1.3 Objectives of the rough mill production system 

The objectives of a rough mill production system can be outlined as 

follows: 

• Decision support system, to give recommendations to operators for 

scheduling and material selection. 

• Scheduling jobs of unknown processing times, and dynamic replacement 

scheduling. 

• Ability to tolerate changed orders and jammed machines. 

• Distributed system with ability to operate in different locations. 

• Expandable to new machines or lines of production. 

• Ability to upgrade to enterprise integration, monitoring over the Internet or 

supply-chain management. 

1.4 Existing agent and scheduling solutions for manufacturing 

Agent-based systems are hailed as the next technology for manufacturing 

systems due to their flexibility, fault-tolerance and expandability. Agents have 

been used for manufacturing applications ranging from control, scheduling and 
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planning to enterprise operations and supply-chain management. A survey of 

agent-based manufacturing systems is presented in Chapter 4. 

1.4.1 Why existing solutions are not fit for naturally-defective material 

There is no agent-based solution that is fit for naturally-defective 

materials. While some agent solutions feature dynamic scheduling, this actually 

is in the context of fault-tolerance. If there is some interruption to the schedule, 

then the schedule is modified dynamically. There is no current solution which 

does scheduling where processing times are unknown in advance. Formally, 

most manufacturing applications address the job shop scheduling problem, while 

the problem at hand is parallel machine scheduling with unknown processing 

times. In addition, decision support for material selection is not addressed in 

existing agent-based manufacturing systems. 

1.5 Overview of thesis 

The following chapter presents background on rough mill operations in a 

Canadian windows and doors manufacturing plant. Then, I present the history 

and the joint work done on this rough mill project and define the scope of the rest 

of the thesis and the two challenges that I am addressing. Chapter 4 provides a 

survey of multi-agent systems in manufacturing. Chapter 5 addresses the first 

challenge: designing and implementing an agent-based system for decision 

support and simulation. Chapter 6 presents solutions to the rough mill scheduling 

problem. Finally, a summary and conclusions are presented.  
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2: WOOD MANUFACTURING: ROUGH MILLS 

2.1 Introduction 

In a rough mill, jags (bundles of lumber) are stored in a warehouse, and 

then transferred to a ripsaw which cuts the boards into strips. Strips are cut by a 

chopsaw into components of specific lengths. Components are then processed to 

produce manufactured products such as furniture, windows and doors. One of 

the most valuable resources in a rough mill is lumber. A small increase in the 

overall yield results in large cost savings and better use of natural resources.  

Lumber is a natural material which has a variety of defects that are not 

known in advance. While lumber is usually stored as jags having boards with an 

average length, width, and grade, these values are subjective and can vary from 

one mill to another. Therefore, cutting lumber into components is a complicated 

process that involves dealing with unknown or imprecise dimensions and random 

defects. 

2.2 Information gathering 

I was introduced to the operations of the rough mill during an extended 

visit to C.P. Loewen Enterprises Ltd., a Canadian windows and doors 

manufacturing company in Steinbach, Manitoba. The purpose of this trip was to 

gather information on the rough mill production system, with focus on the cutlist 

scheduling process, the work done by operators, and the workflow between 
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different operations [21]. I stayed there for two weeks to interview operators and 

managers, document operations and work on the line to learn about the process 

by practice [37]. This was a part of an NSERC project with the objective of 

improving the operations in the rough mill. 

2.3 Rough mill operations 

As required, a jag is brought from the warehouse by a forklift to a lumber 

feeder that presents one board at a time to the ripsaw which cuts the board 

lengthwise into strips. Strips are inspected and sorted by an operator and are 

passed through a conveyor belt one at a time to the chopsaw. The chopsaw cuts 

the strips into components of different lengths, based on the nature of the defects 

and the components being sorted. These components are routed to the 

appropriate sorting bin called kicker. Finally, the components are inspected by 

operators and are stacked into loads of components of equal dimensions. Figure 

2.1 shows the operations in the rough mill with two lines of production. 
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Figure 2.1 Rough mill production lines: Forklifts transfer jags from the warehouse to both 
ripsaws. Chopsaws cut wood into components of specific sizes. 

2.3.1 Lumber warehouse 

Jags are stored in the warehouse. The jags are characterized by mill, 

species, grade, width, and length. Forklift operators select jags from the 

warehouse to present to the ripsaw feeder based on guidelines from their 

supervisor. 
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2.3.2 Ripsaw 

The ripsaw processes the boards of the jag to produce strips which are 

conveyed to the chopsaw as shown in Figure 2.2. The ripsaw cuts the boards of 

lumber into strips of different widths. The commonly used widths are 57, 67 and 

22 mm. The 22 mm strips (called rippings) are sent for manual chopping and 

thus are not routed to the chopsaw. The cutting pattern of the board is based on 

the pattern of the blades of the ripsaw. A fence automatically locates the board 

across the saws to produce maximum board yield. The ripsaw scanner cameras 

take a top view of each board to determine its exact dimensions. 

An operator inspects and sorts the strips as they come out of the ripsaw. 

57 and 67 mm are conveyed to the chopsaw and the 22 mm strips are 

separated. Strips less than 22 mm wide are considered waste and are conveyed 

to a wood grinder. The operator also inspects all the pieces and some of the 

defective 57 and 67 strips are carried back to the ripsaw to form 22 mm strips, 

other defective strips are thrown away as waste. 

The operator enters the jag information to the software and attaches the 

jag information to a marker board. This board is passed on to the chopsaw 

indicating the end of the jag. 
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Figure 2.2 Flow of lumber in the rough mill 

2.3.3 Conveyor 

There are four conveyors in series, each with different length and speed. 

Conveyor one carries ripped strips parallel to the conveyor’s moving direction, 

with several strips ripped from the same board placed side by side, and with one 

foot space between the strips ripped from different boards. At conveyor two, the 

orientation changes ninety degrees as strips are perpendicular to the moving 

direction of the conveyor. Only one strip is moving at a time with a one foot space 

between each strip. Conveyor three is similar to conveyor two except that it has a 

different length and speed. Conveyor four is similar to conveyor one, except that 

only a single strip is transferred at a time. 

There is a photocell sensor in the buffer between the second conveyor 

and third conveyor. If there is more than one strip in that buffer, conveyor three 

and conveyor four keep moving while conveyor two stops. Conveyor one 

continues to move until it is full, at which time the conveyor and ripsaw are 

stopped. 
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2.3.4 Chopsaw 

The chopsaw receives 57 and 67 mm wide strips from the ripsaw. The 

chopsaw scanner views the four sides of the strip and detects the different types 

of defects in the strip. According to the components scheduled on the line (cutlist 

or cutting bill), the chopsaw cuts the strips into the desired lengths of 

components, and chops off the defects into waste bins as shown in Figure 2.2. 

Smaller components are cut as finger joints1, used for manual chopping or 

collected as waste. Several operators inspect and sort the components into 

loads. Defective components could be fed back to the chopsaw, sent for manual 

chopping or thrown away as waste. 

When the chopsaw operator receives the board marking the end of the 

jag, he enters the jag number into the chopsaw optimization software to keep 

track of the data per jag. This does not affect the process of scheduling 

components on the cutlist. 

The supervisor receives work orders with breakout due date within six 

days. She assigns work orders - with the same thickness - that are due within 

two days, to the chopsaw operator. These work orders form the order list. Usually 

work orders are received at the chopsaw at the beginning of the shift. Rush 

orders may be received during the shift.  

The operator creates the cutlist based on information in the work orders, 

according to certain decision criteria. When one or more of the components are 

                                            
1
 Finger joints (FJ) are low priority products. There are quality numbers associated with FJ, each 
with assigned thickness, width and grade. There is no specific length for finger joints, but a 
range of 180 to 600 mm. 
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done, a new component is scheduled based on the order list and the current 

cutlist. The operator enters the components on the cutlist into the chopsaw 

optimization software when they are scheduled. The new cutlist influences the 

process of jag selection as well as the setup of the ripsaw.  

2.3.5 Kickers 

A kicker is a pneumatic arm that pushes the components from the 

conveyor to sorting stations where they are inspected and sorted by the 

operators.  

Each kicker has its own properties that restrict the length of the 

component assigned to it. This is due to the physical layout of the sorting 

stations. For example, kickers close to each other with no barrier between them 

are not assigned components with similar sizes so that they do not get mixed 

together during sorting. Another example is that large components can pile up 

against short ones and fall down, which creates a safety hazard. For each 

production line, there are ten kickers for assignment to 20 - 25 components at the 

same time (depending on quantities required, due dates and floor space). 

2.4 Decisions in the rough mill 

By observing the operations in the rough mill and talking to operators and 

domain experts, I identified the exchange of information that takes place between 

different rough mill operations as shown in Figure 2.3. It can be summarized as 

follows: the order list is the list of all the components to be cut in the next few 

days (work orders). The chopsaw operator selects a subset of these components 
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(cutlist) and schedules them on the kickers of the chopsaw. Another operator 

selects jags from the warehouse according to the cutlist. The ripsaw operator 

sets the arbor and priority of the ripsaw based on the cutlist and the selected jag.  

While the lumber processing starts with a jag at a ripsaw and ends with 

cut components in the sorting stations, the decisions in the rough mill start at the 

cutlist on the chopsaw, then the jag selection and the ripsaw settings. 

 

Figure 2.3 Flow of information in the rough mill 

2.4.1 Jag selection problem 

Jags are received from different mills and stored in a warehouse. The 

supervisor performs the jag selection process, and asks the forklift drivers to 

bring jags from the inventory with the selected properties, and drive them to the 

ripsaw as required. Each jag is identified by parameters such as width, length, 

grade, mill, thickness, moisture level, and date received. One jag at a time is 

selected from the warehouse and transferred by a forklift to the ripsaw feeder. A 
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solution of the jag selection problem requires choosing from the warehouse the 

best jag that can be used to cut components scheduled on the chop line forming 

the cutlist. 

The jag selection is based on the following criteria: 

1. The thickness of the jag must match the components in the work orders being 

processed. 

2. The length of the jag must be larger than the longest component in the cutlist. 

For example, if the longest component was 10 ft long, the jag length would be 

12-16 ft depending on the grade. 

3. The moisture level of the jag must be between 8 and 12. 

4. The date of receiving the jag: it is preferred to use older jags first.  

5. Grade selection: 

5.1. The quality2 of components in the work orders sometimes affects the 

grade of lumber selected. For example, a good grade of lumber is 

required when the cutlist includes large quantities of long components 

that allow no defects. 

5.2. The due date of components in the work order. If items on the cutlist are 

due soon, a good grade of wood is used to finish the components quickly. 

If the components are not due soon, it is ok to use lower grade even if it 

takes longer. 

                                            
2
 Quality is a code of the allowed type and location of the defects in cut components. 
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5.3. For 6/4-thickness lumber: higher grades (clear, door and moulding) 

should only compose 11% of the jags used, and 89% for shop grades. 

Based on the above criteria, the supervisor would ask the forklift drivers to 

bring jags with certain properties, for example, thickness 6/4, high grade, 14 or 

16 ft long, with preference to older jags.  

In case of changing jag width, the new width should be coordinated with 

the ripsaw to change ripsaw parameters (arbor). 

2.4.2 Rough mill cutlist scheduling problem 

Components from several work orders are selected and grouped together 

to form the order list. The chopsaw operator examines all the work orders and 

adds up the quantities for components that have the same thickness, quality, 

width and length. 

All components in the cutlist must have the same thickness. This produces 

component lists with same thickness but different quality, length, width and 

quantity. Each kicker is assigned one or more of these component lists.  

For example, line 2 is processing thickness 6/4 and kicker 3 is assigned 

two components: The first has quality Q51, width 57, length 1180 and quantity 

200. The second component on kicker 3 has quality Q21, width 67, length 1510 

and quantity 100. Kicker 12 is assigned one component that has quality Q111, 

width 67, length 480 and quantity 180. And so on with the rest of the kickers. 

The operator keeps track of components belonging to different orders, 

because they need to be handled separately by the forklift drivers. For example, 
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if there are 50 components required for one order and 30 for another order, the 

operator write it down as (50+30) not 80. Components with large quantities (more 

than 400) are split into smaller groups to be easily handled by the forklift drivers. 

For example, if the quantity required for a certain component is 1000, it is 

scheduled on the chopsaw as 1000, but will be loaded as (250+250+250+250).  

The cutlist is created when switching to a new width or thickness. 

Otherwise, it is only updated when a kicker becomes available (when the 

component assigned to it is done). 

Components are chosen to be scheduled on the kickers based on the 

decision criteria detailed in Chapter 6. 

Therefore, the rough mill cutlist scheduling is the problem of selecting a 

list of components to be scheduled on the chopsaw (cutlist) from the list of 

several components to be cut in the next few days (order list). The cutlist should 

present a good mix of components of different lengths to the chopsaw. 

Components must be done by their due dates, while giving priority to certain 

types of components. I present several solutions to this problem in Chapter 6. 

2.4.3 Ripsaw settings 

The ripsaw has control of two main parameters of operation: priority and 

arbor selection.  
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2.4.3.1 Priority 

The priority selection is based entirely on the desired strip width. The 

priority can be changed during the operation of the ripsaw. There are three 

priorities for the ripsaw 

1. P57: more 57 mm strips are desired 

2. P67: more 67 mm strips are desired 

3. YLD: both 57 and 67, maximum yield of the board is desired. 

2.4.3.2 Arbor selection 

Selecting one of several arbors sets the distance between the blades of 

the ripsaw. The change of arbor requires extensive machine adjustment; 

therefore it is preferred not to change it often. In practice, the priority and the 

arbor are usually changed at the same time. 

The operator selects the arbor based on the following jag parameters: 

1. The board width code, 

2. The strip width (priority), and  

3. Thickness  

The operator chooses the arbor based on a table. This table states the 

arbor number recommended for each combination of the above parameters, in 

order to provide maximum yield. For example, arbor 252 is recommended for 

board width code of 20, thickness 6/4 and priority YLD. If only 57 or only 67 are 

desired, the arbor must be changed (codes 263 and 267 respectively). 
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Ripsaw settings are straight-forward and require only a look-up table, 

therefore this decision in the rough mill is not investigated any further. 

2.4.4 Thickness switch-over process 

The switch-over process is carried out when a line of production is 

switching from one thickness to another. The supervisor decides to switch to a 

new thickness according to the work orders and their due dates. Both the ripsaw 

and the chopsaw have to be adjusted to process the new thickness. Jags with 

the new thickness are selected and presented to the ripsaw. 

The switch-over process takes 20-30 minutes, therefore it is preferred not 

to be done so often. Usually a line of production runs the same thickness for one 

to three days. 

If the quantity of components of a certain thickness is very small, e.g. 5/4 

and 8/4, they are not processed until about one day before their deadline. This is 

to process all of the components of that thickness together. If the quantity is less 

than 800 components, the work orders are sent to manual chopping (rework) 

instead of the chopsaw. 

The switch-over process results in new order lists, which are considered 

as the input to the scheduling. Therefore, this decision is not addressed in this 

work. 

2.5 Summary 

In this chapter, the operations that take place in a rough mill were 

described. Loads of lumber (jags) are stored in a warehouse. As required, one 
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jag at a time is brought to a lumber feeder, which feeds one board at a time to a 

ripsaw. The ripsaw cuts the boards into strips lengthwise. Strips are inspected 

and sorted by an operator, then fed one at a time to the chopsaw. The chopsaw 

cuts the strips into components of fixed lengths. The components are inspected 

by operators and are sorted into loads.  

Two major decision problems that are addressed by human operators are 

defined: jag selection and cutlist scheduling. Ripsaw settings and thickness 

switch-over are other decisions in the rough mill, but they are straight-forward 

processes and therefore do not require further investigation. 
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3: HISTORY AND JOINT WORK 

3.1 Introduction 

In this chapter expected benefits of developing a decision support and 

simulation system are described. Next, I describe the previous work related to 

the rough mill that has been done before I joined this project. I also describe the 

joint work done with other researchers. The rest of the thesis contains my 

individual contribution. 

3.2 Expected benefits 

The following are the expected benefits of developing a decision support 

and simulation system for the rough mill: 

• Cost savings through reducing wasted lumber; 

• Cost savings by better utilization of grade; 

• Time savings by automating (or providing support) for component 

scheduling and jag selection decisions; 

• Consistent and standardized decisions among different operators; 

• It allows the system to be operated by inexperienced operators when 

experienced operators are not available or busy; 

• It can be used as a training tool for new operators; 
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• Operators have the choice to change the recommendations of the system, 

providing flexibility; 

• The system can be used with a simulator, allowing the user to test the 

outcome of suggested decisions before running it in production; 

• Operations personnel can use it to examine their existing business rules 

and discover new ways of operation; 

• The system helps researchers understand operations in the rough mill; 

and 

• Researchers can use the simulation as a tool for evaluating different 

methods to improve performance. 

3.3 History 

In the following subsections, I outline the work that was done by others on 

this project before I started my research, namely, simulation and case-based jag 

selection. 

3.3.1 Simulation 

The rough mill operation was analyzed using Quest software, which is 

based on discrete- event simulation with 3D visualization [13]. An application 

(Editor) developed in Delphi is used for user interface to the simulator. The rough 

mill operator can plan operation in the rough mill using this package. By selecting 

different jags and different component lists for running the simulation, the 

operator can predict the outcome of the mill and run several what-if scenarios.  
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The Quest simulation model was run at the National Research Council in 

Vancouver, BC, and was used remotely by the rough mill operators. Later in this 

project, the simulator and editor programs were re-engineered to Java to be able 

to run locally in the rough mill, without the need for remote connection or special 

licensed software. 3D simulation was not used, and run time of the simulation 

was decreased from hours to a few seconds. 

3.3.1.1 Ripsaw 

The board generation is done by using two different random generations. 

The width is derived from a specific width distribution that is linearly interpolated, 

while the length of the board is done by using a triangular distribution that has a 

base of one inch and center at the average length of the jag. 

Once the board is created, it is ripped by the ripsaw according to the arbor 

configuration. The arbor configuration includes two criteria: the arbor set and the 

priority as described in section 2.4.3. 

Once the arbor configuration is set, the boards are ripped by using a look-

up table. For each configuration set, there is a table that is ordered by the width 

with number of resultant strips, and also includes associate value for each width 

category. The look-up table technique involves finding the appropriate length 

groups that allow the ripping to be possible, and then find the group with the 

highest value to determine the number of strips to be produced. 

The simulation rip time is five seconds per board, regardless of the 

number of strips produced per board.  
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3.3.1.2 Conveyor 

The conveyor transfer strips from the ripsaw to the chopsaw. When the 

conveyor is full, the ripsaw is blocked. 

3.3.1.3 Chopsaw 

The chopsaw cuts the strips crosswise into components with lengths and 

values assigned to the kickers. Mathematically, this is known as the knapsack 

problem. Due to defects in the wood and the desire for a fast algorithm for 

simulation, a heuristic algorithm is used to simulate the chopsaw, which can be 

summarized as follows: 

For every strip, generate clear pieces randomly from a cumulative density 

function which is based on historical data. If the clear piece is shorter than any 

component in the cultist, it is used for finger joint or waste. For every clear piece 

of lumber, find the component in the current cultist that yields the maximum value 

that can be cut from the clear piece. Then, subtract the length of the component 

from length of the clear piece and decrement the required quantity of the 

component. Repeat for the remaining length of the leftover piece to cut more 

components. If no component can be cut and there is leftover from the clear 

piece, then the leftover is considered as finger joint or waste. More clear pieces 

are generated in the same fashion until the sum of clear piece lengths exceeds 

the strip length.  

Simulation chop time is set to 0.5 seconds per cut. 
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3.3.1.4 Other simulation systems 

In this section, I mention other simulation systems that are available for 

rough mills. 

ROMI-RIP and ROMI-CROSS [25] are simulators for rip-first and cross-

first rough mills respectively, which were developed by the USDA Forest Service. 

Rip-first processing involves gang ripping the board into strips. Next, these strips 

are crosscut to primary part (component) lengths, either specified or random. 

Chop-first processing cuts the boards to primary part lengths and removes any 

wide defective areas. Next, the board segments are straight-line ripped to the 

required widths, specified or random. Part (component) scheduling is done by 

ranking of parts by the user. Another example of rough mill simulator is a 

simulation system that was developed for crosscut-first (chop-first) roughmills 

[38].  

Since the simulation described earlier was developed for the particular 

rough mill of interest (Loewen), I decided to use it in my research rather than 

ROMI-RIP. 

3.3.2 Jag selection: case-based reasoning 

In this approach, historical data is used to select jag types that produce 

similar length distributions as the cutlist. Jag types are defined by mill, grade, 

production line, length code, and thickness. An ideal jag for a given cutlist 

allocates production components equally over the entire production. Hence, a 

similar proportion of produced components to the requirement of the cutlist 
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corresponds to a suitable jag type. The length distribution is used to describe the 

differences of production capabilities of jag types. 

A distribution of the percentage of cut quantities in each predetermined 

sort length bin is calculated for each jag type based on the average of historical 

cut quantities achieved by using jags that belong to the corresponding jag type.  

The case-based reasoning (CBR) algorithm can be summarized as follows 

[99]. For a given cutlist, the distribution of the percentage of required quantities 

for the components in the cutlist is created. The difference between the 

distribution of the cutlist and the historical distribution of each jag type is 

calculated. This difference, which can be considered as a penalty measure, is 

used to sort the jag types. Starting from the most suitable jag type, the jags 

available in the inventory (current data) are selected for each jag type until a 

maximum allowed number of jags has been reached. The list of jags for each jag 

type is sorted by using criteria such as age (it is preferred to use older jags to 

increase the turnover in the inventory), proximity of the board footages (which is 

a measure of volume used in lumber industry) of the jag and the cutlist, and the 

suitability of the width of the selected jag for the given ripsaw arbor configuration 

and priority. The sorted list of jags is presented to the user to select the jag. 

3.4 Joint work 

The following sections outline the work done in collaboration with other 

researchers [21]. 



 

 24 

3.4.1 Scheduling: Genetic algorithms 

The scheduling problem can be viewed as the problem of searching for 

one cutlist solution from a large solution space of possible cutlists. Genetic 

Algorithms (GA) are a suitable approach for searching large solution spaces. 

Therefore, GAs are used as a solution to the cutlist scheduling problem [58]. 

The objective function is chosen to represent the heuristic rules and the 

constraints of the problem which is presented in detail in Chapter 6. The 

objective function is composed of two functions: the first is the due date objective 

that favours components that are due first, the second is the length distribution 

objective that favours cutlists with good length distributions. 

As a problem representation for the Simple Genetic Algorithm (SGA), a 

variable xi was assigned to each entry in the order list, and it was set to 1 if the 

item was chosen to be in the cutlist, and 0 if not. The xi variables were 

concatenated together to form a binary solution string. To handle the kicker 

constraints, a heuristic algorithm is used to pick the kicker assignments to satisfy 

physical constraints. If the algorithm was unable to assign all the chosen items to 

a kicker, the solution cutlist is deemed infeasible and discarded. Two way 

tournament selection and single point crossover operators are used. To improve 

the algorithm's performance, the order list items are pre-sorted by length. 

The Ordering messy Genetic Algorithm (OmeGA), specialized for 

permutation problems, searches through different orderings of a set of numbers 

to obtain the best ordering. To use OmeGA, a method to decode the number 

orderings into a cutlist with their kicker assignment was developed. Each number 
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in the ordering represented an item in the cutlist. Beginning with the first item 

specified by the first number in the ordering, it is assigned to an available kicker. 

The next item in the ordering is then assigned to the best fitting kicker remaining. 

This process continues until all available kickers are assigned. The solution 

decoding process ensures that every sequence represents a valid cutlist, so all 

solutions generated are feasible. 

For replacement scheduling, the objective function used by the GA was 

used. A single unscheduled component is added to the currently scheduled 

components to form a temporary cutlist, and the objective function value is 

calculated. The process is repeated and the unscheduled component that is part 

of temporary cutlist with the highest objective function value is then chosen as 

the replacement component. 

3.4.2 Jag Selection: MCDM and FMCDM 

Jag selection is a multi-criteria decision making process. There are four 

criteria for selecting jags [98] 

1. Yield: Yield is the volume of wood in the final product as a percentage of 

volume of wood in a jag. A higher yield of a jag indicates higher volumetric 

utilization of the wood. Average values of chopsaw yield of jag types in the 

historical file are utilized to measure the yield. 

2. Material Cost: Material cost of a jag is the standard cost (average unit cost 

of that particular grade) times its board feet volume.  
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3. Percentage of orders satisfied: Usually a cutlist is completed by using 

several jags. Using one jag, only part of a cutlist could be produced. 

Matching the produced cutlist, the cumulative length distribution of 

components produced from each jag type, with the required cutlist can be 

used to measure the percentage of orders satisfied for the jag.  

4. Processing time: Production cost can be reduced by finishing orders with 

processing time as short as possible. The average processing time of a 

jag type indicates its potential capabilities in processing time. 

The TOPSIS (Technique for Order Preference by Similarity to Ideal 

Solution) multiple criteria optimization method is used to rank alternative 

candidates. The chosen alternative has the shortest distance from the ideal 

solution and the farthest distance from the negative-ideal solution. TOPSIS is a 

fast method compared to methods such as dynamic programming.  

Depending on the different situations, the importance of the above four 

criteria may be different. If the cutlist includes many components that are urgently 

required, the percentage of orders satisfied is more significant than other criteria. 

If there is a longer lead time, then the yield and cost become more important. To 

achieve overall optimization, an appropriate weight must be assigned to each 

criterion.  

The user is expected to input the weights for different criteria for each 

cutlist. Then, the TOPSIS method is used to rank alternative jag types, thus 

recommending jags that are most suitable to produce the input cutlist. 
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In the above method, it might be difficult for the operator to set individual 

weight values for each cutlist. In an alternative approach to solve the jag 

selection problem, a fuzzy system is used to set the weights of the multiple 

criteria using data from the cutlist and linguistic fuzzy rules. The fuzzy system is 

fast and runs in real-time. 

A Fuzzy Inference System (FIS) is used to set the pair-wise comparison 

weights. The inputs of the fuzzy system are statistics from the cutlist. Since it is 

difficult to make rules linking cutlist information directly to the weights, pair-wise 

comparison values were used as an output of the FIS. Next, the AHP (Analytic 

Hierarchy Process) method is used to convert these pair-wise comparison values 

into individual weights to be used for the multiple criteria method described 

above. The TOPSIS method mentioned above is extended to Fuzzy TOPSIS with 

weights from the output of the AHP process. 

3.4.3 Jag sequencing methods 

Jag sequencing is the process of selecting a list of jags to be presented in 

sequence on the ripsaw. Four alternative methods for jag sequencing are 

discussed in this section [60]. The first method is ZI (Zero Intelligence), which 

repeatedly selects jags based on the current cutlist. The second method uses 

beam search based on a fitness function. Fuzzy rulebase based AHP is the third 

method presented. The last jag sequencing method is weight determination using 

fuzzy rulebase tuned by genetic algorithms. 
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In the ZI method, the jags are selected repeatedly by using the CBR jag 

selection approach until the order is fulfilled.  

Beam search method: Current conditions are defined by the cutlist, order, 

kicker assignments, ripsaw and chopsaw statistics. A new list of suitable jags is 

created for each position in the sequence for which a jag is selected by using the 

CBR jag selection algorithm. Beam search limits the window of neighborhood 

creation to creating the ones for only q most suitable candidates in the current 

state. The fitness function that is used to evaluate the candidates is based on the 

statistics collected through the simulator [61]. 

Fuzzy rulebase based AHP (Simplified FMCDM) method utilizes 

conventional AHP with fuzzy pair-wise comparisons. The weights are determined 

by the Row Means of Normalized Columns method. The jag types with scores 

calculated by using these weights are ranked by using the conventional TOPSIS 

method as explained in a previous section. 

AHP method is used to find the most suitable weights associated with the 

decision criteria used to rank the jag types. The pair-wise comparisons of 

importance of decision criteria under different cutlist characteristics, made by 

domain experts, were used to determine these weights. The uncertainty in these 

comparisons for different cutlist conditions is captured by using fuzzy rulebases.  

Weight determination using fuzzy rulebase tuned by GA: GA metaheuristic 

search mechanism is used to identify the most suitable weights associated with 

the decision criteria without pair-wise comparisons acquired from experts. A 
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fuzzy rulebase model is proposed to imply the crisp weights under different cutlist 

conditions [59].  

3.5 Goal of this research  

Since the jag selection decision problem was addressed in detail, it will not 

be further investigated in this research. Similarly, the simulation algorithms are 

already developed and are not addressed. The rest of the thesis focuses on two 

challenges: solving the scheduling problem as well as providing an agent-based 

design and implementation to allow for flexibility and future enhancements. 

3.5.1 Agent-based system architecture 

Design overall system architecture using the multi-agent paradigm, and 

implement it using existing simulation algorithms and new or previously 

developed decision support algorithms. 

3.5.2 Scheduling 

The scheduling problem is a significant and complicated decision in the 

rough mill. My second challenge is to develop scheduling algorithms that address 

the unique features of the rough mill scheduling problem. 

3.6 Summary 

In this chapter, the history of this research was presented. The simulation 

was first developed, and then some algorithms for decision support were 

developed for the rough mill. The rest of this thesis focuses on two goals: 

developing agent-based system architecture, and solving the scheduling 
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problem. The next chapter provides a survey of agent-based manufacturing 

systems. 
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4: AGENT-BASED MANUFACTURING SYSTEMS 

4.1 Introduction 

Manufacturing is a highly dynamic process that requires real-time, flexible, 

reactive decisions. This chapter presents a survey of agent technology and multi-

agent systems, and their suitability for manufacturing applications [20]. An 

overview of agent technologies that have been developed for scheduling, 

planning, and control of manufacturing systems is presented. Hierarchical, 

heterarchical, and hybrid architectures for manufacturing systems, learning 

methods, and features of selected technologies and applications are discussed. 

Finally, Internet-enabled manufacturing systems and Holonic Manufacturing 

Systems are discussed. 

4.2 Agents and multi-agent systems 

Agent-based computing is a multi-disciplinary field rooted in Distributed 

Artificial Intelligence and distributed objects technologies [53]. 

4.2.1 Artificial intelligence 

Artificial intelligence (AI) is a computing field that goes back to the 1950s. 

Its goal is to understand and build intelligent entities [75]. AI currently 

encompasses a large variety of sub-fields, ranging from learning and perception, 

to game theory, proving mathematical theorems and diagnosing diseases. 

Current research areas in AI include natural languages, machine learning, 
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automated reasoning, computer vision, knowledge representation, robotics, 

search methods, cognitive sciences and agents. 

4.2.2 Agent definition 

There are several definitions of an agent. A discussion of agent definitions 

is presented by Franklin and Graesser [74]: “an autonomous agent is a system 

situated and a part of an environment that senses that environment and acts on 

it, over time, in pursuit of its own agenda and so as to affect what it senses in the 

future.” 

For the purpose of this work, I follow the approach of Jennings and 

Woolridge [55] and Wooldridge [54], and define an agent as a software 

component or entity that is capable of autonomous action, has partial control on 

its environment, and can decide for itself what it needs to do in order to satisfy its 

design objectives. An agent-based system is one in which the key abstraction is 

that of an agent. Multi-agent systems (MAS) contain multiple agents interacting 

together to pursue goals beyond their individual capabilities. 

4.2.3 Agent characteristics 

Agents are usually autonomous, intelligent, flexible, reactive, proactive 

and social. An autonomous agent should be able to act without direct intervention 

of humans or other agents and should have control over its own actions and 

internal state. An intelligent agent is a system that is capable of flexible 

autonomous action in order to meet its design objective. Flexibility of an agent 

implies that an agent is responsive to the environment, user, or other agents. A 
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proactive agent exhibits goal-directed behavior and takes initiatives. Social 

agents interact together with other agents and humans to achieve their goals and 

help others with their activities. Additional aspects of agents are mobility and 

adaptability. Agents are also persistent and continuously perceive their 

environment [75].  

Lockemann [77] identify four properties of a software agent: it resides in 

an environment and interacts continuously with it; it offers a useful service while 

its internal processes remain encapsulated; it is capable of autonomous action in 

order to meet its design objectives (provide its service); and the autonomy of the 

software agent is guided by its own goals. Furthermore, intelligent software 

agents are characterized by being reactive to the environment, and balancing 

their goal and reactive behaviour. Intelligent software agents may also take 

initiatives in pursuing their goals, and may interact with other agents to provide 

their services. 

Agents can be distinguished from objects in that they are autonomous 

entities capable of exercising choice over their actions and interactions. 

However, they may be constructed using object technology. Agents do not 

invoke methods (actions) on agents, rather request actions to be performed. The 

decision to act upon the request or not lies within the recipient. Moreover, agents 

typically run in their own thread of control, as opposed to standard object 

systems which have a single thread [48]. There are several agent-oriented 

methodologies that can be used to develop multi-agent systems. These 

methodologies are listed and compared in reference [6]. 
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4.2.4 MAS applications 

Multi-agent systems are used in a wide range of applications requiring 

flexibility and adaptability to a rapidly changing environment due to their 

distributed nature, modularity, and ease of implementation. Examples of such 

applications are [77] [1] process control, manufacturing, information 

management, text and web searching, wireless sensor networks, nano-

technology, distributed energy management, e-commerce, health care including 

patient management, intelligent personal assistant software, computer games, air 

traffic control, satellite imaging data, network security and multi-robot teams. 

In a manufacturing plant, new tasks are added during operation, machines 

may fail unexpectedly, and order deadlines can change. In addition, several 

machines could perform the same type of tasks and the number of tasks is 

usually higher than the capacity of the machines. All the above factors make 

manufacturing a highly dynamic process, which requires real-time, flexible, 

reactive decisions. To meet these challenges in manufacturing, multi-agent 

systems have been applied. An early use of agent-based systems in 

manufacturing was introduced by Shaw [47] where distributed planning and 

negotiation techniques were used for flexible scheduling and control. 

Jennings and Bussmann [57] suggest that MAS have three key aspects 

that make them suitable for control and software engineering in general. These 

aspects are decomposition of large problems into smaller problems, abstraction 

by defining a simplified model of the system, and organization by defining and 

managing the relationship among different components. 
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Agent technology is widely recognized as a promising paradigm for the 

next generation of manufacturing systems [90]. Agent technology satisfies the 

fundamental requirements of modern manufacturing, including enterprise 

integration, distributed organization, agility, scalability, fault-tolerance and 

integration of humans with software and hardware [49]. 

Holonic Manufacturing Systems (HMS) are based on highly decentralized 

manufacturing control systems built from autonomous, cooperative intelligent 

systems [72] [87] [35], and these can be viewed as a specialized type of multi-

agent system. 

4.3 Background of Agent-Based Manufacturing Systems 

Agent-based manufacturing systems can be classified according to 

several criteria. In the following section, I present examples of agent-based 

manufacturing systems and discuss them according to these criteria. 

4.3.1 Scope of the manufacturing systems 

Some manufacturing systems are concerned with supply-chain 

management and integrating shop floor operations such as scheduling, order 

management, material handling, monitoring, and simulation. I refer to these as 

“integrated systems.” 

Other systems are concerned only with scheduling. These systems might 

also include planning and control. Shen provides an in-depth look at 

manufacturing scheduling [89] and process planning and scheduling [93].  



 

 36 

In the following sections, I present examples of integrated systems, and 

scheduling, planning and control systems. I focus on recent developments. Shen 

and Norrie [88] describe earlier MAS projects in intelligent manufacturing. 

4.3.2 Physical agents versus logical agents 

In manufacturing systems, agents represent physical machinery, e.g., 

machine controllers, conveyors and automated guided vehicles. Agents can 

directly connect to programmable logic controllers through a software wrapper. 

Alternatively, agents represent operators or business processes. For example, a 

scheduling agent can perform the task of an operator who is responsible for 

scheduling. Several tasks are carried out logically at the same time. 

4.3.3 Hierarchical, heterarchical, and hybrid architectures 

MAS architectures can be classified in three categories. The first category 

is a hierarchical architecture in which agents are arranged in a hierarchy with a 

master-slave relationship. The second category is a heterarchical architecture in 

which agents have a peer-to-peer relationship. This architecture is distributed, 

with decentralized communication to avoid bottlenecks that occur in centralized 

systems. It is frequently used for scheduling and control applications. 

The third category is the hybrid architecture which has federating agents 

that help with the communication of agents, and maintain a global view of the 

system. Hybrid architectures also include modular systems such as integrated 

systems. 
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4.3.4 Learning ability 

Learning is “the acquisition of new knowledge and motor and cognitive 

skills, and the incorporation of the acquired knowledge and skills in future system 

activities, providing that this acquisition and incorporation is conducted by the 

system itself and leads to an improvement in its performance” [30]. Panait [43] 

presents a survey of the applications of machine learning to such problems in the 

MAS area.  

Soft computing techniques such as fuzzy logic, neural networks, and 

genetic algorithms are widely used in manufacturing applications of control and 

decision support. 

4.4 Agent-based systems in manufacturing 

4.4.1 Integrated systems 

The following describes examples of MAS used in integrating operations 

and processes in manufacturing applications. 

4.4.1.1 Super-agent architecture 

Early systems involve a super-agent that supervises subagents. An 

example of this approach includes subsystem agents for receiving, shipping, and 

maintenance, and a super-agent that contains knowledge of the master 

production interaction [68].  

Marik et al. [84] present an integrated system at the control level. A meta-

agent organizes work and performs auto-configuration. 
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4.4.1.2 Hybrid architectures 

Since super-agents formed a bottleneck in the system, subsequent 

systems moved towards a modular design or hybrid architecture. The following 

are examples of such systems. 

An MAS for printed circuit board manufacturing is presented by Sikora and 

Shaw [70]. Agents represent physical entities as well as logical decision 

modules. Agents exist on the system, process, and decision levels. Coordination 

mechanisms for each level are detailed. A constantly updated knowledge base is 

used for learning. Performance tests indicate that the MAS is superior to a 

traditional system. 

Shen et al. [91] presents a collaborative agent approach for an integrated 

production planning system. Agents are categorized as interface, collaboration, 

knowledge management, template mediator, dynamic mediator and product 

model database. 

Metamorph I is a planning and scheduling system with a hybrid 

architecture. A mediator agent learns from history and propagates behaviors to 

the future. This system was modified to produce Metamorph II that integrates 

design, planning, simulation and execution for supplier, customer, and partners. 

Shen et al. [92] includes an in-depth look at hybrid architectures. 

An MAS for manufacturing integration is presented by Deen and Fletcher 

[78]. Agents occur on three levels: coordination agents, skill agents, and class 

minder agents. Rescheduling negotiation is done using a temperature model. 
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ManAge is an agent based architecture for flexible manufacturing control 

[82]. This framework was tested in an electronics manufacturing demonstration 

test system. The agent architecture is based on the Planning, Execution, 

Monitoring (PEM) concept. Agent models are implemented in Java using Visual 

Café rapid application tools. 

An MAS for order fulfillment in a virtual foundry fab is introduced by Yu 

and Huang [12]. Agents represent subprocesses in the system. A direct 

messaging protocol called GMPP (Generic Message Passing Platform) is used 

for application-to-application communication. The system also includes a learning 

agent that uses a distributed neural network model for on-line learning.  

The PABADIS model is a distributed Manufacturing Execution System 

(MES) with focus on production management functions: resource allocation, 

scheduling, and dispatching [14]. Residential agents provide information about 

resources to other agents. Product agents negotiate scheduling and resource 

allocation of individual work-pieces using a simplified Contract Net Protocol. 

Plant manager agents organize the process by performing quality management, 

reporting, and monitoring. The system was developed using JINI, which 

facilitates a “plug-and-participate” service. 

IntaPS is an multi-agent system for process planning and scheduling that 

features order, resource, and service (interface) agents [5]. It is implemented 

using a FIPA-OS tool. 
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Paolucci and Sacile [49] present PS-Bikes as a case study of a multi-

agent control system for manufacturing of custom bikes using Java Agent 

DEvelopment Framework (JADE). 

4.4.1.3 Supply-chain and Internet monitoring 

Recent systems involve supply-chain management, virtual enterprise and 

web-based monitoring and control. 

A multi-agent framework for production planning, simulation, and supply-

chain management is introduced by Pechoucek et al. [50]. 

Agentsteel [76] is an agent-based online supply chain system for planning 

and observation of steel production using an InteRRaP generic agent 

architecture.  

Wise-shopfloor is a real-time web-based monitoring and control for the 

shop floor using Java 3D models which transmits only sensor data and control 

commands and deploys control logic [45]. 

iShopfloor is an Internet-enabled agent-based intelligent shopfloor [94]. A 

distributed control approach is applied from the virtual enterprise or supply chain 

to the shop floor and also to each machine. 

Shen et al. presents a service-oriented integration framework based on 

software agents and web services to establish a dynamic collaborative 

environment for inter-enterprise collaboration [95].  

A survey of online simulation-based manufacturing systems (including 

virtual manufacturing) is presented by Yoon and Shen [32] where simulation is 
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based on historical data. Current data is used for simulation, and new decisions 

according to simulation are directly transmitted to execution systems in the shop 

floor. 

4.4.2 Scheduling, Planning and Control 

The following are examples of MAS that are used in scheduling, planning, 

and control. 

4.4.2.1 Control systems 

A shop control system presented by Park et al. [33] includes one planning 

agent, three manufacturing system agents, and one control agent.  

A robotic manufacturing control system features three types of agents: 

manufacturing agents, part agents, and interface agents [16]. The agents were 

implemented using the JACK intelligent agent language in which agents have a 

Believe-Desire-Intention (BDI) architecture. 

A survey of intelligent MAS in control applications, involving fuzzy logic 

and genetic algorithms is presented by Naso and Maione [17]. A simulation of a 

benchmark system shows the superiority of the agent-based systems over 

conventional systems. 

Tichý et al. present a control and planning system based on a three-layer 

modified hierarchal structure with directory facilitator agents [64]. 
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Marik et al. [86] describes an industrial control system with high-level 

control agents implemented in JADE and low-level control agents in a 

programmable logic controller. 

Brennan [71] provides a survey of recent real-time control systems, and 

evaluates them against several primary needs for next-generation systems. 

Dynamically Integrated Manufacturing Systems (DIMS) [19] manage 

optimal fulfillment of customer orders while simultaneously considering 

alternative system structures to suit changing conditions by integrating 

manufacturing planning and control decisions with systems reconfiguration and 

restructuring. 

A mobile agent-based framework supports dynamic deployment of control 

algorithms and tasks in automation systems [80]. The framework is based on a 

mobile agent system called Mobile-C and uses Ch, an embeddable interpretive 

C/C++ environment for mobile agent execution. 

4.4.2.2 Hybrid scheduling systems 

The following systems include federating agents for scheduling and/or 

control. 

Ramos [10] describes a system for dynamic scheduling with resource 

agents and task agents. A resource manager agent negotiates a schedule with 

the resource agents. The negotiation process includes a re-negotiation phase 

when exceptions occur. A task manager is responsible for generating task 
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agents. This system was later modified to exclude the resource manager agent, 

thus achieving a fully distributed architecture [11]. 

A market-based scheduling control system features product and resource 

agents that negotiate a schedule [36]. A supervisor agent handles blocking and 

delay situations. 

Another system for scheduling, planning, and control has a hybrid 

architecture with system and cell agents in addition to parts, machines, and 

material handling agents [79]. In this system a modified contract net protocol is 

used for negotiation. This paper also offers an overview of various MAS 

architectures. 

In Araujo et al. [42] a control scheduling system with hybrid architecture 

features mediator agents that resolve conflicts among local agents. Scheduling 

agents coordinate with process activities and resources agents to achieve global 

process control. A human agent interfaces with the scheduling agent. Agents are 

modeled using high-level Petri-nets. 

4.4.2.3 Fully distributed scheduling systems 

In a real-time heterarchical scheduling system [83], producer agents use a 

game theory philosophy called “coopitition” in which agents simultaneously 

compete and cooperate with other producer agents. Agents use a memory-based 

reasoning technique for learning. The user is represented through a “human 

agent.” The system was developed using the Java-based Voyager Platform. 
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A fully distributed job shop scheduling system with auction-based 

negotiation using Lagrangian relaxation is proposed by Dewan and Joshi [62]. 

Results show that the proposed system outperforms distributed dispatching 

heuristics. 

Bussmann and Schild [73] proposes a prototype for a self-organizing 

Flexible Manufacturing System where work-pieces, machines, and switches 

agents negotiate a schedule using auction-based protocols, where switches 

move pallets across conveyors in order to bypass machines. To avoid deadlocks 

resulting from capacity bottlenecks, a mechanism is introduced whereby 

machines do not bid for new work-pieces when the machine’s output is blocked. 

Tests show that the performance of the MAS is nearly optimal. 

Another system for job shop scheduling (shop floor task allocation) is 

presented by Glanzer et al. [40], a heterarchical system using Contract Net 

Protocol. The system was implemented using the Zeus toolkit. 

Csaji et al. [4] presents a machine learning functionality with reinforcement 

learning neural networks to improve the scheduling in the PROSA holonic 

architecture [34]. 

Another dynamic scheduling MAS with fully-distributed (heterarchical) 

architecture from Liu et al. [56] features a hybrid auction/Lagrangian relaxation 

approach with a rolling time horizon procedure for formulating and solving the 

scheduling problem. 
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The bottleneck station scheduling problem is addressed using Ant Colony 

Optimization (ACO) to solve it metaheuristically [96]. The system was 

implemented in an Intel chipset. 

4.4.3 Holonic Manufacturing Systems 

The concept of holons was first introduced by Arthur Koestler [3]. Holons 

are collaborative self-configuring agents that are capable of communicating with 

other holons to achieve overall system objectives [18]. In holonic systems, the 

holons are organized in a hierarchical structure called a holarchy.  

One of the most comprehensive treatments of holonic systems for 

industrial applications was provided by the Holonic Manufacturing Systems 

(HMS) Consortium, an international industrially driven project addressing 

research, standards, pre-competitive development, deployment, and support of 

architectures and technologies for open, distributed, intelligent, autonomous and 

cooperative systems. During its ten-year program, more than 40 companies, 

R&D laboratories, and universities developed specifications of holonic 

architectures, a computer-aided environment for the encapsulation, reuse and 

integration of holonic systems technologies, and libraries of demonstrated, 

reusable technologies and tools for the construction of holonic manufacturing 

systems. Details of the organization and the accomplishments of the HMS 

Consortium are provided by Gruver et al. [87] and the Intelligent Manufacturing 

Systems (IMS) web site [35]. 
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The extension of the original holonic visions, aimed at real-time low-level 

control, towards production planning and scheduling, and supply chain 

management issues covers the same area as current MAS research [85]. For 

this reason, the technology and results achieved in MAS can be applied to 

holonic system applications. 

An example of a holonic manufacturing system is a planning, scheduling 

and control system that uses fuzzy logic to model multi-agent systems with 

holonic self-organizing systems [52]. The system has hybrid architecture with 

mediator agents. 

In another holonic system, resource and component agents integrated in a 

holarchy perform scheduling using a distributed algorithm based on the theory of 

constraints [41]. The system was implemented using the JADE platform. 

Recently, there is a direction to combine service-oriented architecture with 

MAS. In one application [39], a service-oriented agent acts as a mediator of a 

virtual unidirectional conveyor to transport pallets from one port to another. The 

agent communicates via service-orientation and controls the physical device. In 

order for the agent to provide its service (transfer of pallets), it requests service 

from a neighbouring device.  

4.5 Summary 

Manufacturing operation, scheduling, planning, and control are complex 

issues, due to the highly dynamic nature of manufacturing. Because of their 
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distributed characteristics, flexibility, abstraction, and ease of implementation, 

MAS have been widely applied to manufacturing.  

I presented examples of agent-based manufacturing systems developed 

for the integration of several operations in manufacturing. Earlier systems 

involved a super-agent that supervises sub-agents in a hierarchical architecture. 

Subsequently, modular or hybrid architecture was used in integrated systems. 

More recent systems involve virtual enterprise, supply-chain and Internet 

monitoring and control. 

I also provided examples of agent-based manufacturing systems that deal 

with the scheduling, planning, and control. Those systems were classified into 

control, hybrid architecture and heterarchical architecture. An heterarchical 

architecture (fully-distributed approach) is typically used to solve the job shop 

scheduling problem, especially in Flexible Manufacturing Systems (FMS). 

Several MAS in manufacturing incorporate intelligence algorithms include neural 

networks, optimization, and knowledge-base techniques. 
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5: AGENT-BASED DECISION SUPPORT AND SIMULAION 
SYSTEM FOR ROUGH MILLS 

5.1 Introduction 

In this chapter, I introduce agent-based solutions for the rough mill. Agents 

represent the physical machines in the simulation such as the ripsaw, as well as 

the business processes involved in the decision making such as scheduling.  

The outline of this chapter is as follows: First, I introduce the agent-based 

platform middleware that is used in developing the solutions. Then, a prototype 

system is implemented to demonstrate the architecture and inter-agent 

communication. This prototype is then extended to two lines of production and 

the negotiation protocol used is presented. The possibility of extending to 

multiple lines of production is discussed. The prototype is used to implement the 

system with real data and full functionality and the challenges of implementing 

the system are discussed. Evaluation of each of the three systems is presented 

as verification and validation testing. Finally, a discussion of the agent-based 

approach is presented as well as an evaluation of using the agent paradigm. 

5.2 JADE and FIPA standards 

Java Agent DEvelopment Framework (JADE) [26] [27] is a Java-based 

open-source middleware for agent development and execution. It is compliant 

with standards of the Foundation for Intelligent Physical Agents (FIPA) [69] [77]. 

FIPA is an IEEE Computer Society standards organization that promotes agent-



 

 49 

based technology and the interoperability of its standards with other technologies 

[29].  

FIPA specifications define the reference model of an agent platform and a 

set of services that should be provided to realize truly interoperable MAS. The 

FIPA performatives and other features of FIPA standardization can be applied to 

control problems, production planning and supply-chain management [85]. 

Using the JADE platform ensures following the FIPA standards, while 

providing other features such as agent communications and a graphical user 

interface (GUI) for monitoring agents. JADE provides the support to run agents 

on several computers and mobile platforms over a network or the Internet. Java 

is platform-independent which makes it a flexible and portable choice.  

JADE has been used for several agent applications, such as providing e-

services to mobile users [63], integrating agents into distributed virtual 

environments [44], reducing traffic in peer-to-peer systems [97], manufacturing 

simulation for material handling [66] and mobile ad hoc information and services 

[2]. 

5.3 RoughMill ontology 

An application-specific ontology is developed for defining the concepts 

and agent actions. An ontology provides a formal explicit description and a 

common vocabulary of concepts and their properties and relations. An ontology 

together with a set of individual instances of classes constitutes a knowledge 

base [67].  
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The ontology is generated using Protégé semantic editor [67] with a Bean 

Generator plug-in reference [7]. This graphical tool is an open source ontology 

editor and knowledge acquisition system that can be easily used to add 

concepts, agent actions, and predicates. The ontology Java files are 

automatically generated, facilitating future modification of the ontology. Figure 5.1 

shows the jag concept in the Protégé GUI. 

 

Figure 5.1 Protégé GUI showing the jag concept 

 

Concepts used in the RoughMill ontology are item, strip, Jag and component. 

Examples of agent actions are SendJag, SendStrip and SendRcmdCutList. Figure 5.2 

shows the SendJag action as the content of an ACL (Agent Communication 

Language) message sent from the ripsaw agent. 
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Figure 5.2 SendJag message 

 

5.4 Prototype multi-agent system for one line of production 

5.4.1 System architecture 

Figure 5.3 shows the system architecture for one line of production. There 

are three categories of agents used in the proposed system: user interface, 

decision support and simulation agents. Figure 5.4 shows the inter-agent 

communications. 

This design is a hybrid model, i.e., neither a master-slave super-agent 

architecture, nor a fully-distributed peer to peer system. It has a modular 

architecture where agents represent different physical and logical entities in the 

((action 

(agent-identifier 

:name 

RSA@eman:1099/JADE) 

(SendJag 

:ripJag 

(Jag 

:itemID 5 

:jagLength 14.0 

:jagVolume 2845.0 

:jagGrade M 

:jagNum 123423 

:jagWidth 2.0)))) 
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rough mill such as chopsaw, ripsaw, and jag selection. The system was designed 

to mimic the functionality of the real-life system. 

The agents use JADE messaging system to send and receive messages. 

All agents (except the start agent) check continuously on received messages. 

Each agent has several templates of expected messages. When the agent 

receives one of those messages, it takes action according to its internal logic. If 

the message is unknown, the agent records the unknown message to the output 

debug log. The block() function is used to keep the agent idle between receiving 

messages. 

Figure 5.3 System architecture showing different types of agents 

 

User Interface 

Jade 
agents 

GUI 
agent 

Jag Sel agent 

Cutlist Rcmd agent 

Chopsaw 
agents 

Ripsaw 
agent 

Conveyor 
agent 

Decision Support 

Simulation 
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Figure 5.4 System architecture with agent communications 

 

Every JADE agent is composed of a single execution thread. In order to 

be able to execute several tasks, the agent must be able to carry out several 

concurrent tasks, each in its own behaviour. Cyclic behaviour, one shot 

behaviour and simple behaviour are used to implement the agents. JADE 

framework also provides other behaviours such as FSM behaviour and Parallel 

behaviour. 

5.4.2 User interface agents 

5.4.2.1 Start/GUI agent (SA) 

The GUI of the prototype is a simple GUI with start and end simulation 

buttons. When the user presses the respective buttons on the GUI, this 

agent sends start simulation and end simulation messages to the decision 

support agents. 

CSA RSA CVA JSA  

GUI 
agent 
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5.4.2.2 JADE agents 

JADE provides agents for debugging and platform management, e.g., 

remote management agent, dummy agent and sniffer agent. 

5.4.3 Decision support agents 

Decision support agents provide recommendation for selecting jags and 

cutlists. 

5.4.3.1 Jag selection agent (JSA) 

This agent selects a jag and sends it to the ripsaw agent to start the 

simulation. 

5.4.3.2 Cutlist recommend agent (CRA) 

The agent recommends a cutlist and sends it to the chopsaw for 

simulation. 

5.4.4 Simulation agents 

These agents simulate the operations of the machines in the rough mill. 

Agents representing the ripsaw, conveyor and chopsaw process selected jags 

into individual components according to the required cutlist. 

5.4.4.1 Ripsaw agent (RSA) 

The ripsaw agent receives a message including the suggested jag. It 

simulates cutting of the strips from boards of the jag. Generated strips are saved 

in a linked list data structure in the agent knowledge base. Another behaviour 

sends strips one by one to the conveyor agent as individual messages. The 
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ripsaw agent stops/resumes processing a jag upon receiving a message from the 

conveyor agent indicating jamming in the line (as discussed below). 

5.4.4.2 Conveyor agent (CVA) 

The conveyor agent acts as a buffer between the ripsaw agent and the 

chopsaw agent, and represents the physical conveyor that exists in the rough 

mill. When the conveyor agent detects jamming, it sends a message to the 

ripsaw agent to stop. It sends another message to the ripsaw to resume when 

the jamming has ended. 

The conveyor agent receives strip messages from the ripsaw agents and 

saves them to a strips buffer with a linked list data structure. It also receives 

confirmation messages from the chopsaw for strips received. The conveyor 

agent keeps track of the number of strips waiting on the conveyor as follows: 

number of strips waiting on the conveyor = number of strips received from ripsaw - 

number of strips confirmed by chopsaw 

Another cyclic behaviour sends the strips to the chopsaw agent if there is 

no jamming, or when it receives a strip acknowledgement message from the 

chopsaw.  

Jamming is detected if the number of strips waiting is greater than the max 

number of strips waiting. This number is set as an arbitrary constant number in 

the prototype. Using real data implementation (to be discussed later in this 

chapter), this number is calculated based on the dimensions of the strips on the 

conveyor. 
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5.4.4.3 Chopsaw agent (CSA) 

The chopsaw agent simulates chopping of strips into components. It 

receives strip messages from the conveyor agent, sends confirmation message 

back to the conveyor, and simulates chopping of strips into components of the 

cutlist.  

5.4.5 Evaluation 

 

Figure 5.5 Jade sniffer agent shows message exchange between agents 

 

In Figure 5.5, the JADE sniffer agent shows the messages exchanged 

between agents during the simulation. Strip messages are generated by the 

ripsaw agent (RSA), and sent to the conveyor agent (CVA), which in turn sends 

the strip messages to the chopsaw agent (CSA). CSA then sends a confirm 
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message back to the conveyor to keep track of the number of strips on the 

conveyor. 

The content of a message is displayed by double-clicking on the arrow 

representing the message. Figure 5.6 shows the content of an ACL message 

exchanged between CVA and CSA. The sniffer agent can be used to save a log 

of all exchanged messages to a text file, as well as a snapshot of the session. 
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Figure 5.6 ACL message containing a strip sent from the conveyor agent to the chopsaw 
agent 

 

The system is verified and validated using the sniffer agent, as well as a 

debug output, as shown in Figure 5.7. 
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Figure 5.7 A section of the output file of simulation with 100 strips 

5.5 Agent-based prototype for two lines of production 

In the rough mill, there are two lines of production. One warehouse stores 

all the jags that are used for jag selection by both lines, and components can be 

scheduled on either lines. Therefore, decision support agents (namely jag 
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selection and cutlist recommend agents) of one line need to negotiate with 

decision support agents from the other line. 

However, the machines on the production line work in sequence, i.e., the 

conveyor agent of line1 (CVA1) transfers strips from RSA1 to CSA1. Similarly, for 

line2, CVA2 transfers strips from RSA2 to CSA2. Therefore, agents representing 

machines of one line (namely ripsaw, chopsaw, and conveyor agents) do not 

interact with agents from the other line. 

5.5.1 System architecture 

 

Figure 5.8 System architecture of two lines of production 

 

Figure 5.8 represents the two-line prototype. Jag selection agents 

negotiate together to avoid conflict over selected jags. Similarly, cutlist 

recommend agents negotiate over components of the cutlist. Simulation agents 

CSA1 RSA1 CVA1 JSA1 CRA1 

CSA2 RSA2 CVA2 JSA2 CRA2 
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do not interact with agents from the other line. The start agent (not shown in the 

figure) sends start and end simulation messages to the four decision-support 

agents. 

5.5.2 Negotiation protocol 

FIPA-Propose negotiation protocol is used. The initiator sends a propose 

message indicating that it will propose some action. The participant (responder) 

responds by accept or reject message. The initiator performs the action and 

returns a status response message. This protocol is a direct negotiation protocol 

with no need for moderators. Other FIPA interaction protocols supported by 

JADE are contract-net, achieve rational effect, and subscribe. 

5.5.3 Evaluation 

Figure 5.9 shows the log of messages exchanged between the jag 

selection agents of the two lines. JSA2 initiates of the protocol, JSA responds 

with an accept message and JSA2 receives it and ends the protocol. 
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Figure 5.9 Negotiation protocol log 

5.6 Multiple lines of production 

While the rough mill of interest has only two lines of production, it is 

interesting to examine whether the system can be extended to more than two 

lines of production. As seen in the previous section, the simulation agents of 

each line of production are independent of agents of other lines. Only the 

decision support agents (JSA and CRA) interact with agents from other lines. 

The FIPA-Propose negotiation protocol can also be used since it is 1:N (the initiator 

can handle several responders at the same time) [28]. Figure 5.10 is the 

suggested design for three lines. 

JSA Responder received the following message: (PROPOSE 

 :sender  ( agent-identifier :name JSA2@Eman-Laptop:1099/JADE  :addresses 

(sequence http://192.168.199.25:7778/acc )) 

 :receiver  (set ( agent-identifier :name JSA@Eman-Laptop:1099/JADE ) ) 

 :reply-with  R8549963_0  :protocol  fipa-propose 

 :conversation-id  C8549963_1272134595062 ) 

JSA2 Protocol finished. Received the following accept message: (ACCEPT-

PROPOSAL 

 :sender  ( agent-identifier :name JSA@Eman-Laptop:1099/JADE  :addresses 

(sequence http://192.168.199.25:7778/acc )) 

 :receiver  (set ( agent-identifier :name JSA2@Eman-Laptop:1099/JADE  

:addresses (sequence http://192.168.199.25:7778/acc )) ) 

 :content  “accept_proposal”  

 :reply-with  JSA2@Eman-Laptop:1099/JADE1272134595093  :in-reply-to  

R8549963_0  :protocol  fipa-propose 

 :conversation-id  C8549963_1272134595062 ) 
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Figure 5.10 Three lines of production 

5.7 Rough Mill Decision Support and Simulation System 
(RMDSSS) 

5.7.1 System architecture 

The one-line prototype is extended by implementing it with real data and 

algorithms. Figure 5.11 shows the RMDSSS system architecture. 

The simulation described in Section 3.3.1 is used to develop the 

simulation agents. The agents read historical data to generate boards, strips and 

clear pieces as described earlier. 

The case-based reasoning jag selection algorithm mentioned earlier in 

Section 3.3.2 is used for jag selection. This algorithm reads historical data files 

used for case-based reasoning. It also reads current data to get information 

about jags in the warehouse.  

CSA1 RSA1 CVA1 JSA1 CRA1 

CSA2 RSA2 CVA2 JSA2 CRA2 

CSA3 RSA3 CVA3 JSA3 CRA3 
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For cutlist recommend, the heuristic algorithm proposed later in this thesis 

(Sections 6.6.1 and 6.6.2) is used 

 

Figure 5.11 System architecture using real data 

Components can be added by the GUI to change the order list. The 

production line configuration can also be changed through a configuration file to 

reflect jammed machines (kickers). 

Like most object-oriented programs, the code of the simulation and 

decision support was divided into modules each with a specific functionality, such 

as GUI, algorithms, parsers, etc. While it is possible to do an agent-wrapper for 

each of these modules, this is not straightforward because most modules use 

methods from other modules. It becomes necessary to re-design the system into 

a more logical design that represents the physical system and the decisions in 

the rough mill. 

Implementing the full system with real data uncovered some information 

that is missing from the prototype that is then added in RMDSSS, namely: 

CSA RSA CVA JSA CRA 

GUI 
agent 

GUI 
agent 
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1. The cutlist is required for JSA, 

2. Exchange of cutlist between CSA and CRA for component 

replacement,  

3. RSA sends status update to JSA for GUI update, and  

4. Some fields are missing from the ontology. 

There are two GUIs for this system, which are slightly modified from the 

original simulation Delphi simulator interface GUIs. The first one is for jag 

selection and simulation (Figure 5.12), and the other GUI is for cutlist 

recommend and simulation (Figure 5.13). 

 

Figure 5.12 GUI for Jag Selection Agent 
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Figure 5.13 GUI for Cutlist Recommend Agent 

Figure 5.14 shows the package layout. The three main packages are 

DecisionSupport, Simulation and config. This hierarchy is used to represent the 

logical function of the classes implemented. For example CutlistRcmd is a 

DecisionSupport package, that does not import any files from the JagSelection 

package as well as the Simulation packages. Similarly, the chopsaw package does 

not import any files from the conveyor or the ripsaw, as well as DecisionSupport. The 

config package contains other files such as the ontology classes, configuration 

and data files and the simulation report classes. 
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Figure 5.14 Package layout 

5.7.2 Challenges of using real data 

Using real data and simulation algorithms rather than prototypes results in 

the following challenges: 

1. Following the agent paradigm on existing simulation code. In the 

existing code, as with most object-oriented programs, one module 
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directly uses the methods of another module. In agent-based 

systems, one agent cannot directly manipulate another agent’s 

logic as this contradicts the autonomy characteristic of the agent. 

This requires reengineering the code to make sure the design 

agrees with the agent paradigm. However, using the JADE 

middleware made developing agents easier. 

2. Discovering missing information that is not considered in the 

prototype as described above.  

3. GUI functions and display of progress to the user is more 

complicated than the simple GUI of the prototype, which contains 

only two buttons to start and end the simulation. In addition, there 

are two GUI agents instead of one. 

4. It is hard to trace the large number of messages exchanged 

between agents, especially given the distributed characteristics of 

the agent system. This challenge is the motivation for building the 

prototype and verifying its function before implementing the system 

with full functionality and real data. 

5.7.3 Evaluation 

The system is verified using the JADE GUI (for agent communication) and 

debug status statements as in prototype evaluation. In addition, the simulation 

report and the information displayed on the two GUIs (as shown in Figure 5.12 

and Figure 5.13) and are both used for verification. The simulation is validated 
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against the Quest model [22], which was used and tested for several years by 

researchers and rough mill staff. 

5.8 Discussion of agent implementation 

In this section, some of the issues that resulted from the use of agent 

technology are discussed. 

5.8.1 Jamming detection 

In the rough mill, conveyors transfer strips from the ripsaw to the chopsaw. 

If the chopsaw is running slower than the ripsaw, jamming or congestion will 

occur on the conveyor. A photocell is used to detect jamming. The ripsaw and 

conveyor are stopped until the jamming ends. 

The conveyor agent detects jamming by keeping track of the number of 

messages (strips) it received from the ripsaw agent, and the number of 

confirmation messages it received from the chopsaw agent. The difference 

represents the number of strips waiting to be processed by the chopsaw. Given 

the speed of the conveyors, and the dimensions of the strips sent to the 

chopsaw, the maximum number of strips waiting to be processed (conveyor 

capacity) can be calculated. 

This process mimics the conveyor functionality in the rough mill. It also 

provides approximate synchronization in the operation of the ripsaw and 

chopsaw. 
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5.8.2 Synchronizing the simulation 

In order to achieve synchronized simulation, we can mimic discrete event 

simulation by using an event-logger (supervisor or super-agent) to keep track of 

the simulation events, and trigger each agent to perform its action in the correct 

timing and the right sequence of events. However, such centralized approach 

can cause bottleneck problems since one supervisor agent controls the rest of 

the agents. 

In addition, such time accuracy is not needed since the purpose of this 

system is decision support and simulation rather than control. An approximate 

synchronization is sufficient to provide consistent information about the ripsaw 

and chopsaw progress, and display the progress on the GUI. Conveyor agent 

jamming detection is used to approximately synchronize the simulation as 

described above. 

5.8.3 Simulation time calculation using bottleneck detection 

Simulation time is the time it will take to run the operations in real-life. In 

the previous discrete-event simulation system, simulation time is calculated 

according to a model. In the agent-based system, ripsaw simulation time is 

calculated based on the number of boards processed by the ripsaw, conveyor 

simulation time is based on the velocity of the conveyor, and chopsaw simulation 

time is based on the number of chops performed by the chopsaw. 

Since all machines run simultaneously, simulation time is not simply 

adding these values together. Discrete event simulation provides accurate 

simulation time because a list of events can be tracked accurately and used to 
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calculate the time. However, if we want to avoid a centralized supervisor agent 

that runs the whole system, alternative approximations are necessary. 

The proposed approach is to find out the bottleneck of operations. This 

means that we decide which machine is slower, the chopsaw or the ripsaw. By 

calculating the simulation time for the ripsaw and the simulation time for the 

chopsaw and picking the higher number, we find out the approximate simulation 

time. A problem arises is that since the system is not accurately synchronized (as 

described above), we cannot use equal time intervals (such as the ticker 

behaviour provided by JADE) to find out the bottleneck. Therefore, one jag is 

used as the interval where the bottleneck is seeked. The ripsaw and the chopsaw 

each send their simulation time per jag, the GUI agent pick the maximum of the 

two numbers to calculate the simulation time displayed in the simulation report. 

5.8.4 Computational time 

Computational time is the time it takes to run the simulation on the 

computer since agents run locally on one computer. It can be easily calculated 

from the start until the end of the simulation. Several runs using RMDSSS with 

real data show that this time is acceptable with a few seconds per jag. 

5.9 Evaluation of using the multi-agent paradigm 

The advantages of using agent-based design are as follows: 

1. Modelling: In the rough mill, there is no single centralized entity 

that controls the machines or the decisions in the rough mill. The 
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agent design reflects the actual rough mill system as it exists in real 

life, which provides a good model of how the rough mill operates. 

2. Communication: Once the rough mill ontology of the agents is 

defined and implemented, agents communicate easily with 

messages that contain ontology elements. There is no discrepancy 

even if multiple programmers are involved. 

3. Integration: Similar to communication between agents in the 

system, it is possible to add new agents and connect them to 

existing agents. 

4. Expandability: Agent design allows for expanding the current 

system. For example moving from one line to two lines is facilitated 

by using a standard negotiation protocol between the old and new 

agents. Similarly, adding more lines or other rough mill operations 

such as creating order lists from work orders can be integrated to 

the system. 

5. Mobility: JADE framework supports agent mobility, as agents can 

exist on several JADE containers (different computers or PDAs). 

For example, jag selection GUI can run on one container and cutlist 

recommend GUI on another. It is also possible to allow for remote 

or web monitoring. 

On the other hand, the disadvantages of using agent-based systems are: 
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1. Synchronization: It takes careful design and experimentation to 

get the expected functionality of the system. In a centralized 

system, one program controls the flow of the rest of the modules, 

thus achieving the desired functionality. With a distributed 

decentralized system, the control is shared among all running 

agents, each running in its own thread. The desired functionality is 

achieved by implementing several behaviours in each agent, for 

example one behaviour to receive messages, and another to send 

messages or do other tasks. 

2. Paradigm-specific issues: The design and implementation of the 

agent-based system required a learning process in several areas 

such as AI, agent-based systems, distributed systems, ontologies, 

FIPA standards and JADE framework. 

5.10 Summary 

In this chapter, three rough mill agent-based systems were presented and 

evaluated using rough mill data. The first system is a prototype for one line of 

production. The second one is an extension of the prototype for two lines of 

production or more. The third system RMDSSS (Rough Mill Decision Support 

and Simulation System) uses the prototype to implement a complete system with 

real data, simulation algorithms and two GUIs. The purpose of these systems is 

to present recommendation for the operators to select material and schedule 

orders and to view the simulation. JADE framework is used for implementation, 

as it is compliant with FIPA IEEE standards. 
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6: THE ROUGH MILL SCHEDULING PROBLEM (RMSP) 

6.1 Introduction 

In this chapter, the second part of this work which is the scheduling 

problem is investigated. In a previous chapter, the operations in the rough mill 

are described, including scheduling. In the following sections the Rough Mill 

Scheduling Problem (RMSP) is described in detail, followed by a problem 

formulation of the RMSP as a search problem and Constraint Satisfaction 

Problem (CSP). In the rest of the chapter I propose several solutions to the 

problem including full search, domain search, backtrack, heuristic and 

randomized heuristic methods. The implementation and evaluation of these 

methods is presented. 

6.2 Problem description 

Figure 6.1 shows the inputs and outputs of the scheduling process. The 

inputs are the components from the work orders (order list) and the current status 

on the kickers. The outputs are new assignments to the kickers, maximum length 

on the cutlist to the jag selection process and strip width to the ripsaw for arbor 

setting. 
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Figure 6.1 Rough mill cutlist scheduling 

6.2.1 Physical constraints 

Table 6.1 and Table 6.2 list the properties of kickers (sorting bins) of 

production lines one and two respectively. Each kicker can be assigned more 

than one component. The components are manually sorted and stacked into 

loads. However, due to limited ground floor space and limited number of kickers, 

usually 20 to 25 components are scheduled at one time. Since kickers can be 

assigned more than one component, ‘logical’ kickers or sort numbers (kicker 

numbers) are used to assign one component per logical kicker.  
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Table 6.1 Kicker (Sorting bin) configuration for production line number one 

 Sort # Length range (mm) Nbrhd 

Kicker #3 1,2,3 300 – 800 1 

Kicker #4 4,5,6 1815 – 3700 2 

Kicker #5 7,8 1300 – 1810 2 

Kicker #6 9,10 800 – 1299 2 

Kicker #7 11,12,13 1815 – 3700 3 

Kicker #8 14,15 1300 – 1810 3 

Kicker #9 16,17 800 – 1299 3 

Kicker #10 18,19,20 1815 – 3700 4 

Kicker #11 21,22 1300 – 1810 4 

Kicker #12 23,24,25 300 – 900 5 

Table 6.2 Kicker (sorting bin) configuration for production line number two 

 Sort # Length range (mm) Nbrhd 

Kicker #2 1,2 1810 – 2599 1 

Kicker #3 3,4 1300 – 1810 1 

Kicker #4 5,6,7 300 – 1299 1 

Kicker #5 8,9 1810 – 3610 2 

Kicker #7 10,11 1300 – 1810 2 

Kicker #8 12,13 1810 – 3610 3 

Kicker #9 14,15 1300 – 1810 3 

Kicker #10 16,17 900 – 1299 3 
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Kicker #11 18,19 300 – 1200 4 

Kicker #12 20 300 – 700 4 

 

To formulate the physical constraints of close-by kickers, the concept of 

neighbourhood is introduced. Kickers physically close-by are said to be in 

proximity to each other and are assigned the same neighbourhood value (Nbrhd) 

Nj as shown in Table 6.1. Components assigned to one kicker affect close-by 

kickers in two ways. The difference in lengths between components assigned to 

kickers in the same neighbourhood should not be too small (less than 100 mm) 

because components can get mixed up during the manual sorting and loading 

process. If the length difference between components on nearby kickers is too 

big (greater than 2000 mm), it can form a hazard by stacking up and falling on 

workers. 

The neighbourhood conflict constraint for the two components Ci1 and Ci2 

can be expressed as follows: 

nLLn ii max21min  |  | <−<  ∀ i (6.1) 

where mmn 100min= and mmn 2000max=  

For each kicker Kj, the minimum and maximum component length allowed 

are Ljmin and Ljmax respectively, as shown in Table 6.1. The range of kicker Kj is 

defined as follows: 
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LLR jjj minmax−=  ∀ j (6.2) 

A valid kicker Kj for a component Ci is one for which the length of the 

component Li falls within Kj’s range of valid lengths. The length constraint of 

kicker Kj and component Ci can be expressed as follows: 

LLL jij maxmin <<  ∀ i, j (6.3) 

The maximum length represent the physical limit of the kicker, however, 

the minimum length can be ignored to achieve a cutlist with more components.  

0min=L j ∀ j (6.4) 

In order to present a variety of component lengths to the chopsaw, it is 

preferable to have a uniform length distribution of components. The Length 

distribution constraint for components Ci1 and Ci2 can be expressed as follows: 

GapLL ii min21  || <− ∀ i (6.5) 

where mmororGap 550100
min

=  

The value of Gapmin is not set to zero to prevent assigning same-length 

components on two different kickers. 
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6.2.2 Initial and replacement scheduling 

The scheduling problem can be divided into two sub-problems. The first is 

initial scheduling in which the chop line is empty, so we attempt to schedule as 

many components as possible on the line at once. The second sub-problem is 

replacement scheduling where the required quantity of one of the components 

scheduled on the line is completed, and we need to replace it with another 

component from the order list. 

6.3 Theoretical background 

6.3.1 Scheduling problems 

Scheduling problems can be classified into the following major types: 

single machine, parallel machine, flow shop, job shop and open shop [51]. 

In the single machine problem, the jobs are processed on one machine 

only. In the parallel machine problem, there are m identical machines in parallel. 

Job j requires a single operation and may be processed on any one of the m 

machines or on any one that belongs to a given subset Mj. 

In the flow shop problem, there are m machines in series, and each job j 

has to be processed on each one of the m machines following the same route. In 

the job shop problem, each job has its own pre-determined route to follow. 

Finally, in the open shop problem, there are no restrictions on the routing of each 

job through the machines and some machines may not be used. 
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6.3.2 Constraint Satisfaction Problems (CSP) 

CSP is defined by a set of variables V, a set of domain values D and a set 

of constraints C (relations between these variables). A solution to the CSP gives 

an assignment to variables of values that satisfy all the constraints [75]. 

If we add to the CSP an objective function f that can be used to evaluate 

the solutions, we get the Constraint Optimization Problem (COP), which attempts 

to find solutions to the CSP with optimum value of f. 

6.3.3 Search methods 

Search methods can be classified into two main categories: constructive 

search and local search [31]. 

In constructive search, variables are assigned one by one until all the 

variables are assigned. If we search through all the possible values of the 

variables, the search is complete. A complete search discovers a solution if it 

exists. In the case of optimization, a complete search finds the optimum value of 

an optimization function. 

On the other hand, local search methods start with an initial assignment of 

all variables. The initial assignment can be an invalid solution, or a non-optimum 

value in case of optimization search. Iteratively, the variable assignments are 

changed according to the search algorithm, until a certain stopping criterion is 

reached such as runtime limit, valid solution, or no change in the objective 

function. Local search methods are not complete; a solution that exists can be 

missed, or for optimization problems, the global optima can be missed.  
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6.4 Problem formulation: RMSP 

The RMSP is a parallel machine scheduling problem as several machines 

(kickers) are available for processing the given jobs (components); each job 

consists of a single operation that is performed by one machine. Furthermore, 

the processing time of a job is independent of the machine on which it is 

processed.  

However, in the RMSP, due to the natural defects in the wood and 

inaccurate dimensions of the wood, the processing time is unknown at the time of 

scheduling. Therefore, the RMSP cannot be solved using traditional scheduling 

methods that find the schedule by optimizing measures like the makespan or the 

completion time of the jobs [31] [51]. 

6.4.1 Configuration 

We can view the RMSP as a CSP with the following specifications: 

• Variables are the kickers (sorting bins) 

• Domain values are the components that can be assigned to the 

kickers 

• Constraints are the feasibility conditions namely, length of the 

component in the range of the kicker, neighbourhood constraints, 

and size distribution gap constraints according to Eq. (6.3), Eq. 

(6.1) and Eq. (6.5) respectively. 
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6.4.2 Exhaustive search 

To find out all the possible cultists, we can conduct an exhaustive search. 

The domain values of each kicker are all the components on the order list.  

Let c be the number of components in the order list and k the number 

kickers on the production line. Since unscheduled kickers can be a part of the 

cultists, the effective number of components is (c+k). The total number of cultists 

for c components and k kickers can be calculated as follows: 

!

)!(

c

kc
Pk

kc +
=

+

 (6.6) 

These are all the possible lists, but not all of them satisfy the constraints. By 

conducting consistency checks on these lists, we can find out the feasible 

cultists. This can be done by exploring a search tree as shown in Figure 6.2 of 

three variables and three domain values. 

 

Figure 6.2 Search tree of three variables, with three domain values each 
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The time complexity [46] is calculated by specifying an upper bound of the 

growth rate in terms of the order of the algorithm. The order of the search 

algorithm for n variables and d domain values is: 

T(n,d) is O(dn)  (6.7) 

6.4.3 Partial search 

Given the physical constraints of the problem, we can find out all the valid 

component of each kicker according to Eq. (6.3). In this case, the domain value 

of each kicker is reduced to the number of valid components for that kicker, 

which results in a smaller search tree as shown in Figure 6.3. 

 

Figure 6.3 Search tree for three variables: variable1 has three domain values, variable2 has 
two domain values and variable3 has three domain values 

 

The order of the search for n variables, each with dv valid domain values, 

can be calculated as follows: 
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)( dO n
v
 where dd v≤  (6.8) 

6.5 Backtrack scheduling algorithm 

Backtrack algorithm is a complete search method; it produces all the 

feasible solutions to the problem. One by one, the variables are assigned domain 

values, which form a consistent solution. In RMSP, if one kicker assignment 

results in an infeasible solution, further assignments to other kickers will produce 

infeasible solutions as well as shown in Figure 6.4. In the backtrack algorithm, if 

one solution is not feasible, we do not continue to search its sub-tree since all 

solutions in the sub-tree are infeasible as well, as shown in Figure 6.5. 

 

Figure 6.4 If one node is infeasible solution, the rest of the sub-tree nodes are infeasible 
solutions too 

 



 

 85 

 

Figure 6.5 Backtrack search tree 

6.5.1 Backtrack initial scheduling algorithm for RMSP 

The notion of live domain is introduced. Each variable is assigned a live 

domain of all the possible domain values still to be explored. Once a domain 

value is checked, it is removed from the live domain of the variable. 

For the backtrack algorithm, in order to assign one variable in the tree, the 

variable before it should be assigned. However, some variables (kickers) may not 

have any valid components to assign, i.e., left unscheduled. An unscheduled 

kicker can be a part of a feasible cutlist. In order to implement this, the notion of a 

dummy component is introduced. A dummy component has the component 

number ‘-1’ and is added to the end of each variable live domain as shown in 

Figure 6.6. 
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Figure 6.6 RMSP backtrack algorithm. Light grey nodes represent dummy components or 
unscheduled kickers 

The backtrack algorithm can be outlined as follows: 

Step 1. For all the variables (kickers), find all the domain values d = 

valid comps for that kicker plus a dummy component to represent 

unscheduled kickers 

Step 2. Use depth first search to explore the tree: 

a. If the solution is feasible: save or count the number of feasible 

cutlists, explore the next node. 

b. If the solution is infeasible: backtrack – do not explore the rest of 

the subtree. 

The order of the algorithm for k kickers, each with cf feasible components, 

and cv valid components is as follows: 
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)( cO k
f
 where ccc f v

≤≤  (6.9) 

6.5.2 Complete-search replacement scheduling algorithm for RMSP 

Replacement scheduling is triggered when one component on the line is 

done. Since we only need to replace one component, replacement scheduling 

can be done by complete search. The algorithm is as follows: 

For each unscheduled kicker, test each valid component, if the cutlist is 

feasible, add to a list of feasible replacement cultists. 

6.5.3 Evaluation 

To evaluate the backtrack algorithm, four order lists are used. The test is 

repeated for 5,10,15,20 and 25 kickers. Gapmin is set to 100mm (Eq. (6.5)) and 

Ljmin is not set to zero (Eq. (6.3)).  

Table 6.3 shows the results of backtrack scheduling, where k is the 

number of kickers, c is the number of components, TotalNum is the calculated 

total number of lists for a complete search (according to Eq. (6.6)), Feasblnum is 

the number of feasible lists, cc is the number of consistency checks, maxK is the 

maximum number of scheduled kickers. 

As the number of components and the number of kickers increase, the 

number of feasible cultists and the runtime increase exponentially. This makes 

this method not useful for large numbers, since it is impossible go through all the 

nodes, as well as the impractical runtime. However, the production line contains 

25 kickers, and the order lists used in testing are typical ones. 
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The results show the complexity of the RMSP, as it is not a trivial problem 

that can be solved by complete search methods. Therefore, it is not possible to 

find all feasible cultists (or search for optimal cultists) through a complete search. 

It is essential to develop other methods that find a reasonable number of cultists 

in acceptable time. 

Table 6.3 Backtrack results 

k  c TotalNum FeasblNum cc maxK runtime 

Orderlist1 19 5.1*10
6
 241 576 4 0.0 sec 

Orderlist2 51 4.6*10
8
 24,199 99,740 5 0.1 sec 

Orderlist4 104 1.4*10
10
 2.9*10

5
 1.5*10

6
 5 2.5 sec 

k
 =
 5
 

Orderlist5 207 4.1*10
11
 2.8*10

6
 5.4*10

6
 4 42.2 sec 

Orderlist1 19 7.2*10
13
 2.6*10

5
 5.0*10

5
 8 0.8 sec 

k
 =
 1
0
 

Orderlist2 51 3.3*10
17
 6.8*10

8
 1.2*10

9
 9 54.0 min 

Orderlist1 19 2.4*10
21
 2.5*10

7
 1.1*10

8
 10 81.8 sec 

k
 =
 1
5
 

Orderlist2 51 3.5*10
26
 > 4.8*10

10
 - - > 4 days 

k = 20 Orderlist1 19 1.6*10
29
 4.4*10

8
 >2.1*10

9
 11 41.0 min 

k = 25 Orderlist1 19 2.1*10
37
 4.4*10

8
 >2.1*10

9
 11 17.0 hrs 

 

The complete-search rescheduling algorithm is tested using one random 

test cutlist (cutlist number 121), unscheduling the first scheduled kicker. Gapmin is 

set to 5mm (Eq. (6.5)). Table 6.4 shows the results; where InitialNumComp is the 

number of components on the test cutlist before rescheduling and 
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FeasblNumLists is the number of feasible replacement cultists, cc is the number 

of consistency checks. runtime is 0.0 seconds for all tests. 

Table 6.4 Rescheduling test 

K  InitialNumComp FeasblNumLists cc 

Orderlist1 1 8 13 

Orderlist2 3 12 23 

Orderlist4 4 9 26 K
 =
 5
 

Orderlist5 3 22 66 

Orderlist1 6 4 11 

Orderlist2 8 5 15 

Orderlist4 8 9 26 K
 =
 1
0
 

Orderlist5 7 51 113 

Orderlist1 8 9 23 

Orderlist2 10 14 39 

Orderlist4 10 40 95 K
 =
 1
5
 

Orderlist5 12 52 135 

Orderlist1 9 14 37 

Orderlist2 10 28 77 

Orderlist4 12 51 114 K
 =
 2
0
 

Orderlist5 14 106 261 

Orderlist1 10 18 55 

K
 =
 2
5
 

Orderlist2 11 34 143 
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Orderlist4 13 82 244 

Orderlist5 14 263 513 

6.6 Heuristic scheduling 

In this approach, scheduling is done using heuristic rules derived from 

observing operations in the rough mill. These rules are implemented to meet 

several heuristics that are specific to the RMSP such as physical constraints of 

the sorting area, priority and due date of components, and maintaining a uniform 

size distribution to provide the chopsaw with a variety of lengths. 

This method is the one used by the cutlist recommend agent (CRA) in the 

RMDSSS described in Chapter 5. 

6.6.1 Heuristic initial scheduling algorithm 

Step 1. Components in the order list are pre-sorted according to the 

following criteria: 

a. Due Date to reflect urgency 

b. Priority (according to product type) 

c. Quantity to allow higher quantities longer time for cutting 

Step 2. For each component, all the valid kickers are determined 

(based on each kicker’s length restrictions Eq. (6.3)). Valid kickers are 

then sorted by range Rj (Eq. (6.2)). 

Step 3. The longest and shortest components on the order list are 

assigned. The longest component is given priority because it takes longer 
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time to produce, while the shortest component helps in reducing waste. If 

the second-shortest component has a closer due date than the shortest 

component, and the difference between their lengths is less than 100 mm, 

the second-shortest component is scheduled instead of the shortest one.  

Step 4. The rest of components are scheduled to the first valid kicker 

(the one with the smallest range). If that kicker is already scheduled for 

another component, the next kicker is checked, and so on. Other 

conditions for scheduling are: 

a. Conflict in length with components scheduled to neighbouring 

kickers according to Eq. (6.1), and  

b. Conflict in length with other scheduled components (for a uniform 

length distribution) according to Eq. (6.5). The minimum gap value 

Gapmin is initially set to 100 mm. 

Step 5. If the scheduling rate (number of assigned components) is 

too low (less than 18 components3), the scheduling process is repeated 

relaxing the length distribution restriction by setting Gapmin to 50 mm, then 

5 mm. 

Step 6. If the scheduling rate is still too low, the scheduling process 

is repeated ignoring the minimum length requirement of the kickers, 

keeping only the maximum length requirement (Eq. (6.4)) in order to allow 

                                            
3
 Using the ROMI-RIP simulator, significant yield increases were observed as a result of 
increasing sorting capacities (number of components in the cutlist). However, a plateau is 
reached around 18 to 20 components, where additional sorting capacity increases result in 
negligible yield gains [81]. 
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for more sorting locations to be used. Gapmin is set to 100 mm, 50 mm and 

then 5 mm to relax the length distribution condition. 

The order of the heuristic search algorithm for c components and kv valid 

kickers is as follows: 

)( 22
ckcO v+

 (6.10) 

And since mostly the number of components is greater than the number of 

kickers and valid kickers (kv < c), the order of the algorithm can be approximated 

to: 

)( 3
cO  (6.11) 

6.6.2 Heuristic replacement scheduling algorithm 

Step 1. Order list components are pre-sorted according to the same 

criteria used in step 1 of the initial scheduling algorithm. 

Step 2. Search the sorted order list for a component similar to the 

finished component (having the same length, width and quality 

requirements). This is done in order to maintain the previous length 

distribution and to ease the manual stacking process of components. 

Terminate if a component is found, otherwise go to the next step. 

Step 3. If the longest item is not currently on the cutlist, attempt to 

schedule it, with minimal length distribution conditions (Gapmin=5mm). 

Terminate if a component is found, otherwise go to the next step. 
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Step 4. The shortest (or second-shortest as described above) 

component is examined for scheduling with minimal length distribution 

conditions. Terminate if a component is found, otherwise go to the next 

step. 

Step 5. Components are examined in the pre-sorted order, and are 

assigned to available kickers using the same constraints of step 4 of the 

initial scheduling algorithm (Eq. (6.1) and Eq. (6.5)). 

Step 6. If there is no replacement component found, the above step 

is repeated with less restrictions, similar to those of steps 5 and 6 of the 

initial scheduling method. 

6.6.3 Heuristic scheduling as a search method 

Pre-sorted component represent the variables of the search tree. The 

domain values are the valid kickers. Sorting the domain values represent a best-

first strategy for searching4. Heuristics focus on choosing the next neighbour in 

the search to move to [65]. The first feasible domain value is selected and no 

further domain values are explored. Figure 6.7shows an example of three pre-

sorted components, domain values represent sorted valid kickers, and light grey 

nodes represent unassigned components. 

                                            
4
 Assigning a component to the kicker with the smallest range is a best-fit strategy. 
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Repeating the search is equivalent to relaxing the consistency check conditions. 

In Figure 6.8, when the conditions are relaxed, more components are assigned 

compared to Figure 6.7.  

 

 

Figure 6.7 Heuristic scheduling as a search problem 

 

C1=Kv1 

C1=Kv1 
C2=- 

C1=Kv1 
C2=- 
C3=Kv1 
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Figure 6.8 Repeating heuristic search with relaxed conditions results in assigning more 
components 

 

6.7 Randomized heuristic scheduling 

In the above sections, it was shown that the backtrack algorithm finds all 

feasible solutions, which can be a large number and take a long time to run. In 

addition, a heuristic algorithm based on best-first search that provides one 

solution was presented. 

It is interesting to explore providing the user with alternative recommended 

cutlists to choose from, all of which are feasible solutions. The randomized 

heuristic algorithm is presented, which adds a random factor to explore different 

areas of the search space. 

C1=Kv1 

C1=Kv1 
C2=Kv2 

C1=Kv1 
C2=Kv2 

C3=Kv1 
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6.7.1 Randomized heuristic n-initial scheduling algorithm 

Randomized heuristic scheduling algorithm is similar to the heuristic 

algorithm, but instead of sorting the valid kickers of components by range, their 

order is randomized (shuffled) to get a different solution every time. This is 

repeated for n times and the schedules are presented to the user. Suggested 

value of n is 5 to 20. 

Therefore, the randomized heuristic algorithm is the same as the heuristic 

algorithm listed in section 6.6.1, except for step 2: 

Step 2. For each component, all the valid kickers are determined 

(based on each kicker’s length restrictions). Randomize the order of the 

valid kickers. 

6.7.2 Heuristic n-replacement scheduling algorithm 

The algorithm provides the first n replacement components according to 

the heuristic replacement scheduling algorithm. This gives the user more options 

to choose from.  

6.8 Evaluation of heuristic algorithms 

Both heuristic initial algorithm and randomized heuristic n-initial algorithms 

were tested on dataset orderlist5 with number of components c = 207, number of 

kickers k = 25, and number of lists n = 10. All the heuristic initial and replacement 

algorithms provide instant results. 

Output is shown in Table 6.5. Each cutlist is displayed in one column as a 

list of components in the format of component number (unique number for each 
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component) and component length (compNo/compLength). The heuristic initial 

cutlist is displayed first (HL), followed by the 10 randomized heuristic initial 

cultists (L1-L10). The results are validated by tracing debug statements, and 

analyzing the order list and kicker information. 

The randomized heuristic algorithm provided more choices of cultists, 

some with more components than the heuristic method. 

Table 6.5 Output of heuristic and randomized heuristic n-initial scheduling 
(compNo/compLength) 

 HL L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

K1 0 / 
580 

83 / 
780 

105 / 
730    

0 / 
580 

105 / 
730 

105 / 
730   

K2 83 / 
780 

0 / 
580  

105 / 
730 

105 / 
730 

105 / 
730   

0 / 
580 

170 / 
673 

83 / 
780 

K3 
  

0 / 
580 

0 / 
580 

0 / 
580 

0 / 
580 

105 / 
730 

0 / 
580  

83 / 
780 

0 / 
580 

K4 13 / 
2810  

75 / 
2110 

75 / 
2110 

79 / 
3010 

54 / 
2376  

79 / 
3010   

54 / 
2376 

K5 54 / 
2376 

79 / 
3010 

13 / 
2810 

79 / 
3010 

54 / 
2376  

141 / 
2010 

141 / 
2010 

141 / 
2010 

13 / 
2810 

79 / 
3010 

K6 125 / 
3610 

125 / 
3610 

124 / 
3551 

125 / 
3610 

124 / 
3551 

125 / 
3610 

125 / 
3610 

124 / 
3551 

124 / 
3551 

125 / 
3610  

K7 6 / 
1510 

6 / 
1510 

72 / 
1810 

179 / 
1410 

115 / 
1670  

72 / 
1810 

6 / 
1510 

115 / 
1670  

28 / 
1610 

K8 179 / 
1410 

115 / 
1670 

179 / 
1410 

72 / 
1810 

72 / 
1810 

28 / 
1610 

179 / 
1410  

72 / 
1810 

6 / 
1510 

6 / 
1510 

K9 194 / 
876 

154 / 
946 

196 / 
1086 

175 / 
1028 

175 / 
1028 

66 / 
1210 

66 / 
1210 

175 / 
1028 

194 / 
876 

66 / 
1210 

196 / 
1086 

K10 175 / 
1028 

196 / 
1086 

194 / 
876 

66 / 
1210 

66 / 
1210 

175 / 
1028 

175 / 
1028 

194 / 
876 

196 / 
1086 

175 / 
1028 

66 / 
1210 

K11 79 / 
3010 

141 / 
2010 

79 / 
3010 

13 / 
2810  

141 / 
2010  

75 / 
2110 

13 / 
2810 

54 / 
2376 

13 / 
2810 

K12 75 / 
2110 

54 / 
2376 

141 / 
2010 

54 / 
2376 

13 / 
2810 

75 / 
2110 

54 / 
2376 

13 / 
2810 

79 / 
3010 

75 / 
2110 

141 / 
2010 

K13 
 

124 / 
3551 

125 / 
3610 

141 / 
2010 

75 / 
2110 

13 / 
2810 

79 / 
3010 

125 / 
3610 

125 / 
3610 

141 / 
2010 

125 / 
3610 
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K14 72 / 
1810  

6 / 
1510 

28 / 
1610 

28 / 
1610 

179 / 
1410 

28 / 
1610 

179 / 
1410 

28 / 
1610 

115 / 
1670 

 

K15 28 / 
1610 

72 / 
1810 

28 / 
1610 

6 / 
1510 

179 / 
1410 

72 / 
1810 

6 / 
1510 

28 / 
1610  

179 / 
1410 

115 / 
1670 

K16 196 / 
1086 

175 / 
1028 

175 / 
1028 

196 / 
1086 

194 / 
876 

194 / 
876 

196 / 
1086 

66 / 
1210 

175 / 
1028 

194 / 
876 

194 / 
876 

K17 66 / 
1210 

66 / 
1210 

66 / 
1210 

194 / 
876 

196 / 
1086 

196 / 
1086 

194 / 
876 

196 / 
1086 

66 / 
1210 

196 / 
1086 

175 / 
1028 

K18 141 / 
2010 

75 / 
2110 

54 / 
2376  

141 / 
2010  

75 / 
2110  

54 / 
2376   

K19 
 

13 / 
2810    

79 / 
3010 

13 / 
2810 

54 / 
2376 

75 / 
2110 

79 / 
3010 

75 / 
2110 

K20 124 / 
3551   

124 / 
3551 

125 / 
3610 

124 / 
3551 

124 / 
3551   

124 / 
3551 

124 / 
3551 

K21 115 / 
1670 

179 / 
1410 

115 / 
1670  

6 / 
1510 

115 / 
1670 

115 / 
1670 

72 / 
1810 

179 / 
1410 

28 / 
1610 

179 / 
1410 

K22 
 

28 / 
1610  

115 / 
1670  

6 / 
1510  

115 / 
1670 

6 / 
1510 

72 / 
1810 

72 / 
1810 

K23 170 / 
673 

170 / 
673 

83 / 
780 

170 / 
673 

83 / 
780 

170 / 
673 

83 / 
780 

170 / 
673 

83 / 
780 

0 / 
580 

170 / 
673 

K24 
  

170 / 
673    

170 / 
673 

83 / 
780 

170 / 
673 

105 / 
730  

K25 
 

194 / 
876  

83 / 
780 

170 / 
673 

83 / 
780      

num 19 20 20 20 20 20 20 20 20 20 19 

 

L10 in Table 6.5 is used as a test cutlist for replacement algorithms with 

component on kicker number eight (K8) marked as done.  

Table 6.6 displays the results of the heuristic replacement and n-

replacement algorithms in the same format as above. The heuristic replacement 

results are displayed first (HL), followed by the ten replacement cultists (L1-L10). 

The cultists are validated by examining the suggested replacement component 

against the available unscheduled components in the order list.  
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The heuristic n-replacement provided more choices for replacement 

components, starting with components of the same length as the component that 

was done. 

Table 6.6 Output of heuristic replacement and heuristic n-replacement scheduling 
(compNo/compLength), done Kicker is K8, done component number is 6 

 HL L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

K1 
           

K2 
83 / 
780 

83 / 
780 

83 / 
780 

83 / 
780 

83 / 
780 

83 / 
780 

83 / 
780 

83 / 
780 

83 / 
780 

83 / 
780 

83 / 
780 

K3 
0 / 
580 

0 / 
580 

0 / 
580 

0 / 
580 

0 / 
580 

0 / 
580 

0 / 
580 

0 / 
580 

0 / 
580 

0 / 
580 

0 / 
580 

K4 
54 / 
2376 

54 / 
2376 

54 / 
2376 

54 / 
2376 

54 / 
2376 

54 / 
2376 

54 / 
2376 

54 / 
2376 

54 / 
2376 

54 / 
2376 

54 / 
2376 

K5 
79 / 
3010 

79 / 
3010 

79 / 
3010 

79 / 
3010 

79 / 
3010 

79 / 
3010 

79 / 
3010 

79 / 
3010 

79 / 
3010 

79 / 
3010 

79 / 
3010 

K6 
           

K7 
28 / 
1610 

28 / 
1610 

28 / 
1610 

28 / 
1610 

28 / 
1610 

28 / 
1610 

28 / 
1610 

28 / 
1610 

28 / 
1610 

28 / 
1610 

28 / 
1610 

K8 
138 / 
1510 

138 / 
1510 

181 / 
1510 

92 / 
1510 

48 / 
1510 

70 / 
1510 

160 / 
1510 

114 / 
1510 

201 / 
1510 

27 / 
1510 

26 / 
1480 

K9 
196 / 
1086 

196 / 
1086 

196 / 
1086 

196 / 
1086 

196 / 
1086 

196 / 
1086 

196 / 
1086 

196 / 
1086 

196 / 
1086 

196 / 
1086 

196 / 
1086 

K10 
66 / 
1210 

66 / 
1210 

66 / 
1210 

66 / 
1210 

66 / 
1210 

66 / 
1210 

66 / 
1210 

66 / 
1210 

66 / 
1210 

66 / 
1210 

66 / 
1210 

K11 
13 / 
2810 

13 / 
2810 

13 / 
2810 

13 / 
2810 

13 / 
2810 

13 / 
2810 

13 / 
2810 

13 / 
2810 

13 / 
2810 

13 / 
2810 

13 / 
2810 

K12 
141 / 
2010 

141 / 
2010 

141 / 
2010 

141 / 
2010 

141 / 
2010 

141 / 
2010 

141 / 
2010 

141 / 
2010 

141 / 
2010 

141 / 
2010 

141 / 
2010 

K13 
125 / 
3610 

125 / 
3610 

125 / 
3610 

125 / 
3610 

125 / 
3610 

125 / 
3610 

125 / 
3610 

125 / 
3610 

125 / 
3610 

125 / 
3610 

125 / 
3610 

K14 
           

K15 
115 / 
1670 

115 / 
1670 

115 / 
1670 

115 / 
1670 

115 / 
1670 

115 / 
1670 

115 / 
1670 

115 / 
1670 

115 / 
1670 

115 / 
1670 

115 / 
1670 

K16 
194 / 
876 

194 / 
876 

194 / 
876 

194 / 
876 

194 / 
876 

194 / 
876 

194 / 
876 

194 / 
876 

194 / 
876 

194 / 
876 

194 / 
876 
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K17 
175 / 
1028 

175 / 
1028 

175 / 
1028 

175 / 
1028 

175 / 
1028 

175 / 
1028 

175 / 
1028 

175 / 
1028 

175 / 
1028 

175 / 
1028 

175 / 
1028 

K18 
           

K19 
75 / 
2110 

75 / 
2110 

75 / 
2110 

75 / 
2110 

75 / 
2110 

75 / 
2110 

75 / 
2110 

75 / 
2110 

75 / 
2110 

75 / 
2110 

75 / 
2110 

K20 
124 / 
3551 

124 / 
3551 

124 / 
3551 

124 / 
3551 

124 / 
3551 

124 / 
3551 

124 / 
3551 

124 / 
3551 

124 / 
3551 

124 / 
3551 

124 / 
3551 

K21 
179 / 
1410 

179 / 
1410 

179 / 
1410 

179 / 
1410 

179 / 
1410 

179 / 
1410 

179 / 
1410 

179 / 
1410 

179 / 
1410 

179 / 
1410 

179 / 
1410 

K22 
72 / 
1810 

72 / 
1810 

72 / 
1810 

72 / 
1810 

72 / 
1810 

72 / 
1810 

72 / 
1810 

72 / 
1810 

72 / 
1810 

72 / 
1810 

72 / 
1810 

K23 
170 / 
673 

170 / 
673 

170 / 
673 

170 / 
673 

170 / 
673 

170 / 
673 

170 / 
673 

170 / 
673 

170 / 
673 

170 / 
673 

170 / 
673 

K24 
           

K25 
           

 

6.9 Summary 

In this chapter, the RMSP (Rough Mill Scheduling Problem) was 

presented. The physical constraints and the unique characteristics of this 

problem were described. Traditional methods cannot be applied to the problem 

because of unknown processing times. 

Backtrack, heuristic and randomized heuristic solutions were presented. 

The backtrack solution provides all feasible cultists. However, the number of lists 

is very large, and it takes a long processing time. The heuristic solution provides 

one solution that can be used directly in the simulation (as in Chapter 5). The 

randomized heuristic solution provides n solutions for decision support. 

For component replacement, I presented a heuristic method that 

suggested one replacement component, a full-search method that presented all 
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possible replacement components and heuristic n-replacement method that 

provides n replacement cutlists. 
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7: CONCLUSION 

In this section, a summary of the content of the thesis is presented and a 

list of contributions is outlined. Finally, future research directions are suggested. 

7.1 Summary 

In a rough mill, boards of lumber of approximate sizes are cut to produce 

components of fixed sizes and qualities. Improving the processes in the rough 

mill provides cost-saving of expensive lumber and reduces the waste of natural 

resources. 

The operations in a Canadian rough mill are investigated and 

documented. The decisions taken by operators are analyzed as well during a trip 

to the rough mill. The two main decisions in the rough mill are the jag selection 

problem (material selection) and the scheduling problem (component or part 

scheduling). 

The history of the project is outlined which starts with a 3D simulation of 

the rough mill. Collaborative work is done in the areas of jag selection, jag 

sequencing and scheduling. The goal of the rest of this research is defined with 

two challenges: developing an agent-based decision support and simulation 

system and developing scheduling algorithms to solve the initial and replacement 

rough mill scheduling problem. 
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Before tackling the first challenge of designing the agent-based system, 

the concept of an agent is defined and a survey of agent-based manufacturing 

systems is presented. Agents are used for several manufacturing applications 

ranging from control, scheduling and planning to enterprise operations and 

supply-chain management. 

The agent solution is first implemented as a prototype or a framework for 

one line of production. This prototype is used to develop and validate the 

behaviours of the agents and the communications between them. The system is 

composed of three simulation agents (ripsaw, conveyor and chopsaw) and two 

decision support agents (jag selection and cutlist recommend). This prototype is 

extended to two lines using a negotiation protocol. 

The prototype is implemented into the Rough Mill Decision Support and 

Simulation System (RMDSSS). Simulation agents use historical data to simulate 

rough mill operations. Jag selection agent uses historical and current data to 

select jags from the warehouse inventory. Cutlist Recommend Agent uses 

heuristic scheduling to recommend cultists from a given order list. 

Synchronization of the simulation is done using the conveyor, which 

mimics the real conveyor behaviour that detects jamming and stops the ripsaw. 

Simulation time is calculated using bottleneck detection. The pros and cons of 

using the agent paradigm are discussed. 

The second challenge is the Rough Mill Scheduling Problem (RMSP). The 

problem is detailed and formulated. Natural defects in the wood and inaccurate 

dimensions result in unknown processing times, therefore traditional scheduling 
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methods cannot be used to solve this problem. The problem is formulated as a 

constraint satisfaction and search problem. Backtrack search is implemented and 

evaluated. The number of feasible solutions and the runtime grow exponentially 

when increasing the number of components and kickers. 

A heuristic method for scheduling is developed. It can be viewed as a 

best-first search method. Pre-sorted components are assigned to the first valid 

kicker with the smallest range. If the number of components on the list is small, 

the search is repeated with relaxed parameters. A randomized heuristic method 

is also implemented that assigns pre-sorted components to the first valid random 

kicker, and n-solutions are presented to the user. 

Three replacement scheduling algorithms are also developed to 

dynamically replace components done on the line with new ones. The first 

method presents all the feasible replacement components, the second method 

selects one component, and the third method presents n-components. 

7.2 Contributions 

1. Identifying the operations and decisions in a Canadian rough mill. 

2. Designing and developing a rough mill ontology. 

3. Designing and implementing a decision support and simulation system 

for rough mills. 

4. Applying the multi-agent paradigm to rough mills. 

5. Adding a second line of production that shares the same material 

resources and orders. 
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6. Formulating the problem of scheduling naturally-defective material. 

7. Developing backtrack, heuristic and randomized heuristic scheduling 

methods and evaluating them with rough mill data. 

8. Jointly developing decision support algorithms. 

7.3 Future research 

7.3.1 Agent-based decision support and simulation 

1. Agent-based implementation makes it easy to extend the system to 

other operations in the rough mill such as generating the order list 

from the work orders. Moreover, it is possible to run the agents on 

several containers in a distributed fashion and provide remote or 

web-based monitoring [45] [95]. 

2. Learning algorithms can be used to improve the simulation agents 

[75]. 

7.3.2 Scheduling 

1. Several local search methods with various objective functions can 

be implemented and compared using the simulation. An example of 

the objective function is the one used in [58] as described in 

Section 3.4.1. Examples of local search methods that can be used 

are taboo search [24], simulated annealing and constraint 

optimization methods [31] [65]. It is also possible to apply swarm 

intelligence as a local optimization method [8] [9], such as ant 



 

 106 

colony optimization, particle swarm optimization and intelligent 

water drops. 

2. Scheduling can gather data from the simulation and improve on 

existing heuristics using learning methods such as the one 

presented by Park et al. [15]. 
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