
OPERATING SYSTEM ABSTRACTIONS OF

HARDWARE ACCELERATORS ON

FIELD-PROGRAMMABLE GATE ARRAYS

by

Aws Ismail
B.A.Sc. EE (Hons.), University of Windsor, 2005

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Applied Science

in the

School of Engineering Science

Faculty of Applied Science

c© Aws Ismail 2011

SIMON FRASER UNIVERSITY

Summer 2011

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be reproduced

without authorization under the conditions for Fair Dealing. Therefore, limited

reproduction of this work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law, particularly if cited appropriately.

APPROVAL

Name: Aws Ismail

Degree: Master of Applied Science

Title of Thesis: Operating System Abstractions of Hardware Accelera-

tors on Field-Programmable Gate Arrays

Examining Committee: Dr. Carlo Menon

Assistant Professor, School of Engineering Science

Chair

Dr. Lesley Shannon, P.Eng.

Assistant Professor, School of Engineering Science

Senior Supervisor

Dr. Arrvindh Shriraman

Assistant Professor, School of Computing Science

Supervisor

Dr. Alexandra Fedorova

Assistant Professor, School of Computing Science

External Examiner

Date Approved:

ii

lib m-scan5
Typewritten Text
August 19, 2011

Partial Copyright Licence

Abstract

Traditionally, one of the main functions of the Operating System (OS) is to abstract

the programming model from the low level details of the specific HW platform re-

sources. However, in an FPGA-based SoC with HW accelerators, even with an OS

layer, there is no unified HW/SW framework that provides: 1) transparency to the

SW designer at the application level; and 2) an interface and OS support for easy

HW accelerator integration by the HW designer at the platform level.

This thesis presents a Front-end USEr framework, called FUSE, that introduces

a set of policies and mechanisms for HW accelerator abstraction. We illustrate FUSE

as an API for an embedded Linux OS with POSIX threads on Xilinx’s MicroBlaze

on a Virtex5 FPGA. For three different applications and HW accelerators, we achieve

performance speedups ranging from 5.8-9.0x.

iii

Contents

Approval ii

Abstract iii

Contents iv

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Motivation . 2

1.2 Objective . 4

1.3 Contributions . 5

1.4 Thesis Organization . 6

2 Background and Related Work 7

2.1 Modern FPGAs . 7

2.2 FPGA-based SoCs . 11

2.2.1 Soft Processors State of the Art 11

iv

2.2.2 Using HW Accelerators with Soft Processors 12

2.3 Operating Systems for FPGA-based SoCs 13

2.3.1 Traditional Role of the OS . 14

2.3.2 OS support for FPGA-based SoCs 15

2.4 Previous Work on Accelerator/OS Integration 18

3 Proposed FUSE Framework 24

3.1 FUSE Framework Overview . 24

3.2 FUSE Framework Organization . 26

3.2.1 Top-Level FUSE Component (TLFC) 27

3.2.2 Low-Level FUSE Component (LLFC) 30

4 FUSE Implementation and Integration 32

4.1 User-space Implementation of TLFC 33

4.1.1 FUSE API Helper Functions 35

4.1.2 Thread Creation . 36

4.2 Kernel-space Implementation of LLFC 40

4.2.1 LKM Architecture . 41

4.2.2 LKM File Operations . 44

4.2.3 LKM Registration/Initialization Procedure 44

4.3 Hardware Accelerator Interface . 47

5 Evaluation and Experimental Results 50

5.1 Hardware Experimental Setup . 51

5.1.1 Resource Utilization . 52

5.1.2 PetaLinux OS Versions . 53

v

5.2 Example Case Studies . 54

5.2.1 Testing Methodology . 54

5.2.2 Image Compression Application 55

5.2.3 3DES Encryption/Decryption Application 57

5.2.4 Image Filtering Application 59

5.2.5 Discussion of Case Studies Results 60

5.3 FUSE Overhead . 62

5.3.1 LKM loading/unloading overhead 62

5.3.2 Run-time Overhead . 64

6 Conclusion and Future Work 70

6.1 Contributions . 70

6.2 Conclusions . 71

6.3 Future Work . 72

Bibliography 74

vi

List of Tables

4.1 FUSE Helper Functions . 34

4.2 Overview of the key POSIX API functions vs. FUSE API 37

5.1 System Resource Utilization on a Virtex5 FPGA 52

5.2 Utilization on a Virtex5 FPGA for the example HW Accelerator Inter-

faces . 52

vii

List of Figures

2.1 A top-level block diagram of an FPGA architecture 8

2.2 Floor plan of Xilinx’s Virtex 5 FPGA, consisting of configurable logic

blocks, BRAMs, Hard processor Blocks, DSP Blocks, etc. 9

3.1 A high-level view of HW Accelerators as HW tasks 25

3.2 FUSE System Architecture . 27

3.3 FUSE Top-Level Component . 28

3.4 Decision Flow for Top-Level FUSE Component 29

3.5 FUSE Low-Level Component . 31

4.1 Partial source-code of an application using FUSE 33

4.2 Partial code showing the context structure definition 36

4.3 thread create() definition inside <fuse.h> header file. 38

4.4 Partial code showing part of the DCT LKM implementation 42

4.5 The DCT LKM’s entry/exit points functions 45

4.6 The DCT LKM’s Probe() function execution procedure 46

4.7 HW Accelerator Interface . 48

5.1 Experimental System Architecture 51

viii

5.2 Execution Time of the JPEG Encoder application with different imple-

mentations for the DCT task (PetaLinux Ver. 0.4, SW-based timing

measurement) . 56

5.3 Execution Time of the JPEG Encoder application with different imple-

mentations for the DCT task (PetaLinux Ver. 2.1, HW-based timing

measurement) . 56

5.4 Execution Time of 3DES application with different implementations for

the encryption task (PetaLinux Ver. 0.4, SW-based timing measurement) 58

5.5 Execution Time of 3DES application with different implementations for

the encryption task (PetaLinux Ver. 2.1, HW-based timing measurement) 59

5.6 Execution Time of the Image Filter application with different imple-

mentations of the SOBEL task (PetaLinux Ver. 0.4, SW-based timing

measurement) . 60

5.7 Execution Time of the Image Filter application with different imple-

mentations of the SOBEL task (PetaLinux Ver. 2.1, HW-based timing

measurement) . 61

5.8 TLFC mapping policy cases when loading an LKM 63

5.9 Number of clock cycles incurred by the LKMLoaded(), LinkLKM() and

UnlinkLKM() FUSE API helper functions (PetaLinux Ver. 2.1, HW-

based timing measurement) . 63

5.10 Number of clock cycles when using the system calls within the InitCon-

text() (i.e. open(), mmap()) and DestroyContext() (i.e. close(), mun-

map()) FUSE API helper functions (PetaLinux Ver. 2.1, HW-based

timing measurement, CPU operating frequency of 125 MHz) 64

ix

5.11 Average number of clock cycles for system calls for data communication

when used within the RunContext() FUSE API helper function, when

using PetaLinux version 2.1 with HW-based time measurements. . . . 65

5.12 Average number of clock cycles for system calls for data communication

when used within the RunContext() FUSE API helper function, when

using PetaLinux version 2.1 with SW-based time measurements . . . 69

x

Chapter 1

Introduction

In recent years, there has been a rising interest in reconfigurable devices, specifically

in Field Programmable Gate Arrays (FPGAs) [1]. Initially, this rise in interest was

due to the programmability of these devices, which is particularly useful during the

development and prototyping stages of the circuit design process.

Due to their increasing density, FPGAs are able to implement complete Systems-

on-Chip (SoCs), like Application-Specific Integrated Circuits (ASICs), for computing

solutions (e.g. embedded SoCs [2]). Furthermore, FPGA vendors now provide soft

general-purpose processors (soft processors) to facilitate computing solutions that

combine custom hardware (HW) Intellectual Property (IP) cores on the same FPGA

device to create a heterogenous computing system. These custom HW cores are

generally used to accelerate application execution time and thus are commonly called

HW accelerators [3].

As FPGA-based SoCs increase in complexity and heterogeneity, there is an ap-

parent need for improved system software (SW) support for their user applications.

This support must come in the form of a middle layer, which provides transparency to

1

CHAPTER 1. INTRODUCTION 2

hardware and software designers alike. Traditionally, this layer has been filled by the

Operating System (OS), which abstracts the underlying hardware and at the same

time enables portability and platform independence [1] [4]. Normally, adding an OS

would help simplify the SW development process by hiding the low-level details of

HW resources from the SW designer.

However, a traditional OS is challenged by the heterogeneity of computing systems

implemented on FPGAs as they can combine one or more soft processor core(s) with

dedicated HW processing elements (accelerators) that are intended to be used to

achieve a performance speed-up compared to a SW-only solution. There is a need to

extend the system software support provided in the the OS to better abstract HW

accelerators as additional computing resources. This extension must be transparent

to the SW designer, thus enabling efficient use of the HW accelerators.

1.1 Motivation

Initially, FPGA vendors did not support an OS for their soft processors. A rather

simple layer of system SW support was usually provided by the vendor to help setup

an execution environment enabling user applications to run on the FPGA. However,

adding an OS provides a better execution environment that: eases programming,

increase portability, and releases software designers from managing and sharing system

hardware resources (i.e., processors, memories, input/output peripherals). For FPGA-

based SoC computing platforms, this level of abstraction, available in traditional

computing workstations, does not exist. Specifically, for FPGA-based SoC computing

platforms, traditional OS support is readily available but the additional complexities

of abstracting HW accelerators have not been fully incorporated.

CHAPTER 1. INTRODUCTION 3

Additionally, when targeting FPGA-based SoC computing platforms, software and

hardware designers must face the inevitability of dealing with HW/SW co-design.

HW/SW co-design [5] generally implies that an application will have software run-

ning on a CPU in conjunction with specialized hardware accelerators (i.e., hardware

circuits specifically designed to speed up and parallelize the execution of performance

demanding parts of the application). Although HW/SW co-design has been around

for more than a decade [5], it still needs to alleviate some open problems, such as

the increasing level of heterogeneity in FPGA-based SoCs. Traditional HW/SW co-

design techniques normally view hardware accelerators as passive co-processors, thus,

further widening the gap between software and hardware designers. This gap hinders

design-space exploration and severely impairs the potential for design reuse.

As a motivation, we see that adding an OS can leverage the aforementioned gap

between both sets of designers [1]. In its basic form, an OS is a software/hardware

abstraction layer that abstracts a computing platform into a single virtual machine.

Therefore, an OS is becoming increasingly common as it enables programming model

abstractions that simplify programming by abstracting the low-level details of HW

peripherals from the SW designer [4]. For an FPGA-based SoC, adding this layer is

seen as a positive step, but it still lacks proper mechanisms that enable the software

designer to view that computing platform as a general platform with an added benefit

of achieving application performance speedup if possible [1].

The lack of proper mechanisms in current OS solutions impose limits on:

1. Communication between a software application and hardware accelerator(s):

while writing user software & designing hardware accelerator(s), software and

hardware designers have to be aware of specific interfacing details.

CHAPTER 1. INTRODUCTION 4

2. Available programming paradigms: advanced programming concepts such as

multithreading assume unified memory space.

3. Portability of applications across different FPGA-based SoCs: it is burdensome

for software designers to maintain their hardware-agnostic, high-level program-

ming approaches, and it is challenging for hardware designers to design HW

accelerators that can run across different platforms, without any change in the

HDL code.

By extending OS support to include HW accelerators, the low-level HW interac-

tion details can also be masked, facilitating the writing of programs that utilize HW

accelerators efficiently.

1.2 Objective

While there has been extensive research investigating operating system support for

FPGAs in general, and FPGA-based SoC computing platforms in particular, few have

focused on providing an abstraction to leverage their heterogenous aspect; specifically

when the system has one or more hardware accelerators. Our objective is to allow

the user to customize the operating system at runtime to support existing hardware

accelerators as additional computing resources for software designers, allowing the OS

to automatically schedule the application(s) to leverage them.

Given an FPGA-based SoC, we show the feasibility of facilitating SW designers

use of HW accelerators. Our goal is to provide the same type of abstraction to HW

accelerators, that is available to processors. Through a set of policies and mechanisms,

CHAPTER 1. INTRODUCTION 5

the software designer is presented with a run-time framework that leverages the ex-

istence of hardware accelerators. We aim to show that programming models such as

multitasking can be extended to enable software designers to view HW accelerators

as possible HW tasks similar to SW tasks. We also quantify the overhead introduced

by this abstraction and contrast it against the expected performance speed-up.

1.3 Contributions

In this thesis, we demonstrate a F ront-end USE r run-time framework, FUSE, for

abstracting computing architectures from SW designers creating multithreaded appli-

cations. We show that using FUSE is beneficial for systems implemented on FPGAs,

so HW designers can create and update HW accelerators to suit an application/user’s

changing requirements, independent of the SW designer. HW accelerators are virtual-

ized from SW designers as hardware tasks (HW tasks) similar to [6] [7] in the context

of a multithreading application. The contributions of this work are as follows:

1. A modular front-end user framework with a customizable data/control commu-

nication interface to HW accelerators.

2. OS Kernel support for on-demand instantiation of accelerators, similar to a SW

dynamically linked library (DLL).

To demonstrate FUSE, we have designed a simple application programming inter-

face (API) based on the POSIX thread standard and integrated it with the PetaLinux

operating system [8] as a user library for a MicroBlaze CPU. We use a Xilinx Vir-

tex 5 FPGA and three case studies to illustrate the overhead of loading OS support

CHAPTER 1. INTRODUCTION 6

for an accelerator, along with negligible runtime overhead for the FUSE framework,

resulting in performance speedups ranging from 5.8-9x.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides an overview of

related work on OS support for systems with HW accelerators on FPGAs. Chapter 3

introduces the concepts and key ideas behind FUSE while Chapter 4 describes the im-

plementation of FUSE components and its support for HW accelerator virtualization.

Chapter 5 demonstrates the use of the FUSE framework, along with its overhead and

performance speedups for a set of case studies. Finally, Chapter 6 summarizes the

conclusions of the work and possible areas of future work.

Chapter 2

Background and Related Work

This chapter covers several aspects of reconfigurable computing, specifically focus-

ing on FPGA-based, Systems-on-Chip (SoC), embedded computing platforms as an

example. We also give an overview of the available OS support for such computing

platforms as background for the FUSE framework presented in Chapter 3. Section 2.1

gives an overview of FPGAs. Section 2.2 gives and overview of FPGA-based SoCs by

outlining the use of processors in such systems and then give an overview of hardware

acceleration concepts. Finally, Section 2.3 looks at the existing research into operating

system support for such systems and Section 2.4 discusses how our proposed solution

relates to previous research on OS support for HW Accelerator integration.

2.1 Modern FPGAs

Field-programmable gate arrays (FPGAs) are integrated circuit (IC) devices that

consist of an uncommitted array of logic resources, and are reprogrammable in both

logic function and interconnect. Xilinx introduced the the symmetrical island-style

7

CHAPTER 2. BACKGROUND AND RELATED WORK 8

page

Configurable Logic
Block (CLB)

Configurable Logic
Block (CLB)

Configurable Logic
Block (CLB)

Configurable Logic
Block (CLB)

Figure 2.1: A top-level block diagram of an FPGA architecture

FPGA architecture, depicted in Figure 2.1, in the 1980s [9]. It consisted of a regular

array of configurable logic blocks (CLBs), connected by interconnection networks,

which were comprised of wiring channels connected by routing blocks, called switch

matrices. The CLBs are comprised of logic cells containing look-up tables (LUTs)

and registers or flip-flops (FFs). These logic cells allowed for flexible implementation

of logic functions within the FPGA fabric, often distributed across several CLBs.

Since their inception, FPGA devices were commonly used for rapid prototyping

during the ASIC system design life cycle. Many users of ASIC technologies began

adding FPGAs as part of the design life cycle by switching to ASIC prototyping on

FPGAs for lower cost functional verification and reduced design risks [10]. FPGAs

were, and still are, used for reprogrammable implementations that allow the user to

CHAPTER 2. BACKGROUND AND RELATED WORK 9

page

Digital Clock
Managment

PowerPC
CPU

PowerPC
CPU

I/O
Blocks

I/O
Blocks

Configurable Logic Blocks

Figure 2.2: Floor plan of Xilinx’s Virtex 5 FPGA, consisting of configurable logic
blocks, BRAMs, Hard processor Blocks, DSP Blocks, etc.

make quick design changes for faster development time.

As FPGA densities increased, heterogenous components have been added by ven-

dors, facilitating the implementation of complete SoCs on an FPGA similar to ASIC

designs [10]. Users and researchers alike started to view FPGAs as a design platform

for reconfigurable heterogenous SoCs [11] [12]. A typical SoC design uses these com-

ponents as functional building blocks to improve the performance and area efficiency

of the implemented circuits [2]. Most recent FPGA device families (e.g. Xilinx’s Vir-

tex 2 Pro [13], Virtex 5 [14], Virtex 7 [15], and Altera’s Stratix [16] and Cyclone [17])

include such functional blocks and are marketed by vendors as implementation targets

CHAPTER 2. BACKGROUND AND RELATED WORK 10

for complex SoCs.

For example, Figure 2.2 shows the floor plan of a Xilinx Virtex 5 FPGA and

highlights the dedicated function blocks included within the reconfigurable fabric.

Examples of these blocks include:

• Multipliers/DSP Blocks: To speed certain arithmetic functions often found

in signal processing applications such as multiply-and-accumulate (MAC).

• Input/Output Blocks: The external pins of FPGAs are mapped to regularly

distributed I/O Blocks (IOBs), which support a wide set of IO interface stan-

dards. Modern FPGA families also include specialized high-speed interfaces

for serial communication protocols allowing the creation of multi-FPGA SoC

platforms.

• Memory: Platform FPGAs now feature dedicated memory blocks called Block

RAMs (BRAMs), which provide a higher density and better performance than

LUT-based memory. Distributed within the FPGA chip area, these BRAMs can

be used to implement read-only memories (ROMs), random-access memories

(RAMs), and also storage elements such as First-In First-Out (FIFO) buffers

and content-addressable memories (CAMs).

• Processor Intellectual Property (IP): They come in two forms, soft pro-

cessors and hard processors. Soft processors are designed using HW description

languages (e.g. VHDL) and can be synthesized onto a FPGA. Hard proces-

sors are part of the underlying FPGA fabric. Processors for FPGA-based SoC

platforms are discussed in detail in Section 2.2.

CHAPTER 2. BACKGROUND AND RELATED WORK 11

In combination with integrated processor IPs and optional external memory (e.g.

DDR SDRAM), the FPGA can implement an entire embedded computing system.

FPGA-based Systems-on-Chip (SoCs) are now seen as a viable solution for building

computing platforms for which hardware abstraction from SW designers (i.e. op-

erating system support) becomes an important consideration [18] [19] [20]. These

FPGA-based SoCs are the target implementation of the proposed framework in this

thesis (see Chapter 5 for an example target platform).

2.2 FPGA-based SoCs

A major advancement for FPGAs was the ability to include dedicated processors

along with specialized custom HW. The combination of these two parts are key to

FPGA-based SoC designs. This section deals with FPGA-based SoCs that have soft

processor IPs along with custom HW blocks, called HW accelerators. In section 2.2.1

we give discuss the state of the art of processor IPs and soft processors, in particular.

Section 2.2.2, gives and overview of using HW acceleration with soft processors to

maximize the design performance.

2.2.1 Soft Processors State of the Art

Although hard processors are available on some FPGA families (e.g. PowerPC is only

available on certain devices of Xilinx’s Virtex 2 Pro [13], Virtex 4, and Virtex 5 [14]

families but not on Virtex 6 and Virtex 7 families [15]), it is now possible to define,

build and customize a soft processor using any FPGA’s available logic primitives [21].

While conventional processors were designed to be built using custom silicon or

CHAPTER 2. BACKGROUND AND RELATED WORK 12

ASIC fabrication technologies, soft processors were being built and optimized specifi-

cally for efficient implementation on FPGA fabrics. The PicoBlaze [22], for example,

is designed for implementing simple state machines, programmed in assembly lan-

guage on Xilinx FPGAs, while Altera’s Inc. The NIOS II family of 16-bit and 32-bit

soft processors [23] and Xilinx’s MicroBlaze 32-bit soft processor [24] are designed as

general-purpose processors, specifically optimized for their perspective vendor’s FP-

GAs. Furthermore, both NIOS and MicroBlaze are RISC architectures designed to

be used with general-purpose compiler tools and programmed in high-level languages

such as C. Both of these processors are also able to run an embedded version of an

operating system, such as embedded Linux [8].

2.2.2 Using HW Accelerators with Soft Processors

FPGA-based SoC computing usually combines one or more processor IP cores along

with custom HW function cores, commonly called HW accelerators. While current

soft processors can reach a maximum frequency of ∼125 MHz [24] and are good at

running general-purpose applications, many applications contain portions that are

computationally and data intensive. Classic examples of such tasks are vector com-

putations, floating point calculations, graphics, and multimedia processing [25]. To

achieve better performance, these parts of the application needs to be accelerated by

running directly on HW.

To accelerate code running on a soft processor using custom HW accelerators,

the accelerator cores have to compute the equivalent of several processor instructions

in a single clock cycle [26]. As a result, it becomes more attractive to accelerate

larger functions or procedures in an application rather than single instructions, so

CHAPTER 2. BACKGROUND AND RELATED WORK 13

that the communication overhead between the processor and the HW accelerator is

minimized [26]. Function acceleration is typically implemented over general-purpose

buses, shared memories, coprocessor interfaces, or special point-to-point connections

such as Xilinx’s fast simplex links (FSLs) [9]. In this thesis, we demonstrate our

work with a set of case studies that use HW accelerators implemented over a general-

purpose bus interconnect (See Chapter 5 for more details).

2.3 Operating Systems for FPGA-based SoCs

While this section discusses operating system support for SoCs in general and FPGA-

based SoCs in particular, it is important, at this point, to distinguish between tra-

ditional SoCs and reconfigurable SoCs. Generally, FPGAs are used as platforms for

designing SoCs. The term reconfigurable is used to denote the ability of the FPGA

to be reconfigured at run-time through a technique called run-time reconfiguration

(RTR) [27]. When part of the FPGA is reconfigured while the other part remains

static, the term dynamic partial reconfiguration (DPR) [28] is used. DPR or RTR is

usually used to increase the lifecycle of the design by allowing live updates and the

reduction of the design’s footprint [27]. If a FPGA-based SoC uses DPR or RTR then

it is aptly called a reconfigurable SoC.

FPGAs can also be used as a platform for designing static SoCs, where DPR is not

needed or used. Regardless of DPR support, all FPGA-based SoCs (i.e. dynamically

reconfigurable or static) will have a level of heterogeneity that require abstraction

from the SW designers, so they do not have to deal with the underlying details of

hardware resources. While the work in this thesis deals with static FPGA-based SoCs,

its conclusions can be extrapolated to reconfigurable SoCs where DPR is supported.

CHAPTER 2. BACKGROUND AND RELATED WORK 14

The rest of this section will outline the OS support for FPGA-based systems

without focusing on whether or not DPR is supported. First, we provide background

on the traditional role of the OS, and then discuss how this role is adapted to support

the heterogeneity of FPGA-based SoCs.

2.3.1 Traditional Role of the OS

Hansen [29] described an operating system as a set of manual and automatic pro-

cedures that enable a group of applications to share computer resources efficiently.

Therefore, the function of an operating system can be viewed in two ways [4]:

1. As a resource manager.

2. As an implementor of virtual computers

Acting as the resource manager, the OS enables resource sharing between running

applications. Applications will share for the use of physical resources such as processor

time, storage space, and peripheral devices. It also means that applications can

cooperate by exchanging data. Resource sharing is an economic necessity [29], and the

role of an operating system is to make the sharing transparent from user applications.

To achieve resource sharing, the OS virtualizes the underlying resources. There-

fore, in its basic form, the OS is merely a layer of software that abstracts a computing

system as a unified platform [30]. Operating system calls represent the standard set

of operations implemented as libraries for each specific platform. SW designers uti-

lize the operating systems set of virtual operations, with the knowledge that these

same operations will be available on all platforms in order to ease the burden on the

software designer when migrating the software application in the future.

CHAPTER 2. BACKGROUND AND RELATED WORK 15

2.3.2 OS support for FPGA-based SoCs

In order to manage heterogenous HW resources on FPGA-based SoCs, Burns et al. [31]

recognized the need for an OS. Burns et al. [31] concluded that it is more efficient

to develop a separate run-time system for HW resources that addresses the common

requirements of several applications rather than adding run-time support in every

application manually.

Additionally, Nollet et al. [32] proposed that one has to provide a management

infrastructure in the form of an operating system. This OS must be capable of pro-

viding a similar set of services for the heterogenous tasks, as a traditional OS does for

software applications in a multi-processor environment. Wigley and Kearney [33] [34]

later expanded on the aforementioned previous works [31] [32] and proposed the fol-

lowing axioms for operating systems targetting reconfigurable SoCs in general:

1. the primary focus should be reducing complexity as seen by the user

2. the operating system must form a contract between the systems software and

the applications designer.

These axioms are a natural extension of the traditional operating system’s role in

the reconfigurable SoC domain, essentially advocating a logic resources management

interface at the application level (i.e. API).

With potentially many peripheral interfaces and associated heterogeneous HW

cores, the increased complexity of FPGA-based SoCs has to be managed by an ade-

quate Operating System (OS). One solution is to use a relatively simple Real Time OS

(RTOS). An RTOS is sufficient to support a simple computing systems that does not

require peripheral I/O or dedicated controllers. Although RTOSs are sometimes able

CHAPTER 2. BACKGROUND AND RELATED WORK 16

to manage multitasking [35], these library or microkernel-based operating systems of-

ten do not provide memory protection, virtual memory, or process management (e.g.

LibXil [36]). Therefore, the heterogeneous nature of FPGA-based SoCs can only be

met by a full-featured OS rather than an RTOS, which provides, in addition to process

and virtual memory management, a device abstraction layer, advanced I/O services,

and hierarchical file systems.

Early research on operating systems for reconfigurable SoCs has assumed or im-

plied a master/slave hardware architecture, whereby a conventional microprocessor

based system (often a desktop PC) is interfaced to one or more FPGAs that provided

the computationally intensive resources. This has led to a focus on certain require-

ments such as logic area partitioning [33], management and communication [32] [34]),

and dynamic module placement [31] [37]. The master CPU systems execute what-

ever mainstream operating system is conveniently available, typically Linux or a Unix

variant. This split architecture, however, can create a performance bottleneck on the

system bus or interconnect, and limit the cohesion possible between the conventional

and reconfigurable components of the system.

The advent of processor IP cores for FPGA lead to an increased trend toward the

use of operating systems that run on those processors [38] [39]. The main proces-

sor, or processors, on the FPGA-based SoC can now host a fully featured OS (e.g.

PetaLinux [8]). Consequently, Williams and Bergmann [40] expanded on Wigley and

Kearney’s axioms [33] [34] by outlining the key requirements of what a FPGA-based

SoC OS should support:

1. Sequential (processor-based) execution, with a familiar programming paradigm

as a starting point for application development. It is unreasonable to expect

CHAPTER 2. BACKGROUND AND RELATED WORK 17

that all users will have hardware design capabilities, and therefore, a graceful

transition of application code from conventional computing platforms must be

offered;

2. Interoperability with existing general purpose computing infrastructure, includ-

ing networking, file storage and other I/O device interfacing;

3. Scaleable architectures, supporting single-chip, multi-chip and multi-board com-

puting systems within the same operating system architecture.

4. A logic management interface that abstracts operations, such as dynamic partial

reconfiguration (DPR), in support of the hardware process model;

5. A process model that seamlessly supports hardware accelerators and software

within the same architecture, including support for standard interprocess com-

munication methodologies across homogenous and heterogeneous application

implementations; and

6. Integration of hardware components developed in a variety of tool flows, such

as VHDL and Verilog flow.

Requirements 1, 2 and 3 are already supported by most available operating sys-

tems. Requirement 4 has frequently been addressed by previous reconfigurable op-

erating systems research [41] [42]. Williams and Bergmann [41] have demonstrated

a partial dynamic self-reconfiguring linux system. Specifically, they introduced OS

support for the internal configuration access port (ICAP) to communicate with the

partially reconfigurable area of the FPGA. Santambrogio et al. [42] expanded on

CHAPTER 2. BACKGROUND AND RELATED WORK 18

Williams and Bergmann’s work by integrating the OS support for DPR on a multi-

FPGA clustered architecture (MFCA).

Of these six requirements, the work presented in this thesis focuses on 5 and 6

since they were acknowledged by Williams et al. [40] as being an open area of research,

specially by current embedded OS offerings such as embedded linux [8].

2.4 Previous Work on Accelerator/OS Integration

During the last decade, operating systems for FPGA-based SoCs have been inves-

tigated from a number of different angles. Early work on concepts and functions

for such operating systems was quickly followed by efforts toward integrating custom

hardware circuits as tasks in the mainstream operating system to reflect the heteroge-

nous nature of the design. For an operating system to provide efficient abstraction of

communication between user SW and HW accelerators, it requires mechanisms that

allow user applications to access the low-level HW in a transparent and safe man-

ner [43]. The remainder of this section discusses the related work and contrasts our

contributions within this context.

Researchers have used several methods of encapsulating HW resources in order

to provide abstraction for reconfigurable computing. For example, in the BORPH

project [44], So et al. modified and extended a Linux kernel with a hardware inter-

face, providing conventional UNIX inter-process communication (IPC) mechanisms

to the hardware using a message passing network. BORPH abstracted HW units as

UNIX OS processes that have access to OS services and communicate using First-

in-First-out (FIFO) buffers. Similarly, Kociuszkiewicz et al. [45] built on top of an

existing Linux OS kernel and viewed HW tasks as drop-in replacements for SW tasks

CHAPTER 2. BACKGROUND AND RELATED WORK 19

by mapping them to synthesized coarse-grained PicoBlaze processor cores, which also

communicate via FIFOs. Xie et al. [46] introduced a heterogenous multiprocessor

system consisting of soft processor cores synthesized to an FPGA and running Linux,

similar to Kociuszkiewicz et al.. The OS integration was limited to FIFO commu-

nications as well. Xie et al.’s work was a continuation of Williams and Bergmann’s

work [47] [48], presenting software wrappers to encapsulate access to hardware mod-

ules in the form of a so-called “ghost processes”, which provided a transparent inter-

face for integration from the OS kernel and other processes. The authors considered

sharing the same address space between hardware and software execution units as

unsuitable since their work was based on processes as units of execution instead of

threads or tasks. For communication between SW and HW, Williams and Bergmann

used FIFOs mapped to the Linux file system as well as memory that is accessible from

both software processes and a hardware process.

Another interesting effort trying to achieve portability and scalability when encap-

sulating custom HW is Vforce [49]. The authors provide a high-level object-oriented

framework based on the VSIPL++ standard, which is a vector and image process-

ing library API. Vforce extended the C++ version of the VSIPL++ API to make

reconfigurable hardware implementations available by encapsulating them beneath a

standard API so that the application itself needs no hardware-specific implementa-

tion code. While their approach does not utilize an operating system layer to leverage

this abstraction, they do provide the desired level of separation between SW and HW

designers.

Some researchers focused on extending the thread programming model to abstract

HW accelerators from user applications. Typically, this extension requires support for

CHAPTER 2. BACKGROUND AND RELATED WORK 20

synchronized communication between HW and SW tasks. The ReconOS project [6],

for example, introduced an execution environment that extends the POSIX multi-

threaded programming model from the SW domain to reconfigurable hardware. Also,

the “HybridThreads” project [50] focused on implementing the synchronization prim-

itives provided by the POSIX multithreaded programming model (e.g. semaphores,

mutexes, etc.) as dedicated HW cores. “HybridThreads” also presented a tool for

generating sequential HW threads directly from SW code. Finally, Compton et al. [51]

introduced a configurable HW interface for HW tasks. The interface uses memory-

mapped I/O to communicate with its accelerator, with each SW application having

access to only its own set of accelerators.

Additionally, extensive research has been conducted on effective scheduling algo-

rithms for managing HW tasks on computing resources [42] [52] [53] [54]. In particular,

the MOLEN/SESAME project [53] [54] uses profiling information to decide whether

to schedule tasks to run in SW or HW. More complex scheduling policies of reconfig-

urable hardware tasks are introduced by Compton et al. [52] including task preemption

and the concept of saving the restoring the HW task’s context. While these works

simulate runtime reconfiguration of HW tasks, Santambrogio et al. [42] introduced

a run-time environment that is able to dynamically place and/or remove HW tasks

on demand. They use online partialbitstream manipulation for proper placement of

tasks on a multi-FPGA system.

As previously mentioned, adding OS support to virtualize HW resources in FPGA-

based SoC is challenging because they have greater heterogeneity and their resources

can be dynamically reconfigured at run-time. SW designers targeting these computing

platforms wish to leverage their unique HW accelerators without requiring knowledge

CHAPTER 2. BACKGROUND AND RELATED WORK 21

of low-level architectural details. This requires OS support for SoCs with either

static HW accelerators or using dynamic partial reconfiguration (DPR). Based on

this premise, the FUSE framework presented in this thesis gives a unified view of

available processing resources as well as communication between processor(s) and

HW accelerators. Unlike BORPH [44] and Kociuszkiewicz et al. [45], FUSE does not

fix the type of physical link used for communication. Furthermore, FUSE virtualizes

HW accelerators as tasks, instead of processes like BORPH [44] and Xie et al.’s [46]

work.

The three closest works to the work presented in this thesis are the ReconOS [6]

project, the work by Compton et al. [51] [52], and Vforce [49]. We use a shared memory

model as recommended in [6] to reduce data communication overhead between SW

and HW tasks. As outlined in [6], data transfers between SW and HW threads are

complicated by the fact that the OS usually employs virtual memory; shared memory

buffers set aside by an application to transfer data to or from HW threads are not

necessarily contiguous. However, we do not assume virtual memory is available. In

FUSE, we allocate a contiguous buffer in kernel memory, map it to user space, and

provide HW tasks with its physical address.

Unlike ReconOS [6], which uses a statically loaded abstraction layer, our FUSE

framework allows users to dynamically load the OS abstraction for HW tasks at run-

time. Furthermore, whereas ReconOS requires user-space SW delegate threads for

each HW thread, we do not. Alternatively, the task is either allowed to run in SW or

migrated fully to HW, to be able to run from start to finish. Finally, unlike ReconOS,

we do not require each HW thread to adhere to a strict HW interface or a fixed

signalling protocol for OS calls from HW to SW. Instead, each HW accelerator can

CHAPTER 2. BACKGROUND AND RELATED WORK 22

have customized interfaces, encapsulating communication protocols in their low-level

OS support.

In comparison to Compton et al.’s [51] work, where the OS support is registered

at OS boot-time, our FUSE framework treats each HW accelerator and its OS sup-

port as a general system resource that can be included/updated at runtime and is

available to all applications. HW accelerators are viewed as memory-mapped I/O de-

vices; the OS can load their abstraction on-demand without rebuilding and rebooting

the OS. Additionally, while the work in [51] has been implemented within a simula-

tion environment, our work has been prototyped on a FPGA platform to verify its

feasibility.

Vforce’s [49] approach, on the other hand, is quite similar to our proposed frame-

work from two perspectives. Firstly, one layer in their framework interacts with the

low-level API calls rather than the final users code, insulating the application from

hardware changes. Our FUSE framework uses a low-level device driver to access the

HW accelerator; the OS system calls used to communicate with this device driver are

hidden from the SW designer through the FUSE API. Secondly, Vforce allows HW

designers, to create specialized hardware library components that can be interfaced

with their framework. We view this approach as complementary to ours as a library

of HW accelerators can be created pertaining to a specific application and its FUSE

OS support is integrated.

The additional OS support provided by FUSE allows existing SW synchronization

mechanisms in the OS to support HW/SW task synchronization in comparison to

“HybridThreads” [50]. FUSE also incorporates the idea of tasks as units of execution

across the HW boundary but, unlike [50] and [6], is not integrated with a specific

CHAPTER 2. BACKGROUND AND RELATED WORK 23

programming model (e.g. Pthreads). Instead, we adopt a more generalized OS ap-

proach to reduce the SW changes required to port a user application to use existing

and newly added HW accelerators. Finally, the “HybridThreads” project’s ability to

generate sequential HW tasks from SW code is complementary to our work. Both

this work and ours aim to insulate the SW designer from the expertise of HW design

be it via automated tools or an independent HW designer.

Finally, as mentioned earlier, several recent projects looked into effective schedul-

ing algorithms for managing reconfigurable computing resources, where HW acceler-

ators are dynamically instantiated on the FPGA [42] [52] [53] [54]. We view the work

presented in this thesis as complementary to these projects. Instead, the objective of

the work presented in this thesis is to provide a framework for OS abstraction of the

underlying architectural configuration to run hardware tasks, as opposed to a new

scheduling algorithm.

Chapter 3

Proposed FUSE Framework

This chapter outlines our proposed Front-end USEr (FUSE) framework. FUSE’s main

goal is to provide abstraction for HW accelerators from SW designers. FUSE com-

prises multiple components to achieve such abstraction. In this chapter, we detail the

concepts behind the framework’s components. We then describe the implementation

of FUSE in Chapter 4.

3.1 FUSE Framework Overview

Operating systems typically support concurrency using multithreading programming

models. In addition, recent concurrency programming models recommend that the

SW designer decompose an application into multiple units of execution called tasks,

which are defined as an indivisible sequence of operations that can be executed in-

dependent of other code. Therefore, a SW task implies a task that is designed to

be executed in SW on a processor. On the other hand, a hardware accelerator is

commonly used to replace a commonly executed function. Hence, we use the term

24

CHAPTER 3. PROPOSED FUSE FRAMEWORK 25

Operating System (OS) Layer

SW
Task

SW
Task

SW
Task

SW
Task

Application Process

SW
Task

SW
Task

Application Process

HW
Task

SW
Task

HW Abstraction
and

Virtualization

Figure 3.1: A high-level view of HW Accelerators as HW tasks

HW Task to refer to an execution flow implemented using a hardware accelerator.

The key concept behind FUSE is its use of multithreading programming models

to provide SW designers with access to HW accelerators, enabling them to be viewed

as additional computing resources to the CPU. Our FUSE framework abstracts HW

accelerators along with their OS support as HW tasks, sharing the resources available

to SW tasks, as illustrated in Figure 3.1. FUSE’s new higher-level of abstraction also

allows SW designers to create their applications with no knowledge of the platform’s

CHAPTER 3. PROPOSED FUSE FRAMEWORK 26

HW accelerators (i.e. architecture and availability). This allows SW designers to pro-

gram using familiar multithreading programming model’s API function calls and also

allows FUSE to be integrated into systems even when there are no HW accelerators

available. This enables fast prototyping and better testing of co-designed applications.

3.2 FUSE Framework Organization

FUSE is comprised of two main components:

1. The Top-Level FUSE Component (TLFC): provides an application program-

ming interface (API), which includes function calls to create and destroy SW/HW

tasks. They act as wrappers for the chosen multithreading model’s “create” and

“destroy” functions to augment their abilities to support HW tasks when the

FPGA-based SoC contains HW accelerators.

2. The Low-Level FUSE Component (LLFC): provides the low-level OS support

that abstracts communication between the hardware accelerator and the TLFC.

Figure 3.2 shows FUSE’s two main components. They span the OS’s user and kernel

layers so as to isolate changes to user and kernel SW from each other, and facili-

tate portability. Sections 3.2.1 and 3.2.2 discuss in detail the concepts behind these

components.

CHAPTER 3. PROPOSED FUSE FRAMEWORK 27

Top-Level FUSE Component (TLFC)

SW Application

S
W

H
W

Low-Level FUSE Component (LLFC)

HWTask LKM

HW Accelerator Interface

run_context() destroy_context()
Helper Functions

OS Kernel Space

OS User Space

link_LKM() unlink_LKM()

 . . .

init_context()create_context()

thread_create()

HWTask LKM

HW Accelerator Interface
HW Accelerator LogicHW Accelerator Logic

SW Task SW Task

AcceleratorQuery() AcceleratorIdle()

Figure 3.2: FUSE System Architecture

3.2.1 Top-Level FUSE Component (TLFC)

The Top-Level FUSE Component (TLFC) provides middleware between the SW de-

signers and platform HW designers. SW designers are able to port existing FUSE-

enabled multithreaded applications to any platform, whether or not it provides HW

acceleration. HW designers determine which SW task(s) provide the best perfor-

mance gains if they can be executed using HW accelerators. The TLFC is provided

as a user-space SW library that SW designers include in their applications to act as

a wrapper for their existing multithreading model’s library. In particular, the TLFC

user-space library includes equivalent wrapper functions for creating and destroying

HW tasks in addition to SW tasks on FUSE-enabled platforms. This provides a clean

CHAPTER 3. PROPOSED FUSE FRAMEWORK 28

Top-Level FUSE Component (TLFC)

run_context() destroy_context()
Helper Functions

OS User Space

link_LKM() unlink_LKM()

init_context()create_context()

thread_create()

AcceleratorQuery() AcceleratorIdle()

Figure 3.3: FUSE Top-Level Component

and simple way to utilize existing HW accelerators. Additionally, FUSE does not in-

troduce incompatible changes to the underlying OS layer: the programming concept

of a task as a unit of execution remains unchanged whether it is scheduled to run as

a SW task or a HW task.

The TLFC contains “helper functions” as shown in Figure 3.3. They are used to

communicate. These helper functions are used to communicate with the Low-Level

FUSE Component (see Section 3.2.2). FUSE’s helper functions utilize the concept

of a context to store a dynamic snapshot of the current state of a running task for

use within the API wrapper functions; they are not exposed to the end user. They

create, initialize, run and destroy contexts; they also dynamically load/unload the

necessary low-level OS support for a HW accelerator to the OS kernel. The low-level

OS support for a HW accelerator is called a Loadable Kernel Module (LKM), for

which we provide an overview in Section 3.2.2 and discuss in detail in Chapter 4.

The semantics of creating and destroying tasks of execution within an application

remain the same as FUSE preserves the original program flow, independent of HW

acceleration. Minimal code porting is required by the SW designer in order to use

CHAPTER 3. PROPOSED FUSE FRAMEWORK 29

HA Match ?create_context ()

pthread_create (SW)

NoYes

LKM Loaded ?

NoYes

HA In Use ?

Load LKM

No

Yes

init_context ()

pthread_exit ()

destroy_context () run_context ()

pthread_create (HW)

SW/HW Mapping Policy

LKM = Loadable Kernel Module
HA = HW Accelerator

thread_create()

Figure 3.4: Decision Flow for Top-Level FUSE Component

FUSE. We discuss the implementation details of these function calls and outline what

changes SW designers are required to perform in Chapter 4.

In a FUSE-enabled application running on platform that contains HW accelera-

tors, FUSE must provide a policy to determine if a task is run in SW, as a SW task,

or on a HW accelerator as a HW task. Figure 3.4 illustrates an example of a policy

that can be used. However, designers can easily replace the simple mapping policy

shown here (see the dashed box in Figure 3.4) with any of the existing algorithms

for mapping tasks to SW or HW (e.g. [52] [53]). Each time a call to create a task

is made, the TLFC decision flow is evaluated to enable adaptation to the current

state of all existing accelerators while the system remains live. Nevertheless, the SW

designer’s perspective of the created tasks remains unchanged: all tasks are created

and executed upon request. If a task is not mapped to a HW accelerator, then FUSE

reverts to creating a normal SW task.

CHAPTER 3. PROPOSED FUSE FRAMEWORK 30

From Figure 3.4, FUSE first checks if a matching HW accelerator exists for the

SW task (HA Match?). If no match exists, then FUSE creates a SW task using the

original multithreading model’s “create” function (e.g. pthread create()). However,

if an accelerator exists, then a check is made to see if its corresponding OS support

(i.e. the LKM) is already loaded. If it is not loaded, then the accelerator is idle and

FUSE proceeds to load OS support and run the task in HW. However, if OS support

is loaded, then FUSE checks to see if the accelerator is in use by another task. If

not, a HW task is created. The case where matching HW accelerator(s) exist, but are

in use by other tasks, is also handled; FUSE creates a SW task instead. While our

proof of concept of FUSE does not require support for dynamic partial reconfiguration

(DPR) of HW accelerators, this mapping policy (See dashed box in Figure 3.4) can

be altered to check and see if an additional HW accelerator’s logic can be instantiated

dynamically using DPR. All the necessary OS support for reconfigurable computing

systems using DPR (e.g. [42]) currently exists in FUSE.

3.2.2 Low-Level FUSE Component (LLFC)

The second part of the framework, the Low-Level FUSE Component (LLFC), consists

of the low-level support added to the OS kernel (see Figure 3.5). It exposes HW

accelerators on the FPGA’s fabric to the TLFC using runtime loadable device drivers

(i.e. Loadable Kernel Modules, LKMs) [55]. The drivers implement the low-level

communication mechanisms that enable the TLFC to load, initialize, and perform

data or control I/O transactions with HW accelerators.

As mentioned earlier in Section 3.2.1, each HW accelerator attaches to the system

via a HW interface (discussed in chapter 4) that is accessible by its own LKM (see

CHAPTER 3. PROPOSED FUSE FRAMEWORK 31

S
W

H
W

Low-Level FUSE Component (LLFC)

HWTask LKM

HW Accelerator Interface

OS Kernel Space

 . . . HWTask LKM

HW Accelerator Interface
HW Accelerator LogicHW Accelerator Logic

Figure 3.5: FUSE Low-Level Component

Figure 3.5). The LKM provides a low-level SW abstraction of the HW accelerator

interface, thus providing the communication link between the HW/SW boundary in

the system. Given the modular layered structure of the FUSE framework, changes

made during the design process to one LKM will not affect other modules in the

system. This modular approach also applies to the HW design: changes to a HW

accelerator need only conform with its corresponding HW accelerator interface. If

necessary, its LKM source code can be modified in order to expose the new function-

ality. However, FUSE’s ability to dynamically load/unload new LKMs will provide

faster, possibly live, integration of new/updated HW accelerators and their LKMs

into existing applications as the TLFC and application SW remain unchanged.

Chapter 4

FUSE Implementation and

Integration

In this chapter, we describe how we implemented the FUSE framework. We also out-

line our design choices and how they affect the overall design outcome. To demonstrate

our FUSE concept, we use an embedded Linux OS [8] as our run-time environment

and POSIX threads (Pthreads) [56] [57], a widely used multithreading programming

model, as the multithreading model of choice. Using a SoC with three example HW

accelerators (See Chapter 5), this chapter provides a top-down discussion of the inte-

gration of FUSE API in user SW (Section 4.1) and how it abstracts the underlying

architecture (Sections 4.2 and 4.3).

32

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 33

	
 	
 	
 	
 	
 1 /*	
 Partial	
 example	
 of	
 a	
 Multi-­‐threaded	
 JPEG	
 Encoder	
 program	
 template	
 */
	
 	
 	
 	
 	
 2
	
 	
 	
 	
 	
 3 #include	
 <stdio.h>
	
 	
 	
 	
 	
 4 #include	
 <FUSE.H>	
 //	
 Replacing	
 <pthread.h>
	
 	
 	
 	
 	
 5
	
 	
 	
 	
 	
 6 void*	
 rbg2yuv_thread_function(void	
 *arg);	
 //color	
 conversion	
 thread	
 in	
 SW
	
 	
 	
 	
 	
 7 void*	
 dct_thread_function(void	
 *arg);	
 //Discrete-­‐Cosine	
 Transform	
 in	
 SW
	
 	
 	
 	
 	
 8
	
 	
 	
 	
 	
 9
	
 	
 	
 	
 10 thread_param	
 param[data_size];	
 //global	
 (shared	
 between	
 threads)
	
 	
 	
 	
 11
	
 	
 	
 	
 12 int	
 main(
)	

	
 	
 	
 	
 13 {
	
 	
 	
 	
 14
	
 	
 	
 	
 15 pthread_t	
 sw_thread_1;
	
 	
 	
 	
 16 pthread_t	
 sw_thread_2;
	
 	
 	
 	
 17
	
 	
 	
 	
 18 pthread_attr_t	
 thread1_attr;
	
 	
 	
 	
 19 pthread_attr_t	
 thread2_attr;
	
 	
 	
 	
 20 	
 	

	
 	
 	
 	
 21 int	
 sw_ret_1,	
 sw_ret_2;
	
 	
 	
 	
 22
	
 	
 	
 	
 23 void*	
 sw_thread_result_1;
	
 	
 	
 	
 24 void*	
 sw_thread_result_2;
	
 	
 	
 	
 25
	
 	
 	
 	
 26
	
 	
 	
 	
 27
	
 	
 	
 	
 28 //two	
 threads	
 are	
 created	
 joinable.
	
 	
 	
 	
 29
	
 	
 	
 	
 30 //sw_ret_1	
 =	
 pthread_create(&sw_thread_1,	
 NULL,	
 rgb2yuv_thread_function,	
 ¶m);
	
 	
 	
 	
 31 //sw_ret_2	
 =	
 pthread_create(&sw_thread_2,	
 NULL,	
 dct_thread_function,	
 ¶m);
	
 	
 	
 	
 32
	
 	
 	
 	
 33 sw_ret_1	
 =	
 thread_create(&sw_thread_1,	
 NULL,	
 rgb2yuv_thread_function,	
 ¶m);
	
 	
 	
 	
 34 sw_ret_2	
 =	
 thread_create(&sw_thread_2,	
 NULL,	
 dct_thread_function,	
 ¶m);
	
 	
 	
 	
 35
	
 	
 	
 	
 36
	
 	
 	
 	
 37
	
 	
 	
 	
 38 sw_ret_1	
 =	
 pthread_join(sw_thread_1,	
 &sw_thread_result_1);
	
 	
 	
 	
 39 sw_ret_2	
 =	
 pthread_join(sw_thread_2,	
 &sw_thread_result_2);
	
 	
 	
 	
 40
	
 	
 	
 	
 41
	
 	
 	
 	
 42 }
	
 	
 	
 	
 43
	
 	
 	
 	
 44 void*	
 rgb2yuv_thread_function(void*	
 arg)	
 {	

	
 	
 	
 	
 45 	
 	
 	
 	
 /*	
 initial	
 function	
 code	
 by	
 the	
 SW	
 designer	
 before	
 using	
 FUSE	
 (Left	
 unchanged)
	
 	
 	
 	
 46 	
 	
 	
 	

	
 	
 	
 	
 47 	
 	
 	
 	

	
 	
 	
 	
 48 	
 	
 	
 	

	
 	
 	
 	
 49 }
	
 	
 	
 	
 50
	
 	
 	
 	
 51 void*	
 dct_thread_function(void*	
 arg)	
 {	

	
 	
 	
 	
 52 	
 	
 	
 	
 /*	
 initial	
 function	
 code	
 by	
 the	
 SW	
 designer	
 before	
 using	
 FUSE	
 (Left	
 unchanged)
	
 	
 	
 	
 53 	
 	
 	
 	

	
 	
 	
 	
 54 	
 	
 	
 	

	
 	
 	
 	
 55 }

Figure 4.1: Partial source-code of an application using FUSE

4.1 User-space Implementation of TLFC

The top-level FUSE component (TLFC) contains the FUSE API header library. This

library is used by the SW designer when writing multithreaded applications. For

example, Figure 4.1 provides an code template for an example multithreaded SW

application written with the FUSE header library support included. This template

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 34

code includes the FUSE header library <fuse.h> (Line 4) and creates two threads

of execution using FUSE’s thread create() (Lines 33 and 34), which acts as a wrap-

per for the original pthread create() (Lines 30 and 31). The four parameters for

pthread create() are: the thread identifier (e.g. sw thread 1), the thread attributes

object (e.g. thread1 attr or NULL is used to use default thread attributes), the thread

function name (e.g. dct thread function), and a single argument for the specified

thread function (e.g. the ¶m data structure). The thread create() function uti-

lizes a set of internal helper functions that incorporate additional policies to enable

transparent migration of tasks to HW accelerator(s). The rest of this section will

describe those helper functions (Section 4.1.1), before discussing the thread creation

procedure in detail (Section 4.1.2).

Table 4.1: FUSE Helper Functions

Name Prototype OS SysCalls Used
CreateContext() void CreateContext(cs t* cs); -
InitContext() void InitContext(cs t* cs); open()

mmap()
RunContext() void RunContext(cs t* cs); IOCTL()

*ptr = value
value = *ptr

DestroyContext() void DestroyContext(cs t* cs); munmap()
close()

AcceleratorQuery() char* AcceleratorQuery(void* fname); popen()
fgets()
fclose()

AcceleratorIDLE() bool AcceleratorIdle(char* hw task); IOCTL()
LinkLKM() int LinkLKM(char* hw task); modprobe()
UnlinkLKM() int UnlinkLKM(char* hw task); rmmod()
LKMLoaded() bool LKMLoaded(char* hw task); lsmod()

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 35

4.1.1 FUSE API Helper Functions

FUSE uses a set of helper functions to manage thread creation in SW or HW. Table 4.1

lists all the helper functions implemented within the FUSE library. Hidden from the

user, these helper functions are organized into three categories according to their

purpose; context handling functions, accelerator search functions, and LKM handling

functions. They are described below:

Context Structure Functions

This category includes create context(), init context(), run context(), and destroy context().

These functions operate on a storage object, defined inside the FUSE library, called a

context structure (e.g. cs t). Figure 4.2 shows the definition of the context structure

within the FUSE library. This object stores the HW accelerator name (Line 2), the

LKM name (Line 3), and the file descriptor (Line 6). It also includes two boolean

flags used to indicate if the LKM is loaded (Line 4) and whether or not the accelerator

is in use (i.e. IDLE or BUSY/RUNNING) (Line 5). Additionally, the structure keeps

an internal buffer for data communications with the HW accelerator (Lines 8 and 9)

and also the number of accelerators being used (Line 7).

Accelerator Query/Status Functions

This set of functions is used to match a SW function name with an available accelera-

tor and its LKM. In particular, FUSE uses the AcceleratorQuery() function to match

a SW task name to a HW Accelerator using the accelerator look-up table stored in

the OS. AcceleratorIdle() is used two ways; first to check whether or not an avail-

able accelerator is currently in use; second, to set the STATUS register in the HW

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 36

	
 	
 	
 	
 	
 1 typedef	
 struct	
 {
	
 	
 	
 	
 	
 2 	
 	
 	
 	
 char*	
 HA_name;
	
 	
 	
 	
 	
 3 	
 	
 	
 	
 char*	
 LKM_name;
	
 	
 	
 	
 	
 4 	
 	
 	
 	
 bool	
 LKM_LOADED;	
 //true=loaded,	
 false=not	
 loaded
	
 	
 	
 	
 	
 5 	
 	
 	
 	
 bool	
 HA_IN_USE;	
 //true=in_use,	
 false=	
 not	
 in_use
	
 	
 	
 	
 	
 6 	
 	
 	
 	
 int	
 HA_fd;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /*	
 descriptor	
 for	
 the	
 HW	
 Accelerator	
 */
	
 	
 	
 	
 	
 7 	
 	
 	
 	
 int	
 dev_cnt;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /*	
 device	
 count	
 */
	
 	
 	
 	
 	
 8 	
 	
 	
 	
 int*	
 cs_bufptr;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /*	
 next	
 unread	
 byte	
 in	
 internal	
 buf	
 */
	
 	
 	
 	
 	
 9 	
 	
 	
 	
 int	
 cs_buf[CS_BUFSIZE];	
 /*	
 internal	
 buffer	
 (to	
 be	
 used	
 for	
 data	
 transfer	
 (Read/Write))	
 */
	
 	
 	
 	
 10 }	
 cs_t;	
 //context	
 structure	
 type	
 used	
 be	
 helper	
 functions

Figure 4.2: Partial code showing the context structure definition

accelerator interface (See Section 4.3).

LKM Link/Unlink/Loaded Functions

LinkLKM() and UnlinkLKM() are used by FUSE to load and unload the loadable

kernel module support for a given HW accelerator. These two helper function are

simply wrappers for the modprobe() and rmmod() system calls in the kernel. The

LKMLoaded() function uses the lsmod() system call to set the LKM Loaded flag in

the context structure (see Figure 4.2 (Line 4)) to either true or false and then returns

the result.

4.1.2 Thread Creation

The POSIX Pthreads API [56] [57], accessed via <pthreads.h>, contains an extensive

list of functions that allows SW designers to add concurrency into their application

code in addition to providing synchronization. Table 4.2 shows a list of the most

important OS objects and the respective API functions as provided by the POSIX

standard API [57]. Table 4.2 also shows the wrapper functions provided by the FUSE

API for each POSIX API function mentioned. While FUSE provides a wrapper for

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 37

Table 4.2: Overview of the key POSIX API functions vs. FUSE API

OS Object POSIX API [57] FUSE API

Thread Creation pthread create() thread create()
Semaphores sem post() P()

sem wait() V()
Mutexes pthread mutex lock() thread mutex lock()

pthread mutex unlock() thread mutex unlock()
Shared Memory *ptr = value *ptr = value

value = *ptr value = *ptr

most of those functions (e.g. semaphores, mutexes, shared memory), the abstrac-

tion of SW/HW thread creation (i.e. thread create()) is the most important function

supported by FUSE as it creates new concurrent threads of execution.

During the OS startup, existing HW accelerators are detected by the OS, which

registers their names and base addresses for ease of retrieval at runtime. In addition,

the low-level OS support (i.e. LKMs) (See Section 4.2) that are statically compiled

within the OS image are loaded. New LKMs can be loaded or removed at runtime

as desired. Information about existing HW accelerators is saved into a look up table

(See Section 4.2) stored within the OS kernel space, which is continually updated to

indicate the current state of all the accelerators in the system.

During application execution, FUSE uses the look up table to associate the task’s

function name with an existing HW accelerator. HW designers name each HW ac-

celerator to match the corresponding function name specified by the SW designer as

part of the parameter list of the pthread create() function. The only application SW

changes required to enable FUSE support are: 1) each pthread create() call is replaced

with the FUSE-based version thread create() call, and 2) <fuse.h> is included instead

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 38

	
 	
 	
 	
 	
 1 /*	

	
 	
 	
 	
 	
 2 FUSE	
 API	
 Header
	
 	
 	
 	
 	
 3 Author:	
 Aws	
 Ismail
	
 	
 	
 	
 	
 4 */
	
 	
 	
 	
 	
 5
	
 	
 	
 	
 	
 6 #ifndef	
 __FUSE_H__
	
 	
 	
 	
 	
 7 #define	
 __FUSE_H__
	
 	
 	
 	
 	
 8
	
 	
 	
 	
 	
 9 #include	
 "fuse_helper.h"	
 //	
 contains	
 the	
 definitions	
 of	
 the	
 helper	
 functions,	
 etc.
	
 	
 	
 	
 10
	
 	
 	
 	
 11
	
 	
 	
 	
 12 void*	
 hw_task_func(void*	
 arg)
	
 	
 	
 	
 13 {
	
 	
 	
 	
 14 	
 	
 	
 	
 cs_t*	
 hw_context	
 =	
 (cs_t*)	
 arg;
	
 	
 	
 	
 15 	
 	
 	
 	
 InitContext(&hw_context);
	
 	
 	
 	
 16 	
 	
 	
 	
 P(&context_sem);
	
 	
 	
 	
 17 	
 	
 	
 	

	
 	
 	
 	
 18 	
 	
 	
 	
 RunContext(&hw_context);
	
 	
 	
 	
 19 	
 	
 	
 	
 V(&context_sem);
	
 	
 	
 	
 20 	
 	
 	
 	

	
 	
 	
 	
 21 	
 	
 	
 	
 DestroyContext(&hw_context);
	
 	
 	
 	
 22 }
	
 	
 	
 	
 23
	
 	
 	
 	
 24 int	
 thread_create(pthread_t	
 *t,pthread_attr_t	
 attr,void	
 (*sw_task_func)(void*),void	
 *arg)
	
 	
 	
 	
 25 {
	
 	
 	
 	
 26 	
 	
 	
 	
 int	
 ret;
	
 	
 	
 	
 27 	
 	
 	
 	
 char*	
 hw_task_func;	
 /*	
 the	
 hardware	
 accelerator's	
 function	
 name	
 */
	
 	
 	
 	
 28 	
 	
 	
 	
 cs_t	
 context_structure;	
 /*	
 context	
 structure	
 */
	
 	
 	
 	
 29 	
 	
 	
 	

	
 	
 	
 	
 30 	
 	
 	
 	
 Sem_init(&context_sem,	
 0,	
 1);
	
 	
 	
 	
 31 	
 	
 	
 	

	
 	
 	
 	
 32 	
 	
 	
 	
 hw_task_func	
 =	
 AcceleratorQuery(&sw_task_func);
	
 	
 	
 	
 33 	
 	
 	
 	

	
 	
 	
 	
 34 	
 	
 	
 	
 if	
 (hw_task_func	
 !=	
 NULL)	
 /*	
 (HA_Match?)	
 step.	
 TRUE	
 means	
 Match	
 Found*/
	
 	
 	
 	
 35 	
 	
 	
 	
 {
	
 	
 	
 	
 36 	
 	
 	
 	
 	
 	
 	
 	
 CreateContext(&context_structure);
	
 	
 	
 	
 37 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 38 	
 	
 	
 	
 	
 	
 	
 	
 if(LKMLoaded(&hw_task_func)	
 &&	
 AcceleratorIdle(&hw_task_func))	

	
 	
 	
 	
 39 	
 	
 	
 	
 	
 	
 	
 	
 {
	
 	
 	
 	
 40	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //Create	
 a	
 HW	
 thread
	
 	
 	
 	
 41 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 42 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ret	
 =	
 pthread_create(&t,	
 &attr,	
 hw_task_func,	
 &context_structure);
	
 	
 	
 	
 43 	
 	
 	
 	
 	
 	
 	
 	
 }
	
 	
 	
 	
 44 	
 	
 	
 	
 	
 	
 	
 	
 else	
 if	
 (!LKMLoaded(&hw_task_func))	
 //Accelerator	
 Exists	
 but	
 LKM	
 not	
 loaded
	
 	
 	
 	
 45 	
 	
 	
 	
 	
 	
 	
 	
 {
	
 	
 	
 	
 46 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 LinkLKM(&hw_task_func);	
 //Load	
 LKM	
 then	
 run	
 thread
	
 	
 	
 	
 47 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ret	
 =	
 pthread_create(&t,	
 &attr,	
 hw_task_func,	
 &context_structure);
	
 	
 	
 	
 48 	
 	
 	
 	
 	
 	
 	
 	
 }
	
 	
 	
 	
 49 	
 	
 	
 	
 	
 	
 	
 	
 else	
 if(!AcceleratorIdle(&hw_task_func))	
 //LKM	
 Loaded	
 but	
 Accelerator	
 is	
 in	
 use
	
 	
 	
 	
 50 	
 	
 	
 	
 	
 	
 	
 	
 {
	
 	
 	
 	
 51 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ret	
 =	
 pthread_create(&t,	
 &attr,	
 sw_task_func,	
 arg);
	
 	
 	
 	
 52 	
 	
 	
 	
 	
 	
 	
 	
 }
	
 	
 	
 	
 53 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 54 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 55 	
 	
 	
 	
 }
	
 	
 	
 	
 56 	
 	
 	
 	
 else
	
 	
 	
 	
 57 	
 	
 	
 	
 {	
 	
 	

	
 	
 	
 	
 58 	
 	
 	
 	
 	
 	
 	
 	
 //revert	
 to	
 creating	
 a	
 SW	
 thread
	
 	
 	
 	
 59 	
 	
 	
 	
 	
 	
 	
 	
 //leave	
 attribute	
 as	
 is	
 (JOINABLE	
 by	
 default)
	
 	
 	
 	
 60 	
 	
 	
 	
 	
 	
 	
 	
 ret	
 =	
 pthread_create(&t,	
 &attr,	
 sw_task_func,	
 arg);
	
 	
 	
 	
 61 	
 	
 	
 	
 }
	
 	
 	
 	
 62 	
 	

	
 	
 	
 	
 63
	
 	
 	
 	
 64 	
 	
 	
 	
 return	
 ret;
	
 	
 	
 	
 65 }

Figure 4.3: thread create() definition inside <fuse.h> header file.

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 39

of <pthread.h>.

Figure 4.3 shows part of the API implementation for the thread create() function

in the FUSE header library. As part of the thread create() function, FUSE uses

several internal “helper functions,” that exist in the Top-Level FUSE Component

(See Table 4.1), to manage thread creation. This implementation of thread create()

uses the concept of a context, which stores a dynamic snapshot of the current state

of a running thread. FUSE utilizes four “helper functions” to create, initialize, run

and destroy contexts (Lines 36, 15, 18 and 21 respectively in Figure 4.3).

When creating a thread, the aforementioned accelerator look-up table is checked

via AcceleratorQuery() helper function (Line 32) to find a matching accelerator name.

Then FUSE uses create context() (Line 36) to allocate a context structure (Line 28)

to hold information related to the thread, such as the function name, user data, and

current state. The LKMLoaded() and AcceleratorIdle() (Line 38) functions assert

whether the matched accelerator can be locked to this context. If an accelerator

exists, FUSE checks whether or not its low-level support (i.e. LKM) is loaded and

also whether or not the accelerator is currently in use by other applications. These

checks mimic the mapping policy shown in Chapter 3 (see Figure 3.4). Ideally, the

accelerator will be idle with its LKM already loaded. FUSE then creates a thread

that performs HW task initialization and execution (Line 42). If the accelerator is idle

but its LKM is not loaded then FUSE first loads the LKM support through calling

LinkLKM() function (Line 46) and then proceeds with the HW task initialization

(Line 47). LinkLKM() loads the corresponding LKM for that particular accelerator

using the modprobe() system call provided by the OS [55]. This system call is made

only once when the accelerator is first used.

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 40

This newly created thread will use init context() (Line 15) and run context()

(Line 18) to run the HW accelerator. init context() fills the context structure with

the related information (fetched from the accelerator look-up table). In addition,

init context() opens a device file handler to the accelerator’s device file using the

open() system call, and then performs memory mapping to the accelerator’s local

memory space via the device handler using the mmap() system call. Each HW accel-

erator has special implementations of these OS system calls defined by their loaded

LKM.

When the accelerator is ready to process data, run context() (Line 18) performs

data and control I/O on the memory mapped space, along with proper data mar-

shalling, according to how the accelerator processes data. This entails using the

ioctl() system call for sending/receiving control signals (e.g. set the STATUS register

within the HW accelerator interface to RUNNING or BUSY) in addition to simple

array dereferencing of the shared-memory space when sending/receiving data values.

Finally, FUSE calls destroy context() (Line 21) to deallocate the context structure, set

the STATUS register within the HW accelerator to IDLE, release the shared memory,

and close the device file handler. This is done after the HW accelerator is finished

processing any remaining data.

4.2 Kernel-space Implementation of LLFC

The OS kernel is structured as a collection of modules, some of which can be auto-

matically loaded and unloaded on demand. Kernel modules are pieces of code that

extend the functionality of the kernel without the need to reboot the system (i.e.

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 41

while the kernel is already in memory and executing). For example, one type of mod-

ule is the device driver, which allows the kernel to access hardware connected to the

system. The Low-Level FUSE Component (LLFC), is a collection of Loadable Kernel

Modules (LKMs) that add support for HW accelerators to the OS. The LLFC re-

sides in the OS kernel space and handles the direct abstraction of the HW accelerator

resources through their HW accelerator interface. Therefore, to accommodate HW

accelerator functionality that can be loaded/unloaded per request, the kernel-space

implementation of the FUSE framework maps a LKM to each HW accelerator. Thus,

HW accelerators become miscellaneous platform devices that appear as autonomous

entities in the system and have direct addressing from the CPU bus. The rest of

this section will give an overview of the LKM’s architecture (Section 4.2.1), the set of

mechanisms it exports to enable abstraction (Section 4.2.2), and the way it binds to

a HW accelerator device when initially loaded (Section 4.2.3).

4.2.1 LKM Architecture

As mentioned in Section 3.2.2, each LKM can be compiled in such a way that it is

either loaded automatically during OS startup, or is loaded by FUSE at run-time

after the OS boots. During thread creation, FUSE handles both cases by offering

to check whether or not the LKM is loaded and also to load or unload the LKM on

demand. (See LKMLoaded(), LinkLKM() and UnlinkLKM(), in Section 4.1.1). A

HW accelerator’s LKM implements miscellaneous device driver functionality to treat

the accelerator as a memory-mapped I/O device peripheral. The memory-mapped

I/O implements communications between the CPU and the system peripherals using

a common instruction set to simplify system design.

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 42

	
 	
 	
 	
 	
 1 //	
 Module	
 information.
	
 	
 	
 	
 	
 2 MODULE_LICENSE("SFU");
	
 	
 	
 	
 	
 3 MODULE_DESCRIPTION("hwtask_dct_adapter");
	
 	
 	
 	
 	
 4 #define	
 DRIVER_NAME	
 "hwtask_dct_adapter"
	
 	
 	
 	
 	
 5 #define	
 DRIVER_NAME_ID(id)	
 DRIVER_NAME#id
	
 	
 	
 	
 	
 6
	
 	
 	
 	
 	
 7 //	
 Version	
 information.
	
 	
 	
 	
 	
 8 int	
 hwthread_dct_major	
 =	
 MISC_MAJOR;
	
 	
 	
 	
 	
 9 module_param(hwtask_dct_major,	
 int,	
 0);
	
 	
 	
 	
 10 static	
 int	
 dev_id	
 =	
 0;
	
 	
 	
 	
 11
	
 	
 	
 	
 12 #define 	
 	
 	
 	
 BUFSIZE	
 10 //	
 Slave	
 registers	
 in	
 HWtask_DCT	
 PLB	
 IP	
 core.
	
 	
 	
 	
 13 static	
 LIST_HEAD (inst_list);
	
 	
 	
 	
 14 static	
 DECLARE_RWSEM (inst_list_sem);
	
 	
 	
 	
 15
	
 	
 	
 	
 16 //	
 Structures.
	
 	
 	
 	
 17 struct 	
 	
 	
 	
 of_platform_driver hwtask_dct_driver;
	
 	
 	
 	
 18 static	
 struct file_operations hwtask_dct_fops;
	
 	
 	
 	
 19 struct	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 hwtask_dct_local;
	
 	
 	
 	
 20 static	
 struct of_device_id __devinitdata	
 hwtask_dct_match[];
	
 	
 	
 	
 21
	
 	
 	
 	
 22 struct	
 of_platform_driver	
 hwtask_dct_driver	
 =	
 {
	
 	
 	
 	
 23 .driver	
 =	
 {
	
 	
 	
 	
 24 	
 	
 	
 .name	
 = DRIVER_NAME,
	
 	
 	
 	
 25 	
 	
 	
 .owner	
 = THIS_MODULE,
	
 	
 	
 	
 26 	
 	
 	
 .of_match_table	
 = hwtask_dct_match,
	
 	
 	
 	
 27 },
	
 	
 	
 	
 28 .probe	
 = hwtask_dct_probe,
	
 	
 	
 	
 29 .remove	
 = __devexit_p(hwtask_dct_remove),
	
 	
 	
 	
 30 };
	
 	
 	
 	
 31
	
 	
 	
 	
 32 static	
 struct	
 file_operations	
 hwtask_dct_fops	
 =	
 {
	
 	
 	
 	
 33 .open	
 = hwtask_dct_open,
	
 	
 	
 	
 34 .close	
 = hwtask_dct_close,
	
 	
 	
 	
 35 .read	
 = hwtask_dct_read,
	
 	
 	
 	
 36 .write	
 = hwtask_dct_write,
	
 	
 	
 	
 37 .mmap	
 = hwtask_dct_mmap,
	
 	
 	
 	
 38 .ioctl	
 = 	
 	
 	
 	
 hwtask_dct_ioctl,
	
 	
 	
 	
 39 };
	
 	
 	
 	
 40
	
 	
 	
 	
 41 struct	
 hwtask_dct_local	
 {
	
 	
 	
 	
 42 struct	
 list_head link; //	
 For	
 the	
 linked	
 list	
 of	
 instances.
	
 	
 	
 	
 43 unsigned	
 long base_phys; //	
 IP	
 core	
 base	
 address.
	
 	
 	
 	
 44 unsigned	
 int base_addr; //	
 Virtual	
 address	
 for	
 the	
 reg	
 file	
 IO	
 MEM	
 resource.
	
 	
 	
 	
 45 unsigned	
 long remap_size;
	
 	
 	
 	
 46 u32 device_id;	
 //ID	
 counter	
 for	
 multiple	
 instances	
 of	
 the	
 same	
 accelerator
	
 	
 	
 	
 47 int is_inuse;	
 //flag	
 used	
 by	
 get_instance()
	
 	
 	
 	
 48 unsigned	
 int buf[BUFSIZE]; //	
 The	
 register	
 file	
 (10	
 slave	
 regs,	
 32-­‐bit	
 each).
	
 	
 	
 	
 49 struct	
 miscdevice *miscdev;
	
 	
 	
 	
 50 wait_queue_head_t wait; //	
 Wait	
 queue	
 for	
 blocking	
 I/O	
 read	
 or	
 write.
	
 	
 	
 	
 51 };
	
 	
 	
 	
 52
	
 	
 	
 	
 53 static	
 struct	
 of_device_id	
 __devinitdata	
 hwtask_dct_match[]	
 =	
 {
	
 	
 	
 	
 54 {	
 .compatible	
 =	
 "xlnx,hwtask-­‐dct-­‐1.00.a",	
 },
	
 	
 	
 	
 55 {	
 /*	
 end	
 of	
 list	
 */	
 },
	
 	
 	
 	
 56 };
	
 	
 	
 	
 57 MODULE_DEVICE_TABLE(of,	
 hwtask_dct_match);

Figure 4.4: Partial code showing part of the DCT LKM implementation

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 43

In a system containing memory-mapped I/O devices, the OS creates an address

space map that assigns different parts of the memory space to different components

of the system. The OS uses FUSE’s LLFC to abstract such memory-mapped devices

from the user-space as device files that can be manipulated using the traditional file

API (e.g. open(), close(), read(), write(), etc.). Specifically, the LKM exports its

own implementation of these file operations (discussed in Section 4.2.2) that enables

the TLFC to communicate with the HW accelerator using common file API system

calls. The LKM uses a local data structure which contains the physical base address

of the memory-mapped device. For example, Figure 4.4 shows part of the LKM code

for a DCT HW Accelerator. The data structure is called hwtask dct local (Line 41).

This structure allows the kernel-space side of FUSE, the LLFC, to recognize each HW

accelerator by its base physical address (Line 43) in the address space map.

The LKM is designed so that it can handle multiple instances of the same HW

accelerator. To achieve this, the LKM uses a linked list, called inst list (Line 13) to

store multiple instances of the local data structure (hwtask dct local); one for each

accelerator. Also, each local data structure has a device ID (Line 46), which assigns a

unique ID number, starting from 0, for each accelerator handled by that LKM. This

ID number is appended to the DRIVER NAME (Line 5) during the registration and

initialization step (discussed in Section 4.2.3). Additionally, the LKM can handle

different architectural versions of a given HW accelerator. This is done by keeping a

list of matching versions of the HW accelerator (Line 53).

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 44

4.2.2 LKM File Operations

The bulk of the LKM implementation involves the definitions of the file operation

functions, which the LKM exports to the user space and are in turn used by the

helper functions inside the top-level FUSE component. As shown in Figure 4.4, each

LKM provides services for open, close, read, write, mmap, and ioctl system calls

(Lines 33 to 38). These calls are used in the implementation of the helper functions,

init context(), run context() and destroy context(), in the user-space part of the FUSE

framework (i.e. TLFC) (See Table 4.1).

4.2.3 LKM Registration/Initialization Procedure

Whether or not the LKM is loaded at run-time or during the OS startup phase, the

LKM follows a specific initialization procedure upon loading. The LKM uses internal

kernel macros to notify the kernel of its entry point and exit point functions. For

example, in Figure 4.5, the DCT LKM specifies hwtask dct init() as the LKM’s entry

point (Line 26) via the module init() kernel macro and hwtask dct exit() as its exit

point (Line 27) using the module init() macro. If the LKM were compiled statically

into the kernel image, the hwtask dct init() function would be stored in the kernel

image and run during OS boot. Otherwise, the kernel invokes hwtask dct init() when

the module is dynamically loaded (e.g. using LinkLKM() in the TLFC).

The hwtask dct init() function (Line 2) calls the of register platform driver() ker-

nel function (Line 7) to perform the registration process. of register platform driver()

uses the hwtask dct driver structure, defined at the beginning of the LKM (See Fig-

ure 4.4 (Line 22)), as a parameter. This structure notifies the kernel of the LKM

name, and the probe function to invoke. The probe function hwtask dct probe (See

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 45

	
 	
 	
 	
 	
 1
	
 	
 	
 	
 	
 2 static	
 int	
 __init	
 hwtask_dct_init(void)	
 {
	
 	
 	
 	
 	
 3
	
 	
 	
 	
 	
 4 int	
 res;
	
 	
 	
 	
 	
 5 printk(KERN_ALERT	
 "Loading	
 module...	
 ***********************\n");
	
 	
 	
 	
 	
 6
	
 	
 	
 	
 	
 7 res	
 =	
 of_register_platform_driver(&hwtask_dct_driver);
	
 	
 	
 	
 	
 8
	
 	
 	
 	
 	
 9 if	
 (res	
 !=	
 0)	

	
 	
 	
 	
 10 printk(KERN_ALERT
	
 	
 	
 	
 11 "***Loading	
 failed...	
 ********************************\n\n");
	
 	
 	
 	
 12 else	
 printk(KERN_ALERT
	
 	
 	
 	
 13 "Loading	
 was	
 successful...	
 ***************************\n\n");
	
 	
 	
 	
 14 return	
 res;
	
 	
 	
 	
 15 }
	
 	
 	
 	
 16
	
 	
 	
 	
 17 static	
 void	
 __exit	
 hwtask_dct_exit(void)	
 {
	
 	
 	
 	
 18
	
 	
 	
 	
 19 printk(KERN_ALERT	
 "Unloading	
 module...	
 *********************\n");
	
 	
 	
 	
 20
	
 	
 	
 	
 21 of_unregister_platform_driver(&hwtask_dct_driver);
	
 	
 	
 	
 22
	
 	
 	
 	
 23 printk(KERN_ALERT	
 "Unloading	
 module	
 finished...	
 ************\n");
	
 	
 	
 	
 24 }
	
 	
 	
 	
 25
	
 	
 	
 	
 26 module_init(hwtask_dct_init);
	
 	
 	
 	
 27 module_exit(hwtask_dct_exit);

Figure 4.5: The DCT LKM’s entry/exit points functions

Figure 4.4 (Line 28)) performs the bulk of the registration procedure. Figure 4.6

illustrates in detail the steps taken by the probe function within an LKM, using the

DCT LKM as an example. The sequence of steps illustrated in Figure 4.6 are detailed

below:

1. Allocate the local data structures, find the matching HW accelerator(s), and set

the device name.

2. (a) Evaluate the I/O address space for the device registers using the plat-

form get resource() kernel function.

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 46

(HWTask_Instance)
HWTask_DCT_n

(HW Accelerator IP)
HWTask_DCT_0

(HW Accelerator IP)
HWTask_DCT_n

 . . .

FUSE Framework LLFC
HWTask_DCT_Adapter.ko

S
W

H
W

Inst_List

(HWTask_Instance)
HWTask_DCT_0

hwtask_dct_fops
Open() Close()
Read() Write()
MMAP() IOCTL()

Kernel
Memory
Address
Space

User
Memory
Address
Space

probe ()

1

list_add_tail ()

4

ioremap ()

3
kmalloc ()

kzalloc ()

2

FUSE Framework (TLFC)

 \dev\hwtask_dct_0 \dev\hwtask_dct_n

USER Application

O
S

 K
er

n
el

 S
p

ac
e

U
se

r
S

p
ac

e

5

request_mem_region ()
misc_register ()

3

platform_get_resource()

a

d
c
b
ac

3
b

Figure 4.6: The DCT LKM’s Probe() function execution procedure

(b) Allocate kernel memory for an instance of the local data structure (i.e. hw-

task dct local) using the kmalloc() kernel function.

(c) Lock I/O address space into kernel memory for the HW accelerator registers

using request mem region() kernel function.

(d) Get the virtual base address of the device using ioremap() kernel function.

3. (a) Register the new miscellaneous device by first Allocating memory for it

(kzalloc()).

(b) Fill in the name and the list of file operation functions (i.e. hwthread dct fops).

(c) Call the misc register() function to register the device as a miscellaneous

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 47

platform device in the kernel.

4. Add the new device local structure to the local device list using list add tail()

kernel function.

5. Publish the device as a device file entry to the user space (i.e. /dev/hwtask dct 0).

After successful registration, the TLFC’s helper functions (e.g. InitContext(), etc.)

can use the file operations exported by this LKM (e.g. open(), etc.) to establish

communication with the HW accelerator.

4.3 Hardware Accelerator Interface

The HW accelerator interface physically connects the accelerator’s logic to the sys-

tem’s communication network, but does not presume a specific communication net-

work. Furthermore, the HW interface’s design can be created to reflect the needs of

the accelerator. Its LKM is then customized to abstract the interface’s architecture

from the rest of the system (See Figure 3.2). To demonstrate how FUSE enables

HW accelerators with LKM support to mimic SW threads, we used the example HW

accelerator interface shown in Figure 4.7 for the shared-bus used in the experimental

system discussed in Chapter 5.

Our example HW accelerator interface is comprised of a Bus Interface, which

performs the appropriate address decoding and signal control for the system com-

munication network, and the accelerator’s Function Interface (see Figure 4.7). The

Function Interface handles the OS kernel communication with the accelerator’s logic

using a finite state machine (FSM), read/write buffers, and a register file. The size

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 48

M
A

IN
 B

U
S

Address
Decoding

Logic

Bus Interface

Clock

Reset
Data
Control

Function Interface

Command Reg.
Status Reg.

GP Reg.
GP Reg.
GP Reg.

Context FSM

Write FIFO
Read FIFO

Bus2Accel_Data

Accel2Bus_Data

Clock

Enable

Data_IN
Data_Out

HW Accelerator Interface

Reset
 . . . Accelerator

User Logic

Figure 4.7: HW Accelerator Interface

of the 32-bit register file is configurable to meet our application’s requirement, with

a minimum of two registers for status and control.

Control values written from the FUSE API to the Command Reg. indicate the

desired execution state for the HW accelerator, while data read from the Status Reg.

shows its current execution state. These execution states are similar to those of

a POSIX SW thread (e.g. IDLE, RUNNING, and BUSY) and controlled via the

Context FSM. The TLFC uses the AcceleratorIdle() helper function to read the Status

Register. In the TLFC implementation described in Section 4.1, the run context()

helper function uses LKM-supported system calls (e.g. IOCTL()) to send commands

(e.g. RESET, RUN, and STOP) to the Command Reg. Marshalled data is sent to

the accelerator via a write FIFO buffer to speed up communication and returned

via a read FIFO buffer to be read back by the TLFC. Other possible HW interface

CHAPTER 4. FUSE IMPLEMENTATION AND INTEGRATION 49

designs may include autonomous memory access, in the form of Direct Memory Access

(DMA), for better data marshalling; however, our current experimental system does

not use DMA, which has been left for future work (See Chapter 6).

Chapter 5

Evaluation and Experimental

Results

This chapter outlines the experimental system used to demonstrate and evaluate the

FUSE framework. We discuss three SW case studies that utilize HW accelerators

accessed via FUSE. In Section 5.1, we describe the experimental system architecture

and quantify the resource utilization the HW accelerators with respect to the en-

tire system. In Sections 5.3.1 and 5.3.2, we discuss the run-time overhead incurred

from the Low-Level FUSE Component (LLFC) and the Top-Level FUSE Component

(TLFC), which were both outlined in Chapter 4. In Section 5.2, we first explain

our testing methodology and discuss the overhead incurred from the top-level FUSE

component (TLFC) when migrating a SW thread to a HW accelerator. Finally, we

outline the performance speedups obtained from using FUSE in conjunction with HW

accelerators for each case study.

50

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 51

DDR
RAM

Memory
Controller

FPGA

PLB
Arbiter

MicroBlaze CPU
SW Task

PetaLinux OS
 . . .

HW Accelerator I/FHW Accelerator I/F HW Accelerator I/F

UARTTimer

Interrupt Cntrl

SW Task

HWTask_DCT HWTask_3DES HWTask_Sobel

Figure 5.1: Experimental System Architecture

5.1 Hardware Experimental Setup

Figure 5.1 highlights the key components of our experimental HW system, adapted

from a PetaLogix example built on a Xilinx Virtex 5 FPGA [8] using Xilinx’s EDK

FPGA CAD tool. System peripherals that are only used during the OS boot process

(e.g. the GPIO, FLASH controller, and ethernet controller) are not shown. Our design

uses a Xilinx MicroBlaze 32-bit soft processor and three example HW accelerators

(i.e. HWTask DCT, HWTask 3DES, HWTask Sobel) that are connected to a shared

system bus through HW accelerator interfaces. The MicroBlaze CPU is configured

with an Memory Management Unit (MMU), a 8KB data cache and a 8KB instruction

cache. As in the example system, the CPU is clocked at 125 MHz, while the Processor

Local Bus (PLB) runs at 100 MHz. A 256MB DDR RAM is used by the system as

the physical memory through Xilinx’s multi-port memory controller.

Three multithreaded application examples are implemented: JPEG image com-

pression, Triple-DES encryption–and–decryption, and an image filter. Also, Three

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 52

Table 5.1: System Resource Utilization on a Virtex5 FPGA

App(HWTask) LKM Size F/F LUTs DSP48E BRAMs
JPEG Enc.(DCT) 5.5 KB 2293 (4%) 1819 (3%) 8 (13%) 8 (5%)
Encryption (3DES) 5.0 KB 1698 (3%) 2042 (4%) 0 (0%) 0 (0%)
Image Filter (Sobel) 5.0 KB 960 (1%) 1620 (3%) 0 (0%) 0 (0%)
Overall System 20509 (29%) 18750 (27%) 54 (84%) 22(15%)

Table 5.2: Utilization on a Virtex5 FPGA for the example HW Accelerator Interfaces

HW Accelerator Interface F/F LUTs
HWTask DCT I/F 803 (1%) 817 (1%)
HWTask 3DES I/F 560 (<1%) 402 (<1%)
HWTask Sobel I/F 560 (<1%) 401 (<1%)

HW accelerators are integrated into our system via the example HW accelerator in-

terface we discussed previously in Chapter 4. Each accelerator provides specific func-

tionality for a given application: the JPEG image compression application uses a Dis-

crete Cosine Transform (DCT) accelerator (HWTask DCT); the Triple-DES (3DES)

application uses an encryption accelerator (HWTask 3DES); and the image filtering

application uses a SOBEL edge detection accelerator (HWTask Sobel).

5.1.1 Resource Utilization

Table 5.1 outlines the resource utilization for the accelerators and their LKMs, along

with the overall experimental system, on the Virtex 5 FPGA. These tasks comprise

the majority of their application’s execution time and require minimal HW resource

utilization, making them logical choices for HW acceleration. The corresponding

LKM size is dependent on the nature of the HW task being abstracted. Table 5.2,

on the other hand, shows the resource utilization of the example HW accelerator

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 53

interface itself (i.e. the bus interface and function interface discussed in Section 4.3).

It can been seen that the example HW accelerator interface requires a maximum of

803 Flip-Flops and 817 LUTs to implement. This interface can be customized, as

previously mentioned in Chapter 4, to include BRAMs and more registers to satisfy

the application requirements.

5.1.2 PetaLinux OS Versions

We have demonstrated FUSE with two versions of the PetaLinux OS, versions 0.4

and 2.1 [8]. Differences specific to these versions are as follows:

PetaLinux Version 0.4:

This older version has experimental MMU support for FPGA-based systems with a

MicroBlaze soft processor. However, its integration with Xilinx’s EDK FPGA CAD

Tool was incompatible after versions 11.x of that tool. Therefore, version 0.4 of the

OS was being used with EDK version 10.1.3. This OS version also lacked support for

a standardized way of adding LKMs to the PetaLinux code. Hence, when using it, we

opted to integrate FUSE’s LLFC within the kernel source tree directly. Furthermore,

when using version 0.4 of PetaLinux, we used software-based timing measurements to

quantify the impact of FUSE’s overhead on our case studies.

PetaLinux Version 2.1:

This version provides an enhanced device driver support for common peripherals on

the FPGA-based system as well as support for the latest FPGA CAD tools from Xilinx

(version 13.1). The MMU and cache memory support are also improved. Additionally,

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 54

this version now provides a standardized way to include add-on packages and LKMs

to the system during the design process. This eliminated the need for changes to

the kernel source tree itself. Version 2.1 of PetaLinux is used in conjunction with

Xilinx’s EDK version 13.1. Additionally, we opted to use hardware-based timing

measurements to quantify the impact of FUSE’s overhead on our case studies.

5.2 Example Case Studies

5.2.1 Testing Methodology

Our objective is to quantify the overhead of the runtime abstraction of HW accelera-

tor(s) in the OS and its impact of the performance speedup due to acceleration. This

has two possible uses: 1) static SoC configurations with unique HW accelerator(s)

and 2) SoC configurations with DPR support. To isolate the overhead incurred by

FUSE from the reconfiguration overhead of DPR, we opted for statically configured

SoC platforms. This allows us to separate the impact of FUSE’s overhead on perfor-

mance speedup from the additional bitstream reconfiguration overhead, when DPR

is supported, which has been quantified by the vendor [28].

Our baseline execution time is for the SW versions of these applications using

the Pthreads library executing on the CPU without any HW acceleration. On the

same platform, we compared these to using <fuse.h>. The overhead of running an

application using FUSE when there are no HW accelerators is incurred by the check

for a (HA Match?) (see Figure 3.4); each check takes ∼400us. For these three

applications, using FUSE without HW accelerators increases the runtime negligibly

(<1%). When HW accelerator(s) exist, however, the overhead incurred from using

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 55

FUSE is divided into:

1. Loading the LKM the first time a HW accelerator is used (∼12 ms when using

PetaLinux version 0.4, and 14–18 ms when using PetaLinux version 2.1).

2. Calling the open(), mmap(), munmap(), and close() functions to initialize/uninit-

ialize communications with the HW accelerator (∼0.91ms for both versions of

PetaLinux).

3. The potential unloading of the LKM when the execution finishes (∼12 ms when

using PetaLinux version 0.4, and ∼14 ms when using PetaLinux version 2.1).

For static systems, only the runtime system function calls (e.g. open(), etc.)

contribute to the runtime overhead as the LKM support would be loaded to the

OS upon booting. However, systems supporting DPR would also need to include

the overhead of loading their LKMs at runtime. Unloading a LKM would only be

performed if the OS is running out of memory space (i.e. 100s of unique LKMs have

been loaded at runtime) or when replacing an existing LKM with an updated version.

Thus, we consider this scenario an irregular contributor to the runtime overhead.

5.2.2 Image Compression Application

The multithreaded image compression application implements the JPEG compression

standard on sample images of varying sizes. The compression algorithm is divided into

multiple threads: colour-conversion, 2D-DCT transformation, quantization, Huffman

encoding, and a main thread that handles other operations such as read and write.

The image is divided into macroblocks that are processed concurrently; each mac-

roblock is an 8x8 pixel set, where each pixel has a 16 bit value. When the DCT HW

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 56

accelerator is present, FUSE detects the accelerator’s availability and migrates the

SW task into HW.

0

50

100

150

200

250

300

350

400

450

500

1 8 64 128 256 512 1024 2048 4096

E
xe

cu
tio

n
T

im
e

(m
s)

of Macroblocks (8x8 blocks of pixel data values)

DCT (SW Task)

DCT (HW Task) (MMAP access without LKM Loading Overhead)

DCT (HW Task) (MMAP access with LKM Loading Overhead)

Figure 5.2: Execution Time of the JPEG Encoder application with different imple-
mentations for the DCT task (PetaLinux Ver. 0.4, SW-based timing measurement)

0

100

200

300

400

500

1 8 64 128 256 512 1024 2048 4096

E
xe

cu
tio

n
T

im
e

(m
s)

of Macroblocks (8x8 blocks of pixel data values)

DCT (SW Task)

DCT (HW Task) (MMAP access without LKM Loading Overhead)

DCT (HW Task) (MMAP access with LKM Loading Overhead)

Figure 5.3: Execution Time of the JPEG Encoder application with different imple-
mentations for the DCT task (PetaLinux Ver. 2.1, HW-based timing measurement)

Figures 5.2 and 5.3 show the execution time of the JPEG encoder application

when implemented using PetaLinux versions 0.4 and 2.1, respectively. Different DCT

implementations (i.e. SW Task and HW Task) are shown in each figure with increasing

image sizes and thus, an increased number of macroblocks. The DCT accelerator’s

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 57

LKM uses a MMAP-based method of data transfer as it was found to incur the least

overhead (which will be discussed in Section 5.3.2 in detail). This method establishes

a direct memory map to the accelerator’s address space and enables arrays of data

to be copied in a single access. Both figures summarize the execution times of the

application using only SW threads compared to using the DCT HW accelerator for

the MMAP access method including and excluding runtime LKM loading overhead.

When using PetaLinux version 0.4 with software-based timing measurements (re-

call Figure 5.2), performance speedup compared to the SW implementation increases,

for larger data sizes, to a maximum of 11x for our static SoC configuration when

the image has 4096 macroblocks. Including the LKM loading overhead that would

be incurred for DPR systems reduces the maximum speedup to 8.7x. One the other

hand, while using PetaLinux version 2.1 with hardware-based timing measurements,

as shown in Figure 5.3, performance speedup compared to the SW implementation

only increases to a maximum of 8.3x for larger image data sizes (e.g. 4096 mac-

roblocks) for our static SoC configuration. Including the LKM loading overhead that

would be incurred for DPR systems reduces the maximum speedup to 6.4x.

5.2.3 3DES Encryption/Decryption Application

The 3DES SW application has three threads; the main thread handles cipher text

data read/write from a file, while the two remaining threads perform encryption and

decryption on the data. When the encryption thread is created, FUSE will migrate

it to the HWTask 3DES accelerator. In this example, only the MMAP approach is

used due to its reduced impact on execution time.

Using versions 0.4 and 2.1 of PetaLinux, Figures 5.4 and 5.5 show the execution

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 58

0

20

40

60

80

100

120

140

160

180

256 512 1024 2048 4096 8192 16384 32768

E
xe

cu
tio

n
T

im
e

(m
s)

Cipher Text Data Size (Bytes)

Encryption (SW Task)

Encryption (HW Task) (MMAP access without LKM Loading Overhead)

Encryption (HW Task) (MMAP access with LKM Loading Overhead)

Figure 5.4: Execution Time of 3DES application with different implementations for
the encryption task (PetaLinux Ver. 0.4, SW-based timing measurement)

time for the application with SW and HW versions (with and without LKM loading

overhead) of the 3DES encryption thread for varied sizes of the cipher text data. The

HW accelerated versions have better performance than the SW thread version for

smaller data sizes when only the overhead of the system function calls is included.

However, when including LKM loading overhead as well, visible speedups only occur

for larger cipher texts (>4KB) where the execution time is >25ms. For PetaLinux

version 0.4 (Figure 5.4), a maximum performance speedup of 37x without LKM load-

ing overhead, which is reduced to 11x when it is included. On the other hand, using

PetaLinux version 2.1 (see Figure 5.5), leads to a maximum performance speedup of

9.0x is achieved without LKM loading overhead, which is reduced to 5.2x when it is

included.

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 59

0

20

40

60

80

100

120

140

160

180

200

256 512 1024 2048 4096 8192 16384 32768

E
xe

cu
tio

n
T

im
e

(m
s)

Cipher Text Data Size (Bytes)

Encryption (SW Task)
Encryption (HW Task) (MMAP access without LKM Loading Overhead)
Encryption (HW Task) (MMAP access with LKM Loading Overhead)

Figure 5.5: Execution Time of 3DES application with different implementations for
the encryption task (PetaLinux Ver. 2.1, HW-based timing measurement)

5.2.4 Image Filtering Application

The third application is a multithreaded image filtering application that has two

threads performing image edge detection and image sharpening. The image edge

detection thread uses a SOBEL operator with a 3x3 pixel window size. This thread

is used to detect horizontal and vertical edges of objects in an image. The second

thread sharpens the image contents using a Laplacian operator. The edge detection

SW thread is migrated by FUSE to the HWTask SOBEL accelerator. Data processed

by the HW accelerator is sent to the Laplacian thread in SW to complete the filtering

process.

Figures 5.6 and 5.7 show the execution times of the image filtering application

when implemented using PetaLinux version 0.4 and 2.1, respectively. These execution

times show the use of a SOBEL task HW accelerator compared to its original SW task

using different image sizes. The image size is given in terms of the number of pixels in

the image where each pixel has an 8-bit value. For PetaLinux version 0.4 (Figure 5.6),

only images containing at least 1024 pixels achieve a visible performance speedup with

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 60

0

50

100

150

200

250

64 128 256 512 1024 2048 4096 8192

E
xe

cu
tio

n
T

im
e

(m
s)

Image size (pixels)

SOBEL (SW Task)

SOBEL (HW Task) (MMAP access without LKM Loading Overhead)

SOBEL (HW Task) (MMAP access with LKM Loading Overhead)

Figure 5.6: Execution Time of the Image Filter application with different implemen-
tations of the SOBEL task (PetaLinux Ver. 0.4, SW-based timing measurement)

HW acceleration when LKM loading overhead is included, compared to the SW-only

implementation. The performance speedup, with PetaLinux version 0.4, for SOBEL

edge detection using an image with 8192 8-bit pixels in HW is 6.4x, excluding LKM

loading overhead, which reduces the speedup to 4.7x of the SW version. On the other

hand, using PetaLinux version 2.1 (Figure 5.7), the performance speedup for SOBEL

edge detection using an image with 8192 8-bit pixels in HW is 5.8x excluding LKM

loading overhead, which reduces the speedup to 4.1x of the SW version.

5.2.5 Discussion of Case Studies Results

It is clear that the performance speedups for the three example case studies is re-

duced to some extent when switching from PetaLinux version 0.4 to version 2.1. This

could be due to the fact that since the case studies have relatively short runtimes

(<500 ms), the SW-based method of timing measurement for PetaLinux version 0.4

does not produce sufficiently precise results, unlike the HW-based method of timing

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 61

0

50

100

150

200

250

64 128 256 512 1024 2048 4096 8192

E
xe

cu
tio

n
T

im
e

(m
s)

Data size (pixels)

SOBEL (SW Task)

SOBEL (HW Task) (MMAP access without LKM Loading Overhead)

SOBEL (HW Task) (MMAP access with LKM Loading Overhead)

Figure 5.7: Execution Time of the Image Filter application with different implemen-
tations of the SOBEL task (PetaLinux Ver. 2.1, HW-based timing measurement)

measurement used for version 2.1 of PetaLinux. To better determine if the difference

in these performance speedups is due to the method of measuring execution time,

we will discuss in detail the overall overhead from using the FUSE framework in the

following section.

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 62

5.3 FUSE Overhead

5.3.1 LKM loading/unloading overhead

FUSE implements three helper functions, which are used to handle the dynamic

load/unloading and checking for LKMs in the OS. Specifically, the LinkLKM() uses

the modprobe() system call to dynamically load an LKM at run-time while Unlin-

kLKM() uses the rmmod() system call to dynamically remove the LKM while the

system is running. The LKMLoaded() helper function uses the lsmod() system call to

check if an LKM is currently loaded or not. In this section, we quantify the overhead

incurred from dynamically loading or unloading the LKM at run-time.

According to the matching policy shown previously in Chapter 3 (see Figure 3.4),

FUSE uses these helper functions when the LKMs are compiled to be dynamically

loaded or unloaded at run-time. However, LKM loading, when needed, will happen

only once; before the HW accelerator is first utilized. For example, Figure 5.8 shows

the two main cases in the mapping policy of the TLFC’s thread create() function

(recall Section 4.1.2). If the matching HW accelerator’s LKM is not loaded, it implies

that this is the first time this accelerator is being used by FUSE. Therefore, a call to

the LinkLKM() function is made (see Figure 5.8a). During subsequent uses of that

particular accelerator, FUSE continues to check if that LKM is still loaded and, if so,

whether the accelerator is being used by another application (see Figure 5.8b).

To illustrate the impact of when FUSE uses these helper functions, Figure 5.9

shows the the number of clock cycles used when calling these functions for each

LKM with PetaLinux version 2.1 as measured with a HW cycle counter. It is seen

that these functions introduce most of the overhead in the system when used. For

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 63

example, calling LinkLKM() for the hwtask 3DES LKM takes about 18 ms to execute

on a system running at clock speed of 125 MHz. When using PetaLinux version 0.4

the overhead of the LKM loading/unloading was measured as a fixed value of 12 ms,

with the SW-based method of timing measurement, which is relatively similar to the

results seen in Figure 5.9 (14–18ms).

AcceleratorQuery()create_context ()

LKMLoaded ()

init_context ()

pthread_exit ()

destroy_context () run_context ()

pthread_create (HW)

thread_create ()

LinkLKM ()

(a) Initial Run

AcceleratorQuery()create_context ()

LKMLoaded ()

AcceleratorIdle ()

init_context ()

pthread_exit ()

destroy_context () run_context ()

pthread_create (HW)

thread_create ()

(b) Further Runs

Figure 5.8: TLFC mapping policy cases when loading an LKM

!"#!$%&'&()* !+,-!"#()* .,/+,-!"#()*
!"

!#$"

%"

%#$"

&"

0/
$1
-*
02
1/
'3
*

#
+//
+$
,3
*

'()*+,-./01" '()*+,-/2)" '()*+,-13456"

Figure 5.9: Number of clock cycles incurred by the LKMLoaded(), LinkLKM() and
UnlinkLKM() FUSE API helper functions (PetaLinux Ver. 2.1, HW-based timing
measurement)

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 64

!"#$%&' (()"%&' *+!,#%&' (-$()"%&'
!"

#"

$!"

$#"

%!"

.
+!
*/
'.
0*
+#
,'

12
!
-
,)
$
3
,' &'()*+,-./0" &'()*+,.1(" &'()*+,02345"

Figure 5.10: Number of clock cycles when using the system calls within the InitCon-
text() (i.e. open(), mmap()) and DestroyContext() (i.e. close(), munmap()) FUSE API
helper functions (PetaLinux Ver. 2.1, HW-based timing measurement, CPU operating
frequency of 125 MHz)

5.3.2 Run-time Overhead

As shown in Chapter 4, FUSE introduces a layer of abstraction between user appli-

cations and available HW accelerators. This often comes at the cost of introducing

run-time overhead that impacts performance in certain cases. Therefore, it is the goal

of the HW designer to decide on a reasonable trade-off between choosing which part

of the application to accelerate in HW and the design time of the HW accelerators

themselves. In order to achieve this trade-off, we aim to quantify this overhead based

on simple benchmark applications run on the experimental setup. In this section, we

present the overhead incurred from the using the file operations provided by the LKM

for each HW accelerator.

FUSE’s LLFC abstracts HW accelerators as memory-mapped I/O devices from

the user-space and presents them as device files that can be manipulated using the

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 65

traditional file API (e.g. open(), close(), etc.). Figure 5.10 shows the average num-

ber of clock cycles used to execute the open(), close(), mmap(), and munmap() file

operations exported by the LLFC (See Section 4.2.2) for PetaLinux version 2.1. The

time required is very similar to what was measured for PetaLinux version 0.4 using

SW-based timing measurements (∼0.91 ms). These file operations are organized ac-

cording to which of the HW accelerator’s LKM they belong. The impact of using

these specific operations is considered minimal for two reasons: firstly, they are only

called once each time a thread create() call is migrated to run in HW; secondly, the

number of clock cycles they consume is negligible compared to the rest of the file

operation methods that are used for data communications (i.e. thousands of clock

cycles compared to millions of clock cycles).

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

$" &" '%
"

(#
"

%$
"

'#
&"

#)
%"

)'
#"

'!
#$
"

#!
$&
"

$!
*%
"

&'
*#
"

'%
(&
$" $" &" '%
"

(#
"

%$
"

'#
&"

#)
%"

)'
#"

'!
#$
"

#!
$&
"

$!
*%
"

&'
*#
"

'%
(&
$" $" &" '%
"

(#
"

%$
"

'#
&"

#)
%"

)'
#"

'!
#$
"

#!
$&
"

$!
*%
"

&'
*#
"

'%
(&
$" $" &" '%
"

(#
"

%$
"

'#
&"

#)
%"

)'
#"

'!
#$
"

#!
$&
"

$!
*%
"

&'
*#
"

'%
(&
$" $" &" '%
"

(#
"

%$
"

'#
&"

#)
%"

)'
#"

'!
#$
"

#!
$&
"

$!
*%
"

&'
*#
"

'%
(&
$" $" &" '%
"

(#
"

%$
"

'#
&"

#)
%"

)'
#"

'!
#$
"

#!
$&
"

$!
*%
"

&'
*#
"

'%
(&
$"

!
"#
$%
&#
'(
)*
+,
'(
-+
)#
.'

/
0))
0*
1.
'

Read() Write	
 () value	
 =	
 *ptr
(Read	
 using	
 MMAP)

Read	
 using	
 IOCTL() Write	
 using	
 IOCTL() *ptr	
 =	
 value
(Write	
 using	
 MMAP)(in	
 Bytes) (in	
 Bytes)

(in	
 Bytes) (in	
 Bytes)
(in	
 Bytes) (in	
 Bytes)

Figure 5.11: Average number of clock cycles for system calls for data communication
when used within the RunContext() FUSE API helper function, when using PetaLinux
version 2.1 with HW-based time measurements.

To better illustrate the impact of data communication between the TLFC and the

HW accelerator via its LKM, Figure 5.11 shows the average number of clock cycles

(over the 3 LKMs) taken to read and write bytes of data with varying sizes when

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 66

using PetaLinux version 2.1 with HW-based time measurement. Three methods of

data access, supported in a LKM, are investigated:

1. Using the read() and write() system calls, which reads/writes a buffer of data

words to the the HW accelerator via its interface. The read() and write() calls

both perform a similar task, that is, copying data from and to user space. Each

one of these calls specifies the size of the requested data transfer and uses a buffer

pointer, which points to the user buffer holding the data to be written or the

empty buffer where the newly read data should be placed. The LKM accesses

that user buffer by using two special architecture-independent kernel-supplied

functions, called copy to user() and copy from user(). Those two functions are

used to copy each data word from the user space to kernel space and vice versa;

2. Using the IOCTL() system call, which reads/writes a data buffer to the HW ac-

celerator via its interface, similar to read()/write(). The IOCTL() call (short for

I/O ConTroL), in general, offers a way to issue accelerator-specific commands

(such as setting the accelerator’s interface STATUS and COMMAND regis-

ters). We have added new commands to the IOCTL method that will enable

generic read and write functionality as well, similar to read() and write(). How-

ever, these new IOCTL commands use optimized macros that are architecture-

dependent (i.e. MicroBlaze-optimized) to copy data between user space and

kernel space (e.g. inb() and outb());

3. Using memory mapped dereferencing via the mmap() file operation, which es-

tablishes a direct memory map to the accelerator’s address space in the kernel

and the user address space. MMAP enables arrays of data to be copied in a

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 67

single access, thus minimizing the number of transitions between user and kernel

spaces.

These three methods were considered for the implementation of the RunContext()

helper function in the TLFC. According to Figure 5.11, using the read() and write()

calls for data communications requires the most clock cycles to execute as the data set

increases in size. The IOCTL approach generally requires a longer execution time as

well. However, it is less compared to the execution time for the read() and write() calls.

Both read()/write() and IOCTL() methods perform multiple transitions between the

user space and kernel space to transfer data from a user space buffer. However,

IOCTL requires fewer clock cycles due to its use of an architecture-dependent set of

optimized macros to perform the data transfer. This is in comparison to the kernel-

specific architecture-independent copy to user() and copy from user() kernel function

calls used by read() and write(), respectively.

The apparent overhead from both of these methods inhibits the potential perfor-

mance speedup to be gained from HW acceleration. Conversely, the MMAP approach

is a far more efficient way to provide bulk data transfer between the TLFC and the

HW accelerator; individual IOCTL() or read()/write() calls inflict overhead due to

repeated transitions between the user and kernel space of the OS, where as the MMAP

approach allows entire data sets to be transferred with only one system call, greatly

reducing the overhead and enabling significant performance gains. Consequently, we

opted to use MMAP to set up memory-mapped direct-access to the accelerator for

data communications, only using IOCTL calls for sending and receiving individual

control values to the HW accelerator interface’s FSM or STATUS/COMMAND reg-

isters. We decided not to use the read() and write() calls due to their large overhead,

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 68

even though they are still implemented by each LKM in FUSE.

Figure 5.12a shows the average number of clock cycles taken to read and write

bytes of data with varying sizes when using PetaLinux version 2.1, obtained using SW-

based time measurements. This is a repetition of the same experiment performed with

HW-based timing measurements (recall Figure 5.11). We see that both Figure 5.11

and Figure 5.12a demonstrate the same trends for the three data transfer methods

(i.e. read()/write(), IOCTL(), and MMAP-based pointer dereferencing), with the

MMAP-based method as the ideal choice to transfer data between the TLFC and

the HW Accelerator (see Figure 5.12b). However, it can be clearly seen that using a

SW-based method for time measurement results in a lower average number of clock

cycles used (i.e. millions for the HW-based method vs. thousands for the SW-based

method), which clearly explains why the performance speedup was higher for the three

example applications when PetaLinux 0.4 was used. Consequently, we see that using

a SW-based method of obtaining measurements does not provide sufficient precision

compared to the more precise HW-based method to obtain timing and clock cycle

measurements.

CHAPTER 5. EVALUATION AND EXPERIMENTAL RESULTS 69

!"

#"

$"

%"

&"

'"

("

)"

&" *" #(
"

%$
"

(&
"

#$
*"

$'
("

'#
$"

#!
$&
"

$!
&*
"

&!
+(
"

*#
+$
"

#(
%*
&" &" *" #(
"

%$
"

(&
"

#$
*"

$'
("

'#
$"

#!
$&
"

$!
&*
"

&!
+(
"

*#
+$
"

#(
%*
&" &" *" #(
"

%$
"

(&
"

#$
*"

$'
("

'#
$"

#!
$&
"

$!
&*
"

&!
+(
"

*#
+$
"

#(
%*
&" &" *" #(
"

%$
"

(&
"

#$
*"

$'
("

'#
$"

#!
$&
"

$!
&*
"

&!
+(
"

*#
+$
"

#(
%*
&" &" *" #(
"

%$
"

(&
"

#$
*"

$'
("

'#
$"

#!
$&
"

$!
&*
"

&!
+(
"

*#
+$
"

#(
%*
&" &" *" #(
"

%$
"

(&
"

#$
*"

$'
("

'#
$"

#!
$&
"

$!
&*
"

&!
+(
"

*#
+$
"

#(
%*
&"

!
"#
$%
&#
'(
)*
+,
'(
-+
)#
.'

/
0))
0*
1.
'

Read() Write	
 () value	
 =	
 *ptr
(Read	
 using	
 MMAP)

Read	
 using	
 IOCTL() Write	
 using	
 IOCTL() *ptr	
 =	
 value
(Write	
 using	
 MMAP)(in	
 Bytes) (in	
 Bytes)

(in	
 Bytes) (in	
 Bytes)
(in	
 Bytes) (in	
 Bytes)

(a) Average number of clock cycles for system calls for data communication when used within the
RunContext() FUSE API helper function, when using PetaLinux version 2.1 with SW-based time
measurements

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

&" *" #(" %$" (&" #$*" $'(" '#$" #!$&" $!&*" &!+(" *#+$" #(%*&" &" *" #(" %$" (&" #$*" $'(" '#$" #!$&" $!&*" &!+(" *#+$" #(%*&"

!
"#
$%
&#
'(
)*
+,
'(
-+
)#
.'

/0
*1

.%
23

.'

value	
 =	
 *ptr
(Read	
 using	
 MMAP)

*ptr	
 =	
 value
(Write	
 using	
 MMAP)

(in	
 Bytes) (in	
 Bytes)

(b) Average number of clock cycles for MMAP-based system call for data communication when
used within the RunContext() FUSE API helper function, when using PetaLinux version 2.1 with
SW-based time measurements (enlarged MMAP region of 5.12a)

Figure 5.12: Average number of clock cycles for system calls for data communication
when used within the RunContext() FUSE API helper function, when using PetaLinux
version 2.1 with SW-based time measurements

Chapter 6

Conclusion and Future Work

In this chapter, we summarize the contributions of this work, draw conclusions from

the results, and outline future research directions.

6.1 Contributions

Although the concept of operating system support for FPGA-based SoC computing

platforms is not new, most research approaches have focused on the management of

the FPGA area and few have focused on the integration of hardware accelerators into

the programming and execution environment of the operating system. The purpose

of this integration is to provide an abstraction to leverage their heterogenous aspect;

specifically when the system has one or more hardware accelerators.

In this thesis, we have presented FUSE, a framework for abstracting computing

architectures from SW designers creating multithreaded applications. FUSE provides

transparent integration of HW accelerators into the design by virtualizing HW accel-

erators from SW designers so they can be treated as “HW tasks” of execution. In

70

CHAPTER 6. CONCLUSION AND FUTURE WORK 71

particular, we have provided the following contributions:

• We have devised and implemented a user-level software library that acts as a

wrapper for a widely used multithreading programming model and also incorpo-

rates new policies to enable applications to use HW accelerators in the system.

• We have devised and implemented low-level OS support for HW accelerators

that tie into the user-level software library. This low-level support is both mod-

ular and can be added dynamically to a running system.

• We implemented a customizable HW Accelerator Interface, which enables HW

designers to easily port HW accelerators to be used in the system.

• We have integrated our framework within an established embedded operating

system, Linux, thus leveraging a wide range of software applications and li-

braries.

6.2 Conclusions

By demonstrating our FUSE framework on a FPGA-based SoC platform running

PetaLinux OS for three different applications, we showed that performance speedup

can be achieved when using HW accelerators. However, this performance speedup

is directly dependent on the applications execution time and also on the run-time

overhead if HW accelerators are being used by the application.

We can conclude that an application’s potential performance speedup is greatly af-

fected by its execution time. In order for HW accelerator(s) to achieve visible speedup

within an application, the run-time overhead must be minimal when compared to the

CHAPTER 6. CONCLUSION AND FUTURE WORK 72

total application execution time. This is clearly suitable for applications that operate

on large amounts of data rather than a smaller data sets. We have quantified the

run-time overhead incurred from using this framework with the MMAP approach and

corresponding kernel support for both static and DPR-based systems. For our case

studies, performance speedups (measured via HW-based cycle counters) for static

SoC platforms range from 5.8x-9.0x for PetaLinux OS version 2.1, dropping to 4.1x-

6.4x when LKM linking overhead is included. When using PetaLinux OS version 0.4,

performance speedups (measured via SW-based timers) ranged from 37x-6.4x and

dropped to 11x-4.7x when LKM linking overhead is included.

6.3 Future Work

Based on the work presented in this thesis, we see several major directions of future

research:

Accelerator Communications: To enable HW accelerators to independently mar-

shall data during their execution, an investigation into using a DMA path to the phys-

ical memory from the accelerator’s interface is a possible future research direction for

this thesis. Supporting DMA would reduce the overhead of data transfer between

SW tasks and HW tasks. Research related to this thesis is currently investigating

direct memory path from the HW accelerator’s interface to the Level 2 (L2) cache on

a MicroBlaze-based SMP SoC supporting cache coherency.

Communication Networks: Another possible future work is using communication

network structures other than the shared-bus example we illustrated in this work

and compare the impact on the overhead. For example, a Network-on-Chip (NoC)

CHAPTER 6. CONCLUSION AND FUTURE WORK 73

structure could be used to connect multiple HW accelerators and multiple processors

with more efficiency and scalability than a shared-bus structure.

Partial Reconfiguration of Accelerators: How the bitstreams for reconfiguring

HW accelerators can be loaded in parallel with their LKMs to mask some of the

runtime overhead. This area of research is still new and the possibilities for having

a run-time reconfigurable SoC to adapt its HW accelerators to changing application

requirements are many-fold.

Bibliography

[1] S. Hauck and A. DeHon, Reconfigurable Computing: The Theory and Practice of
FPGA-Based Computation. Burlington, MA: Morgan Kauffman, 2007.

[2] N. Ohba and K. Takano, “An SoC design methodology using FPGAs
and embedded microprocessors,” in Proceedings of the 41st annual Design
Automation Conference, ser. DAC ’04. New York, NY, USA: ACM, 2004, pp.
747–752. [Online]. Available: http://doi.acm.org/10.1145/996566.996769

[3] P. Garcia, K. Compton, M. Schulte, E. Blem, and W. Fu, “An overview
of reconfigurable hardware in embedded systems,” EURASIP Journal on
Embedded Systems, vol. 2006, pp. 13–13, January 2006. [Online]. Available:
http://dx.doi.org/10.1155/ES/2006/56320

[4] C. Crowley, Operating Systems: A Design-Oriented Approach. McGraw-Hill
Professional, 1996.

[5] W. Wolf, “A decade of hardware/software codesign,” Computer, vol. 36, no. 4,
pp. 38–43, April 2003.

[6] E. Lübbers and M. Platzner, “ReconOS: Multithreaded programming for recon-
figurable computers,” ACM Trans. Embed. Comput. Syst., vol. 9, no. 1, pp. 1–33,
2009.

[7] W. Peck, E. Anderson, J. Agron, J. Stevens, F. Baijot, and D. Andrews,
“Hthreads: A Computational Model for Reconfigurable Devices,” in Proc. of
the IEEE Intl. Conf. on Field Programmable Logic and Applications, 2006.

[8] Petalogix Inc. (2009, February) Linux solutions for a reconfigurable world.
[Online]. Available: http://www.petalogix.com

[9] Xilinx Inc. (2011, June) FPGA, CPLD, and EPP solutions from Xilinx, Inc.
[Online]. Available: http://www.xilinx.com/

74

BIBLIOGRAPHY 75

[10] D. Brasen, “ASIC Prototyping with Reprogrammable Implementations of
Large ASICs,” in Proceedings of the 7th IEEE International Work-
shop on Rapid System Prototyping (RSP ’96), ser. RSP ’96. Wash-
ington, DC, USA: IEEE Computer Society, 1996. [Online]. Available:
http://portal.acm.org/citation.cfm?id=827259.828061

[11] R. Hartenstein, “Trends in reconfigurable logic and reconfigurable computing,” in
Electronics, Circuits and Systems, 2002. 9th International Conference on, vol. 2,
2002, pp. 801–808.

[12] W.-T. Zhang, L.-F. Geng, D.-L. Zhang, G.-M. Du, M.-L. Gao, W. Zhang, N. Hou,
and Y.-H. Tang, “Design of heterogeneous MPSoC on FPGA,” in Proceedings of
the 7th International Conference on ASIC, 2007. ASICON ’07., oct. 2007, pp.
102–105.

[13] Xilinx Inc. (2011, June) Virtex 2 Platform FPGA datasheet. [Online]. Available:
http://www.xilinx.com/support/ documentation/data sheets/ds083.pdf

[14] ——. (2011, June) Virtex 5 Platform FPGA Family Overview. [Online]. Avail-
able: http://www.xilinx.com/support/ documentation/data sheets/ds100.pdf

[15] ——. (2011, June) 7 Series FPGA Overview. [On-
line]. Available: http://www.xilinx.com/support/documentation/
data sheets/ds180 7Series Overview.pdf

[16] Altera Inc. (2011, June) Stratix V Device Family Overview. [Online]. Available:
http://www.altera.com/literature/ hb/stratix-v/stx5 51001.pdf

[17] ——. (2011, June) Cyclone VI Device Family Overview. [Online]. Available:
http://www.altera.com/literature/ hb/cyclone-iv/cyiv-51001.pdf

[18] A. DeHon, “The density advantage of configurable computing,” Computer,
vol. 33, no. 4, pp. 41–49, April 2000.

[19] M. Abramovici, C. Stroud, and M. Emmert, “Using Embedded FPGAs for SoC
Yield Improvement,” in Proc. ACM/IEEE Design Automation Conference, 2002,
pp. 713–724.

[20] D. Pellerin and S. Thibault, Practical FPGA programming in C, 1st ed. Upper
Saddle River, NJ, USA: Prentice Hall Press, 2005.

[21] D. Sheldon, R. Kumar, R. Lysecky, F. Vahid, and D. Tullsen, “Application-
specific customization of parameterized FPGA soft-core processors,” in
Proceedings of the 2006 IEEE/ACM international conference on Computer-aided

BIBLIOGRAPHY 76

design, ser. ICCAD ’06. New York, NY, USA: ACM, 2006, pp. 261–268.
[Online]. Available: http://doi.acm.org/10.1145/1233501.1233553

[22] Xilinx Inc. (2010, February) Picoblaze Soft Processor User
Guide. [Online]. Available: http://www.xilinx.com/support/documentation/
ip documentation/ug129.pdf

[23] Altera Inc. (2011, May) The NIOS Soft CPU Family. [Online]. Available:
http://www.altera.com/literature/hb/nios2/n2cpu nii5v1.pdf

[24] Xilinx Inc. (2008, January) The Microblaze processor reference
guide. [Online]. Available: http://www.xilinx.com/support/documentation/
sw manuals/mb ref guide.pdf

[25] T. Marescaux, V. Nollet, J.-Y. Mignolet, A. Bartic, W. Moffat, P. Avasare,
P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins, “Run-time support
for heterogeneous multitasking on reconfigurable SoCs,” The VLSI Journal
on Integration, vol. 38, pp. 107–130, October 2004. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1056481.1056488

[26] P. Ienne and R. Leupers, Customizable Embedded Processors–Design Technologies
and Applications. Morgan Kaufmann, 2006.

[27] A. Upegui and E. Sanchez, “Evolving Hardware by Dynamically Reconfiguring
Xilinx FPGAs,” in International Conference on Evolvable Systems, 2005, pp.
56–65.

[28] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgeford, “Enhanced Ar-
chitecture, Design Methodologies and CAD Tools for Dynamic Reconfiguration
for Xilinx FPGAs,” in International Conference on Field Programmable Logic
and Applications (FPL), 2006, pp. 1–6.

[29] P. B. Hansen, Operating system principles. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1973.

[30] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts, 8th ed.
Wiley Publishing, 2008.

[31] J. Burns, A. Donlin, J. Hogg, S. Singh, and M. de Wit, “A Dynamic Reconfig-
uration Run-Time System,” in Proceedings of the 5th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines, Napa Valley, CA, USA,
April 1997.

BIBLIOGRAPHY 77

[32] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins, “Designing
an operating system for a heterogeneous reconfigurable SoC,” in International
Proceedings of the Parallel and Distributed Processing Symposium, april 2003, p.
7 pp.

[33] G. Wigley and D. Kearney, “The Development of an Operating System for Re-
configurable Computing,” in In Proceedings of the IEEE Symposium on FPGAs
for Custom Computing Machines (FCCM). IEEE CS, 2001.

[34] ——, “Research Issues in Operating Systems for Reconfigurable Computing,” in
in Proceedings of the International Conference on Engineering of Reconfigurable
Systems and Algorithms, 2002, pp. 10–16.

[35] QNX Software Systems. (2011, August) Middleware, development tools, realtime
operating system software and services for superior embedded design. [Online].
Available: http://www.qnx.com

[36] Xilinx Inc. (2011, June) OS and Libraries Document Collec-
tion. [Online]. Available: http://www.xilinx.com/support/documentation/
sw manuals/edk10 oslib rm.pdf

[37] C. Patterson, “A Dynamic Module Server for Embedded Platform FPGAs,” in
Engineering of Reconfigurable Systems and Algorithms, ser. ERSA ’03, 2003, pp.
31–40.

[38] J. Tong, I. Anderson, and M. Khalid, “Soft-core processors for embedded sys-
tems,” in Microelectronics, 2006. ICM ’06. International Conference on, Decem-
ber 2006, pp. 170–173.

[39] H. Calderon, C. Elena, and S. Vassiliadis, “Soft Core Processors and Embedded
Processing: a survey and analysis,” in Conference Proceedings, 2005, pp. 483–488.

[40] J. Williams and N. Bergmann, “Reconfigurable Linux for Spaceflight Applica-
tions,” in In Proceedings of Military and Aerospace Programmable Logic Devices,
2004.

[41] ——, “Embedded Linux as a platform for dynamically self-reconfiguring systems-
on-chip,” in In Proceedings of International Conference on Engineering of Recon-
figurable Systems and Algorithms, ser. ERSA ’04, 2004.

[42] V. Rana, M. Santambrogio, D. Sciuto, B. Kettelhoit, M. Koester, M. Porrmann,
and U. Ruckert, “Partial dynamic reconfiguration in a multi-FPGA clustered
architecture based on Linux,” in IEEE International Symposium on Parallel and
Distributed Processing., Mar 2007, pp. 1–8.

BIBLIOGRAPHY 78

[43] K. Kosciuszkiewicz, F. Morgan, and K. Kepa, “Transparent management of re-
configurable hardware in embedded operating systems,” in IEEE Computer Sym-
posium on Emerging VLSI Technologies and Architectures, vol. 00, Mar 2006, pp.
432–433.

[44] H. K.-H. So and R. Brodersen, “A unified hardware/software runtime environ-
ment for FPGA-based reconfigurable computers using BORPH,” ACM Trans.
Embed. Comput. Syst., vol. 7, no. 2, pp. 1–28, 2008.

[45] K. Kosciuszkiewicz, F. Morgan, and K. Kepa, “Run-Time Management of Recon-
figurable Hardware Tasks Using Embedded Linux,” in International Conference
on Field-Programmable Technology., Dec 2007, pp. 209–215.

[46] X. Xie, J. Williams, and N. Bergmann, “Asymmetric multiprocessor architecture
for reconfigurable system-on-chip and operating system abstractions,” in Inter-
national Conference on Field-Programmable Technology., Dec 2007, pp. 41–48.

[47] N. W. Bergmann, J. A. Williams, J. Han, and Y. Chen, “A
Process Model for Hardware Modules in Reconfigurable System-on-
Chip,” in ARCS Workshops, 2006, pp. 205–214. [Online]. Available:
http://subs.emis.de/LNI/Proceedings/Proceedings81/article4365.html

[48] J. A. Williams, N. W. Bergmann, and X. Xie, “FIFO Communication Models in
Operating Systems for Reconfigurable Computing,” in Proceedings of the 13th
Annual IEEE Symposium on Field-Programmable Custom Computing Machines.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 277–278. [Online].
Available: http://portal.acm.org/citation.cfm?id=1090947.1091332

[49] N. Moore, A. Conti, M. Leeser, and L. S. King, “Vforce:
An Extensible Framework for Reconfigurable Supercomputing,” Com-
puter, vol. 40, pp. 39–49, March 2007. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1251558.1251715

[50] D. Andrews et al., “Programming Models for Hybrid FPGA-CPU Computational
Components: A Missing Link,” IEEE Micro, vol. 24, pp. 42–53, Apr. 2004.

[51] P. Garcia and K. Compton, “A reconfigurable hardware interface for a modern
computing system,” in IEEE Symposium on Field-Programmable Custom Com-
puting Machines., April 2007, pp. 73 –84.

[52] K. Rupnow, W. Fu, and K. Compton, “Block, Drop or Roll(back): Alterna-
tive preemption methods for RH multi-tasking,” in IEEE Symposium on Field-
Programmable Custom Computing Machines., 2009, pp. 63–70.

BIBLIOGRAPHY 79

[53] V.-M. Sima and K. Bertels, “Runtime decision of hardware or software execution
on a heterogeneous reconfigurable platform,” in IEEE International Symposium
on Parallel Distributed Processing., May 2009, pp. 1–6.

[54] K. Sigdel, M. Thompson, A. Pimentel, C. Galuzzi, and K. Bertels, “System-
level runtime mapping exploration of reconfigurable architectures,” in IEEE Intl.
Symposium on Parallel Distributed Processing., May 2009, pp. 1–8.

[55] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers, 3rd Edition.
O’Reilly Media, Inc., 2005.

[56] B. Lewis and D. J. Berg, Multithreaded programming with Pthreads. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1998.

[57] The IEEE and The Open Group, The Open Group Base Specifications Issue 6 –
IEEE Std 1003.1, 2004 Edition. New York, NY, USA: IEEE, 2004. [Online].
Available: http://www.opengroup.org/onlinepubs/009695399/

