
NONPARAMETRIC METHOD AND HIERARCHICAL

BAYESIAN APPROACH FOR PARAMETER

ESTIMATION AND PREDICTION

by

Jing Cai

B.Eng, South China University of Technology, 1997

a project submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the

Department of Statistics and Actuarial Science

Faculty of Science

c© Jing Cai 2011

SIMON FRASER UNIVERSITY

Summer 2011

All rights reserved.

However, in accordance with the Copyright Act of

Canada, this work may be reproduced without authorization under the

conditions for Fair Dealing. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law, particularly

if cited appropriately.



APPROVAL

Name: Jing Cai

Degree: Master of Science

Title of project: Nonparametric Method and Hierarchical Bayesian

Approach for Parameter Estimation and Pre-

diction

Examining Committee: Dr. Yi Lu

Chair

Dr. Jiguo Cao, Senior Supervisor

Simon Fraser University

Dr. David Alexander Campbell, Internal Exam-

iner

Simon Fraser University

Dr. Carl James Schwarz, External Examiner

Simon Fraser University

Date Approved: August 19, 2011

ii



 

Partial Copyright Licence 

  

 



Abstract

Obtaining accurate estimates or prediction from available data is one of the important

goals in statistical research. In this thesis, we propose two new statistical methods,

with examples of application and simulation studies, to achieve this goal. The para-

metric penalized spline smoothing procedure is a flexible algorithm that requires no

restricted parametric assumption and is proved to obtain more accurate estimates of

curves and derivatives than available methods. In the second part of thesis, we propose

a hierarchical Bayesian approach to estimate dynamic engineering model parameters

and their mixed effects. This approach has the benefits of solving the identifiability

problem of model parameters and accurately estimating these parameters from right

censored data. It is further investigated with simulated data to perform predictions.

Predicting quality with this method is proved to be better than that from procedures

without considering censoring situation.
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Chapter 1

Introduction

In inferential statistics, it is important to obtain accurate estimates. An optimal

estimate provides the ”best possible” approximation drawn from the available data,

which in turn can improve the quality of prediction. Many estimators with their

corresponding estimation process have been proposed for achieving this goal. For ex-

ample, some commonly used estimators are maximum likelihood, method of moments,

minimum variance unbiased estimator and Markov chain Monte Carlo. Estimation

process of these estimators may require parametric or nonparametric assumptions. In

addition to these existing estimation process, we propose two new methods developed

from my master research projects, which use functional data analysis techniques or

hierarchical Bayesian approach.

The parametric penalized spline smoothing (PPSS) method, introduced in Chap-

ter 2, estimates time-dependent smooth curves and their derivatives through some

combination of B-spline basis functions. It is a flexible procedure because it performs

estimation nonparametrically. However, unlike other nonparametric algorithms that

completely ignore expert opinion about the underlying function, PPSS penalizes the

distance between the nonparametric estimate and the parametric function which is

proposed base on expert opinion or prior knowledge of the underlying function. It

further controls the roughness of the nonparametric estimate by assigning optimal

values to the smooth parameters. From the simulation studies, this method is proved

to obtain more accurate estimates than the existing procedures. It is further applied

1



CHAPTER 1. INTRODUCTION 2

to the longitudinal growth measurements of one girl, which are provided in a Berkeley

growth study (Tuddenham & Snyder, 1954). We illustrate the quality of the estima-

tion and statistical inferences, such as the 95% point-wise confidence interval of the

growth curve, first and second derivatives, through tables and graphs in Chapter 2.

Hierarchical Bayesian approach is often employed to investigate nonlinear mixed

effects model. We propose a simultaneous hierarchical model, in Chapter 3, to es-

timate dynamic parameters and their mixed effects for duration-of-load problem in

wood science. Our proposed hierarchical approach considers the uniqueness of wood

specimens by introducing random effects to the parameters in the existing engineer-

ing model. In addition, our proposed Bayesian model can conduct more accurate

estimation from censored observations than procedures that do not take into account

the censoring situation. It is further proved, through simulation studies, that our

proposed method can perform better prediction on unobserved measurements than

procedures without considering censoring. Tables and graphs illustrating the quality

of estimation and prediction are presented in Chapter 3.



Chapter 2

Parametric Penalized Spline

Smoothing

2.1 Introduction

Intensive research have been conducted to model human growth over time, known as

the human height function. Several parametric models have been widely adopted in

research and thought to be sensible. For example, Preece and Baines proposed PB-1

model in 1978 (Preece & Baines, 1978); Bock and Thissen suggested a triple logistic

model in 1980 (Bock & Thissen, 1980); Kanefuji and Shohoji derived two models in

1990 (Kanefuji & Shohoji, 1990); and Jolicoeur and his co-workers proposed three

different models from 1988 to 1992 (Jolicoeur et al., 1992, 1988). However, these

parametric models may not be completely valid for the height function, because they

cannot properly model the entire growth curve or the rate of change (Jolicoeur et al.,

1992).

To relax the parametric assumption, it is also popular to apply nonparametric

smoothing methods to estimate the human growth curve and its derivatives (Gasser

et al., 1985, 1984; Ramsay et al., 1994; Ramsay & Silverman, 2005). These non-

parametric smoothing methods estimate the growth curve completely from the data

without making any parametric assumptions. A shortcoming of these methods is

that they completely ignore expert opinion or prior knowledge of the growth curve as

3



CHAPTER 2. PARAMETRIC PENALIZED SPLINE SMOOTHING 4

reflected in the parametric models.

Motivated by the above dilemma, a general parametric penalized spline smoothing

method is proposed in order to combine both information from the data and expert

opinion. The parametric penalized spline smoothing method still estimates the under-

lying function nonparametrically. The nonparametric function is evaluated with three

terms: the first term measures the fit of the nonparametric function to the data, the

second term measures the distance of the nonparametric function to the parametric

model proposed based on expert opinion, and the third term controls the roughness

of the nonparametric function. These three terms are added together to evaluate the

overall performance of the nonparametric function. The smoothing parameters con-

trol the trade-off between fitting to data, fidelity to the parametric model, and the

roughness of the nonparametric function.

The rest of the paper is organized as follows. The parametric penalized spline

smoothing method is introduced in Section 2. This method has been evaluated by

simulation study in Section 3. It is also compared with a parametric nonlinear regres-

sion model and the penalized spline smoothing algorithms. The parametric penalized

spline smoothing method is demonstrated by estimating the human height function

and its derivatives from the real data in Section 4. Finally, conclusions are given in

Section 5.
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2.2 Method

Suppose a function x(t) is measured at some discrete points ti, i = 1, · · · , n. These

measurements are denoted as yi and have a mean x(ti). Our objective is to estimate

the function x(t) from the noisy measurements yi.

If we have prior knowledge of x(t), a parametric form may be assumed for this

underlying function, denoted h(t|θ). The parameter θ can be estimated by the regres-

sion method proposed in Bates & Watts (1988). However, the parametric function

may not be completely valid for capturing the true underlying function. Therefore,

several nonparametric methods are proposed to estimate x(t) without making any

parametric assumption on x(t).

One popular nonparametric method is the spline smoothing method proposed in

Ramsay & Silverman (2005). If we let φg(t), g = 1, . . . , G, be some basis functions,

then any smooth function, x(t), can be approximated with a linear combination of

these basis functions

x(t) =
G∑
g=1

cgφg(t) = φ(t)Tc , (2.1)

where φ(t) = (φ1(t), . . . , φG(t))T is a vector of basis functions, and c = (c1, . . . , cG)T

is a vector of basis coefficients. The basis coefficients can be estimated by minimizing

the error sum of squares;

SSE(c) =
n∑
i=1

(yi − x(ti))
2 .

Basis functions are often chosen as B-spline basis functions de Boor (2001) because

they are only non-zero in local intervals. This property is called compact support,

which is essential for efficient computation. The B-spline basis functions are deter-

mined by the number of knots and their locations. The number of basis functions,

G, equals sum of the implied degree of the B-spline basis functions and the number

of interior knots plus one. It is not easy to choose the optimal number of knots and

their locations, which is an infinite dimensional optimization problem. Methods for

knot selection are discussed in Eubank (1988), Friedman & Silverman (1989), Wahba
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(1990), Friedman (1991) and Stone et al. (1997). These methods select knots from a

set of candidate knots using a technique similar to stepwise regression.

An alternative method is penalized spline smoothing. It uses a saturated number

of basis functions. For example, one knot is put at each location with an observation.

To prevent from over-fitting the data, a roughness penalty term is added to control

the smoothness of the fitted curve. This is often defined by the derivative of the fitted

curve. The basis coefficients are then estimated by minimizing the penalized error

sum of squares:

PENSSE(c) =
n∑
i=1

(yi − x(ti))
2 + λ

∫ tn

t1

[
dmx(t)

dtm

]2
dt .

If our main interest is to estimate the nonparametric function, x(t), then m is usually

set to 2; otherwise, m is chosen as m = j + 2 if the derivative djx(t)/dtj, j = 1, 2, . . .,

is required to be estimated.

The penalized spline smoothing method completely relies on the data and ignores

any expert opinion of the underlying function. In order to make up for this shortcom-

ing, the parametric penalized spline smoothing method is proposed to combine both

information from the data and expert opinion. Suppose some parametric function,

denoted h(t|θ), is proposed to model the underlying function, x(t), based on some

expert opinion, which may not be completely valid for the underlying function. The

parametric penalized spline smoothing method estimates x(t) as a linear combination

of basis functions as defined in (2.1). A saturated number of basis functions are chosen

here. The basis coefficients are estimated by minimizing

J(c|θ) =
n∑
i=1

(yi − x(ti))
2 + λ1

∫ tn

t1

[x(t)− h(t|θ)]2dt+ λ2

∫ tn

t1

[
dmx(t)

dtm

]2
dt , (2.2)

where the first term measures the fit to the data, the second term measures the

fidelity to the parametric model, and the last term controls the roughness of the

fitted function. The smoothing parameters, λ1 and λ2, control the trade-off among

these three terms.

Given any value of θ, the estimate for the basis coefficients can be derived by
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minimizing J(c|θ):

ĉ(θ) = [ΦTΦ + Q + R]−1[ΦTy + η(θ)] ,

where Φ is a n × G basis matrix with the (i, g)-entry as φg(ti), the data vector

y = (y1, . . . , yn)T , and

Q = λ1

∫ tn

t1

φ(t)φ(t)Tdt,

R = λ2

∫ tn

t1

Dmφ(t)Dmφ(t)Tdt,

η(θ) = λ1

∫ tn

t1

φ(t)h(θ, t)dt.

The conditional estimate ĉ(θ) is a function of θ. The parameter θ can be estimated

by minimizing the error sum of squares

H(θ) =
n∑
i=1

[yi − x̂(ti)]
2 =

n∑
i=1

[yi − ĉ(θ)Tφ(ti)]
2 .

To summarize, the basis coefficients c and θ are estimated at two nested levels of

optimization. In the inner optimization level, c is estimated conditional on θ. In the

outer optimization level, c is removed from the parameter space as a function of θ,

and θ is then estimated. This estimation procedure is called parameter cascading,

which has been applied to estimate differential equations (Ramsay et al., 2007) and

to estimate linear mixed-effects models (Cao & Ramsay, 2010).

One could tune the trade-off between the smoothness of the fitted function and

its distance to the parametric function by varying the values of λ1 and λ2 in equation

(2.2). This flexibility is one advantage of the parametric penalized spline smoothing

method. The values for λ1 and λ2 may be chosen subjectively based on expert opinion

of the underlying function. We also propose K-fold cross-validation as the objective

criterion to choose the optimal values for λ1 and λ2.

In the K-fold cross-validation, the original data are randomly partitioned into K

subsets. Of the K subsets, K-1 subsets of data are used to estimate the nonparamet-

ric function x̂(−k)(t), and the remaining subset of data is retained as the validation
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data set for testing the fit of the nonparametric function x̂(−k)(t). The above cross-

validation process is repeated K times, with each of the K subsets used exactly once as

the validation data set. The K results are then averaged. The K-fold cross-validation

can be expressed as

KCV(λ1, λ2) =
1

K

K∑
k=1

∑
i∈πk

[yi − x̂(−k)(ti)]2 , (2.3)

where π1, . . . , πK is the partition of the set {1, 2, . . . , n}, and x̂(−k)(t) is the fitted curve

from the data excluding those indexed from the set πk. Ten-fold cross-validation is

used in the simulation and application of this paper.



CHAPTER 2. PARAMETRIC PENALIZED SPLINE SMOOTHING 9

2.3 Simulation Studies

Some simulation studies are implemented to evaluate the performance of the para-

metric penalized spline smoothing method, and to compare it with the parametric

nonlinear regression method and the penalized spline smoothing method.

2.3.1 Simulation 1

Many reasonable parametric height functions have been proposed. Among them, the

JPA function (Jolicoeur et al., 1992), h(t|θ), and the PB function (Preece & Baines,

1978), f(t|θ), are chosen as the true functions in our simulation studies. These two

parametric functions are expressed as

JPA : h(t|θ1) = A
[B1(t+ E)]C1 + [B2(t+ E)]C2 + [B3(t+ E)]C3

1 + [B1(t+ E)]C1 + [B2(t+ E)]C2 + [B3(t+ E)]C3
(2.4)

PB : f(t|θ2) = A− 2(A−B)

exp[(t− E)/D1] + exp[(t− E)/D2]
, (2.5)

where θ1 = (A,B1, B2, B3, C1, C2, C3, E)T is a vector of parameters in the JPA func-

tion h(t|θ1), and θ2 = (A,B,D1, D2, E)T is a vector of parameters in the PB function

f(t|θ2). The true parameter values for θ1 and θ2 are set as the nonlinear regression es-

timates from real height measurements of one girl in a Berkeley growth study (Tudden-

ham & Snyder, 1954), which are θ1 = (166.91, 0.56, 0.13, 0.08, 0.53, 3.41, 23.84, 0.0001)T

and θ2 = (167.291, 158.293, 7.886, 0.804, 14.018)T . Figure 2.1 displays the JPA and

PB functions, and their first and second derivatives using the true parameter values.

It shows that these two functions are almost identical to each other using the true

parameter values, but their first and second derivatives are very different. Each true

function is evaluated at 31 points from age 1 to age 18, with spacing quarterly while

the child is one year old, annually from two to eight years, and biannually thereafter.

These time points are also consistent with the Berkeley growth data. The simulated

data are then generated by adding white noise with a variance of σ2 to the true val-

ues. We use 3, 7, 10, 20, 30, 40 millimeters as our values of σ and evaluate the three

estimation methods under different scales of measurement error. The simulation is

implemented with 500 replicates.
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Figure 2.1: The JPA function 2.4 and the PB function 2.5, and their first and second
derivatives using the true parameter values. The dashed lines are the estimates for
the curve, x(t), the first derivative, x′(t), and the second derivative, x′′(t), using the
parametric penalized spline smoothing method (PPSS) when the PB function is the
true function used to simulate data. The PPSS estimates are almost identical to the
true ones.
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Four methods are compared based on how accurately they estimate the height

function and the first and second derivatives from noisy data. The first method is

the parametric nonlinear regression (PNR), where the JPA function is chosen as the

parametric function. The second method is the penalized spline smoothing (PSS)

method, in which order 6 B-spline basis functions are chosen with one knot put in

each measurement location. The roughness penalty term is defined with the second

or fourth derivatives of the nonparametric function, which are called PSS2 and PSS4,

respectively. The third method is the parametric penalized spline smoothing (PPSS)

method. It uses the same basis functions as the penalized spline smoothing method,

but the roughness penalty term is defined with the fourth derivatives of the nonpara-

metric function. The parametric function h(t|θ1) in equation (2.2) is chosen as the

JPA function. The fourth method is Wahba’s standard smoothing splines method,

which is implemented using the gss package in R.

These four methods are evaluated by comparing their average point-wise root

mean squared errors (RMSEs) for the estimates of the height function and the first

and second derivatives, which are defined as

RMSE(x̂(t)) =
1

n

n∑
i=1

√√√√ 1

500

500∑
j=1

[x̂j(ti)− x(ti)]2 ,

RMSE(x̂′(t)) =
1

n

n∑
i=1

√√√√ 1

500

500∑
j=1

[
x̂′j(ti)− x′(ti)

]2
,

RMSE(x̂′′(t)) =
1

n

n∑
i=1

√√√√ 1

500

500∑
j=1

[
x̂′′j (ti)− x′′(ti)

]2
,

where x̂j(ti), x̂
′
j(ti), x̂

′′
j (ti), i = 1, . . . , n, j = 1, . . . , 500, are the estimated height

function and the first and second derivatives in the j-th simulation at time ti, and

x(ti), x
′(ti) and x′′(ti), are the true height function and the first and second derivatives

at time ti .

When the PB function is the true function used to simulate data, Table 2.1 displays

the average point-wise RMSEs for the estimates of the height function and the first

and second derivatives using the four methods. The PPSS method is always better
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than the other three methods. The PNR method is sensitive to the variance of the

noise, performing much better with a small variance. Both the PPSS method and PSS

method are relatively robust to the variance of the noise. Because the gss package

is only able to estimate x(t), the first and second derivatives, x′(t) and x′′(t), are

estimated using the finite-difference method from the estimated x̂(t). The smoothing

spline method has smaller RMSEs for x̂(t) and x̂′(t) than the PSS method, but the

RMSE for x̂′′(t) is very large, which may be caused by the error from the finite-

difference method.

In terms of estimating the growth function, x(t), the PPSS method is slightly

better than the PNR method, and reduced the RMSE by about 15% more than

the PSS4 method. When estimating the first derivative, x′(t), the PPSS method

only reduces the RMSE by 1% more than the PNR method when σ = 3, but this

improvement increased to 10% when σ = 10. The RMSEs of the estimated x̂′(t)

with the PPSS method are reduced 32% more than those with the PSS4 method for

all values of the standard deviations. Similar results are found when estimating the

second derivative, x′′(t). The RMSE of the estimated second derivatives using the

PPSS method are only 55% of that using the PNR method when σ = 10. The PPSS

method also reduced the RMSE of the estimated second derivatives by 40% more than

the PSS4 method for any scales of noise.

Figure 2.2 displays the point-wise RMSE for the estimates of the curve, x(t), the

first derivative, x′(t), and the second derivative, x′′(t), using the PPSS and PSS4

methods when the PB function is the true function used to simulate data. The PPSS

method has smaller point-wise RMSEs over almost the entire interval than the PSS4

method, although the PSS4 method has slightly smaller RMSEs in [13,16] where the

growth curve has some sharp changes.

When the JPA function is the true function used to simulate data, the PNR

method will be favoured since it has the correct parametric model for the data. Table

2.2 shows the average point-wise RMSEs for the estimated x̂(t), x̂′(t), and x̂′′(t) using

the four methods in this scenario. When the noise standard deviation is set to 3, 7 or

10, the PPSS method has the same RMSE(x̂(t)) with the PNR method, but RMSE(x̂′(t))

and RMSE(x̂′′(t)) with the PPSS method is larger than the PNR method. The PPSS
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Table 2.1: The average point-wise root mean squared errors (RMSEs) for the estimates
of the height function and the first and second derivatives using four methods, when
the data are simulated based on the PB function as the true function. The methods
include the parametric penalized spline smoothing (PPSS), the parametric nonlinear
regression (PNR), and the penalized spline smoothing with the roughness penalty
term defined with the second derivative (PSS2) or the fourth derivative (PSS4), and
Wahba’s standard smoothing spline method (SS). The PB function is defined in (2.5).

Noise Method RMSE(x̂(t)) RMSE(x̂′(t)) RMSE(x̂′′(t))

σ = 3

PPSS 0.10 0.09 0.11
PNR 0.10 0.09 0.12
PSS2 0.13 0.20 0.45
PSS4 0.12 0.16 0.26

SS 0.13 0.17 5.20

σ = 7

PPSS 0.23 0.20 0.27
PNR 0.23 0.21 0.31
PSS2 0.29 0.44 0.96
PSS4 0.26 0.30 0.45

SS 0.26 0.29 4.83

σ = 10

PPSS 0.33 0.27 0.34
PNR 0.33 0.31 0.62
PSS2 0.42 0.63 1.37
PSS4 0.38 0.43 0.62

SS 0.37 0.38 5.70
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Figure 2.2: The point-wise root mean squared errors (RMSE) for the estimates of
the curve, x(t), the first derivative, x′(t), and the second derivative, x′′(t), using the
parametric penalized spline smoothing (PPSS) method (solid lines) and the penalized
spline smoothing (PSS4) method (dashed lines) when the PB function is the true
function used to simulate data.
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method always has smaller values for RMSE(x̂(t)), RMSE(x̂′(t)), and RMSE(x̂′′(t)) than

the PSS method. The smoothing spline method has comparable RMSEs for x̂(t) and

x̂′(t) with the PSS2 method, but the RMSEfor x̂′′(t) is very large, which may be

caused by the error from the finite-difference method.

Table 2.2: The average point-wise root mean squared errors (RMSEs) for the estimates
of the height function and the first and second derivatives using four methods, when
the data are simulated based on the JPA function as the true function. The methods
include the parametric penalized spline smoothing (PPSS), the parametric nonlinear
regression (PNR), and the penalized spline smoothing with the roughness penalty
term defined with the second derivative (PSS2) or the fourth derivative (PSS4), and
Wahba’s standard smoothing spline method (SS). The JPA function is defined in
(2.4).

Noise Method RMSE(x̂(t)) RMSE(x̂′(t)) RMSE(x̂′′(t))

σ = 3

PPSS 0.09 0.9 0.19
PNR 0.09 0.08 0.12
PSS2 0.15 0.33 0.96
PSS4 0.16 0.28 0.69

SS 0.16 0.35 23.40

σ = 7

PPSS 0.22 0.19 0.32
PNR 0.22 0.18 0.27
PSS2 0.31 0.54 1.43
PSS4 0.28 0.39 0.80

SS 0.31 0.53 14.92

σ = 10

PPSS 0.32 0.27 0.43
PNR 0.32 0.27 0.38
PSS2 0.43 0.72 1.82
PSS4 0.39 0.5 0.94

SS 0.42 0.65 15.63

Figure 2.3 shows the point-wise RMSE for the estimates of the curve, x(t), the first

derivative, x′(t), and the second derivative, x′′(t), using the PPSS and PSS4 methods

when the JPA function is the true function used to simulate data. The PPSS method

has smaller point-wise RMSEs over most of the interval than the PSS4 method.
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Figure 2.3: The point-wise root mean squared errors (RMSE) for the estimates of
the curve, x(t), the first derivative, x′(t), and the second derivative, x′′(t), using the
parametric penalized spline smoothing (PPSS) method (solid lines) and the penalized
spline smoothing (PSS4) method (dashed lines) when the JPA function is the true
function used to simulate data.
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2.3.2 Simulation 2

We choose two parametric functions:

h(t|θ1) = a+ b · t+ c · t2, (2.6)

f(t|θ2) =
exp(αt)

cos(βt)
, (2.7)

where θ1 = (a, b, c)T is a vector of parameters in the parametric function h(t|θ1),
and θ2 = (α, β)T is a vector of parameters in the parametric function f(t|θ2). The

function f(t|θ2) is treated as the true parametric function with the true parameter

value θ2 = (2, 3)T . The true function is evaluated at 21 equally-spaced points in

[-0.1,0.1]. The white noise with the variance, σ2, are added to the true values to

generate the simulated data. The value of σ is chosen as 0.005, 0.01, and 0.05 in

three separate simulation studies. Each simulation study is implemented with 500

replicates. The above two parametric functions are chosen because they have almost

the same values, but their first and second derivatives are different, as shown in Figure

2.4.

The curve and the first and second derivatives are estimated with the three meth-

ods. The first method is the parametric nonlinear regression (PNR) method which

uses h(t|θ1) as the parametric function. The second method is the penalized spline

smoothing (PSS) method, in which order 6 B-spline basis functions are chosen with

one knot put in each measurement location. The roughness penalty term is defined

with the second or fourth derivatives of the nonparametric function, called PSS2 and

PSS4, respectively. The third method is the parametric penalized spline smoothing

(PPSS) method. It uses the same basis functions as the penalized spline smoothing

method, and the roughness penalty term defined by the fourth derivative of the non-

parametric function. The parametric function h(t|θ) in equation (2.2) is chosen as

the polynomial function h(t|θ1).
The summary of the estimates of the simulated data, with large noise standard

deviation (σ = 0.05) is displayed in Table 2.3. The PPSS method has the smallest

RMSE of the estimates for the curve and the first and second derivatives. The PNR

method suffers with the large bias of the estimates, while the standard deviation of
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Figure 2.4: The estimates for the curve x(t), the first derivative x′(t), and the second
derivative x′′(t) with the parametric penalized spline smoothing method (PPSS). The
solid lines are the true curve, f(t) = exp(2t)/cos(3t), and the true derivatives. The
dash lines are the estimates using PPSS model. The dotted lines are the estimate
using parametric nonlinear regression (PNR) method. The circles are the simulation
data, which have white noises with the variance σ2 = 0.012.
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the estimates using PSS2 and PSS4 methods are large.

Table 2.3: The average point-wise bias, standard deviations (SDs), and root mean
squared errors (RMSEs) for the estimates of the curve and the first and second
derivatives using three methods, when the data are simulated based on f(t) =
exp(2t)/cos(3t) as the true function with noise standard deviation 0.05. The methods
include the parametric penalized spline smoothing (PPSS), the parametric nonlinear
regression (PNR), and the penalized spline smoothing with the roughness penalty
term defined with the second derivative (PSS2) or the fourth derivative (PSS4).

Estimator Method |Bias| × 103 SD× 103 RMSE× 103

x̂(t)

PPSS 1.85 17.75 17.88
PNR 1.86 17.76 17.89
PSS2 1.41 21.30 21.36
PSS4 0.81 20.47 20.50

Estimator Method |Bias| ∗ 102 SD ∗ 102 RMSE ∗ 102

x̂′(t)

PPSS 8.92 40.08 41.47
PNR 37.54 25.87 46.80
PSS2 8.25 77.69 78.48
PSS4 3.25 67.17 67.25

Estimator Method |Bias| SD RMSE

x̂′′(t)

PPSS 3.45 6.50 7.68
PNR 7.70 3.25 8.52
PSS2 5.25 32.91 34.79
PSS4 1.14 20.65 20.69

When the data are simulated with the median scale of noise (σ = 0.01), the

summary for the estimates are displayed in Table 2.4. The estimates for the first and

second derivatives with the PPSS method have the smallest RMSE. The PNR method

has slightly smaller RMSE of the curve estimates than the PPSS method, but the bias

of curve estimates with the PNR method is tenfold of that obtained using the PPSS

method. The PNR method also obtains very large biased estimates of the first and
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second derivatives.

Table 2.4: The average point-wise bias, standard deviations (SDs), and root mean
squared errors (RMSEs) for the estimates of the curve and the first and second
derivatives using three methods, when the data are simulated based on f(t) =
exp(2t)/cos(3t) as the true function with noise standard deviation 0.01. The methods
include the parametric penalized spline smoothing (PPSS), the parametric nonlinear
regression (PNR), and the penalized spline smoothing with the roughness penalty
term defined with the second derivative (PSS2) or the fourth derivative (PSS4).

Estimator Method |Bias| × 103 SD× 103 RMSE× 103

x̂(t)

PPSS 0.16 4.48 4.49
PNR 1.60 3.70 4.11
PSS2 0.24 5.57 5.57
PSS4 0.15 4.56 4.56

Estimator Method |Bias| ∗ 102 SD ∗ 102 RMSE ∗ 102

x̂′(t)

PPSS 0.80 17.30 17.33
PNR 36.35 5.26 36.96
PSS2 2.95 34.24 34.53
PSS4 0.51 18.05 18.06

Estimator Method |Bias| SD RMSE

x̂′′(t)

PPSS 0.35 7.26 7.28
PNR 7.51 0.66 7.55
PSS2 3.47 28.45 30.01
PSS4 0.29 7.61 7.62

When the data are simulated with the small scale of noise (σ = 0.005), the sum-

mary for the estimates are displayed in Table 2.5. The PPSS method is slightly

better than PSS4 method, while the PNR and PSS2 method perform poorly. The

PNR method obtains very large biased estimates, because wrong parametric function

is assumed. The estimates with the PSS2 method have the extremely large standard

deviations.
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Table 2.5: The average point-wise absolute value of bias, standard deviations (SDs),
and root mean squared errors (RMSEs) for the estimates of the curve and the first and
second derivatives using three methods, when the data are simulated based on f(t) =
exp(2t)/cos(3t) as the true function with noise standard deviation 0.005. The methods
include the parametric penalized spline smoothing (PPSS), the parametric nonlinear
regression (PNR), and the penalized spline smoothing with the roughness penalty
term defined with the second derivative (PSS2) or the fourth derivative (PSS4).

Estimator Method |Bias| × 103 SD× 103 RMSE× 103

x̂(t)

PPSS 0.09 2.21 2.21
PNR 1.60 1.79 2.51
PSS2 0.13 3.53 3.53
PSS4 0.09 2.21 2.22

Estimator Method |Bias| ∗ 102 SD ∗ 102 RMSE ∗ 102

x̂′(t)

PPSS 0.76 8.70 8.75
PNR 36.73 2.61 36.91
PSS2 1.55 36.05 36.12
PSS4 0.77 8.73 8.78

Estimator Method |Bias| SD RMSE

x̂′′(t)

PPSS 0.46 3.65 3.69
PNR 7.58 0.33 7.59
PSS2 3.70 60.08 61.26
PSS4 0.46 3.66 3.70



CHAPTER 2. PARAMETRIC PENALIZED SPLINE SMOOTHING 22

2.4 Applications

Figure 2.5: The estimate for the height function x(t), the first derivative x′(t), and
the second derivative x′′(t) with the parametric penalized spline smoothing method.
The circles are the real height measurements of one girl in a Berkeley growth study.
The shaded areas are the corresponding 95% point-wise confidence intervals.

Figure 2.5 displays some real height measurements of one girl in a Berkeley growth

study discussed in Tuddenham & Snyder (1954). The girl is measured at 31 non-

equally-spaced time points, with four measurements when she is one year old, annual

measurements from two to eight years and biannual measurements from eight to eigh-

teen years. The growth dynamic process of this girl can be studied by estimating the

height function x(t), and the first and second derivatives x′(t), x′′(t) using the para-

metric penalized spline smoothing method. The JPA function in equation (2.4) is used

as the parametric function h(t) defined in equation (2.2). Ten-fold cross-validation is

employed to choose the optimal values for the smoothing parameters. It is displayed

in Figure 2.6, which is minimized when log10(λ1) = −0.9 and log10(λ2) = −3.9 using

the grid search method. The parametric penalized spline smoothing method esti-

mates the parameters in the JPA function as A = 166.90, B1 = 0.56, B2 = 0.13, B3 =
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0.08, C1 = 0.53, C2 = 3.42, C3 = 24.00, E = 0.0001.

Figure 2.6: K-fold corss-validation (KCV) calculated based on 2.3 by setting K=10.
It is minimized when log10(λ1) = −0.9 and log10(λ2) = −3.9 using the grid search
method.

The estimates for the height function, x(t), and the first and second derivatives,

x′(t) and x′′(t), are displayed in Figure 2.5. The height function is strictly increasing,

and becomes flat around age 16. The grow rate function, x′(t), decreases sharply until

age 3, and decreases slowly until age 13. It then bumps up at age 13, peaks at age

14, and decreases quickly to zero at age 18. The acceleration function, x′′(t), quickly

increases until age 3, becomes flat from age 3 to age 12, and then has a peak around

age 13 and a valley around age 15.

The 95% point-wise confidence intervals for the height function, x(t), and the first

and second derivatives, x′(t) and x′′(t), are obtained with the parametric bootstrap

method (Efron & Tibshirani, 1993). The parametric bootstrap method is implemented

as follows. The simulated data are generated by adding white noise with the estimated

variance σ̂2 to the estimated height function x̂(t). The height function, x(t), and the

first and second derivatives, x′(t) and x′′(t), are then estimated from the simulated

data with the parametric penalized spline smoothing method. The above process are
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done using 500 replications of the simulation. The 95% point-wise confidence intervals

are obtained from the 500 estimates of the height function and the first and second

derivatives.

2.5 Conclusions

It is of great interest to estimate a smooth function and its derivatives accurately.

Some parametric models are often proposed based on prior knowledge of the function,

but the parametric assumption may not be accurate. The nonparametric smoothing

methods are very flexible, but do not consider any expert opinion on the function.

The parametric penalized spline smoothing method combines the advantages of

the parametric models and the nonparametric smoothing method. It uses a linear

combination of basis function to estimate the underlying function nonparametrically.

Expert opinion of the function is adopted by adding an additional penalty term using

the squared difference between the fitted function and the parametric function. A

roughness penalty term is also defined by the fourth derivative of the fitted function

to prevent overfitting where a saturated number of basis functions are employed. The

parameter penalized spline method may be considered an extension of the partial

spline models introduced in Wahba (1990).

The introduction of the parametric model h(t|θ) can be thought of as a ”nuisance

parameter (model)”, and the goal of the simulations is as to test whether this nui-

sance model is significant or not. The simulation studies show that the parametric

penalized spline smoothing method can obtain more accurate estimates of the func-

tion and its derivatives than the parametric regression method and penalized spline

smoothing method when the parametric model is not correct. In addition, even when

the parametric model is correct, the parametric penalized spline smoothing method

is comparable to the parametric regression method.



Chapter 3

Simultaneous Hierarchical

Bayesian Method

3.1 Introduction

British Columbia (BC) has a very rich forest resource, where two-thirds of its total

landmass (60 million hectares) is covered with forests (BCf, 2011). Because of this

unique characteristic, forest industry is a crucial part and accounts for at least 15% of

BC’s economy. For example, forest industry activity in 2006 accounted for 7.4% of the

total provincial GDP and 29% of BC’s good producing industry GDP (BCf, 2011). It

is also an important employment source that affects almost one-third of all BC rural

communities (Dufour, 2002). In addition, forest products are the most important

export commodity and are representing more than half of the total international

goods exports in BC (BCf, 2011). Hence, studies, such as those related to resource

monitoring and wood products’ properties modeling, are intensive.

In North American construction industry, such as in house building, wood-based

products have been playing a key role. It is common that a structural building is

usually subjected to different types of loads. For example, it can be affected by weights

from the building structures, such as roofing and walls, weights from occupancies, such

as temporary furniture and objects placed inside, or even loads from wind, earthquake

and snow. Modeling and predicting the long-term breakage time of wood products

25
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under predetermined stress level is always one main objective to wood engineers.

Study on duration-of-load problem, hence, becomes an important research theme.

The load-duration behavior in wood and wood-based products, also called creep-

rupture phenomenon, refers to the effect that duration of time or strength is influ-

enced by the applied stress that acts on a wood member. In wood construction, this

creep-rupture phenomenon is one distinctive characteristic that needs to be taken into

account when designing allowable stress values. Extensive research studies on testing

and modeling the time-dependent strength behavior have been conducted since early

1970s (Barrett, 1996). Most of the models have adopted a damage state variable to

assess the damage accumulation that is subjected to the loading history. Thus, these

models are usually referred as cumulative damage models or damage accumulation

models in wood science. Examples of cumulative damage models include the expo-

nential cumulative damage model proposed by Gerhards (1979), the models based on

viscoelastic fracture mechanics introduced by Nelson (1985a,b), the models involving

a threshold stress ratio proposed by Barrett & Foschi (1978) and Foschi & Barrett

(1982) respectively, and their extended models published by Foschi & Yao (1986) and

Yao & Foschi (1992). These cumulative damage models can be used to predict the

breakage time of wood products under any predetermined stress level.

All the cumulative damage models are presented in a form of ordinary differential

equations (ODE) as shown below:

dα(t)

dt
= f(τ(t) | θ), (3.1)

where, α(t) is the variable that measures the accumulative damage and takes values

from 0 to 1, with α(t) = 0 implying no damage and α(t) = 1 indicating failure. τ(t)

is the applied stress history, f(τ(t)|θ) is a parametric function of the stress history,

and θ is the vector of parameters. The breakage time, T , is defined as the time when

α(t) = 1. Let α(t|τ(t)) denote the solution of ODE (3.1) under the applied stress

history, τ(t), then we have α(T |τ(t)) = 1. Currently, both short-term and long-term

mechanical tests, also called ramp-load and constant-load tests, on small and clear

wood specimens are conducted in order to derive the load-duration adjustment factors.

In the ramp-load test, continuous stress is applied with a constant loading rate until



CHAPTER 3. SIMULTANEOUS HIERARCHICAL BAYESIAN METHOD 27

breakage occurs on test specimen. The loading rate must be carefully controlled such

that failure is achieved in approximately 1 minute (ASTM-D6815-02, 2002). In the

constant-load test, however, continuous stress is applied with the constant loading rate

until pre-determined constant stress level. The test specimen is under this constant

load until breakage occurs or the end of the test. Thus, the applied stress τ(t) in the

load-duration tests can be defined as follows:

Ramp-load test: τr(t) = k × t, 0 ≤ t ≤ Tr,

Constant-load test: τc(t) =

{
k × t, 0 ≤ t ≤ T0,

τc, T0 < t ≤ Tc,

(3.2)

where k is a constant loading rate, Tr is the breakage time from the ramp-load test,

T0 is the time that test member starts to be subjected to a constant-load, τc is the

preselected constant load, and Tc is the breakage time from constant-load test. Based

on the definition of the breakage time, we have α(Tr|τr(t)) = 1, and α(Tc|τc(t)) = 1.

Figure 3.1 below gives an example of the stress history function described in (3.2).

(a) Ramp-load Test (b) Constant-load Test

Figure 3.1: Example of stress history in duration of load

Although the form of cumulative damage models are provided based on the expert

knowledge, the values of the parameters in the cumulative damage models are usually

unknown. Their values have to be estimated from the collected experimental data.

Estimating parameters in the cumulative damage models becomes a challenge in wood
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engineering, because some cumulative damage models may not have closed-form solu-

tions. In Bayesian statistics, the hierarchical Bayesian nonlinear mixed effect model

can perform parameter estimation through the Markov chain Monte Carlo (MCMC)

algorithms (Bennett et al., 1996), where closed-form solution to differential equation

is not required. Thus, estimation becomes computationally convenient. In our study,

we set up a hierarchical Bayesian model and employed Gibbs sampling algorithms to

estimate load-duration model parameters and their mixed effects. In addition, since,

in practice, not all test specimens’ breakage time can be obtained at the end of the

constant-load test, censored or missing observations may exist. Current calibration

method adopted in estimating load-duration model parameters does not take censor-

ing into account. Our Bayesian approach, however, can make prediction on breakage

time for the censored or missing observations.

The rest of this paper is organized as the following. Section 2 will give an intro-

duction on one popular cumulative load-duration damage model. Our proposal on

creep-rupture experimental design and implementation using a hierarchical Bayesian

model for parameter estimation and constant-load breakage time prediction are pre-

sented in section 3. Section 4 gives details of the two simulation studies on our

selected cumulative damage model. Finally, our conclusion with discussions are listed

in section 5.

3.2 The Dynamic Duration of Load Model

Exponential Damage Rate Model (EDRM) proposed by Gerhards & Link (1987) is

usually adopted in engineering wood design and thus considered in our study. The

dynamic engineering form of this model is given as the following:

dαi(t)

dt
= Ai(

τ(t)

τsi
− σ0)Bi (3.3)

where αi(t) is the variable measuring the accumulative damage for the ith wood

specimen, for i = 1, 2, . . . , n. αi(t) = 1 indicates failure and αi(t) = 0 represents

no damage. Ai and Bi are model parameters that have random effects. τ(t) is the
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applied stress history that has the form of equation (3.2). Finally, τsi is the short-

term maximum strength measured in ramp-load test, and it can be expressed as,

τsi = k × Tri, the product of loading rate and breakage time from ramp-load test. It

is clear that the EDRM model, which has equation (3.3), only depends on the stress

level.

3.3 Statistical Approach Set-up

3.3.1 Experimental Design in Duration of Load Study

In the EDRM model, parameters Ai and Bi are considered having random effects. In

order to illustrate that this consideration is reasonable, let us study the mathematical

solution for short-term breakage time Tr in the EDRM model. Assuming stress is

applied with a linear loading rate, one can integrate both sides of the equation (3.3)

from starting time t0 = 0 to failure time t = Tri and obtain the expression of Tri as,

Tri =
Bi exp(Ai)

exp(Bi)− 1
(3.4)

From equation (3.4), it is sensible that the short-term failure time for each indi-

vidual test specimen should be different because of its diversity in wood properties.

Similarly, long-term failure time shall be random too. Hence, considering the mixed

effect for dynamic model parameters can help to effectively and accurately predict

breakage time in wood science. Other parameters, such as T0, τc, and τsi can be

obtained through either the expert opinion or calculated from the test measurements.

From equation (3.4), in addtion, each short-term breakage time Tri is a function of

Ai and Bi. If we re-parameterized them, such that A∗i = exp(Ai) and B∗i = Bi

exp(Bi)−1 ,

the equation (3.4) becomes,

Tri = A∗i ×B∗i ,

It is obvious that A∗i and B∗i are not identifiable with just one realization of

Tri. However, in reality, one piece of wood specimen can not be broken twice, and
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consequently, only one short-term observation can be obtained. This dilemma brings

difficulties to estimate and identify each pair of Ai and Bi. In practice, wood scientists

usually solve this problem by conducting a calibration using simulation data from the

assumed failure time distribution, or employing equal-rank assumption with order

statistics (Link, 1988), or assuming constant model parameters (Foschi & Yao, 1986).

Under the Bayesian framework, the parameter identifiability problem can usually

be solved by introducing informative priors, good initials and boundary constraints.

However, informative priors require more information on parameters. Since we do

not have these information, the usual mathematical techniques will not work in our

study.

In order to solve the identifiability problem, we proposed a new experimental

design for load duration tests, where each pair of parameters Ai and Bi can have

two breakage time observations. We proposed that the wood specimens for load-

duration tests shall be prepared in pairs and each pair should be either side-matched

or end-matched. With this preparation, it is reasonable to assume that the ith pair of

matched test specimens share the same parameters Ai and Bi. Since, in practice, both

ramp load and constant load tests are needed to estimate duration of load factors,

their observations are available. In result, a simultaneous parameter estimation using

both the short-term and long-term tests results can be conducted.

3.3.2 Hierarchical Bayesian Approach

It is sensible to believe that, instead of assuming constant, the breakage time obser-

vations of wood specimens shall have some underlying distributions. Further, from

previous discussion, we should consider the random effects for model parameters Ai

and Bi. Therefore, the underlying distributions of both short-term and long-term

failure times can be reconstructed with parameter estimates. Detail modeling setup

and methodology implementation are provided as the followings.
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Set up Bayesian models for parameter estimation

Firstly, let yri and yci denote the observations for the ith pair of wood specimens

obtained from ramp-load and constant-load tests respectively. Moreover, let θi =

(Ai, Bi)
T be the vector of model parameters, and let εri & εci denote the measurement

errors from normal distributions with mean zero in ramp-load and constant-load test

respectively. Finally, let µA and µB be the overall mean values of model parameters

A and B respectively, and let ηAi
and ηBi

be their corresponding mixed effects from

normal distributions with mean zero. Thus, the hierarchical Bayesian nonlinear mixed

effects model can be set up in the following three stages.

Stage 1: Observed level:

log(yri) = log(Tri | θi) + εri, εri ∼ Normal(0, σ2
r)

log(yci) = log(Tci | θi) + εci, εci ∼ Normal(0, σ2
c )

Stage 2: Unobserved level:

log(Ai) = µA + ηAi
, ηAi

∼ Normal(0, σ2
A)

log(Bi) = µB + ηBi
, ηBi

∼ Normal(0, σ2
B)

Logarithm-transformation technique has been employed in Stage 1 to make sure

time observations are positive. Further, from the dynamic load-duration model (3.3),

it is easy to see that parameter Ai should be positive because the time-dependent

damage variable αi(t) is an increasing function over time. Moreover, equation (3.4)

implies that parameter Bi should also be positive as breakage time must be non-

negative. Thus, logarithm-transformation is also used in Stage 2 for both dynamic

parameters.

Stage 3: Hyper-prior distributions:
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[σ−2
r

] ∼ Gamma(a, b)

[σ−2c ] ∼ Gamma(c, d)

[σ−2A ] ∼ Gamma(e, f)

[σ−2B ] ∼ Gamma(g, h)

[µA] ∼ Normal(0, j)

[µB] ∼ Normal(0, k)

Here, hyper-parameters a, b, c, d, e, f, g, h, j and k are known values specified us-

ing prior information or researcher’s preference. All prior distributions adopted are

conjugate priors, which have the advantage of computational convenience (Gelman

et al., 2003). Parameters that need to be estimated are dynamic parameters Ai and

Bi, and other six distribution parameters σ2
r , σ

2
c , σ

2
A, σ

2
B, µA, and µB.

Implement Gibbs sampling for parameter estimation

In order to perform parameter estimation, we need to specify the conditional distri-

butions, such as [yri|θi] and [yci|θi]. From our statistical models set up in Stage 1 and

Stage 2, the conditional distributions for the failure times and model parameters can

be designed as the followings.

[yri| log(Tri | θi), σ2
r ] ∼ LogNormal(log(Tri | θi), σ2

r)

[yci| log(Tci | θi), σ2
c ] ∼ LogNormal(log(Tci | θi), σ2

c )

[Ai|µA, σ2
A] ∼ LogNormal(µA, σ

2
A)

[Bi|µB, σ2
B] ∼ LogNormal(µB, σ

2
B)

(3.5)
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As discussed previously, data collected from constant-load test, in practice, usually

contain right censored observations. Therefore, the joint likelihood function of the

breakage times from both ramp-load and constant-load tests can be written as

f(yr, yc | ψ, δ) =
n∏
i=1

f(yri, yci | ψ)1−δS(yri, yci | ψ)δ

where, δ is the censoring indicator that takes value of 0 or 1. δ = 1 indicates the

corresponding observation is a censored time, such that Tci > yci; whereas, δ = 0

represents obtaining a breakage time Tci. ψ = (A,B, σ2
r , σ

2
c , µA, σ

2
A, µB, σ

2
B) is the

vector of all parameters. S(·) function is called the survival function that models the

probability of P (Tci ≥ yci).

We need to specify the hyper-prior distributions by assigning values to the hyper-

parameters. It is sensible that estimation may be benefited from using relatively

informative priors with small variances. However, an informative prior usually re-

quires reliable prior information. The load-duration research studies that have been

conducted are not under the Bayesian framework. Moreover, most of the studies

have not considered the random effects of the dynamic parameters. Therefore, we

do not have strong prior information about these parameters and have to select non-

informative diffuse priors with large variance instead. Diffuse priors, however, are

often chosen for parameters of interest in practice (Carlin & Louis, 1996) in order to

”let the data speak for themselves” (Gelman et al., 2003).

In Bayesian statistics, MCMC method refers to a general technique to draw sam-

ples from a proposal distribution and improve them towards the targeted posterior

distribution of the unknown parameter by accepting or rejecting the simulated draws.

Sample of the Markov chain is drawn sequentially and is depended on the last drawn

value. Thus, the targeted posterior distribution can be eventually revealed by MCMC

method (Gelman et al., 2003). Among all MCMC methods, Metropolis-Hastings al-

gorithm (Hastings, 1970; Metropolis et al., 1953) and the Gibbs sampling (Geman &

Geman, 1984) are two most popular algorithms that have been adopted in numerous

studies. In Gibbs sampling, samples are drawn from the full conditional posterior dis-

tributions with 100% acceptance rate. Thus, Gibbs sampling does not require specific

proposal distributions (Geman & Geman, 1984), (Ntzoufras, 2009). We used Gibbs
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sampling to estimate all unknown parameters because full conditional posterior dis-

tributions are available. Let us introduce a new notation (−m) here to present the

all elements of the corresponding parameter vector in its posterior distribution ex-

cept the mth element. For example, σ2
r = (σ2

rm , σ
2
r(−m)

), where σ2
rm represents the mth

scalar element in the vector σ2
r , and σ2

r(−m)
represents the rest elements of the vector

σ2
r . Therefore, the full conditional distributions can be listed as the followings.

[σ−2r |yr, σ2
r(−m)

, σ2
c , A,B, σ

2
A, σ

2
B, µA, µB] ∼ Gamma(a+ n

2
,
∑n

i=1(log(yri)−log(Tri))2+2b

2
)

[σ−2c |yc, yr, σ2
r , σ

2
c(−m)

, A,B, σ2
A, σ

2
B, µA, µB] ∼ Gamma(c+ n

2
,
∑n

i=1(log(yci)−log(Tci))2+2d

2
)

[σ−2A |yc, yr, σ2
r , σ

2
c , A,B, µA, σ

2
A(−m)

, µB, σ
2
B] ∼ Gamma(e+ n

2
,
∑n

i=1(log(Ai)−µA)2+2f

2
)

[σ−2B |yc, yr, σ2
r , σ

2
c , A,B, σ

2
A, µA, µB, σ

2
B(−m)

] ∼ Gamma(g + n
2
,
∑n

i=1(log(Bi)−µB)2+2h

2
)

[µA|yc, yr, σ2
r , σ

2
c , A,B, µA(−m)

, σ2
A, σ

2
B, µB] ∼ Normal(

j
∑n

i=1 log(Ai)

nj+σ2
A

,
jσ2

A

nj+σ2
A

)

[µB|yc, yr, σ2
r , σ

2
c , A,B, µA, σ

2
A, µB(−m)

, σ2
B] ∼ Normal(

k
∑n

i=1 log(Bi)

nk+σ2
B

,
kσ2

B

nk+σ2
B

)

Although the unobserved dynamic model parameters A and B are not of our inter-

est, they still need to be estimated implicitly in order to estimate the six distribution

parameters. Using the similar procedure as in developing the full conditional distri-

butions above, at the mth draw in the Markov chain, the posterior distributions for

the ith pair of parameters are as follows:

[Ai|yc, yr, σ2
r , σ

2
c , Ai(−m), Bi, µA, σ

2
A, µB, σ

2
B] ∝

1
Ai

exp(−
∑n

i=1(σ
2
cσ

2
A(log(yri)−log(Tri(Ai,Bi)))

2+σ2
rσ

2
A(log(yci)−log(Tci(Ai,Bi)))

2+σ2
rσ

2
c (log(Ai)−µA)2)

2σ2
rσ

2
cσ

2
A

)

[Bi|yc, yr, σ2
r , σ

2
c , Ai, Bi(−m), µA, σ

2
A, µB, σ

2
B] ∝

1
Bi

exp(−
∑n

i=1(σ
2
cσ

2
B(log(yri)−log(Tri(Ai,Bi)))

2+σ2
rσ

2
B(log(yci)−log(Tci(Ai,Bi)))

2+σ2
rσ

2
c (log(Bi)−µB)2)

2σ2
rσ

2
cσ

2
B

)

,
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In order to implement the hierarchical model more efficiently, we chose the ”bugs”

function in the R2WinBUGS package in R. The ”bugs” function will call WinBUGS

program repeatedly to conduct the Gibbs sampling algorithms. WinBUGS is a black

box style program for Bayesian analysis of complex statistical models using MCMC

techniques (Spiegelhalter et al., 2003). In addition, in WinBUGS, instead of specifying

the survivor function S(·), right censoring can be handle easily by using the command,

I(ycensor, ), with the value of censored observation, ycensor.

Further, we employed two techniques introduced by Geman & Geman (1984) to

improve the efficiency of the MCMC runs. Firstly, with the ”burn-in” technique, we

discarded a number of the initial simulated samples as they may not come from the

stationary targeted distribution. Secondly, with the thin-in technique, we only kept

the every kth simulated samples from the Markov chain. The values of burn-ins and

thinning can be decided depend on researcher’s preference. Details are discussed in

the simulation studies section. Mean values of the collected samples in the posterior

distributions were calculated as the estimates of the unknown parameters.

3.3.3 Bayesian approach for constant-load breakage time pre-

diction

Under the Bayesian framework, predictions of future observations or missing obser-

vations through the conditional predictive distributions (Ntzoufras, 2009). Let y∗

and y represent predicted observation and observed data respectively. Hence, the

conditional predictive distribution can be calculated as

f(y∗|y) =

∫
f(y∗,ψ|y)dψ

=

∫
f(y∗|y,ψ)f(ψ|y)dψ,

which is to average the likelihood of predicted data over the posterior distribution

f(ψ|y). It is clear that given the parameters ψ, predicted data and observed data

are independent. Hence, after obtaining the estimates of our parameters of interest,

prediction can be conducted through MCMC algorithms.



CHAPTER 3. SIMULTANEOUS HIERARCHICAL BAYESIAN METHOD 36

3.4 Simulation Studies

In order to demonstrate our proposed hierarchical Bayesian methodology, we con-

ducted two simulation studies with one hundred simulation runs in each study. In the

first study, breakage times were simulated from the EDRM model and simulated Tcs

were right censored with 10% and 20% censoring rates respectively. These percent-

age values, however, can be adjusted by expert opinion or real situation in practice.

Parameter estimation was then conducted using our proposed approach on these cen-

sored data. In the second study, ramp test breakage times were simulated from the

same EDRM model. Predictions of constant-load breakage times were performed us-

ing parameter estimates. Detail procedures including the initial values and realization

of the hyper-parameters specified are explained in the following sections.

3.4.1 Simulation 1

In each simulation run, 200 simulated failure times, with 100 in short-term and 100 in

long-term, were first simulated from the EDRM model. We right censored the long-

term breakage times to 10% and 20% respectively. Moreover, since the preselected

constant load τc is usually set to be some percentile of the average maximum short-

term strength τ̄s, we equated τc = 0.65τ̄s. Two types of parameter estimation were

thereafter conducted using our proposed hierarchical Bayesian model by considering

censoring or treating censored observations as breakage time. The general simulation

procedures are given as the following.

Step 1. Generating data: Initialize hyper-parameters and simulate 100 short-term

failure times and 100 long-term breakage times respectively using the conditional

distributions introduced in equation 3.5.

Step 2. Censoring data: Rank simulated long-term breakage times in descending

order and calculate the 90th and 80th percentile values respectively. Construct the

binary 10% and 20% right censoring indices by assigning value ”1” to indicate those

long-term simulated data which exceed the 90th and 80th percentile values respectively.

Replace the readings of long-term breakage times whose censoring indices equal to ”1”

to the corresponding percentile values. The completed data sets with either 10% or
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20% censored observations will then be used in parameter estimation.

Step 3. Implementing MCMC algorithms: Perform parameter estimation through

Gibbs sampling in R using R2WinBUGS package. Hyper-prior distributions are listed

in Stage 3. Apply this step twice on each data set by incorporating censoring obser-

vations with the censoring indication function or treating the censored observations

as observed breakage times.

Step 4. Repeat steps 1 - 3 for 100 runs. Calculate bias, standard deviation, and

root mean squared error for each parameter estimate.

The true values of the hyper-parameter we have chosen are (σ2
r , σ

2
c , µA, σ

2
A, µB, σ

2
B)

= (0.00025, 0.00025, 2.58, 0.00025, 2.45, 0.00025). Figure 3.2 gives an example of one

set of the simulated observations.

Diffuse prior distributions with large variance were employed by equating the

hyper-parameters a, b, c, d, f, h to 0.001, e and g to 0.01, and j, k to 10000. Thus, the

prior distributions for σ−2r and σ−2c become Gamma(0.001, 0.001) with mean 1 and

variance 1000. Prior distributions for σ−2A and σ−2B become Gamma(0.01, 0.001) with

mean 10 and variance 10000. Prior distributions for µA and µB are Normal(0,10000)

with mean 0 and variance 10000. The values of these hyper-parameters, however, can

be adjusted by expert’s opinion or available prior information if necessary.

In order to cope with the right censoring, we employed the WinBUGS command

I(ycensor, ), which is an indicator function, to distinguish constant-load breakage

times and censored observations. Since we use R2WinBUGS to implement MCMC

algorithms, censored observations are treated as missing data to be predicted in Win-

BUGS. This indication function will perform as a constraint to ensure predicted values

beyond the given censoring readings (Spiegelhalter et al., 2003).

We conducted 100,000 MCMC simulations in each parameter estimation. Among

these MCMC samples, we discarded the first 75,000 and kept the every 5th samples to

construct its posterior distribution. Posterior mean from the stored MCMC simulated

samples was calculated as its estimate. Figure 3.3 illustrates one example of six

parameters’ posterior distributions.

Bias, standard deviations, and root mean squared errors (RMSE) were calculated

for the EDRM estimates. Table 3.1 shows the parameter estimation performance using
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Figure 3.2: Histograms of one set of short-term (Tr) and long-term (Tc) breakage
times simulated from the EDRM model.
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Figure 3.3: Histograms of one set of six parameters’ posterior distributions. Red
dotted line in each histogram indicates the location of parameter’s true value we have
assigned.
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data set with 10% right censoring rate and Table 3.2 shows the parameter estimation

performance using data set with 20% right censoring rate. It is worth notice that

with data set containing 10% right censored data, RMSEs from parameter estimation

having considered censoring are about 10 times to 400 times smaller than those from

estimation without considering censoring. Moreover, with the data set containing 20%

censored data, these differences can rise up to 1000 times more. Therefore, considering

censoring is very crucial in obtaining ”good” estimates in load-duration problem.

Table 3.1: The averaged bias(Bias), standard deviations (SD), and root mean squared
errors (RMSE) of the estimates of six parameters using data set with 10% right
censoring on the constant-load breakage times. ”Cen” denotes estimation considering
right censoring and ”NoCen” indicates not consider censoring.

Bias× 100 SD× 100 RMSE× 100

Cen NoCen Cen NoCen Cen NoCen

µA 0.02 -2.36 0.18 1.41 0.18 2.75

µB 0.01 -3.04 0.23 1.81 0.23 3.54

σ2
A 0.0015 0.0273 0.0049 0.0401 0.0051 0.0485

σ2
B 0.0045 0.1034 0.0058 0.1101 0.0073 0.1510

σ2
r 0.0292 0.9914 0.0113 1.1363 0.0313 1.5080

σ2
c 0.0072 3.140 0.0063 3.3558 0.0096 4.5959
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Table 3.2: The averaged bias(Bias), standard deviations (SD), and root mean squared
errors (RMSE) of the estimates of six parameters using data set with 20% right
censoring on the constant-load breakage times. ”Cen” denotes estimation considering
right censoring and ”NoCen” indicates not consider censoring.

Bias× 100 SD× 100 RMSE× 100

Cen NoCen Cen NoCen Cen NoCen

µA 0.02 -8.35 0.19 2.09 0.19 8.61

µB 0.01 -10.69 0.25 2.71 0.25 11.03

σ2
A 0.0017 -0.0040 0.0048 0.003 0.0051 0.005

σ2
B 0.0047 0.0221 0.0052 0.0086 0.0070 0.0237

σ2
r 0.0295 1.6648 0.0112 0.5393 0.0316 1.7500

σ2
c 0.0076 12.36 0.0065 4.3215 0.01 13.10
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3.4.2 Simulation 2

In the prediction study, 200 breakage times were simulated from the EDRM model

using the same true values as indicated in the first study for all parameters. We then

considered the 100 ramp test breakage times as known observations and treated the

100 constant-load breakage times as missing data. Predictions of these missing data

were performed using the parameter estimates obtained in the first study.

In order to demonstrate the prediction performance, we plotted the predicted

values against the true simulated values with reference to the 45◦ line. If prediction is

good, the predicted value should be very closed to the true value, and its point in the

graph should fall onto the reference line. By this plotting method, one can visualize the

fitted performance. Further, we define the mean squared prediction error (MSPE) as

the averaged value of the squared differences between predicted value and true value.

Let Tcpred be the predicted constant-load breakage time and Tctrue be the simulated

true breakage time. MSPE has the following equation.

MSPE =

∑100
i=1(log(Tcpred)i − log(Tctrue)i)

2

100

It is sensible that smaller MSPE implies better fitting. The general prediction proce-

dures are given as the following.

Step 1. Generating data: Initialize hyper-parameters and simulate 100 short-term

failure times and 100 long-term breakage times respectively using the conditional

distributions introduced in equation (3.5).

Step 2. Setting up predictive distribution: Specify the conditional distributions

at observed and unobserved levels with the likelihood introduced in equation (3.5).

Specify the parameters using estimates obtained in simulation 1. Hence,

ψ = (σ̂r
2, σ̂c

2, µ̂A, σ̂A
2, µ̂B, σ̂B

2)T .

Step 3. Predicting missing data: Conduct perdictions through implementing MCMC

algorithms in R with R2WinBUGS package. Ramp-load breakage time are treated

as known observations and constant-load breakage time as missing. Plot predic-

tions against their true simulated values and calculate mean squared prediction errors

(MSPE).
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Step 4. Repeat step 3 for each set of parameter estimates obtained in study 1 and

repeat steps 1 - 3 for 100 runs.

In each breakage time prediction run, 100,000 MCMC samples were drawn, where

the first 75,000 were discarded and the every 5th samples were stored. Posterior mean

of the stored samples was calculated as the predicted value. Figure 3.4 gives two

examples of the prediction performance. In figure 3.4a, predictions were drawn with

estimates from a simulated data set that had 10% right censored observations. In

figure 3.4b, predictions were drawn with estimates from a simulated data set that had

20% right censored observations. Dots in both figures represent predictions using esti-

mates that were obtained with the consideration for censoring; whereas crosses(”+”)

represent predictions using estimates that were obtained without considering censor-

ing. It is obvious that predictions using estimates considering censoring in data are

much accurate than those without considering censoring.

(a) Prediction I (b) Prediction II

Figure 3.4: Plots of predicted values against true values. In prediction I, data used
to estimate parameters had 10% right censored observations. In prediction II, data
used to estimate parameters had 20% right censored observations. Dots represent
predicted values that used parameter estimates obtained by considering the censoring
condition. Crosses (”+”) present predicted values that used parameter estimates
obtained by without considering the censoring condition

The descriptive statistics of MSPE values from 100 simulation runs are listed in

Table 3.3. Again, averaged MSPE is larger if the prediction has not taken into account

that censored observations in the original data set. Further, averaged MSPE is larger

with higher censoring rate.
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Table 3.3: Table of descriptive statistics of MSPEs, with readings of 2.5% and 97.5%
percentiles, median and mean. ”Cen” denotes using parameter estimates consider-
ing right censoring and ”NoCen” indicates using parameter estimates not consider
censoring.

10% Censoring 20% Censoring

Cen NoCen Cen NoCen

2.5% 0.0013 0.0028 0.0013 0.0387

97.5% 0.0030 0.0358 0.0030 0.1684

Median 0.0018 0.0145 0.0018 0.0820

Mean 0.0019 0.0149 0.0019 0.0902
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3.5 Conclusions

In our paper, we have proposed a hierarchical Bayesian mixed-effects model to esti-

mate dynamic parameters and their random effects. Using a Bayesian approach can

relax the requirement of obtaining closed-form solution from the dynamic engineer-

ing equation. Further, this Bayesian approach is more flexible and can incorporate

expert’s opinion and information from previous studies into the prior distributions.

Posterior distributions from the MCMC simulated samples can graphically illustrate

the inferential statistics as well. Our consideration of dynamic model parameters

having random effects can make the duration of load model being more closely to

reality. It is clear that many properties and environmental conditions, such as types

of the wood specimens, moisture contents, knots, lumber grading, and rate-of-loading,

can influence the strength and breakage time (Laufenberg et al., 1999; Madsen, 1975;

Rosowsky & Reinhold, 1999). Thus, random effects of the dynamic parameters should

be considered to present the uniqueness of each wood specimen. We also proposed

a matched pair design for short-term and long-term duration of load tests. With

this experimental design, both short-term and long-term results can be employed to

estimate the dynamic parameters simultaneously. Hence, the identifiability problems

can be solved.

We have presented two simulation studies to demonstrate our hierarchical Bayesian

approach in parameter estimation and prediction. In the parameter estimation sec-

tion, it can be seen from Table 3.1 and Table 3.2 that estimates of unknown parameters

were much closer to the true values if we have taken into account that the data con-

tain right censored observations. Further, if we perform parameter estimation without

considering the censoring conditions, the higher the censoring rate, the poorer esti-

mates we will obtain. From this presentation of our study in parameter estimation,

our hierarchical Bayesian approach is practical because it can handle right censored

conditions. Right censoring is common in practice due to the cost and standards of

the load-duration experiment. The percentage of the right censoring in our approach

can be adjusted by experimenter’s preference.

In the prediction section, we also illustrated predicting long-term breakage time by
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constructing its underlying conditional posterior distribution, f(y∗|y). Figure 3.4 has

shown the goodness of fit of our prediction performance. It is clear that our predicted

fitted values are very closed to the true values. Moreover, this prediction study can

also be considered as the validation to the estimation performance. Figure 3.4 also

implies that predictions taking censoring into account are more accurate than those

not considering censoring in the original data set, which is consistent to the finding

obtained in parameter estimation section.

There are several considerations, however, shall be suggested for future studies.

First, we have considered the random effects of dynamic parameters Ai and Bi as from

normal distribution. However, the symmetric property of normal distribution may

be too restricted. Second, we have considered log-normal distribution for breakage

times because observations should be positive. However, Weibull distribution can be

considered appropriate in describing the underlying distributions too because it can

handle censored data as well. Future study can be conducted to compare efficiency

gain between these two models. Third, connection of the dynamic parameters Ai and

Bi to real wood properties can also be considered in future studies. For example,

Ai can be modeled with generalized linear relationships to moisture contents, wood

specimen types, and lumber gradings, such that prediction on breakage time can

be performed by using these wood characteristics. Last, employing our hierarchical

Bayesian approach to real test results may be helpful to find the optimal model in

different situations.
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