Policy Conflict Detection Using Alloy: An Explorative Study

by

Shahin Sheidaei

B.Sc., Iran University of Science and Technolo@®@)&

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
In the School of

Interactive Arts and Technology

© Shahin Sheidaei 2010

Simon Fraser University

Summer 2010

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy
or other means, without permission of the author.

Approval

Name: Shahin Sheidaei
Degree: Master of Science
Title of Thesis: Policy Conflict Detection Using Alloy: An Explorative Study

Examining Committee:

Chair:

Dr. Steve DiPaola
Associate Professor, School of Interactive Arts and Technology

Dr. Marek Hatala

Senior Supervisor

Associate Professor, School of Interactive Arts and
Technology

Dr. Dragan GaSevt
Supervisor
Associate Professor, Athabasca University

Dr. Halil Erhan

External Examiner

Assistant Professor, School of Interactive Arts and
Technology

Date Defended/Approved: April 12, 2010

SF SIMON FRASER UNIVERSITY
LIBRARY

Declaration of
Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Last revision: Spring 09

Abstract

Policy conflicts are inevitable in policy-based teyss. Handling conflicts is
considered to be so vital in policy-based systéat, $everal policy languages introduced

built-in functions to handle them.

In this thesis, we investigate an innovative apgind@r policy conflict detection.
We investigate inclusion of MDE (Model Driven Engaring) concept in the policy
conflict detection method. We inspect the pracitigadf analysing policies along with
policy language’s meta-model in order to detecffletin. We will examine feasibility of

policy conflict detection using Alloy and PML (Po}i Modelling Language).

In our work, we systematically explore ways of mbdg policies in Alloy. We
have successfully introduced proper modelling apgindfor policy conflict detection and
analysis of the policies according to PML meta-motimwever, we have also shown
that a one-pass analysis of detecting conflictaddition to analysing policies according

to the PML meta-model is not achievable.

“To My Parents & My Sister”
—for their support and encouragement throughout my entire life.

Acknowledgment

I am honoured and delighted to acknowledge the npeople whose counsel,

support, and encouragement have contributed immetwsthe completion of my thesis.

First and foremost, | would like to express my degptitude to my senior
supervisor, Dr. Marek Hatala, whose constant eragmment played the most important

role in keeping me on the track of my studies.

When lots of pressure had made it almost imposé$drliene to keep up with my
studies, his constant support and understandinigeo$ituation were the main incentives

for me to keep going.

My sincere appreciations also go to Dr. Dragan @aJer his constant guidance,
feedback, and fortitude during my studies. His raithg attitudes and his extreme
patience in bearing with my interruptions to hisnowork gave me the great opportunity

to fully understand and grasp the research ideas.

Finally, 1 would like to thank my great friends atab mates, Ty Mey Eap, Dr.
Carlo Torniai, Nima Kaviani, Bardia Mohabbati ane:ledy Siadaty for bearing with me

and providing a great research and social atmosgteschool.

Vi

Table of Contents

Y o] o1 (0 V7= | ii
Y 013 1 - V! SR iii
[D7=T o= 110 o FO PSPPI iv
ol (oY [=To [o o 4T o | P Y
=10 (= 3o) O] 011=] | PSSO PPPPPPRPTRN vi
Iy o o [0 viii
1S o 1= o] =T X
N [01 1o T [Tox 1 o o TR 1
2 LItErature REVIEW ... oottt ettt e e e e e e e e e e e e e e e e e e eees 3
2200 T o o =PRI 3
211 DEfiNItION ..o 3
WA o 1oy Y =T g o [V T Vo [4
2.2.1 XACML: eXtensible Access Control Markup Language.........cccoveevevvevrereennnnnn. 4
A = L= | PSPPSR 6
2.2.3 Knowledgeable Agent-Oriented System (KAOS) ..uuumeevveieeeeieiiinieeeiiiiineeerennnn.. 6
2,24 PONUET ..t e e e s 8
2.3 PML: Policy Modelling LANQUAGEccveurueeeeeieeeeeeiiie e eeetis s e e e e e eeevineeenenneeeaeees 9
A o] 1oV I o 1= TP 11
2.4.1 Primitive POlICY TYPES .cciiuiiiiieiiiiii i e et ceee i e e et s s e e et s e e e eet e e e e eneneeennnas 11
2.4.2 Primitive and non-Primitive POliCY typescccceiviiiiiiiiiieeieie e 12
AT o] 1oy YA O o i T PP 14
2.5.1 Modality CoNfliCESc.uviiiiiiii e e 18
2.5.2 Static / Dynamic Conflict DeteCtionccceeiieiiiiiiiiiei e 19
2.5.3 Policy Conflict RESOIULIONccoeiiiiie i e e e e et e e e e e ttee e e e et eeeee e eaeees 21
2.6 Policy Conflict and PoliCy LANQUAGJES.ccuemiieiiiieeeiiiiiiieeeeein e e e e s e eeean e e eeenes 22
2.6 1 XACML ettt e e e e e e e e e e e e e aaaaaas 23
28,2 Rttt a—an bttt eeae e 26
2.6.3 KA L.ttt ettt aatae et etn e e e e 27
P2 S = o) o - S PPPUURTRT 28
2 A\ |1)RS 29
2.7.1 Alloy and UML based modellingc.iiemeiiiiiiiicee e 30
2.7.2 Alloy and POlICY LANQUAGES.......ccoiuviu s commmn e eeeeti e e e e eeatiie e e e eeeinn e e eeaaennnaeeens 31
2.7.3 Alloy and Role-Based Access CONrol.........cceeeeiiiiiiiiiinieeiiii e 33.
2.7.4 Various studies USING AllOYuiieeieiiiiieee e eeaaas 34
2.8 Model Driven ENQINEEIINGciiiiiiii e eeeeee et e e e et e eeeea e e e e eaanas 37
2.8. 1 MOEI ... e 37

vi

2.8.2 MELA-MOAE!neei it et e e e e e et aaaeaennnane 37
2.8.3 Model TranSfOrmMationc.veeiieie e e et raaeans 38
3 Problem SpecCifiCationciiiiiiiiii e 39
R V1Y i T o (o] oo YR 41
s R Y/ T To =1 |11V PP 41
4.2 Policy conflict detection Method............ccceeeii i 43
L T (0 1o =11 Y 43
5 Modelling Of POlICIES IN AHIOYcevveiiee e r e e e e e e e e 51
5.1 Sample Policy Based SYSIEMuiiiiiiiieceeis e e s e e e 51
LA o] [Ty Y = T 4] o L= RSP 53
5.3 Modelling CoNCrete POICIES..........oiiiieeemmm e e ee it e et e e e e s e e eea e e e e s 57
5.4 First Modelling APPIrOACK........uuuiiii e e e e e e e e e e e e e e eeae 60
LT 0 T O 11 (o7 0] 1 ¢ 1= 60
5.5 Second Modelling APProachooouiiii it e 62
5.5.1 CONTIICE DEEECHION eeeeeee ettt ettt e ettt e et e e et e e e ree e aenes 65
LIRS T2 O 11 (o] 1 o 1= 67
5.6 Third Modelling APProachcoooiiiiitmm e ee e 69
5.6.1 Permission/Prohibition (A+/A-) ... 72
5.6.2 Positive Obligation / Negative Obligation (O+/Q:=)......ccccvviiiiiiiiiiiiiieiiiie e, 73
5.6.3 Positive Obligation / Prohibition (O+/A-)....cccuiiiiiiiiiiiiciiie e 75
LTSI/ O 11 (o7 0] 1 o 1= 76
5.7 Fourth Modelling APPrOachccoiiiiiii i e e e e e ee e 78
LT % R O 11 | (oo 1 1 1= 79
5.8 GENEIatioN Of ASSEITIONS ...cvuiveiit ittt ettt et e et et et et ettt e e e et s e e e e e eeearenas 80
6 OULCOME AN DISCUSSION ..veeeeeeeee ettt ettt e et e e et e et e e e et e e e e eaaraeeeaeenaees 86
7 (©Fo] (o1 (517 0] o IR 102
8 (R SToY 0 101 o1 ST 105
9 Appendix 1 — PML Meta-model Representation in AlloY..........c.ccovvviiinieiiiiiinieeceninnnn. 113
9.1 Definition Of SIGNATUIES......cvuiiiiiiii et e 113
0.2 DEfiNItION Of FACESuiieiii et ettt et et ettt e e m e e e e eenaennns 116
9.3 DEfiNItIONS Of PrEAICALES.evnieiieie s st e et et e e e st e et e e s e et eeeseneaeeeeensensens 118
10 Appendix 3 — Health Domain PoOlCIES...........uummeeeeeiiiiiiiiiiin e eeea s 121
Y o 01T o [y AN | o P 123
0] T g = = 124
R 2 @ 1 0T r= 10 = P 125
R T U T (o] FJ0 A =03 126
R o A T I A O 1= T o TP 127

Vi

viii

List of Figures

[T [0 = R o Y | = =T 11
Figure 2 - XACML Policy, presenting rule-combiniatgorithm in action 25
Figure 3 — An example in Rei, presenting Meta-Balise in last linecceeiiiivieeeeen. 26
Figure 4 — Meta-Policy, an example of Precedend®ein.............c.ccovvuveiiiiiiiiiinievieiiinineeeans 27
Figure 5 - KAoS Policy priorities - KAoS mechanisonhandling policy conflicts 82
Figure 6 — Meta-PoOliCY iN PONUEToiiiceeeee et e e e ren e e e e ee e 29
Figure 7 — Transformation of composition in t0 OCL.........ccciiiieiiiiiii e, 45
Figure 8 — Transformation of generalization intolOC..............cccoiiiiiiiiiiiin e e 47
Figure 9 — Transformation of part of PML model iRof............ccocoiiiriiiiii e 49
Figure 10 - Original policy example (Kaviani et[&F]), UML presentation........................ 54
Figure 11 - Sample Policy, used in this SECHON.............civ i e, 55
Figure 12 — Sample Policy, presented in XACML.........ccooviviiiiiiiiiiiiiiie e 57
Figure 13 - Alloy Presentation of Sample ConcCrailcl...........ccoovvvviiiieiiiiiii et e 58
Figure 15 - Sample generated POlCY........commeeiiii i e e 62
Figure 16 - Limiting Generation of signatures (Io&)ccoooevvviiiiiiiii e, 64
Figure 17 - Alloy model - Top without any limitatic Bottom limitation applied 64
Figure 18 - Conflict Detection (ASSertion in AllOY).........couvvuiiiieiiieiir e 67
Figure 19 — Permission Signature (Policy) and CetecPolicy (Permissionl)...................... 68.
Figure 20 - Modelled POIICIES............uut e eeee e e e e e et e e e e re e e st e e e e et eeeaaens 71
Figure 21 — Assertion at the level of Policy (Tepd at the level of Concrete Policy

(20 100 1) PP 72
Figure 22 -Assertion successful in finding courtargple...........cccooovviiiiieeieeiie s ceeemme e 73
Figure 23 - ASSErtion fOr O+/O- ... i cceei e e e e e e e e et e aeeaes 74
Figure 24 - Assertion successful in finding cou@xample ... e 75
Figure 25 - ASSErtioN fOr O+ A- ... e e e e e e e e ee e 75
Figure 26 - Assertion successful in finding couexample ... e 76
Figure 27 - Policy Model (based on relation in ANO.............cccueieieiiiiiiiieeics e 79
Figure 28 - Sample policy (modelled using fourthdeliing approach)................cccoeee e e 79
Figure 29 - Assertion for Permission PoliCY TYPEuciiiiiiiiiii e 82

viii

Figure 30 - Assertion for Prohibition Policy TYRE......coiciiiiiiii it 82
Figure 31 - Assertion for Positive Obligation PBIEYPecovvvvviviiiieiiiii e, 82
Figure 32 - Assertion for Negative Obligation PRIIYPe........ccoeveeieeiiiiiiiieicie e 82
Figure 33 - Generation Of ASSEIMIONSo irerreiiieereeirr e e e e e e e e eaa e e ee e 84
Figure 34 - Alternative modelling approach..........cocovvviiiiiiieiiii e e 90
Figure 35 - Proposed Method

FIQUIE 36 = ASSEITION ...cieiiit i eieeieie e oo st e e e e et e s e et ee e e e e ee e et e e e e aneseeansneeeeensnnaaeeenes
Figure 37 - UML presentation Of POI2 ... eeeeiiiiiiiiiie i e i 121
Figure 38 - UML presentation of POI3 ..o 121
Figure 39 - UML presentation of POI4 ..ot 122
Figure 40 - UML presentation 0Of POI5 ..o e 122
Figure 41 - Signature definition iN AlIOYoereerii i e 124
Figure 42 - Extension and RelationS iN AlIOY wee . coveevuniieiriiie e ee e eeeees e e 125
Figure 43 - Abstract signatures in AllOYeoceviei i 125
Figure 44 - Facts, Predicates, Functions and Asgerin Alloy...........cccceeveiiiiiiiiiciiiiinnnnnnn. 127
Figure 45 - ASSErtion — PrediCAte.......... e eerrnnieeieiiiiineeeeei e e seeaiiseeseanaseseesnnnneseennnns 127
Figure 46 - Scope, Run and Check iN AllOY ... e e 128

List of Tables

Table 1 - Policy Type Support in PoliCY LANQUAGES..........cuuuviiiiiiiiiee e ieeeeeeeee e 14
Table 2 - Policy Conflict types (Moffett and SIOM@H)oovevveiiiiiiiee e e 16
Table 3 - Policy CoNfliCt CAUSESiiiiiceeeee e e e e e e e e e eeae 17
Table 4 - Policy Conflict types in a role-basedtegs (Dunlop et. alg])........ccoeevvvviinieiiiiinnnennn. 18
Table 5 - PML to Alloy transformation........ . .ceeeeuiiicerieiieee e eee e e e ere e e e earaa e 48
Table 6 - POICY STIUCLUIEuu ittt e e et er e e et e e et e ettt e e e e et e e e e e aaa s e e e eanenn s 81
Table 7 - Comparison of Modelling APProachesS.covvvveiiiiiiiie e 91
Table 8 - Comparison of different studies USINALL...........cccoooiiiiiiiiiiiii e, 98
Table 9 - Alloy set and logical OPErationNS ...ccuee.ciiiiiiiii e e e e 126

1 Introduction

Changing business processes such as observedunanos, telecommunication,
transportation, travel industries require softwacdutions to be updated frequently. In
order to adapt the changes, the business practéezs systems that can be reconfigured
without a need in their software design and impletaigon. As an answer to this need,
policy-based approaches are suggested. A polioyebaystem, executes operations
interpreting modifiable policy collections struatarfollowing specific policy schemas. A
policy is a business rule that defines a choicé¢ha behaviour of a systemld] and
separates business rules from software implement{i. This system approach makes
policy definition and policy languages a promissaution for the systems used where

regular business process changes take place.

Policy-based systems present various issues wheraation of independently
designed systems becomes a requirement. For exaexgansion of organisational
structures entails communication of the systemdgded for different purposes or
organizations. Making these systems interact ishallenging task. The particular
challenge emerges when the policies in a systemgehaithout considering the policies
in the others that they interact. The inconsisieneaind conflicts between policies call for
additional mechanisms by which potential policyftiots can be detected before the new

policies implemented. System design should alwatisipate these policy conflicts.

Before policy conflicts are resolved within a syste¢hey should be detected first.
Detection of conflicts within a policy-based systemeds analysis of concrete policies
within the system. By concrete policies within tthesis, we mean policies that represent
real policies in the system in the real world. Gete is a term we borrowed from Model
Driven Engineering Method (which will be describedsection P.8]), where concrete
refers to instances in the model rather than metdetn The analysis tries to detect these
conflicts mainly based on the semantics and straatficoncrete policies. Talking about
semantics and structure of a language, Model Drigagineering (MDE) contains
concept of meta-model. Utilizing a meta-model & tanguage in the analysis process
connected deeply to semantics and structure ofgulge seems a rational choice. In this
thesis, we will investigate analysis of a policysed system while concrete policies with

meta-model of the underlying policy language aesent in the model.

Alloy is a software abstraction language. Alloy lb@en gaining a lot of attention
lately. It has been applied in many different damsafor various practices. Using the
modelling capabilities of Alloy, one can make a mlodf a system and analyse it. This
model, if analyzed, could reveal information abeystem’s shortcomings. Considering

policy conflicts, one hypothesis is to model andlgse concrete policies using Alloy.

In the Sectior? a brief introduction of policy languages, policgnflicts, Alloy
and Model Driven Engineering is given. In Sect®nproblem addressed in this thesis
will be discussed in detail. In Sectidn we will discuss the methodology used in this
thesis. Sectiob describes different approaches used to modetipslin Alloy. Sectioré
provides a summary of all approaches’ outcomes viithdepth discussion and

conclusions will be presented in Sectin

2 Literature Review

In the first part of this Section (Sectidhl), we will briefly introduce policy
languages in general. Then four different policyglaages including XACML, KAoS,
Rei and Ponder will be introduced (Sect@@). Sectior2.3 describes Policy Modelling
Language (PML), its background and its relatiorotber policy languages. Following
that, different policy conflict approaches will Hscussed in Sectidh5 and2.6. Section
2.7 contains an overview of Alloy modelling langeaand its usages in various research

studies. In Sectio.8, we will discuss concept of Model Driven Engiriag (MDE).

2.1 Policies

2.1.1 Definition

A policy is a rule that defines a choice in thedgbur of a systemi3]. A policy
can also be defined as a “statement enabling csti@ning execution of some type of
action by one or more actors when some specifiditions take place’12]. Changing
policies can easily change the behaviour of a systéhout the need for any alteration
in the implementation or deployment of the existigftware. All the work in the

background is done by a part of the system gewyezalled “policy engine”.

Policy is generally defined over some domain. Dan@bvides a flexible mean
of categorizing objects in a system. This cate@bion can be based on different factors
such as geographical boundaries, object type, @éss resource etc. A domain, in

definition, is similar to a “Set”. Like “Set”, donrahas nesting feature. A domain may

contain other domains as well. The child domain dae called sub-domain. An object

of sub-domain would be an object of parent domain.

Policies are defined as a relationship betweenestbjand targets3]. “Subject”
refers to users, principals or automated managerpooents that have management
responsibility. A “Target” refers to resources irdamain. A subject interacts with the
target by invoking methods accessible through #rget's interface. For example, a
target can be a document within a system and tésfacte can include an access method

available in order for a subject to use it.

2.2 Policy Languages

In this section, we discuss the existing policygaages XACML, Ponder, Rei
and KAoS, and their built-in conflict detection aresolution approaches. XACML was
selected since it is broadly used and is widelyeptad in the industry. Rei and KAoS
were selected because they are representative figredit underlying logics; i.e.
computational logic and descriptive logic respesiiv Ponder was selected because of
being a declarative object-oriented language. Ptsmdgntax, compared to other three

policy languages, are closer to the programminguages (such as JAVA).

2.2.1 XACML: eXtensible Access Control Markup Language

XACML policies present access control policies gsiKML [45]. OASIS
(Organization for the Advancement of Structuredoinfation Standards) is the
committee that standardized the latest version ACML policy language as of 2005

[14]. XACML policy language expresses policies fimformation access over the

Internet. XACML policies have the structure of sediftarget-action-condition. The
subject can be identity, group or a role. The tagdgect can refer to a single element
within an XML document. XACML introduces three pojielements, Rule, Policy and
PolicySet [14]. The Rule is a Boolean expressRuilicy is a set of Rule elements and

PolicySet contains various Policy elements.

A Rule is the basic element of a policy. It ideiesSf an authorization constraint
that can exist in the policy in which it is inclideA Rule is composed of a target, effect
and a set of conditions. Target identifies theodetquests to which the rule applies. An
effect is either “permit” or “deny”, if “permit” ixhosen, Rule grants access and in case
“deny” is chosen, Rule prohibits access. A set @fiditions specifies when the rule

applies to a request.

A Policy is a combination of one or more Rules. di¢y contains a target (same
as the Rule target), a set of rules, and a rulebgmation algorithm. Rule combination

algorithm will be discussed in Secti@r6.1.

As multiple Rules compose a Policy, multiple P@gicompose a PolicySet.
PolicySet represents the conditions to apply ire¢hs decision has to take into account
requirements specified by multiple parties, or ase the decision can be made via
different approaches. A PolicySet is defined bym@ét, a set of Policy (ies) (or other
PolicySets), and a policy combination algorithm.eTpolicy combination algorithms
proposed is the same as rule combination algoritbatsonly for policies. XACML

policy language supports roles.

2.2.2 Rei

Rei is a policy framework that enables specifiagtianalysis, and reasoning
about policies. Rei was introduced as an outconMesfCentric project in 2002LD]. Rei
is based on Prolog, a declarative and rule-basgd fpyogramming language [24]. Thus,
policies can be represented in Prolog syntax ifiiredq. In addition, Policies can also be

expressed in RDA10].

Rei supports right, obligation, prohibition andphissation types of policie§Ve
will discuss different policy types in Secti¢h4. The policy language contains meta-
policy specifications for conflict resolution. Thesnclude constructs for specifying

precedence of modality and priority of policies.

Rei’'s concepts of right, permission, obligatiorspnsation, and policy rules are
represented as Prolog predicates. There is algagh@®al User Interface (GUI) provided
for Rei. Similar to functionality of Prolog, a feaé available in Rei is to create and use
variables. Rei also permits users to specify r@lgsedl access control policies or policies

relating not only to individuals but also to grougentities.

2.2.3 Knowledgeable Agent-Oriented System (KA0S)

KAOS is a framework that provides policy and donraanagement servicet?].
KAo0S policy language has been used in variety efrifiuted computing applications.
KAoS has been used for Semantic Web Services WawkfComposition T], “Grid
Policy Management”, “Coalition Search” and “Resarmd the Semantic Firewall” as

three application of KA0oS8]. KAoS also provides domain services, reasonind a

! Resource Description Framework (RDF) is a W3Cdsiah [57] created to standardize defining andgusin
metadata, in the format that can be easily assatiaith resources and shared on the web.

6

representation of DAML-based policies in collabaatwith Nomads [9]. KAoS policy
language allows for the specification, managemeuntflict resolution and enforcement
of policies. Policies in KAoS are represented isemantic web ontologylanguage

called OWL? [50].

KAo0S support four types of policy: Permission (RiesiAuthorization in KA0S),
Prohibition (NegativeAuthorization in KAoS), Pos#i Obligation (PositiveObligation in

KAo0S) and Negative Obligation (NegativeObligationkAoS).

Along with KAoS a graphical tool, called KAoS PgliAdministration Tool
(KPAT), is provided. KPAT assists users in the pplgpecification and application. In
addition, KPAT also can detect and resolve cor#lietthin newly defined policies. As
policies, domains, and application entities arangef using the KPAT, the appropriate
policy representations (in KAoS syntax) are germetatutomatically in the background
insulating the user from having to know KAoS syntaxrom coding directly in it as in

Rei and Ponder.

Policies can also be created using KAoS’s API idigah to the KPAT GUI.
KPAT guides a user through a creation process usmgjogy defined ranges to always
narrow user choices to the most appropriate sealfes; only these valid in the given

context.

2 Nomads combines the capabilities of Aroma, an eoéd Java compatible Virtual Machine (VM), with
the Oasis agent execution environment.

% Ontology is a formal explicit description of coptgin a domain [42].

* Web Ontology Language (OWL) is a semantic langdageublication and sharing of ontologies on the
Web.

2.2.4 Ponder

Ponder is a declarative, object-oriented language specifying security and
management policies1B]. Ponder allows general security policies to dpecified.
Damianou et. al. 3] define a policy as a set of rules that defiaeshoice in the

behaviour of a system.

Ponder’'s supported policy types are authorisatiobligation, delegation,
information filtering and refrain policies. Detalescription of different types of policies

in Ponder will be given in Sectio2s4.1 and?.4.2.

Ponder distinguishes between basic and compositeiggo A basic policy is
considered a rule governing choices in system bhehaand is specified by a declaration
that includes a set of subjects and a set of tmrgdtese sets are used to define the

managed objects that the policy operates over.

Ponder composite policies facilitate policy managemin large, complex
enterprise systems. They provide the ability taugrpolicies and structure them to reflect
organisational structure, preserve the natural sygyem administrators operate or simply
provide reusability of common definitions. This giifies the task of policy

administrators.

Ponder introduces a domain browser as an integtatdd The Ponder domain
browser provides a user interface for all aspedtsao integrated management
environment. It can be used to group or selectadjéor applying, monitoring or to

perform management operations on policies.

Another integrated tool for Ponder is policy editool. Policy editor tool is
integrated with both the domain browser and thedBorompiler. It provides an easy to

use development environment for specifying, rewspand modifying policies.

The Ponder compiler maps policies to low-level espntations suitable for the
underlying system or into XML. Ponder is capablecofiverting policies using three
different methods: The first method uses a Jav&-bad interface, which transforms
Ponder authorization policies into access contadicigs for the Java platform. The
second method translates Ponder authorization ieslito Windows 2000 security
templates and Firewall rules. The last method cap Ponder authorization policies to

Linux access controls.

2.3 PML: Policy Modelling Language

As a new and emerging approach in modelling polanyguages, this Section
introduces Policy Modelling Language (PML)7]. PML is a general policy modelling

language intended to provide a bridge between uafmlicy languages.

Kaviani et al. 1 7] have designed a modelling language for policddssone of its
features, PML introduces the capability of policiesng visually presented. REWERSE
II Rule Markup Language (R2ML)1B] is a language that is designed to represent
policies, rules and enable rule interchange. R2Mivigdes a support for PML goal to
bridge between policy languages. R2ML has a gcagplsyntax (for representing rules)
via UML-based Rule Modelling Language (URMI4Q]. PML has used this feature for
visual presentation of policies, which are représgras rules in R2ML. Designers of

PML language, by introducing PML, have tried teerate definition of policies into the

software development process. Authors argue tleaé thas not been enough value put on
the role of policies in the definition, design aindegration of software systems. Thus,
they proposed PML as a modelling language for pdidOne of the main factors of PML
design that authors have pointed out is the capalof “easily representing and

integrating policies with other pieces of softwate¢he design time”.

PML provides a common ground between differentgyolanguages by adapting
and conforming to Model Driven Engineering (MDE) theds B9] (c.f. Section2.8).
MDE’s main aim is to make software reusability pbks by providing means to
transform a single design (or model) into differptdatforms. PML consists of different
parts. Following the MDE approach, PML consistsaoineta-model which defines the
abstract syntax of the language, a UML profile whis a graphical syntax for PML,
XML-bases syntax to present policies and a set rahsformation that provide

transformation between PML and other policy langsag

PML has a layered architecture consisting of tHegers. The first layer is to
express policy language’s logic (which was modellesl computational logic or
description logic). The second layer, which is edll“General Policy Concepts, is
describing policy concepts shared across multipleey languages. These concepts are
the four concepts of permission, prohibition, oétign and dispensation (will be
discussed in SectioR.4). The third layer, Language Specific Concestdgp model the

specific types of policies in any policy languaBggure 1 visualises three layers of PML.

10

Language Specific Concept
General Policy Concept

Computational / Description Logic

Figure 1 - PML Layers

Another key characteristic of PML is that it is sifieally designed to support
modelling and interchange of policies by genermafizimain policy types and
characteristics observed in major policy languagesstent today. For instance, the

transformation between KAoS and Rei and PML has lskewn in 11].

2.4 Policy Types

In this section, different policy types will be iatluced. Any policy language
supports variety of policy types. We introduce pgltypes in two different categories,
primitive policy types and non-primitive policy tgp. Primitive policy types are policy
types that are commonly covered and supported Hereint policy languages, i.e.
Permission, Prohibition, Positive Obligation andgiigve Obligation. The other types of

policies will be referred to as non-primitive pglitypes in this thesis.

2.4.1 Primitive Policy Types

According to B] two major categories of policies can be distisgad: obligation
and authorization. Obligation and Authorization hait themselves can be divided to

positive and negative. A positive obligation for@es actor (subject) to do an action on

11

the target (object) of the domain. Negative oblmabbliges actor not to do something.
Authorization policies give authorization to ana@ctvhile bringing no obligation with
them. They also have both negative and positivessiiihe main usage of Authorization
policies is essentially for access control polici@sprotect resources and services from
unauthorized access. Obligation policies are etreggered, events can be simple, i.e. an
internal failure of a service event, or an extereaént notified by monitoring service

components, e.g. a temperature exceeding a thckehal component failing.

Authorisation Plus policies are also called Permiss policies while
Authorisation Minus policies are referred to asHfsdion policies. Obligation (in Rei)
and Dispensation are the same as positive and inegabligation. We will refer to
Positive / Negative Authorisation policies using /A+ and to Positive / Negative

Obligation using O+/O-.

Other policy types exists other than those intredum this section; we refer to
them as non-primitive policy types. These typepalicies typically address a specific
need and are usually used within one or a limitethler of policy languages. In the
following section, we will briefly introduce bothrimitive and non-primitive policy types

in XACML, Rei, KAoS and Ponder policy languages.

2.4.2 Primitive and non-Primitive Policy types

Ponder supports authorisation, obligation, delegatinformation filtering and
refrain policies 13]. Authorization and Obligation policies are désed earlier in
Section2.4.1. Information filtering policies are policiésat are used to transform the

information input or output parameters in an actiBasically, a filter policy checks input

12

and output conditions (set by the policy writerddrased on those conditions different
responses will be given. For example, a requestdate a person within a company is
asked. This request will be responded based omfammation filtering policy defined
within the system. The response to this requedt amihtain detail information of the
location if it has been asked from a person withat company. On the other hand, it will
only contain a yes/no answer to an outsider toceddi if that person is present in the
company or not. Delegation policies, often useddoess control systems, are to transfer
access rights temporarily. A delegation policylisays associated with an authorisation
policy, which specifies the access rights to beegiled. Negative delegation policies
forbid delegation. Refrain policies define actiotisat subjects must refrain from
performing (i.e. must not perform) on target olgeeven though it may actually be
permitted to perform the action within the syst&efrain policies are similar to negative
authorisation policies, but are enforced by subjeather than target access controllers.
They are used for situations where negative awghbon policies are inappropriate
because the targets are not trusted to enforcpdlwes (e.g., they may not wish to be
protected from the subject). Table 1 presents arsnmation of supported policy types
in XACML, KA0S, Rei and Ponder policy languagesatdition to PML. Prior to Table 1

four sample policies are defined below.
* Permission Policy: An Actor is permitted to accasssource.
» Prohibition Policy: An Actor is prohibited from aegsing a resource.

» Positive Obligation Policy: An Actor is obliged &xcess a resource, after a

specified event within the system.

13

Negative ObligationAn Actor is obliged not to access resource, after

specified event within ‘e system.

Table 1 - Policy Type Support in Policy Languages

Permissior | Prohibition | Positive Negative Other
(A+) (A-) Obligation | Obligation | Supported
(O+) (©-) Types
XACML v 4 W/ v v
& A A
KAoS v v v v
Rei v v v v
Ponder v v 4 v v delegation,
information
filtering and
refrain
Y y y
PML Y 4 Y,// V V

2.5 Policy Conflicts

Policies within a domain might generate impatible responses to a requ
resulting in conflicts.A policy conflict is inconsistencyamong policies 3]. These
inconsistencies can arise when multiple policigslyapo the same objectFor example,
an authorization (positive authorization) policyyr@efine an action in a system whu
anotherauthorization policy forbids it to be accomplisieégative authorization). Cas
like this in a system are considered as policy ladiaf As an example in health c¢
domain, task of prescribing a person with a drughhconflict with an external pcy
from an insurance company that fors usage of that specific druthere might be mor

14

than one actor in charge of completing a task. @ensg systems that have more than
one actor (responsible for this task) can be acgoaf this conflict. Policy inconsistency
can arise because of omissions, errors or comigjatequirements for different managers
specified in policies. Interactions of actors witha system such as introducing new
resources, defining new policies and change incjgslican be counted as a source of
conflict. Definition of new policies without congdng existing policies within a system
could also be a source of policy conflict. Effe€tneerging of two policies, if supported
within a system, can be counted as another possiiece for policy conflicts. Whatever

the cause of the conflict is, the important thieghat it needs to be resolved.

When we are talking about conflicts among policie® mean the conflicts
among policies in one domain. A Policy conflict magcur where there is more than one
applicable policy in a domain. If the policies haliferent outcomes, policy conflict will
happen. In other words, conflict among policies@aihen we have overlapping policies,
these overlaps may be in different parts of thecgol Conflicts generally occur if the
policies are about the same action, on the samgettaout different modalities

(authorization, obligation).

Conflicts can be categorized in different ways adesng different aspects of a
policy. According to Moffett and Sloma3][four different categories of policy conflicts
can be defined. The categorization, presented lnteT2, is based on what parts of policy

might overlap and cause conflicts.

15

Table 2 - Policy Conflict types (Moffett and Slomar3])

Policy Conflict types based on overlapping elements a policy

Subject overlap

¢ Policies associated with subject object with inconsistent outcome
e E.g. Two different policies associated for a specific actor, being
inconsistent with each other

Target object overlap

e Policies associated with target object with inconsistent outcome
e E.g. Two different policies associated for a specific target, being
inconsistent with each other

Double overlap (target and subject overlap)

e Policies associated with both target object and subject with
inconsistent outcome

e E.g. Two different policies associated for a specific actor and
target, being inconsistent with each other

Subject — Target overlap (subject of one and tasfjkie other one)

e Policies associated with target object or subject with inconsistent
outcome

e E.g. Two different policies associated one for a specific actor and
the other one for a specific target, being inconsistent with each
other

Conflicts can also be categorized according to vimat business process can be
the source of the conflict3]. In Table 3 this categorization and its cause laiefly

introduced.

16

Table 3 - Policy Conflict Causes

Type of conflict Situation

Conflict of interest | A person is assigned to handle tasks from diffedemtains (s/he
has two different kinds of responsibility which magnflict)

Conflict of duties A person needs to accomplisasktwhich usually takes two
roles to finalize it.

Conflict of priorities | A resource is available but the request for theduece is larger
than its availability, thus a priority conflict hagns

Similar to policies, policy conflicts are related the underlying domain. One
might categorize policy conflicts from a differgmint of view and based on the domain
under study. For an example, we consider a roleebagstem. Policy conflicts can be
categorized in a role-based system according toaspect of occurrence of policy
conflict, which would result in Table 4. Accordirg [4], four different categories of

conflicts and their possible way of detection cardistinguished.

17

Table 4 - Policy Conflict types in a role-based sy@sm (Dunlop et. al [4])

Type of conflict Possible occurrence reasons and etion
approaches to them

Internal Policy Conflict Policies assigned to roles are not compatible eatth
other.

Detection of this type of conflict is possible wheen
new role is added to the system.

External Policy Conflict External roles exist iretaystem.

May be detected when a new user is assigned te a ro
and/or when a policy is assigned to a role.

Policy Spac®Conflict Two or more policy space manage the saet®f
subject8 and attempt to enforce different and
conflicting policies over them.

Detected when a new space is initially identifietha
runtime or when a new policy is assigned to a role.

Role Conflict A user obtains a set of incompatitake assignments

Detection of this conflict requires ensuring thaeérs
are not operating with a union of privileges, wharke
determined to be incompatible.

2.5.1 Modality Conflicts

Policy conflicts can be classified considering ptive policy types (as described
in Section2.4.1). Inconsistencies in policy specificationsynnasult in conflicts among
policies. Six different combinations from these rfgqurimitive policy types can be
distinguished, O+/O- , O+/A+, O+/A-, O-/A-, O-/AtA+/A-. Three of these six
combinations will result in conflict. This type @bolicy conflict, which refers to the

conflict between positive and negative policies lgpg to the same object, is called

® Policy space refers to a set of policies definétiwa domain.

® Subjects can be assigned to different domainss,Tthey can be managed by different policies from
different domains.

" For example, a user has a permission over theresdé through one role while having prohibition
access over the same resource A through anotkeer rol

18

modality conflicts #6]. Modality conflicts can be categorized in thresmtegories as

follow:

* Permission (A+) / Prohibition (A-): A subject hasrpitted and prohibited

to perform an action on a target object at the same

» Positive Obligation (O+) / Negative Obligation (OA subject is obliged
to perform an action on a target while at the séime is obliged not to do

that action.

» Positive Obligation (O+) / Prohibition (A-): A sudgt (actor) is obliged to
perform an action on a target while at the same tisnprohibited from

doing that action.

It simply can be seen that the remaining combinatiaf policy types will not end
up in conflicts. For example, Permission / PositMaligation (O+/A+) policy types are
not inconsistent with each other. Positive Obligiatis obliging a subject to perform an
action on a target object, as the Permission pdyiog is permitting the subject (Actor) to

perform that action.

2.5.2 Static / Dynamic Conflict Detection

Different strategies for detecting policy conflictsan be categorized by
considering when the detection process is appbegending on the time of application,
two different classes of policy conflict detectiapproaches can be defined: static and
dynamic. The static approaches are consideredppmaches that are being applied at

the design and specification phase. The static adsthare used to analyze elements of the

19

system and their interaction based on a formal rgggmn. Static conflict detection
method can also be utilized to be used at run-timethis case, the method uses a
snapshot of a system created at a certain momdrdetacts the conflicts at that moment.
The advantage of using static policy conflict détetis that the solution to the conflict
is known before it happens (considering a solugimvided at the time of static conflict

detection by domain manager / policy managgl) [

The dynamic detection method is the other classooflict detection methods.
The dynamic detection methods take information albioel running system and make an
up-to-date image of the system. The dynamic deteatiethod figures out (reasons) if
conflicts have taken place based on the image podnoing events in the system. As the
main advantages of this method, the information bangathered as the system is
running. Usually this type of conflict detectionsheome default strategy defined to deal
with the policy conflict. However, some conflictarmot be resolved and should be

reported to the manager of the system.

Dynamic (run-time) conflict detection methods ubpaonsist of series of acts
that should not be performed at the same time, angact for positive obligation and
prohibition (negative authorization) policies. Riime conflict detection approach will
detect a conflict based on monitoring a systentifese series of acts. Once a conflict has
been detected, based on the default strategyysftans, a solution to that conflict will be
provided. The outcome of the resolution of eachflmtrresolution can be different. Not
all conflicts should be detected at run-time. Sameflicts might rise due to design errors
in the system similar to compile time errors ingmmming. These conflicts should be

detected using a static approach.

20

The disadvantage of using static conflict detecti®rsince the system is not
functional, some of the conflicts detected mightereappear in the system and therefore
there is no need to dedicate resources to resbem.tHowever, on the other hand this
feature can also be considered an advantage af statflict detection. If Static conflict
detection method cannot find any possible conflitten the policy-based system can be
considered a conflict free system. Dynamic poboyflict detection only relies on the
real world situations and by using some predefingds tries to overcome the policy
conflict situation at the time when they happenn@&myic policy conflict detection can be
used best with a system to log conflicts and ndtify manager about those conflicts for

future reference.

2.5.3 Policy Conflict Resolution

The solution to policy conflicts could be defineid automated responses set by
domain manager or an individual response for eachiroence from a human manager. A
human administrator may not notice all the corsglitiappening in a system while a
formal approach to a policy conflict detection aresolution could resolve all the

conflicts aroused in a system.

Kamoda et. al stated that different approachesetect and resolve conflicts in
each domain might be needéds].[As in each domain, meaning of the conflict cepic
can be different. In spite of this fact, solutidagolicy conflict detection / resolution can

benefit from some general approaches for the palirylict resolution step.

One of the solutions is to give policies or modeditpriorities B]. In the case of

conflict among set of policies, the policy (or sétpolicies) with highest priority would

21

be selected. An alternative solution could be tosater policies (from the set of
conflicting policies) in a sequential order untilet first encounter of conflict happens.
This ordering can be based on the priorities oeitfistance factors that a domain
manager defines over the domain. Another possibletisn involves definition of a
distance between an object and policies. This mistacan be defined based on the
domain hierarchy. For instance, a policy defineddsub-domain can be defined to be
nearer in distance to an object than a policy ihalefined for the parent domain. As an
example in a university domain, an instructor isoggated with a policy granting access
to all students’ records while there is a policgbidding access to every student’s record
for everyone within that domain. An instructor, togeia member of both instructors and
everyone in that domain, is nearer to the poligngng him access compared to the one
forbidding him. The concept of distance should glsvbe thought of as a measurement
for relevance of a policy. The nearer a policy mookject, the more relevant it is to that
object. The nearest policy’s outcome could be $etkas final outcome of policy conflict

resolution.

Above presented methods are some solutions forcypatpnflict resolution
method. Sometimes general solutions cannot resdlhaonflicts in the specific domain.

In this case, specific conflict resolution mechamis needed.

2.6 Policy Conflict and Policy Languages

Conflict detection approaches cannot be discussathowt taking into
consideration the underlying policy languages amel specific needs of the systems.

Most of policy languages have some built in funesi®o deal with policy conflicts. This

22

section discusses tools and approaches that hagmaliey conflicts in previously

introduced policy languages, XACML, Rei, KAoS anonBer. PML supports four types
of policies. However, looking at the PML languagee can easily notice that there is no
mechanism for policy conflict detection or resabati There also does not exist any

previous work on detection of conflicts among pefcin PML.

2.6.1 XACML

In terms of policy conflict approaches, XACML has aternal functionality
called the rule-combining algorithml4]. The rule-combining algorithm defines a
procedure for the authorization decision basedvatuation of different rules or policies.
Domain manager is responsible for the choice o#-og@mbining algorithm for set of
policies or the whole domain. There are variousicg® embedded in XACML as
standard algorithms. These algorithms are Deny-@es, Ordered-Deny-Overrides,
Permit-Overrides, First-Applicable and Only-One-Apable. Rule-combining
algorithms combine the effects of all the rulesipolicy to arrive at a final authorization

decision.

In the Deny-Override case, if one Rule or Policglaates to “Deny”, regardless
of other elements (i.e. other Rules or Policiebg final result is “Deny”. The same
applies for the Permit-Override but to the “Permais’ evaluation of one <Rule> or
<Policy>. Ordered-Deny-Overrides is similar to De&Dyerride with an exception that
relevant rules are order and evaluated. The evafuatder is the same as the order in
which the policies (or rules) are added in theqyolAs for the First-Applicable, the first

Rule or Policy that applies to the request woulcebaluated and returned as the result.

23

Only-One-Applicable can be applied only for Polexyd PolicySet and is not applicable
for Rules. It returns “NotApplicable” if no policapplies to the request. It returns

“Undetermined” if more than one Policy or Policy@eplies to the request.

It is also possible in XACML to define one’s owrgatithm to resolve policy
conflicts. Figure dresents a sample rule-combining algorithm to deteticy conflicts
in XACML. The policy is only applicable to the reegts from "SampleServérserver.
The Policy has a Rule with a Target that requiresction of "login® and a Conditiot?
that applies only if the Subject is trying to lag between 9 am and 5 pm. It has the
second rule as well. If the first Rule providedéndoes not apply, then a default Rule is
used that always returns Deny. The selection f@mRhle-combining algorithm was set to
be for Permit-Overrides. This means that if onlg @ale (or policy) in the set of policy
(or policy set) permits access, the final outconoeild be permit. The default outcome of
this policy would be “Deny” since the last ruleeet without any condition is “Deny”.
However, if the first rules’ condition was satisfithe first rule effect would be “Permit”.
A simple policy conflict would happen between thése policies. However, since the
rule-combining algorithm is permit overrides, theaf effect of the policy would be

“Permit” since at least one rule’s effect is “Pafmi

8 «sampleServer” has been indicated by first elenoértattributeValue> in the definition of policy in
Figure 2, line 11 of the policy counting commengts.

° “login” has been indicated by second element dfribaiteValue> in the definition of policy in Figei2,
line 34 of the policy counting comment lines.

10 «Condition” has been indicated by first elemen&@fondition> in the definition of policy in Figue
line 42 of the policy counting comment lines.

24

e R S

o oo

o
(=R P

= TR N

L e I

S oo - o

Lo [
1 e L Rd

[T T BT BT BT B
W= L R P O o o -

o

wm ot
~1 o

(=T

-

;oMo oo
(%)

)

<Peolicy PolicyIld="SamplePolicy"
RuleCombiningflgIld="urn:ocasis:names:tc:xacml:1.0:rule-conbining-algorithm:pernit-overrides">

<!-- This Policy only applies toc requests on the SampleServer —->
<Target>
<Subjecta>
<AnySubject/>
</Subjecta>
<Resources>
<RescurceMatch MatchId="urn:casis:names:tc:ixacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/¥MLSchena#string" >SampleServer</AttributeValue>
<RescurcelAttributeDesignator Datalype="http://www.w3.org/2001/XMLSchena#string”
Lttributeld="urn:casis:names:tc:xacml:1.0:resource: resource-id"/>
</ResourceMatch>
</Resources>
<hctions>
<AnyRcticon/>
</Actions>
</Target>

<!-- Rule to see if we should allow the Subject to login —->
<Bule RuleId="LoginRule" Effect="Permit">

«<!--— Only use this Rule if the actiom is login —->
<Target>
<Sukjecta>
<hnySubject/>
</3ubjecta>
<Rescurces>
<hnyResource/>
</Resources>
<Actiona>
<ActicnMatch MatchId="urn:casis:names:tcixacml:1.0:function:string-equal”>
<AttributeValue Datalype="http://www.w3.org/2001/XMLSchena#string" >login</AttributeValue>
<ActicnAttributeDesignator Datalype="http://www.w3.org/2001/XMLSchena#string”
LttributeId="ServerAction"/>
<fActionMatchs>
</Actions>
«</Target>

«<!'-- Only allow logins from %am to Spm -->
<Condition Functionld="urn:casis:names:tc:xacml:1.0:function:and">
<kpply Functionld="urn:casis:names:tc:xacml:1.0:function:time-greater-than-or-equal"
<hpply FunctionId="urn:casis:names:tc:xacml:1.0:function: time-one-and-only">
<EnvircnmentittributeSelector Datalype="http://www.w3.org/2001/¥MLSchena#time"
Lttributeld="urn:casis:names:tcixacml:1.0:environment :current-time" />
</Rpply>
<httributeValue DataType="http://wwrw.w3.org/2001/XMLSchena#tine">09:00: 00</AttributeValues
</Rpply>
<Apply Functionld="urn:casis:names:tc:xacml:1.0:function:time-less-than-or-equal”
<hkpply FunctionId="urn:casis:names:tc:xacml:1.0:function:time-one-and-only">
<EnvircnmentittributeSelector Datalype="http://www.w3.org/2001/¥MLSchena#time"
Lttributeld="urn:casis:names:tcixacml:1.0:environment :current-time" />

</Apply>
<hAttributeValue Datalype="http://www.w3.org/2001/XML5chena#time">17:00:00</AttributeValue>
</RApply>
</Condition>
</Eule>
<!—— R final, "fall-through™ Rule that always Denies -->

<Rule RuleId="FinalRule" Effect="Deny"/>

</Policy>

Figure 2 - XACML Policy, presenting rule-combiningalgorithm in action

25

2.6.2 Rei

Rei's mechanism to deal with policy conflict is lizihg Meta-policies 10].
Specifically, meta-policies are policies about hpualicies are defined and interpreted,

and how conflicts are resolved.

Meta policies in Rei control conflicting policiedatically in two ways, by
specifying priorities and precedence between padiciin Rei, every policy can be
associated with an identifier. ldentifiers are ugedapply the priority or precedence
mechanism over conflicting policies. With a useao$pecial overrides construct in Rei
one can override the priorities between any twesuFor example, if rule Al is giving
Mark the right to print and rule Bl is prohibitinglark from printing, by using
overrides(Al, B1), the conflict between the twcesitan be resolved as Al will be given

priority over B1. Figure 3 shows this example in'&syntax.

al**has(mary, right(print, [time-now(12.00)]))
bl**has(mary, prohibition(print, [lab-member(X, B))
overrides(al, bl)

Figure 3 — An example in Rei, presenting Meta-Policuse in last line

As of precedence, it is possible to specify whiabdality holds precedence over
the other in meta-policies. The domain managerti{erpolicy designer) can associate
certain precedence for a set of actions satisfyiregassociated conditions. The special

constructs for precedence in Rei are metaRuleAai@hmetaRuleAgent.

26

As an example, consider a meta-policy presenteéigare 4. This meta-policy
specifies that negative modality holds precedencalf employees of Xerox Labs, i.e. if
conflicts are because of negative and positivecpadi applying at the same time; the

policy with the negative modality has the preced@enwer other policies.

metaRuleAgent([employee(X, xeroxLabs)], negativedaiiy)

Figure 4 — Meta-Policy, an example of Precedence Rei

2.6.3 KAo0S

KA0S resolves the conflicts using a precedence @oincPolicy precedence
conditions are needed to properly execute the ationsonflict resolution algorithm.
When policy conflicts occur, precedence conditians used to determine which of the
two (or more) policies is the most important. Thenflict can then be resolved
automatically in favour of the most important pglidlternatively, the conflicts can be

brought to the attention of a human administratbo wan make the decision manually.

There are three types of policy conflicts that barhandled in KAoS: positive vs.
negative authorization; positive vs. negative diiign; and positive obligation vs.
negative authorizationlp]. We will discuss these types of policy con8ictot only in

KAo0S buy in any policy language in sectiéhg.1].

KAOS is also capable of detecting potential cotdlibetween policies at design
time such as when a user tries to add a new pdlicg. KAoS conflict detection uses
algorithms based on the Stanford’s Java TheoreweP(dTP) #7]. KAoS identifies the

policy clashes by using the special mechanismsréslto resolve conflicts by ordering

27

policies according to their precedence. Figuregs@nts a policy in KAoS. As it can be
seen, the <policy:hasPriority> element is referrtngpriority of the policy. In case a

policy conflict occurs, policy P1 has the highesbpty.

<policy:NegAuthorizationPolicy rdf:ID="P1">

<policy:controls rdf:resource="#P1Action" />
<policy:hasSiteOfEnforcement rdf:resource="&polisgtorSite" />
<policy:hasPriority>1</policy:hasPriority>
<policy:hasUpdateTimeStamp>446744445544</policyipaste TimeStamp>
</policy:NegAuthorizationPolicy>

Figure 5 - KAoS Policy priorities - KA0oS mechanisnto handling policy conflicts

2.6.4 Ponder

Similar to KAoS and Rei, Ponder uses meta-politiedeal with policy conflicts

by specifying policies for groups of policies3]. One usage of Meta-policies in Ponder
is to disallow the simultaneous execution of catifig policies. A meta-policy in Ponder

is specified as a sequence of G€J41] expressions the last one of which must evaluate
to true or false. Based on the domain, policies thedwhole system, the Meta-policies
can be used differently to resolve conflicts. Fegér presents a sample meta-policy in
Ponder. The meta-policy discussed here is intemaletheck if a policy is authorising a
manager to retract policies for which he is thejettb This might happen in a single

policy with overlapping subjects and targets. Tdaa be expressed in Ponder as follows:

1 Object Constraint Language (OCL) is a declaragwguage for describing rules that apply to Unified
Modelling Language (UML) models.

28

inst meta selfManagementl raises selfMngmntCorfjtiot) {

[pol] = this.authorisations -> select (p | p.actkexists (a |a.name = "retract" and
a.parameter -> exists (pl |pl.oclType.name = "pbhnd pl.subject = p.subject))) ;

pol->notEmpty ;
}

Figure 6 — Meta-Policy in Ponder

The body of the meta-policy contains two OCL expi@ss. One must have
knowledge of OCL in order to understand how the dviedlicy has been described in
Figure 6. In a nutshell, it select all p where ti@ne is “retract’” and while it has the

“policy” that specific p is the subject of anothplicy.

2.7 Alloy

Alloy is a formal specification language based stforder relational logicZ0].
Alloy has been utilized to explore abstract sofevarodels and to assist in finding flaws
in these models. Alloy models are used to analystesis under study. Alloy models are
based on statements written in terms of atoms @latians between atoms. Any property

or behaviour is expressed as a constraint usindpggtal and relational operators.

Alloy Analyzer as part of Alloy is a “model-finderfbol that uses a constraint
solver (based on SAT solver technolo@@]) to analyze models written in Alloy. The
Alloy Analyzer translates constraints from Alloy ded into Boolean constraints, which

are fed to an off-the-shelf SAT solver.

There are two types of analysis offered by Alloyadzer. One is Simulation and

the other one is Checking. Simulation involves ifigdinstances of a model satisfying the

29

model specification. Checking involves finding cterexample instances to the model
specification. When the Alloy Analyzer succeeddimding a solution to a formula, it
produces both graphical and textual output of thieat®n. To make instance finding
feasible, a user may specify a scope for the aisabfsa model. The scope puts a bound
on how many instances of an entity may be observed instance of model. Thus limits
the number of instances of model to be examinedoltpecific number of entities is
provided, Alloy Analyzer uses a default numberdbrentities in the model. A complete

definition of Alloy language is being introducedAppendix 2 (Sectiodl).

Alloy has been used in different studies and varimsearches. In SectioRs.1
to 2.7.4, various projects and researches in whicloyAlas involved are discussed.
Nevertheless, usage of Alloy is not only boundeth®ones described here. To best of
our knowledge, the most relevant researches to ttiesis’'s goal are reviewed and
debated in the following sections. A comprehensiigeussion regarding comparison of
this thesis’s approach with the following approachll be given in Outcome and

Discussion, Sectiof.

2.7.1 Alloy and UML based modelling

This section provides discussion over usage ofyAito studies included UML
models. Jacqueline et. al. iBl]] used Alloy in order to analyze a MOF-compliamta-
model. The meta-model was expected to be usehéotmeasurement of coupling and
cohesion metrics in Object-Oriented systems”. Thetanmodel was expressed using
UML and OCL. Authors translated their meta-modeb iAlloy model. Then, they have

used Alloy Analyzer to generate sample instancbes& sample instances were used to

30

assist them in improving their meta-model and thwsany possible flaws in the meta-
model specification. For example, they used Alloyjalyzer to generate random

instances of the meta-model that conform to thé-feeinedness rules.

Mostefaoui and Vachon irBB] used Alloy to analyze a UML profile. The UML
profile that they were analyzing is called Asped®HlU Aspect-UML is a profile
introduced in their research. Aspect-UML is usedhimi Aspect-Oriented (A-O)
programming. A-O introduces concept “aspects” wtattbws developers to modify the
behaviour of a base program, something similah&rble of policies in a system. In
their work, authors have used Alloy to check thedeiofor conflicting aspect
interactions. They translated concrete models #ioy and not the meta-model of
Aspect-UML. In their paper, authors have describeatlelling steps in detail. In their
modelling steps, they provide presentation for elet® of the UML-Profile in Alloy.

Afterwards, they have used assertions in Alloytfar analysis.

2.7.2 Alloy and Policy Languages

In this section, the focus is on investigating eliéint usages of Alloy utilized for
modelling policy languages. Several studies havenbsonducted related to XACML
policy language. To the best of our knowledge, istudelated to other discussed policy
languages (i.e. Ponder, KAoS and Rei) using Allayennot taken place. Thus, it leaves

us with only XACML as the major policy languagediscuss in this section.

Martin and Xie in 6] presented an approach in which test cases gesrerated
for XACML policies. They have introduced a tool leal Cirg that generates test cases

based on change-impact analysis. The Cirg is naguslloy but as authors suggested,

31

they are expecting to use Alloy as an alternativeCirg and in the future work for
generating these tests. Likewise, authors usegproach to synthesise Verified Access
Control Systems in XACMLZ7]. In the presented approach, they generated XACM
policies. These policies were presented formallgifg a language called RVBZ]) and
were also checked for conflicts. The conflicts detd were the first type of conflict,
Permission / Prohibition type of conflict (as dissad in Sectio2.5.1). In their work,
authors introduced a framework to translate theoyAlgenerated policies into the
XACML format. The authors are suggesting that thag use Alloy for the verification
method of their approach as a future work. Koloetkil. in B6] provide a formalization
of XACML using description logics (DL). Having XACMrepresented in DL, authors
easily used it to compare, verify and query thegmeed in XACML. Hughes and Bultan in
[28] translated XACML policies to Alloy model andeaxtked their properties using the
Alloy Analyzer. The authors translated access cbrpolicies to a simple form that
partitions the input domain to four classes: perany, error, and not applicable. Then
they expressed XACML policies with several ordenatations. These relations are used
to specify the properties of the policies and tlatronships among them. Followed by
that, they expressed an approach to check thesemgdelations within Alloy and using
Alloy Analyzer. Using Alloy analyzer, they checkafcombination of XACML policies
does or does not reproduce the properties of ispslicies. Accomplishing all these

steps, they finally concluded that automated veatfon of XACML policies is feasible.

32

2.7.3 Alloy and Role-Based Access Control

This section is about practices of Alloy in sevesaldies related to the Role
Based Access Control (RBAC) systems. RBAC systdmasesthe same basis with policy
languages in a sense that they both can exprdsgting / granting access to a specific

object in a system.

Toahchoodee et. al. ir23] utilized Alloy to analyze a UML model of a RBAC
model. In their work, they have presented a new BBAodel that includes contextual
information such as time and location unlike thediional RBAC model. The UML
model presented application and its access corgguiirements in a formal specification
language. Alloy was used in order to automaticadyify the UML model. They argue,
“Although formal analysis can be done on UML speatfions that are augmented with
OCL constraints, there is not much tool supportdotomated analysis.” Moreover, this
is the reason they use UML2AIItto convert their model into Alloy model and uséoit

analyze the model.

Schaad and Moffett ir?f] utilized Alloy to analyze different extensiohRBAC
models. These extensions include RBAC96 and RBA®®f. authors’ claim, having
these extensions in a system might cause confiststated in the paper, there are some
prerequisite conditions to check in order to avooaflicts but authors believe there is a
need for a “framework for the specification and lgsia of role-based access control
models and required constraints”. In their approdiody present a model for each of the

extensions (RBAC96 and RBAC97) and their subsestiéollowing that, they define a

12 UML2Alloy is a tool for transforming UML models ia Alloy model. More about this tool will be
discussed in Section 4 as we are using it inth@sis.

33

set of constraints that is needed to be heldiriiéen they have provided these concepts
(constraints) presented in Alloy. Later on, thewédased assertion to check if these

concepts (constraints) can be held in accordirdifterent extensions of RBAC.

Hu and Ahn in 85] proposed a methodology to support automatidyaisafor
access control systems, in a framework called Asmi@ Management Framework
(AMF). In their research, authors attempted tofydarmal specifications of a role-based
access control model. They used one of the prafilé3BAC** as their RBAC model and
proposed an Alloy model to expresses it. Based hat model they utilized Alloy
Analyzer to analyze their model and find out anyurgerexamples to refine the

specification of the role-based access model pteden their study.

2.7.4 Various studies using Alloy

Other research studies in which Alloy is utilized discussed in this section. The
range of researches varies from modelling Java&aiitation and Authorization Service

(JAAS) and Policy based systems to modelling caifieistudies about ontologies.

Schaeffer et. al. in22] formally represented the underlying system ra#\boy
model. The model was intended to be used for “pdbased Self-Managed Cell
Interactions”. As the title suggests the SMC (3é¢thaged Cell) interaction are policy
based. In their approach, authors have used Adldgrinally represent SMC interactions.
They have defined various signatures (in Alloy mpdegarding for elements within

their system. For each operation in their systehgytused an Alloy construct

13 The constraints, as defined in their study, asiSSeparation of Duty (SSoD), Dynamic Separatibn
Duty (SDSoD) and the Operational Separation of [iGgySoD).

14 NIST/ANSI RBAC [35]

34

“Predicate”. They used the Alloy Analyzer to verifthe consistency of SMC
collaborations, i.e. interaction among Self-Manag€ells. To the best of our
understanding within their model, they used Alloycheck the model for the existence of
the corresponding authorisation policies for anyjigaltion policy (one of the conflict
types as discussed in Secti@b.1). In the “Model-Checking and Policy Analysis”
section of their research paper, they are mentipthat Type checking is needed to be
done for the elements of their model (policies)eythave mentioned that the Type
checking is done using Predicates and an exampéeRyedicate has been presented in

their paper

Nakajima and Tamai in3fl] used Alloy to analyze the system designed iIASA
framework. JAAS is a security framework in JAVA. <&@l on the model presented in the
paper, they analyze the framework in three diffei@tegories. In different categories,
i.e. different scenarios of JAAS framework modelled Alloy, they use different

assertions in Alloy to check on the consistencthefmodel.

Layouni et. al. in25] used Alloy to detect conflicts in a languagéethAPPEL.
The definition of a conflict is based on the prefpconditions in the APPEL language.
They defined three categories of conflicts: conemey conflict, disabling conflict and
result conflicts. The categorization of conflicts based on preconditions and post-
conditions conflicts and overlapping of them (a ldleuoverlap conflict as presented in
Table 2). They also explained different situatianswhich a conflict can appear.
Different situation in which a conflict is appeagims checked using Alloy assertions.
Checking of these assertions and not getting amyteoexample, authors concluded

consistency of the system.

35

Alloy has also been utilized in studies in whichadagies has been used. Dong
et. al. in B4] have utilized Alloy to analyze web ontologiéaithors believe that FaCT
and RACER, as existing ontology reasoners, haven lukeloped to reason about
ontologies with a high degree of automation. Dotigak argue that complex ontology-
related properties may not be expressible withi ¢hrrent web ontology languages.
Hence, they propose their approach to use Allggn@yze web ontologies. They present
models for DAML+OIL and RDF in Alloy. The model ments everything in Resource
signature in Alloy. Class is a simple extensiorRefsource signature. Property is also a
signature, having a sub_val value for a relatietwleen signatures presenting value of a
property. For each Property (such as hasValue,repbRyOf ...), authors have defined a
function or predicate in Alloy. The authors usedambination of Alloy analyzer and
RACER for checking the inconsistency of ontologyirstfy, RACER is used to
automatically determine the consistency of the logn If the ontology is inconsistent, a
small partition of concepts in the ontology closediated to the offending concept(s)
were chosen and Alloy Analyzer was used to checkHhe source of the inconsistency.

Wang et. al. in37] used almost the same approach specificall[DI

The usage of Alloy is not limited only to the steslidiscussed above. Alloy has
also been used to analyze cryptographic primitigesurity protocols and Application
Programming Interfaces (APIs) in29], to analyze exception flow in software
architecture. Filho et. al irBD] and Shaffer et. al irBR] used Alloy to perform analysis
of the Domain Model to automatically detect potainsecurity policy violations in the

system.

36

2.8 Model Driven Engineering

The Model Driven Engineering (MDE) is a promisingpeoach for software
developers, suggesting that one should first dgvaloodel of the system under study,

and then transforms it into an executable softveatéy (e.g. deployed code€j3].

For better understanding of MDE, we can comparéo ithe object-oriented
paradigm. In Object-Oriented paradigm, the maingpile is that everything is an object
while in MDE everything is considered to be a modebnsidering classes, objects,
instantiation and inheritance as major conceptobiect-oriented technology, MDE
introduces relations between a model, meta-modadieftransformations, representation
and conformance relations. In the following sediarbrief introduction on model, meta-

model and model transformation will be given.

2.8.1 Model

Models play a major role in MDE. A model is a siifipl view of reality or,
more specifically, a model is a set of statemehtaiaa system under study. In fact, one
can say that a model is a clear set of formal etesnthat describes something being
developed for a specific purpose and that can ladyzed using various methods. A
model in MDE must possess the following five keyarcteristics of Abstraction,
Understandability, Accuracy, Predictiveness andpeasivenessbB]. UML is used to

present Models.

2.8.2 Meta-model

A meta-model is a model that defines the languageskpressing a model. In

fact, a meta-model is a specification model. Metadets are used to validate models

37

represented in a specific language. That is, a-metéel makes statements about what
can be expressed in the valid models of a certaidefiing language. Generally, a meta-
model is any language specification written in Eigl such as OWL language

specification or UML specificatiorbp].

Meta-models are used as abstract syntax for maddiinguages. That is, meta-
models specify rules for structuring sentences auefing languages. This implies that
each model needs to be conformant to the meta-mufdie modelling language in

which the model is specified.

2.8.3 Model Transformation

Model transformation is the process of converting snodel to another model of
the same system. One can consider model transformas a process in which a target
model will be automatically generated from a sounewdel, according to a
transformation definition. The transformation défon itself is also expressed as a

model transformation language.

In fact, a model transformation means convertinghant model (or a set of input
models) which conforms to one meta-model, to amothedel(s), which conforms to
another meta-model. This conversion is done byndefirules that match and/or navigate
elements of source models resulting in the prodactif elements of the target model.
The transformation itself is a model, which conferto some transformation meta-
model. Model transformation can be done using agdage called Query View
Transformation (QVT) $4]. Object Management Group (OMG) has introduded t

language.

38

3 Problem specification

Throughout Sectior2, we have introduced different policy languageslicy
conflict and two major categories of policy conflaetection approaches (i.e. static and
dynamic). In addition, as presented in Secto#, each policy language’s approach to
handle policy conflicts (i.e. policy conflict detean and/or resolution methods) has been
discussed. These approaches are not simillar aralbmpplicy languages. For example,
meta-model was used by both KA0S and Rei policguages while XACML has its
own approach called rule-combining algorithm to dianpolicy conflicts. Looking
deeper into these approaches, we realise thatateynostly for the resolution part of
handling policy conflicts. Since policy conflict etion is a domain related issue and
one could not detect policy conflict without coresithg domain information. It is
understandable why policy languages have not dpedia policy conflict detection

method.

As mentioned earlier in SectioA7, detecting conflicts one needs to analyse
policies within the system. In this thesis, we halesen Alloy for policy conflict
detection analysis. Alloy has recently attractgphficant attention in the community and
has been used in a variety of researches (as peeserSectior?2.7). Alloy has been used
to analyze XACML policies and detect conflicts argotmem B6]. In the mentioned
study, a unigue mapping from XACML elements to Alllements has been introduced.
Using the introduced mapping, authors created theyAmodel and then used it for
analysing XACML policies. One can find similar appches of providing mappings into
Alloy in other reviewed policy conflict detectiortuslies. In these studies (as relevant

studies discussed in Secti@rv), the authors typically used mappings to medekrete

39

policies in Alloy, but without a complete definiticof the policy syntactical and static

semantic constraints.

In this thesis, we introduce a novel conflict détet method. We investigate an
approach in which the concept of Meta-model (it in sectior2.8.2) has been
utilized in the policy conflict detection procedsleta-model contains semantic and
structural information about a language and itsamses. This is a natural requirement, as
policy detection also depends on the definitiontled policy language and specific
statements stated in the policy language definittda major work has been done to
integrate Meta-model of a policy language while lgsiag concrete policies (i.e.
instances of the meta-model). Using a policy lagguaeta-model, we believe that we
can benefit from the semantics and structure définghe meta-model in order to detect

policy conflicts.

Prior to this studyKelsen and Mag5] have provided a lightweight semantics of
Modelling Languages in Alloy. However, no represgioin of policy modelling language
in Alloy has been introduced yet. In this thesig, choice of modelling language is PML.
PML, as described in Sectioh.3, conforms to the principals of the Model Driven
Engineering (MDE), thus has a meta-model definede Goal of this thesis is to
investigate the feasibility of conflict detectioettveen policies presented in PML using
Alloy. The research question we are trying to amswevhether Alloy can be utilized to
detect policy conflicts using concrete policies andta-model present in one Alloy

model.

40

4 Methodology

This section discusses systematic steps carriethahis thesis in detail. In this
section, methodology of detecting policy confliagng Alloy will be discussed. In brief,
PML has been used to represent policies. PML metdeinhas also been developed in
Alloy to be used in the process of detecting cotsli Alloy language was used for
modelling and Alloy Analyzer was used to detect fkois among policies. In this
process, a tool called UML2Alloy was used for tfansing PML meta-model to Alloy.
In Section4.1, Alloy language and choice of Policy Modellibgnguage and in Section
4.2, choices of conflict detection algorithm areplaxed. In Section4.3, the
methodology used in this thesis is described iaitléthe process we followed branches
according to different modelling approaches. Vasiauodelling approaches will be

described thoroughly in Secti@n

4.1 Modelling

Alloy is an abstraction modelling language and m&in components are
signatures and relation2(q]. In this thesis, Alloy has been used to modadicges and to
detect conflict among policies. Alloy comes withtaol called Alloy Analyzer.n this
thesis, Alloy Analyzer was used to generate sampherete policies from the model and
to find policy conflicts (through its “Check” algtlim as discussed in Secti@n/). The
model used by Alloy Analyzer has been created gjmoa transformation from UML
representation, which will be discussed in Secttb8. The Alloy model contains
concrete policies and PML meta-model (in some efrtiodelling approaches in Section

5). Since we investigate policy conflicts at destgne, the conflict detection method

41

proposed in this thesis is categorized as statndlico detection method. Therefore, no
real data can be assumed to exist within the sysi&ums, a way to generate sample data
in the system is needed. This need would be sdiffy generation of instances from the
Alloy model. The instances would be representingceete policies, which have been

generated by Alloy Analyzer.

Another feature of Alloy Analyzer has also beerizéd to help us determining
the exact state of instances in the model, in witicnterexample (in case of using
assertion command in Alloy) or an example (in cabaising predicate command in
Alloy) has taken placd@ This feature, in general, enables researcherspézify the
conditions (values) of instances in an Alloy modehen certain circumstance is
encountered, whether it is a counterexample orxample as a part of a model. Assume
a conflict has been detected by Alloy Analyzer, the®ormation provided by Alloy
Analyzer on the exact values of instances (involvetthis conflict) will provide valuable
information. Based on the provided information, @om manager can deal with
conflicting policies by revising the conflicting l@es or by providing a resolution for

that situation.

In this thesis PML meta-model was utilized throughUML representation. The
UML representation of PML meta-model is transfornobsthg UML2Alloy tool. Steps of

this transformation will be thoroughly describedsactiord.3.

15 Definition of Predicate and Assertion can be foimthe Appendix, Section 9.3

42

4.2 Policy conflict detection method

As discussed earlier in Secti@5.2, there are two major categories of conflict
detection algorithms. One is static conflict datectind the other one is dynamic conflict
detection. The approach used in this thesis isieg@t the design time and generates
different states of a system and it is categorasedtatic conflict detection. This approach
with some changes can be altered to be used asniywcanflict detection method. We

will discuss this issue briefly in Secti@n

4.3 Process

PML meta-model has been transferred into the Attmydel. The transformation
of PML meta-model in Alloy can be called the firstep in this thesis. This
transformation has been performed using UML2AIlloks its name suggests,
UML2Alloy is a tool that performs the transformatioof UML models into Alloy
models. UML2Alloy accepts XMF files as input. The files with XMI extensions cae
created using a tool called AgroUML. ArgoUML is apen source tool for designing and

editing UML models 44].

UML2Alloy is in its early versions. Therefore, sonML elements are not
acceptable by UML2AIlloy and cannot be transfernetd iAlloy model. Two elements
that affect our work are aggregation and compasitielations. UML2Alloy is not
recognizing aggregation / composition relationgtsncurrent version. However, there is

an alternative to these relations. The alterationll e to express the

16 XMl stands for XML Metadata Interchange, a stadday Object Management Group (OMG) for
exchanging information via XML [56].

43

composition/aggregation relations in some other.wesy/suggested inlp] aggregation
and composition relations can be expressed using @@straint. Using the approach
presented in16], we transform each aggregation / compositidation in PML meta-
model into OCL constraints. Hence, the transforometiof the following classes in the
PML model were affected: ObjectTerm, Slot, Termc¥oulary, AndOrNafNegFormula,
DataTerm, EventExpression, Logical Formula, Proda&ule, ReactionRule,
DerivationRule, RuleSet, VocabularyEntry, Atom, &ldteral, IntegrityRule and
Implication. These classes have at least one catigpgaggregation associated with
them. Figure 7 shows a sample transformation adraposition transformed into OCL
format. The upper part of the figure presents tbmposition and the lower part is

showing the presentation in OCL.

44

e 1 Externalocabiulary
1
variable | o ruleSetvariables o Ruleset g
Yocabulary i rps
- Externalvocabulany
: 1
varahe | g.» ruleSatyariables - Ruesel |
OCL #1
context Vocabulary inv vocal : Vocabulary . allbrstes -> forAll (p : Vocabulary |
RuleSet . allinstances -> exists (a : RuleSetrpa -> includes (p)))
OCL #2
context Vocabulary inv voca2 : Vocabulary . allbrstes -> forAll (p : Vocabulary |
RuleSet . allinstances -> forAll (al, a2 : RulefSeal . rp5 -> includes (p) and a2 . rp5
->includes (p)) impliesal =a2))

Figure 7 — Transformation of composition in to OCL

UML2Alloy cannot also transform classes that hagerbgeneralized from more
than one class. In order to circumvent this linmiat once again, we follow the

suggestion from16] and express generalization relations using @@tstraint. In this

45

regard, the following classes in the PML model wexected: StrongNegation,
ReferencePropertyAtom, Property, ObjectVariable,jeCilame, NegationAsFailure,
GenericVariable, GenericEntityName, Disjuction, {Cmction, DataVariable, Atom, and
AtLeastAndAtMostQuantifiedFormula. These classegehaore than one generalization
associated with them. Figure 8 shows a sample ftnanation of generalization
transformed into OCL. The upper part of the figatmws a sample generalization and

the lower part shows the transformation into OCL.

46

AtleastQuantifiedr ormula

Athd o stQuantifiedF ormula

AtleastAndAthostQuantifiedFormula

1
AtleastQuantifiedF armula

Athd ostQuantifiedFormula

rgl3

0.1

AtleastAndAthd ostQ uantifiedFormula

context AtLeastAndAtMostQuantifiedFormula inv prdpg
AtLeastAndAtMostQuantifiedFormula . allinstancesferAll (pl1, p2 :
AtLeastAndAtMostQuantifiedFormula | (p1 <> p2)phes pl . rgl3 <>p2.rgl3)

Figure 8 — Transformation of generalization into OQ

After transforming these relations into OCL conistt the UML model is
acceptable by UML2AIlloy. Using UML2AIlloy with thi®ML meta-model, it would
translate the meta-model into an Alloy model. lis tihansformation, all the classes were
transformed into signatures. All relationships lesw classes were transformed into
relationship between signatures. The cardinalityredftions in UML profile would
determine the cardinality of relation in Alloy. Th@CL constraints representing

aggregation/composition are transformed into pegds in Alloy. Table 5 shows the

47

basic steps of this transformation at a glanceur€igd shows various samples of
translated PML elements in Alloy. The sample oinsfarmation of a Class and a
Relation between classes (in UML representatioRME. meta-model) are shown in this
figure. As it can be seen, RuleBase (a class in UNdgram) is transformed into a
signature definition. Association relations betw&anieBase and other classes (in UML)
are also transformed to relations in Alloy. For rapde, the relation between RuleBase
and RuleSet is transformed into a “set” relatiorAlloy because of the “one to many”

cardinality of association relations between thet#sses. The association relation
between RuleBase and Vocabulary is transformedbtee” in Alloy because of the “one

to one or none” relation between these classeslast@ow of Figure 9 is the translation

of OCL presentation of composition relation as pnéed in Figure 7.

Table 5 - PML to Alloy transformation

PML Alloy

Composition/Aggregation/Generalizatiorract (Predicate)
(translated to OCL)

Class Signature

Relation Relation

48

FuleBase

n.*=

0.1

Vocabulary * Externalyocabulary

n.=

RuleSet

sig RuleBase{

vocabulary:lone Vocabulary,

ruleset:set RuleSet,

externalvocabulary:set ExternalVocabulary}

pred Vocabulary _vocal[[{

all p: Vocabulary | some a: RuleSet | p in a.rp5
}
pred Vocabulary voca2[|{

all p: Vocabulary | all al, a2: RuleSet | (
(pinal.rpb) && (pin a2.rp5)) => (al=a2)}

Figure 9 — Transformation of part of PML model in Alloy

After having PML meta-model transformed into Allothe next step is to
integrate concrete policies into the Alloy modeavihg concrete policies in Alloy gives
us a chance to analyze the concrete policies andldgolicy conflicts. The main

guestion to answer here is how to model concreteig® in Alloy. Modelling of

49

concrete policies and PML meta-model within the aley model creates a framework

under which numerous policy conflict detection aggmhes can be designed and tested.

We have systematically examined feasible approaaheslloy for modelling
concrete policies (Sectids). For each modelling approach and the structticoocrete
policies modelled in Alloy, a conflict detection@pach is designed and tested. The first
approach for modelling concrete policies is to nhddem in a similar way meta-model
was modelled. The first modelling approach is feka by three other approaches for
modelling concrete policies, each of which trieatswer the question of how to detect

conflicts in Alloy effectively.

In all of the conflict detection approaches, Alldgsertion has been used. Alloy
Assertion is a way to utilize the “Checking” methofl Alloy. As stated earlier (in
Section 2.7), “Checking” in Alloy is a method to check timeodel in order to find

counterexamples.

Each approach described in the following sectiofoliewed by a discussion of

this approach. The general outcomes will be sunzadiin Sectiorb.

50

5 Modelling of Palicies in Alloy

In this section, different modelling approaches|wie introduced. These
modelling approaches are part of the whole metlogplas described in Secti@n3.
The approaches used for modelling policies wilkeefffthe conflict detection methods
directly. Thus, a unique conflict detection methedequired for each approach. Each
approach has its advantages and disadvantagesibddsim detail in its corresponding

section.

We introduce an example that we use in modelliny@gches in Sectios.1 and
Section5.2. Sectiorb.1 will introduce this sample policy-based exanghe the policies
within this system. In Sectios.2, we will introduce motivation example for ttsample

policy, its UML presentation and minimization usadnodelling approaches.

Throughout this section, we are referring to PMLUtan@model modelled in Alloy
as PML meta-model, concrete policies modelled iloyAls concrete policies. When we
are talking about model, we mean PML meta-modelarmbncrete policies modelled in

Alloy according to the modelling approach uSed

5.1 Sample Policy Based System

For testing different approaches, we use an exanmmpleealth domain. This
example assists us to demonstrate the procesdediticig conflicts among policies. This
example has been inspired by work of Kaviani et[1al]. We do not intend to model a
complete Health system but only to present a spati of a Health system in order to

test presented modelling approaches. Access tonasis determined by policies within

7 In third modeling approach, the model refers taete policies modelled in Alloy while in other
approaches model refers to PML meta-model and etmgolicies modelled in Alloy.

51

the system. Each user in this system has a rolars&, “Patient”, “Employee” and

“Doctor” are four different roles within the system

The scenario, we are considering, is a patientingsia Health Organization. In
this Health Organization it is needed for a Nuiseask for patient’s information if the
patient is new to that Health Organization. A Nuisenot obliged to fill in any
information if a patient is in an emergency sitoatiA Doctor is permitted access to
patient's Health Record. When a patient is visitegd a Doctor, Doctor can add
information to the patient's Health Record. In tkigsstem, Doctor and Nurse are sub-
classed (extended in Alloy terms) from an Emplogkess (signature). Employee in the
system is prohibited from accessing a patient’sltHdaecord. Patients’ Health Record

information is being saved in an entity within gystem called ElectronicHealthRecord.

The following policies describe our sample Healttg&ization’'s policies. The
first policy (P1) will be expressed in more detal Section5.2. Definition of other

policies, similar to the P1 policy can be foundApendix 3 (Sectiod0).
Policies in our sample policy-based system ar@lk®:

« P1 (Permission / A+): A Doctor is permitted to a&=e

ElectronicHealthRecord.

P2 (Prohibition / A-): An Employee is prohibitedofm accessing

ElectronicHealthRecord.

18 This access can be any of update, view or detttens. Any of these actions are abstracted asessa
action in our examples. We stick with the “accession in the policies in order for our model noiget
too complicated.

52

« P3 (Positive Obligation / O+): A Doctor is obligetb access

ElectronicHealthRecord of a patient, after Patenisit to the Doctor.

» P4 (Positive Obligation / O+): A Nurse is obliged taccess

ElectronicHealthRecord of a new patient at hisfliet visit.

* P5 (Negative Obligation / O-): A Nurse is obligestnto access

ElectronicHealthRecord of a patient in an emergency

5.2 Policy Example

Similar to the Alloy’s small scope concéhtthroughout this thesis a similar
insight is utilized. The concept used, is to usenall model of the system and try

different conflict detection approaches on it.

In this Section, we will focus on one of the pagiintroduced in Sectidh.1l as
an example for all other policies. This policy Wk presented in PML (through its UML

notation) and also in one major policy languagaton (XACML).

One of the policies (P1), introduced in Secttof, has originated from a policy
example presented il7]. This sample policy (P1) has been altered fthm original
policy in [17] in order to omit the unnecessary elements. A liried to keep only the
essential elements involved in a policy, as definedPML. This step has been
accomplished in order to have a policy in PML wattminimum number of elements to
gain more productivity without losing any semanticdunctionality of a policy in PML.

Figure 10 is the PML presentation of the originaligy in UML notation. The example

19 Small scope concept in Alloy: if there is a flawthe system, it can be found by checking smalbeso
of the system, i.e. considering a small numbenstiances. For more information please refer ® [2

53

presented in thel[/] had some functionality that can be eliminatetheut affecting the
goal we are pursuing, a policy conflict detectibar example, there is a SendMailAction
in the original example that sends an email whent@oaccesses a Health Record. The
essential classes for a policy in this example rhddelude Doctor, Permission,
AccessElectronicHealthRecord and ElectronicHealtlolRe classes. Therefore, we are

not going to consider other classes in the modgHipproaches.

<<Action=>
SendMailAction 1 1
hasEffect

<zfctors>

Permission
Doctor

condition
[
1
o
zzAction>> 1
. AccessElectronicHealth hasAction
perfarmedBy ——— Record hasContent
1 0.%
<<Entity=>
0.* | MedicalTestResults [1
target
location
1
| <<Entity»>
ElectronicHealthRecord
<<Entify=> «<<Entity>> -
Emergency Section 1 1 Hospital o

Figure 10 - Original policy example (Kaviani et. al[17]), UML presentation

The sample policy (P1l) used in this section presemtpolicy that grants

permission to access a resource to a specific irolthe system. In this example,

54

“ElectronicHealthRecordis a resource in the system and ccns information abou

“Patients”.

Figure 1lis the presentation of sample po P1 ComparingFigure 10 and
Figure 11 revealthe minimizaion that took place in order to makas policy smaller.
One of Dbctor (as Actol, AccessElectronicHealthRecord (Astion), Permission and

ElectronicHealthRecord (aEntity) class exist in the sample policy as the esse

elements of a Permission polin PML.

<<Actor> Permission
Doctor

<<Action>> 1
1 |AccessElectronicHealth
Record

0.*

<<Entity>>
ElectronicHealthRecord 0.4

Figure 11 - Sample Policy, used in this section

Figure 12 is theepresentation of ousample policy in XACML notatig, for
illustration purposes onlylThe policyis presented in XACML since it is one of the m
used and understood policy languages. Another mnessthatAlthough PML has bee

presented its interchangeable capability to anchfpmlicy languages b the finalized

55

syntax of PML language (in terms of R2ML notatioishot available yet. Not having
the XML presentation of PML to rely on is not affieg our research. Since, in the whole
process of conflict detection, the relations betwee classes (in UML) or signatures (in
Alloy) is solely relied on. Different combinatiorts relations are the main part of this
thesis. These relations can be easily defined bativie PML model (via its UML
presentation). Using the UML presentation of thdicggoin PML with the use of
UML2Alloy will easily result in the Alloy represeation of the concrete policies. Detall

steps of the process have been described in Sekc8on

56

Policy 1: A Doctor can access Health Record infdroma

<zaml versi

UTE-8" 2>
<Policy smluns="urn:oasis:names:tc:xacmli2.0:policy:schema:os”
KIn33 X8 1="IEtp: / /W W3 .0Ta/ 2001 /MMLSChema - instance
xs1:schen "urn:oasis:names:tc:ixacul:2.0:policy:schema:os
nttp://docs.oasis-open.org/xacil/access_control-xacml-2.0-policy-schema-os . xsd
xmIng:ma="http:wi. ped . example. com/schenas / record. xsd'
licyld='urn:oasisinames:tc:xacml:2.0:exawple:policyid:1”
RuleCombininghlgld="urn:oasis :names:tc:xacml:1.0:rule-combining1613
algorithe:deny-overrides">
<PolicyDefaulua>

<XPathVeraion>https //ww.w3.0rg/TR/1999 /Rec-xpath-

</XPathversion>
</FolicyDefaults>
<Target/>
<Rule Rulel:
<Deseription>
A doctor shall be permitted to read or write medical clements of a patient record in the http://wnw.med.example.com/records.xsd namespace
</Description>
<Tazget>

<subjecta>

<subject>
<supjectiatch

chId='urn:oasis:nanes:tc:xaeml:1.0: function:string-equal®
<atrributevalue D "Rttp: / fnn. w3 0%/ 2001/ LS Chema#string” >

urn:oasis:names:tcixacml:2.0texample:ruleid:4”

Permit'>

doctor
</AvtributeValues>
<SubjectAtcributeDesignater Actributeld="urn:oasis:names:tc:xacml:2.0:exanple:attribute:role"
Datalype="http://ww.vw3.97g/2001/04LSchenals tring” />
</SubjectMatch>
</Subject>
</Subjects>
<Resources>
<Ressurce>
<RescurceMatch M

tchId="urn:oasis:names:tcixacml:1.0: function:string-equal’s

<AtcributeValue D http://wnr.w3.0rg/2001/MLEchema¥string”>

urn:example:med: schemas: record

</AstributeValue>

<RescurceAttributeDesignator ibuteld="urn:oasis:names:tcixacml:1l.0:resource: target-namespace”
DacaType="http: / /www.w3.0rg/2001/MMLSchemagstring" />

</RescurceMatch>

<RescurceMateh

acml:1.0: function:xpath-node-match">
w3.0rg/2001/3LEchema¥string”>

</AstributeValue>
<RescurceAttributeDesignator
Ype="http: / fuww.w3.0rg
</RescurceMatch>

ibuteld="urn:oasis:names:tcixacml:1l.0:resource:xpath”
2001/XMLSchemagstring” />

urn:oasis:names:tcixacml:1.0: function:string-equal’>
<AttributeValue ype="http://wnne.w3. 6rg/2001 /MMLSchenatstring” >
read

</AttributeValue>
<ActicnAttributeDesignator
Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id
yPE="hEtED: /s 3.07G/2001/XULS Chemagstring”/>
</ActionMateh>
</hetion>
<Action>
<ActionMatch
chId="urnioasisinames:tcixacmlil.0: function:string-equal”>
<AttributeValue Datalype="Rttp://wnw.w3.org/2001/MMLSChomatstring

</AttributeValue>
«<ActienAttributeDesignator

ributeld="urn:oasis:names:teixacwl:l.0:action:action-id"
DataType="http: // 3 2001 /3L chenadstring"/>
</ActicnMatch>

</hstion>
</Actions>

</Target>

</Rule>

</Policy>

Figure 12 — Sample Policy, presented in XACML

5.3 Modelling Concrete Policies

In the first and second modelling approaches, @agoolicies are modelled in
the same way the PML meta-model was modelled irtid&ed.3. The modelling was
done through the UML profile of PML and by using URAlloy tool, considering some

special alterations in the model (i.e. using OCLdascribed in Sectiod.3). After

57

transformation of the concrete policy into Allohetconnection to the PML meta-model
is created to check the syntax of concrete poli@gainst the PML meta-model.
Extension relations (in Alloy) can be used to catnencrete policy to meta-model.
Therefore, each concrete policy would be considerethild of the Policy signature in
Alloy. The extension relations connect each sigmat(in Alloy model) with its
corresponding signature in the PML meta-model. iedLB presents the sample concrete
policy in Alloy. In this example, Permissionl istloncrete policy while Permission is
the permission class in PML meta-model. The extenselation between these classes
was created using the “extends” keyword. For irgarkElectronicHealthRecord is a
concrete class in the system while Entity is thes€lin PML meta-model and they are

related using “extends” keyword in Alloy.

sig Permission1 extends Permission {
accesselectronichealthrecord:one AccessElectronicHealthRecord}

sig Doctor extends Actor {
accesselectronichealthrecord:one AccessElectronicHealthRecord}

sig AccessElectronicHealthRecord extends Action {

permission:one Permission}

sig ElectronicHealthRecord extends Entity {

accesselectronichealthrecord:set AccessElectronicHealthRecord,

permission:set Permission}

Figure 13 - Alloy Presentation of Sample Concrete dbicy

Alloy Analyzer, the tool that helps to investigatdloy models, utilizes the

extension relation in Alloy. The extension relaships between concrete policies and

58

PML meta-model will be used in the process of ciegkor policy conflicts, which will

be described later on in different modelling apphes.

We have used the extension relation in Alloy mddetonnect concrete policy
signature and policy signature. Having extensidatian used in Alloy, Alloy Analyzer
is able to “Check” assertions written for parergssl (policy signature) as well as child
classes (concrete policy signature). As an examptbe original policy (Figure 10), let
us consider “Hospital” signature. Hospital is rethto EmergencySection and as it can be
seen, Hospital signature is extending the Emerdgactyon Entity. This extension makes
EmergencySection a Hospital. Thus, Alloy Analyzell wheck EmergencySection for

any assertions written for Entity of Hospital adlwe

fact Asso_Action_action_entity Entity { Action <n#ty in (Action) set->set (
Entity) && Entity <: action in (Entity) set->sdtAction) }

Figure 14 - Sample Fact (in Alloy)

UML2AIlloy was used to transform PML meta-model infdloy. Thereon,
looking into the transformed PML meta-model in Adlowe will find some facts
generated. The generated Facts are fundamentadiyt ablationship between classes,
cardinalities, hierarchies etc. As an example,ch i presented in Figure 14. This fact
forces the cardinality of relation between Actiardd&ntity to be multi to multi, meaning
that both signatures (classes in UML) can have rermfinity number of relations to
other signature (other class in UML). Similar faate also being checked for Hospital as

well as Entity.

59

5.4 First Modelling Approach

In the first modelling approach, we have used ocetecpolicies and PML meta-
model in the Alloy model. PML meta-model was moeeélas described in Sectidn3
and concrete policies were modelled using the nektiescribed in sectiob.3. Then, we
used Alloy Analyzer to Run (c.f. Sectidil.4) the model (i.e. PML meta-model and
concrete policies) and analyze for its consistey/there is no assertion used in this
step, analysis does not intend to check for patiogflicts. As it turns out, there was a
problem identified as a result of analysis of thedel, which holds us back from

continuing this approach.

5.4.1 Outcome

The problem with this modelling approach was thaegation of relations that
might lead to generation of unwanted policies. dhgin of this problem was related to
the expansion of various signatures in the Alloydalo Using Alloy Analyzer on the
model, it tries to generate as many possible melatin a model as it can. Hence, it might

generate unwanted policies.

Alloy Analyzer does not always generate same imgtanhen one uses it to
analyze an Alloy model. Based on the Alloy modet arased on the definition of
signatures and relations in the model, Alloy Analygenerates a portion of a model as
instances of the model. Not each time the generastdnce of the model is the same.
However, the generated instance is always withim dlefinitions of signatures and

relations the Alloy model. Instance generationrie of features of Alloy, which benefits

60

researchers to investigate Alloy models from ddferpoints of view by generating

different instances from their model.

Considering this feature of Alloy on our model,can result in generation of
possible unwanted policies, generated from thecpalignatures in the PML meta-model.
Generation of additional policies is not desirale.an example, let us consider a simple
case to present how these unwanted policies can ladthaviour of a system and our
policy conflict detection method. It is likely thahe of these generated policies will be

exactly a policy conflicting with one of the poks within the system.

Because of this behaviour of the Alloy Analyzererthis no point to design a
conflict detection method. Even if a conflict deten method in Alloy were available, it
would not be much of a help to detect conflicteha system; since conflicts could be

detected among policies that, some of them, arerg&d by Alloy Analyzer.

Let us clarify it more through an example. Let wnsider a sample policy
permitting Doctor to access Health records (Peilonsgolicy). In contrast with this
policy, a policy can be generated from the Prolahisignature in the PML meta-model
that prohibits Doctor to access the Health Recdhis possible generated policy can be
seen in Figure 15. This generated policy will epdrua conflict with one of the concrete
policies defined within the system, as one is pimg and the other one is prohibiting
access to one specific resource. Therefore, angypobnflict detection approach will fail
as unwanted policies are being generated througheuanalysis of the model. In order
to be able to detect conflict between policies ilhoy first we need to resolve this

problem of unwanted generated policies.

61

sig Prohibtion1 extends Prohibition{
accesselectronichealthrecord:one AccessElectronicHealthRecord}

sig Doctor extends Actor{

accesselectronichealthrecord:one AccessElectronicHealthRecord}

sig AccessElectronicHealthRecord extends Action{

permission:one Permission}

sig ElectronicHealthRecord extends Entity{

accesselectronichealthrecord:set AccessElectronicHealthRecord,

prohibition:set Prohibition}

Figure 15 - Sample generated policy

In brief, the following advantages and drawback#df approach can be named.

Advantages:

» A systematic way to model concrete policies alorittp Ws meta-model in Alloy

has been introduced.

Disadvantages:
» Generation of unwanted concrete policies can résutidefinite number of

conflicts between policies.

5.5 Second Modelling Approach

In the second modelling approach, we attempt td line expansion capability of
Alloy Analyzer. The limitation was set up to affeg¢neration of instances in the Alloy

model (i.e. signature elements). As stated infitise modelling approach (Sectidn4),

62

generation of new policies is undesirable. Congidedomain manager’s point of view,
generating new policies from the PML meta-modehatgres not only is undesirable but
also may change the behaviour of the system as Wedl only policies needed to be

analyzed are the concrete policies defined withangystem.

Concrete policies are modelled in a similar wayt twe have modelled PML
meta-model from its UML profile into the Alloy modé'Policy” signature (in Alloy
model) is parent of all concrete policies modeiledhe Alloy model. In other terms, all

concrete policies are children of Policy signature.

Alloy Analyzer is capable of limiting the number iofstances it generates (for a
specified signature) as it expands the model. Usimg capability, the expansion of

policy class (meta-model) and its children (coreilicies) was limited.

The limitation on expansion of the model can beedd by using the “for but”
keyword after the “run” command in Alloy. By spegiig the number of desired
instances of signatures, one can tell Alloy to gateeonly specific number of instances
from the model. Figure 16 shows the difference kieigvord makes. The top code is the
code used to generate Alloy model without any Etmins (e.g. first modelling approach)
while the code restricting generation of signatureg\lloy model is presented in the
bottom of the figure (e.g. second modelling apphdacdhe generation is limited to one
signature for the Permissionl, Doctor, Nurse, EeitHealthRecord, and
AccessElectronicHealthRecord signatures. Figurevididally shows the difference this
limitation makes. On the top, a sample run of paralloy model without any limitations
applied, can be seen while on the bottom of Fidutethe model can be seen with the

limitation applied.

63

run {} for 4

run {} for 4 but 4 int 1 Permissionl, 1 Doctor, lide, 1 ElectronicHealthRecord, 1
AccessElectronicHealthRecord

Figure 16 - Limiting Generation of signatures (in Aloy)

Permissioni Permission21 Permission20
=] J'I',;.ﬂ ... - ll'. =]
res FHes ._// G} N !..,.|T .lll 0l
/ =
-~ h 1
ElectronicHealthRecord1 ElectronicHealthRecordd Doctor Murse Action0 Action
Permissioni Permission2
/res res ."'-._|-:-I+
,/ ..'\
ElectronicHealthRecord Doctar Murse Action0 Action1 Entity Permission0 Permission

Figure 17 - Alloy model - Top without any limitation - Bottom limitation applied

For the purpose of testing capability of this apgioto detect policy conflicts,
another policy along with the example policy hasrbased. The original example policy
was to grant/deny access to Doctor over HealthRleddre other policy used here will be
similar to this policy but only with one differencéhe Actor of the policy will be Nurse
in this case. Considering the top figure in Figuré, Permissionl is the policy
permitting/denying a Doctor to access Electronidt€ecord while Permission2 is the

policy permitting/denying a Nurse to access ElautidealthRecord. As it can be seen in

64

lower part of Figure 17, this limitation restrictggneration of new policies and only
Permissionl and Permission2 policies were generétedever, not using the limitation
in Alloy model would result in the simulation shovim the upper part of Figure 17.
Permission21 and Permissiofi2@re the same policy generated from Permissiong. Th
last two policies were generated by Alloy (in tbe)tare duplicate policies in our Alloy
model while there was only one instance of thenthim system we wanted to model.
However, the only generated policies in the bottpart are the Permissionl and

Permission2 policies as required.

5.5.1 Conflict Detection

In order to implement policy conflict detection apach, we used assertions in
Alloy. Assertion is a mechanism in Alloy to find waterexample(s). As mentioned in
Section2.7, Alloy investigates models in two different vgagnd Assertion is to “Check”

the model in Alloy.

Conflicts among policies may take place becausealifbérent reasons and in
different situations. Complete discussion over o@nce of conflicts among policies can
be found in Sectio.5. However, as the first step of detecting cotdflamongst policies,
we selected a Prohibition/Permission conflict scenbetween two policies. We simply
check if a role (here Doctor) has prohibition aretnpission access to a resource (i.e.
HealthRecord) at the same time (modatitnflicts). Being granted permission over a
resource while being prohibited over that speadiéisource is a type of conflict among

various conflict types described earlier in Sec&dn

20 Alloy adds a numeric value to the end of signatunames while generating instances from the model.

65

Assertions were used at the level of the PML metaeh rather than concrete
policies, namely Policy signature. Using assertirithe level of Policy signature was
inspired by the structure of the model, in whicthb®ML meta-model and concrete
policies are present. Each element of concretecyolias connected to its specific
element in PML meta-model. Having assertion atekrel of Policy signature, which is a
parent of all other concrete policies, will propagéchecking” for all of the concrete
policies (policy signature in Alloy). Alloy wouldrppagate the assertion to the children
of Policy signature that is concrete policies. Thisa desired situation in a conflict
detection approach, to write a constraint for a<laf policies and being able to check

other derived signatures (concrete policies) ag#ins

The assertion used for conflict detection in thisdelling approach checks a
simple fact. The fact is for any role within thesegm, both Permission and Prohibition
policies on a same resource and the same actiariddshot be present at the same time.
Figure 18 shows the assertion used to detect théliatoof having Permission and
Prohibition policy for the same role. In this cacifldetection approach, assertion only
checks for conflicts based on the role variabldeDtvariables in a policy (i.e. action and

resource) are not considered here for detectinfjictsn

In general, a conflict between two policies, whene is Prohibition and the other
one is Permission, needs to be checked for the aioteon and resource. If for a specific
role, a specific action has both Permission andhiBition policies present in the system
for the specific resource, then there is a conitveen these two policies. However, as
the first step we only check for conflicts for elevhich immediately lead into a problem

with this approach. Considering adding more vadsalib the equation will not resolve it

66

but makes the matter more complicated. The analbysithe Alloy model using the
assertion shown in Figure 18 resulted in the systeror and no conflicts have been
detected. The detail information on the outcome #medproblem is given in the next

Section.

assert nop{ all p: Prohibition , g: Permission3rgle = p->role }

Figure 18 - Conflict Detection (Assertion in Alloy)

5.5.2 Outcome

The issue with the “Second modelling approach” vimsed on using of
assertions. Looking for counterexamples in a maale should use assertions in Alloy.
However, assertions used in this modelling appraasilted in an error. We should

discuss what could be done in order to solve #susa.

In this modelling approach, assertions were usdtieatevel of Policy signature
and not at the level of concrete policies. Usingedsons at the level of Policy signature,
forces Alloy Analyzer into a situation that couldtrresolve a relation among different
available relationsAs expected, what happens in this situation i$ &y Analyzer
tries to check the assertion both at the level alick signature and at the level of
concrete policies as welh this case, when Alloy Analyzer encounters ati@ta which
exists in the policy signature (i.e. Permissiondl afso in the concrete policy signature
(i.e. Permissionl), it cannot make a distinctiotwaen them. This is because concrete
policy signatures are policy signatures in the YAllnodel. This problem is rooted in

having the same name for the relation in the paiegt concrete policy signatures. Using

67

the same name is inevitable and cannot be avoides.situation originates in extension
of concrete policies from the PML meta-model’s Pplsignature, the extension that
makes the connection between policy and concrdieygmossible. One might say simple
change of relation name would solve the problemweieer, one should consider the

generation process and the assertion asserted kvl of Policy signature.

sig Permission{ sig Permissionl extends Permission{
role:one Actor, role:one Doctor,
} }

Figure 19 — Permission Signature (Policy) and Conete Policy (Permissionl)

As an example, a part of concrete policy and papoticy signature is presented
in Figure 19. As it can be observed, both policg aoncrete policy signatures have a
relation called roleAlloy Analyzer tries to run the assertion for thencrete policy as
well as the policy signature. When Alloy Analyzéteapts to check the g->role (role of
the user), the problem rose. Alloy Analyzer coulot nlecide which “role” we are
referring to thus it throws an erfor The assertion, which is written for the policy
signature, will not be able to resolve the refeeenthe reason is that both parent and
child class (concrete policy and abstract policgnature) are considered as policy
signature and both have a relation called role. aBAsummary of advantages and

drawbacks of this approach, following can be named:

Advantages:

2L Alloy is not supporting overwriting of relation®verwriting is a concept that has been utilize®bject
Oriented paradigm.

68

» Compared to the previous modelling approach, argéoenflict detection

approach was introduced for the first time heraaigh not successful.

Drawbacks:
» Alloy Analyzer got into problem with this model. @meason was usage of
assertion at the level of policy class, plus havelgtions with the same name in

policy and concrete policies classes.

5.6 Third Modelling Approach

The only way to investigate an Alloy model for ctemnexamples is to use
assertions. Third modelling approach is designedrder to solve the problem occurred
in the previous modelling approach. In the previowlelling approach, we attempted to
detect policy conflicts by using assertions atléwel of policy signature, which was the
main source of the problem. In the third modellapproach, we attempt to alter the level
of assertion with respect to the inheritance hadrarof PML meta-model. In this
modelling approach, we attempted to use asserbbatrthe level of policy signature but

at the level of concrete policies.

Previous modelling approaches (c.f. Sectibrsand5.5) use the assertion at the
level of policy signature, so each time a concyeicy inserted into Alloy model, it
automatically will be checked against conflict d¢iien as each concrete policy is a
policy itself. Therefore, Alloy Analyzer treats g concrete policies as policies. In this
modelling approach, this is not the case and eanbrete policy would be treated on its

own and not through its parent’s signature (i.elicgosignature). In this modelling

69

approach, there is no extension from parent sigeafBolicy signature) available for

each child signature (Concrete Policy).

Having no extensions in modelling of concrete pefic will let us to alter
modelling of concrete policies in more alternativays. Having extensions in Alloy
model, we are forced to follow the exact structafea policy defined in PML meta-
model in the Alloy model, since each signatureasded to be related to an element of
meta-model. Otherwise, there will be no point ivihg PML meta-model and concrete

policies in an Alloy model.

The modelled policies (i.e. P1 to P5) are showtrigure 20. Since there is no
general assertion (as in Second modelling approaehi)able for each concrete policy,
we need to write assertions in this modelling appho We will discuss automatic

generation of these assertions in Sechi@

70

// Policy P1: Doctor is permitted to access the Resource
sig Permission1 {

role:one Doctor,

res: one ElectronicHealthRecord,

act: one Action}

// Policy P2: Employee is prohibited to access the resource
sig Prohibition1 {

role:one Employee,

res: one ElectronicHealthRecord,

act: one Action}

// Policy P3: Doctor is obliged to access the resource (after visiting a patient)
sig ObligationPlus1 {

role:one Doctor,

res: one ElectronicHealthRecord,

act: one Action}

// Policy P4: Nurse is obliged to access the resource (after first visit of a new patient)
sig ObligationPlus2 {

role:one Nurse,

res: one ElectronicHealthRecord,

act: one Action}

// Policy P5: Nurse is obliged not to access the resource (if it is an emergency situation)
sig ObligationMinus1 {

role:one Nurse,

res: one ElectronicHealthRecord,

act: one Action}

Figure 20 - Modelled Policies

The assertions in this modelling approach are idanto the assertions in the

previous approach (Secti@b5) but with only one difference that they arenigeapplied
at the level of concrete policies and not at thvellef policy signatures. Figure 21 shows

the difference between these assertions. The tegrtam is the assertion used in the

71

previous approach. The top assertion was usecedewel of policy signature. Assertion
at the bottom of Figure 21 presents the assertsaa in the current approach. As it can
be seen, the only difference from the previous @ggr is that the assertion is written for
concrete policies “Prohibition1” and all “Permissid while in the previous approach it

was written for PML meta-model signatures, i.e.rfRission” and “Prohibition”.

assert nop{ all p: Prohibition , g: Permission3rgle = p->role }

assert nop{ all p: Prohibition1 , g: Permissiomgt3role = p->role }

Figure 21 — Assertion at the level of Policy (Topdnd at the level of Concrete Policy (Bottom)

To detect different types of conflicts (as state@ection2.5.1), we need to check
three different types of conflicts: A+/A- , O+/0C9+/A-. In the following sections, we

will describe steps taken for detecting conflict®ach conflict type.

5.6.1 Permission/Prohibition (A+/A-)

The assertion presented in bottom part of Figures 2ih assertion that checks for
a Permission/Prohibition type of conflict betweevotconcrete policies. We use the
assertion for the modelled policies in Alloy, aggented in Figure 20. Policy P1 grants
access to a Doctor to access ElectronicHealthRewbild P2 prohibits access of any
employee in the system to ElectronicHealthRecordctdr, being an Employee by
definition, is granted and denied access to EleatHealthRecord at the same time. The
assertion presented in the bottom part of Figuré&i2s to find this conflict by checking
if a same role has both permission/prohibition @e# associated with it, which

permit/deny access to a resource at the same time.

72

The top part of Figure 22 demonstrates the redulilioy Checking operation
with this assertion. As it can be seen, the assersucceeded in finding the
counterexample we were looking for. The countergdarahows that there was a conflict
and it was detected. The bottom part of Figure B@ws one such counterexample
generated by Alloy Analyzer. As it can be seen,earission policy (Permissionl) is

relating Doctorl to Action while at the same timd@hibition policy (Prohibitionl)

relates them.

Executing "Check nop for 32 but 1 Permission1, 1 Prohibition1™
Solver=sat4j Bitwidth=4 MaxSeq=3 SkolemDepth=1 Symmetry=20
216 vars, 37 primary vars. 209 clauses. 18ms.

Counterexample found. Assertion is invalid. 12ms.

Permission? Prohibition?
(Fnop_a) (fnop_p)

‘k‘\ role

role
\H"\\.

4 S S

Action ElectronicHealthRecord Doctort Doctord

Figure 22 -Assertion successful in finding countes@mple

5.6.2 Positive Obligation / Negative Obligation (O+/0O-)
The assertion presented in Figure 23 is an assettiat checks for a Positive

Obligation / Negative Obligation type of conflicttveen policies.

73

assert nop3{ all p: ObligationMinus1, o: Obligatitlus2 | o.role = p.role }

Figure 23 - Assertion for O+/O-

As stated earlier in the sample policy based exepmalicy P4 obliges a Nurse to
access ElectronicHealthRecord upon visit of a natiept and policy P5 obliges Nurse
not to access ElectronicHealthRecord in an emesgsitgation. In a case in which a new
patient visits in emergency situation, these pesiavill end up in conflict. The assertion
presented in Figure 23 tries to find this confligt checking if a same role has both

Positive Obligation/Negative Obligation policiesasiated with it on a same action to a

resource at the same time.

The top part of Figure 24 shows the result of Chregkhe assertion. As it can be
seen, the assertion succeeded in finding the cmaxample we were looking for. The
counterexample demonstrates that there was a coafid it was detected. The bottom
part of Figure 24 shows one counterexample gertetateAlloy Analyzer. As it can be
seen, a Negative Obligation policy (ObligationMifhuss relating Nursel to Action while

at the same time a Positive Obligation policy (@ationPlus2) relates them.

74

Executing "Check nop3 for 3 but 1 ObligationMinus1, 1 ObligationPlus2"
Solver=sat4j Bitwidth=4 MaxSeq=3 SkolemDepth=1 Symmetry=20
228 vars. 40 primary vars. 327 clauses, 127ms.
Counterexample found. Assertion is invalid. 29ms.

OhligationMinus1 OhbligationPlus2
($nop3_p) (fnop3_o)

act L2 a-:thx“vu:j;" \"'”'*
S T role
/ r'§ HR \'

Action ElectronicHealthRecord Murse Mursed

Figure 24 - Assertion successful in finding countexample

5.6.3 Positive Obligation / Prohibition (O+/A-)
The assertion presented in Figure 23 is an assettiat checks for a Positive

Obligation / Prohibition type of conflict betweenljzies.

assert nop2{ all p: Prohibition1 , o: Obligation®1 | o.role = p.role }

Figure 25 - Assertion for O+/A-

In our example, Policy P3 obliged a Doctor to ascE&ctronicHealthRecord
when a Doctor visits a patient while P1 Prohibigatess to ElectronicHealthRecord to
an Employee. The assertion presented in Figurei@sto find this conflict by checking
if a same role has Positive Obligation/prohibitjpolicies on an action to a resource at

the same time.

75

The top part of Figure 26 demonstrates the reguthecking the assertion. As it
can be seen, the assertion succeeded in findingotlnveterexample we were looking for.
The counterexample shows that there was a coaflidtit was detected. The bottom part
of Figure 26 shows one counterexample generatellby Analyzer. As it can be seen,
a Positive Obligation policy (i.e. ObligationPlus$)relating DoctorO to Action while at

the same time a Prohibition policy (i.e. Prohibitl) relates them.

Executing "Check nop2 for 3 but 1 Prohibition1, 1 ObligationPlus1™
Solver=sat4j Bitwidth=4 MaxSeq=3 SkolemDepth=1 Symmetry=20
234 vars. 40 primary vars. 2333 clauses. 18ms.

Counterexample found. Assertion is invalid, 12ms.

ObligationPlus1 Prohibition?
(Enop2_o) (Enop2_p)

Action ElectronicHealthRecord Doctord Doctort

Figure 26 - Assertion successful in finding countexample

5.6.4 Outcome

In this approach, we have shown the feasibilitydetecting conflicts among
policies using Alloy. In detected conflicts (coumteamples) that have been visually
presented (Figure 22, Figure 24 and Figure 26)gentiman one Doctor (i.e. DoctorO and

Doctorl) can be seen in the figure. However, inraodel we do not have more than one

76

Doctor (or Nurse). These generated Doctors (Docod DoctorO) should be considered
as Doctor signature in the Alloy model. These digres are instances of the Doctor
signature generated by Alloy Analyzer. Thereforbewthe assertion found instances of
Doctor0O and Doctorl in the counterexample withie Alloy model, it actually found a

policy conlflict for Doctor role in the system.

As it can be seen in Figure 22, the result of theflect detection was successful,
i.e. a counterexample was found using this approbldwever, a drawback for this
approach is losing the connection to the PML metaleh As mentioned earlier and as
shown in Figure 2(here is no connection to the PML meta-model. Usimsg approach,
PML meta-model has not been used at all. Not extgnsignatures from the meta-model
is one of biggest drawbacks here. Not having thiga, one cannot check if the policy is

syntactically correct or not.

As a summary of advantages and drawbacks of thisoaph, following can be

named:

Advantages:
* This approach has shown the proper modelling face policies in order to

detect conflicts using Alloy.

Drawbacks:
* As a side drawback, in this approach, connecticdhéd®ML meta-model was
lost. This loss prevented us from syntacticallyaieg the correctness of

concrete policies.

77

5.7 Fourth Modelling Approach

Although in previous modelling approach, we havevgtd a proper way to
model policies in Alloy, but we want to try all glle ways to model concrete policies
in Alloy. In this approach, modelling of policiesilhbe experimented by mainly using

relations to model concrete policies in Alloy.

In previous approaches, each policy was modelled agnature in the Alloy
model while in this modelling approach, policiedlvide modelled using relations. All

policies are modelled within one signature.

In this modelling approach, we define a policy sigme (as shown in Figure 27).
This policy signature contains relations that defaoncrete policies in the system. In
this approach, each policy is treated as an instafi@a policy signature. The different
values of this signature (i.e. policy signatureirte concrete policies. Figure 27 shows
the structure used to model policies with this apph in Alloy. The policy signature has
relations including PolicyType, Actor, Action andtify. Actor, Action and Entity are
the signature models for Actor, Action and ResouncePolicies. PolicyType is
expressing different types of the policy includifgrmission, Prohibition, Positive
Obligation and Negative Obligation. This signatui¢h the relations will model all the

concrete policies in the system.

78

sig PolicyType{ ¥
sig Permission extends PolicyType {F
sig Prohibition extends PolicyType{ }

sig policy{
r:u:F‘n:uliu:y'Tﬁ;pe—::-.&u:tu:ur—::-ﬂu:tiu:un—::-Entitﬁ;|

¥

Figure 27 - Policy Model (based on relation in Allg)

Figure 28shows a sample policy modelled in this approachit&an be seen, a
policy is inserted into model as a fact. The corabon of different facts, if inserted into
the system, can create new policies within theesysh this modelling approach. In this

example, a Permission policy for a Doctor to AcdelestronicHealthRecord is defined.

fact{
Permission->Doctor->Access->ElectronicHealthRegorpolicy.p

}

Figure 28 - Sample policy (modelled using fourth modelling jpproach)

5.7.1 Outcome

Having concrete policies modelled as a single sigeaand relations within it, we
have faced one major issue that cannot be resolMael.problem we have faced was
unwanted expansion of the model. The problem ofaegn of model, resulting in
generating unwanted policies, is similar to what heve encountered in the first
modelling approach. The problem with previous mingiglapproaches (Sectidn4,5.5
and5.6) has been resolved using a limitation at tivellef signatures. This limitation

allowed us to restrict number of instances of digres generated in the Alloy model.

79

However, since in this approach we are modellinticigs using one signature with
relations distinguishing between policies, no samdction can be used as there is no way

of restricting Alloy Analyzer to generate relations

As a summary of advantages and drawbacks of thpsoaph, following can be

named:

Advantages:
* In this approach, a different way of modelling p@s in Alloy was investigated.
We used the relations to model different policyetyp
» All policies were modelled in one signature. It itipe useful for analyzing a set

of policies, since all policies are modelled inmgue signature.

Drawbacks:
* The major drawback was incapability of us to ugil&lloy Analyzer to limit the
number of generated instances of policies, whildetimg policies using

relations.

5.8 Generation of Assertions

In the third modelling approach, different assexsidor our policy-based example
system have been presented. These assertions ékpesl lus to detect conflicts among
policies. In this Section, we discuss assertionsdad to be asserted into a model to

detect conflicts. We also present an automatic wagenerate these assertions.

According to Sectior2.5.1, three different policy conflict types cantheught of
in policy-based systems. These conflicts are A+@+/A-, O+/O-. In order to detect any

possible conflict within a system, one might ch&wkany possible combination of these

80

types of policies within an Alloy model. In this @®n, we present how to perform this
task by adding required assertions. Accomplishing task, we consider policies within
the system have Actor, Policy Type, Action and Rese elements present in their
definition. We refer to concrete policies withinetlsystem as Pol-1, Pol-2 ... Pol-n.
Structure of a policy is presented in Table 6. Tds column of Table 6 presents a

sample policy called POL-1.

Table 6 - Policy Structure

<policy> ::= <policy-name><actor><policyType><action><resource>

<policy-name> ::= string

<actor> ::= string

<policyType> ::= Permission | Prohibition | Positive Obligation | Negative Obligation
<resource> ::= string

<action> ::=string

POL-1 Doctor Is Permitted To Access ElectronicHegécord

We assume that the policies are categorized bas#utko policy types within the
system into four different categories: Permissidgkt)(Prohibition (A-), Positive
Obligation (O+), And Negative Obligation (O-). Bds®n these policy types, we
introduce the assertions needed to be generatbihwite Alloy model. For Permission
and Negative Obligation there is a need to add ongyassertion in the model, since they
only can be involved in one policy conflict typee(i A+/A- for Permission and O+/O-
for Negative Obligation). For Prohibition and PotObligation we need to have two
assertions as they can be involved in two typeabity conflicts (i.e. A+/A- and O+/A-

for Prohibition and O+/A- and O+/O- for Positive ligiation).

81

Figure 29, Figure 30, Figure 31 and Figure 32 prissthe assertion needed for
Permission, Prohibition, Positive Obligation andghiitave Obligation policies within the

system accordingly.

Generate the following assertion for the Permisgoficy (Pol-j) and all Prohibitior
policies (Pol-k) within the system.

» assert Pol-j-Pol-k { all p1: Pol-j, p2: Pol-k | pdle = p2.role }

Figure 29 - Assertion for Permission Policy Type

n

Generate the following assertion for the Prohibitpmlicy (Pol-j) all Permission policie
(Pol-k), and all Positive Obligation (Pol-I) withthe system.

» assert Pol-j-Pol-k { all p1: Pol-j, p2: Pol-k | pdle = p2.role }
» assert Pol-j-Pol-1 { all p1: Pol-j, p2: Pol-l | pdle = p2.role }

Figure 30 - Assertion for Prohibition Policy Type

Generate the following assertion for the Positivbligation (Pol-j) policy and al
Negative Obligation policies (Pol-k) within the 9.

» assert Pol-j-Pol-k { all p1: Pol-j, p2: Pol-k | pdle = p2.role }
» assert Pol-j-Pol-k { all p1: Pol-j, p2: Pol-k | pdle = p2.role }

Figure 31 - Assertion for Positive Obligation Polig Type

Generate the following assertion for the newly seahNegative Obligation policy (Pol
J) and any previously scanned Positive Obligatiohqges (Pol-k).

» assert Pol-j-Pol-k { all p1: Pol-j, p2: Pol-k | pdle = p2.role }

Figure 32 - Assertion for Negative Obligation Polig Type

82

Assertions presented in the above figures aredfained assertion for each type
of policies in order to detect policy conflicts thimvolve the specific policy type.
Generating all the assertions presented in abgueds, one will find duplicate assertions
are being generated for checking same policy adnffFor example, a Permission /
Prohibition conflict needs only one assertion. Ho&re it can be generated by using

following steps presented in Figure 29 or Figure 30
Covering all types of policy conflicts, we propdke following approach.
1. If policies are not sorted, sort them based orncgdipes.

2. For any Positive Obligation policy within the syste generate the
assertions presented in Figure 31 and add thesetiass to the Alloy

model.

3. For any Permission policy within the system, geteerthe assertions

presented in Figure 29 and add these assertighe #lloy model.

4. Use the assertion above to find any possible agsfcounterexamples) in

Alloy model.

83

PML Alloy

Policy-based system
(Collection of Policies)

~—— e L~

|

|

|

|

|

|

|

|

|

Y e— ! |
:- : |

Permission generatio : Assertions generated
: : (Figure 29)

:

|

|

|

|

|

|

|

|

|
Prohibition i
i
Positive — Assertion generated
Obligation generatio (Figure 31)
i
Negative ! |
Obligation i \ /,
———— | S

Figure 33 - Generation of Assertions

Figure 33 presents the steps of assertions gemeraisually. The generated
assertions for Positive Obligation will cover O+/@rd O+/A- policy conflict type while
assertions generated for Permission will coverAk#A- policy conflict type. Another
possible choice is to generate assertions for Bitedn and Negative Obligation.
Assertions generated for Prohibition will cover theO+ and A-/A+ types of policy
conflicts while assertions generated for Negatii@idgation will cover the O+/O- policy
conflict type. Any combination used, one should yotle considered to generate
assertions for all types of policy conflict typ&eps in Figure 29 generates assertion for

84

A+/A- policy conflict type, Steps in Figure 30 geaes assertion for A+/A- and A-/O+
policy conflict type, Steps in Figure 31 generassertion for O+/O- and A-/O+ policy
conflict type and Steps in Figure 32 generatesragsefor O-/O+ policy conflict type.
Having all types of policy conflicts covered (as ntiened in Section2.5.1), a
combination of different assertion generation isdesl to be selected to cover all means

combination of policy conflicts, i.e. O+/O-, A+/Aand O+/A- policy combinations.

85

6 Outcome and Discussion

In this thesis, we have used a policy language lihatbeen conformant to the
principles of MDE. The language of our choice tegemt policies was PML. Our
hypothesis was to use PML meta-model would helpuetecting conflicts at the level
of concrete policoes. Meta-model of a languagenésfistructure for that language,
restrictions imposed on each element of that lagguand other semantics of that
language. However, as it has been shown, we wersutccessful in integrating usage of

the meta-model into the viable conflict detectioecmanism.

Several factors contributed to this unsuccessftggiration. Factors such as
structure of the model in Alloy, the way in whicHl@y analyses it and relation of the
PML meta-model and concrete policies in the Allogdal. The goal of using the meta-
model lead us to systematically investigate diffiér@pproaches for modelling policies.
By eliminating and overcoming each approach’s i&gin(s), we have introduced a
modelling approach that leads us to detect poliogflcts (i.e. the third modelling

approach).

Different approaches for modelling policies in Alldhave been presented in

Section 5. These modelling approaches were aimddtect conflicts among policies.

The first two modelling approaches presented ig tihesis, began with modelling
of PML meta-model followed by modelling of concraielicies. As our first steps of
modelling policies in Alloy, it seems the best wiayto model policies in Alloy along

with its meta-model. We also were aware that havhgL meta-model in an Alloy

86

model would give us the ability to check the pa@gifor their syntax in addition to the

main goal of ours, policy conflict detection.

In the first and second modelling approaches 8ettions5.4 and5.5), we have
used the PML meta-model in the Alloy model. Perioissand Prohibition policies
(signatures) were modelled in Alloy as they weenants of the PML meta-model. They
have been used to act as a parent signature faretenpolicies. As mentioned earlier,
each concrete policy was modelled as a child ofRML meta-model signature (e.qg.
Permission or Prohibition). The advantage of usimg inheritance hierarchy as stated in
Section5.5.1 is being able to write an assertion for donfletection at the PML meta-
model (e.g. Permission or Prohibition signaturex) ase it to check all the instances of
concrete policy signatures derived from those digea (i.e. concrete policies)hus, we

only needed to have one assertion for each typerdficts in our Alloy model.

The techniques applied to model concrete policiesthe first and second
modelling approaches (Sectiofs4 and5.5) are similar to the one used to model the
policy meta-model. Namely, we have used the UMlsengation of the policies and then
translated them into the Alloy model with help oMU2Alloy tool, considering the
restrictions we have for using this tool (as meme in Sectior4.3). However, as an
outcome of the first modelling approach, unwantedegation of policies in the Alloy

model prevented us from taking any further stepietect conflicts.

In the Second modelling approach (Secttos), an attempt was made to restrict
generation of unwanted signatures and relationgs fidstriction helped us to generate
only instances of concrete policies that existhi@ $ystem. This task was accomplished

by using “for” command in Alloy (“for” can be usetdter “run” or “check” command).

87

This way we could tell Alloy how many number of tasces should be generated for
each signatures in the model. After solving thebpm of generation of unwanted
policies, we have applied conflict detection methoHor detecting conflicts, we used
Alloy Assertions. However, using assertion in thecand modelling approach (c.f.
Section5.5) caused an error. As mentioned in detail inti&e&.5.2, not being able to
distinguish between different relations (relatiatedined in parent and child signatures)

was the source of the problem.

To solve this problem, we have tried to alternate dpproach by using assertion
at the level of concrete policies (Third modellaygproach, Sectios.6). Using assertions
at the level of concrete policies will require get®n of numerous conflict detection
assertions, unlike the limited number of asserénticipated to be written at the level of

PML meta-model (if the second modelling approach lbeen successful).

Considering the fact that number of assertionselative to the number of
concrete policies within the system, an attemptineestigate the outcome of this
approach was carried out in Secti®. It has been shown that this modelling approach
succeeded in detecting policy conflicts. In thisdelting approach, all types of possible
conflicts (as discussed in Secti@®b.1) have been successfully detected. Laterron, i
Section5.8 a complete method for creating the needed tamserfor this modelling

approach has been introduced.

In the first, second and fourth modelling approachee only used one or two
policies to investigate outcome of the modellingpraach. These two policies were
sufficient to demonstrate the unfeasibility of thegpproaches since we were discussing

the unsuccessful modelling approaches policies. édew in the third modelling

88

approach, since we needed to testify and demoedtietection of all possible conflict
types, we have used all the policies within ouriggebased system as introduced in

Sectionb.1.

In the fourth modelling approach (Sectibrv), we examined using relations in
modelling policies. In the other approaches, fozas to model each concrete policy as a
unique signature. However, in the fourth modellmgproach, the focus is based on
modelling concrete policies using relations. Asctié®d and mentioned in Sectiény?,
this modelling approach cannot be utilized to depedicy conflicts since no limitations
can be put on the number of generated relationss,Wee encountered the same problem
as in the first modelling approach. However, thigetno solution can be found to fix this

problem.

It is also worth discussing that the fourth moahgjlapproach could be altered in
numerous ways. The alteration could be done regauifferent combination of relations
and signatures to present concrete policies. Famele in the first modelling approach,
all classes associated with concrete policies weydelled in a unique signature (Figure
27) while all concrete policies and associated s@ashave been modelled as one
signature in the fourth modelling approach. Frondeiling each concrete policy with
one signature to modelling all concrete policiesme signature, different combination of
relations and signatures can be thought of. Fomel& one can think of having policy
types as a signature and not as relations in theypmodel. Figure 34 presents a sample

way of modelling policies in this unique way.

89

Sig policyType {}

Sig permission extends policyType {}
Sig prohibition extends policyType {}
Sig policy {

Ptype: one policyTpe

P: Actor->Action->Entity}

Figure 34 - Alternative modelling approach

We have modelled concrete policies mainly basedsignatures (in the first,
second and the third modelling approaches) andlynbased on relation (in the fourth
modelling approach). We hawdiscussed any possible combinations of these apipesa
to see if we can find any better solution candidateconflict detection problem using
Alloy. However, for the sole purpose of this thesis combination of the signatures and
relations (i.e. fourth modelling approach and aliiens to it) will lead us to a conflict
detection approach using Alloy. Having relationgpag of modelling concrete policies in
Alloy will result in a failure similar to the oneevhave come across in fourth modelling
approach (Sectioh.7.1). It is because that Alloy Analyzer extenelations in the model,
and nothing can be done to restrict these expasisi@ble 7 presents a comparison of all
approaches. The summarization makes it more cleawluch direction the research
guestion lead us, what held the research back faadsuccessful conflict detection

approach was implemented or not.

90

Table 7 - Comparison of Modelling Approaches

Modelling Positive Points | Negative Conflict

Approach Points Detection
First modelling | Based on Concrete policies| Generation of | Not applicable
approach signatures extend meta- unwanted

model allowing | Policies
for syntax check

Second Based on Capable of Alloy Analyzer | Not successful
modelling signatures checking the error. Cannot
approach syntax plus determine

conflict detection | reference value
Third modelling | Based on Simple way of No PML meta- | Successful
approach signatures modelling sample model

policies connection
Fourth Based on Unified Generation of | Not applicable
modelling relations representation of | unwanted
approach all policies policies

To summarize the outcome of this thesis, a suagessbdelling approach was
recognized as a suitable solution for detectingflmd® among policies. In the third
modelling approach (Sectiob.6), we have successfully managed to introduce an
approach to detect conflicts among policies witlainpolicy-based system. In this
modelling approach, several assertions are neeoedetadded to our model. The

generation of these assertions have been discusSadtion5.8.

Different modelling approaches presented in thiesigy tried to systematically
investigate different possible modelling ways todsloconcrete policies in Alloy and
analyze them. The first and second modelling appres were using the same method to
model meta-model as the concrete policies. Havnegnieta-model and concrete policies

in one model proved not to be a successful pattetect conflicts. Third modelling

91

approach succeeded in detecting conflicts amongigsl while it has not had the
connection to the meta-model. We have discussesil dgeps of third modelling

approach in sectiorb[6].

One can consider using second modelling approaichesldition to the third
modelling approach in two separate steps to batyse the concrete policies and detect
conflicts among them. Figure 35 presents the preghaosethod. In the fourth modelling
approach, another possible way to model the pglicieAlloy was examined. It was not

successful since expansion problem of the modelatdre avoided.

92

PML

-

Concrete
Policies

.

Transformation to Alloy

Assertion Generatic

——

Alloy

Concrete Policies
Presentation in
Alloy

- J

s N
Assertions

Detect Policy Conflicts

In this thesis, we tried to introdueepolicy conflict detection method for PML
with the help of Alloy. In SectioR.7, different practices of Alloy in different asehave
been reviewed. The usage of Alloy varies from REA@odelling to XACML policy
modelling. All of the approaches presented in ®ac#.7 have used Alloy and Alloy

Analyzer to model and analyze a system or part.olinithe following lines we will

22 Role Based Access Control

Figure 35 - Proposed Method

93

compare those approaches and this thesis’s apprdachueline et. al. i2]l] used a
similar approach to this thesis’s approach in assethat they were also pursuing a
modelling of a MOF-complaint meta-model, which fabe& was expressed as UML and
OCL. In their approach, authors only have modettezl meta-model and used Alloy to
detect flaws in it. They basically have used thpatéity of Alloy to generate different
instances of the model and then check them ag#iesheta-model in Alloy. They have
used the result of generated instances to coilieat ineta-model. Their approach can be
compared to our second modelling approach (Sedid). However, in the second
modelling approach, we not only have the meta-mpdesent in our model but also the
concrete policies within the Alloy model. 183], authors used Alloy to model a JAAS
framework and in34] and B7] research were carried out to analyze web ogtego In
these studies, authors have not modelled the metkelnof a language 3B]), or have not
used the modelled meta-model and instances sinealtesty (B4] and B7]). They have
provided an Alloy presentation of the system urstedy and have used Alloy Analyzer

to analyse their systems.

Schaeffer et. al. in2R] used Alloy to analyze policy-based interactioflhough
the definition and usage of policies are for a gmedomain called “Self Managed Cell”.
However, we do compare their approach with the iadeapproaches presented in this
thesis. In their study, authors have succeededrduigqe a solution for their need of
resolving conflicts in their domain. However, atetliinal comments, it has been
mentioned that they are not suggesting the propossiod as a general policy conflict
detection method, but more as a method to “unandbigly specify the desired behaviour

of interacting Self-Managed Cells”. In additionttat, their approach was also meant to

94

be for a specific domain of “Self Managed Cell”,ilgithe approach we are pursuing is a
general approach that can be applied not onlygaraicular policy language but also we

would like to have a complete general conflict dBbsm approach as an outcome.

In literature review (Sectio.7), several studies have been reviewed about Role
Based Access Control (RBAC). Researchers have Adleg to model and analyze
RBAC models. Since the concept of RBAC is closdgh® concept of access control
policy, we have studied some of the works in thehaRBAC are used to assign access

to resources is a system, similar to the accessatqolicies.

Toachoodee et. al. i2B] used Alloy to analyze a RBAC model. The RBAC
model they are analysing has been introduced im pfager for the first time. Although
their approach is similar to the approach exercisdtis thesis, deeper analysis helps us
to distinguish the difference to our approach.heitt approach, at the time of modelling
of instances (called model transformation in thpgpp they present all the constraints
and limitations needed by using OCL constraintmpse relations and definition of
signatures in Alloy. In addition, the definition pérmission was defined to their specific
need and in a specific domain. For example, dé&mibf permission is defined by a
person’s location and time. Based on those valugeeranission concept would be
deduced in the system. However, a policy, in gdnemgght include greater number of
elements than location and time. We cannot asswgfieittbn of policy conflicts based
on definite number of variables (i.e. location @made) in any domain. In another RBAC

related research study using Allo4], Schaad and Moffett analysed different RBAC

95

models in regards to each other. They used Allojméalel and check upon concepts of

RBAC?® within their model.

The main task in their study was to test their pegal model against mentioned
concepts in Alloy. Their approach is different frams thesis approach in a sense that
they used Alloy to analyse their proposed model &%l it against some concepts of
RBAC. They have not used Alloy to generate or as®lgny instances of their proposed

model or the concepts of RBAC but only to analyssrt in an Alloy model.

Alloy has also been used to model policy languafagouni et. al. in25] used
Alloy to model a policy language called APPEL (dissed in Sectio2.7.2). In this
approach, authors modelled the APPEL language ceiplin Alloy. They have
modelled policies in Alloy and successfully havetedged conflicts between them
However, their modelling approach is unique to AfPEL language and cannot be
extended to other policy languages. They basicatigel each element of their language
into Alloy in a specific way. However, in our appah we are pursuing a way of
modelling a generic policy language’s UML profileto Alloy. We are dealing with a

more general approach than their approach.

Some studies on modelling of XACML policy langudgeve also been reviewed
in Section2.7.2. Martin and Xied6] proposed a way to generate policies for XACML
policy language using a tool called Crig. Neveriss| Authors suggested that they could
try to use Alloy in their analysis instead of tl®ltthey are already using. Zhang et. al.

[27] proposed a way in which they can generateiedrikACML policies. However, we

2 The concepts checked are: Static Separation of (380D), Dynamic Separation of Duty (SDSoD) and
the Operational Separation of Duty (OpSoD), fordeé&nition of these concepts please refer to [24].

96

are pursuing an approach to verify existing poiaaad detect conflict among them. We

would like to be able to use any existing poli@esl then analyze them.

Hughes and Bultan ir2B] used partial ordering and eliminated the nesdi$ing
assertions but only facts in their model. The padrderings used in their approach were
translated into facts. Using those facts, they vadile to detect conflicts. Nevertheless,
no discussion about generation of different assestiand in what order they are

generated can be found.

97

Table 8 - Comparison of different studies using Ady

Alloy approaches Method used Conflict Note

Detection
A metamodel for the Analyzing model | Meta-model Detect flaws in the
measurement of Object- | presented in modelled meta-model, used

Oriented systems: an UML and OCL Alloy as a meta-
analysis using AlloyZ1] model checker
Verification of Aspect- Various No meta-model | Analyzed model

UML models using Alloy
[33], a Combined
approach to checking we

modelling based
on the research

htype

modelling,
modelling based
on the specific

using Alloy

ontologies B4] language

Verification of policy- policy-based Conflict detection| Cannot generalize
based self-managed cell | interactions defined based on| their approach to
interactions using Alloy the specified any domain

[22] domain

Ensuring spatio-temporal| introducing a new Conflict detection| Definition of

11%

access control for real- | RBAC model by OCL permission is local
world applications23] to their research
area and cannot bg
generalized
Conflict detection in call | APPEL policy No meta-model | Cannot generalize
control using First-Order | language modelling, the approach to ou

Logic model checking
[25]

modelling based
on the specific
language

=

domain

Automated test generatio

for access control policies

via Change-Impact
Analysis p6], automated
verification of access

NXACML

D

control policies 28]

No meta-model
modelling,
Modelling in their
own way and for
the specific
research.

Different goals,
generated verified
XACML policies,
also mentioning
Alloy can be used
as future work

Most of the approaches that use Alloy as a couxaenple finder rely on

Jackson’s small scope hypothesis, which suggeatsiftta bug exists it will appear in

small model of a systen?(]. Also in most of the modelling approaches désed in

98

Section2.7, the modelled meta-model of the language imyAHas not been used in the

analysis process.

As discussed above in addition to sect@, in some approaches, every single
element of the language (or system) was modellédlay for analysis. Some innovative
approaches (such as using partial ordering or ikgfinoncepts of conflict in a simpler
way in their domain) have been used to model tiséegy in Alloy and then analyze it.

Table 8 presents a summary of some of the stuieasted in this thesis.

A policy conflict detection depends on the defmitiof the policy language and
specific statements stated in its definition. Hoarewone of the studies discussed in this
section has introduced an approach to include mei@del of a language in their analysis.
In this thesis, we attempted analysis of a systgminbroducing different modelling

approaches in which PML meta-model are present.

We also like to discuss the static conflict detattmethod used in this thesis. In
all policy languages, using a dynamic conflict daten method is quite achievable and it
can be simply implemented. As stated earlier intiBec2.5.2, a simple way of
monitoring outcome of different applicable polici€é more than one policy is
applicable) can lead to the detection of policyflicts. This can also be enhanced by
providing a monitoring service for any changeshe policies, resources, interactions
within the domain and other factors in a systenvextheless, the main goal of this thesis
is not to testify the feasibility of dynamic comrflidetection of policies using Alloy. The
main concern is to determine various solutions,ctwhtan be offered by Alloy for

detecting policy conflicts at the design time.

99

However, as easy the dynamic policy conflict detecimethod sounds, on the
other hand the static conflict detection methodds straightforward and is needed to be
explicitly designed and implemented for a systetatiSconflict detection is used when a
system is not functional and usually before impletaton phase. At the time of
analysing the system under static conflict detectitethod, actual data should not be
assumed present in the system. Therefore, the staniflict detection method needs to
explore various possible states that might happendystem. Dynamic detection method
has no obligation to perform this task. Some potiowflicts could be detected based on
the states generated by static conflict detectiethod. Since these conflicts might not
take place in the real world situation, the comdlidetected by static conflict detection
method are usually considered as potential cosflione could conclude that design and
implementation of a static conflict detection methe a demanding task, considering the

generation of situations intensely related to theéaulying domain.

We also want to discuss the “conditions” used ised#ons to detect policy
conflicts. As stated in Sectiof.8, in the process of generation of assertions iand
Section5.6, the third modelling approach, we only used‘tb&e” element of policies to
check if they are conflicting with each other. Wavé not checked the “action” and
“resource” in these conflicts although policiesgameted and modelled has both elements.
We claim that we can use assertions in which ndy &mole” but also “action” and
“resource” are present as well. Not having theseehts in conditions checked at the
modelling approach will not affect the result o tthesis. We just need to add two more
constraints to be checked in each assertion; tbesstraints are to check “action” and

“resource” as we do for the “role”. This followsetlsame rationale as we have used for

100

decreasing number of policy elements in Sectto?. As an example, an assertion
checking for “role”, “action” and “resource” betwedwo Permission and Prohibition

policy is presented in Figure 36.

assert Pol-j-Pol-k { all p1: Pol-j, p2: Pol-k | pdle = p2.role && pl.action = p2.actign
&& pl.resource = p2.resource }

Figure 36 - Assertion

We also like to discuss cases in which there ipol@y of certain type present
within a system. In all of the modelling approachee have assumed that at least one
policy of each policy type exists. If no single iggl from one policy type is present
within a system, Alloy will generate a policy frothe meta-model. This policy might
affect our conflict detection method. In modelliagproaches, if we encounter a situation
in which one of the policy types does not have @pyesentative concrete policy defined
in the system, we will create a dummy policy foattpolicy type and then continue the
analysis. Let us consider an example when thame Rrohibition policy within a system.
In this case, the Alloy Analyzer would generateadiqy instance from the meta-model
class Prohibition. To avoid that we create a dumpnghibition policy as follow:
ActorAA is prohibited to accessAA ResourceAA. Welwmake sure that the selected
names for Actor, Action and Resource are not preshpavailable within the system.
This task can simply be done by checking the péssiblues for Actor, Action and
Resource within a system. Accomplishing this step,make sure this policy will not

create any possible conflicts with other policiethim the system

101

7 Conclusion

In this thesis, the goal was to investigate Allogapability to detect policy
conflicts. In addition, we tested the feasibility lmaving semantics presented by the
policy language meta-model as a part of this amaly¥herever policies are dealt with,
one should expect policy conflict to occur. Polaonflict detection is the first step in the
detection / resolution process. Policy conflicted#ibn is not a new area of research and
various policy conflict detection methods are aadalid. Typically, after detection of a
conflict, system’s manager will be notified abobe tconflict. Based on the associated
policies and other factors within a system, managerinvestigate and find out the cause
of the conflict. Either the cause of the confli¢tosld be dealt with or a resolution
decision should be assigned to that specific acnflihere are two different types of
conflict detection algorithms: One is design tinoaftict detection (which is called static
conflict detection method) and the other one istinma conflict detection (dynamic
conflict detection method). Static conflict deteatimethods are used before deployment
of a system. This type of conflict detection trieseliminate possible conflicts among
policies at the design time of a system. On thesrotiand, Dynamic conflict detection
methods are used when the system is functionalugeds are using the system. Static
conflict detection methods are useful to find ciotdl between existing policies while
Dynamic conflict detection methods are more usefuén dealing with other causes of

conflicts in the system.

102

The goal of this thesis is to investigate whethkBoyAis an appropriate tool for the
static conflict detection. This means, first weastigated whether we can use Alloy as a
tool to model policies and second to detect coisfleamong these modelled policies.
Alloy is a language for model checking. Alloy comeith a tool called Alloy Analyzer,
which is helpful in the process of checking the eldaly providing an environment for
Alloy language and also by generating instanceth®fmodel. After having a model in
Alloy, one can ask Alloy Analyzer to check the mioidesee if the model is consistent or
not and if Alloy Analyzer can find any counterexdenpterfering with part (or whole)
model or not. Alloy Analyzer’s role in this thesisas to analyze the model, i.e. to find
any inconsistencies in the model, which in caspalities means to find conflicts among

policies

We also investigated usage of meta-model in arslydi policy conflicts.
Presenting policies, we used a language calleadyMbdelling Language (PML). PML
is based on Model Driven Engineering principlesistiPML has a meta-model defined.
We transferred the PML meta-model presentation MLUnto an Alloy model. This
transformation was done with the help of UML2Allowe systematically explored
different ways to represent policies in Alloy. Wavie begun the modelling with the
modelling of PML meta-model and concrete policiesiunique Alloy model (first and
second modelling approaches). Then, we have pextentmodelling approach which
only contains the concrete policies in an Alloy mmb¢hird modelling approach) and
finally we have presented an alternative modellihgoncrete policies in Alloy using

relations (fourth modelling approach). For each efioty approach, we attempted to

103

come up with a conflict detection mechanism. Weehased Alloy’'s reasoning capability
(namely Assertion in Alloy) for this task. Eachtbe modelling approaches has its own

drawbacks and advantages.

In this thesis, we have shown that Alloy also ca&nused not only to model
concrete policies in PML but also to help us fimdicterexamples of the model and lead

us to detect conflicts among concrete policies.

Analysis utilized by using Alloy and PML was an awative approach, which has
not been studied before. Inspired by concept of MiDEhis thesis we have investigated
analysis of PML meta-model along with its instanicea model. We have shown through
different modelling approaches how to use the metdel of PML in accordance with
our goal of policy conflict detection. The outcomkthis thesis confirms the previous
similar researches done in this area, but introd@éeinnovative outcome, the possibility

of analysing a system meta-model and its concnstamces simultaneously using Alloy.

Within the steps of reaching the goal of this thesie also have managed to
provide a full presentation of PML meta-model ino&l This model can be counted as
an alternative outcome of this thesis. The compietie of PML meta-model in Alloy

can be found ing1] while part of that is included in Appendix 1e3ion9).

104

8 Resources

1.

Hassan, W., Logrippo, L.: Governance Policies for Privacy Access Control and their
Interactions. In: Feature Interactions in Telecommunications and Software Systems
VIIl, ICFI'05, I0S Press, pp. 114-130. (2005)

Lupu, E., Sloman, M.: Conflict Analysis for Management Policies. In: Proceeding to
the 7th international symposium on Integrated Network Management IM’97
(formerly known as ISINM), San-Diego (USA), Chapman & Hall, pp. 430-443. (1997)
Moffett, J., Sloman, S.: Policy conflict analysis in distributed system management. In:
Journal of organizational computing, pp. 1-22. (1997)

Dunlop, N., Indulska, J., Raymond, K.: Dynamic conflict detection in policy-based
management systems. In: Proceeding of International enterprise distributed object
computing conference, IEEE Computer Society, pp 1-15. (2002)

Kamoda, H., Hayakawa, A., Yamaoka, M., Matsuda, S., Broda, K., Sloman, M.: Policy
conflict analysis using Tabeleaux for On demand VPN network. In: Proceeding of
Sixth international symposium on a world of wireless mobile and multimedia
networks, pp. 565-569. (2005)

Syukur, E., Loke, S., Stanski, P.: Methods for Policy Conflict Detection and Resolution
in Pervasive Computing Environments. In: Proceeding of Policy Management for
Web workshop in conjunction with WWW?2005 Conference, Chiba, Japan, pp. 10-14
(2005)

Uszok, A., Bradshaw, J. , Jeffers, R., Tate, A., Dalton, J.: Applying KAoS services to
ensure policy compliance for semantic web services workflow composition and

enactment. In: S. A. Mcllraith, D. Plexousakis, F. van Harmelen (Eds.), The Semantic

105

10.

11.

12.

13.

Web—ISWC 2004, Proceedings of the Third International Semantic Web
Conference, pp. 425-440. (2004)

Uszok, A., Bradshaw, J., Johnson, M., Jeffers, R., Tate, A., Dalton, J., Aitken, S.: KAoS
policy management for semantic web services. IEEE Intelligent Systems, vol. 19, no.
4, pp. 32-41. (2004)

Bradshaw, J. M., Uszok, A., Jeffers, R., Suri, N., Hayes, P., Burstein, M., Acquisti, A.,
Benyo, B., Breedy, M., Carvalho, M., Diller, D., Johnson, M., Kulkarni, S., Lott, J.,
Sierhuis, M., Van Hoof, R.: Representation and reasoning for DAML-based policy and
domain services in KAoS and Nomads. In: Proceedings of the Autonomous Agents
and Multi-Agent Systems Conference (AAMAS 2003). ACM Press, pp. 835-842.
(2003)

Kagal, L.: Rei: A Policy Language for the Me-Centric Project. Hewlett Packard Labs
Technical Report. (2002)

Kaviani, N.: Web Rules to Interchange Policies. In: Master of Science Thesis in the
School of Interactive Arts and Technology, Simon Fraser University. (2007)

Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., Bunch, L.,
Johnson, M., Kulkarni, S., Lott, J.: KAoS Policy and Domain Services: Toward a
Description-Logic Approach to Policy Representation, Deconfliction, and
Enforcement. In: Proceedings of 4th IEEE Workshop on Policies for Networks and
Distributed Systems (Policy 2003), IEEE, pp. 93-96. (2003)

Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification
Language Proc. In: Proceeding of workshop on Policies for Distributed Systems and

Networks, Bristol, UK, pp. 18-39. (2001)

106

14.

15.

16.

17.

18.

19.

20.

21.

Moses, T.: eXtensible Access Control Markup Language (XACML) Version 2.0. OASIS
Standard (2005)

Anastasakis, K.: UML2AIlloy Reference Manual, UML2Alloy Version: 0.52 [Online]
available at
http://www.cs.bham.ac.uk/~bxb/UML2Alloy/files/uml2alloy_manual.pdf (retrieved
01/09/2009)

Gogolla, M., Richters, M.: Transformation rules for UML class diagrams. In: Selected
papers from the First International Workshop on The Unified Modeling Language
UML. pp. 92-106. (1999)

Kaviani, N., Gasevic, D., Milanovic, M., Hatala, M.: Model-Driven Engineering of a
General Policy Modeling Language. In: Proceedings of the 9th IEEE Workshop on
Policies for Distributed Systems and Networks (POLICY 2008), pp.101-104. (2008)
Wagner, G., Giurca, A., Lukichev, S.: A General Markup Framework for Integrity and
Derivation Rules. Dagstuhl Seminar Proceedings, Principles and Practices of
Semantic Web Reasoning (2006). [Online] Available at:
http://drops.dagstuhl.de/opus/volltexte/2006/479 (retrieved 01/09/2009)

Giurca, A. Wagner, G.: Rule Modeling and Interchange. In: Ninth International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC
2007), pp.485-491. (2007)

Jackson, D.: Software Abstractions, Logic, Language, and Analysis, MIT Press, ISBN-
10: 0-262-10114-9. (2006)

McQuillan, J., Power, J.: A Metamodel for the Measurement of Object-Oriented
Systems: An Analysis using Alloy. In: Proceeding of International Conference on

Software Testing, Verification, and Validation, pp. 288-297. (2008)

107

22.

23.

24.

25.

26.

27.

28.

Schaeffer-Filho, A., Lupu, E., Sloman, M., Eisenbach S.: Verification of Policy-Based

Self-Managed Cell Interactions Using Alloy. In: Proceedings of the 2009 IEEE

International Symposium on Policies for Distributed Systems and Networks. pp. 37-

40. (2009)

Toahchoodee, M., Ray, I. Anastasakis, K., Georg, G., Bordbar, B.: Ensuring Spatio-
Temporal Access Control for Real-World Applications. In: Proceedings of the 14th
ACM symposium on Access control models and technologies. pp. 13-22. (2009)
Schaad, A., Moffett, J.: A Lightweight Approach to Specification and Analysis of
Rolebased Access Control Extensions. In: Proceedings of the seventh ACM
symposium on Access control models and technologies. pp. 13-22. (2002)
Layouni, a., Logrippo, L., Turner K.: Conflict Detection in Call Control Using First-
Order Logic Model Checking. In: Proceeding of 9th. Feature Interactions in
Telecommunications and Software Systems. pp. 66-82. (2007)

Martin, E., Xie, T.: Automated Test Generation for Access Control Policies via
Change-lmpact Analysis. In: Proceeding of Third International Workshop on
Software Engineering for Secure Systems (SESS'07). pp. 1-5. (2007)

Zhang, N., Ryan, M., Guelev, D.: Synthesising Verified Access Control Systems in
XACML. In: Proceedings of the 2004 ACM workshop on Formal methods in security
engineering. pp. 56-65. (2004)
Hughes, G., Bultan, T..: Automated verification of access control policies. Technical
Report, Department of Computer Science, University of California, Santa Barbara.
[Online] Available at http://www.cs.ucsb.edu/~bultan/publications/tech-

report04.pdf (2004) (retrieved 01/09/2009)

108

20.

30.

31.

32.

33.

34.

35.

36.

37.

Lin, A., Bond, M., Clulow, J.: Modeling Partial Attacks with Alloy. In: Proceeding of
Security Protocols Workshop (SPW’07). pp. 1-15. (2007)

Filho, F., Brito, P., Rubira, C.: A Framework for Analyzing Exception Flow in Software
Architectures. In: SIGSOFT Softw. Eng. Notes, Volume 30, Number 4. pp. 1-5.

(2005)

Nakajima, S., Tamai, T.: Formal Specification and Analysis of JAAS Framework. In:
Proceedings of the 2006 international workshop on Software engineering for secure
systems. pp. 59-64. (2006)

Shaffer, A., Auguston, A., Irvine, C., Levin, T.: A Security Domain Model to Assess
Software for Exploitable Covert Channels. pp. 45-56. (2008)

Mostefaoui, F., Vachon, J.: Verification of Aspect-UML models using Alloy. In:
Proceedings of the 10th international workshop on Aspect-oriented modeling. pp.
41-48. (2007)

Dong, J., Lee, C., Lee, H., Li, Y., Wang, H.: A Combined Approach to Checking Web
Ontologies. In: Proceedings of the 13th international conference on World Wide
Web. pp. 714-722. (2004)

Hu, H., Ahn, G.: Enabling Verification and Conformance Testing for Access Control
Model. In: Proceedings of the 13th ACM symposium on Access control models and
technologies. pp. 195-204. (2008)

Kolovski, V., Hendler, J., Parsia, B.: Analyzing Web Access Control Policies. In:
Proceedings of the 16th international conference on World Wide Web. pp. 677-686.
(2007)

Wang H., Dong J., Sun J., Sun J.: Reasoning support for semantic web ontology family

languages using Alloy. In: International Journal of Multiagent and Grid Systems,

109

38.

30.

40.

41.

42.

43.

44,

45.

Special issue on Agent-Oriented Software Development Methodologies. Volume 2,
Issue 4. pp. 455-471. (2006)

Armac l., Kirchhof M., Manolescu L.: Modeling and Analysis of Functionality in
eHome systems: Dynamic Rule-based Conflict Detection. In: Proceeding of the 13"
Annual IEEE international symposium and workshop on Engineering and Computer
Based Systems, pp. 219-228. (2006)

Bezivin J.: On the Unification Power of Models. In: Software and System Modeling,
Volume 4, Issue 2, pp. 171-188. (2005)

URML: a UML-Based Rule Modeling Language. [Online] Available:
http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=node/7 (retrieved
01/09/2009)

Warmer J., Kleppe A.: The object constraint language: precise modeling with UML.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA. (1998)

Noy N., McGuinness D.: Ontology Development 101: A Guide to Creating Your First
Ontology. Technical Report KSL-01-05, Stanford Knowledge Systems Laboratory.
(2001)

Ribari¢ M., Sheidaei S., Gasevi¢ D., Milanovi¢ M., Giurca A., Lukichev S., Wagner G.:
Modeling of Web Services using URML, R2ZML and model transformations.: In
Giurca, A., Gasevi¢, D., Taveter, K., (Eds.). Handbook of Research on Emerging Rule-
Based Languages and Technologies: Open Solutions and Approaches, IGI Publishing.
pp. 422-446. (2009)

ArgoUML: A UML modeling tool. [Online] Available: http://argouml.tigris.org/

Hunter D., et al.: Beginning XML. Wiley, ISBN: 978-0-470-11487-2. (2007)

110

46.

47.

48.

49.

50.

51.

52.

53.

54,

Lupu E., Sloman M.: Conflicts in policy-based distributed systems management. In:
IEEE transactions of software engineering, Volume 25, Number 6, pp. 852-869.
(1999)

JTP- Java Theorem Prover. [Online] Available at
http://www.ksl.stanford.edu/software/JTP/ (retrieved 01/09/2009)

R2ML to JBoss Rules. [Online] Available at http://oxygen.informatik.tu-
cottbus.de/translator/R2MLtoJBossRules/ (retrieved 01/09/2009)

R2ML to OCL. [Online] Available at http://oxygen.informatik.tu-
cottbus.de/translator/R2MLtoOCL/ (retrieved 01/09/2009)

Dean M., Schreiber G., et al.: OWL Web Ontology Language Reference. W3C
Recommendation 10 [Online] Available at http://www.w3.org/TR/owl-ref/
(retrieved 01/09/2009)

PML Alloy model. [Online] Available at http://sheidaei.com/shahin/pml/ (retrieved
01/09/2009)

Zhang, N., Ryan, M., Guelev, D.: Synthesising verified access control systems in
XACML. In: the 2004 ACM Workshop on Formal Methods in Security Engineering,
Washington DC, USA, ACM Press. pp. 56-65. (2004)

Gasevic, D., Djuric, D. DevedZic, V.: Model Driven Engineering in Model Driven
Engineering and Ontology Development. Springer Berlin Heidelberg, 2009, ISBN:
978-3-642-00281-6

Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification , Version

1.0 [Online] Available at http://www.omg.org/spec/QVT/1.0/PDF

111

55. Kelsen, P., Ma, Q.: A Lightweight Approach for Defining the Formal Semantics of a
Modeling Language. In: Proceedings of the 11th international conference on Model
Driven Engineering Languages and Systems, pp. 690-704 (2008)

56. XMI Mapping Specification, v2.1.1, 2007, [Online] Available at
http://www.omg.org/spec/XMI/2.1/PDF (retrieved 01/11/2009)

57. Lassila, O., Swick, R, et al.: Resource Description Framework (RDF) Model and

Syntax Specification (1999)

112

9 Appendix 1 — PML Meta-model Representation in Alloy

9.1 Definition of Signatures

Note: Only first three pages of the listing aregerged here for the demonstration

purposes. Complete Alloy representation of PML rmetalel is available frombfl].

module untitledModel
sig RuleBase{

vocabulary:lone Vocabulary,

ruleset:set RuleSet,

externalvocabulary:set ExternalVocabulary}
sig Vocabulary{

vocabularyentery:some VocabularyEntery}
sig RuleSet{

rulebase:one RuleBase,

variable:set Variable,

vocabulary:lone Vocabulary,

externalvocabulary:one ExternalVocabulary}
sig ExternalVocabulary{

}

sig ExternalVocabularyLanguage{

}

sig Variable{

ruleset:set RuleSet,

113

objectvariable:lone ObjectVariable,
genericvariable:lone GenericVariable,
datavariable:one DataVariable}

sig IntegrityRuleSet extends RuleSet{
integrityrule:set IntegrityRule}

sig DerivationRuleSet extends RuleSet{
derivationrule:set DerivationRule}

sig ReactionRuleSet extends RuleSet{
reactionrule:set ReactionRule}

sig ProductionRuleSet extends RuleSet{
productionrule:set ProductionRule}

sig ReactionRule{
andornafnegformula:some AndOrNafNegFormula,
andornafnegformula:set AndOrNafNegFormula,
eventexpression:one EventExpression,
eventexpression:one EventExpression}

sig ProductionRule{
andornafnegformula:some AndOrNafNegFormula,
programactionexpression:some ProgramActionExpressio
andornafnegformula:set AndOrNafNegFormula}

sig DerivationRule{
andornafnegformula:some AndOrNafNegFormula,

literalconjunction:one LiteralConjunction,

114

objectdescriptionatom:one ObjectDescriptionAtom,
I ogicalformula:one LogicalFormula}
sig IntegrityRule{

logicalformula:one LogicalFormula}
sig AlethicIntegrityRule extends IntegrityRule{

}

sig DeonticlntegrityRule extends IntegrityRule{
}
sig LogicalFormula{
implication:one Implication,
derivationrule:one DerivationRule}
sig AndOrNafNegFormula{
disjunction:lone Disjunction,
conjunction:lone Conjunction,
atom:lone Atom}
sig LiteralConjunction{
atom:some Atom}
sig ProgramActionExpression extends AtomicEventEggion{
}
sig EventExpression{
obligationordispensation:one ObligationOrDisperts3ti
sig Conjunction extends LogicalFormula{

logicalformula:set LogicalFormula,

115

andornafnegformula:set AndOrNafNegFormula,

andornafnegformula:one AndOrNafNegFormula}

9.2 Definition of Facts

Note: Only first three pages of the listing aregerged here for the demonstration

purposes. Complete Alloy representation of PML nmetalel is available frombl].

fact Asso_Vocabulary vocabulary rulebase RuleBdRel¢Base <: vocabulary in (
RuleBase) one->lone (Vocabulary) }

fact Asso_RuleSet_ruleset_rulebase_RuleBase { RukeSulebase in (RuleSet) set-
>one (RuleBase) && RuleBase <: ruleset in (Ras®) one->set (RuleSet) }

fact Asso_RuleBase_rulebase_externalvocabularyriadiéocabulary { RuleBase <:
externalvocabulary in (RuleBase) one->set (Evefocabulary) }

fact Asso_Variable variable_ruleset_RuleSet { Malga<: ruleset in (Variable) set->set
(RuleSet) && RuleSet <: variable in (RuleSet}sset (Variable) }

fact Asso_RuleSet_ruleset_vocabulary VocabularyleRBet <: vocabulary in (
RuleSet) one->lone (Vocabulary) }

fact Asso_IntegrityRuleSet_integrityruleset_intégule IntegrityRule {
IntegrityRuleSet <: integrityrule in (IntegrityfaSet) set->set (IntegrityRule) }

fact Asso_DerivationRuleSet_derivationruleset_dsronrule DerivationRule {
DerivationRuleSet <: derivationrule in (DerivatRuleSet) set->set (DerivationRule) }
fact Asso_ProductionRuleSet_productionruleset_prborule ProductionRule {

ProductionRuleSet <: productionrule in (ProdutRaleSet) set->set (ProductionRule)

}

116

fact Asso_ReactionRuleSet_reactionruleset_reactienReactionRule {
ReactionRuleSet <: reactionrule in (ReactionReteSet->set (ReactionRule) }

fact Asso_RuleSet_ruleset_externalvocabulary Eatgotabulary { RuleSet <:
externalvocabulary in (RuleSet) set->one (ExdBrfaocabulary) }

fact Asso_IntegrityRule_integrityrule_logicalfornaulLogicalFormula { IntegrityRule <:
logicalformula in (IntegrityRule) set->one (LegiFormula) }

fact Asso_AndOrNafNegFormula_andornafnegformulaivdéonrule_DerivationRule {
DerivationRule <: andornafnegformula in (DerieatiRule) set->some (
AndOrNafNegFormula) }

fact Asso_DerivationRule_derivationrule_literalaamgtion_LiteralConjunction {
DerivationRule <: literalconjunction in (DerivatiRule) set->one (LiteralConjunction)
}

fact Asso_AndOrNafNegFormula_andornafnegformuladpotionrule_ProductionRule
{ ProductionRule <: andornafnegformula in (PromuaRule) set->some (
AndOrNafNegFormula) }

fact
Asso_ProductionRule_productionrule_programactionesgon_ProgramActionExpressi
on { ProductionRule <: programactionexpressior(ifroductionRule) set->some (
ProgramActionExpression) }

fact Asso_ProductionRule_productionrule_andorndbregula_ AndOrNafNegFormula
{ ProductionRule <: andornafnegformula in (PraitutRule) set->set (

AndOrNafNegFormula) }

117

fact Asso_ReactionRule_reactionrule_andornafnegitanAndOrNafNegFormula {
ReactionRule <: andornafnegformula in (ReactidelRone->some (
AndOrNafNegFormula) }

fact Asso_AndOrNafNegFormula_andornafnegformulactiearule_ReactionRule {
ReactionRule <: andornafnegformula in (ReactidelRone->set (
AndOrNafNegFormula) }

fact Asso_ReactionRule_reactionrule_eventexpres&ieentExpression { ReactionRule
<: eventexpression in (ReactionRule) one->onegnEExpression) }

fact Asso_EventExpression_eventexpression_reaat®mriReactionRule { ReactionRule
<: eventexpression in (ReactionRule) one->oneghEExpression) }

fact Asso_Conjunction_conjunction_logicalformula gicalFormula { Conjunction <:

logicalformula in (Conjunction) one->set (Lodiearmula) }

9.3 Definitions of Predicates
Note: Only first three pages of the listing aregerged here for the demonstration

purposes. Complete Alloy representation of PML rmetalel is available frombfl].

pred Vocabulary vocal[|{

all p: Vocabulary | some a: RuleSet | p in a.rp5
}
pred Vocabulary voca2[|{

all p: Vocabulary | all al, a2: RuleSet | (

(p in al.rp5) &&(p in a2.rp5h))

=>

118

(al=a2)
}
pred Vocabulary_voca21[[{
all p: Vocabulary | some a: RuleBase | p in a.rp32
}
pred Vocabulary_voca2?2[[{
all p: Vocabulary | all a1, a2: RuleBase | (
(pinal.rp32) &&(p in a2.rp32))
=>
(a1l =a2)
}
pred RuleSet_rulel[){
all p: RuleSet | some a: RuleBase | p in a.rp31
}
pred RuleSet_rule2[|{
all p: RuleSet | all al, a2: RuleBase | (
(pinal.rp3l) &&(p in a2.rp31))
=>
(al =a2)
}
pred ReactionRule_reacl[[{

all p: ReactionRule | some a: ReactionRuleSeh|grp4

119

pred ReactionRule_reac2[|{
all p: ReactionRule | all a1, a2: ReactionRule$et |
(p inal.rp4) &&(p in a2.rp4))
=>
(al =a2)
}
pred ProductionRule_prod1[{
all p: ProductionRule | some a: ProductionRule$et|a.rp3
}
pred ProductionRule_prod2[|{
all p: ProductionRule | all a1, a2: ProductionRelgS
(pinal.rp3) &&(p in a2.rp3))
=>

(al =a2)

120

10Appendix 3 — Health Domain Policies

This section presents policies introduced in Sect@l in their UML

presentation.

Prahilition

=<pctor== -
Employee #

==pction==
AccessElectronicHealthRecord

o.r 0.x

==Entity=>
ElectronicHeakthRecord

Figure 37 - UML presentation of Pol2

Cbligation
zefictor=s W
Dactor
1
1
==Action==
1 AccessElectronicHealthRecord 1
0.* 0.*
==Entify==
oe ElectronicHealthR ecord

Figure 38 - UML presentation of Pol3

121

Chligation

<=pctars= x
Murge g

==Action=»
AccessElectronicHealthRecord

0. 0=

==Entity==
ElectronicHealthRecord

Figure 39 - UML presentation of Pol4

Dispensation

==Actor== *
MNurse £

2=pction=>
AccessElectronicHealthRecord

==Entity==
ElectronicHealthR ecord

Figure 40 - UML presentation of Pol5

122

11Appendix 2 — Alloy

An Alloy model consists of a number of signaturgig (n Alloy) model. Within
and among these signatures, one can define redatia relate these signatures to one
another. Alloy language is based on relations. ¥alerg would finally translate into
relations and passed to the SAT solver from Allayakizer. Presenting this relations,
building blocks of Alloy language are Signatureswever, for the complete definition,

it would be best to study(].
The essential constructs of Alloy are as follows:

« Signature describes the properties of a set dfyauitjects. It introduces a given
type, which consists of a collection of relationalled fields) and a set of
predicates representing the constraints on thasfiél signature may extend fields
and constraints from another signature. Signatiexpressed as ‘sig’ in Alloy.

« Fact is a constraint on relations and objectsithalways true within the
specification. It is a formula that takes no argateeand does not need to be
invoked explicitly. Fact is expressed as ‘factAtoy.

« Predicate is a template for a parameterized canstiacan be applied elsewhere
by instantiating the parameters. A predicate isagbwevaluated to either true or
false. Predicate is expressed as ‘pred’ in Alloy.

« Function is a template for a parameterized exppas#i can be applied elsewhere
by instantiating the parameters. A function evadadb a value. Function is

expressed as ‘fun’ in Alloy.

123

< Assertion is a constraint that is intended to felfoom the facts in a model. Itis a
formula whose correctness needs to be checkednassgthe facts in the model.

Assertion is expressed as ‘assert’ in Alloy.

11.1Signature

A signature is a definition for a set of atoms.the following lines, first, we
define a signature called “MySig” and “MyAtt” signeies. The declaration for signature

is shown in Figure 41.

sig MySig {}
sig MyAtt {
myrelation: one MySig

}

Figure 41 - Signature definition in Alloy

Signatures, usually contains relations. SignatidgAtt” is a signature that has a
relation called “myrelation” which relates “MyAttto one “MySig”. They also can be
extended from other previously defined signatuFgégure 42 defines a signature called
“MyAttExt”. It has been extended from “MyAtt” sighare. Therefore, it inherits the

relation “myrelation” to the signature “MySig” frofiMyALtt”.

124

Sig MyAttExt extends MyAitt {}

Figure 42 - Extension and Relations in Alloy

Signatures can be defined as abstract. Abstragatsiges cannot be instantiated
from within a model (by Alloy Analyzer), howevereth can be further extended. Figure
43 presents definition of an abstract signatureSi§bature” and shows how it can be

extended to “notAb”.

abstract sig AbSignature {}
sig notAb extends AbSignature {}

Figure 43 - Abstract signatures in Alloy

11.2 Operators

Alloy’s operators can be categorized into threess®g: set operators, logical
operators and the relational operators. The stdrgktrand logical operators presented in

Table 9.

125

Table 9 - Alloy set and logical Operations

Symbol definition

+ union

- difference
& intersection
In subset

= Equality

! negation
&& conjunction
I disjunction

Relational operators supported in Alloy can be raiae product, join, transitive
closure, reflexive-transitive closure, transposamdin restriction, range restriction and

relational override.

11.3Functions / Facts
Alloy includes concept of functions and facts. Téenesncepts help Alloy to force

constraints on the model in different ways.

Facts are used for the constraints that are assameds to hold true in the
model. Functions (like functions in any programmilegnguage) are used to apply
constraints on selected signatures and relationis. Selection is by telling Alloy to use
the function on what combination of signatures eeidtions. It is like passing arguments

in programming languages such as C++ or JAVA.

126

Fact

fact{
Permission->Doctor->Access->ElectronicHealthRegorgolicy.p
}
Function

fun redLights (s: LightState): set Light {s.coloed}
Predicate

pred mostlyRed (s: LightState, j: Junction) {
lone j.lights — redLights(s)

}

Figure 44 - Facts, Predicates, Functions and Ass@ts in Alloy

Figure 44 presents an example of fact, predicatefamction in Alloy. The fact
presented here inserts a combination of instangesp relation of a policy signature.
Function and Predicate example are originated fr20h where a model is discussed for
cross road lights in a junction. The presented ipate, with the use of presented

function, constraints the junction so that all tggbut one at most is showing red.

11.4Run / Check

Assertion
assert nop{ all p: Prohibition , g: Permission3rgle = p->role }
Predicate

pred mostlyRed (s: LightState, j: Junction) {
lone j.lights — redLights(s)

}

Figure 45 - Assertion — Predicate

The purpose of modelling in Alloy (or any languagejo be able to analyze that

model. In Alloy, two different commands (Run andeCk) are used to execute the

127

analyze process on a model. A Run command tellsyAllnalyzer to search for an
instance for a specific Predicate. Alloy triesitadfa instance of the model to hold all the
constraints and reports it to the user. The Chemkincand tries to search for a

counterexample of any Assertion in the model.

An assertion in the Alloy is a constraint thatrigended to follow from the facts in
the model. The Alloy Analyzer checks assertionsad$ertions do not hold, it will be
reported as a result of analysis. The assertioes naostly used to find possible

counterexamples within the model.

Predicates are like assertions. The only differaadbat Alloy Analyzer tries to

find an instance within the model that satisfidstltad constraints within the model.

A scope is an element that bounds the size ofrinstar the counterexample that
Alloy Analyzer tries to generate. There is a ddfagbpe set for Alloy Analyzer. If no
definite scope is set then the default one is ukethe Figure 46, an example showing

usage of Run and Check with the scope specified.

Run
run SamplePred for 4 but 4 int, 1 Permissionl, &t

Check
check SampleAssertion for 3 int, 1 Permission, ttbDio

Figure 46 - Scope, Run and Check in Alloy

128

