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Abstract

Emerging video applications are being developed where multiple views of a scene are cap-

tured. Two central issues in the deployment of future multiview video (MVV) systems are

compression efficiency and interactive video experience, which makes it necessary to develop

advanced technologies on multiview video coding (MVC) and interactive multiview video

streaming (IMVS). The former aims at efficient compression of all MVV data in a rate-

distortion (RD) optimal manner by exploiting both temporal and inter-view redundancy,

while the latter offers a viewer the ability to freely interact with MVV data, such that she

can periodically request her desired viewpoint as the video is played back. Based on the

observation that MVC and IMVS are fundamentally different MVV problems, in this thesis,

we focus on developing different algorithms for practical MVC and IMVS designs.

The first part of the thesis focuses on our research works on MVC. We first develop pro-

jective rectification-based view interpolation and extrapolation methods and apply them to

MVC. Experimental results show that these schemes can achieve better RD performance

than the current joint multiview video coding (JMVC) standard as well as view interpo-

lation and extrapolation-based MVC schemes without using rectification. To explain the

experimental results, we also develop mathematical models for the rectification-based view

interpolation and extrapolation, from which we develop an improved theoretical model to

compare the performances of various MVC schemes. Simulation results can verify the ex-

perimental results very well.

In the second part of the thesis, we propose three major technological improvements to

existing IMVS works to enhance its interactivity experience and implement it in a realistic

network condition. First, in addition to camera-captured views, we make available additional

virtual views between each pair of captured views for viewers’ selection, by transmitting both

texture and depth maps of neighboring captured views and synthesizing intermediate views
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at decoder using depth-based image rendering (DIBR). Second, we construct a Markovian

view-switching model that more accurately captures viewers’ behaviors. Third, we opti-

mize frame structures and schedule the transmission of frames in a network-delay-cognizant

manner, so that viewers can enjoy zero-delay view-switching even over transmission network

with non-negligible network delay.
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Beg, for their constructive advices and comments that have made substantial contributions

to this thesis. Also, I have benefited enormously from their informative courses: Information
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Multiview Video

Conventional two-dimensional (2D) video provides a fixed viewpoint of recorded objects

where viewers can only watch a video playback passively, as the viewpoint remains the same

throughout video playback. In contrast, multiview video (MVV) consists of video sequences

of the same scene captured time-synchronously by multiple closely spaced cameras from

different observation viewpoints. This means that each viewer of the same video content

can observe various viewpoints of a scene from different angles and locations, which further

generate a free viewpoint video (FVV) or create realistic three-dimensional (3D) perceptions.

In the past decade, we have witnessed a rapid evolution of MVV system thanks to

the dramatic progress in computer, display and signal processing. Several prototypes of

such MVV systems have demonstrated an much improved viewing experience compared to

previous 2D video. Many people might remember the famous bullet-time effect from movie

”The Matrix” [1] where multiple cameras were arranged on a pre-designed path, forming a

complex curve through space. The cameras were then triggered at the same time, so the

action continued to unfold in extreme slow-motion while the viewpoint moved. In addition,

MVV system ”EyeVision” [2] was used for broadcasting Super Bowl XXXV by CBS, where

multiple video streams were captured using more than 30 custom-built, robotic pan tilt

zoom cameras. These cameras were controlled jointly so that all cameras pointed, zoomed

and focused synchronously on the same spot on the field. Then, the video sequences from

different angles were combined to create virtual camera movements like frozen moment and

1



CHAPTER 1. INTRODUCTION 2

view sweeping.

Both the systems ”The Matrix” and ”EyeVision” create MVV data by simply switching

the captured viewpoints, i.e., each frame from output video comes from one of few camera-

captured views. However, some MVV systems, such as free viewpoint television (FTV), do

not impose the constraint that a selected viewpoint corresponds to one existing camera,

but instead, allows the selection of an arbitrary viewpoint within the 3D scene. Virtual

intermediate views are synthesized from neighboring captured views using 3D geometry.

These systems have many fields of application, such as to visualize and analyze sports or

dynamic arts (e.g. traditional dance) actions.

Driven by the existing successful MVV applications and advancement in video acquisition

hardware with decreasing price, we could reasonably predict that MVV-related products

and services will see a vast growth in the market. Since movie ”Avatar” was released, the

box office earning from 3D movies increased from 11% in 2009 to 33% in 2010, according

to International 3D Society. Networking giant Cisco also anticipated that 3D and high-

definition videos will increase 13 times between 2009 and 2014, which could approximately

comprise 42% of annual global IP traffic by 2014.

1.1.2 Multiview Video Coding

To enhance the perceived realism of the 3D output from MVV system, camera density

around a scene needs to be highly enough, generating an enormous amount of MVV data

which need to be stored or transmitted. Therefore, efficient multiview video coding (MVC) is

necessary to compress the vast amount of MVV data for practical storage and transmission,

which focuses on the efficient compression of all frames of all captured videos in a rate-

distortion (RD) optimal manner by exploiting the inherent temporal (across time) and

spatial (across view) correlation. In other words, the goal of MVC is to pursue the best

efficiency of compressing the whole MVV data. Fig. 1.1 shows one MVC example proposed

in [3], where I-frames are periodically inserted every ∆′ frames to permit some level of

random access.

Because MVC compresses all MVV data in an interdependent way, it can be suitable for

applications which are oriented towards storage of the entire MVV data, or non-interactive

delivery over networks, where viewers’ potential interaction with the received MVV content

does not affect how and what data is delivered. An example application of MVC is 3D

Television (3DTV) which needs to transmit and project all captured views on 3D displays



CHAPTER 1. INTRODUCTION 30,0 1, 0 2, 0 3, 0 ...4, 01, 1 2, 1 3, 1 4, 12, 2 3, 2 4, 21, 3 2, 3 3, 3 4, 3
∆’,01, 2 ∆’, 1∆’, 2∆’, 3.........

time
view 0, 10, 20, 3

Figure 1.1: Example of MVC structure, where circles and rectangles denote I- and P-frames,
respectively. The frames in the shape box represent the ones decoder can access to.

to provide viewers the perception of depth.

1.1.3 Interactive Multiview Video Streaming

One essential aspect of an immersive video experience is the ability for viewers to interact

with a remote/virtual environment as if she is there. The viewer may interact naturally

via a head-mounded tracking device [4], and an immersive communication system must in

response quickly generate the data that corresponds to the observer’s request. For instance,

if the viewer tilts her head to the right, the viewpoint corresponding to the right-shifted

viewing position must be rendered for observing in real-time. If the coded MVV data repre-

senting the environment already resides in the viewer’s terminal device prior to interaction,

then the subset of MVV data corresponding to the viewer’s request can be simply fetched

from memory, decoded and displayed. However, if the coded MVV data resides remotely

in a server, then the transmission of the entire data set before viewer’s interaction can be

prohibitively expensive in bandwidth and delay.

Hence a more practical communication paradigm is the one where server continuously

and reactively sends appropriate coded MVV data in response to a client’s periodic requests

for data subsets - this is called interactive multiview video streaming (IMVS) [5]. More

specifically, after MVV data are pre-encoded and stored at the server, IMVS allows a client

to periodically select and request switches to different viewpoints, as the requested single-

view video is delivered from the server and played back in time uninterruptedly at the client.

This is in stark contrast to the aforementioned non-interactive communication where the

entire MVV data compressed by MVC is delivered server-to-client before a client interacts
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with the received data. IMVS has the advantage of reduced bandwidth utilization since

only the requested data subset is transmitted. It can be used for a wide range of media

modalities, such as interactive light field [6], interactive image browsing [7], flexible video

playback [8].

Different from MVC, efficient compression of the sequence of the requested MVV data

subset prior to the streaming session is a substantial challenge: the correlation that exists

among requested MVV data subset is difficult to exploit because at the coding time, the

order and selection of viewpoints chosen by the viewer during streaming time in future is

unknown to encoder. Therefore, the existing coding structure used for MVC are not suitable

for IMVS. Consider the example in Fig. 1.1 where the frames in the shape box are assumed

to be available at the decoder as predictors, in order to switch from frame F2,1 of time1 2

and view 1 to frame F3,2 of next time 3 and neighboring view 2, server would send frames

F0,2, F2,2, F3,2 and F4,2 to client, but only frame F3,2 is displayed. Besides a large resulting

transmission rate spike during the view-switch, this also incurs an unwanted overhead in

decoding complexity.

Based on the above analysis, we can see that there is an inherent conflict between the

view-switch interactivity and compression efficiency for IMVS, i.e., free-navigation flexibility

comes at the cost of lower coding efficiency. Meanwhile, due to various processing capability

of terminal devices used by different interactive clients, the decoding complexity should be

maintained at a low level for a IMVS decoder. Therefore, the destination of research in

IMVS is to encode MVV data in such a way that a good compression efficiency is achieved

while providing sufficiently flexibility for viewers to freely navigate the MVV data set in her

desired order, and decoding tools with low complexity.

1.1.4 3D Representation Format

In the following, we will describe the various representation formats for MVV and discuss

the merits and limitations of each in the context of both MVC and IMVS. A comparative

analysis on different formats is also provided, based on which the specific formats used for

the researches on MVC and IMVS in this thesis are selected respectively.

1For ease of discussion, we express time in number of frames for fixed video playback speed.
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Texture-based Representation

The first class of MVV representation format relies on texture images of multiple views of the

3D scene, called N-texture representation format. It is also the basic representation format

for the emerging MVC standard developed by Joint Video Team (JVT) of the ISO/IEC

Moving Pictures Experts Group (MPEG) and ITU-T Video Coding Experts Group (VCEG).

One advantage of N-texture representation format is that no 3D geometric description of

the scene is required. Therefore, only the texture images of multiple viewpoints should

be necessarily encoded, resulting in less transmission bandwidth consumption and lower

computational complexity at the encoder. Due to this advantage, we adopt N-texture

representation format as the format for our research on MVC throughout the thesis.

While N-texture format would lead to an encoder with low complexity, such a MVV

representation involves a high-complexity decoder. This is because as previously mentioned,

a MVV system supports the selection of a large number of views (both captured views and

virtual views), which makes it impractical to prepare all of these views before transmission.

Instead, intermediate views should be interpolated using two neighboring captured views at

the decoder via image-based rendering (IBR). To achieve high-quality view interpolation, 3D

geometry of the scene is necessary, which has to be estimated from transmitted reference

views, thereby imposing expensive computations on the decoder. Therefore, N-texture

format is not suitable for IMVS which requires low-complexity decoder.

Depth-based Representation

The second class of MVV representation format is based on 3D geometric description of the

scene. The 3D geometry is usually described by depth map or depth image, which specifies

the distance between a 3D point in the space and its projection on one camera. The depth

image may be extracted from a pair of captured views by solving for stereo correspondence [9]

or obtained directly using time-of-flight cameras [10]. Using depth images, virtual views

can be synthesized through depth-based image rendering (DIBR) techniques. For MVV

applications such as 3DTV, it is usually assumed that the scene is observed from a narrow

field of views (short baseline distance between cameras in a MVV system). Therefore, a

combination of of only one texture plus one depth sequence is sufficient to provide good

3D rendering quality - we call this 1-texture/1-depth representation format. However, for a

scene with abundant 3D geometry, virtual views synthesized using 1-texture/1-depth format
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Figure 1.2: N-texture/N-depth representation format

typically show a large occluded region, which severely deteriorates the quality of viewers’

3D perception.

To address the problem of occlusion, it is proposed to combine N-texture format with 1-

texture/1-depth format by using one depth image for each texture image, i.e., N-texture/N-

depth representation format; see Fig. 1.2 for an example. This approach has several ad-

vantages. First, as mentioned above, the occlusion problem can be efficiently solved by

using multiple reference views which cover all regions observed from a virtual view. Sec-

ond, compared to N-texture format, N-texture/N-depth format imposes less computational

complexity on decoder. This is obvious, since all depth images are encoded and transmitted

to reconstruct 3D geometry at decoder, correspondingly, an arbitrary virtual view can be

directly synthesized after decoding both texture and depth images. Because of these advan-

tages, in this thesis, we apply N-texture/N-depth format as the 3D representation method

for our research on IMVS.

Stimulated by the increasing customer interests in immersive 3D experience, future MVV

systems must employ advanced algorithms and technologies to offer higher compression

efficiency and better viewer interactivity with MVV data. However, as what we have already

analyzed, MVC and IMVS are fundamentally different MVV functionalities, thus the coding

tools which are efficient for one problem may not provide a good solution for the other.

This prompts us to develop different algorithms to efficiently support MVC and IMVS

respectively. Furthermore, as what will be seen in the rest of the thesis, we take into

consideration different types of view prediction techniques in our MVC design. Therefore, it
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is important to study theoretically the RD performance of various MVC algorithms, which

can provide important guidelines for the design of practical MVC system.

Correspondingly, the primary goals of this thesis are to develop various compression

techniques which could be used for the real MVC and IMVS designs, and obtain a better

understanding of the theoretical performance of different MVC schemes. In particular, we

1. develop projective rectification-based view interpolation and extrapolation methods

for view synthesis and apply them to MVC.

2. develop a geometric model for our view synthesis algorithms, and present an improved

theoretical model to study the RD performance of various MVC schemes.

3. develop an improved depth estimation algorithm and apply it to IMVS.

4. develop three improvement techniques for the existing IMVS schemes to further enrich

the functionality of interactivity and implement IMVS in a more realistic network

setting.

1.2 Outline and Main Contributions

The focus of this thesis are to develop efficient methods for practical MVC and IMVS designs.

In the case of MVC, our research contains two aspects of content. First, we develop advanced

view synthesis algorithms to improve the efficiency of inter-view prediction in MVC. Second,

we propose an analytical model to study the RD performance of various MVC schemes,

which also help explaining the observations obtained from experimental results. In the case

of IMVS, after finding several shortcomings in the existing IMVS system, we propose several

significant improvements, aiming at a major enrichment of interactive viewing experience

and practicality over previous IMVS schemes. The outline and main contributions of the

thesis are listed as below.

In Chapter 2, we first provide a brief review of coherent background knowledge that will

be extensively used throughout this thesis, including multiview geometry, IBR-based view

synthesis, DIBR-based view synthesis and RD performance measures. We then overview

the current progresses in MVC from the aspects of both practical designs and theoretical

analysis. Finally, we discuss related work in IMVS.

In Chapter 3, we develop projective rectification-based view interpolation and extrapola-

tion methods for view synthesis and apply them to MVC. Compared to most view synthesis
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methods assuming aligned cameras, our algorithms do not require camera parameters and

have little requirement on camera setup, as long as the distance between the cameras is

not too far. Moreover, using the proposed view synthesis algorithms, we develop two novel

coding structures for MVC. Experimental results show that the proposed view synthesis

schemes achieve better performance than existing methods, and lead to improved RD per-

formance than the current MVC standard. An important observation is that although the

quality of the extrapolated views is generally lower than that of the interpolated views, the

average RD performance of view extrapolation-based MVC across all views can outperform

the view interpolation-based MVC as the increase of the number of views, because view

extrapolation can be applied to more views than view interpolation. The material of this

chapter has appeared in [11, 12, 13].

In Chapter 4, we develop a geometric model for our view synthesis algorithms presented

in Chapter 3, and present an improved theoretical model to analyze the RD performances of

various MVC schemes. The analysis shows that view rectification can offer additional cod-

ing gain over direct view interpolation and view extrapolation-based MVCs, while proposed

rectified view interpolation and extrapolation-based MVCs can outperform motion and dis-

parity estimation-based MVC. These verify the experimental observations in Chapter 3.

The material of this chapter has appeared in [11, 14, 15].

In Chapter 5, we develop an algorithm to generate a smooth and accurate depth map for

view synthesis using 3D geometry and color segmentation. The proposed method presents

several improvements over the conventional block-based depth estimation approach. First,

a geometric prediction methodology is developed for accurate depth prediction, such that

we can largely reduce the complexity of block-based depth matching. In addition, different

from the conventional methods which can only estimate depth from a pair of cameras, a

robust depth-consistency metric is proposed to synthesize the depth information from mul-

tiple views. Moreover, a color segmentation based depth-plane fitting algorithm guarantees

the correctness and smoothness in textureless region. Experimental results show that the

proposed algorithm can achieve marginal improvement of the synthesized view over the

existing depth estimation methods. The material of this chapter has appeared in [16].

In Chapter 6, to further enrich viewers’ interactivity with MVV data and implement

IMVS in a more realistic network setting, we propose three improvements to existing IMVS

schemes. First, using DIBR technique, our system enables free viewpoint switching, i.e.,

we encode and transmit both texture and depth maps of captured views, allowing a client
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to select and synthesize any virtual view from an almost continuum of viewpoints between

the left-most and right-most captured views. Second, we adopt a more realistic Markovian

view-switching model that more accurately captures user behaviors. Third, we consider net-

work delay of a client’s view-switching request in practical networks, and optimize the frame

structure of texture and depth maps in a network-delay-cognizant manner. We formalize the

joint optimization of the frame encoding structure, transmission schedule, and quantization

parameters of the texture and depth maps, and propose an iterative algorithm to achieve fast

and near-optimal solutions. The convergence of the algorithm is also proved. Experimental

results show that the proposed optimized rate allocation method requires significantly less

transmission rate than the fixed rate allocation scheme. In addition, with the same stor-

age, the transmission rate of the optimized frame structure can be reduced compared to

heuristics-based structures. The material of this chapter has appeared in [17, 18, 19].

Finally, we summarize the research work of this thesis and make the conclusions in

Chapter 7. The possible extensions are also discussed.

1.3 Acronyms and Notations

In this section, we summarize the acronyms and some common notations used throughout

this thesis.

Table 1.1: List of acronyms

1D one-dimensional

2D two-dimensional

3D three-dimensional

MVV multiview video

FVV free viewpoint video

3DTV three-dimensional television

FTV free viewpoint television

JVT joint video team

MPEG moving experts group

VCEG video coding experts group

MVC multiview video coding

IMVS interactive multiview video streaming

JMVC joint multiview video coding

IBR image-based rendering
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DIBR depth-based image rendering

VSP view synthesis prediction

MDE motion and disparity estimation

RVI rectification-based view interpolation

DVI direct view interpolation

RVE rectification-based view extrapolation

DVE direct view extrapolation

BDE block-based depth estimation

HBDE hierarchical block-based depth estimation

LMMSE linear minimum mean squared error

SEI supplemental enhancement information

QP quantization parameter

RD rate-distortion

RQ rate-quantization

DQ distortion-quantization

GOP group of picture

FT fourier transform

KLT karhunen-lòeve transform

DCT discrete cosine transform

CABAC context-adaptive binary arithmetic coding

RANSAC random sample consensus

SIFT scale invariant feature transform

DLT direct linear transform

SP switching P

DSC distributed source coding

LDPC low-density parity check codes

PDF probability density function

PMF probability mass function

PSD power spectral density

MSE mean-squared-error

PSNR peak-signal-to-noise ratio

SSIM structural similarity

SRNL source residual noise level

TRNL temporal residual noise level

IVRNL inter-view residual noise level

VSRNL view synthesis residual noise level

RTT round trip time
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Table 1.2: List of notations

R The set of real numbers

Z The set of integer numbers

R+ The set of positive real numbers

Z+ The set of positive integer numbers

A A boldface letter denotes a matrix

I The identical matrix

0 The null matrix

AT The transpose of a matrix A

AH The conjugate of a matrix A

A† The conjugate transpose of a matrix A

A−1 The inverse of a matrix A

∥A∥ The determinant of a matrix A

E(x) the expected value of a random variable x



Chapter 2

Review

To facilitate the understanding of our contributions, this chapter reviews some important

concepts and current progresses related to the work in this thesis. We begin with a brief

introduction of some background knowledge that are extensively used throughout the thesis.

We then discuss the related work in both MVC and IMVS as the motivational background

material.

2.1 Background Knowledge

2.1.1 Epipolar Geometry

The epipolar geometry is the intrinsic projective geometry between two viewpoints. It is

independent of scene structures, and only replies on the cameras’ internal parameters and

relative pose. Suppose a 3D point X 1 is projected through two camera centers C1 and C2

onto two camera planes I1 and I2 at pixel positions x1 and x2 respectively (see Fig. 2.1). It

is obvious that 3D points X, C1, C2 and the projection points x1 and x2 are located within

the same plane π which is called epipolar plane. Further, the epipolar plane π constrains the

range of searching correspondences in two camera planes. More specifically, given projection

point x1 in I1, its correspondence point x2 has to lie on the intersection between the plane

π and the camera plane I2. The intersection of the two planes corresponds to a line l2

known as epipolar line. Therefore, the search of correspondences can now be limited along

1In homogeneous coordinate expression, 3D and 2D points are represented by 4 × 1 and 3 × 1 column
vectors respectively.

12
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x1 x2
X

C1 C2
π

e1 e2 l2l1I1 I2epipoleepipolar plane
epipolar linebaseline

Figure 2.1: Epipolar geometry between two views with an indication of terminologies.

the epipolar line instead of in the entire camera plane.

The epipolar geometry is often described by a 3 × 3 fundamental matrix F of rank 2,

which associates two projection points x1 and x2 by the relation

xT
2 Fx1 = 0 (2.1)

Equation (2.1) is a linear function of the entries of F. If enough correspondence points

between two views are known, various algorithms can be used to calculate F, such as the

7-point, the 8-point or the least square algorithm [20, 21]. In addition, as the point x2

belongs to the epipolar line l2, i.e., x
T
2 l2 = 0, we can thus have

l2 = Fx1 (2.2)

We now introduce some terminologies related to epipolar geometry, which will be em-

ployed further in this thesis.

• The epipolar plane is the plane determined by a 3D point and the two camera centers.

• The baseline is the line connecting two camera centers

• The epipole is the point of intersection of the baseline with one camera plane. Equiv-

alently, the epipole is the image in one view of the camera center of the other view.

• The epipolar line is the intersection of an epipolar plane with one camera plane. All

epipolar lines intersect at the epipole. An epipolar plane intersects the left and right

camera plane in epipolar lines, and defines the correspondence between two cameras.
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Figure 2.2: A pair of images with superimposed correspondences and their epipolar lines.
(a) Left view; (b) Right view.

An example of two views with several pairs of correspondences along with the corre-

sponding epipolar lines is shown in Fig. 2.2.

2.1.2 IBR-based View Synthesis

Image-based rendering (IBR) refers to techniques and representations that allow 3D objects

to be virtualized in a realistic way without using 3D geometry of the scene. In IBR-based

view synthesis, an intermediate virtual view can be synthesized from images at two neighbor-

ing captured views via view interpolation. View interpolation has been extensively studied

in computer vision and computer graphics, which first calculates a disparity map, and then

renders an interpolated view. A diagram of procedures in view interpolation is shown in

Fig. 2.3, where view In is synthesized using two adjacent views In−1 and In+1, left and right

to the synthesized view. Because most view interpolation approaches are designed for stereo

vision, they assume aligned camera setup, i.e., the two reference cameras are parallel and

only differ from each other by a small horizontal shift.

Disparity Estimation

Since 3D geometry is not used for IBR-based view synthesis, a disparity map needs to be

estimated for the 3D geometric description, which indicates the horizontal distance between

each pair of correspondence points in two reference views (see Fig. 2.3(a)).

As one classical problem in computer vision, disparity estimation, or stereo matching,

currently still remains active and a lot of algorithms have been proposed in recent decades.

For instance, a disparity map was calculated in [22] by a measure of pixel dissimilarity
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d

camera

Figure 2.3: Procedures of IBR-based view interpolation of the intermediate view In from
the left and right reference views In−1 and In+1. (a) Disparity estimation; (b) View inter-
polation; (c) Details of interpolating pixels of one line.

that was insensitive to image sampling, and one dimensional (1D) dynamic programming

was also applied to accelerate the speed of the algorithm. But, independent processing of

different scan-lines led to the inconsistency between scan-lines in the disparity map. In [23],

the problem was addressed by computing the disparity from the top left pixel to the bottom

right pixel under an energy function that took the smoothness of disparity transition into

account. Although the algorithm was further improved in [24] with belief propagation,

the complexity of the algorithm was increased. Graph cuts based matching algorithm was

adopted in [25], which achieved more accurate disparity estimation, but they cannot handle

occlusions well, because the two images were treated asymmetrically, and no constraint was

imposed to ensure that a pixel corresponded to at most one pixel in the other image. To

handle occlusions, two disparity maps were calculated in [26] from the left and right pictures

using the novel graph-cut algorithm.
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View Interpolation

Once disparity map is obtained, view interpolation can be applied to create the synthesized

view, as shown in Fig. 2.3(b). Let In−1(x, y), In(x, y) and In+1(x, y) be the pixel values

of views In−1, In and In+1 at position (x, y), respectively, and d(x, y) the disparity of In+1

with respective to In−1. Depending on correspondence condition, the intermediate view can

be interpolated by considering the following three cases.

• Pixels that are visible in both reference views. As shown by the white squares in

Fig. 2.3(c), each of these pixels have a disparity value assigned. Therefore, the posi-

tions of the pixels in the intermediate view can be easily derived from simply scaling

the disparity values by the intermediate view position α ∈ (0, 1). And, the pixel values

of the intermediate pixels in the synthesized view can also be interpolated from the

correspondences in the left and right reference views. This can be mathematically

written as

In(x− αd(x, y), y) = (1− α)In−1(x, y) + αIn+1(x− d(x, y), y) (2.3)

• Pixels that are occluded from on reference view. These pixels have no disparity

value assigned, since they are explicitly detected as occlusions (see brown squares

in Fig. 2.3(c)). However, as seen in Fig. 2.3(c), the occlusion pixels in the left ref-

erence view (view In−1) are occluded by objects at the right side, and the occlusion

pixels in the right reference view (view In+1) are occluded by objects at the left side.

Assuming that occluded pixels are parallel to the image plane, we can extend the dis-

parities of the background into the occluded areas (see brown arrows in Fig. 2.3(c)).

Further, the pixels in the synthesized view are directly copied from the corresponding

pixels in the reference view. For instance, to interpolate intermediate pixels in the

synthesized view In using occlusion pixels in the left view In−1, the disparity of the

available pixel left to the occluded area is used, i.e.,

In(x− αd(xl, y), y) = In−1(x, y) (2.4)

where xl is the first visible pixel left to the occlusion area in view In−1.

• Pixels whose correspondences are outside the valid region of the other reference view.

For these pixels, no disparity was available due to the restricted image area of one
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Figure 2.4: DIBR-based view synthesis

viewpoint (see purple squares in Fig. 2.3(c)). Similar to occluded pixels, we extend the

disparity of border pixel into undefined region, and pixel values are copied accordingly.

For instance, if the correspondence of In−1(x, y) is outside view In+1, the interpolated

pixel is then taken as

In(x− αd(xr, y), y) = In−1(x, y) (2.5)

where xr is the pixel in view In−1, which is just right to the region whose correspon-

dences are invalid in view In+1.

2.1.3 DIBR-based View Synthesis

Depth-image-based rendering (DIBR) is the process of synthesizing virtual views of a scene

from captured images and associated per-pixel depth information [27, 28, 29, 30]. Con-

ceptually, this view generation can be implemented by the following two steps. At first,

the original pixel points of the captured view are projected into the 3D space, using the

respective depth data. Then, those 3D points are re-projected into the image plane of the

virtual view. And, this concatenation of 2D-to-3D projection and 3D-to-2D projection is

usually called 3D warping.



CHAPTER 2. REVIEW 18

Using the same camera setup in Fig. 2.3, Fig. 2.4 shows the procedures of DIBR-

based view synthesis, where an arbitrary 3D space point X is assumed to be projected

to (xn−1, yn−1), (xn+1, yn+1) and (xn, yn) in the two reference views In−1 and In+1, and

synthesized view In, respectively. For simplicity, let us consider 3D warping between views

In−1 and In, with the two perspective projection equations [20] as

dn−1mn−1 = An−1R
−1
n−1 (X−Tn−1) (2.6)

dnmn = AnR
−1
n (X−Tn) (2.7)

where mn−1 = (xn−1, yn−1, 1)
T and mn = (xn, yn, 1)

T are two projection points in homo-

geneous notation. dn−1 and dn are the corresponding depth values. The matrices Rn−1

and Rn, Tn−1 and Tn specify the respective rotation and translation of views In−1 and In

from the origin of the world coordinate, and matrices An−1 and An denote the intrinsic

parameters of two views.

Rearranging (2.6) gives an affine representation of 3D point X from its projection in

In−1 as

X = dn−1Rn−1A
−1
n−1mn−1 +Tn−1 (2.8)

Substituting (2.8) into (2.7) then leads to the depth-dependent relation between the projec-

tions of the same 3D point in two views:

dnmn = AnR
−1
n

(
dn−1Rn−1A

−1
n−1mn−1 +Tn−1 −Tn

)
(2.9)

(2.9) is a powerful formula which describes how to generate an arbitrary view from a known

reference view. More specifically, if the depth values of all the points of a 3D scene are known

for every pixel of the reference view In−1, the virtual view can be rendered by projecting all

pixels in view In−1 to the virtual viewpoint In using (2.9).

As partial regions of one virtual view could be invisible in the reference view, two adjacent

views left and right to the virtual view are used for DIBR, as shown in Fig. 2.4, by applying

(2.9) to both views In−1 and In+1. And, the final synthesized view is generated by merging

the projected views from the two reference views into one [31].

In spite of two reference view used for DIBR, the resultant virtual view could still contain

small regions which are invisible from both two references, due to occlusion. In this case, the

missing areas are usually filled by image impainting methods from neighboring projected

pixels [32].
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2.1.4 RD Performance Measures

In the information-theoretical aspect, upon knowing the power spectral density (PSD) func-

tion of an image, it is possible to derive the corresponding RD performance of encoding the

image. The RD function of a 2D stationary Gaussian random process v with PSD function

Φvv(ωx, ωy) is given in parametric form, with rate

R(θ) =
1

8π2

∫ π

ωx=−π

∫ π

ωy=−π
max

[
0, log2

Φvv(ωx, ωy)

θ

]
dωxdωy (2.10)

and distortion

D(θ) =
1

4π2

∫ π

ωx=−π

∫ π

ωy=−π
min [θ,Φvv(ωx, ωy)] dωxdωy (2.11)

where θ ∈ R+ is the parameter controlling to produce different RD points[33]. In the case

of predictive coding, residue signal e = v − v′ should be used instead of v, where v′ is the

prediction signal.

Thus, the RD performance of encoding any stationary Gaussian signal can be deter-

mined by (2.10) and (2.11). However, at high bit rate, the energy of the quantization error

asymptotically tends to zero, correspondingly, the effect of quantization error on RD perfor-

mance can be neglected. In [34, 35], a relative performance measure, called rate difference,

is used to compare different coding schemes at high rate, which is shown by

∆R = Re(θ)−Rv(θ)

=
1

8π2

∫ π

ωx=−π

∫ π

ωy=−π
log2

Φee(ωx, ωy)

Φvv(ωx, ωy)
dωxdωy

(2.12)

which can be achieved by substituting (2.10) into the first line of (2.12) by assuming θ to

be a very small value. Note that ∆R represents the bit saving per sample from predictively

encoding the residue signal e instead of independently encoding the original signal v, which

therefore is negative. In Chapter 4, rate difference will be used as the performance measure

for the evaluation of different MVC algorithms.

2.2 Related Works on MVC

The different coding techniques that are developed for MVC are reviewed in this section.

This includes methods which make use of existing 2D video coding, as well as methods with
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disparity estimation. Then, coding techniques based on view synthesis prediction (VSP)

are also covered with a review of algorithms specific to view interpolation and DIBR-based

view synthesis. We finally summarize the current progress on theoretical MVC analysis.

2.2.1 2D Video Coding-based MVC

Simulcast of Multiview

The most straightforward mean to compress multiview video is to encode each view in-

dependently of the other, e.g., using state-of-the-art video encoder H.264/AVC [36]. This

solution, also known as simulcast, achieve the minimum of computation and decoding delay

since dependencies between different views are not exploited.

The main drawback of simulcast solution is that coding efficiency is not maximized

because redundancy between views, i.e., inter-view redundancy, is not considered. However,

in the case of stereo coding, prior studies on asymmetrical coding where one of the views is

encoded with less quality, show that the substantial bit rate saving for the second view could

be achieved. Therefore, one of the views can be low-pass filtered, more coarsely quantized

than the other view [37]. However, viewers could suffer from eye fatigue when viewing

asymmetrically coded video for a long period due to unequal watching quality to each eye.

Correspondingly, it has been proposed in [38] to periodically switch the asymmetrical coding

quality between the left and right eyes. But, further researches on how asymmetric coding

affects human visual perception are still needed.

Frame-compatible Coding

To facilitate the introduction of stereoscopic services through the existing equipment, frame-

compatible format is proposed, where the stereo signal is essentially a multiplex of two views

into a single sequence. Usually, the left and right views are sub-sampled and interleaved

into a single frame.

There are various options of both sub-sampling and interleaving. As shown in Fig. 2.5,

the two views could be filtered and decimated horizontally or vertically and stored in a

side-by-side, top-and-bottom formats. Temporal format is also possible, where the left and

right views are interleaved as frames. In this way, frame rate of each view is reduced so that

the amount of data is equivalent to that of a single view.

Frame-compatible format can work seamlessly within existing video decoders. In an
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(a) (b)

(c) (d)

Figure 2.5: Full resolution and frame-compatible representation of stereoscopic videos. (a)
Full resolution left view; (b) Full resolution right view; (c) Side-by-side; (d) Top-and-bottom.

effort to better facilitate its adoption, the H.264/AVC standard introduces a new Sup-

plemental Enhancement Information (SEI) message which enables signaling the sampling

relationship between two views. By detecting the SEI message, decoder can immediately

identify the format and perform accordingly, such as scaling, denoising, based on the frame-

compatible format specified.

Due to minimal changes, frame-compatible coding can make stereo services quickly de-

ployed in the market. However, the obvious drawback of this method is that spatial or

temporal resolution would be lost, due to spatial or temporal sub-sampling. However, the

impact of frame-compatible coding on 3D perception may be limited and acceptable for

initial services.
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Figure 2.6: Typical hierarchical B structure for JMVC

2.2.2 Motion and Disparity Estimation-based MVC

To improve coding efficiency of MVC, both temporal and inter-view redundancy should be

exploited. In this way, pictures are not only predicted from temporal reference pictures, but

also from inter-view reference pictures, through motion and disparity estimation (MDE).

The concept of inter-view prediction using MDE-based prediction, was first proposed

in [39] and subsequently adopted in amendment of MPEG-2. The concept of group of

GOP for MDE-based prediction was introduced in [40], which allowed a picture to refer to

decoded pictures of other views even at different time instants. In [3, 41], various modified

hierarchical B structures were developed for MDE-based prediction. Most recently, the

H.264/AVC standard was modified based one of those structures to support joint multiview

video coding (JMVC) software, which used the hierarchical B structure in the temporal

direction and the I-B-P disparity prediction structure in the inter-view direction, as shown

in Fig. 2.6. In JMVC, inter-view prediction was enabled through flexible reference picture

management, where decoded pictures were made available in the reference picture lists.

Moreover, since coding decisions were adaptively made on the block level, a block in a

particular view could be predicted by a temporal reference, while another block in the same

view could be predicted by an inter-view reference. To reduce the complexity of finding the

best matching, the multiview geometry was employed in [42] to predict the disparity values,
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but only multiview image coding was considered.

It has been shown that MVC with disparity estimation-based prediction can give signif-

icant improvement over simulcast [3]. A comprehensive set of results for MVC over a broad

range of test material was presented in [43], showing that an average of 20% reduction in

bit rate relative to the total simulcast bit rate can be achieved with equal reconstructive

quality of each view.

2.2.3 VSP-based MVC

Albeit disparity estimation-based MVC can offer significant coding gain over simulcast,

the translational inter-view motion assumed by the disparity estimation method could not

accurately represent the geometric relationships between different cameras; therefore, this

method is not always efficient. For example, larger disparities than the search window size

can frequently occur, due to different depths of an object in different views. In addition,

effects such as rotation and zooming are difficult to be modeled as pure translational motion.

To enhance the efficiency of inter-view prediction, VSP can be applied, where a synthe-

sized view for a target view is created, using the geometry relationship between different

views. The synthesized view is then used as an additional reference to predictively encode

the target view. Depending on the view synthesis methods (IBR or DIBR) used, VSP-based

MVC can be classified into two categories, i.e., depth-based MVC and view interpolation-

based MVC.

Depth-based MVC

In depth-based MVC, synthesized views are created using the corresponding depth maps via

DIBR. Therefore, the crucial issue of depth-based MVC is the compression of depth map,

i.e., coding tools used for depth data which yield high compression efficiency. Here, different

characteristics of depth in comparison to video data must be considered. A depth signal

is composed of homogeneous areas inside objects and sharp transitions along boundaries

between objects. In this sense, typical video compression algorithms which are designed

to preserve low-frequency information and blur images at high compression rate, are not

very suitable for depth map coding. In addition, as a depth value can be mapped to a shift

value of a texture sample from original reference view, coding errors in depth maps result in

wrong pixel shifts in synthesized view, especially on objects’ boundaries. Therefore, depth
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compression algorithms should preserve depth edges better than video coding methods.

However, the initial attempts on depth map coding still used conventional video coding

schemes, such as H.264/AVC or JMVC, to encode depth [44]. But, these schemes aimed at

not only the RD optimization on depth map coding, but also the quality of synthesized views.

In order to increase efficiency of depth map coding, down-sampling before depth encoding

was introduced in [45]. After decoding, an up-sampling process was applied, followed by edge

refinement based on the objects’ contour to preserve boundaries in depth map. A platelet

coding method was proposed for depth map coding in [46], where occurrences of foreground

and background boundaries were analyzed and approximated by a simple linear function.

Finally, each block with boundaries contained two areas, one representing foreground depth

and the other representing background depth.

Although depth-based MVC can generate synthesized views with an improved quality

relative to that of disparity estimation-based MVC, it leads to a considerable increase of the

bandwidth for delivering MVV data, due to the overheads for encoding and transmitting the

depth map. It was shown in [47] that an independent transmission of 8-bit depth increased

10% bandwidth consumption on top of texture data coding.

View Interpolation-based MVC

Besides depth-based prediction, view interpolation can also be used for MVC. As illustrated

in Sec. 2.1.2, view interpolation-based MVC needs two neighboring views to synthesize a

virtual reference for predictively encoding the target view, where disparity map is first

calculated and then each pixel in an intermediate view position is interpolated from a pair

of correspondences in the left and right views. As decoded frames of both two neighboring

views are used for disparity estimation at encoder, the exactly same disparity map can be

reproduced at decoder. Thus, no extra bits are sent on transmitting disparity map for view

interpolation-based MVC.

View interpolation-based MVC was first used for MVC in [48], which interpolated frames

at given time instants and view positions and use them as reference. In addition, one

color correction approach was proposed to correct luminance and chrominance values for

compensating the variance between different capturing cameras and enhancing the efficiency

of view interpolation-based prediction. However, this approach was restricted to aligned

camera setup, where all cameras differ from each others only by horizontal shifts.

To deal with more general camera setups, a rectification-based view interpolation (RVI)
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method was proposed in [49]. It first rectified the two views using the projective rectification

method in [20, 21]. This involved the calculation of the fundamental matrix between two

views and re-sampling of them such that they have horizontal and matched epipolar lines.

A modified version of the disparity estimation method in [22] was then used to create the

interpolated view before mapping back to the original domain. The algorithm did not require

camera parameters, and had little requirement on camera setup, therefore was suitable for

MVV systems with unaligned cameras and unknown camera parameters. In Chapter 3, by

modifying the methods in [21, 49], we develop an improved RVI method and apply it to

MVC.

The aforementioned view interpolation-based MVC methods deal with view synthesis

from a left view and a right view. If these methods are used in MVC, VSP can only benefit

half of the views. To overcome this limitation, in Chapter 3, we also develop a rectification-

based view extrapolation (RVE) algorithm using two left views or two right views. Hence,

VSP can be applied to the coding of all views after the first two. Our results show that

although the average quality of the extrapolated views is lower than that of the interpolated

views, the overall RD performance of all views of RVE-based MVC can outperform that of

RVI-based MVC, as the increase of the number of coded views.

2.2.4 Theoretical Analysis of MVC

Another important topic of MVC is the theoretical RD analysis of different MVC algorithms.

Such an analysis can provide important guidelines for the design of practical MVC systems.

The RD analysis can be achieved by generalizing that of the traditional 2D single view video

coding. The key problem is how to model the inter-view correlations and the underlying

inter-view prediction algorithm.

The theory of the RD analysis of motion compensation-based single view video coding

was established by Girod [34, 50, 51]. It was generalized to wavelet based video coding in [52]

and light field coding in [53], where the impacts of the statistical properties of multiple light

field images, the accuracy of the disparity and the transform coding on the compression

efficiency were studied. In [54], the RD analysis of multiview image coding with texture-

based and model-aided methods was presented, using the same model as in [53]. Recently,

these theories were generalized to MVC in [35], where the RD efficiency of MDE-based MVC

was investigated by assuming a pair of translatory shifts to model the effects of motion and

disparity estimation.
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However, the RD analysis of VSP-based MVC has not been reported in the literature.

In fact, even the mathematical models of view synthesis algorithms have not been well

established. A couple of important progresses toward this direction were obtained recently.

In [55], a model was proposed to describe the relationship between the accuracy of disparity

and the quality of the interpolated view, based on the framework in [50, 53, 54]. A pre-filter

method was also proposed to improve the view interpolation quality. However, the model

for the disparity error was oversimplified, and only parallel cameras were considered. In [56],

a similar model for view interpolation was used to analyze the theoretical RD performance

of a multiview image coding scheme based on view sub-sampling. However, MVC is not

considered in both [55] and [56].

In Chapter 4, we develop a more accurate geometric model than that in [55]. Our model

enables the study of the impact of projective rectification on the quality of the interpolated

or extrapolated view when unaligned cameras are used. To the best of our knowledge,

this is the first attempt to quantify the improvement of the projective rectification in view

synthesis.

Another contribution in Chapter 4 is that we develop an improved RD model to study

the performances of different practical MVC schemes, e.g., MDE-based JMVC and VSP-

based schemes. Compared to the models in [35], our model characterizes practical MVC

schemes more accurately. Simulation results of this model agree well with the experimental

results of various MVC schemes discussed in Chapter 3.

2.3 Related Works on IMVS

In this section, we divide our discussion on related IMVS work into two parts. We first

discuss some related works on multiview image/video streaming, especially emphasizing

their difference from IMVS. Then, we review current progresses in IMVS.

2.3.1 Multiview Image/Video Streaming

In the case of light field [57], where a subset of a densely sampled 2D array of images is used to

interpolated desired views via IBR, the applications on interactive light field streaming had

been extensively investigated [6, 58, 59]. Those works were motivated by the large size of the

original image set, so that the transmission of the entire set before view navigation will create

prohibitively large delay to viewers. To exploit the spatial correlations between neighboring
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views, [6] and [58] used switching P (SP)-frame and distributed source coding (DSC)-frame

respectively to accommodate different coding paths. First, as what will be mentioned below,

it can be noted that both SP-frame and DSC-frame are included in the abstraction of merge

frame or M-frame. Further, since redundant P-frames are not considered in [6, 58], unlike

the methods in IMVS, they provide no mechanism to systematically lower transmission cost

by making use of extra storage, if available.

In [60, 61], it was assumed that each coding block of one image was encoded as INTRA,

INTER or SKIP as in H.263 [62]. Then, for a requested INTER coding block to be correctly

decoded, all blocks in its dependency path that were not already in the client buffer had to

be transmitted, incurring a penalty on both transmission rate and decoding complexity. The

notion of transmitting and decoding multiple blocks before displaying a single one block was

referred as rerouting in the scenario of IMVS [63]. The results in [63] showed that rerouting

was only able to provide marginal performance gain for IMVS when view-switch period ∆

is reasonably large and when redundant P-frames are used.

In [4, 64], a two-layer approach was proposed for streaming MVV data, where coarse and

fine quality layers of several views were grouped and pre-encoded. During actual streaming,

a subset of views of low quality plus two views of high quality, carefully selected based on

user’s behavioral prediction, would then be sent to the client. All transmitted views were

subsequently decoded, and the highest quality views that matched the user’s at-the-moment

desired views were displayed. While the intended application is similar to that of IMVS,

IMVS is different in that it focuses on the optimal tradeoff among transmission rate, storage

and view synthesis distortion using combinations of redundant P-frames and M-frames to

construct frame structures.

Another similar work to IMVS is [65], which developed three separate frame structures

to support three types of interactivity: view switching, frozen moment and view sweeping.

While the authors recognized the importance of a “proper tradeoff among flexibility (inter-

activity), latency and bandwidth cost”, no explicit optimization was performed to find the

best tradeoffs of these quantities in one structure.



CHAPTER 2. REVIEW 28

0,1 2, 1(1) ...1, 11, 2 2, 2(1)2, 1(2)2, 2(2)
3, 1(1)3, 1(2)3, 1(3)3, 1(4)
3, 2(1)3, 2(2)3, 2(3)3, 2(4)

4, 1(1)4, 1(2)4, 1(3)4, 2(1)4, 2(2)4, 2(3)
t = 1 t = 2 t = 3 t = 4t = 0

0,1 1, 11, 2t = 1 t = 2 t = 3 t = 4t = 0 2,1 3,1 4,12,2 3,2 4,2
(a) (b)

Figure 2.7: Two extreme examples of frame structure to enable view-switching for two views
(white and grey) for ∆ = 1. I-, P- and M-frames are represented by circles, rectangles and
diamonds, respectively. (a) P-frames only at switching points; (b) I-frames only at switching
points.

2.3.2 Previous Works in IMVS

Frame Structure Optimization

Most of previous IMVS works focus on frame structure optimization [63, 66, 67]. The goal

is to design frame structures at encoding time to trade off expected IMVS transmission rate

and storage required to store the structure, without knowing the exact view trajectory a

client will take at stream time. To see intuitively the tradeoff involved, consider the following

two extreme examples. For simplicity, we assume that a client can request view-switch every

∆ = 1, but restrict allowable switches to only neighboring views, i.e, only clients observing

views k’s, j−1 ≤ k ≤ j+1, at time i−1 can switch to view j at time i. To encode frame Fi,j ,

since temporal playback is not interrupted, at time i one of the previous frames Fi−1,k’s (for

at most three different views k) will be available at the decoder. Thus, one way to support

view-switching is to differentially encode one P-frame Pi,j for each possible decoded frame

Fi−1,k in the decoder buffer. We call this approach redundant P-frames—redundant in

that an original picture F o
i,j is represented by multiple coded versions Pi,j ’s. An example
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structure to allow view-switching between two views is shown in Fig. 2.7(a) where only P-

frames Pi,j ’s are encoded at view-switching points, each using a predictor Fi−1,k of previous

instant. As shown in Fig. 2.7(a), this approach will increase the number of decoding paths

at each switching instant by a factor of two, resulting in a tree structure of size O(2N )

if there are N switching instants between two I-frames. So although this approach would

lead to a structure with minimum transmission cost (only bandwidth-efficient P-frames are

used), the size of the coding structure is impractically large.

At the other extreme, one can construct a single coded version of the original picture

F o
i,j for all possible decoder states, i.e., M-frame, that can be correctly decoded no matter

which Fi−1,k is in the decoder buffer. Obviously, an independently coded I-frame would fit

the M-frame reconstruction constraint. Fig. 2.7(b) shows an example of frame structure

only using I-frames at switching points. Hence, a structure that uses M-frames exclusively

at all view-switching points has high transmission rate but small storage cost (since each

original picture is represented by a single coded version).

In our earlier IMVS works, we posed the IMVS problem as a combinatorial optimization

in [5], proved its NP-hardness, and provided two heuristics-based algorithms to find good

frame structures for IMVS. A more thorough and analytical treatment of the same problem

was given in [63], which could generate a global optimized frame structure with exponential

running time, using only I- and P-frames in the structure. In addition, several strategies to

reduce the algorithm complexity were proposed for the practical applications. Preliminary

results of using I-, P- and DSC frames [68] in an IMVS optimized structure were presented

in [66]. [67] was a generalization of [66] where the optimization was posed as a search for

the best combination of I-, P- and generalized M-frames.

Implementation of M-frame

In addition to I-frame, more generally, one can conceive other implementations of M-frame

that exploit correlation between the set of possible predictors Fi−1,k’s and the target F o
i,j

for coding gain. Example implementations of M-frames include SP-frame in H.264 [69] and

different DSC-frames [68, 70]2. In general, different implementations of M-frames induce

different tradeoffs between storage cost and transmission rate [67]. However, any implemen-

tation of M-frame must necessarily have larger transmission rate than a P-frame, since by

2In the context of DSC, “predictor” frames are used as side information for decoding.
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Figure 2.8: Example of frame structure (a) using I- and P-frames only; (b) using I-, P-
and DSC-based M-frame for two views. I-, P- and DSC-frames are represented by circles,
rectangles and diamonds, respectively.

definition, an M-frame must be encoded under the uncertainty of which one frame in the

set of possible predictors Fi−1,k’s would be available at decoder buffer at stream time.

In the following, the method of using DSC-frames will be conceptually reviewed to

achieve identical reconstruction from multiple predictor candidates. In a conventional

closed-loop predictive system, the encoder calculates the prediction residue Z = X − Y ,

between source X and predictor Y , and transmits Z to the decoder. DSC approaches the

same compression problem by viewing X as an input to a virtual channel with correla-

tion noise Z, and Y as the output of the channel. Therefore, in order to recover X from Y ,

encoder will send parity information to the decoder. Naturally, this parity information com-

puted entirely from X taking into account the statistics of Z, is independent of a specific Y

being observed, and X can be exactly reconstructed as long as sufficient parity information

has been transmitted.

This framework can be extended to address the mismatches in multiple decoding paths as

follows. We consider N virtual channels, each corresponding to a predictor F
(h)
i−1,k obtained

from instant i − 1 when we encode a picture F o
i,j as DSC-frame Mi,j . Each channel is

characterized by the correlation noise Z
(h)
k = F o

i,j − F
(h)
i−1,k. In order to recover Mi,j exactly

from any of these channels, the encoder needs to send an amount of parity sufficient for all

the channels. That is, the frame size of Mi,j depends on the worst correlation between the
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target and the predictors, i.e.,

BDSC = max
k,h

H
(
F o
i,j |F

(h)
i−1,k

)
(2.13)

By doing so, the same Mi,j can be reconstructed no matter which one of previous frames

F
(h)
i−1,k’s will be presented at the decoder. Fig. 2.8(b) shows one example frame structure

with DSC-frames for view-switching between two views.

Because a single DSC-frame Mi,j would be stored in the server regardless of the number

of decoding paths, DSC-frames would in general compare favorably to SP frames in terms

of storage cost. The storage cost of F 0
i,j using SP-frames, BSP , depends on the number of

replicas, since multiple SP-frames needs to be stored, each for one possible predictor F
(h)
i−1,k.

More specifically,

BSP =
∑
k

∑
h

H
(
F o
i,j |F

(h)
i−1,k

)
(2.14)

DSC-frame is similar to I-frame in the sense that only one single I-frame is necessarily

kept in the server for all the possible decoding paths, as shown in Fig. 2.8(a). However, it

is obvious that DSC-frame outperforms I-frame in both storage and transmission rate, due

to exploration of correlation between the target picture and predictor frames.

Although optimized frame structures of existing IMVS works can achieve optimal trade-

offs between transmission rate and storage, there are several shortcomings. First, the avail-

able views for a client to select are limited by the few camera-captured views pre-encoded

at server, thus a view-switch could appear abrupt and unnatural to a viewer. Second, the

proposed media interaction model that represents a typical client’s view-switching behavior

is assumed to be statistically independent in time, but it has been shown [65] that viewers

exhibit temporal dependencies when switching views. Third, previous structure optimiza-

tion assumes server-client communication takes place over idealized zero-delay network. In

a realistic packet-switched network such as the Internet with non-negligible round trip time

(RTT) delay, server’s responding upon receipt of each client’s requested view will mean each

client’s requested view-switch will suffer at least one RTT delay, hampering interactivity of

the viewing experience. In Chapter 6, we propose three improvement technologies to solve

the above problems in existing IMVS works.



Chapter 3

View Interpolation and

Extrapolation-based MVC

3.1 Introduction

In this chapter, we first develop an improved RVI method and apply it to VSP-based MVC.

As the proposed RVI method synthesizes a virtual view from a left view and a right view,

VSP can only be applied to half of the views in RVI-based MVC. To solve this constraint,

we then develop a RVE algorithm using two left views or two right views, so that VSP

can be applied to the coding of all views after the first two. Experimental results show

that these schemes can achieve better RD performance than the current JMVC standard

as well as view interpolation/extrapolation-based MVC schemes without using rectification.

Another important observation is that although the quality of the RVE-based view synthesis

is generally lower than that of the RVI-based view synthesis, the average RD performance

of RVE-based MVC across all views can outperform RVI-based MVC as the increase of the

number of views, because RVE can be applied to more views than RVI.

The chapter is organized as the follows. In Sec. 3.2, we present the details of the proposed

RVI method and its application in MVC. Sec. 3.3 extends the result to view extrapolation

and applies it to MVC. Experimental results of the proposed RVI and RVE algorithms are

presented in Sec. 3.4. MVC results using our methods are given in Sec. 3.5. The work in

this chapter is summarized in Sec. 3.6.

32
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Figure 3.1: Block diagram of the proposed RVI algorithm.

3.2 RVI-based View Synthesis and Application in MVC

In this section, we propose an improved version of the RVI algorithms in [21, 49], and apply

it to MVC. In particular, a more robust method is used to rectify the two reference views

to reduce their vertical mismatches. A sub-pixel view interpolation is also developed to

improve the accuracy of the integer-pixel interpolation in [49]. The proposed method does

not require the knowledge of the camera parameters, since all the multiple view geometry

can be estimated from the inputs.

3.2.1 The Proposed RVI algorithm

Fig. 3.1 shows the main steps in the proposed RVI algorithm, which are explained below.

Projective View Rectification

To rectify two non-parallel input views, we first estimate the fundamental matrix, which

characterizes the epipolar geometry between the two views [20]. The matrix can be obtained

without using any camera parameter.

Suppose a point X in the 3D space is projected to point xl in one view. As mentioned

in Sec. 2.1.1, its projection correspondence xr in the other view lies on the line Fxl, where

F is the 3×3 rank-2 fundamental matrix with seven degrees of freedom [20]. In addition, xl

and xr satisfy (2.1) which is a linear function of the entries of F. In our method, the 8-point

method [20] is used to calculate F using the correspondences between two views. In addition,

the correspondences are selected using corner detection and the random sample consensus

(RANSAC) algorithms [20]. The implementation in [71] is modified to calculate F from

the selected point correspondences. Note that other correspondence matching algorithms

such as the scale invariant feature transform (SIFT) [72] can also be used to find the point

correspondences.
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Given F, the epipoles of the two views can be obtained from the left and right null spaces

of F. After this, the rectification matrix of each view can be obtained as follows [21, 49].

First, the coordinate origin is translated to the image center via a transform

T =


1 0 −cx
0 1 −cy
0 0 1

 (3.1)

where c = [cx, cy]
T is the image center. Suppose the epipole of a view is at e = [ex, ey, 1]

T

after the translation. The next step is to rotate the image such that the epipole moves to

the x-axis, i.e., its homogeneous coordinate has the format [v, 0, 1]T . The required rotation

R is thus

R =


αex αey 0

−αey αex 0

0 0 1

 (3.2)

where α = 1 if ex ≥ 0 and α = −1 otherwise.

Given the new epipole position [v, 0, 1]T , the following transformation is applied to map

the epipole to infinity.

G =


1 0 0

0 1 0

−1/v 0 1

 (3.3)

As a result, the rectification matrix for a view is

H = GRT (3.4)

In [49], the scheme in (3.4) is used to obtain the rectification matrices Hl and Hr for the left

and right view, respectively, in order to create two parallel views. However, its performance

relies mainly on the accuracy of the calculated epipoles. In [21], a more robust and accurate

matching transform method is used, where the transformation Hl for the left view is still

obtained by (3.4), but Hr for the right view is obtained by finding a matching transform

that minimizes the mismatch of the two rectified views. However, this method needs to

solve the camera matrices, which are not always available.

In this thesis, we optimize the rectification matrix Hr for the right view by minimizing

the distances between a group of rectified corresponding points in the two views, i.e.,

argmin
Hr

∑
i

||Hlxli −Hrxri||2 (3.5)
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where xli and xri are some of the most accurate point correspondences in the two images,

selected by the RANSAC algorithm. The Levenberg-Marquardt algorithm [20] is used to

find the optimal solution of Hr, with the initial value given by the method in (3.4). Our

experimental results show that using (3.5) can reduce the average vertical mismatch of the

two views by as much as 80% compared to the method in [49].

After the rectification, the resolutions of some regions in the rectified views are down-

scaled, which can decrease the quality of the interpolated view. The down-scaled factor at

a pixel position (x̃, ỹ) in the rectified view is given by [49]

m(x̃, ỹ) =

∣∣∣∣∣ ∂x̃
∂x

∂x̃
∂y

∂ỹ
∂x

∂ỹ
∂y

∣∣∣∣∣ (3.6)

To compensate the loss of resolution, the pixel value at position (x̃, ỹ) is extended to the

unfilled pixels in a square region around (x̃, ỹ) with a side length of
√
m(x̃, ỹ).

Disparity Estimation

Since two parallel views are created after rectification, disparity estimation can be performed

in 1D. In our method, the disparity estimation method in [26] is adopted, where a smoothness

term is introduced into the cost function to favor solutions with small changes between

neighbors. The energy cost function for a pixel at (x, y) is defined as:

E(x, y) = Edata(x, y) + Eocc(x, y) + Esmooth(x, y) (3.7)

where Edata results from the intensity differences between corresponding pixels, Eocc im-

poses a penalty for making a pixel as occlusion, and the smooth term Esmooth ensures that

neighboring pixels have similar disparities. Moreover, an uniqueness constraint is imposed

in [26] to deal with occlusions, in which a pixel can correspond to at most one pixel in the

other view, i.e., a pixel can only be labeled as either a matching point that corresponds to

one pixel, or an occluded point that corresponds to no pixel in the other view.

The disparity estimation in [49] is based on the method in [22], by adding an extra

term in the cost function to improve the smoothness of the disparity map. However, our

experimental results show that the improvement is not always satisfactory.
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Figure 3.2: View interpolation. (a) pixels from both v′i−1(tj) and v′i+1(tj) are visible; (b)
pixels whose correspondences are out of the boundary of v′i−1(tj) or v

′
i+1(tj); (c) Occlusion

pixels in v′i−1(tj); (d) Occlusion pixels in v′i+1(tj).

Sub-pixel View Interpolation

View interpolation can be performed after disparity estimation. Although two neighboring

views are available, there is no guarantee that every pixel in one view has its corresponding

pixel in the other view, due to occlusion. Therefore, different cases need to be considered.

In addition, in [22, 47], the interpolated coordinates of the pixels in the middle view are

directly rounded to integer, which reduces the quality of the interpolated view and creates

more occlusion regions. Although an occlusion padding algorithm is performed in [47] to

improve the view interpolation, the quality of the synthesized images is still not satisfactory.

In this thesis, we propose a sub-pixel interpolation method, by distributing the contribu-

tion of each interpolated pixel with floating-point coordinates to the two nearest horizontal

neighbors with integer coordinates.

Let vm(tn) be the image of view m at time tn, v
′
m(tn) the rectified vm(tn), and w

′
i(tj)

the generated virtual image for view i at time tj . Also let v′m(x, y, tn) and w
′
i(x, y, tj) be the

pixel value of v′m(tn) and w
′
i(tj) at position (x, y) respectively, and dmn (x, y, tj) the disparity

of view m relative to view n at position (x, y) and time tj . As in [22, 47], we interpolate

the middle view by considering three cases.

If a pixel is visible in both views, as shown in Fig. 3.2(a), the corresponding pixel position
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in the intermediate view can be easily obtained by scaling the disparity value, and the pixel

value of the intermediate pixel is interpolated from the correspondences in the left and right

views by

w′
i

(
x− αdi+1

i−1(x, y, tj), y, tj
)
= (1− α)v′i−1(x, y, tj) + αv′i+1

(
x− di+1

i−1(x, y, tj), y, tj
)

(3.8)

where α is the ratio between the distance from view i− 1 to view i and that from view i− 1

to view i+ 1. Note that x− αdi+1
i−1(x, y, tj) generally has floating-point value.

For pixels whose corresponding pixels are out of the valid image area in the other view

(Fig. 3.2(b)), we extend the disparity of the border pixel, and the pixel color is copied accord-

ingly. That is, if the correspondence of v′i−1(x, y, tj) is invalid in v′i+1(tj), the interpolated

pixel is taken as

w′
i

(
x− α · di+1

i−1(xr, y, tj), y, tj
)
= v′i−1(x, y, tj) (3.9)

Similarly, if the correspondence of v′i+1(x, y, tj) is invalid in v′i−1(tj), the interpolated pixel

is

w′
i

(
x+ (1− α) · di+1

i−1(xl, y, tj), y, tj
)
= v′i+1(x, y, tj) (3.10)

In (3.9) and (3.10), xr and xl are the horizontal axis of the first neighbor of v′i−1(x, y, tj)

and v′i+1(x, y, tj) with valid point correspondence in the other view, as shown in Fig. 3.2(b).

Due to occlusions, some pixels are only seen in one view. Their disparity values are

therefore unavailable. In our system, these pixels are detected by the disparity estimation

method in [26]. As shown in Fig. 3.2(c-d), the occlusion areas in the left view (view i− 1)

are occluded by the objects at their right side, and the occlusion pixels in the right view

(view i + 1) are occluded by objects at their left side. Therefore, view interpolation can

use the disparities of the neighboring background pixels. For view interpolation involving

occlusion pixels in v′i−1(tj), the disparity of the first available pixel to the left is used.

w′
i

(
x− α · di+1

i−1(xl, y, tj), y, tj
)
= v′i−1(x, y, tj) (3.11)

For view interpolation involving occlusion pixels in v′i+1(tj), the disparity of the first avail-

able pixel to the right is used.

w′
i

(
x+ (1− α) · di+1

i−1(xr, y, tj), y, tj
)
= v′i+1(x, y, tj) (3.12)

In (3.11) and (3.12), xl and xr are shown in Fig. 3.2(c-d).
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Finally, to obtain the interpolated pixels at an integer location (x0, y0), we use the

weighted combination of all pixels within unit distance from (x0, y0), i.e.,

w′
i(x0, y0, tj) = round

 1

C(x, x0)

∑
|x−x0|<1

γ(x, x0) · w′
i(x, y0, tj)

 (3.13)

where C(x, x0) =
∑

|x−x0|<1

γ(x, x0), γ(x, x0) = 1/(|x−x0|+c0), and c0 is a constant to prevent

overflow, and is set to be 0.1 in our implementation.

Note that if the distances from the left and right view to the target view are equal, the

factor α in (3.8) to (3.12) will be 0.5, and the interpolated coordinates will be either integer

or half-integer. In this case, the complexity of (3.13) can be simplified.

Projective Un-rectification

Similar to [20], the rectification algorithm above could generate non-rectangular interpolated

images. Therefore, the last step of the RVI method is to back-project the intermediate view

to the original coordinates at the same position. To do so, we first locate the positions of

the four corners from the interpolated image w′
i(tj), denoted x′

i, i = 1, . . . , 4. Our goal is to

find an 3× 3 un-rectification matrix B that minimizes the mapping error from these points

to the four corners of the unrectified image wi(tj), i.e.,

argmin
B

∑
i=1,...,4

∥Bx′
i − xi∥2, (3.14)

where xi are homogeneous coordinates of the four corners in wi(tj). The direct linear

transform (DLT) method in [20] can be applied to convert (3.14) into a constrained least

square problem

argmin
b
∥Ab∥, s.t. ∥b∥ = 1, (3.15)

where b = [b1 b2 b3]
T (bi is the ith row of B), i.e., the vectorized version of B. Matrix A

is an 8 × 9 matrix, and each pair of corner correspondences contributes to two rows of A.

The optimal solution to (3.15) is the unit singular vector that corresponds to the smallest

singular value of A.

3.2.2 RVI-based MVC

In this part, we apply our RVI method to H.264-based MVC, by modifying the MDE-based

JMVC software [73], which uses hierarchical B structure in the temporal direction and I-B-P
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Figure 3.3: The proposed RVI-based MVC schemes.

prediction structure in the inter-view direction.

The coding structure of our RVI-based MVC is illustrated in Fig. 3.3 for a system with

five views and a group of pictures (GOP) size of 8. The coding of the even-indexed views is

identical to the even-indexed views in the JMVC. That is, v0 is coded using hierarchical B

structure in the temporal direction. Other even-indexed views are coded by hierarchical B

structure in the temporal direction, as well as disparity-compensated inter-view prediction

using the previously reconstructed even-indexed view as reference.

For the odd-indexed views v2k+1, in addition to temporal B references, two inter-view

reference pictures are used in our method. The first is a synthesized frame w2k+1(tj) gen-

erated by the proposed RVI method. The second is the left view. The encoder then uses

R-D optimization to find the best coding mode for each block, by treating the synthesized

view as an additional reference picture. The synthesized views can be generated at the

decoder using the reconstructed reference views, thus no additional bits need to be sent to

the decoder.

It should be mentioned that the frames of v2k+1 are coded as B pictures in the inter-

view direction in the JMVC, using the left view and the right view as references. Therefore

our scheme has the same number of inter-view references as the JMVC. However, since the

quality of our view interpolation-based prediction is usually better than that of the disparity

compensation, the proposed RVI-based MVC scheme can achieve a better coding efficiency

than JMVC, as shown in Sec. 3.5.
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Figure 3.4: View extrapolation. (a) pixels from both v′i−2(tj) and v′i−1(tj) are visible; (b)
pixels from v′i−2(tj) is out of the boundary; (c) only pixel from v′i−1(tj) is available.

3.3 RVE-based View Synthesis and Application in MVC

View interpolation requires a left view and a right view. To apply it to MVC, VSP can

only be applied to half views in order to get satisfactory performance. In this section we

generalize the RVI method to get a RVE algorithm using two left views or two right views.

We then apply the RVE method to MVC to encode all views after the first two views.

3.3.1 The Proposed RVE Algorithm

In this thesis, we assume that the view extrapolation algorithm uses two left views to synthe-

size a right view. Similar to the view interpolation algorithm in Sec. 3.2, the extrapolation

algorithm first performs projective rectification and disparity estimation to the two left

views. After that, instead of interpolating the disparity to find the corresponding pixel

locations in the middle view, the algorithm extrapolates the disparity and estimates the

pixel locations in the right view. The final step of un-rectification is still similar to the view

interpolation method. The disparity extrapolation is described below, since it is the only

different step.

Using the same notations as in Sec. 3.2.1, two frames from the two previous views,
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vi−2(tj) and vi−1(tj), are used to extrapolate a frame for view i. Let v′i−2(tj), v
′
i−1(tj)

and u′i(tj) be the rectified frames of vi−2(tj), vi−1(tj) and the synthesized view i at tj ,

respectively.

If the horizontal camera distance between u′i(tj) and v
′
i−1(tj) is c times of that between

v′i−2(tj) and v
′
i−1(tj), we assume their disparities have the same scaling factor, i.e.,

dii−1(x, y, tj) = c · di−1
i−2(x, y, tj). (3.16)

The following three cases need to be handled.

If a pixel is visible in both v′i−2(tj) and v
′
i−1(tj), as shown in Fig. 3.4(a), we extrapolate

their disparity, and the synthesized pixel in u′i(tj) is the average of the pixel pair. That is,

u′i
(
x− (1 + c)di−1

i−2(x, y, tj), y, tj
)
=

1

2

[
v′i−2(x, y, tj) + v′i−1(x− di−1

i−2(x, y, tj), y, tj)
]
(3.17)

For pixels whose correspondences are out of the valid region of v′i−2(tj), as shown in

Fig. 3.4(b), we scale the disparity of the first left pixel (xl, y) with valid point correspondence,

u′i
(
x− c · di−2

i−1(xl, y, tj), y, tj
)
= v′i−1(x, y, tj) (3.18)

If a pixel at (x, y) is only visible in v′i−1(tj), as shown in Fig. 3.4(c), it is also assumed

to be visible in the extrapolated view, and the first available disparity to the right of this

pixel, with coordinate (xr, y), is used as the disparity of this pixel. This disparity is then

scaled by c to find the position of the corresponding pixel in the target view, i.e.,

u′i
(
x− c · di−2

i−1(xr, y, tj), y, tj
)
= v′i−1(x, y, tj) (3.19)

If a pixel is only visible in v′i−2(tj) but not in v′i−1(tj), it is assumed to be invisible in

the extrapolated view as well. Therefore no operation is needed.

The locations of the extrapolated pixels are not integer in general. To find the pixels at

integer locations, the sub-pixel method in (3.13) can be used. However, if the factor c in

(3.16) to (3.19) is integer, there is no need for sub-pixel view extrapolation, as all coordinates

involved are integer.

After the extrapolation operations above, there could still be some holes in the extrapo-

lated view, because some parts of vi(tj) do not appear in vi−2(tj) and vi−1(tj). Conventional

occlusion handling techniques, such as extrapolating neighboring background pixels, are of-

ten ineffective in this case because view extrapolation tends to create larger occluded regions
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Figure 3.5: The proposed RVE-based MVC schemes.

than view interpolation. Therefore, we introduce a new technique for handling occlusions,

where the occluded pixel in u′i(x, y, tj) is interpolated from pixels in the two previously

decoded frames in the temporal direction by

u′i(x, y, tj) =
1

2

[
v′i(x, y, tj−2) + v′i(x, y, tj−1)

]
. (3.20)

In addition, the synthesis bias correction method in [12] is performed after view un-rectification

to reduce the biases originated from the view extrapolation as well as the illumination vari-

ations between camera views.

3.3.2 RVE-based MVC

The proposed view extrapolation method can be applied to MVC to encode all views after

the first two views. The coding structure is shown in Fig. 3.5 for a system with four views

and GOP size of 8. Similar to Fig. 3.3, the temporal prediction scheme is based on the

hierarchical B structure. The anchor frames in the first two views are either intra-coded or

inter-coded using the previous view. After the first two views, each non-anchor frame in

the subsequent views has four references: two references from the temporal prediction, one

from the decoded previous view, and one from view extrapolation.

We will show later that although the quality of view extrapolation is often lower than

that of view interpolation, the degradation could be compensated by the improved coding

efficiency when view extrapolation is applied to more views.
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Figure 3.6: Performance comparison of various view interpolation algorithms, for Xmas.

3.4 Experiment Results of RVI and RVE-based View Syn-

thesis

We first compare our view synthesis algorithms with the method in [48], using the test

sequence Xmas, where 101 views Im,m = 0, 1, . . . , 100 of a fixed scene are taken by moving

a camera to different positions along a straight line. The maximum disparity between the

two boundary cameras is 70 pixels. Since the cameras are parallel, the rectification and

un-rectification steps in our method are not needed. The performance gap is caused by the

different disparity estimation and view synthesis algorithms of the two methods.

In Fig. 3.6, we calculate the peak-signal-to-noise ratio (PSNR) between the original and

the interpolated images of a specific view, using a left reference view and a right reference

view with index difference 2x. For each given x, the PSNRs of the interpolated results

for view 45 to view 55 are measured and the average is used as the corresponding PSNR,

as in [48]. The result of the method in [48] is denoted as “Old”. The results of both the

integer-pixel and sub-pixel versions of the proposed RVI method are plotted.

It can be observed that our method significantly outperforms [48] when x > 6, or when

the disparity between the left and right views is greater than 8.4 pixels, which is the case

in most systems. The gain is up to about 6 dB at x = 15. In addition, the quality of the

sub-pixel view interpolation is better than that of integer-pixel interpolation in all cases

with a maximum improvement of 4.6 dB at x = 9. Therefore our method can be useful for
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Figure 3.7: Performance comparison between RVI and RVE methods, for Xmas.

applications such as free viewpoint videos.

Fig. 3.7 compare the performances of our view interpolation and extrapolation methods.

The view interpolation result is obtained by using view 50 as the target view, and view

50− x and view 50 + x as references. The view extrapolation result is obtained by treating

view 100 as the target and view 100 − x and view 100 − 2x as the references. As shown

in the figure, the quality of view extrapolation is much lower than the view interpolation,

with gap ranging from 2.6 to 8.3 dB. However, when we increase the distance between two

reference cameras, the gain of view interpolation over view extrapolation begins to drop, as

disparity estimation error would dominate the view synthesis distortion for a large camera

baseline.

Fig. 3.8 shows the performances of our methods for non-parallel cameras, using view 2

of the Breakdancers sequence, which has a 1D arc camera setup. To synthesize view 2, the

original view 0 and view 1 are used as references for view extrapolation, whereas view 1 and

view 3 are used for view interpolation. Four cases of our methods are tested, namely, RVI,

RVE, direct view interpolation (DVI), and direct view extrapolation (DVE), where DVI and

DVE are the same as RVI and RVE except that the rectification step is disabled.

It can be seen that RVI outperforms RVE for all the frames of the synthesized view, with

an average improvement of 2.8 dB. When the rectification is disabled, the result of DVI and

DVE is about 5.8 dB and 4.1 lower than RVI and RVE respectively, and the gap between

DVI and DVE is smaller than that between RVI and RVE. This shows the importance of
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Figure 3.8: Performance comparison of various view interpolation and view extrapolation
methods, for Breakdancers.

rectification for non-parallel cameras.

Fig. 3.9 shows an interpolated image of Breakdancers sequence before and after pro-

jective un-rectification. It can be seen that the non-rectangular interpolated frame can be

corrected after un-rectification.

3.5 Experimental Results of MVC

We next compare the performances of the proposed RVI and RVE-based MVC schemes

with those of the JMVC [73] and the simulcast method. Six MVV data sets, Breakdancers,

Ballet [74], Uli [75], Aquarium, Rena, and Akko & Kayo [76] are tested. The first four

sequences have 1D arc camera setup, whereas the last two use parallel cameras, for which

the RVI and RVE-based MVC reduces to DVI and DVE-based MVC. Our methods are

implemented based on the JMVC 3.0 software with 8-frame GOP, 96-pixel motion search

window, and CABAC entropy encoding. The RD optimization and loop filter are enabled.

The rate control is turned off.

We first show in Table 3.1 the average coding gains of the proposed MVC schemes and

the JMVC over the simulcast method, when only view 2 of each sequence is encoded. The

coding gains are obtained by averaging the PSNR improvements over the simulcast at all

tested bit rates.

To achieve a fair comparison, we first independently encode view 0, view 1 and view
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Table 3.1: Average single view coding gain over simulcast

Sequence
Average Coding Gains (dB)

JMVC RVI DVI RVE DVE

Breakdancers 1.50 1.99 1.29 1.66 1.26
Aquarium 1.65 2.09 1.40 1.95 1.32
Ballet 1.33 1.58 0.99 1.48 0.96
Uli 0.08 0.16 0.05 0.15 0.03

Rena 2.76 3.63 3.63 3.24 3.24
Akko&Kayo 3.04 3.68 3.68 3.31 3.31

3. To encode view 2 with the JMVC method, we use the decoded view 1 and view 3 as

the inter-view references. To encode view 2 with the RVI or RVE-based MVCs, we use the

decoded view 1 and view 3 to interpolate view 2, and use the decoded view 0 and view 1

to extrapolate view 2, respectively. The synthesized view is then used as another inter-view

reference for view 2 in our methods, in addition to the decoded view 1. Therefore the

JMVC and the RVI and RVE-based MVCs have the same number of reference frames in

this single-view coding test. The only difference of our methods from JMVC is that one of

the inter-view reference of JMVC is replaced by the synthesized view.

As shown in Table 3.1, both RVI and RVE-based MVCs outperform MDE-based JMVC.

Moreover, RVI-based MVC is better than RVE-based MVC for all sequences. When the

rectification step is disabled in arc camera setup, both DVI and DVE-based MVCs perform

worse than JMVC, highlighting the importance of rectification for non-parallel cameras.

Table 3.1 also shows that the gain of the rectification-based approach is less for sequences

Ballet and Uli. The reason for the Ballet case is that the objects in the sequence are quite

close to the camera, leading to large occluded areas. The lack of effectiveness for Uli sequence

is because it has larger camera distance and more color distortion between cameras.

Fig. 3.10 depicts some RD curves for view 2. The RVI-based MVC can be up to 1 dB

better than RVE-based MVC at low rates. When the rate increases, the gain of our method

over JMVC starts to diminish, because the prediction residual signal produces most of the

output bits. The same phenomenon also exists in other MVC algorithms [42, 48, 77, 78].

We next encode all views of a sequence with JMVC and our methods, using the structure

of JMVC, Fig. 3.3 and Fig. 3.5, respectively. We then calculate the average PSNR gains of

these schemes over the simulcast when different numbers of views are used in computing the

average PSNR. The results are reported in Fig. 3.11, which provides a better performance
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measure than the single-view coding in Table 3.1 and Fig. 3.10. It also reveals the efficiencies

of different methods for each view.

It can be seen in Fig. 3.11 that all MVC schemes have the same performance for view

0, which is always coded by the simulcast method. When two views are used to calcu-

late the average coding gain, view interpolation-based MVCs achieve better results than

extrapolation-based MVCs, because view 1 in Fig. 3.3 has one more reference than view 1

in Fig. 3.5. However, when more than two views are compared, view extrapolation-based

MVCs start to outperform interpolation-based MVCs, because RVE/DVE is applied to all

views after the first two, whereas RVI/DVI can only be applied to half of the views. In

addition, the average coding gains of JMVC and RVI-based MVC over simulcast increase

for each odd-indexed view while decrease for each even-indexed view, because odd-indexed

views in Fig. 2.6 and Fig. 3.3 have one more reference than even-indexed views for inter-view

prediction.

Fig. 3.11 also shows that the rectification generates additional coding gains to both view

interpolation and extrapolation methods for non-parallel camera setup. These results will

be verified by the theoretical analyses in Chapter 4.

Although the proposed algorithms improve the performance of view synthesis and MVC,

they increase the complexity of the system. Experimental results show that the view rec-

tification, disparity estimation, sub-pixel view interpolation and view un-rectification in

Sec. 3.2.1 increase the encoding complexity by about 30%, 200%, 10% and 10%, respec-

tively. Since disparity estimation is the most expensive operation, the complexity can be

reduced by using faster disparity estimation methods. The scheme can also benefit from

the rapid development of hardware design such as GPU computing. For example, a GPU-

based real-time view synthesis system is reported in [79], and an OpenGL-based hardware

acceleration is used in [49] to achieve real-time view interpolation.

3.6 Summary

In this chapter, we develop projective rectification-based view interpolation and extrap-

olation methods and apply them to MVC. Experimental results show that the proposed

view synthesis schemes achieve better performance than existing methods, and lead to im-

proved RD performance than the current JMVC standard. An important observation is
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that although the quality of the extrapolated views is generally lower than that of the in-

terpolated views, the average RD performance of view extrapolation-based MVC across all

views can outperform the view interpolation-based MVC as the increase of the number of

views, because view extrapolation can be applied to more views than view interpolation.
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(a)

(b)

Figure 3.9: Examples of interpolated images of Breakdancers. (a) Before un-rectification.
(b) After un-rectification (PSNR: 33.96 dB).
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Figure 3.10: RD curves of encoding one view. (a) Breakdancers. (b) Rena.
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Figure 3.11: Average coding gain across different views over the simulcast method. (a)
Breakdancers at 550 kbps. (b) Rena at 200 kbps.



Chapter 4

Theoretical RD Analysis of MVC

4.1 Introduction

In Chapter 3, we develop RVI and RVE-based view synthesis algorithms and show ex-

perimentally the coding gain of the proposed methods over the existing DVI, DVE and

MDE-based view prediction methods when applying them to MVC. In [55], a theoretical

model was developed for DVI-based view synthesis, where the effect of disparity estimation

error on the quality of the view interpolation was analyzed and a pre-filter method was

proposed to improve the view interpolation quality. However, the model in [55] assumed all

cameras were aligned in a straight line and had parallel views.

In this chapter, we propose a more accurate geometrical model than that in [55], which

allows more flexible camera setup in terms of positions and directions. Furthermore, this

model enables us to derive the theoretical performance gain of projective rectification on

the quality of the interpolated or extrapolated view when unaligned cameras are used. To

the best of our knowledge, this is the first attempt to quantify the improvement of the

rectification step to view synthesis. On the other hand, we also develop an improved RD

model to analyze the performances of different practical MVC schemes, such as MDE-based

JMVC, RVI/RVE-based MVC and DVI/DVE-based MVC. Our model is a generalization of

that in [35], with the consideration of modeling different VSP methods. Simulation results of

this model verify the experimental results of various MVC schemes discussed in Chapter 3.

The chapter is organized as follows. In Sec. 4.2, we develop a geometric model to analyze

the impacts of the camera orientation, camera distance, and disparity error on the quality

of RVI and RVE. In Sec. 4.3, we develop an improved RD model for the comparison of

52
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Figure 4.1: Model of rectification-based view synthesis.

practical MVC schemes. Simulation results are given in Sec. 4.4. The work in this chapter

is summarized in Sec. 4.5.

4.2 Geometric Models of RVI and RVE-based View Synthesis

In this section, we first develop a geometric model to theoretically analyze the performance of

RVI-based view synthesis, especially derive the performance gain of projective rectification

on previous DVI method. Then, the same model is extended to study RVE-based view

synthesis. The models discussed in this section will be used in Sec. 4.3 to study the RD

performance of RVI and RVE-based MVC.

4.2.1 Geometric Model of RVI

Fig. 4.1 shows the proposed geometric model for RVI, which is a generalization of that in

[55]. In Fig. 4.1, vL and vR are the left and right views, whose orientations are not parallel,
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v is the new view to be synthesized, and v̂L and v̂R are another possible pair of left and

right views.

As in [53, 55], the scene is modeled as a planar surface, and a geometry error of ∆z is

assumed in estimating the position of the planar surface. As shown in 4.1, the geometry

error will lead to a disparity error ∆d in the left and right views, and in general ∆z ̸= ∆d.

This model is more accurate than that in [55], where no distinction is made between the

geometry error of the scene and the disparity error of the images, i.e., it simply assumes

∆z = ∆d.

We next find the relationship between the average disparity errors before and after the

rectification, which shows that the rectification can reduce the disparity error. For simplicity,

we assume v is parallel to the planar surface. The un-rectification step is thus not needed.

We also assume that the left and right views are symmetric with respect to the middle view.

With these assumptions, the rectification reduces to two steps. First, the left and right

views are rotated by angle θ so that they are parallel to the middle view. This step captures

the essence of the transform in (3.3). Secondly, the rotated views are shifted by β to be in

the same line as the middle view.

The enlarged portion in Fig. 4.1 illustrates the details of the first step, where ∆d′ is the

disparity error after rotation. We assume that the scene surface is far away from the camera

centers. Thus, using the geometric relationship in Fig. 4.1, the disparity errors ∆d and ∆d′

caused by the geometry error of a point on the scene surface is approximately related by

∆d′

∆d
≈ sinα2

sinα1
=
sin(α1 + θ)

sinα1
= cosθ + sinθ · cosα1

sinα1
(4.1)

where the angles α1 and α2 are defined in Fig. 4.1.

The result above depends on the pixel location. To simplify the model, we use the average

value of ∆d′/∆d of all pixels, denoted by ∆d′/∆d. Assume α1 is uniformly distributed in

[π−α0
2 , π+α0

2 ], where α0 is the field of view, we have

∆d′

∆d
≈ 1

α0

∫ π+α0
2

π−α0
2

(
cosθ + sinθ · cosα1

sinα1

)
dα1 = cosθ (4.2)

After shifting the left and right views to the same line as the middle view, the disparity

error changes from ∆d′ to ∆L. Let D be the distance from the planar surface to the camera

center of the middle view. If D >> β, which is usually the case, we have ∆L ≈ ∆d′. To

see this, let f be the camera focal length, and g the horizontal distance between the left or
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right view and the middle view. We can get from Fig. 4.1 that

∆L = g ·
(
D − f
D

− D − f −∆z

D −∆z

)
(4.3)

∆d′ = g ·
(
D − f − β
D − β

− D − f −∆z − β
D −∆z − β

)
(4.4)

Hence the impact of the shift is negligible when D >> β.

As a result, the average disparity error ∆L after the rectification is related to the original

average disparity error by

∆L ≈ ∆d · cosθ (4.5)

Therefore, the rectification can reduce the disparity error by a factor of cosθ on average.

Although the derivation of this model is based on the simple planar surface model and

the average step in (4.2), we will show later that the model agrees reasonably well with the

experimental results in both view synthesis and MVC.

In a MVC system, instead of using the nearest neighboring views, sometimes it is neces-

sary to use other cameras to interpolate a middle view, as in the hierarchical B structure. In

Fig. 4.1, this can be studied by using a pair of left and right views v̂L and v̂R with distance

Mg from the middle view as the references for interpolation.

To study the impact of the camera distance on the disparity error, note from (4.3) that

the rectified disparity error is proportional to the distance between two cameras; hence if

we denote ∆L′ as the rectified disparity error for v̂L, we have

∆L′ =Mg

(
D − f
D

− D − f −∆z

D −∆z

)
=M∆L (4.6)

Its average is thus ∆L′ ≈M∆dcosθ, which is M times of that of the nearest camera. This

is approximately true even if the cameras at distance Mg have different angles from the

nearest cameras. It also simplifies the subsequent derivation, since we only need to consider

the angle θ of the nearest cameras.

Let 2d be the true disparity of the planar surface between rectified left view v̂′L and right

view v̂′R. When the disparity error above is considered, the disparity becomes 2d + 2∆L′.

The interpolated middle view is the average of the disparity-compensated rectified left and

right views, thus

w(x, y) = 1/2
{
v̂′L
(
x+ d+∆L′, y

)
+ v̂′R

(
x− d−∆L′, y

)}
= 1/2

{
v
(
x+∆L′, y

)
+ v

(
x−∆L′, y

)}
= 1/2

{
v
(
x+Mcosθ∆d, y

)
+ v

(
x−Mcosθ∆d, y

)}
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The fourier transform (FT) of the interpolated view is thus

W (ωx, ωy) = H1(ωx) · V (ωx, ωy) (4.7)

where

H1(ωx) = cos
(
Mcosθ∆dωx

)
(4.8)

(4.7) is a powerful formula that captures the impacts of the disparity error, camera orienta-

tion, and camera distance on the quality of the interpolated view. When M = 1 and θ = 0,

this expression reduces to that in [55] for parallel views. Our model thus can be used to

study view interpolation with flexible camera orientations.

4.2.2 Geometric Model of RVE

The setup in Fig. 4.1 can be modified to derive a model for view extrapolation. Without loss

of generality, we use two left views, such as v̂L and vL, to extrapolate the target right view

v. If the true disparity of the rectified left view v′L with respect to the target view is d, the

disparity of v̂′L will be Md. Using the disparity errors in (4.5) and (4.6), the extrapolated

view can be obtained by the following average of the disparity-compensated rectified vL and

v̂L.

u(x, y) = 1/2
{
v′L
(
x+ d+∆L, y

)
+ v̂′L

(
x+Md+∆L′, y

)}
= 1/2

{
v
(
x+∆L, y

)
+ v

(
x+∆L′, y

)}
= 1/2

{
v
(
x+ cosθ∆d, y

)
+ v

(
x+Mcosθ∆d, y

)}
The FT of the extrapolated view is

U(ωx, ωy) = H2(ωx) · V (ωx, ωy) (4.9)

where

H2(ωx) =
1

2

(
ejcosθ∆dωx + ejMcosθ∆dωx

)
(4.10)

When M = 2, it corresponds to the proposed view extrapolation based MVC configuration

in Fig. 3.5, where the two closest left views are used for extrapolation.

4.3 An Improved RD Model for MVC

In this section, by modifying the theoretical framework in [34, 53, 54], we first derive the

bit rate difference over the simulcast scheme when encoding one frame of the multiview se-

quences with different MVC methods, including the proposed RVI and RVE-based schemes,
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Figure 4.2: The theoretical model of encoding one frame.

and MDE-based JMVC. We then obtain the average bit rate difference when encoding all

frames of the multiview system, by considering the different prediction configurations of

different frames.

We denote L and K to be the number of views and the number of frames per GOP,

respectively. For simplicity purpose, we assume L is odd, and K = 2B, where B is the

levels of hierarchical B-frames in each GOP. The k-th frame in a GOP of the l-th view is

denoted as vlk. We use ik ∈ [0, . . . , B] to represent the temporal hierarchy of vlk, where

ik = 0 corresponds to the temporal intra-coded frames.

Note that the mathematical model in [35, 52] aims to find the upper bound of the rate

difference of MVC. It therefore assumes all motion and disparity-compensated frames in the

L views and K frames are jointly encoded by a global Karhunen-Lòeve Transform (KLT),

which is not the case in practical systems. The model developed here considers the coding

of each frame. Therefore it matches the practical codecs more accurately, and can be used

to compare the performances of different MVC schemes. It also allows us to study the

impact of view rectification and other prediction methods on the coding efficiency of the

entire MVC system.

4.3.1 RD Model for the Coding of One Frame

To study the theoretical RD performances of encoding one frame using different MVC

schemes, the statistical model in Fig. 4.2 is used, which is modified from those in [34, 53, 54].

Since predictive coding is used in practical MVC, we use the linear minimum mean squared

error (LMMSE) theory to find the prediction residual of each frame. The RD theory is then
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used to obtain the bit rate difference of different methods over the simulcast scheme, where

each view is coded independently using hierarchical B structure.

The first branch in Fig. 4.2 represents our source model for the MVV data. Similar

to [35], we assume that all frames of the MVV system are generated from a common root

frame s by some translations or shifts. More precisely, vlk is obtained from s by two shifts,

Γl = [Γlx,Γly]
T and Υk = [Υkx,Υky]

T , and an additive white Gaussian noise nlk,0, where Γl

is caused by the different camera viewpoints between s and vlk,Υk is caused by their different

observation times, and nlk,0 represents the components of vlk that cannot be modeled by

the simple translation. We also assume that nlk,0 is independent of s. As a result, let

Alk(ω) = e−jωTΓle−jωTΥk (4.11)

where ω = [ωx, ωy]
T , the FT of frame vlk can be written as

Vlk(ω) = Alk(ω)S(ω) +Nlk,0(ω) (4.12)

where S(ω) and Nlk,0(ω) are the FT of the root frame s and the Gaussian noise nlk,0,

respectively.

We next model the predictive coding with multiple reference frames. As in [34, 35,

53, 54], we assume that vlk is predicted from a vector of up to W compensated references

clk = [clk,1, clk,2, . . . , clk,W ]T , as shown in Fig. 4.2. These references can come from motion

compensation in the temporal direction, disparity compensation in the inter-view direction,

or VSP from the inter-view direction. We assume that each reference image clk,i is related

to the root frame s by a transfer function Plk,i(ω) and an additive white Gaussian noise

nlk,i that is independent of s. Plk,i(ω) models the different prediction methods with lim-

ited accuracy, and nlk,i captures the components that cannot be described by the transfer

functions.

The expressions of Plk,i(ω) are given in Appendix 4.A, which shows that there are only

five distinctive cases of Plk,i(ω) for the MVC schemes considered in this thesis. As in [35], the

disparity-compensated reference is modeled as the root signal s shifted by a disparity error

Ξ = [Ξx,Ξy]
T . The motion-compensated reference is modeled as s shifted by a displacement

error Θf,ik = [Θf,ikx,Θf,iky]
T or Θb,ik = [Θb,ikx,Θb,iky]

T , where Θf and Θb indicate the

displacement error of the forward and backward motion-compensated reference, respectively.

When a reference is obtained by the proposed RVI or RVE, Plk,i(ω) becomes H1(ω) or H2(ω)

in (4.8) and (4.10).
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We assume the components in ∆d, Ξ, Θf,ik and Θb,ik are independent zero-mean Gaus-

sian random variables with variances σ2d, σ
2
Ξ, σ

2
Θik

and σ2Θik
, respectively. In [34, 35], σ2Θik

is assumed to be identical in all temporal hierarchies, which is not true in practices, as the

prediction accuracy usually decreases as the increase of the reference frame distance. To

model this effect, we assume the variance of the displacement error is related to the B-frame

hierarchy by

σ2Θik
= 22(B−ik)σ2Θ, ik = 1, . . . , B (4.13)

where σ2Θ is the variance of the displacement error of the B frames in the finest hierarchy.

Given Plk,i(ω), assuming that the noises are uncorrelated with each others, it is easy to

show that the LMMSE filter in Fig. 4.2 to estimate frame vlk is [34]

Tlk(ω) = Alk(ω)Φ
†
cs(ω)Φ

−1
cc (ω) (4.14)

where Φcs(ω) and Φcc(ω) are the cross spectral density functions between clk and s, and

the PSD of clk respectively, and † is the conjugate transpose. Due to space limitation, we

drop the subscript lk in Φcs(ω) and Φcc(ω). Let

Flk(ω) = [Plk,1(ω), Plk,2(ω), . . . , Plk,W (ω)]T (4.15)

we then have

Φcs = FlkΦss

Φcc = FlkΦssF
†
lk +Φnn = ΦssFlkF

†
lk +Φnn

(4.16)

where the variable ω is not shown due to space limitation, and Φnn is the PSD of the noise

vector [nlk,1, nlk,2, . . . , nlk,W ].

Note from (4.11) that Alk(ω)A
∗
lk(ω) = 1. Therefore it can be shown that with the

LMMSE filter in (4.14), the PSD of the corresponding prediction error elk(ω) is

Φelkelk = Φss −Φ†
csΦ

−1
cc Φcs +Φn0n0 (4.17)

where Φn0n0 is the PSD of the noise nlk,0.

The transfer function Flk(ω) depends on the coding structure. As shown in Appendix 4.A,

Flk(ω) is determined by random variables such as ∆d, Ξ, Θf,ik and Θb,ik . As in [34, 35, 53,

54], we are interested in the expected values of (4.16):

Φcs = E {Flk}Φss

Φcc = ΦssE
{
FlkF

†
lk

}
+Φnn

(4.18)
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Given Φss, Φn0n0 and Φnn, Φelkelk is determined by E {Flk} and E
{
FlkF

†
lk

}
, which

are given in Appendix 4.A for all frames in four MVC schemes, namely, RVI-based MVC,

RVE-based MVC, MDE-based JMVC, and simulcast.

Once Φelkelk in (4.17) is known for all MVC schemes, the RD theory can be used to

calculate the bit rate difference between different MVC schemes [34, 35, 50, 51, 52, 53, 54].

In this thesis, we use the simulcast coding as the reference scheme. The bit rate difference

between a given MVC scheme and the simulcast method for the coding of the frame vlk is

thus

∆Rlk =
1

8π2

∫
ωx

∫
ωy

log2
Φelkelk(ωx, ωy)

Φelkelk,0(ωx, ωy)
dωxdωy (4.19)

where Φelkelk,0(ωx, ωy) is the PSD of the residue signal elk in the simulcast approach.

4.3.2 Average Coding Gain of the Entire Multiview System

The bit rate difference over the simulcast in (4.19) is for one frame. In this part, we compute

the average bit rate difference for all frames and all views of a GOP.

Since the first view is coded by the same simulcast method in all MVC schemes, this view

does not contribute anything to the overall bit rate difference. As discussed in Appendix 4.A,

the coding of other views can be divided into five cases.

We first derive the average coding gain of the RVI-based MVC. It can be seen from

Fig. 3.3 that except for view v0, all even-indexed views are coded with MDE-based prediction

as in JMVC, whereas RVI is applied to all odd-indexed views. For stationary signals, the

coding efficiency of all odd (even)-indexed views should be the same, so the average bit rate

difference of RVI-based MVC over simulcast is

∆RRV I =
1

LK

(
L− 1

2

K−1∑
k=0

∆RRV I
k +

L− 1

2

K−1∑
k=0

∆RJMV C,P
k

)
(4.20)

where ∆RRV I
k and ∆RJMV C,P

k is the rate difference of a RVI-coded frame in RVI-based

MVC and a P frame in JMVC, respectively. They can be calculated by (4.19) with (4.25)-

(4.26) and (4.28)-(4.29) from Appendix 4.A, respectively. Note that their values depend on

the B-frame hierarchy of frame k.

For the RVE-based MVC, as shown in Fig. 3.5, view v1 is coded by MDE-based prediction

with one inter-view reference. All other views are coded with RVE. Therefore, the average
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bit rate difference over simulcast is

∆RRV E =
1

LK

(
(L− 2)

K−1∑
k=0

∆RRV E
k +

K−1∑
k=0

∆RMDE,P
k

)
(4.21)

where ∆RRV E
k and ∆RMDE,P

k are the rate difference of a RVE-coded frame in all RVE-

coded views and a MDE-coded frame in view v1, which can be derived from (4.19) using

(4.25)-(4.27) from Appendix 4.A, respectively.

In the JMVC, the frames in all the even-indexed views except for view v0 are inter-view

coded as P frame using the reference from the last even-indexed view, and all odd-indexed

views are inter-view coded as B frames, using the neighboring left and right views. Therefore,

the average rate difference of the JMVC over simulcast is

∆RJMV C =
1

LK

(
L− 1

2

K−1∑
k=0

∆RJMV C,B
k +

L− 1

2

K−1∑
k=0

∆RJMV C,P
k

)
(4.22)

where ∆RJMV C,B
k is the rate difference of a B frame in the odd-indexed views of JMVC,

which can be obtained by (4.19) with (4.30) and (4.31) from Appendix 4.A.

4.4 Simulation Results

In this section, we use the RD model in Sec. 4.3 and the average rate difference to analyze the

theoretical performance of RVI/RVE-based MVC and JMVC, and explain the experimental

results in Chapter 3. In Fig. 4.2, let c1 be the RVI or RVE-based reference, c2 the inter-

view disparity compensated reference, and c3 and c4 the temporal motion compensated

references. The noises in the figure are denoted by n0 to n4.

As in [51, 52, 53, 54, 55], we assume the PSD of the root image s is

Φss(ωx, ωy) =
2π

ω2
0

(
1 +

ω2
x + ω2

y

ω2
0

)− 3
2

, ω0 = −ln(ρ) (4.23)

where ρ = 0.93 is the correlation between adjacent pixels in the image. Note that the

original signal in (4.23) is normalized with the variance σ2s = 1 [51].

The camera orientation angle θ is set to be 25◦, which corresponds to the optimal

planar camera placement for stereo surface reconstruction [80]. The motion estimation

inaccuracy log2
(√

12σΘ
)
and inter-view disparity estimation inaccuracy log2

(√
12σΞ

)
are
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chosen to be 0, which corresponds to integer-pixel motion and disparity estimations [35].

The source residual noise level (SRNL) 10log10
(
σ2n0

)
, the temporal residual noise level

(TRNL) 10log10
(
σ2n3

)
and 10log10

(
σ2n4

)
are set as −20 dB, which is typical for natural

videos [34]. The inter-view residual noise level (IVRNL) is usually higher than temporal

noise, so 10log10
(
σ2n2

)
is chosen as −15 dB.

Fig. 4.3 shows the effect of the VSP disparity inaccuracy, i.e., ηd , log2
(√

12σd
)
, on

the rate difference of coding one view using RVI/DVI-based MVC, and RVE/DVE-based

MVC, with different view synthesis residual noise level (VSRNL) 10log10
(
σ2n1

)
. It shows

that view interpolation-based MVCs save more bits than extrapolation, and the gain can

be more than 0.2 bits/sample. The rectification process yields additional coding gain over

direct view synthesis, although the improvement is limited and becomes negligible as the

decrease of ηd. These theoretical results agree well with the experiments in Fig. 3.10 for

single view coding.

Fig. 4.4 depicts the average rate difference of various MVC schemes across all views

for different numbers of views L, with ηd = 0 (integer-pixel VSP disparity accuracy) and

different VSRNL. As shown in Fig. 4.4, both RVI and RVE-based methods outperform

JMVC. The rate saving can be improved by all methods when more viewpoints are encoded,

but most of the improvements are obtained when the number of views is less than 10. Similar

to Fig. 4.3, the view rectification offers additional gain in both RVI and RVE, and the gain

is larger in RVE. More importantly, although RVI-based MVC outperforms RVE-based

MVC when L is very small, the RVE-based MVC can achieve better performance than

RVI-based MVC as the increase of the number of views, because RVE can be applied to

more viewpoints, instead of only half of the views in the RVI-based MVC. This verifies the

experimental results in Fig. 3.11.

Fig. 4.5 shows the average rate difference of various MVC schemes for different temporal

GOP size K when L = 3 and L = 9 respectively, with ηd = 0 and VSRNL of −20 dB. It

is shown that smaller GOP size K provides larger gain than larger GOP size, and the gain

becomes negligible as K increases. This result agrees with the theoretical analysis in [35].

Moreover, the bit rate saving of RVI-based MVC is better than that of RVE-based MVC

when L = 3, but RVE-based MVC outperforms RVI-based MVC when L = 9. This verifies

the result obtained from Fig. 4.4. That is, the RVE-based MVC is more beneficial to the

overall coding gain when the number of encoded views is increased.
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Figure 4.3: Rate difference of single view coding versus VSP disparity inaccuracy ηd. The
VSRNL is -25 dB in (a) and -20 dB in (b).
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Figure 4.4: Rate difference of all views with different MVC schemes and different number
of views L. The VSRNL is -25 dB in (a) and -20 dB in (b).
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Figure 4.5: Average rate difference of different MVC schemes with different GOP size K.
The number of views is L = 3 in (a) and L = 9 in (b).
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4.5 Summary

In this chapter, we develop a geometric model to study the performance of RVI and RVE-

based view synthesis algorithms, In addition, we propose an improved model to analyze

the RD performances of various practical MVC schemes, including RVI/DVI-based MVC,

RVE/DVE-based MVC and MDE-based JMVC as well as simulcast. Simulation results

obtained from those theoretical models help us explain the experimental results in Chapter 3.

4.A The LMMSE Filters in Various MVC Schemes

In this appendix, we derive the expressions of the terms E {Flk} and E
{
FlkF

†
lk

}
in (4.18)

for all the frames in RVI/RVE-based MVC, MDE-based JMVC and simulcast.

Recall that view 0 is simulcast-coded in all four schemes. For the coding of other views,

by inspecting the prediction structures of the four MVC schemes, we can see that there

are only five different cases, i.e., the VSP-coded views in RVI-based MVC, the VSP-coded

views in RVE-based MVC, view v1 in RVE-based MVC, the even-indexed views in RVI-

based MVC and JMVC, and the odd-indexed views in the JMVC. The details of these cases

are given below.

4.A.1 Case 1 and Case 2

For VSP-coded views in RVI/RVE-based MVC, as in Fig. 3.3 and Fig. 3.5, every frame is

predicted from four references: the reference from the proposed RVI/RVE, the inter-view

reference from the left view, and two temporal references in the hierarchical B structure.

Therefore, Flk(ω) in (4.15) for RVI/RVE-coded frame vlk with the ik-th temporal hierarchy

is obtained as

F
(m)
lk =

[
Hm(ω), e−jωTΞ, e−jωTΘf,ik , e−jωTΘb,ik

]
(4.24)

where the disparity error Ξ and displacement errors Θf,ik and Θb,ik are defined in Sec. 4.3.1.

m = 1 and m = 2 correspond to RVI-coded frames and RVE-coded frames, respectively,

and H1(ω) and H2(ω) are defined in (4.8) and (4.10).

By our models and the property of the characteristic function of Gaussian random

variables, the expectation of (4.24) is

E
{
F
(m)
lk

}
= [φm(ω), ψ(ω), ϕik(ω), ϕik(ω)]

T (4.25)
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for m = 1, 2, where

φ1(ω) = E {H1(ω)} = e−
1
2
M2cos2θω2

xσ
2
d

φ2(ω) = E {H2(ω)} =
1

2
(e−

1
2
cos2θω2

xσ
2
d + e−

1
2
M2cos2θω2

xσ
2
d)

ψ(ω) = e−
1
2
ωTωσ2

Ξ , ϕik(ω) = e
− 1

2
ωTωσ2

Θik

In addition,

E

{
F
(m)
lk F

(m)
lk

†
}

=
Gm,1(ω) Gm,2(ω) Gm,3ik(ω) Gm,3ik(ω)

Gm,2(ω) 1 G4ik(ω) G4ik(ω)

Gm,3ik(ω) G4ik(ω) 1 G5ik(ω)

Gm,3ik(ω) G4ik(ω) G5ik(ω) 1


(4.26)

for m = 1, 2, where

G1,1(ω) = E
{
∥H1(ω)∥2

}
=

1

2

(
1 + e−2M2cos2θω2

xσ
2
d

)
G2,1(ω) = E

{
∥H2(ω)∥2

}
=

1

2

(
1 + e−

1
2
(M−1)2cos2θω2

xσ
2
d

)
Gm,2(ω) = φm(ω)ψ(ω), Gm,3ik(ω) = φm(ω)ϕik(ω)

G4ik(ω) = ψ(ω)ϕik(ω), G5ik(ω) = ϕ2ik(ω)

Note that the calculation of the PSD of the prediction errors for the DVI-coded and

DVE-coded frames (defined in Chapter 3) is a special case of this model with θ = 0, i.e.,

without view rectification.

4.A.2 Case 3

The coding of view v1 in the RVE-based MVC (Fig. 3.5) uses hierarchical B structure in

the temporal direction and the disparity compensated view v0 in the inter-view direction.

Therefore, the transfer function is obtained from (4.25) by omitting the first item, i.e.,

E {Flk} = [ψ(ω), ϕik(ω), ϕik(ω)]
T (4.27)

and the corresponding E
{
FlkF

†
lk

}
is simply the lower-right 3× 3 submatrix of (4.26).
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4.A.3 Case 4

For even-indexed views in RVI-based MVC (Fig. 3.3) or in JMVC with I-B-P inter-view

coding, the prediction functions are similar to (4.27), except that the inter-view reference

is the previous even-indexed view instead of the immediate neighboring view. As in (4.13),

we assume the variance of the disparity error is increased to four times. Thus,

E {Flk} =
[
ψ4(ω), ϕik(ω), ϕik(ω)

]T
(4.28)

E
{
FlkF

†
lk

}
=


1 G6ik(ω) G6ik(ω)

G6ik(ω) 1 G5ik(ω)

G6ik(ω) G5ik(ω) 1

 (4.29)

where G6ik(ω) = ψ4(ω)ϕik(ω).

4.A.4 Case 5

Frames in the odd-indexed views of the JMVC method have two temporal hierarchical B

references and two inter-view references from the left and right views. Therefore

E {Flk} = [ψ(ω), ψ(ω), ϕik(ω), ϕik(ω)]
T (4.30)

E
{
FlkF

†
lk

}
=


1 G7(ω) G4ik(ω) G4ik(ω)

G7(ω) 1 G4ik(ω) G4ik(ω)

G4ik(ω) G4ik(ω) 1 G5ik(ω)

G4ik(ω) G4ik(ω) G5ik(ω) 1

 (4.31)

where G7(ω) = ψ2(ω).

Finally, the simulcast scheme independently encodes each view using the hierarchical B

structure. Therefore, each frame is predicted from two temporal references. Thus

Flk = [ϕik(ω), ϕik(ω)]
T (4.32)

and the corresponding E
{
FlkF

†
lk

}
is simply the lower-right 2× 2 submatrix of (4.26).

In addition, the first frame of each view in each GOP is encoded in the temporal di-

rection using the intra coding. It is straightforward to extract from (4.25) and (4.26) the

corresponding functions by removing the temporal prediction related items.



Chapter 5

Improved Depth Map Estimation

5.1 Introduction

Depth estimation is a key component of processing MVV data, which directly affects the

quality of arbitrary view rendering via DIBR. Almost all the traditional schemes are based

on stereo matching, which first estimates the disparity map between two cameras, and then

calculates the depth value using the given camera parameters and pose information [81, 82].

Since the complexity of the disparity estimation-based depth estimation is quite high, they

are difficult to be applied in real-time applications. To solve this problem, a 3D warping-

based block depth estimation (BDE) algorithm was proposed to directly extract the optimal

depth from multiview images [83]. Although this method yields better synthesis quality than

the methods in computer vision, it still involves large amount of search operations, and the

resulting depth map is difficult to compress.

In [42], the multiview epipolar geometry was employed to predict the disparity value,

which can reduce the complexity of disparity matching in multiview image coding. Inspired

by this approach, in this chapter we propose a geometric depth prediction algorithm for

depth estimation. To the best of our knowledge, this is the first epipolar geometry-based

depth prediction method for depth estimation.

Using the matched block obtained from epipolar geometry, we can find an initial esti-

mation of the depth of the block by the triangulation method and depth projection [20]. To

compensate the error in the calculation of epipolar geometry, 3D warping is then applied to

refine the predicted depth.

On the other hand, all the aforementioned depth estimation algorithms are developed for

69
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the two-view configuration, where the depth map of the target view can only be estimated

from one reference view. However, in a MVV system, it might be necessary to estimate

the depth from multiple references. Accordingly, we develop a simple scheme to fuse the

depth estimations from multiple references, by using a structural similarity (SSIM) [84] and

maximum likelihood-based approach.

To facilitate the efficient compression of the depth map, we also propose a depth map

smoothing algorithm, using color segmentation and plane fitting. The RANSAC algo-

rithm [20] is used to derive the optimal parameters for each depth plane, which improves

the robustness of the algorithm to depth errors.

Experimental results show that compared to the existing BDE-based depth estimation

methods, the proposed method not only achieves improved view synthesis quality, but also

produces smooth depth maps that require much fewer bits to encode.

The rest of this chapter is organized as follows. In Sec. 5.2, the original BDE algorithm

is briefly introduced. In Sec. 5.3, we present the details of the proposed depth estimation

algorithm and explain its improvements over previous methods. Experimental results of

the proposed method on view synthesis and depth coding are given in Sec. 5.4, followed by

summarizing the works of this chapter in Sec. 5.5.

5.2 3D Warping-based Block Depth Estimation

Let An, Rn and Tn denote the intrinsic matrix, rotation matrix and translation vector of

the target view In. Consider a block centered at coordinate (xn, yn) in In. If the depth

value of the block is dn, we can map the block onto a reference view, such as In−1, by 3D

warping. First, using (2.8), the block location is projected into 3D world coordinate by

X = RnA
−1
n


xn

yn

1

 dn +Tn (5.1)

where X represents a 3D world coordinate. Then, using (2.6), X can be re-projected onto

the reference view via

dn−1


xn−1

yn−1

1

 = An−1R
−1
n−1 (X−Tn−1) (5.2)
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where (xn−1, yn−1) is the projected coordinate in In−1, and dn−1 is the corresponding depth

value. If a synthesized view is needed for In, the pixel values of the block at (xn, yn) will be

chosen as I ′n(xn, yn) = In−1(xn−1, yn−1).

The best depth of the block at (xn, yn) is obtained by the following minimization pro-

cedure

d∗n = argmin
dn
||In(xn, yn)− In−1(xn−1, yn−1)|| (5.3)

where the minimization is carried out over the set dn ∈ [0, 255].

Since the cost function seeks to minimize the prediction error, the BDE method can

achieve a good synthesis quality. However, the resulting depth maps are usually very noisy

and not suitable for compression. For example, the depth map and the corresponding

synthesis result of one frame from the sequence Akko&Kayo with 4 × 4-block-based depth

estimation are shown in Fig. 5.1. Due to the lack of smoothness, the conventional codecs,

such as H.264/AVC, fail to encode the depth map with high compression efficiency while

still maintaining a good synthesis quality [83].

5.3 The Proposed Depth Estimation Algorithm

In this section, we propose a new depth estimation algorithm which can improve the result

of the the BDE method in Sec. 5.2.

5.3.1 Geometric Depth Prediction

Unlike the original BDE which searches all possible depths to find the optimal depth with

the minimum distortion, our proposed epipolar geometry-based method can accurately track

the depth variation and reduce the matching complexity. Specifically, assuming the depth

map of the target view In is to be predicted from a reference view In−1. With block-based

estimation, our approach calculates the depth value for a block in In centered at (xn, yn)

by four steps.

1. We first search for the corresponding block in the reference In−1 using epipolar geom-

etry.

2. We then compute the 3D world coordinate of the corresponding block pair by trian-

gulation method.
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(a)

(b)

Figure 5.1: Performance of BDE-based depth estimation. (a) Depth map; (b) View synthesis
result with PSNR 26.21 dB.



CHAPTER 5. IMPROVED DEPTH MAP ESTIMATION 73

epipolar line (xn, yn)(xn-1, yn-1)
(xp, yp, zp)

target view Inreference view In-1
Figure 5.2: Geometric depth prediction.

3. We next project the 3D point back to the target view to calculate the predicted depth.

4. We finally refine the depth value within a small range around the predicted value.

Searching Corresponding Block Pairs

As introduced in Chapter 2.1.1, epipolar geometry is the geometry constraint between a

stereo pair of cameras, which states that if a 3D point is projected to one view, its projection

point in the other view must lie on its epipolar line. Therefore, as depicted in Fig. 5.2, we

can constrain the search range of the corresponding block in In−1 in a 1D segmentation

along the epipolar line, which can reduce the searching complexity and block mismatching

probability. Experimental results show that the result will be good enough by searching

in the range of [−25, 25] around the initial position on the epipolar line. The matching

criterion is similar to that in (5.3), with (xn−1, yn−1) as the parameters to be optimized.

Note that due to computation errors, the corresponding block in the reference view is

usually not exactly on the epipolar line. To address this problem, a rectangular search

window is used in [42]. However, in our scheme, we only use the epipolar geometry-based

method to generate an initial estimation of the depth, which will be refined later. Therefore
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a small 1D search on the epipolar line can be used, which has much lower complexity than

the rectangular window search in [42] and the search in (5.3).

3D Coordinate Reconstruction

Once the corresponding block pair is available, the 3D coordinate of the two correspondence

blocks in the 3D space can be calculated. Many 3D reconstruction algorithms have been

proposed in the last decade. In this thesis, the 3D coordinate of each correspondence pair

is recovered by the classic triangulation algorithm [20]. In Fig. 5.2, suppose (xn, yn) and

(xn−1, yn−1) are the projection locations of the same spatial point (xp, yp, zp) in the target

view and reference view respectively. Given the camera matrices of the two views, we can

have

dn


xn

yn

1

 = Mn


xp

yp

zp

1

 dn−1


xn−1

yn−1

1

 = Mn−1


xp

yp

zp

1

 (5.4)

where dn and dn−1 are the depths of two blocks, Mn and Mn−1 are two 3 × 4 projection

matrices of the two views, which can be easily derived from the intrinsic matrices, rotation

matrices and translation vectors of the cameras [20]. To find (xp, yp, zp), we can obtain the

expressions of dn and dn−1 from the third rows of the two equations, and substitute them

into the first two rows. This leads to the following linear equations of (xp, yp, zp).

mn
14 − xnmn

34 =(xnm
n
31 −mn

11)xp + (xnm
n
32 −mn

12) yp + (xnm
n
33 −mn

13) zp

mn
24 − ynmn

34 =(ynm
n
31 −mn

21)xp + (ynm
n
32 −mn

22) yp + (ynm
n
33 −mn

23) zp

mn−1
14 − xn−1m

n−1
34 =

(
xn−1m

n−1
31 −mn−1

11

)
xp +

(
xn−1m

n−1
32 −mn−1

12

)
yp

+
(
xn−1m

n−1
33 −mn−1

13

)
zp

mn−1
24 − yn−1m

n−1
34 =

(
yn−1m

n−1
31 −mn−1

21

)
xp +

(
yn−1m

n−1
32 −mn−1

22

)
yp

+
(
yn−1m

n−1
33 −mn−1

23

)
zp

(5.5)

where mk
i,j is the (i, j)-th entry of the projection matrix Mk. The least-square method can

be used to find the 3D position (xp, yp, zp).
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Depth Projection

After the second step, we recover the 3D coordinate of each corresponding block pair. Now,

our objective is to calculate the depth dn through the projection of the 3D point to In.

Specifically, given the projection matrix Mn of the target view and the 3D coordinate

(xp, yp, zp), we can obtain the new projection point (x′n, y
′
n) with the depth value d′n by

(5.4). Note that if there is no any mismatch in the block matching process of the first step,

(x′n, y
′
n) should be identical to (xn, yn). However, there are always camera noise and color

distortion between different cameras, and the estimation error of the least-square method

for 3D reconstruction can also deviate (x′n, y
′
n) from (xn, yn). So, in order to alleviate the

effect of mismatch, the predicted depth value is calculated by averaging the estimations

from both x- and y- directions, i.e.,

d̂n =
d′n
2

(
x′n
xn

+
y′n
yn

)
. (5.6)

Depth Refinement

The initial depth obtained above is based on the epipolar geometry. To reduce the impact

of possible errors in the epipolar geometry calculation, we refine the depth estimation using

the 3D warping method in Sec. 5.2, by treating the predicted depth above as the initial

value. Since the predicted depth already has reasonable quality, the search window can be

much smaller than in (5.3). In this thesis, the search range for the refined depth is [−10, 10].

Depth Estimation and View Synthesis Results

Fig. 5.3 shows the depth map and view synthesis results generated by the proposed geometry-

based depth estimation algorithm. Notice that the geometry-based method can achieve

almost the same quality as that of the original BDE method in Fig. 5.1. However, the

complexity of our approach is only about 27.5% of the exhaustive search based BDE method.

It should be mentioned that the complexity is measured by the number of iterations

needed by one depth estimation algorithm to find the best match for each block. Also, the

complexity of calculating the epipolar geometry is not included, as it can be easily derived

from the projection matrices of the views [20]. Moreover, this process can be computed

off-line before depth estimation.
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(a)

(b)

Figure 5.3: Performance of geometry-based depth estimation. (a) Depth map; (b) View
synthesis result with PSNR 26.20 dB.
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5.3.2 Fusion of Depth Estimations from Multiple References

Different from the previous stereo setup where the depth map of one view can only be

estimated from one reference, in a multiview system, the information from multiple reference

views can be utilized for depth estimation. Therefore, it is necessary to develop an effective

way to fuse multiple depth estimations.

Suppose M neighboring views are used as references for depth estimation. For each

block in the target view, using the geometry-based depth estimation method discussed in

Sec. 5.3.1, we can compute M depth values dkn, k = 1, 2, . . . ,M . We assume that the true

depth dn of the block follows a Gaussian mixture model

p(dn) =
M∑
k=1

ck
C0

W (dn − dkn), (5.7)

where ck is the weighting parameter for the k-th estimate, C0 =
∑M

i=1 ci, and W (x) =

1/
√
2πe−x2/2.

In our scheme, the weighting parameter ck is given by SSIM [84], which provides a

faithful measure of the similarity of two image blocks, and is defined as

(2µxµy + C1) (2δxy + C2)(
µ2x + µ2y + C1

) (
δ2x + δ2y + C2

) , (5.8)

where µx and µy are the mean values of the target block and the reference block, δ2x and

δ2y are the variances of the two blocks, δxy is the covariance coefficient of the two blocks,

C1 and C2 are two parameters to stabilize the division with weak denominator. The SSIM

index is between −1 and 1, with 1 achieved when the two blocks are identical.

To find the best depth for the target block, we use the maximum likelihood criterion,

i.e., we search the depth value that maximizes the probability in (5.7). In our method, the

bisection method is applied to the range
[
min(din),max(din)

]
, i = 1, 2, . . . ,M to find the

optimal depth value.

Note that other similarity measures, such as the normalized cross correlation, sum of

square difference and mutual information, can also be used as the weighting parameters

in (5.7). However, it is found through our experiments that the SSIM achieves the best

synthesis quality. In addition, using the two nearest views (one left view and one right

view) is sufficient to obtain a satisfactory synthesis quality. Therefore, M = 2 is used in the

following experiments.
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5.3.3 Depth Map Smoothing Using Color Segmentation and Plane Fitting

It can be seen from Fig. 5.3(a) that the depth map created by the proposed geometry-based

depth estimation algorithm is still very noisy, especially in the textureless regions, because of

the ambiguity involved in block-based matching. The following two important observations

can also be made.

• For a region with homogenous color, there is usually no large depth discontinuity.

• depth changes often coincide with color changes. These facts suggest that we can

segment the target image into homogenous color regions and then model the depth

values in each segment by a parametric surface.

An example of color segmentation-based depth estimation is [85]. Some commonly

used parametric depth representations include plan-plus-parallax model [86, 87], 3D plane

model [88] and high-order polynomial surface [89]. Due to its low complexity, plan-plus-

parallax is the most popular model, and is adopted in this thesis. In addition, the fast

color segmentation algorithm in [90] is used in our approach. An example of the color

segmentation is given in Fig. 5.4.

Based on the methods described in Sec. 5.3.1 and Sec. 5.3.2, we can obtain a depth value

for each pixel in the target view. Using those depth values as initials, a depth plane can be

determined for each segment. In this thesis, the following model is used

ax+ by + c = d, (5.9)

where (x, y) is an image point, and d is the depth value of the point. Grouping the equations

of all pixels in one segment, we get

A


a

b

c

 = D (5.10)

where A consists of row vectors [x, y, 1] of all pixels in the segment and D is the column

vector of all the depth values of the segment. The plane parameters a, b and c can then be

estimated by the least-square solution.

To reduce the impact of depth estimation noises, the RANSAC scheme is further em-

ployed, which iteratively selects a random subset of the original data as hypothetical inliers.
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(a)

(b)

Figure 5.4: Example of color segmentation. (a) Original image; (b) Color segmentation
image.
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(a) (b)

(c) (d)

Figure 5.5: RANSAC based plane fitting: (a) Step 1; (b) Step 2; (c) Step 3; (d) Step
4. Inliers are represented by hollow red circles, and outliers are represented by solid dark
circles.

The algorithm is illustrated in Fig. 5.5. First, some initial depth values are used to fit a

plane. In the next iteration, the depth values within a given distance of the fitted plane

are added as new inliers. The plane parameters are updated based on the new inliers. This

process iterates until the plane parameter converge or the maximum iteration is reached.

Fig. 5.6 shows the depth map and view synthesis results generated after the proposed

depth plane fitting. As shown in Fig. 5.6, this process is particularly useful for smoothing

the depth values in the textureless regions where matching ambiguities often occur, while

achieves a much better synthesis quality than the previous block-based methods. During the

experiment, we found the depth plane parameters can often converge within three iterations,

which does not significantly increase the complexity of the proposed algorithm.
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(a)

(b)

Figure 5.6: Final result of the proposed depth estimation. (a) Depth map; (b) View synthesis
result with PSNR 28.05 dB.
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5.4 Experimental Results

In this section, we demonstrate the performance of the proposed depth estimation method

on depth coding and MVC by comparing with two representative methods: the original

BDE method [83] and the hierarchical block-based depth estimation (HBDE) method [91].

Two multiview video data set, Akko&Kayo [76] and Vassar [92], are tested. We implement

the three methods in the current MVC reference software JMVC [73]. The typical settings

of 8-frame GOP, 32-pixel motion search window, and CABAC entropy encoding are used.

The RD optimization and loop filter are enabled, whereas the rate control is turned off.

5.4.1 View Synthesis Results

As shown in Fig. 5.6(a), the depth map generated by the proposed method is much smoother

than other depth maps. It is therefore expected that our method should achieve better

compression efficiency in depth map coding. To verify this, we compare the average synthesis

qualities versus the depth coding bit rates of the three methods, where the depth maps are

encoded based on the hierarchical B structure of JMVC. Fig. 5.7 shows the results of view

2 of two multiview sequences. To calculate the depth map of view 2, view 1 and view 3 are

used as references for our method, while view 1 is used for BDE and HBDE methods. As

shown in Fig. 5.7, the proposed method outperforms both BDE and HBDE methods at all

bit rates, while the depth maps generated by HBDE can be compressed more efficiently than

those of BDE. Specifically, for Akko&Kayo, the coding efficiency of the proposed method is

up to 4 dB better than BDE and 2 dB better than HBDE. For Vassar, the improvement

of our method is up to 3 dB over BDE, and 1.5 dB over HBDE. Note that both BDE and

HBDE can only improve their synthesis qualities at very high rates, and it will be shown

later that the huge bandwidth consumption of depth map coding in both BDE and HBDE,

especially at high bit rate, is impractical for real depth-based MVC.

5.4.2 Depth Coding Results

Next, we compare the coding efficiency of the three depth estimation methods. In BDE,

HBDE and the proposed method, we treat the synthesized view with depth map and the

reconstructed left view as inter-view references and two temporal images derived from hi-

erarchical B structure as temporal references. Note that although the camera matrices An,

Rn and Tn have to be transmitted from encoder to decoder for view synthesis in all the
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Figure 5.7: View synthesis results. (a) Akko&Kayo; (b) Vassar.
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depth-based schemes, the amount of information required to describe these parameters is

very small and thus the associated coding overhead is negligible.

For better comparison, the three depth-based schemes are also compared with two other

MVC schemes that do not use depth information. The first one is simulcast which uses

hierarchical B structure to encode each view independently. The second scheme is the

current JMVC method, where the reconstructed left view is used for inter-view prediction.

To achieve a fair comparison with the MVC schemes without depth information, the actual

bit stream used for the depth compression in the three depth-based MVC schemes are

considered when calculating the overall bit rate of the entire MVC system.

Fig. 5.8 depicts the RD curves of encoding view 2 of two multiview sequences by vari-

ous schemes. It can be seen that the proposed method outperforms all other depth-based

schemes. In addition, when compared with the methods without depth information, our

method can also be better than JMVC and Simulcast. Especially, the proposed method

can provide improvements over JMVC at all bit rates, with the maximum of 1.2 dB for

Akko&Kayo and 0.8 dB for Vassar. On the other hand, due to the noisy depth maps gen-

erated by HBDE method, the coding performance of the HBDE method is worsen than

JMVC for most of the bit rates. Although the HBDE method can be better than JMVC for

Akko&Kayo at low bits, its performance drops quickly at high bit rates, because more bits

are used for depth map compression. For BDE method, it can be observed that its perfor-

mance is always lower than Simulcast. The reason is because the depth map compression

in the BDE method can consume almost the same bandwidth as that used for encoding

the texture information, which offsets the coding gain by applying the depth-based view

synthesis for inter-view prediction. The results in Fig. 5.8 demonstrate the importance of

depth map coding to the overall coding efficiency.

5.5 Summary

In this chapter, we develop an improved algorithm to generate a smooth and accurate depth

map for DIBR-based view synthesis. For each block in the target view, the algorithm first

uses epipolar geometry to find its matched block in the reference view, from which an initial

depth is obtained using the triangulation method and depth projection. 3D warping is then

applied to refine the depth. In addition, a SSIM and maximum likelihood-based approach

is developed to fuse the depth estimations from multiple references. Finally, the depth map
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Figure 5.8: Depth coding results. (a) Akko&Kayo; (b) Vassar.



CHAPTER 5. IMPROVED DEPTH MAP ESTIMATION 86

is smoothed via segmentation and plane fitting. Compared to existing 3D warping-based

depth estimation, the proposed algorithm can achieve up to 4 dB improvement in view

synthesis, while requires much fewer bits to encode the depth map. Experimental results

in depth coding show that the proposed method can outperform the H.264-based JMVC

software by more than 1 dB.



Chapter 6

Delay-cognizant IMVS with Free

View Synthesis

6.1 Introduction

While frame structure optimizations [63, 66, 67] for IMVS have been studied to achieve sig-

nificant reduction in expected transmission rate over naive frame structures of comparable

sizes, there are several shortcomings. First, the available views for a client to select are

limited by the few camera-captured views pre-encoded at server, thus a view-switch could

appear abrupt and unnatural to a viewer. Second, the proposed media interaction model

that represents a typical client’s view-switching behavior is assumed to be statistically in-

dependent in time, but it has been shown [65] that viewers exhibit temporal dependencies

when switching views. Third, previous structure optimization assumes server-client commu-

nication takes place over idealized zero-delay network. In a realistic packet-switched network

such as the Internet with non-negligible round trip time (RTT) delay, server’s responding

upon receipt of each client’s requested view will mean each client’s requested view-switch

will suffer at least one RTT delay, hampering interactivity of the viewing experience.

In this chapter, to enrich the IMVS experience and implement it in a realistic network

setting, we propose three significant improvements. First, leveraging on the recent advances

in DIBR [29, 30] that enable synthesis of a virtual intermediate view between two captured

views using depth information, we encode both the texture and depth maps of captured

87
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views into a video-plus-depth coding format [93], each at the respective optimized quan-

tization parameter (QP) under a given view synthesis distortion constraint, into a frame

structure. To enable free-viewpoint view-switching [94], i.e., synthesizing virtual views from

an almost continuum of viewpoints between the left-most and right-most captured views,

the server transmits texture and depth maps of two nearest captured views to the client.

This represents a major improvement in interactive viewing experience over previous IMVS

schemes.

Second, given free viewpoint selection is available to clients, we construct a more general

media interaction model with finite memory that more accurately captures user behavior

in view selection. Third, we consider the non-negligible transmission delay in the design

of the frame structure and transmission schedule. As a result, frames in the structure

corresponding to possible playback RTT can be additionally transmitted, so that a user can

experience zero-delay view-switching.

We formalize the joint optimization of the frame encoding structure, transmission sched-

ule, and QPs of the texture and depth maps, and propose an iterative algorithm to achieve

fast and near-optimal solutions. Convergence of the proposed algorithm is also proved. Ex-

perimental results show that our proposed rate allocation method reduces transmission rate

over fixed texture/depth rate allocation methods by up to 38%. In addition, for the same

storage, transmission rate of the frame structure generated by our proposed algorithm can

be up to 55% lower than that of I-frame-only structures, and 27% lower than that of the

structure without M-frames.

The outline of the chapter is as follows. We first discuss the IMVS system, source

model of encoding multiview video, our generalized media interaction model with memory

for view-switching and network delay model in Sec. 6.2. In Sec. 6.3, we formulate the

problem of finding the optimal frame structure, transmission schedule and QPs for encoding

texture and depth maps in a network-delay-cognizant manner. In Sec. 6.4, we develop an

iterative optimization algorithm to efficiently find a solution for the proposed IMVS problem.

Simulation results and conclusion are given in Sec. 6.5 and Sec. 6.6, respectively.

6.2 System and Media Interaction Model

To facilitate understanding of our contributions in this chapter, we first overview the system

model for IMVS. We then describe the source model for coded multiview videos, and DIBR
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Figure 6.1: Overview of the proposed IMVS system

used for synthesizing virtual views using coded texture and depth maps of neighboring

views. We then discuss a general view-switching model of finite memory that captures

user’s behavior in selecting possibly virtual views. Finally, we discuss our network model

that considers the RTT delays between streaming server and clients.

6.2.1 System Model for IMVS

The system model we consider for IMVS is shown in Fig. 6.1, where a multiview video source

captures time-synchronized videos of a 3D scene from K evenly spaced, horizontally shifted

cameras in a 1D array. A video server sequentially grabs captured texture and depth maps

from the multiview video source1, and encodes the texture and depth maps separately into

the same optimized frame structure T of I-, P- and M-frames, at their respective optimized

QPs. In other words, the same permutation of I-, P- and M-frames used to encode texture

maps at one QP, will be used also to encode depth maps using a different QP separately.

The video server stores a single data structure T , using which the server can provide IMVS

service for multiple clients. Another approach of live encoding an unique view traversal

tailor-made for each streaming client’s interactivity is computationally prohibitive if the

number of clients is large.

A client can request a view-switch every ∆ frames, where the requested view can be a

captured view or an intermediate virtual view between two captured views. The availability

1Depth maps can be estimated from texture maps using stereo-matching algorithms [32], or captured
directly using time-of-flight cameras [10].
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of a large number of virtual views—an almost continuum of views between left-most and

right-most captured views—enables finer grain view-switches compared to previous IMVS

work [63, 66, 5], where the available views were limited by the number of capturing cameras,

and each view-switch was an abrupt jump from one camera view to another. To facilitate

synthesis of a virtual view at the client side, the server always transmits both texture and

depth maps of the closest left and right captured views. The client then interpolates the

requested virtual view using received texture and depth maps via DIBR, as discussed in

Chapter 2.1.3. Further, we assume I-frames are inserted every ∆′ frames, ∆ ≪ ∆′, for all

K captured views for some pre-defined level of random access.

Since the same optimized frame structure is used to encode both texture and depth maps

of multiview video source, for ease of discussion, we will use the term picture to denote both

the texture and depth maps of the corresponding captured image, and the term frame to

denote the specific coded version of texture and depth maps of an image. Further, given

view-switch period2 ∆, we use F o
i,j and Fi,j to denote a picture and a frame of view j at

view-switch instant i∆, i.e., the time at which a client selects her i-th view-switch location.

6.2.2 Multiview Video Source Model

A picture can be coded as an intra-coded I-frame with no predictor, a differentially coded

P-frame with a single predictor, or a conceptual M-frame with multiple predictors known

at encoding time. I-frame is used for random access. For view-switching, either redundant

P-frames or M-frames are used. Redundant P-frames mean one differentially coded P-frame

is constructed for each potential predictor (last frame in a decoding path from which a

view-switch is possible). M-frame, on the other hand, has a single frame representation for

multiple potential predictors; reconstruction property of M-frame guarantees that the exact

same frame can be correctly decoded no matter which one of a set of predictor frames known

at encoding time is actually available at the decoder’s buffer at stream time. Redundant

P-frames offer the lowest transmission rate possible while increasing the storage required

as the number of decoding paths multiplies over time. An M-frame has a single frame

representation and hence smaller storage, but at a higher transmission rate than P-frame.

2In more general case of ∆ > 1, a picture F o
i,j represents ∆ consecutive pictures of view j from time i∆

to time (i+1)∆− 1, and a frame Fi,j represents ∆ consecutive actual frames of view j, including a carefully
chosen I-, P- or M-frame determined by our optimization algorithm followed by ∆− 1 consecutive P-frames
predicted from the same view.
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Figure 6.2: Examples of (a) redundant P-frames and (b) M-frame.

Fig. 6.2 is an example to show the tradeoff between transmission rate and storage for

redundant P-frames and M-frame from three different predictors. The redundant P-frames

in Fig. 6.2(a) need three different coded versions of picture F o
i,2, one for each of three different

predictors Fi−1,1, Fi−1,2 and Fi−1,3, whereas in Fig. 6.2(b) only one M-frame is needed to get

the same coded version no matter which of the three predictors is available at the decoder.

An M-frame can be implemented using one of many available techniques such as SP-

frames in H.264 [69] and DSC-frames [68, 70]. In this thesis, we implement an M-frame

using DSC [68], due to its demonstrably superior coding performance over SP-frames. We

overview the encoding of a DSC frame as follows. First, motion information from each of

the predictor frames is encoded. Then, transform coefficients of the motion residuals in

discrete cosine transform (DCT) domain from each prediction are compared. Because most

significant bits of the transform coefficients are likely to be the same for all residuals, only

the least significant bit bit-planes that are different among the residuals need to be encoded

using low-density parity check codes (LDPC). By encoding multiple motion information and

differing bit-planes, the exact same frame can be recovered no matter which predictor frame

is available at decoder’s buffer. By exploiting correlation between predictor frames and the

target, DSC frame has much smaller size than the independently coded I-frame.

6.2.3 Media Interaction Model

Without loss of generality, we first denote K evenly spaced captured views by 1, . . . ,K.

Between every pair of adjacent captured views i and i + 1, we in addition define a set of
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Figure 6.3: Example of progressive view-switch for K = 4 captured views (rectangles) with
K ′ = 1 intermediate view (circles) between two captured views (d = 0.5), view difference
bound L = 1, initial view v0 = 2.5, view-switching period ∆ = 1 and RTT = ∆− ϵ. View-
switch positions in the shadeless box and shaded boxes with different patterns represent the
ones covered by the initial chunk and structure slices at time 2 and 3 respectively. Each
double-end arrow delimits the range of possible view-switches covered by one structure slice
after receiving a view-switch coordinate feedback h from client.

K ′ evenly spaced virtual view positions that can also be requested by clients, i.e., i+ j
K′+1 ,

j ∈ {1, . . . ,K ′}, separated by view spacing d = 1/(K ′ + 1). The total number of views

available for client’s selection is hence expanded toK ′(K−1)+K. Fig. 6.3 shows an example

of multiview sequence where K = 4 and K ′ = 1 (d = 0.5). Note that all available discrete

view-switch positions (virtual and captured) available for client’s selection are multiples of d.

In the sequel, we will say that a view-switch position v = kd, k ∈ Z+, 1/d ≤ k ≤ K/d, has

view coordinate k, where k is view-switch position v expressed in multiples of view spacing

d.

We design an interaction model to allow a client to periodically request a view-switch

every ∆ frames from view-switch position v to another view-switch position v′, where the

difference |v′−v| is no larger than Ld, L ∈ Z+, where the pre-defined View difference bound

L limits the speed of view transition.
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Figure 6.4: Example of view-switch probability function for K = 3 captured views with
K ′ = 1 intermediate view between two neighboring captured views (d = 0.5). (a) original
Φ(n); (b) shifted function Φ(n− 6).

To optimize multiview video frame structure at encoding time without knowledge of

clients’ eventual chosen view trajectories at stream time, we propose the following proba-

bilistic model to capture the view-switching trend of a typical client. Suppose a client is

watching view coordinate k at view-switch instant i∆, after watching view coordinate k′ at

instant (i− 1)∆. The probability3 that she will select view coordinate l at instant (i+ 1)∆

is Ωk′,k(l), l ∈ {max(1/d, k − L), . . . ,min(K/d, k + L)}:

Ωk′,k(l) =



Φ(l − (2k − k′)), max(1/d, k − L) < l < min(K/d, k + L)
∞∑
n=l

Φ(n− (2k − k′)), l = min(K/d, k + L)

l∑
n=−∞

Φ(n− (2k − k′)), l = max(1/d, k − L)

(6.1)

where Φ(n) is a symmetric view-switching probability function centered at zero; see Fig. 6.4(a)

for an example. In words, (6.1) states that the probability Ωk′,k(l) that a client selects view

coordinate l depends on both the current view coordinate k and previous selected coordi-

nate k′; the probability is the highest at position k + (k − k′) where the client continues in

view-switch direction k− k′. If l is a boundary coordinate, 1 or K, or at the view difference

bound k±L, then the probability Ωk′,k(l) needs to sum over probabilities in view-switching

3Given all available view-switch positions (captured and virtual) for client’s selection are integer multiples
of view spacing d, we can define the view-switch probability function Ωk′,k(l) in discrete domain, where k′,
k and l are all view coordinates.
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probability function Φ(n − (2k − k′)) that fall outside the feasible views as well, as shown

in Fig. 6.4(b), where the right-most boundary view is requested given K = 3 and K ′ = 1,

i.e., l = 3/d. This Markovian view-switching model with memory has been shown exper-

imentally to be more realistic [4] than previous memoryless models [63, 66, 67]. However,

the proposed view-switching model differs from that in [4] in two aspects. First, in our

view-switching model, the current view-switch position is only dependent on the positions

that the client selected for the last two view-switches instead of three previous view-switch

positions represented by the complex Kalman filter as considered in [4]. Second, as shown

in [65], a client is more likely to switch in the direction as the last view-switch. To model

this effect, our model uses the information about the span of the last view transition to

predict the future view-switch position. This is in contrast to the view-switch model in [4]

where this information is not considered.

6.2.4 Network Delay Model

Round trip time (RTT) delay is the time required for a packet to travel from a client to

the server and back. In our IMVS scenario, RTT delay specifically represents the minimum

server-client interaction delay experienced by a client from the time she sends a view-switch

request, to the time the effected video due to the request is received. Here, we assume

there are different RTTs between the video server and different clients, though RTT of each

server-client pair remains constant (each of server-to-client and client-to-server transmission

takes exactly half of RTT) once video streaming starts. In addition, we assume all RTTs

do not exceed an upper-bound RTTmax. There is much work in the literature in estimating

RTT in typical packet-switched networks [95, 96], but is outside the scope of this thesis. We

will simply assume the probability density function (PDF) of RTT, ψ(x), is known a priori

at video encoding time.

6.3 Problem Formulation

Having described the proposed IMVS system and models in Sec. 6.2, we now formulate

the IMVS problem as an optimization problem: given pre-defined storage and distortion

constraints, design an optimal frame structure and associated schedule, and select optimal

QPs for texture and depth map coding, that minimize the expected server transmission rate,

while providing clients with zero-delay view-switching interactivity in IMVS. In Sec. 6.3.1,
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Figure 6.5: Timing diagram during server-client communication.

we first develop a network-delay-cognizant transmission protocol for transmitting frames

in a coding structure for IMVS, so that each client can enjoy zero-delay view-switching

given her unique server-client RTT. We then provide definitions of optimization variables,

search space, constraints and objective in Sec. 6.3.2. Finally, we formally define the IMVS

optimization problem in Sec. 6.3.3.

6.3.1 Network-delay-cognizant Transmission Protocol

Previous IMVS works [63, 66, 67] do not properly address the problem of network delay;

hence a view-switch request from a client will suffer at least one RTT delay in addition to the

system’s inherent ∆-frame view-switch interval4. In this section, we develop a transmission

protocol for network-delay-cognizant view-switching, so that a client can play back the video

in time and perceive no additional view-switching delay (beyond the system’s ∆-frame view-

switch interval), even when RTT is non-negligible. The key idea is to send additional data

to cover all possible view-switch positions to be requested by a client one RTT into the

future beyond the requested view.

Following the illustration in Fig. 6.5, we first discuss timing events during server-client

communication in IMVS system assuming constant transmission delay (as discussed in

Sec. 6.2.4). The server first transmits an initial chunk of coded multiview data to the

client, arriving at the client 1
2RTT time later. At time 05, the client starts playback, and

4View-switch interval ∆ for IMVS systems can be set very small (on the order of every 3 to 5 frames),
and hence an additional RTT delay on the Internet of up to hundreds of milliseconds can be detrimental to
the interactive multiview video experience.

5For ease of discussion, we set the origin of time at the point when client starts playback of video.
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makes her first view-switch ∆-frame time later. Her first view-switch decision (feedback)

is transmitted immediately after the view-switch, and arrives at server at time 1
2RTT +∆.

Responding to the client’s first feedback, server immediately sends a structure slice, arriv-

ing at the client 1
2RTT time later, or RTT time after the client transmitted her feedback.

More generally then, the client sends feedbacks in interval of ∆-frame time, and in response,

server sends a structure slice corresponding to each received feedback every ∆-frame time.

We assume there are no packet losses during packet transmission.

Notice that from the time the client starts playback to the time the first structure slice

is received from server, ∆+RTT time has elapsed. Therefore, before the arrival of the first

structure slice, the number of view-switches, δ, that the initial chunk must enable is

δ =

⌊
∆+RTT

∆

⌋
(6.2)

For simplicity, we assume that IMVS session starts from a known initial position vo with view

coordinate ko, i.e., vo = kod and ko ∈ Z+, 1/d ≤ ko ≤ K/d. Given each subsequent view-

switch can maximally alter view coordinate by ±L, initial chunk must contain data enabling

view-switches to view coordinates Vi = {k | max(1/d, ko− iL) ≤ k ≤ min(K/d, ko+ iL), k ∈
Z+} at view-switch instants (i∆)’s, where 0 ≤ i ≤ δ.

Because subsequent structure slices arrive every ∆-frame time, each structure slice only

needs to enable one more view-switch for the client to continue video playback in time and

enjoy zero-delay view-switching. Notice that because each structure slice arrives at the

client RTT time after the client sent her view-switch feedback, the view-switch enabled

by the structure slice corresponding to the client’s feedback sent at instant t = i∆ is the

first view-switch after time t+ RTT , i.e., view-switch at instant (i+ δ)∆. In other words,

given client’s view coordinate selection h at instant i∆, the span of view-switch coordinates

Vi+δ that a structure slice must cover for the view-switches at instant (i + δ)∆, is Vi+δ =

{k | max(1/d, h− δL) ≤ k ≤ min(K/d, h+ δL), k ∈ Z+}.
This protocol—transmitting multiple views for the sake of client’s selection of a single

view in the future—is in stark contrast with the protocol in [63, 66, 67], where only one

single view is transmitted corresponding to each client’s request. Fig. 6.3 illustrates a view-

switching example for K = 4, K ′ = 1, L = 1, vo = 2.5, ∆ = 1 and RTT = ∆ − ϵ for

small ϵ > 0. The initial chunk contains only enough multiview data to enable δ = 1 view-

switch, spanning view-switch coordinates V1 = {4, 5, 6}. If the client first selects view-switch
coordinate h = 4 at time 1, then the first structure slice must span view-switch coordinates
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Table 6.1: Summary of notations for IMVS problem formulation

Notations Description

K, K′ number of captured views, number of virtual views between two neighboring
captured views.

L, vo view difference bound, starting view-switch position.
RTT , δ RTT delay, number of view-switches that a structure slice covers into future

after receiving a client feedback.
T , Q = [Qt, Qd]

T frame structure, QPs for encoding texture and depth map.
B(T ,Q), C(T ,Q), D(Q) storage cost, transmission cost, distortion cost of a frame structure T and

QPs Q.
F o
i,j , Fi,j original picture, coded frame of view-switch instant i∆ and view j.
Ii,j , Pi,j , Mi,j I-frame, P-frame, M-frame of view-switch instant i∆ and view j.
Ξi(δ), c(Ξi(δ)) the set of frames, the center view coordinate for decoding at view-switch

instant i∆.
p(Ξi(δ)), q(Fi,j , δ) transmission probability of a slice Ξi(δ), a frame Fi,j , given δ.
ψ(x), Ψ(δ) probability density function of RTT , probability mass function of δ.

tδ(T , G(δ),Q) transmission rate of a frame structure T and QPs Q, given schedule G(δ).
Dc

j(Qt), D
s
k(Q) average distortion of frames of captured view j, virtual view k, given QPs

Q.

V1+δ = {3, 4, 5}. Instead, if the client first selects view-switch coordinate h = 6, then the

corresponding slice must span view-switch coordinates V1+δ = {5, 6, 7}.

6.3.2 Definitions for IMVS Optimization

Before formally defining the IMVS optimization problem, we first define optimization vari-

ables (frame structure, associated transmission schedules and QPs), and storage, transmis-

sion and distortion costs corresponding to a set of variables. See Table 6.1 for a summary

of notations.

Redundant Frame Structure

Given a multiview sequence of K captured views with K ′ intermediate views between each

pair of neighboring captured view, One can construct a redundant frame structure T , com-

prised of I-, P- and M-frames, denoted as Ii,j ’s, Pi,j ’s and Mi,j ’s respectively, to represent

the captured multiview video frames at view-switch instant i∆’s and view j’s for IMVS.

Each frame not located at view-switch instants (not shown in our graphical model) is a

P-frame predicted from a frame of the same view and previous time instant. Note that we

do not specify if the predictions for P-frames Pi,j ’s a motion- or disparity-compensated; our

abstraction only aims to capture the dependencies among frames, and not the particular
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Figure 6.6: Example frame structure for K = 4 captured views with K ′ = 1 intermediate
view (small circles) between two neighboring captured views (view spacing d = 0.5), view
difference bound L = 1, initial view v0 = 2.5, view-switching period ∆ = 1 and RTT =
∆ − ϵ. I-, P- and DSC-frames are represented by large circles, rectangles and diamonds,
respectively.

encoding tools used. Note also that while we already discussed one concrete DSC implemen-

tation of M-frame in Sec. 6.2.2, our abstraction and subsequent optimization can apply more

generally to any implementation of M-frame. Fig. 6.6 shows one example frame structure

for multiview sequence in Fig. 6.3.

A frame structure T forms a directed acyclic graph starting with an I-frame if initial

view-switch position is a captured view, or an I-frame and a P-frame predicted from the I-

frame if initial view-switch position is a virtual view, as starting nodes. In Fig. 6.6, I-frames

I0,2 and P-frame P0,3 are two starting nodes of structure T for synthesizing virtual view 2.5.

T is redundant in the sense that an original picture F o
i,j can be represented by more than

one frame Fi,j . In Fig. 6.6, original picture F o
3,4 is represented by two P-frames, P

(1)
3,4 and

P
(2)
3,4 , each encoded using a different predictor, P2,4 and P3,3, respectively. Depending on

which predictor is available at decoder during stream time, different coded frames Fi,j ’s can

be transmitted to enable correct decoding and (slightly different) reconstruction of original

picture F o
i,j . This is done to lower transmission rate by exploiting correlation between the

requested picture and frames in the decoder buffer, and to avoid coding drift [63].
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Structure Slice

As discussed in Sec. 6.3.1, depending on the view-switch coordinate h selected by client

at view-switch instant (i − δ)∆, a set of frames of different captured viewpoints will be

transmitted for possible decoding at view-switch instant i∆. Given δ, we define structure

slice Ξi(δ), with center coordinate c(Ξi(δ)), as a set of frames to enable selection of view-

switch coordinates in span {k | max(1/d, c(Ξi(δ))− δL) ≤ k ≤ min(K/d, c(Ξi(δ))+ δL), k ∈
Z+} at view-switch instant i∆. Center coordinate c(Ξi(δ)) is the client’s selected view

coordinate h at view-switch instant (i− δ)∆.

Consider the example in Fig. 6.6, where initial chunk contains frames I0,2, P0,3, P1,2 and

P1,3 to cover view-switches to positions 2, 2.5 and 3 at time 1. If the client selects view-switch

coordinate h = 4 (view 2) at time 1, then the corresponding structure slice transmitted is

Ξ
(1)
2 (1) = {P2,1, P2,2, P2,3} with c(Ξ(1)

2 (1)) = 4, to cover possible view-switches to positions

1.5, 2 and 2.5 at time 2. Instead, if client remains in coordinate h = 5 (view 2.5) at time

1, then the structure slice Ξ
(2)
2 (1) = {P2,2, P2,3} will be sent to decoder with c(Ξ

(2)
2 (1)) = 5,

for the possible switches to positions 2, 2.5 and 3 at time 2. Finally, if client switches to

position 3 at time 1, to enable possible view-switches to position 2.5, 3 and 3.5, the structure

slice sent to decoder will be Ξ
(3)
2 = {P2,2, P2,3, P2,4} with c(Ξ(3)

2 ) = 3. Notice that different

slices can contain the same frames, and can also contain different number of frames.

Transmission Schedule

Which slice Ξi(δ) of structure T is transmitted for view-switch instant i∆ depends on

slice Ξi−1(δ) transmitted previously (for differential coding), and client’s selected view-

switch coordinate h at view-switch instant (i− δ)∆. The center coordinate c(Ξi) of Ξi will

necessarily be h, and the view span of slice Ξi will be Vi = {k | max(1/d, h − δL) ≤ k ≤
min(K/d, h + δL), k ∈ Z+}, so that all reachable view coordinates at instant i∆, given

client’s selection of view coordinate h at instant (i− δ)∆, are available for client’s selection.

We can formalize the association among Ξi−1(δ), h and Ξi(δ) via a transmission schedule

G(δ). More precisely, G(δ) dictates which structure slice Ξi(δ) will be transmitted for client’s

selection at view-switch instant i∆, given previous transmitted slice Ξi−1(δ) and client’s

selected view-switch coordinate h at view-switch instant (i− δ)∆:

G(δ) : (Ξi−1(δ), h)⇒ Ξi(δ), max(1/d, c(Ξi−1(δ))− L) ≤ h ≤ min(K/d, c(Ξi−1(δ)) + L)

(6.3)
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where center coordinate of Ξi(δ) is c(Ξi(δ)) = h. In what follows, we denote a scheduled

transmission from slice Ξi−1(δ) to slice Ξi(δ), with client’s selected view-switch coordinate

h at instant (i− δ)∆, as (Ξi−1(δ), h)
G(δ)⇒ Ξi(δ).

Note that for a given structure T and slice Ξi−1(δ) available for decoding at view-

switch instant (i− 1)∆, if client selects view coordinate h at view-switch instant (i− δ)∆,

there may exist different decodable slices Ξi(δ)’s, and hence different transmission schedules

G(δ)’s, that enable all reachable view-switch coordinates Vi at instant i∆. For example,

in Fig. 6.6, we assume the slice Ξ2 = {P2,2, P2,3} is available at decoder for view-switches

at time 2, with center view coordinate c(Ξ2) = 5. If the client selects view coordinate

6 at time 2, then the corresponding span of reachable view coordinates at time 3, V3 =

{5, 6, 7}. Thus, there are two possible schedules, resulting in Ξ
(1)
3 = {P3,2, P3,3, P

(2)
3,4 } and

Ξ
(2)
3 = {P3,2, P3,3, P2,4, P

(1)
3,4 } transmitted respectively. Obviously, the schedule of Ξ

(1)
3 which

has a smaller size of transmitted frames than Ξ
(2)
3 should be selected as optimal schedule.

Correspondingly, our optimization will hence consider not just optimal structure T , but also
optimal schedule G(δ) for the chosen structure T .

Feasible Structure Space

Based on the above discussion, we can define a feasible frame structure T given δ as one

where every reachable view-switch coordinate, as constrained by the media interaction model

(Sec. 6.2.3), can be requested by a client every ∆-frame interval and be executed with zero-

delay using T . Mathematically, we say that T is feasible given δ if there exists at least one

feasible schedule G(δ), such that each sequence of client’s permissible selection of view-switch

coordinates, h1, h2, . . ., will lead to a corresponding scheduled transmission of decodable

slices Ξi+δ(δ),Ξi+1+δ(δ), . . ., such that center coordinate and view span of each slice Ξi+δ(δ)

are c(Ξi+δ(δ)) = hi and Vi+δ = {k | max(1/d, hi − δL) ≤ k ≤ min(K/d, hi + δL), k ∈ Z+},
respectively. Center coordinates and view spans of slices defined above ensure all reachable

view-switch coordinates can be selected by client at instants (i+ δ)∆, (i+ 1 + δ)∆, etc.

More generally, RTT between server and client can take on different values resulting

in different δ’s. In what follows, we define feasible space Θ as the set of all feasible frame

structures T ’s, where a feasible structure T is one where there exists at least one feasible

schedule G(δ) for each possible δ.
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Structure Slice Probability and Frame Transmission Probability

To properly define transmission cost, we first define structure slice probability p(Ξi(δ)) as

the probability that structure slice Ξi(δ) for decoding at instant i∆ is transmitted, given

schedule G(δ). Considering the structure slices Ξi(δ)’s in the initial chunk, where 0 ≤ i ≤ δ,
are always sent to client, this probability could be computed recursively using view transition

probability Ωk′,k(l):

p(Ξi(δ)) =


1, 0 ≤ i ≤ δ∑
Ξi−1(δ)∈G

p(Ξi−1(δ))
∑
c′

Ωc′,c(Ξi−1(δ))(c(Ξi(δ))), i > δ (6.4)

where G = {Ξi−1(δ) | (Ξi−1(δ), c(Ξi(δ)))
G(δ)⇒ Ξi(δ)}. In words, (6.4) states that p(Ξi(δ))

is the sum of probability of each slice Ξi−1(δ) switching to slice Ξi(δ), scaled by the slice

probability of Ξi−1(δ) itself, p(Ξi−1(δ)), given schedule G(δ) dictates slice transmission in

frame structure T .
Further, we define frame transmission probability q(Fi,j , δ) as the probability that a frame

Fi,j is transmitted from server to client, which can be calculated using the defined structure

slice probability (6.4):

q(Fi,j , δ) =
∑

Ξi(δ)|Fi,j∈Ξi(δ)

p(Ξi(δ)) (6.5)

In words, the transmission probability of a frame Fi,j is the sum of probabilities of slices

Ξi(δ)’s that include Fi,j .

Storage Cost

For a given frame structure T and the associated QPs for texture and depth images, Qt and

Qd, we can define the corresponding storage cost by simply adding up the sizes of all the

frames Fi,j ’s in T , i.e.,

B(T ,Q) =
∑

Fi,j∈T
|Fi,j(Q)| =

∑
Fi,j∈T

(
|F t

i,j(Qt)|+ |F d
i,j(Qd)|

)
(6.6)

where Q is the pair of QPs for texture and depth maps Q = [Qt, Qd]
T , |Fi,j | is the size of

frame Fi,j which depend on the specific QPs Q, F t
i,j and F d

i,j denote the texture and depth

maps of frame Fi,j respectively.
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Transmission Cost

Given a frame structure T and the associated QPs Q, we can define the corresponding

transmission cost. First, given the relationship between δ and RTT in (6.2), it is straight-

forward to see that the same transmission schedule G(δ) for a given frame structure T can

be applicable to all RTT ’s, (δ− 1)∆ ≤ RTT < δ∆, i.e., the same slice Ξi(δ) of structure T
will be transmitted for each view-switch instant i∆. Therefore, to facilitate the definition of

transmission cost, we map the PDF of RTT, ψ(x), into a discrete probability mass function

(PMF) of an integer number δ of view-switch interval ∆, Ψ(δ), by integrating ψ(x) over the

range [(δ − 1)∆, δ∆):

Ψ(δ) =

∫ δ∆

(δ−1)∆
ψ(x), 1 ≤ δ ≤ δmax (6.7)

Where δmax = ⌊(∆ + RTTmax)/∆⌋. Then, given schedules G(δ)’s for possible δ’s, trans-

mission cost C(T , G(),Q) of a frame structure T associated with QPs Q is defined as the

expected transmission cost, i.e.,

C(T , G(),Q) =

δmax∑
δ=1

Ψ(δ) tδ(T , G(δ),Q) (6.8)

where G() denotes the set of schedules G(δ)’s for all δ’s.

For a given schedule G(δ), individual transmission cost tδ(T , G(δ),Q) of structure T
and QPs Q depends on view transition probability Ωk′,k(l), which can be calculated by

adding up the sizes of all frames Fi,j ’s in T , scaled by the corresponding frame transmission

probability (6.5):

tδ(T , G(δ),Q) =
∑

Fi,j∈T
q(Fi,j , δ) |Fi,j(Q)| (6.9)

Distortion Cost

Since clients can request captured or synthesized views for observation, we define distortion

cost as the average distortion of all captured and synthesized views available in the system.

For the distortion of a picture in a captured view, we use the Mean-Squared-Error (MSE)

between the original and coded versions of the texture maps of the picture. On the other

hand, since no captured image is available for a virtual view, we synthesize an image using

the uncompressed textures and the depth images of neighboring captured views as reference

to calculate its MSE. We also denote Λ as the discrete set of available QPs for texture and

depth coding.
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Notice that the distortion of both captured views and virtual views are mainly influenced

by the chosen QPs Q, but independent of a particular frame structure T . For example, in

Fig. 6.6, captured view 4 at time 3 can be reconstructed with roughly the same distortion

using either a P-frame P
(1)
3,4 or P

(2)
3,4 , and virtual view 3.5 at time 3 can also be similarly

synthesized using different coded frame pair, P3,3 and P
(1)
3,4 , P3,3 and P

(2)
3,4 . Let Dc

j(Qt) be

the average distortion of frames at all view-switch instants of captured view j given the

texture QP Qt, and Ds
k(Q) be the average distortion of synthesized frames at all view-

switch instants of virtual view k given the texture/depth QPs Q used for both neighboring

captured views. Distortion cost D(Q) is then given by

D(Q) =
1

(K − 1)K ′ +K

 K∑
j=1

Dc
j(Qt) +

K−1∑
j=1

K′∑
k=1

Ds
j+ k

K′+1

(Q)

 (6.10)

From (6.6) and (6.10), it can be seen that coarse QPsQ result in smaller frame size of texture

and depth coding, |F t
i,j(Qt)| and |F d

i,j(Qd)|, and larger distortion D(Q). This means that

given a storage constraint, a frame structure can afford more redundant representations of

one picture using redundant P-frames to lower transmission rate, at the expense of sacrificed

visual quality. On the other hand, finer QPs Q can lower the distortion, but the increased

frame size will lead to less redundancy (more M-frames) used in a frame structure, resulting

in larger transmission rate.

6.3.3 Optimization Definition

We can now formally define our IMVS problem as a combinatorial optimization problem as

follows.

Definition 6.3.1. The IMVS optimization problem, denoted as IMVS, is to find a structure

T using a combination of I-, P- and M-frames, and associated schedules G(δ)’s for possible

δ’s, as well as texture/depth QPs Q, that minimize the transmission cost C(T , G(),Q) while

both a storage constraint B̄ and a distortion constraint D̄ are observed. Mathematically, this

optimization problem is given by:

min
T ∈Θ,G(),Q∈Λ

C(T , G(),Q)

s.t. B(T ,Q) ≤ B̄, D(Q) ≤ D̄
(6.11)
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6.4 Algorithm Development

In this section, we develop algorithms to select a good frame structure, associated schedules,

and texture/depth QPs for the optimization problem IMVS in (6.11). We first propose one

iterative procedure by optimizing structure T and associated schedule setG() only, then QPs

Q only, while keeping the other set of variables fixed. We then present a greedy algorithm

to optimize a frame structure T and schedule set G() given QPs Q. Finally, we present a

low-complexity algorithm to update QPs Q for a given frame structure T and schedule set

G().

6.4.1 Two Sub-Problems

The optimization problem (6.11) is a joint optimization of frame structure T and tex-

ture/depth QPs Q. To simplify the optimization, we divide IMVS into two simpler sub-

problems, optimizing one set of variables while keeping the other set fixed. We formalize

the definitions of the two sub-problems as follows.

Definition 6.4.1. Given chosen texture/depth map QPs Q(k) at iteration k that satisfy dis-

tortion constraint D̄, IMVS degenerates to sub-problem one: find structure T and associated

schedule set G() to minimize transmission cost C(T , G(),Q(k)), subject to storage constraint

B̄, i.e.,

min
T ∈Θ,G()

C(T , G(),Q(k))

s.t. B(T ,Q(k)) ≤ B̄
(6.12)

Notice that since the quality of view synthesis depends only on QPs Q(k) and not on the

particular chosen structure T , the distortion constraint can be ignored in this sub-problem.

Definition 6.4.2. Given a fixed frame structure T (k) and associated schedule set G(k)() at

iteration k, IMVS degenerates to sub-problem two: find QPs Q for texture and depth coding,

such that the expected transmission cost C(T (k), G(k)(),Q) is minimized while observing both

the storage constraint B̄ and the distortion constraint D̄:

min
Q∈Λ

C(T (k), G(k)(),Q)

s.t. B(T (k),Q) ≤ B̄, D(Q) ≤ D̄
(6.13)

Based on the two sub-problems, we can summarize the iterative procedure for IMVS in

Table 6.2. The crux is to solve the two sub-problems. In the following, we will propose a
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Table 6.2: Summarized iterative optimization of frame structure, transmission schedule and
quantization parameters

1) Initialize a pair of texture/depth QPs Q(0) satisfying the distortion con-
straint D̄. Set k = 0.

2) Fix Q(k). Optimize structure T and associated schedule set G(), which
minimize the expected transmission rate in sub-problem one (6.12). For
k > 0, if the pre-defined convergence criterion is satisfied, stop.

3) Fix T (k) and G(k)(). Find Q that minimizes the expected transmission
rate in sub-problem two (6.13).
4) Go to step 2. k ← k + 1.

greedy frame structure and schedule optimization algorithm and a QP update algorithm,

both with low complexity, to separately address the two sub-problems.

6.4.2 Frame Structure & Schedule Optimization

We first present a frame structure and schedule optimization algorithm given fixed QPs

Q(k). Though (6.12) differs in some respects from the frame structure optimization problem

in [5], a similar proof can be easily constructed to show that sub-problem one is also NP-

hard. Given the computational complexity of (6.12), we first convert the storage-constrained

problem (6.12) into the following unconstrained problem:

min
T ∈Θ,G()

J(T , G(),Q(k)) = C(T , G(),Q(k)) + λB(T ,Q(k))

=
∑

Fi,j∈T

(∑
δ

Ψ(δ)q(Fi,j , δ) + λ

)
|Fi,j(Q

(k))|
(6.14)

where the Lagrangian multiplier λ is a fixed parameter that represents the tradeoff between

transmission rate and storage, and J(T , G(),Q(k)) is the Lagrangian cost. To find the

optimal λ that minimizes transmission cost while observing storage constraint in (6.12), a

bisection-search method is used over a predefined range [λmin, λmax].

We can interpret (6.14) as follows: a captured picture can be represented by multiple P-

frames, each P-frame P
(h)
i,j having a comparatively small transmission cost Ψ(δ)q(P

(h)
i,j , δ)|P

(h)
i,j |,

but all together comprising a large storage cost λ
∑
h

|P (h)
i,j |. When λ is small, the penalty

on large storage is negligible and redundant P-frames are attractive. However, when λ is

large, the penalty on large storage becomes expensive and one single representation of the

picture as M-frame with larger transmission cost but smaller storage is more preferable.
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To solve (6.14) efficiently, we use a greedy approach to find near-optimal frame structure

and associated schedules. In a nutshell, we iteratively build one “structure layer” ti and

“schedule layer” gi() one view-switch instant at a time from front to back. Structure layer ti

is comprised of frames Fi,j ’s of all captured views j’s at instant i∆, and schedule layer gi()

consists of local schedules gi(δ)’s for all possible δ’s, each mapping a structure slice Ξi−1(δ)

in structure layer ti−1 to a structure slice Ξi(δ) in ti, given client’s view-switching feedback

at instant (i − δ)∆. At each view-switch instant i∆, the key question is: given structure

Ti−1 and schedule set Gi−1() constructed up to instant (i−1)∆, how to optimally construct

structure layer ti and schedule layer gi() to minimize (6.14)?

To construct locally optimal structure layer ti at view-switch instant i∆, we first initialize

structure layer t0i with K M-frames, one for each of K captured views. More precisely, for

each M-frame Mi,j of captured view j, we assign all frames Fi−1,k’s in structure layer ti−1

of instant (i − 1)∆ that can switch to view j at instant i∆, as predictors of Mi,j . Since

an M-frame is not a redundant representation (one frame per captured picture), the initial

structure layer has minimum storage of all possible layers.

Corresponding to initial structure layer t0i , we construct initial schedule g0i (δ) given δ

as follows. We first designate structure slices Ξi(δ)’s using created M-frames, where each

slice Ξi(δ) of center coordinate c(Ξi(δ)) = h has enough M-frames to enable view-switches

to coordinates Vi = {k | max(1/d, h− δL) ≤ k ≤ min(K/d, h+ δL), k ∈ Z+}. Then, given
client’s view coordinate selection h at instant (i−δ)∆, an initial schedule g0i (δ) will map any

previously designated structure slice Ξi−1(δ) in ti−1 with center coordinate c(Ξi−1(δ)) = h′,

max(1/d, h− L) ≤ h′ ≤ min(K/d, h+ L), to the same Ξi(δ), i.e., (Ξi−1(δ), h)
g0i (δ)⇒ Ξi(δ).

However, large M-frame sizes in initial structure layer t0i lead to large transmission cost.

To reduce transmission cost, we incrementally add the most “beneficial” redundant P-frames

one at a time—beneficial meaning one that reduces the Lagrangian cost—thereby increasing

storage. We terminate when no more beneficial redundant P-frames can be added.

In details, we describe the algorithm as follows. First, as initial structure layer t0i , we

construct one M-frame for each captured view j at view-switch instant i∆. We then desig-

nate structure slices Ξi(δ)’s and determine the corresponding schedules g0i (δ)’s as described

earlier, and compute the resulting local Lagrangian cost in (6.14). Given the initial structure

and schedule layers, we improve ti and gi() by iteratively making local structure augmen-

tations: selecting one candidate from a set of structure augmentations at each iteration,

which offers the largest decrease in local Lagrangian cost. The possible augmentations are:
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• Add new P-frame Pi,j to ti, predicted from existing frame Fi,k of neighboring view k

of same instant i∆.

• Add a new P-frame Pi,j , predicted from an existing frame Fi−1,k in ti−1 of the previous

instant (i− 1)∆.

• Select a different predictor Fi,k of the same instant i∆ for an already constructed

P-frame Pi,j in ti.

Notice that the last augmentation does not increase the number of representations of a given

captured view, while each of the first two increases the number of frame representations by

one P-frame.

Suppose that given constructed structure layer tli in the l-th iteration, we build up

the corresponding schedule gli(δ) given δ by minimizing transmission bandwidth. More

specifically, given a client’s selected view coordinate h at view-switch instant (i− δ)∆ and

a structure slice Ξi−1(δ) in ti−1 with center coordinate c(Ξi−1(δ)) = h′, max(1/d, h− L) ≤
h′ ≤ min(K/d, h+ L), we designate structure slice Ξi(δ) by finding the set of frames Fi,j ’s

in tli, which possesses the smallest size of transmitted frames while enabling all reachable

coordinates Vi = {k | max(1/d, h − δL) ≤ k ≤ min(K/d, h + δL), k ∈ Z+} at view-switch

instant i∆. This can be mathematically expressed as

gli(δ) : min
Ξi(δ)∈G′

∑
Fi,j∈Ξi(δ)

|Fi,j | (6.15)

where G′ = {Ξi(δ) | (Ξi−1(δ), h)⇒ Ξi(δ)}.
Note that different from the greedy frame optimization method in [67] where there is only

one logical schedule for a given structure due to the assumption of zero network delay, in the

proposed greedy algorithm, we need to optimize multiple schedules gi(δ)’s for different δ’s

in the schedule layer given a structure layer ti at instant i∆, each corresponding to clients’

view-switch feedbacks at different instants ((i− δ)∆)’s.

The above process repeats to find the most locally beneficial augmentation at each

iteration, update the corresponding schedules by (6.15) and compute the local Lagrangian

cost in (6.14), until no more Lagrangian cost reduction can be found. Note that after

updating the local schedules at each iteration, it is possible that some frames in ti are

not used by any view-switch. In this case, those unused frames will be removed from the

structure.
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It is informative to compare our frame structure optimization problem with that in [63]

and [66]. On one hand, both aims at optimizing frame structure with a given storage con-

straint. On the other hand, our optimization problem differs from that considered in [63]

and [66] in three aspects. First, we consider frame structure optimization for variable

RTT delays instead of structure optimization for idealized network with no delay as con-

sidered in [63] and [66]. Correspondingly, additional frames of more captured views than

the requested one needs to be transmitted by server to enable clients play back video un-

interrupted. Second, different from the view-switch model in [63] and [66] which limits

the number of available requested views to clients by K camera-captured views, K ′ virtual

views in-between each pair of captured views can also be requested by clients, so that a view-

switch can take place between views more smoothly. In those senses, the frame structure

optimization problem in [63] and [66] is a special case of the proposed one with δ = 0 and

K ′ = 0. Third, in our greedy algorithm to solve (6.14), we do not apply any time-consuming

recursive optimization as described in [63] and [66], which sets up a layer ti with consider-

ing future view-switches as well via recursion. Instead, starting with the initial structure,

we incrementally made modifications to layer ti only based on the structure Ti−1 and the

schedule Gi−1 built up to previous view-switch instant (i− 1)∆. It was shown in [67] that

greedy algorithm can achieve similar optimal frame structure as that generated by recursive

algorithm, but with much less computations.

6.4.3 Optimal Quantization Parameters Update

We next present a low-complexity algorithm to optimally update QPs Q for given structure

T (k) and schedule set G(k)(), as defined by the second sub-problem (6.13). To find the

optimal solution of the constrained optimization problem (6.13), the naive approach of ex-

haustively searching all candidates Q’s that satisfy both storage constraint B̄ and distortion

constraint D̄ is too expensive in practice. Instead, we develop a strategy to update QPs

by first studying rate-quantization (RQ) and distortion-quantization (DQ) characteristics

of multiview videos.

RQ Model Analysis

During the last decades, the relationship between rate and QP of video coding has been

extensively studied for applications such as rate control. For example, in TM5 [97], a simple
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linear RQ model, i.e., R(QP ) = X/QP , is proposed, where X is a constant and R is size

of the coded frame. The more accurate RQ models with high computational complexity,

i.e., Ri = U(V δ2i /QP
2
i +W ) in TMN8 [98] and Ri = V1 ×MADi/QPi + V2 ×MAD2

i /QP
2
i

in VM8 [99], are employed respectively. In TMN8, δ2i is the variance of residues in a

macroblock, U , V and W are constants. In VM8, MADi is the mean absolute value of a

residue macroblock, V1 and V2 are two constants. In [100], an improved linear model with

an offset indicating the overhead bits, i.e., R(QP ) = X/QP + L, is proposed for H.263.

Based on the experiments on a large number of multiview video sequences, we adopt this

modified linear RD model for H.263.

Fig. 6.7 shows the relationship between coded bits R and 1/QP of one I-, P- and DSC-

frame, on the texture and depth coding respectively of the sequences Dog and Pantomime [76].

As shown in Fig. 6.7, R is linearly correlated with 1/QP no matter if the frame in question

is coded using I-, P, or DSC-frame. As a consequence, the storage cost B(T ,Q) in (6.6) of

a given frame structure T can be written as a function of QPs Q as:

B(T ,Q) =
∑

Fi,j∈T

(
Xt

i,j

Qt
+ Lt

i,j +
Xd

i,j

Qd
+ Ld

i,j

)
=
X1

Qt
+
X2

Qd
+ L (6.16)

where Xt
i,j and Lt

i,j , X
d
i,j and Ld

i,j are the individual parameters of texture and depth com-

ponents for frame Fi,j , and X1 =
∑

Fi,j∈T
Xt

i,j , X2 =
∑

Fi,j∈T
Xd

i,j and L =
∑

Fi,j∈T
(Lt

i,j + Ld
i,j)

are the corresponding parameters of the overall structure T . In our experiments, instead of

calculating the specific parameters for each frame Fi,j , X1, X2 and L of a given structure

T can be directly estimated from a number of available RQ points (no fewer than 3) by the

least-square solution of the following linear problem:

A [X1, X2, L]
T = B (6.17)

where matrix A and column vector B are composed of row vectors [1/Qt, 1/Qd, 1]’s and the

storages of each available RQ point respectively.

DQ Model Analysis

To the best of our knowledge, the relationship between view synthesis distortion and tex-

ture/depth QPs has not been formally studied in the literature. However, in our exper-

iments, we observed that the distortion cost defined in (6.10) is roughly correlated with
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Figure 6.7: Relationship between R and 1/QP of I-, P- and DSC-frames, for the texture
and depth coding of sequence (a) Dog and (b) Pantomime.
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texture and depth QPs through a linear model, i.e.,

D(Q) = Y1Qt + Y2Qd + Z (6.18)

where Y1, Y2 and Z are constants. Fig. 6.8 shows the relationship between average distortion

D and QPs Q of the sequences Dog and Pantomime, where K = 4 and K ′ = 4.

Quantization Parameters Update

Based on the RQ model (6.16) and DQ model (6.18), given the storage and distortion

constraints B̄ and D̄ in (6.13), the set of valid QPs (Qt, Qd)’s can be shown to be the

shaded region in Fig. 6.9. In Fig. 6.9, l1 and l2 are two boundaries of the valid region, which

are determined by the corresponding constraints B̄ and D̄ respectively, and Q1 = [Q1
t , Q

1
d]
T

and Q2 = [Q2
t , Q

2
d]
T are two intersection points between l1 and l2, with Q1

t < Q2
t and

Q2
d < Q1

d.

We introduce the following lemma, which can lead to a closed-form solution to optimally

update QPs in (6.13).

Lemma 6.4.1. Given a fixed structure T (k) and schedule set G(k)() at the k-th iteration of

the algorithm, the optimal QPs Q of sub-problem (6.13) is located at the boundary line l2,

corresponding to the distortion constraint D̄.

Proof. The proof is given in Appendix 6.A.

The conclusion of Lemma 6.4.1 suggests that we can now limit the search range of optimal

QPs for given structure T (k) and schedule set G(k)() to a line on which the distortions of

all QPs are identically equal to the distortion constraint D̄. Further, it turns out that

with the help of Lemma 6.4.1, we can even derive a closed-form solution to update QPs of

sub-problem two at each iteration, without any search process. More specifically, we first

simplify sub-problem two (6.13) to a single-constraint problem, stated formally as a theorem

below.

Theorem 6.4.1. Given structure T (k) and schedule set G(k)(), the optimization of transmis-

sion C(T (k), G(k)(),Q) in terms of Q, with storage constraint B̄ and distortion constraint

D̄, is mathematically equivalent to the following univariate optimization problem:

min
Qt

A1/Qt +A2/(D̄ − Z − Y1Qt) + S

s.t. Q1
t ≤ Qt ≤ Q2

t

(6.19)
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Figure 6.8: Relationship between distortion D and quantization parameters (Qt, Qd) of
sequence (a) Dog and (b) Pantomime.
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where

A1 =
∑
δ

Ψ(δ)

 ∑
Fi,j∈T (k)

q(Fi,j , δ)X
t
i,j


A2 =

∑
δ

Ψ(δ)

 ∑
Fi,j∈T (k)

q(Fi,j , δ)X
d
i,j

Y2

S =
∑
δ

Ψ(δ)

 ∑
Fi,j∈T (k)

q(Fi,j , δ)(L
t
i,j + Ld

i,j)


Proof. By using Lemma 6.4.1 and taking RQ model (6.16) and DQ model (6.18) into (6.8),

optimization sub-problem (6.13) can be found to become (6.19).

Note that after applying Lemma 6.4.1, the denominator of the second component in

(6.19) denotes that the corresponding view synthesis distortion of the optimized QPs just

satisfies the distortion constraint D̄, while the constraint Q1
t ≤ Qt ≤ Q2

t guarantees the

storage constraint B̄ is satisfied.

Given the convexity of the target function in (6.19) over the range [Q1
t , Q

2
t ], we next

evaluate the minimization by taking derivative of (6.19) with respect to Qt
6. The optimal

6Though we focus on the optimization of (6.19) in terms of Qt, the same process can be carried on Qd as
well, correspondingly, (6.19) is formulated as function of Qd
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(Q∗
t , Q

∗
d)

7 is then found to be

Q∗
t =


√
A1(D̄−Z)√

A1Y1+
√
A2Y1

, Q1
t ≤

√
A1(D̄−Z)√

A1Y1+
√
A2Y1

≤ Q2
t

Q1
t ,

√
A1(D̄−Z)√

A1Y1+
√
A2Y1

< Q1
t

Q2
t ,

√
A1(D̄−Z)√

A1Y1+
√
A2Y1

> Q2
t

Q∗
d = (D̄ − Z − Y1Q∗

t )/Y2

(6.20)

Note that similar to (6.16), to reduce the computational complexity, instead of using the

specific expression in (6.19), all the necessary parameters A1, A2, Y1, Y2 and Z to calculate

(Q∗
t , Q

∗
d) in (6.20) can be directly derived by solving the linear problem (6.17) from multiple

quantization parameters (Qt, Qd)’s for the fixed T (k) and G(k)(). The optimal QPs Q in

Step 3 of the proposed iterative optimization algorithm can be then updated accordingly

based on (6.20).

At the end of this section, for the completeness of description, we describe in Table 6.3

the complete procedures to iteratively optimize frame structure, associated schedule and

quantization parameters, based on the proposed greedy frame structure and schedule gen-

eration algorithm in Sec. 6.4.2 and QP update algorithm in Sec. 6.4.3.

We claim that the proposed iterative joint optimization of frame structure, transmission

schedule and quantization parameters in Table 6.3 is guaranteed to converge, which is stated

formally as a theorem below.

Theorem 6.4.2. Based on the greedy frame structure and schedule generation and QP

update algorithms, the convergence of the proposed iterative optimization is guaranteed.

Proof. The proof is given in Appendix 6.B.

6.5 Simulation Results

6.5.1 Simulation Setup

To gather multiview video data for our experiments, we encoded the first 90 frames of

sequences Dog and Pantomime [76] of 4 captured views (K = 4), at resolution 1280 × 960

and 30 frames per second. Each sequence has different characteristic and camera setup,

7The QPs of a practical video codec are chosen from a discrete set of values, while the RQ and DQ models
we developed in this chapter are in continuous domain. Therefore, there is an inherent rounding error for
the resulting optimal QPs, Q∗

t and Q∗
d.



CHAPTER 6. DELAY-COGNIZANT IMVS WITH FREE VIEW SYNTHESIS 115

Table 6.3: Procedures to iteratively find optimal frame structure, transmission schedule and
quantization parameters

1) Initialize texture/depth quantization parameters Q(0) satisfying the dis-
tortion constraint D̄. Set k = 0, and specify values of λmin, λmax, and a
tolerance ε as the convergence criterion.

2) Fix Q(k) for any k ≥ 0. Search the suitable trade-off parameter λ∗ over
[λmin, λmax] for the given storage constraint B̄. Generate optimal structure
T (k) and schedule set G(k)() based on the greedy structure and schedule
generation algorithm, which achieves the following unconstrained minimum
given λ∗:

min
T (k)∈Θ,G(k)()

J(T (k), G(k)(),Q(k))

= C(T (k), G(k)(),Q(k)) + λ∗B(T (k),Q(k))

For k > 0, if C(T (k), G(k)(),Q(k)) > C(T (k−1), G(k−1)(),Q(k)),
continue to use frame structure and schedule at the previ-
ous iteration, i.e., set T (k) = T (k−1), G(k)() = G(k−1)(). If∥∥(C(T (k), G(k)(),Q(k))− C(T (k−1), G(k−1)(),Q(k)))/C(T (k), G(k)(),Q(k))

∥∥ ≤
ε, stop the iteration and output (T (k), G(k)(),Q(k)) as optimal result. Oth-
erwise, go to step 3 to continue the iteration.

3) Fix T (k) and G(k)(). Randomly select l (l ≥ 3) quantization parameter
pairs Qi = [Qt,i, Qd,i]

T , i = 1, 2, . . . , l, calculate the transmission cost Ci and
distortion cost Di for the given T (k) and G(k)(). Then, estimate parameters
A1, A2, Y1, Y2 and Z by solving two linear problems as (6.17). Update
Q(k) to Q(k+1) based on (6.20) so that Q(k+1) can achieve the following
constrained minimum:

min
Q(k+1)∈Λ

C(T (k), G(k)(),Q(k+1))

s.t. B(T (k),Q(k+1)) ≤ B̄, D(Q(k+1)) ≤ D̄

4) Go to step 2, k ← k + 1.
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e.g., different distance between neighboring capturing cameras, and capturing objects with

various range of depth values. The depth estimation algorithm discussed in Chapter 5 is used

to generate the depth maps. We set the number of synthesized views between neighboring

captured views to be K ′ = 4; hence there are (K−1)K ′+K = 16 views available for clients’

selection. To synthesize the virtual views, the view synthesis reference software 2.0 [32] is

used for DIBR. Note that different multiview video characteristics can affect the amount of

geometric errors caused by depth map estimation, which is reflected by the resulting view

synthesis distortion of DIBR. To generate data for DSC implementation of M-frames, we

use the algorithm in [68], developed using H.263 tools (with half-pixel motion estimation).

In addition, the random access period ∆′ and view-switch period ∆ are set to be 30 and

3, respectively. The Lagrangian multiplier λ is swept from 0.01 to 40.96 to induce different

tradeoffs between storage and transmission rate.

For view-switching interactive model, we set view difference bound L = K ′+1 = 5, which

means the distance between two consecutive view-switches cannot exceed that between

two neighboring captured views. In addition, we assume the view-switching probability

function in the form Φ(n) = ϕ1 − ϕ2∥n∥, −5 ≤ n ≤ 5, where ϕ2 = (11ϕ1 − 1)/30 such that∑
n

Φ(n) = 1. Note that ϕ1 is the probability that client switches to the view coordinate

where she remains in the same view-switch direction as previous view-switch, and ϕ2 is the

decreased probability when she transitions to neighboring view coordinates in other view-

switch directions. By changing ϕ1, we can model the behaviors of video streaming clients

with different view-switching habits.

For the PDF of RTT delay, we assume an uniform distribution with upper bound

RTTmax = 5∆ (500ms) for simplicity, i.e., ψ(x) = 1/(5∆), x ∈ (0, 5∆). Correspondingly,

the PMF Ψ(δ) of δ could be calculated from (6.7) as Ψ(δ) = 0.2, 1 ≤ δ ≤ 5.

6.5.2 Simulation Results

Convergency Speed of Iterative Optimization

We first examine how fast the proposed iterative joint optimization algorithm of frame

structure, transmission schedule and QPs could converge. In Fig. 6.10, supposing ϕ1 = 0.2,

we plot the change of transmission rate at each step of the proposed iterative algorithm,

where the storage constraint is 320 KBytes for all three sequences, the distortion constraint

is set to be 23 and 11 for Dog and Pantomime respectively. In Fig. 6.10, the points with step
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Figure 6.10: Convergency rate of the iterative procedure, where three sequences are encoded
at 320KBytes with distortion D = 23 for Dog, D = 11 for Pantomime.

indices 2i − 1 and 2i represent the transmission rates after Step 2 and Step 3 at the i-th

loop of the iterative procedure, respectively. First, we can see that as shown in the proof

of Theorem 6.4.2 in Appendix 6.B, the transmission rate is a non-increasing function at

each step of the iterative algorithm. Second, we can observe that when applied to different

sequences, the proposed iterative algorithm can coverage to the optimal solution very fast

within 2 iterations, demonstrating the efficiency of the proposed algorithm to real multiview

video data.

Algorithm Performance Comparison with Different Distortion Constraints

We next study the change of transmission rate resulting from our optimized structure,

schedule and QPs when we vary storage and distortion constraints. When ϕ1 is set to be

0.2, we generated tradeoff points between storage and transmission rate for different view

synthesis distortion, shown in Fig. 6.11. First, for a given distortion, we see an inverse

proportional relationship between transmission rate and storage, because larger storage

budget means more frame structure redundancy, resulting in more bandwidth-efficient P-

frames used in a frame structure. Second, we observe that in general larger distortion means

a smaller transmission rate and storage. This is also expected, since better view synthesis

quality means smaller quantization distortion, leading to comparatively large frame sizes of

encoded texture and depth maps, which are expensive for both storage and transmission
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Figure 6.11: Tradeoff between storage and transmission rate with different distortion con-
straints. (a) Dog; (b) Pantomime.
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bandwidth. In addition, for the same storage, the transmission rate drops more slowly as

the increase of distortion constraint.

Algorithm Performance Comparison Using Different Source Coding Models

Then, we analyze the effects of different video source coding models on the performance of

frame structures generated by our proposed algorithm. In Fig. 6.12, we plot the tradeoff

points between storage and transmission rate for our algorithm using I-, P- and M-frames

(IPM), using I- and P-frames (IP) and using only I-frames (I-only), when ϕ1 is set to be 0.2

and distortion constraint is set to be 31 and 10 for Dog and Pantomime respectively. First,

we observe that I-only has a single tradeoff point, because placing I-frames at all switching

points results in no flexibility to trade off between storage and transmission rate, therefore

could not take advantage of extra storage if available to lower transmission rate.

Second, for the same storage, IPM offers lower transmission rate by up to 51.7% for Dog,

22.8% for Pantomime, due to the optimal usage of redundant P- and DSC-frames. The per-

formance improvement of IPM over I-only for Pantomime is much smaller than Dog. This

is due to the relatively small size of I-frames in Pantomime, as a result of almost texture-

less background region in the sequence, which introduces adequate spatial redundancy for

efficient intra prediction.

Third, we observe that structures using M-frames can offer a noticeable improvement

over those using I-frames, with transmission rate saving up to 27.5% for Dog and 11.3% for

Pantomime. The improvement is larger at stringent storage constraint, because DSC-frames

are more often used by the optimized frame structure to lower overall storage.

Algorithm Performance Comparison with Different RTT Delays

We then evaluate the impact of RTT delays on the performance of frame structures opti-

mized from the proposed algorithm. Given the corresponding storage and distortion con-

straints, Fig. 6.13 depicts the change in expected transmission rate with the increase of RTT

delay when the same frame structure generated from the proposed algorithm is individually

operated on server-client channels with different RTT delays. More specifically, we first op-

timize the frame structure, schedule and QPs to lower the expected transmission rate with

respect to the PDF of RTT, ψ(x), subject to given storage and view synthesis distortion
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Figure 6.12: Tradeoff between storage and transmission rate using different coding con-
figurations, for a given distortion constraint. (a) Dog with D = 31; (b) Pantomime with
D = 10.
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Figure 6.13: Transmission rate of a frame structure versus RTT delay. (a) Dog at 360KBytes;
(b) Pantomime at 420KBytes.
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constraints as discussed in Sec. 6.4. We then compare the corresponding individual trans-

mission rate (6.9) when the resulting frame structure performs on different specific RTT

delays. To induce different view-switching probability Φ(n), ϕ1 is set to be 0.2 and 0.4 for

two trials.

First, we see that transmission rate is a non-decreasing step function with the increase

of RTT delay, and in general, larger RTT delay results in more transmission bandwidth

consumption. This is intuitive: given a frame structure T , all RTT delays RTT ’s, (δ−1)∆ ≤
RTT ≤ δ∆ will use the same transmission schedule G(δ), leading to the same coded frames

delivered from video server for each transmission, while in overall larger RTT delay means

more view-switch positions to cover at each structure slice, resulting in larger transmission

rate.

Second, we can observe that transmission rate cannot be further increased when RTT ≥
2∆. This can also be easily explained: when RTT ≥ 2∆, one client is able to reach all

(K− 1)K ′+K = 16 available view-switch positions within one RTT no matter which view-

switch position she choose one RTT before. Correspondingly, each structure slice needs to

cover all K = 4 captured views, resulting in a constant transmission rate.

Third, as ϕ1 is increased, the transmission rate of the optimized frame structure decrease.

This is expected: larger ϕ1 means higher probability that client remains at the same view-

switch direction, which also increases the probability that client stays at the same view after

one view-switch; therefore, more P-frames predicted from the previous frames of the same

view are used in the structure, resulting in lower transmission rate. Moreover, the frame

structure has the same transmission rate when RTT ≥ 2∆, independent on ϕ1, because of

transmission of all captured views at each slice structure.

Improvement of Texture/Depth QP Optimization

Finally, we verify the effectiveness of the proposed quantization optimization algorithm for

texture and depth map coding. Using the same distortion constraints for three sequences

in Fig. 6.12, Fig. 6.14 compares the tradeoff points between storage and transmission rate

generated by our quantization optimization algorithm (QP Opt) with two anchor results.

The first (Same QP) uses the same QP to encode both texture and depth maps. The second

(Fixed Depth Rate) is a constant rate allocation method with a pre-defined depth rate

equal to 50% of texture rate. We observe that QP Opt consistently outperforms the other

two methods for all test sequences, while Fixed Depth Rate is better than Same QP for
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Figure 6.14: Tradeoff between storage and transmission rate using different selection meth-
ods for texture and depth QPs, for a given distortion constraint: (a) Dog with D = 31; (b)
Pantomime with D = 10.
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Pantomime but worse for Dog. For example, at a storage of 300 KBytes QP Opt yields

a transmission rate reduction over Same QP about 8%, 38%, and over Fixed Depth Rate

about 19%, 32%, for Dog and Pantomime respectively. It illustrates the importance of joint

texture and depth quantization optimization.

6.6 Summary

In this chapter, we propose three major technological improvements to existing IMVS works.

First, in addition to camera-captured views, we make available additional virtual views be-

tween each pair of captured views for clients’ selection, by transmitting both texture and

depth maps of neighboring captured views and synthesizing intermediate views at decoder

using DIBR. Second, we construct a Markovian view-switching model that more accurately

captures viewers’ behaviors. Third, we optimize frame structures and schedule the trans-

mission of frames in a network-delay-cognizant manner, so that clients can enjoy zero-delay

view-switching even over transmission network with non-negligible RTT.

We formalize the joint optimization of the frame encoding structure, transmission sched-

ule, and QPs of the texture and depth maps, and propose an iterative algorithm to achieve

fast and near-optimal solutions. Experimental results show that our proposed rate alloca-

tion method can lower transmission rate by up to 38% over naive schemes. In addition, for

the same storage, using our generated frame structures can lower transmission rate by up to

55% compared to I-frame-only structures, and up to 27% compared to structures without

M-frames.

6.A Proof of Lemma 6.4.1

As shown in Fig. 6.9, given storage and distortion constraints B̄ and D̄ in (6.13), both

two boundary lines l1 and l2 of the valid QP region are monotonically decreasing functions.

Therefore, for any point Qa = [Qa
t , Q

a
d]

T in the valid region, we can always identify one

unique point Qb = [Qb
t , Q

b
d]
T on l2 such that Qb

t = Qa
t and Qb

d ≥ Qa
d. On the other hand,

given a frame structure T (k) associated with schedule set G(k)() and a texture quantiza-

tion parameter Qt, transmission cost function C(T (k), G(k)(),Q) is strictly decreasing func-

tion in terms of depth quantization parameter Qd. So, we can have C(T (k), G(k)(),Qa) ≥
C(T (k), G(k)(),Qb). This proves that the optimal quantization solutionQ in (6.13) is located
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on l2.

6.B Proof of Theorem 6.4.2

In Table 6.3, given frame structure T (k−1), scheduleG(k−1)() and QPQ(k) at step 2 of the

k-th iteration, we compare the new result of T (k) and G(k)() to that of T (k−1) and G(k−1)()

such that C(T (k), G(k)(),Q(k)) ≤ C(T (k−1), G(k−1)(),Q(k)). This means the transmission

cost function is no-increasing at step 2. On the other hand, given frame structure T (k),

schedule set G(k)() and QP Q(k) of the k-th iteration, we searches at step 3 the entire

space of all possible QPs, Λ, for the best solution Q(k+1) to lower transmission cost, i.e.,

Q(k) ∈ Λ. This means C(T (k), G(k)(),Q(k+1)) ≤ C(T (k), G(k)(),Q(k)). Hence, we prove

that the transmission cost function is a no-increasing function at each step of the proposed

iterative optimization algorithm.

Since both Θ and Λ are finite space, the no-increasing nature of the transmission cost

function guarantees that the proposed iterative algorithm is surely to converge.



Chapter 7

Conclusions

7.1 Conclusions

In this thesis, we investigate the coding techniques in the practical designs of multiview

video coding and interactive multiview video streaming. We first articulate that multiview

video coding and interactive multiview video streaming are two fundamentally different

applications of multiview video, and overview existing coding algorithms to support two

applications respectively. After realizing the shortcomings of the previous works, various ef-

ficient coding techniques are presented for multiview video coding and interactive multiview

video streaming, to achieve significant improvements over the existing methods.

We first develop projective rectification-based view interpolation and extrapolation meth-

ods and apply them to multiview video coding. Comparing to most of existing view synthesis

methods without depth, which assume aligned cameras, our methods have little constraint

on camera setup and require no camera parameters for view synthesis, due to the usage

of view rectification. Experimental results show that the proposed view synthesis schemes

achieve better performance than existing methods, and lead to improved RD performance

than the current JMVC standard. Another important observation is that although the

quality of the extrapolated views is generally lower than that of the interpolated views,

the average RD performance in multiview video coding of view extrapolation-based method

across all views can outperform that of the view interpolation-based method as the increase

of the number of views, because view extrapolation can be applied to more views than view

interpolation.

We next propose a geometrical model to analyze the performance of rectification-based

126
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view interpolation and extrapolation, which further allows more flexible camera setup in

terms of positions and directions. Moreover, this model enables us to derive the theoretical

gain of projective rectification on the quality of the interpolated or extrapolated view when

unaligned cameras are used. On the other hand, we also develop an improved RD model to

analyze the performances of different practical MVC schemes. Our model is a generalization

of conventional motion compensation-based single view RDmodel to multiview video coding,

with the consideration of modeling different view synthesis prediction methods. Simulation

results of this model verify the experimental observations for various MVC schemes.

We also develop a depth estimation algorithm for depth-based multiview video represen-

tation. Compared with the conventional depth estimation algorithms, several improvements

are proposed in our approach. First, multiview geometry is used to significantly reduce the

complexity of the block-based matching as well as the probability of mismatch. Second,

a structural similarity and maximum likelihood-based scheme is proposed to combine the

depth information from multiple reference views. Third, a depth map smoothing algorithm

is developed to improve the efficiency of depth coding. Experimental results show the supe-

rior performance of the proposed algorithm in view synthesis and depth coding. In addition,

the depth maps generated from the proposed depth estimation method are used as the 3D

representation method for our research on interactive multiview video streaming.

Finally, we propose three major technological improvements to existing works in inter-

active multiview video streaming. First, in addition to camera-captured views, we allow

clients to select additional virtual views between each pair of captured views, by encoding

both texture and depth maps of neighboring captured views and synthesizing intermediate

views at decoder. Second, we construct a Markovian view-switching model that more accu-

rately captures viewers’ behaviors in view selections. Third, we consider the non-negligible

transmission delay in the design of the frame structure and transmission schedule. As a

consequence, frames in the structure corresponding to a possible delay can be additionally

transmitted, so that a user can experience zero-delay view-switching. We formalize the joint

optimization of the frame encoding structure, transmission schedule, and quantization pa-

rameters of the texture and depth maps, and propose an iterative algorithm to achieve fast

and near-optimal solutions. Experimental results show that our proposed rate allocation

method can provide significant transmission rate saving over naive schemes. In addition,

for the same storage, using our generated frame structures can greatly lower transmission

rate compared to I-frame-only structures and the structures without M-frames.
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7.2 Future Work

The works in this thesis also reveal some interesting topics for future research, as stated as

below.

7.2.1 Efficient Depth Coding

For monoscopic and multiview video content, highly optimized coding methods have been

developed, including our view interpolation and extrapolation-based MVC schemes dis-

cussed in Chapter 3. However, for depth-based 3D video formats, specific coding methods

for depth data that yield high compression efficiency are still in the early stage of investi-

gation. Currently, depth data is treated as monochrome 2D video, which typically differs

statistically from the colorful video content. Although color video contains detailed texture

information, depth data is usually composed of large homogeneous regions of slow-changing

values. In addition, object boundaries may cause abrupt changes in depth values. Therefore,

depth data often contains very low and very high frequencies.

In our IMVS work of this thesis, we adopt the same conventional coding schemes to

encode both texture and depth information. However, in conventional coding schemes, high

frequencies are omitted at high compression rate. While this effect only leads to slightly

degradation of texture information, the effects on depth coding are much severe. Therefore,

besides the advanced coding techniques for texture information, efficient compression of

depth data is also worth our future study.

7.2.2 Improved 3D Representation Format

Albeit depth map is widely used as a 3D scene representation format, the main drawback

of 2D plus depth format is that it is only capable of rendering a limited depth range and is

not specially designed to handle occlusions. Also, stereo signals are not easily accessible by

this format, i.e., receivers needs to generate the second view to drive a stereo display.

To overcome the shortcomings of 2D plus depth format while maintaining some of its

key merits, MPEG is now in the process of considering an improved representation format.

The targets of this format include:

• Enable stereo devices to cope with varying display types and sizes. This includes

the ability to vary the baseline distance for stereo video so that the depth perception
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experienced by the viewers is within a comfortable range.

• Facilitate support for high-quality auto-stereoscopic displays. Since directly providing

all the necessary views for displays is not practical due to production and transmission,

the new format aims to enable the generation of many high-quality views from a limited

amount of input data.

7.2.3 Distributed Multiview Video Coding

The common idea of multiview video coding is to exploit the correlations between adja-

cent views in addition to temporal and spatial correlations within a single view. In other

words, all the prediction processes are performed during encoding. Although prediction

does improve the coding efficiency, it also incurs some problems in practical multiview video

capturing and transmission system. Firstly, conducting inter-view prediction is based on

the assumption that video data from different views can be freely exchanged for encoding.

However, the communication between cameras with high data volume is difficult in practice.

Second, all cameras are required to work simultaneously and multiview video sequences are

required to be compressed with low latency. As we can see, all the above factors impose

a big computational burden on encoder. Therefore, to lower encoding complexity, is there

any way to separately encode each frame of multiview video while maintaining the coding

performance as good as that of jointly encoding?

In theory, distributed source coding can provide one solution, which shows that corre-

lated sources are encoded without using information from each others, coding performance

can still be as good as that of dependent coding if the compressed signals can be jointly

decoded [101, 102]. Up to nowadays, several practical Slepian-Wolf and Wyner-Ziv coding

techniques have been proposed for conventional 2D video coding [103, 104, 105]. Since there

are more redundancies in multiview video data than in single video data, the distributed

multiview video coding can achieve better performance than single video.

7.2.4 Content-dependent View-switching Model

Many existing view-switching models including the one proposed in this thesis, are based

on the assumption that viewers exhibit the same view-switching tendencies when watching

different multiview video sequences. Such assumption is essentially content-independent

since view-switching probability function does not vary according to the visual content of
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multiview video. However, it has been shown in [65] that viewers show strong content

dependencies when switching views. For example, viewers intend to do more view-switches

when there is an exciting action in a sport video, such as curvet. In addition, viewers’

behaviors are quite different between martial arts and gymnastics, because gymnastics are

often performed smoothly without sudden and fancy actions in martial arts. Therefore, a

better view-switching model that uses content-dependent switching probability is also worth

our future attention to more accurately capture viewers’ behaviors in view selections.
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