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Abstract

In this paper, the estimation procedure developed by Jones and Zanganeh (2011) is ex-

panded to a multifactor structure. That is, maximum likelihood estimates of parameters

of blockwise equicorrelated Wiener processes observed at discrete time intervals are pre-

sented. The estimation procedure then is used to provide a likelihood ratio test for the

relation between asset correlation and default probability which is assumed to be negative

in Basel II Accord. Using monthly stock prices (December 2002 to March 2011) of North

America Oil & Gas, Technology and Industrials companies, we find this relation tends to

be positive. We also observe some systematic impacts since the financial crisis on the be-

haviour of stock prices. Volatility and correlation have substantially increased from the

second quarter of 2008 which is followed by a subsequent decline toward the end of the

period.

keywords: Asset correlation; Default probability; Equicorrelation; Maximum likeli-

hood estimate; Basel II; Credit Quality
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1

Introduction

Average asset correlation plays a critical role in determining regulatory capital require-

ments in the Basel II Internal Rating-Based (IRB) approach suggested by Basel Committee

on Banking Supervision (BCBS) (2005). Basel committee assumes a negative relationship

between average asset correlation and probability of default. In spite of its critical im-

portance in determining the capital requirements, few studies have tried to investigate the

empirical validity of this assumption. The first goal of this paper is to provide a statistically

legitimate test for this relationship and shed light on the empirical validity of the Basel II

assumption.

Correlation modeling lies at the heart of portfolio selection, portfolio risk management,

and pricing of the derivatives whose value depend on more than one underling variable (e.g.

dispersion trading positions, CDOs, n-th to default swaps and index tranches). Tractable

correlation structures and matching estimation methods are essential in this wide range of

financial applications. The second purpose of this paper is to contribute in this area by

expanding Jones and Zanganeh (2011) framework to a multi-sector structure. They present

maximum likelihood estimators for the parameters of symmetric, correlated Weiner pro-

cesses observed at discrete intervals. We derive the likelihood function for a more general

form by allowing for multiple sources of correlation. This structure allows for a more care-

ful study of correlation between financial assets. As an application, we use the estimation

procedure to build a likelihood ratio test for the relationship between asset correlation and

credit quality.

The paper is organized as follows. In section I, the relationship between asset correla-

tion and probability of default in the context of Basel II Accord and the existing empirical

literature on this relationship is briefly reviewed. The candidate correlation structure in
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continuous time is set out, and its discrete time form and likelihood function corresponding

to feasibly observable data is obtained in section II. Asymptotic standard errors are also

obtained in this section. Simulation testing is performed in section III. Section IV applies

the proposed procedure on a data set of stock price returns to investigate the empirical rela-

tionship between asset correlation and credit quality. Concluding remarks come in the last

section.
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2

Asset correlation and probability of
default in Basel II

In the context of Basel II Internal Rating-Based (IRB) approach suggested by BCBS

(2005), average asset correlation plays a critical role in determining capital requirements

for banks loan porfolios. For corporate, sovereign and banking exposures, average asset

correlation is calculated as

ρ̄ = 0.12× 1− e−50×p

1− e−50 +0.24
[

1− 1− (1− e−50×p)

1− e−50

]
(2.1)

where ρ̄ and p are average asset correlation and probability of default, respectively. Each

borrower is assigned a rating grade and the average default probability p for a grade (which

could be calculated via certain methods) is used for all the borrowers sharing the same

grade. Then ρ̄ refers to the average asset correlation of the borrowers in the same rat-

ing grade. This formula implies a negative relationship between average asset correlation

and probability of default. Average asset correlation then is used in calculation of capital

requirements

K =

(
LGD×N

[
N−1(p)√

1− ρ̄
+N−1(0.999)×

√
ρ̄

1− ρ̄

]
− p×LGD

)
· 1+(M−2.5)b

1−1.15b
(2.2)

where K is capital requirement, LGD is loss given default, M represents effective matu-

rity and b is the maturity parameter. Lee et al. (2009) show that the negative relationship

in equation (2.1) has a dampening impact on the capital requirement specially at higher

levels of default probability. In spite of the critical importance of equation (2.1) in deter-

mining the capital requirements, few studies have investigated the empirical validity of this
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relationship.

Lopez (2004), as the most cited study in this area, calibrates average asset correla-

tions using Moody’s KMV Portfolio ManagerTM software for different portfolios created

by Expected Default Frequency (EDF), asset size or both. He then observes the pattern of

calibrated ρ̄ across the portfolios which reveals to be declining as EDF (as a measure of

probability of default) increases. However, he does not test the statistical significance of

the observed pattern.

Dietsch and Petey (2004) use a one-factor model to estimate default probabilities and

asset correlations for French and German small and medium-size enterprises (SMEs), and

to investigate the empirical relationship between asset correlation and probability of de-

fault. What they find is that asset correlation generally increases with probability of default,

unlike Basel committee assumption. Lee et. al. (2009) provide empirical evidence and eco-

nomic arguments against this assumption. Using Moody’s KMV asset returns proprietary

database and Expected Default Frequency (EDF), they find little evidence of a negative

relationship between asset correlation and default probability for Corporate, Commercial

Real Estate and Retail exposures. From the economic perspective, they argue that if default

is caused by a systematic negative shock, firms’ asset values may show higher correlation

causing higher default correlation. Therefore, firms close to default are not necessarily

more subject to idiosyncratic shocks.

In the context of the structural approach to default modeling, due to Merton (1974),

default correlation between any two firms is modeled based on correlation between their

asset values. In their basic form, these models characterize default as the event that asset

value falls below the firm’s obligations at maturity. Asset values are assumed to follow cor-

related Geometric Brownian motions, with common factors being the source of correlation.

Comovement of asset values causes correlation in default events. E.g., if the realization of

the common factor is bad, firms’ asset values tend to move down causing the default prob-

ability of each firm and their joint default probability1 to rise. Therefore, the higher is the

correlation between asset value of any pairs of firms, the higher will be their joint default

probability, so the default correlation. In this sense, Basel II assumption would imply a

negative relationship between probability of default and default correlation.

Using historic default data, Lucas (1995) finds that default correlation generally de-

creases as credit rating improves. Similar results are obtained by Zhuo (2001) based on a

1Default events are independent conditional on the common factor, implying the joint probability of de-
fault being equal to the product of marginal default probabilities.
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first-time-passage model. Using a large portfolio of residential subprime loans and com-

puting a block diagonal equicorrelation matrix, Cowan and Cowan (2004) also show that

default correlation increases as the internal credit rating declines. We contribute in this

debate by providing a likelihood ratio test for the decreasing relationship assumed in Basel

II Accord.
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3

Candidate equicorrelation structure

In this section, the continuous time (single-factor) equicorrelation structure and the esti-

mation procedure presented by Jones and Zanganeh (2011) is expanded to a multi-factor

case. The resulting structure represents a continuous time blockwise equicorrelation model

with multiple sources of correlation. Suppose asset value of firm i = 1, . . . ,n j belonging to

sector j = 1, . . . ,m, xi j(t) evolves in continuous time according to the following stochastic

differential equation

dxi j = αi j(x, t)dt +σi j(x, t)dz̄i j i = 1, . . . ,n j and j = 1, . . . ,m (3.1)

in which αi j and σi j are drift and volatility functions, respectively, and dz̄i j are increments

in standard Weiner processes with correlations ρi j(x, t) between them.

This general specification imposes Σ jn j(Σ jn j + 3)/2 parameters (in drift vector and

covariance matrix) to be estimated. Estimation of the above structure requires observations

on complete set of assets over large enough number of time intervals. The difficulty arises

when the number of firms, Σn j, is large with incomplete time series for individual firms.

We thus assume that firms are grouped so that the drift and volatility functions, αi j and σi j,

are the same for all firms in the same sector. Some structure should also be imposed on the

correlation between different firms.

There are strong reasons to believe in a higher degree of comovement between firms

from the same sector (which could be defined as countries, industries, rating categories,

etc) than between those from different sectors. This could be addressed by introducing a

general and some sector specific common factors in (3.1). Specifically, we consider three

types of factors: (i) zo which is common to all firms xi j. This common factor gives rise

to correlation between the movements of all xi j; (ii) z j ( j = 1, . . . ,m) which are common
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within each sector. These factors give rise to correlation between the movements of xi j

within sector j; and (iii) zi j which are idiosyncratic to firm i j. Therefore, the following

particular structure is considered

dxi j = κ j(µ j− xi j)dt +σ j(ρ
1/2
0 dz0 +ρ

1/2
j dz j +(1−ρ0−ρ j)

1/2dzi j) (3.2)

in which the z0(t), z j(t), zi j(t), i = 1, . . . ,n j, j = 1, . . . ,m are independent standard Weiner

processes. The parameters κ j,µ j,σ j,ρ0,ρ j are constants and ρ0 + ρ j,ρ0 each in [0,1]1.

This structure represents a mean-reverting case, and constant and zero drift models obtain

as its special cases. This will be clarified in the next section.

Discrete time likelihood function

In this section the discrete time form of candidate processes (3.2) and likelihood function

are derived to correspond with feasibly observable data. Assume the N-vector x(t) follows

a linear continuous time, constant coefficient process given by

dx = (Kx+ c)dt +dz with E(dzdz′) = Ωdt (3.3)

K and c are an N×N matrix and a column N-vector of constants (N ≡ Σn j), respectively.

Following Wymer (1972) the exact discrete time process for x is given by

x(t +h) = ehKx(t)+K−1[ehK− I]c+ηt where ηt ∼ N(0,
∫ h

0
eτK

ΩeτK′ dτ) (3.4)

I denotes the N×N identity matrix. According to equation (3.4), the distribution of x(t+h)

conditional on x(t) is joint normal. For the model given in equation (3.2) with x(t) denoting

the stacked vector of xi j, i = 1, . . . ,n j, j = 1, . . . ,m, the above components are given as

K =


−κ jIn1 0 . . . 0

0 . . . 0
...

...
...

0 0 . . . −κmInm

 c = K


µ1en1

µ2en2
...

µmenm

 (3.5)

1This last condition on the correlation parameters is made to ensure that the covariance matrix is
positive definite. However, the covariance matrix stays positive definite even if correlation parameters
are somewhat negative. E.g., for the two sector case, we just need to have ρ̄ j ∈ ( −1

n j−1 ,1), j = 1,2 and

ρ0 ∈
(
−( (ρ̄1(n1−1)+1)(ρ̄2(n2−1)+1)

n1n2
)1/2,( (ρ̄1(n1−1)+1)(ρ̄2(n2−1)+1)

n1n2
)1/2
)

where ρ̄ j ≡ ρ0 +ρ j.
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where In j is the identity matrix of size n j and e j is an n j-vector of ones. Define ρ̄ j ≡ ρ0+ρ j,

Jn jn j′ = en je
′
n j

, σ j j′ = σ jσ j′ . The covariance matrix Ω is then expressed as

Ω =


σ2

1(1− ρ̄1)In1 0 . . . 0

0 . . . 0
...

...
...

0 0 . . . σ2
m(1− ρ̄m)Inm



+


σ2

1ρ̄1Jn1n1 σ12ρ0Jn1n2 . . . σ1mρ0Jn1nm

σ21ρ0Jn2n1
. . . σ2mρ0Jn2nm

...
...

...

σm1ρ0Jnmn1 σm2ρ0Jnmn2 . . . σ2
mρ̄mJnmnm

 (3.6)

The covariance matrix Ω has a block-wise structure, with blocks Ω j j′ having the following

form

Ω j j′ = σ
2
j [(1− ρ̄ j)In j + ρ̄ jJn jn j′ ] j = j′ (3.7)

Ω j j′ = σ j j′ρ0Jn jn j′ j 6= j′ (3.8)

The covariance matrix of x(t +h) as in equation (3.4) is given by

Ω̃≡
∫ h

0
eτA

ΩeτA′ (3.9)

with the diagonal blocks ( j = j′)

Ω̃ j j ≡ e−τκ jΩ j je−τκ jdτ = Ω j j

∫ h

0
e−2τκ jdτ =

1− e−2hκ j

2κ j
σ

2
j︸ ︷︷ ︸

s j

[(1− ρ̄ j)In j + ρ̄ jJn jn j ] (3.10)

and the off-diagonal blocks ( j 6= j′)

Ω̃ j j′ ≡ e−τκ jΩ j j′e
−τκ j′dτ = Ω j j′

∫ h

0
e−τ(κ j+κ j′)dτ =

1− e−h(κ j+κ j′)

(κ j +κ j′)
σ j j′︸ ︷︷ ︸

s j j′

ρ0Jn jn j′ (3.11)
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Substituting these relations in equation (3.4) and rearranging gives

x(t +h)−


a1In1 0 . . . 0

0 . . . 0
...

...

0 0 . . . amInm

x(t)−


b1en1

...

bmenm

 ∼ N(0 , Ω̃ ) (3.12)

where a j and b j are

a j = e−hκ j b j = (1− e−hκ j)µ j (3.13)

Now suppose that we have observations on the N ≡ Σn j state variables at equally spaced

times t j, j = 1 . . .T +1. Define the N-vector

y j ≡ x(t j+1)−ax(t j)−be j = 1 . . .T (3.14)

Being joint normally distributed, and independent because the x process is Markov and the

time intervals do not overlap, the likelihood function for these observations is

L =
T

∏
j=1

1
(2π)N/2|Ω̃|1/2

e−y′jΩ̃
−1y j/2 (3.15)

Finally, we choose to work with the two times log-likelihood function given by

Λ ≡ 2lnL = −NT ln(2π)−T ln |Ω̃|−
T

∑
j=1

y′jΩ̃
−1y j (3.16)

The estimation procedure is performed by the numerical maximization of (3.16) with re-

spect to the parameters a j,b j,s j,ρ0,ρ j. This is equivalent to the maximization of the like-

lihood function L as given in (3.15). There will be ν ≡ 4m+1 parameters to be estimated

when the state variables are grouped into m sectors. The continuous time parameters are

retrieved from

κ j =−
1
h

lna j µ j =
b j

1−a j
σ

2
j =

2s j lna j

h(a2
j −1)

ρ0 = ρ0 ρ j = ρ j (3.17)

Correlation is given by ρ̄ j = ρ0 +ρ j for any pairs of xi j from sector j and by ρ0 for those

from different sectors. The zero drift case obtains by setting a j = 1 and b j = 0. The

constant drift case obtains by setting a j = 1, estimating b j, and obtaining the continuous

time drift rate from µ j = b j/h. In both zero drift and constant drift models σ2
j = s/h.

9



If certain regularity conditions are met, as the sample size T goes to infinity the asymp-

totic distribution of maximum likelihood estimates of the ν-vector of parameters θ≡ (µ1, . . . ,

µm,κ1, . . . ,κm,σ1, . . . ,σm,ρo,ρ1, . . . ,ρm)
′ is given as2

T 1/2
Φ

1/2
ν (θ̂−θ)

d→ N(0, Iν) (3.18)

where Φν is the information matrix of size ν×ν defined as

Φν =−
1
T

E(
∂2 lnL
∂θ∂θ′

) (3.19)

L is the likelihood function evaluated at the true value of θ. We use Berndt, Hall, Hall and

Hausmann (1974) (BHHH) method to estimate the information matrix. According to Judge

(1985), Φν can be numerically computed as

1
T

[
T

∑
t=1

(
∂ lnLt

∂θ

)(
∂ lnLt

∂θ

)′]
θ=θ̂

(3.20)

where Lt denotes the probability density of the one-period observation yt
3. Standard errors

of the parameters are square roots of the diagonal elements of (1/T )Φ−1
ν .

2See Hamilton (1994, p.388-389).
3Computing Φν based on numerical evaluation of the second order derivatives of the likelihood function

as given in Hamilton (1994) behaves less satisfactorily.
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4

Simulation testing

In this section a Monte Carlo simulation exercise is performed to test the estimation method

and examine its small sample properties. A mean-reverting case is considered since the

constant and zero drift models are obtained as special cases of this more general struc-

ture. Without loss of generality a two-industry structure is assumed as it is going to be

used to investigate the empirical relationship between asset correlation and credit qual-

ity. Benchmark parameter values used to generate data for two industries a and b are

κa = κb = 1, µa = µb = 5, σa = 1, σb = .5, ρ0 = .3, ρ1 = .2 and ρ2 = .4, with quarterly

observations h = .25. Number of diffusions in each industry is set to be 100 and 500 simu-

lations/estimations are performed.

The simulation results are reported in Table 4.1. The average of each parameter esti-

mate agrees closely with the true value used to simulate the data and no estimation bias

is observed. Standard errors of the parameters using Berndt-Hall-Hall-Hausmann method

along with sample standard deviations of the parameters are presented in Table 4.1. Eval-

uation of parameters covariance matrix from second derivatives of the likelihood function
1 results in less satisfactory estimates of the standard errors. As can be seen, BHHH stan-

dard errors well agree with the sample standard deviations and no obvious bias is observed.

Note that the coefficient of variation (defined as the ratio of the standard deviation to the

average parameter estimate) is least for κ and µ and highest for correlation parameteres.

If one does not separate between within- and across-sector common factors and treat

each sector individually, the model is reduced to two one-sector structure. In this case, the

simulation/estimation procedure will be basically the same except that estimated correla-

tion for sector j will be an estimate of ρ0 +ρ j.

1For this method look at Hamilton (1994) page 388-389.
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Now, lets look at the small sample properties of the estimators. To examine how the es-

timators behave as the number of observation intervals decreases, Monte Carlo simulations

are performed for progressively fewer number of observations on 10 diffusions in each sec-

tor. The results are presented in Table 4.2. Some features are noticeable as T decreases.

First, estimates of drift and mean-reversion parameters do not show any significant bias,

while volatilities become mildly biased toward zero. However, estimates of correlations re-

veal considerable bias, with severe bias toward zero in ρ0, and mild upward and downward

bias in ρ1 and ρ2, respectively. Second, BHHH standard errors consistently overestimate

the sample standard deviations. They rise at an increasing rate as T decreases. Finally,

correlation estimates become statistically insignificant as T decreases, that is correlation

structure may not be correctly inferred as the number of observation intervals declines.

Table 4.3 reports the simulation results for 30 observations on progressively decreasing

number of diffusions per sector. Again, drift and mean-reversion terms do not reveal no-

table bias as N decreases. Bias in estimated volatility is considerably smaller compared to

Table 4.2. One observation worth noting in this experiment is that no systematic bias occurs

in estimated correlation as number of diffusions declines. Moreover, BHHH standard error

are generally close to the standard deviations with the bias being negligible when N ≥ 10.
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5

Empirical analysis of asset correlation
and credit quality

In this section, the estimation procedure developed above is used to investigate the empir-

ical relationship between credit quality and asset correlation. The main restriction to the

estimation procedure is that asset values are not observable. One solution to this problem

is to estimate stock price return correlation as a proxy for asset value correlation. This

approximation is used by Zhuo (2001) and also adopted by CreditMetrics, an industrial

credit risk model. Moody’s KMV instead uses the contingent claim approach to the pricing

of securities and estimates asset values from the time series of stock prices and balance

sheet data. More specifically, KMV assumes that the firmŠs capital structure is composed

of equity, short-term debt which is considered equivalent to cash, long-term debt which is

assumed to be a perpetuity, and convertible preferred shares1.

In this paper, we follow the first solution and use stock price returns as a proxy for asset

value returns to estimate a two sector model. Then a likelihood ratio test is built to test

the negative relation imposed by Basel committee. The procedure of building the likeli-

hood ratio test is as follows. First, the portfolio is grouped into investment and speculative

grade classes, a two-factor model is estimated, and separate equicorrelation parameters

are obtained for each category (i.e. ρ0 + ρ1 and ρ0 + ρ2, where ρ1 and ρ2 represent the

within sector equicorrelation parameters for the investment grade and speculative grade

firms, respectively). Then, average asset correlation for the whole portfolio is estimated by

imposing a single-factor structure (i.e. ρ1 = ρ2 = 0). Since speculative grade firms have

1Look at Kealhofer (2003) for a review of KMV methodology and see Crouhy et. al. (2000) for a
comparative analysis of credit risk models.
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Table 5.1: Stock log-return sample properties

N Mean Volatility Avg. Corr. Min Max
Oil&Gas whole 73 0.0827 0.3805 0.2897 -1.1352 1.8189
Oil&Gas investment 53 0.0640 0.3380 0.2694 -1.1352 0.7972
Oil&Gas speculative 20 0.1323 0.4931 0.3694 -0.9217 1.8189

Technology whole 51 0.0380 0.4076 0.3071 -1.3480 2.8641
Technology investment 35 0.0461 0.3339 0.2977 -1.0016 2.8641
Technology speculative 16 0.0203 0.5687 0.3505 -1.3480 2.3900

Industrials whole 42 0.0909 0.4068 0.3223 -1.4358 1.8948
Industrials investment 29 0.0717 0.3753 0.3457 -1.4358 1.8948
Industrials speculative 13 0.1338 0.4772 0.2773 -0.7724 0.9065

Sample means and volatilities are annualized.

supposedly higher probability of default, equation (2.1) would receive support from data

if: (i) ρ0 + ρ1 > ρ0 + ρ2; and (ii) the likelihood ratio test results in the rejection of the

one-factor (restricted) in favour of the two-factor (unrestricted) model. LR test statistic is

χ2 distributed with the degrees of freedom equal to the number of restrictions2.

Evidence from stock prices

As previously mentioned, stock price returns correlation is estimated as a proxy for asset

correlation. Three samples of the North America companies listed on NYSE are selected

for this empirical investigation: Oil&Gas, Technology and Industrials sectors. List of the

companies are obtained from NYSE Symbol file3, and monthly stock prices and S&P credit

ratings from COMPUSTAT dataset. The sample only includes the companies with monthly

stock prices and credit ratings recorded for the full period of December 2002 to March

2011, with no switch between investment and speculative grades during that period. The

descriptive statistics of the data is given in Table 5.1. The average asset correlation reported

2The LR test statistics is given by −2(lnLR − lnLUR) with LR,LUR being the maximum value of the
likelihood function of the restricted and unrestrited models, respectively.

3The file is available at: http://www.nyxdata.com/Data-Products/NYSE-Group-Symbols-Package. List of
the sub-industries under each of the three selected industries is given in the Appendix
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in the table is the average of the off-diagonal elements of the sample correlation matrix for

each sector.

Table 5.2 represents the estimation results of the zero drift model for the three indus-

tries. The first and the third lines for each sector report the estimated parameters for the

unrestricted and restricted (ρ1 = ρ2 = 0) models, respectively. The numbers in the paren-

theses are the BHHH standard errors. Since the estimates of volatility and equicorrelation

are quite insensitive to the drift term assumption, we base our analysis on the zero drift

model4. Estimated volatility and equicorrelation are generally significant. Volatility tends

to be higher in the speculative grade companies, a pattern which is quite significant in Oil

& Gas and Technology sectors while weaker among Industrials.

The main issue on which we are trying to shed light is whether the negative rela-

tionship between probability of default and asset correlation assumed in Basel II Accord

gets support from data. Table 5.2 shows the total equicorrelation for investment grade

(ρin ≡ ρ0 +ρ1) and speculative grade (ρsp ≡ ρ0 +ρ2) companies for each industry, along

with the Likelihood Ratio test statistic and its P–value. For all the three industries under

investigation, ρsp turns out to be bigger than ρin. However, the difference between them is

only significant for Oil & Gas and Technology sectors.

It is worth pointing out that the difference between average sample correlations of In-

dustrials investment and speculative grade classes (reported in Table 5.1) is quite large,

suggesting a statistically significant difference between them. However, this first impres-

sion is rejected by LR test. For the two other industries, LR is statistically different from

zero at any reasonable significance level.

To investigate the time varying characteristics of volatility and equicorrelation, rolling

estimates of the zero drift model are performed and the results are reported in Figure 5.1.

For this purpose, a 24-month window is selected which moves forward over 1-month steps.

Therefore, the estimated volatility and equicorrelation for each month, say November 2004,

are the estimates of the parameters over a 24-month period ending in November 2004.

Some patterns are noticeable in the instantaneous volatility and equicorrelation estimates.

In Technology and Industrials speculative classes, volatility starts to rise in September

2008. A similar pattern is observed in Industrials investment grade companies. The volatil-

ity rise starts earlier in Oil & Gas speculative, while it tends to stay stable in Oil & Gas

and Technology investment classes. In summary, except for Oil & Gas and Technology in-

4Estimating the constant drift model shows that the drift term is statistically insignificant for all the sam-
ples. Moreover, none of major results would change if the constant drift specification is used.
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vestment grade companies, higher volatility during the financial crisis is noticeable which

is followed by a subsequent decline toward the end of the period.

Rolling estimates of equicorrelation also reveals some interesting points. First, equicor-

relation starts to increase in the second quarter of 2008, which is characterized as the time

the financial crisis began to hit the stock markets. This is somewhat lagged in the Indus-

trials but occurs at a faster rate. Second, we observe that the relative size of correlation in

investment and speculative grade classes changes over time following different patterns in

each industry. Moreover, Industrials sector behaves quite differently from the two others.

For Industrials ρin is bigger than ρsp for the most of the time until July 2008. It reverses

then after to the end of the time period. Our conclusion is that Basel II Accord does not

generally get support from data, and in fact correlation tends to decrease as credit quality

improves.

As can be seen in Figure 5.1, investment grade companies look to be more correlated

than the speculative grade ones within some periods. To test if this observation is statisti-

cally significant, for each industry the model is estimated over those time periods and LR

test is performed. For Oil & Gas the model is estimated over September 2005 to October

20085. The estimates of ρin and ρsp are 0.2347 and 0.2094, respectively. However, accord-

ing to LR test, the difference between ρin and ρsp is statistically insignificant (with P-value

being 0.4966). Note that the absolute size of the difference is not too small.

Estimating the model for Technology sector over the time period of November 2007 to

March 2011, ρin and ρsp are obtained as 0.3639 and 0.343, respectively, with the difference

being statistically significant (P-value = 0.0012). And finally for Industrials, investment

grade category has significantly higher correlation than the speculative class during De-

cember 2002 to July 2008, with ρin= 0.1653, ρsp = 0.1403 and P-value = 0.0111.

Our conclusion about the sign of the relationship between asset correlation and default

probability (credit quality) is that it changes over time and across industries, and in fact

tends to be more of a positive relation. The above findings are generally not supportive of

the Basel committee regulatory guideline. While Lopez (2004) finds evidences in support

of the Basel committee assumption, there are other studies, like Lucas (1995), Zhuo (2001),

Dietsch and Petey (2004), and Lee et. al. (2009), which show asset correlation or default

correlation decreases as probability of default increases or credit quality deteriorates. Our

findings add to this group of studies.

5Note that the parameters estimates recorded for August 2007 in Figure 5.1 is obtained from the sample
of September 2005 to August 2007.
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Figure 5.1: Rolling estimation of volatility and equicorrelation
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6

Conclusion

This paper expanded the estimation procedure proposed by Jones and Zanganeh (2011) by

allowing for multiple sources of correlation. One important benefit from having a more

general framework is that it allows for more careful study of comovements of financial

assets. The proposed estimation procedure serves variety of applications from portfolio

selection to risk management and derivatives valuation. We then used a two-factor version

of the model to investigate the empirical relationship between asset correlation and credit

quality which is assumed to be negative by Basel committee.

Using stock price returns of North America Oil & Gas, Technology and Industrials

companies to estimate asset correlation, we could not find support for this assumption. The

relative size of asset correlation for investment and speculative grade companies changes

over time and across industries. In fact, the relation between asset correlation and default

probability (measured by lower credit quality) tends to be more of a positive one. Our

findings are in line with the group of studies (e.g. Lee et. al. (2009), Dietsch and Petey

(2004), Zhuo (2001), and Lucas (1995)) that show asset correlation (default correlation)

tends to increase as probability of default rises. Rolling estimation of the model shows that

volatility and equicorrelation have substantially increased from the second quarter of 2008,

after the financial crisis hit the stock markets, which is followed by a subsequent decline

toward the end of the time period. The rise is less obvious in Oil & Gas and Technology

investment grade companies.

Finally, it is appropriate to add some caveats. The main restriction on the empirical

investigation of the relationship between asset correlation and probability of default is that

market value of a firm’s assets is a latent variable. Following Zhuo (2001) and CreditMet-

rics methodology, we estimate stock price returns correlation as a proxy for asset correla-

22



tion. Moreover, we have assumed that there is no impact from firm size on the relationship

between asset correlation and credit quality. Using properly estimated market value of

firms’ asset (like Moody’s KMV proprietary asset value dataset) and taking into account of

the size effect might provide more accurate insight into the topic.
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Appendix

List of sub-industries included in the samples
Oil & Gas: Gas Services-Distribution & Integrated Natural Gas Cos / Other Gas Ser-

vices/ Oil And Gas-Integrated Domestic Refiners/ Oil And Gas-Services And Equipment/

Oil And Gas-Contract Drilling,Exploration/ Oil And Gas-Crude Production/ Gas Services-

Natural Gas Transmission Companies/ Oil And Gas-Non-Integrated Refiners/ Oil And Gas-

Integrated International Refiners

Technology: Electronics-Semiconductors And Other Components/ Telecommunica-

tions/ Computers, Data Systems-Computer Systems/ Computers, Data Systems-Data Pro-

cessing, Software/ Electronics-Test, Control Instruments And Systems/ Electronics- Telecom-

munications Equipment/ Electronics-Other Systems And Equipment/ Computers, Data Systems-

Peripheral Devices And Supplies

Industrials: Manufacturing/ Industrial Machinery And Equipment-Heavy Machinery/

Motor Vehicles-Parts And Equipment/ Industrial Machinery And Equipment-Transmissions

And Engines/ Industrial Machinery And Equipment-Other Industrial Equipment/ Industrial

Machinery And Equipment-Measuring And Control Devices/ Industrials/ Motor Vehicles-

Auto And Truck/ Industrial Machinery And Equipment-Machine Tools
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