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Abstract

One of the key problems in computational genomics is that of identifying structural varia-

tions between two sequences of genomic origin. Recently, with the advent of high-throughput

sequencing of transcriptomes (RNA-seq), transcriptional structural variation studies also

came into prominence.

This study introduces two novel frameworks for aligning transcribed sequences to the

genome with high sensitivity to structural alterations within the transcript. (1) A pairwise

nucleotide-level alignment model and (2) a faster lower-sensitivity solution based on chaining

homologous substrings between the transcript and the genome.

A further contribution of this study is a stand-alone transcriptome-to-genome alignment

tool, which can comprehensively identify and characterize transcriptional events (dupli-

cations, inversions, rearrangements and fusions); suitable for high-throughput structural

variation studies involving long transcribed sequences with high similarity to their genomic

origin.

Reported results include experiments upon simulated datasets of transcriptional events

and RNA-seq assemblies of a human prostate cancer individual.
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To my supporting family and my lovely nephew, Eren.
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“By 2015, we will see the beginnings of a real transformation in the therapeutics of

medicine, which by 2020 will have touched virtually every disorder, ... And the drugs that

we give in 2020 will for the most part be those that were based on the understanding of

the genome, and the things that we use today will be relegated to the dust bin.”

— Francis Collins
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Chapter 1

Introduction

In the past few years, next-generation sequencing has transformed genome studies. Sanger-

based sequencing technology has been replaced with novel technologies (e.g. Illumina, 454,

PacBio, SoliD) that produce typically shorter reads at an unprecedented speed and cost,

enabling the realization of tera-base scale high-throughput genome sequencing projects such

as the 1000 Genomes Project. Unfortunately new sequencing technologies not only provide

reads that are short, but also have high sequencing error rate, both contributing to the

level of ambiguity in determining the locus of each read on the reference human genome

sequence. In order to resolve this ambiguity in an efficient and reliable manner, novel and

sophisticated algorithms and software tools are needed. Even though recent developments

of next-generation sequencing provide longer sequences (100-150bp) than initially obtained

(20-30bp), the increase in read length is offset by the increase in the number and type of

errors that need to be tolerated for analyzing these reads, keeping mapping ambiguity at a

high level.

Longer read lengths are not only difficult to tackle due to higher sequencing or assembly

errors but also due to structural variations in the donor genome with respect to the reference.

These variations can be in the form of insertions, deletions, inversions and translocations

as well as duplications in genomic sequences. The algorithms to be developed should thus

handle increasing read lengths, with higher number of errors and different error structures

in the form of not only mismatches and indels1, but also these structural alterations that

1In this thesis, we denote indels as single nucleotide edit operations in a sequence that result in a single
base insertion or deletion.

1



CHAPTER 1. INTRODUCTION 2

cannot be detected by nucleotide level analysis. The developed algorithms should also be fast

and memory efficient enough to be able to handle very large datasets, which is a necessity

for sequence analysis studies to catch up with the current explosion of sequence information

in terms of both size and variety.

The advent of next-generation sequencing did not only affect the studies upon genomic

sequences but also transcriptomics. From a mathematical point of view, transcriptomic

sequences are relatively short polynucleotide sequences (consisting of 10s up to 10000s of

nucleotides) that are copied (transcribed) from a substring of the genome (a gene). Apart

from the transcription process; in order to take its form as a mature transcript (e.g. mRNA),

some of these sequences also go under the process of splicing, which is the transcriptional

procedure of cutting out several non-coding sub-strings (introns), and stitching back the

remaining pieces, which are called exons.

Even though the scale of a whole transcriptome database is relatively smaller than a

whole genome database2, transcriptome datasets are more difficult to analyse due to their

spliced nature and their possibility of containing structural alterations from its wild-type

form, such as transcriptional duplications, inversions, fusions (trans-splicing/read-through)

and rearrangements (non-co-linear transcription).

This thesis is a theoretical and experimental study upon efficient high-throughput iden-

tification of such structural alterations within transcriptome datasets with respect to a

reference genome.

The remainder of the Introduction chapter is organized as follows:

• Motivation: This section contains a literature survey of research upon chimeric and

non-co-linear transcripts as well as the significance of the current study for transcrip-

tome research.

• Methods Background : In this section, already existing methods in the literature for

finding structural alterations in transcriptomic sequences are described and their lim-

itations are argued.

• Contribution of Current Study : This section details the deliverables of the current

study in terms of theoretical results and software.

2Depending on the species and how deep the transcriptome database is constructed (including isoforms),
from around %3 up to %20 of the size of the genome (according RefSeq and GenBank transcript databases).
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• Organization of Thesis: The section breaks down the general structure of this thesis

document for the remainder of the chapters.

1.1 Motivation

The phenomenon of structural alterations during transcription has been known for some

time for simpler animals (e.g. nematodes [18]), yet only recently these transcriptional ab-

normalities have started to be investigated in higher mammals.

Even though there is an element of doubt with regard to whether these findings are

authentic or experimental artifacts[19], there has also been growing evidence and interest

upon this research area within the scientific community[13][43][28][3][16], and some of these

studies suggest a correlation between the extent of these structural alterations and the

abnormal activity of a cell (e.g. tumor cells)[13][43].

Due to the growing interest to the problem of detecting transcriptional variations, many

computational tools were developed upon mining mappings of RNA-seq reads to the genome

for detection and analysis of transcriptional abnormalities [35][26][20][12][4][29][38][31][30],

most of which specifically focus on identifying gene fusions.

A common drawback of these methods is being limited upon RNA-seq short-read map-

pings (or alternatively single-split mappings) for variation discovery and thus their inability

to scale well the progressing transcriptome sequencing technology. As next-generation se-

quencing currently provides longer reads (100-150bp) than before and is expected to get

longer (≥1000bp) with the emergence of new technologies such as PacBio sequencing; there

is a much higher possibility of each transcript read to contain sequences from more than

two exons, in contrast to the short read samples taken from the transcript. In such cases,

semi-global short-read mapping and split-mapping methods will be rendered ineffective due

to their inability to locate structurally important loci for structural variation discovery.

Furthermore, longer read sequencing technologies also allow more accurate de novo tran-

scriptome assembly. Each additional length carrying exponentially higher information value;

in near future highly accurate whole transcriptome assembly may not be a tough challenge

as it currently is. With the emergence of such transcriptome assembly methods, it will be

useful to have an efficient structural variation discovery method that can detect structural

alterations in full transcript sequences within a spliced alignment framework.
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Transcriptome to genome alignment problem has drawn a lot of interest from the biol-

ogy community in the last decade. It has been of interest to find the spliced intron/exon

structure of a transcript, given the contiguous transcript sequences themselves. Many well-

known methods have been proposed for this transcriptome to genome alignment problem

[21][46][41][33][2]. However, most of these methods assume the wild-type property of the

transcript sequence, devoid of any structural modifications such as non-co-linear transcrip-

tion, inversions within the transcript sequence, or very long or inter-chromosomal gaps

between two exons3.

With the next-generation transcriptional structural variation studies, there is a neces-

sity for an efficient long transcribed sequence (long RNA-seq reads or assemblies) to genome

aligner, that can address the limitations of the currently existing aligners and detect struc-

tural alterations in the form of duplications, inversions, fusions and rearrangements.

In this study we propose two novel frameworks for aligning transcripts to genome with

structural changes as well as a new high-throughput transcriptome to genome aligner that

can detect various structural alterations in transcripts.

Establishing a comprehensive mathematical model of structural alteration events in tran-

scriptome sequences will lead to a better understanding of the novel transcription phenomena

such as trans-splicing and non-co-linear transcription and their correlation with regulatory

abnormalities of a cell. Thus, the availability of an efficient computational tool that can

accurately identify such complex transcriptional events will be of great significance to per-

sonalized genome/transcriptome research, detecting complex variations that might lead to

the characterization of personal biomarkers for cancer diagnosis and prognosis of tumours.

1.2 Methods Background

The problem of aligning a transcript sequence to genome (also known as spliced alignment

problem), is a well investigated problem with many exact solution methods for different

variants and a multitude of heuristic approaches based on homology search and fragment

chaining. Theoretical foundations of this problem go as early as 80s with the investigation

of convex gap cost functions4 such as in the form a+b∗ log(x), a,b being constant values and

3We should note among the referred methods, GMAP [46] has a limited support for chimeric transcript
detection.

4In the cited article, convex gap cost function model is referred to as “concave” gap penalty model.
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x representing the distance of the gap [45]. This more advanced gap penalty function can

model RNA splicing and intron gaps in the alignment in a more realistic fashion than linear

gap penalties. Until the late 80s, the best known solution method for this problem was the

naive dynamic programming solution within O(MN2 + NM2), M,N being the length of

the genomic and transcriptomic sequences.

In the late 80s and early 90s, multiple results have been published upon speeding up

the nucleotide-level alignment problem5 for special gap penalty functions that satisfy certain

convexity, concavity properties[32][11][23] and for functions that we can calculate their zeros

in a simple way[11].

Also in the early 90s, BLAST[1] introduced a fast DNA to whole genome alignment

heuristic method with reduced sensitivity as an alternative to the slower exact alignment

solutions[36][42]. This method, instead of directly aligning matching nucleotides, utilized a

seed-and-extend alignment strategy, which is based on searching common seeds of a certain

length in both sequences and extending them in order to obtain the full alignment. In the

same direction, there emerged faster methods for spliced alignment of a transcribed sequence

to whole genome through a combination of homology search and fragment chaining methods.

From late 90s to mid-2000s, an ample amount of transcript to whole genome alignment

tools emerged such as Gapped BLAST[2], BLAT[21], GMAP[46] and Exonerate[41]. Since

solving this problem is computationally harder than aligning a DNA sequence to the genome,

the proposed methods do not only utilize a seed-and-extend alignment strategy, but also

combine it with a fragment chaining method that aims to stitch the fragments that yields

a high-scoring or optimal fragment chain.

Even though currently available methods can align entire transcriptome datasets to

whole genome within the order of days with a single processor, their support for detection

of complex structural variation events is very limited. The primary reason behind this is

the lack of knowledge about complex structural alteration events (novelties) in transcripts

during the times these methods were developed, as biological studies on these are only

recently becoming available to the scientific community.

In the realm of next-generation structural variation studies, these tools need to be mod-

ified towards the identification of complex structural variants. In this context, one needs to

5These solutions did not consider the direct application of the spliced alignment problem, but were mainly
designed for genome-to-genome or protein-to-protein alignment purposes with a more realistic gap penalty
model than affine gap penalties.
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find the most likely alignment between a given transcript sequence and a genomic sequence

under the possibility of the following genomic events: (1) Duplication events, in which two

separate regions in the transcript sequence align to a shared region within the genomic

sequence. (2) Inversions, in which an interval within the transcript sequence aligns to a dif-

ferent strand of the genome than the rest of the transcript. (3) Rearrangements that appear

as non-linear ordering of the transcript alignment and (4) fusions transcripts, in which the

transcript sequence is split into two separate genomic intervals that can be far apart on the

same chomosome or on entirely different choromosomes sequences.

A practical approach to the problem of identifying novel transcriptional events was

proposed by [37]; in which study, they parsed the alignment results of a regular spliced

alignment method and mined the structural variation information such as folded inversions6

and fusions hidden in the combination of alignments. Another method proposed in a similar

direction, is to extract duplication and in-place inversion information that is indirectly

represented in wild-type spliced alignment formations[44]. However, these approaches can

provide only a limited level of analysis for detecting events involving complex structural

variations, since they are highly dependent on the regular spliced alignment tools that were

not originally designed to tackle these complex structural alterations. Frequently, transcripts

containing structural alterations will appear in deformed formations when aligned with

regular spliced alignment methods due to their over-sensitivity for the wild-type transcript

structure, disregarding potential variations. Therefore, as an alternative initial alignment

step for such studies; it will be useful to design a novel algorithm that can detect complex

structural alterations during the alignment, rather than inferring them through a post-

processing step.

There are several issues that need to be addressed for the purpose of designing and de-

veloping a spliced alignment method with the capability of detecting structural alterations

in a personal transcriptome. First, the alignment framework (and the alignments it would

provide) should be generalized to be able to handle complex alignment cases such as the

alignment of different regions in the transcript to the same region in the genomic sequence

(because of a duplication event during transcription), and the alignment of consecutive re-

gions in the transcript to the genome with different directionality (due to an inversion).

6Inversions that cover a suffix or prefix of the full transcript. Note that these can be produced by only a
single irregular transition between alignment bases.
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Furthermore, the algorithm should allow backward junctions in the genome due to a rear-

rangement of two consecutive intervals (i.e., order of two consecutive blocks is switched when

aligned to the genome while conserving their directionality). In addition (for the purpose

of detecting a fusion event due to trans-splicing or genomic rearrangements), the algorithm

should allow the alignment of different parts of the transcript sequence to two locations

which are far apart in the genome (or even in two separate chromosome sequences).

To our best knowledge, apart from this study there is no single comprehensive long

transcript7 alignment method that can address all of the concerns noted above. A similar

but a simpler genome alignment version of this problem was addressed in [7], in which a

genomic sequence is aligned to another genomic sequence with the structural alterations

(in the form of duplications, inversions and rearrangements) in a model of “1-monotonous”

alignment that considers only one sequence indices to be increasing and the other sequence

to be supplying copies of substrings with indices that are not necessarily increasing. The

biggest drawback of this method, as also noted in the original paper, is that the alignment

would inherently be asymmetric due to the detection of duplications in only one of the

sequences rather than the other. However, this feature is not necessarily a drawback for

transcript to genome alignment purposes, since the aim is to find the structural alterations

in the transcript with respect to the genomic sequence and not vice versa. Therefore,

finding the duplications of a string in the genomic sequence within the transcript would be

of interest, yet reporting two alternative placements of a single transcript exon onto the

genomic sequences less interesting in terms of finding transcriptional structural variants.

However, the problem at hand is more complex than the genomic counterpart, due to the

fact that transcriptomic gap penalties need to be modelled as more complex functions than

the genome. Even though an affine gap penalty model can be satisfactory for the purposes of

genome to genome alignment, more complicated gap penalty functions are necessary when

designing a realistic transcriptome to genome alignment framework.

1.3 Contribution of Current Study

The first set of deliverables of this thesis project are two novel frameworks for transcriptome-

to-genome alignment with structural alterations and the corresponding set of solutions for

7Number of splices in the transcript are not limited by a constant number.
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different gap penalty models within each formulation.

Our first framework is a nucleotide-level alignment model that can detect duplications,

rearrangements, inversions and fusions in the transcript as long as the sequence is repre-

sented as chain of unidirectional copies of segments taken from the genome, meaning that

structural events are only detected on the transcript side and the duplications on the genome

side are missed or ignored. For our formulations within this framework, we provide several

dynamic programming solutions with different run-time complexities, depending on how

complex the gap penalty of introns and other genomic gaps are modeled. The main the-

oretical result in this framework is the sparsification of the alignment matrix construction

step using convex gap penalty model.

Our second framework aims to resolve the high run-time and memory cost of the initial

the nucleotide-level alignment framework, by sacrificing sensitivity upon structures shorter

than a minimum threshold. In this formulation we assume each alignment unit to be a frag-

ment that represents a short homologous sequence between the transcript and the genome

(that only contains mismatches), and try to find the fragment chaining that gives the best

overall alignment score concordant with penalties given in the first framework. For the

formulations within this framework; we do not present a sparse solution, yet examine the

problem from different overlap resolution perspectives and propose alternative approaches.

The study also presents a novel transcriptome to whole genome alignment tool named

Dissect (DIScovery of Structural Event Containing Transcripts), suitable for high through-

put transcriptome structural variation studies,. As far as we know, this is the first com-

prehensive stand-alone software pipeline for the purposes of detecting and characterizing

novel transcriptional alterations, capable of direct global alignment of long transcriptomic

sequences (such as long RNA-seq reads, ESTs and short-read assembly contigs8) that con-

tain structural alterations to whole genome using realistic gap penalty models. This software

pipeline is suitable for high-throughput analysis of large-scale transcriptome studies, allow-

ing the processing of entire transcriptomes in the order of days with a modern single core

processor.

Finally, we report experimental results using our alignment tool, upon a simulated mouse

transcriptome database containing nucleotide-level noise and assembled RNA-seq reads of

a human prostate cancer individual. Discovered structural alterations within the prostate

8Contiguous sequences
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cancer dataset are presented, ready to be validated for analysis of their biological signifi-

cance.

1.4 Organization of Thesis

This thesis document is structured as follows:

Methods

The methods chapter is composed of three separate sections.

The first two chapters present the two theoretical frameworks mentioned earlier. For

both nucleotide-level alignment and fragment chaining approach, the problems are investi-

gated in multiple variants and efficient solutions are proposed to tackle them.

In the third section of the methods chapter, we present our software aligner, Dissect.

We present the multiple steps of the alignment and event detection process, but focusing

on more practical problems than the theoretical concepts discussed in the earlier sections.

Two of the practical problems that are investigated in detail in this section are: inferring

putative gene regions that the transcripts are likely to be located and post-refinement of

potential small-scale misalignments in the fragment chain due to the minimum fragment

length threshold. In this section, we also talk about the software development aspects of

Dissect, discussing the design considerations to make it more efficient in terms of memory

and disk usage and improving the usability of the software.

Experiments

The experiments chapter reports experimental resuts in two main directions: experiments

upon simulated datasets and real life biological datasets.

The simulation experiments fall into two main subcategories: (1) Showing evidence

for the alignment accuracy and event detection specificity through tests upon wild-type

transcriptome datasets comtaminated by with nucleotide-level noise and novel insertions. (2)

Showing evidence for the event detection sensitivity through tests upon simulated structural

events on wild-type transcripts.

In the second set of experiments, we use assembled RNA-seq contigs of a human prostate

cancer individual and report the number of events we detect for each sub-type. Unfortu-

nately there is not a reliable way to ascertain false negative rates in real life datasets and
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biologically relevant true positive rates, due to the fact that these sequences are generated

by a separate assembly pipeline which will have its own rate of false assemblies that contain

structural events. However, the purpose of the presented software is finding structural al-

terations assuming that the given sequence is correct and has a high rate of similarity to its

genomic origin. For this reason, in order to evaluate the reliability of the software in real-life

datasets, we use a wild-type spliced aligner as a surrogate for detecting false positive events.

Summary and Conclusion

This chapter contains an overall summary and a general discussion upon the reported the-

oretical results, design aspects of the presented alignment tool and obtained experimental

results as well as the possible directions in which this study can be improved or extended

in the future.



Chapter 2

Methods

2.1 A Theoretical Framework for Nucleotide-Level Spliced

Alignment with Structural Alterations

Different from the alignment of two genomic sequences, aligning a transcribed sequence to

a genomic sequence have several challenges even without the incorporation of structural

alterations. These challenges mostly arise from the asymmetric gap models for the genome

and transcript sides of the alignment and the nontrivial genomic gap penalty functions that

are used to model long introns on the genome side. Furthermore, with the incorporation of

splice signal scores to the alignment formulation, the penalty function of genomic gaps be-

come position specific, thus traversing the constructed alignment graph becomes a challenge

by itself.

The main concern when aligning two genomic sequences is whether to align them globally,

forcing both sequences to be fully represented within the alignment or locally, giving both

sequences the option to omit leading or trailing sequences that reduce the alignment score

if they are included. In both cases the alignment would be symmetric (i.e. the same

alignment is obtained when the order of the aligned sequences are changed within the

pairwise alignment graph)

When we consider the alignment of a transcript to a genomic sequence, the two sequences

do not have symmetric alignment properties (as opposed to genome-to-genome alignment).

The aligned transcribed sequences would be contained within only a very small region of

the full genomic sequence given, however the extent of this region would be larger than

11
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transcript’s length due to the length difference between introns and exons. This property

of aligned sequences creates an asymmetry in the transcript alignment problem, in which

the transcript sequence should be considered fully within the alignment whereas its genomic

counterpart should be very local and contain relatively long gaps within.

Moreover, since the discarded introns in a transcript sequence tend to be much longer

than the retained exon sequences, constant or affine gap penalties that could act as plausible

models of the gap length in the case of aligning two genomic sequences, would be inade-

quate to model the long gaps on the genome side in the case of transcriptome to genome

alignments1. For this reason; in the following set of formulations, we assume genomic gap

penalty models in the form of convex and log-scale cost functions.

For the sake of simplicity, the gap penalties on the transcript side are formulated within

the constant gap penalty model, even though the algorithms described in this section are

fully compatible with affine gap penalties with simple modifications. At the end of each

subsection, how to modify the presented algorithms for affine gap penalties is briefly de-

scribed.

The following two subsections provide two different problem formulations and algorithms

to solve these problems exactly. The first problem definition presents a realistic model of

the alignment of a wild-type transcript to the genome without involving any structural

changes. Whereas the second problem definition expands the same model by involving

structural alterations in the alignments; such as the alignment of two separate transcribed

bases to a single genomic base (i.e. duplication), alignment of a base that comes later in the

transcribed sequence to be aligned to a genomic base that comes earlier than the alignment

of a previous base in the transcript (i.e. rearrangement), alignment of a substring of bases

in the transcript to the reverse complement of the genomic sequence (i.e inversion) and

the placement of a single special genomic gap that can span a much larger distance than

usual or form a junction between two separate chromosome sequences (i.e. fusion). We

further expand this model by incorporating additional scores (penalty reductions) for gaps

that span an intron junction between genomic positions that represent a canonical splice

signal pair (e.g. GT-AG). Even though this addition to the formulation does not represent

a structural change; due to the additional steps required for integration, siplice signals are

1If we model an intron gap with a linear cost function f(L) = c0 + c1 × L (L representing the gap size
and c0, c1 arbitrary constant values), gap penalty of long introns are likely to dominate the matching base
pair scores obtained from other regions in the transcribed sequence.
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investigated as part of the second problem formulation.

Provided algorithms for the first problem describe already existing methods in the lit-

erature. Whereas in the second subsection we describe our expanded problem definition

and corresponding novel solution methods that extend the original methods to structural

alterations staying within the same run-time complexity bound.

2.1.1 Problem 1: Wild-type transcript to genome alignment

Given an alphabet of Σ = {A,C,G, T}, let T = t1t2 . . . tN be the transcribed sequence of

length N and G = g1g2 . . . gM be the genomic sequence of length M over Σ. The value

function v(ti) returns the base character for the given position i in T , whereas v(gj) returns

the base character for the given position j in G.

A wild-type transcript to genome alignment of sequence T to G, A(T,G), is a mapping

f from the set indices of T , {1, 2, . . . , N} to the indices of G together with a special gap

index, {1, 2, . . . ,M} ∪ {φ}, φ representing a gap character ‘ ’ on the genome side, such that

∀i, j ∈ [1, N ] , i < j ∧ f(i) 6= φ ∧ f(j) 6= φ ⇒ f(i) < f(j) (2.1)

holds2. This statement ensures that each base on the transcribed sequence should be either

aligned to a gap, or should be aligned to a genomic position that comes later than all of the

aligned positions of the previous bases in the transcript.

The score of the alignment Score(A) is defined as follows:

Score(A) =
N∑
i=1

Sm(i, f(i))−
∑

1 ≤ i < j ≤ N
f(i) 6= φ ∧ f(j) 6= φ

∀k, i < k < j, f(k) = φ

Ps(f(i), f(j))

where Sm represents the base match/mismatch score/penalty function and Ps representing

the gap penalty function, defined as follows:

Sm(i, j) =


Cmatch for v(ti) = v(gj)

Cmismatch for j 6= φ ∧ v(ti) 6= v(gj)

Cgap for j = φ

2The conventional problem definition for alignment would involve a two-row matrix with gaps on either
side. However, the given problem definition and the following score functions correspond to the exact same
formulation with a two row matrix. Such a problem definition is provided for the sake of simplicity of the
transition from wild-type transcript alignment to transcript alignment with structural alterations.
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Ps(a, b) = h(b− a− 1)

In the definition of the penalty score function3, h: Z+ ∪ {0} → R is a convex gap cost

function satisfying the following property:

h(x)− h(x− 1) ≥ h(x+ 1)− h(x) ≥ 0 (2.2)

Below, two different solution methods are given for solving the problem formulated above

(Wild-Type Transtriptome Alignment). The first algorithm is a simple solution method

that does not utilize the convex gap penalty function property, but is suitable for arbitrary

gap penalties. Whereas the second solution provides a more complicated algorithm with a

tighter run-time complexity that utilizes the convex gap penalty property.

Algorithm WTTA-1: Naive solution method

The general approach of this naive solution is to iteratively fill in the cells of the align-

ment matrix X row by row; each of the matrix cell X[i, j] representing the best wild-type

transcript to genome alignment of T ’s prefix T [1..i] and G’s prefix G[1..j].

For each cell of the matix, the algorithm computes the cost all valid genomic gaps from

the previous row to the cell or alternatively maps a particular cell to the gap character index

φ.

The initialization step of the WTTA-1 algorithm is as follows:

∀j ∈ [1,M ], X[1, j].score← max(Sm(1, j), Sm(1, φ))

∀j ∈ [1,M ], X[1, j].parent← source

where the source parent indicates that the alignment cell is the starting point for the align-

ment.

And for each row i, from 2 to N , and within each row; for columns j, from 1 to M, the

following assignment is done:

X[i, j].score← max(X[i− 1, j] + Sm(i, φ), max
1≤k<j

(X[i− 1, k]− Ps(k, j) + Sm(i, j)))

In the assignment above, the first parameter of the outer maximum function considers

aligning the current base of the transcript (ti) to a gap, whereas the inner maximum function

3A desirable property of the Ps function would be returning the value zero, if b− a− 1 = 0
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evaluates the gap transitions from all previous genomic positions (gk). In the special case

in which j = k + 1, the genomic transition does not represent a gap, but a consecutive

alignment of two bases in the transcript to two consecutive bases in the genome. In this

particular case, the function h would ideally return zero for h(j−k−1), therefore the value

of the new cell would in this case be X[i − 1, j − 1] + Sm(i, j), similar to pairwise genome

alignment.

If the best score of the cell is determined by first parameter of the outer maximum

function, X[i, j].parent is assigned as j; alternatively if the score value is determined by

one of the k values in the second parameter, the parent is assigned as k. Also note that; if

the genomic gap to X[i, j] is from a cell X[i − 1, k] that ti is aligned to φ, the represented

genomic gap is not from X[i−1, k] but from the first ancestor of that cell that is not aligned

to a φ or is source.

After the score and parent information of all cells in the matrix are filled, alignment

step of the algorithm terminates by selecting the highest scoring base in the last row of the

alignment matrix, which corresponds to the last base of the transcribed sequence. Therefore,

the algorithm selects the best alignment of the entire transcript to a local region in the

genomic sequence.

The backtracking step of the algorithm simply starts from the highest scoring cell in

the last row and follows the direction of parents until it reaches the first row. The optimal

alignment function f is constructed by the following scheme: whenever X[i, j].parent = j,

f(i)← φ, otherwise if X[i, j].parent = k 6= j, f(i)← k. When the top row is reached, f(1)

is assigned as the current column index (or a gap) and the backtracking step terminates.

The run-time complexity of the algorithm WTTA-1 is O(NM2) due to visiting every

cell of the previous row for all cells in the matrix X, apart from the first row. Memory

complexity of WTTA-1 is the size of alignment matrix X, thus O(NM).

Algorithm WTTA-2: Sparse solution method

In order to reduce the time complexity of WTTA-1 from O(NM2) to O(NMlog(M)), we

can utilize the property of the gap penalty function h being a convex cost function that has

non-increasing growth with the length of the gap as defined in (2.2). The result described

below is originally demonstrated by [32] and [11].

The first row of the matrix X is initialized in the same manner as in the algorithm

WTTA-1, however generating (i+1)th row using the values from the ith row can be performed
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in O(Mlog(M)) operations, using the property given in (2.2). The first step in obtaining

this improvement would be to generalize the given inequality.

Lemma 1. Given four integers k ≤ l ≤ q ≤ r and h : Z+ ∪ {0} → R; if h is a convex cost

function with the property defined in (2.2), then h(r − l)− h(q − l) ≥ h(r − k)− h(q − k).

Proof. From (2.2), for t ≥ 0 we have;

h(i)− h(i− 1) ≥ h(i+ 1)− h(i) ≥ . . . ≥ h(i+ t)− h(i+ t− 1) (2.3)

And similarly, for 1 ≤ m ≤ i;

i∑
k=i−m+1

h(k)− h(k − 1) ≥
i+1∑

k=i−m+2

h(k)− h(k − 1)

=⇒ h(i)− h(i−m) ≥ h(i+ 1)− h(i−m+ 1) (2.4)

From (2.3) and (2.4)

h(i)− h(i−m) ≥ h(i+ t)− h(i+ t−m)

Here if we rewrite m = r − q , i = r − l , and t = l − k

h(r − l)− h(q − l) ≥ h(r − k)− h(q − k)

At this point, in order to make use of Lemma 1, we will modify the general dynamic

programming scheme in WTTA-1. In WTTA-1, the algorithm searches for transitions from

the previous row towards the current cell. However, in WTTA-2, each cell will perform a

search for which cells of the following row it can affect by a transition. We will call this a

forward assignment step as described follows:

Assume that, the initialization steps of WTTA-2 are the same as in WTTA-1 with the

only difference that all cells other than the first row are initialized as having a score of −∞.

Then, for each row i, from 1 to N − 1; and within each row, for each column j, from 1 to

M .

X[i+ 1, j].score← max(X[i+ 1, j].score,X[i, j].score+ Sm(i+ 1, φ))

∀k ∈ [j+1,M ], X[i+1, k].score← max(X[i+1, k].score,X[i, j].score−Ps(j, k)+Sm(i+1, k))



CHAPTER 2. METHODS 17

If the assignment in the first line above updates the score of the cell, X[i+ 1, j].parent

is set as j. Similarly for any k, that X[i + 1, k].score is altered during the assignments in

the second line, X[i+ 1, k].parent is set as j.

These operations during a full scan of the alignment matrix will produce the exact same

results as in WTTA-1. However, these values are not filled in by each cell looking at previous

values in the matrix; but by the forward assignment operations done by the previous matrix

cells. However, this traversal also yields a run-time complexity of O(NM2). In order to

perform these forward assignments in O(NMlog(M)) time we will make use of the following

property of the assignment process.

Theorem 1. During the forward assignment process described above, at any row i and

column j, right before the forward assignments begin for that particular cell, the sequence

formed by the current parents of the cells to be visited,

Ip = ( X[i+ 1, j + 1].parent, X[i+ 1, j + 2].parent, . . . , X[i+ 1,M ].parent )

is a non-increasing sequence4.

Proof. If j′ and k′ are column indices such that, 1 ≤ j′ < j and k < k′ ≤ M ; we can

substitute j′,j,k,k′ in place of k,l,q,r in Lemma 1, obtaining the following inequality:

h(k′ − j)− h(k − j) ≥ h(k′ − j′)− h(k − j′)

=⇒ Ps(j, k′)− Ps(j, k) ≥ Ps(j′, k′)− Ps(j′, k)

=⇒ Ps(j′, k)− Ps(j, k) ≥ Ps(j′, k′)− Ps(j, k′) (2.5)

And from (2.5),

Ps(j, k) ≥ Ps(j′, k) =⇒ 0 ≥ Ps(j′, k′)− Ps(j, k′) =⇒ Ps(j, k′) ≥ Ps(j′, k′)

−Ps(j, k) ≤ −Ps(j′, k) =⇒ −Ps(j, k′) ≤ −Ps(j′, k′)

Thus,
X[i, j].score− Ps(j, k) < X[i, j′].score− Ps(j′, k)

=⇒ X[i, j].score− Ps(j, k′) < X[i, j′].score− Ps(j′, k′)
(2.6)

4Remember that X[i, j].parent points toward a column k of a matrix cell in the previous row, X[i− 1, k].
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In order to prove Theorem 1 by contradiction, we assume that Ip is not monotonously

non-increasing:

∃u, v ∈ [j + 1,M ] such that u < v ∧ p1 = X[i+ 1, u].parent < p2 = X[i+ 1, v].parent

The statement p1 = X[i+ 1, u].parent, would require the following statement to hold:

∀t, 0 < t < j : X[i, p1].s− Ps(p1, u) ≥ X[i, t].s− Ps(t, u) (2.7)

Similarly for p2 = X[i+ 1, v].parent:

∀t, 0 < t < j : X[i, p2].s− Ps(p2, v) ≥ X[i, t].s− Ps(t, u) (2.8)

From (2.7) and (2.8), we obtain:

X[i, p1].score− Ps(p1, u) ≥ X[i, p2].score− Ps(p2, u)

and

X[i, p2].score− Ps(p2, v) ≥ X[i, p1].score− Ps(p1, v)

which contradict with the statement in (2.6). Hence, Ip needs to be monotonously non-

increasing.

Using the property in Theorem 1, we can skip the score comparisons for the majority

of the row cells during the forward assignment process. An algorithm that utilizes this

property during the forward assignments is described as follows.

• Assume that initialization step of the first row takes place in the same way as WTTA-1

• For each of the rows i, from 1 to N − 1:

– Initialize parents of all cells in the (i + 1)th row as ∅ and define X[i, ∅].score as

−∞5.

– Initialize a linked list structure B, that contains nodes B1 to Bm that represent

the block of columns in the (i+ 1)th row that has the same parent pointer6. It is

sufficient for each node Bc to only hold the ending column (Bc.ec) of each block,

and the parent index value (Bc.pi) each cell in the block Bc has7.

5Thus, the score of having parent ∅ is −∞ for any cell in the (i + 1)th row
6The value m is determined by how many same parent blocks exists in the list. Thus initially m = 1
7Initially B will contain only a single node B1, having B1.ec = M and B1.pi = ∅
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– Assign current block Bc ← B1

– For each of the columns j, from i+ 1 to M

∗ If the score transition from X[i, Bc.pi] to X[i+ 1, j − 1] is larger than X[i+

1, j − 1].score, then update X[i + 1, j − 1].score and assign X[i + 1, j −
1].parent← Bc.pi

∗ Check the score of aligning si to φ:

X[i+ 1, j].score← max(X[i+ 1, j].score,X[i, j].score+ Sm(i+ 1, φ))

If this assignment updates X[i + 1, j].score, then X[i + 1, j].parent ← j.

At this point, we define another information type for the aligment matrix

as gap, and assign X[i + 1, j].gap as true. We assume all gap values in the

alignment matrix are initialized as false.

∗ Update the current block if it is completed: If Bc.ec ≤ j, then c← c+ 1

∗ Check if a transition from X[i, j] can update X[i+ 1, j + 1]’s score:

X[i, j].score− Ps(j, j + 1) > X[i, Bc.pi].score− Ps(Bc.pi, j + 1)

If it does not, from the observation (2.6), it is clear that X[i, j] cannot update

any one of the remaining cells. Thus, skip the following steps and continue

this process with the next column j + 1.

∗ Check if a transition from X[i, j] can update X[i + 1, k]’s score, in which k

is the ending column of the current block. In mathematical terms, check if:

X[i, j].score− Ps(j, Bc.ec) > X[i, Bc.pi].score− Ps(Bc.pi, Bc.ec)

If the inequality above holds8, then assign Bc.pi← j then check if the same

inequality holds for the next block’s ending position, Bc+1.pi. If it holds,

then merge the two blocks Bc and Bc+1 by updating Bc.ec ← Bc+1.ec and

deleting Bc+1. As this inequality holds for the remaining blocks in the list,

merge them one by one to Bc
9. If all of the blocks are merged into one,

8Note that with this inequality, ties are broken favoring the block parent indicating an earlier cell. Even
though either way may not represent a biological reasoning, the way this tie-breaking scheme is selected
favors a higher quality alignment prior to a longer intron over a relatively lower quality alignment with a
shorter intron.

9Since B is maintained by a linked list, shifting the remainder of the blocks whenever two adjacent blocks
are merged, can be done in constant time.
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return to the beginning of the inner loop and continue the same process with

the next column j+1 and the resulting linked list B. If the first or any other

block’s inequality does not hold however, the block that does not satisfy the

given inequality, Bc′ , needs to be analysed in detail in the next step.

∗ Bc′ in the (i + 1)th row represents the column index interval [(Bc′−1.ec +

1), Bc′ .ec]. If the inequality given above does not hold for Bc′ .ec but holds

for Bc′−1.ec + 1, then transitions from X[i, j] can update only some of the

cells within this block. However, due to the property proved in Theorem

1 to be satisfied, the updated cells should form a sub-interval that starts at

the beginning of the block. Here, we only need to find the position that this

sub-interval ends. This can be achieved by employing a binary search within

the block interval, trying to find the qth cell in the interval that satisfies

the equation where (q + 1)th cell does not10. After this position q is found,

the block Bc′ is split into two separate blocks with column index intervals:

[(Bc′−1.ec+ 1), q] and [(q+ 1), Bc′ .ec]. Also the respective parent indices and

ending positions are set. If Bc′ was the original Bc block, then after splitting

Bc into two as described, we continue with the next column j + 1. If Bc′

is one of the downstream blocks of Bc however, then all of the blocks in

between have already been merged to Bc and the first block that is created

during the split is merged with Bc as well.

– At this point we have the final parent and score values for all of the cells in the

(i + 1)th row. In order to fill the remainder of the rows, we go to the beginning

of the outer loop.

• The backtracking step of this algorithm is employed in a similar way to the method

described in WTTA-1. During the backtracking procedure, the current transcript base

is aligned to a gap only if the gap value of the current alignment matrix cell is true.

Otherwise, ith base of the transcript is aligned to the jth base of the genomic sequence

as in the WTTA-1 algorithm.

Analysing the complexity of this method is more difficult than WTTA-1 algorithm,

10It is important to note that, throughout the binary search or block merging/splitting steps the actual
parent and score values of the cells from X[i + 1, j + 1] to X[i + 1, M ] are not stored. All of the score
calculations required for the inequality checks are performed on the fly, with the values not saved or reused.
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however it is clear that the inner loop of the algorithm is called O(NM) times throughout

the algorithm, thus initialization and backtracking steps of the algorithm does not affect the

run-time complexity. It can also be noticed that at each iteration of the inner loop; (1) a

binary search is performed within an interval of O(M) cells, (2) at most Θ(1) cells are split

into two, and (3) at most O(M) cells are merged. Step (1) adds an additional O(logM)

operations for each inner loop call and step (2) does not affect the complexity since it can

be performed in constant time. In order to analyse the complexity of step (3), we can make

use of the observation that before the first iteration of the inner loop starts, the number

of blocks is exactly 1. Since at each step at most one block is split into two, there can at

most be O(M) blocks created in total. This observation indicates that there are at most

O(M) cells merged as well, giving an amortized complexity of Θ(1) for step (3) for each

iteration of the inner loop. Therefore the overall complexity of the WTTA-2 algorithm is

O(NMlog(M)).

Further improvements to WTTA-2

In the WTTA-2 algorithm, it was assumed that in the given penalty function genome-side

gaps are modelled by a convex cost function satisfying the inequality given in (2.2). However,

it is possible to achieve a further run-time complexity reduction if we consider a smaller set

of functions that satisfy the “closest zero property” defined in [11].

The definition of this property for a given convex cost function, h : R→ R, is as follows:

• For every x1, x2 ∈ Z, x1 < x2 and r ∈ R, the smallest y integer value such that y > x2

and h(y − x1)− h(y − x2)− a ≤ 0 can be calculated in constant time (2.9)

Theorem 2. If the gap penalty function Ps(a, b) = h(b−a−1) in the Problem 1 definition

is a convex cost function satisfying (2.2), and also has the “closest zero property” as defined

in (2.9). Problem 1 can be solved in O(MN) time; M,N being the transcript and genome

lengths respectively.

Proof. In the complexity analysis of the algorithm WTTA-1, we identified three steps within

the inner loop: (1) binary search within the interval of a same parent block, (2) splitting

of an interval, and (3) merging of one or more intervals. Steps (2) and (3) are shown to

have Θ(1), and amortized Θ(1) runtime complexities respectively, whereas step (1) takes
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O(log(M)) time. Due to the fact that the inner loop is iterated O(MN) times, the overall

running time was O(MNlog(M)). The goal of each binary search employed was to find the

qth column in the block that the following two inequalities are satisfied.

X[i, j].score− Ps(j, q) > X[i, Bc.pi].score− Ps(Bc.pi, q)

X[i, j].score− Ps(j, q + 1) ≤ X[i, Bc.pi].score− Ps(Bc.pi, q + 1)

Given (2.9), we can find such a q index value in constant time.

This improvement will reduce the binary search step performed in O(logM) time to Θ(1)

time, giving an overall run-time complexity of O(MN).

Log-scale functions in the form h(x) = C1+C2∗logb(x), satisfy the ’closest zero property’,

given C1 and C2 are constant rational numbers. The calculation steps of y in a log-scale

function is described as follows:

h(y − x1)− h(y − x2)− a = 0

=⇒ log(y − x1)− log(y − x2) =
a

C2

=⇒ log(
y − x1

y − x2
) =

a

C2

=⇒ y − x1

y − x2
= b

a
C2

Redefine b
a

C2 as C0:

=⇒ y − x1 = C0 ∗ y − C0 ∗ x2

=⇒ y =
C0 ∗ x2 − x1

1− C0

At this point, if the calculated y is less than or equal to x2, we infer that there is no such

y that satisfies (2.9), otherwise return the smallest integer larger than or equal to y as the

solution.

Note that, the calculation b
a

C2 is an operation that can be done in constant time. The

remaining of the steps can also be performed in constant time, if a unit operation is assumed

to cover the basic arithmetic operations11.

Another possible addition to the WTTA-2 algorithm is the extension of the transcript

gap penalty model from constant to affine cost functions. In the affine gap penalty model,

11Such as addition, subtraction, multiplication, division and comparison.
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a gap distance of t is not penalized by Cgap ∗ t as in the constant gap penalty model, but

penalized as a linear function in the form: Cgap−open +Cgap−extend ∗ t. In order to introduce

this new gap penalty model, the function Sm in the definition of Problem 1 should be

changed to Sma as follows:

Sma(i, j) =


Cmatch for v(ti) = v(gj)

Cmismatch for j 6= φ ∧ v(ti) 6= v(gj)

Cgap−open for j = φ ∧ f(i− 1) 6= φ

Cgap−extend for j = φ ∧ f(i− 1) = φ

In order to integrate Sma definition to the new algorithm, we can add two more score

matrices other than X: XM and XG. XM [i, j] represents the alignment of the ith index

of T to the jth index of G as a match or mismatch, whereas XG[i, j] represents the same

index alignment as a gap. Moreover, X[i, j] represents the maximum of the cells in these

two matrices.

In each forward assignment step in WTTA-2, a genomic transition score (from (i, j) to

(i + 1, k)) that ends with a match will be calculated from the base score of X[i, j], and

assigned to XM [i + 1, k] and replace the value of X[i + 1, k], if larger. On the other hand;

for a gap transition (from (i, j) to (i + 1, j) ) that ends with a gap, we have two different

alternatives. The gap can either extend the gap in (i, j) or start a new gap in (i + 1, j).

In the first case the transition score should be calculated as XG[i, j] − Cgap−extend and in

the second case XM [i, j] − Cgap−open. The maximum of these two values will be assigned

to XG[i + 1, j] and replace X[i + 1, j] if it is larger. Since the number of operations and

additional number of cells are within a constant factor of the original WTTA-2 algorithm,

the extension for affine gap penalties do not alter run-time and memory complexity.

2.1.2 Problem 2: Transcript to genome alignment with structural alter-

ations and splice signals

Here we propose an alternative definition of the first problem, generalizing it for detect-

ing transcriptional variations such as duplications, rearrangements and inversions that are

represented as unidirectional copies of genomic substrings in the transcript. We further

generalize the problem formulation for handling the special case of fusions that correspond
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to the alignment of a single transcript to two different genomic sequences12 with the restric-

tion that there can only be a single transition from the first sequence to the other and no

transition back from the second to the first. Finally, we incorporate the additional scoring

of canonical splice signals into our formulation of pairwise transcript-to-genome alignment

with structural alterations.

Assume the original definitions for the alphabet Σ, transcribed sequence T = t1t2 . . . tN

and the genomic sequence G = g1g2 . . . gM , given in the previous problem definition.

Inclusion of duplications and rearrangements to the problem formulation will require

the freedom to have backwards gaps/junctions in the genome, allowing the cases in which

i, j ∈ [1, N ] : i < j ∧ f(i) ≥ f(j). Therefore, in this alignment formulation the statement

given in (2.1) is omitted.

Moreover, inclusion of inversions to the alignment framework will require the alignment

of a base within the transcribed sequence to the complement of the base in the genome

rather than the original. The base complement function for any sequence index is defined

as follows:

Comp(c) =


c′ : v(c′) = A for v(c) = T

c′ : v(c′) = T for v(c) = A

c′ : v(c′) = G for v(c) = C

c′ : v(c′) = C for v(c) = G

For easier notation of the complement alignment of a transcribed base to the genome,

we introduce a new genomic sequence G′ = g′1g
′
2 . . . g

′
M , such that for each i from 1 to

M , gi = Comp(g′i). An important point to note here is that, this new sequence does not

represent the reverse complement genome sequence but a sequence derived from the original

genome sequence by taking the complement of each base character in its original place13.

Furthermore, for the incorporation of fusion events, a new secondary genomic sequence

and its complement should be introduced. Let S = s1s2 . . . sL to be the secondary sequence

completely independent from the sequence G, and S′ = s′1s
′
2 . . . s

′
L be the complement of S

such that for each i from 1 to L, si = Comp(s′i). An important condition that the designed

alignment framework should enforce on these fusion model is that, there should be at least

12Or very far apart genomic regions such that any cost function cannot act as a realistic gap penalty
model.

13This notation is used for the sake of having a compatible index scheme between G and G′.
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one prefix/suffix split of the transcript sequence such that all of the bases in the prefix are

aligned to G, G′, or φ, and all of the bases in the suffix are aligned to S, S′, or φ. This

property requires that the first and secondary genomic sequences are known prior to the

alignment of a fusion transcript. Furthermore, this model is general enough to also include

transcripts without a fusion; in which case, the sequences S and S′ would be empty and the

prefix/suffix split would occur after the last base of the transcript (the prefix contains the

entire sequence). Or alternatively the split will occur before the first base of the transcript

(the suffix contains the entire sequence).

Finally, we investigate the incorporation of splice signal scores to the alignment formu-

lation. The direct incorporation of additional scoring for canonical splice signals appears to

be violating the convex gap penalty scheme, due to the fact that the gap penalties are now

affected by the splice sites. However, in the following problem solutions, we handle splice

signal positions within separate genomic position subsets that do not violate the convexity

property within their respective position set.

In mammalian genome the transcription splicing regulation is dominated by GT-AG

splicing signals. Similarly, if the input transcript sequence is the reverse complement of

an actual transcript, the majority of the splice signals throughout the transcript will have

CT-AC signal. Even though, for higher accuracy, a splice signal score table can be used for

different values of splice signal scores on either side; for simplicity purposes, in the following

set of solutions we assume that the only type of valid splice signal is GT-AG. Thus the gaps

spanning these signals in the genome are awarded with an additional score deducted from

their respective genome transiton penalty. However, we also show that, with the condition

that the splice signal length is constant; any scoring scheme upon multiple splice signals

can be performed within the same run-time and memory complexity as in the case with the

GT-AG signal scheme.

Splice signal-pair scoring scheme can be employed in two main forms: sums of partial

signal scores or conjunction of signal scores. In the first scheme, the overall score for a

single splice junction is represented as the summation of individual scores depending on

the existence of canonical splice signals on either side. In the second scheme, the score

is only considered as depending on the existence of canonical splice signals on both sides.

In both schemes, however; splice signal scores are constant values independent from the

gap length. For simplicity; in the current problem formulation, the first scheme will be

considered, yet the extension for the second scheme is examined at the end of the problem
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solution subsections.

With the help of the clarifications given above, the problem of aligning a transcribed

sequence to the genome (a single genomic sequence or alternatively two genomic sequences

for fusion transcripts) with structural changes, is given as follows:

An alignment of a transcribed sequence T to genomic sequences G, G′, S and S′ with

structural alterations, As(T,G, S), is a mapping F from the bases of T , {t1, t2, . . . , tN}
to the bases of G and S and a special gap index, {g1, g2, . . . , gM} ∪ {g′1, g′2, . . . , g′M} ∪
{s1, s2, . . . , sL} ∪ {s′1, s′2, . . . , s′L} ∪ {φ}, φ representing the gap character ‘ ’ on the genome

side of the alignment14, with the condition given below.

There is no such i, j ∈ [1, N ], q ∈ [1,M ], r ∈ [1, L], such that:

(i < j) ∧ (F (ti) = sr ∨ F (ti) = s′r) ∧ (F (tj) = gq ∨ F (tj) = g′q) (2.10)

The statement (2.10) ensures that the alignment of the transcribed sequence T can

switch from the sequence G to S only once and after switch always stays on that side15.

With the given alignment definition above, the score of such an alignment, Score(As) is

defined as:

Score(As) =
N∑
i=1

Sm(ti, F (ti))−
∑

1 ≤ i < j ≤ N
F (ti) 6= φ ∧ F (tj) 6= φ

∀k, i < k < j, F (tk) = φ

(Ps(F (ti), F (tj))− Js(F (ti), F (tj)))

with Sm defined as follows:

Sm(ti, F (ti)) =


Cmatch for v(ti) = v(F (ti))

Cmismatch for F (ti) 6= φ ∧ v(ti) 6= v(F (ti))

Cgap for F (ti) = φ

and Ps is defined below. Throughout Ps and Js function definitions, the notation F (ti) =

A ∈ S is used (implying ∃k ∈ [1, length(S)] : A = Sk), and A.p stands for the position of

the mapped base in its respective sequence, which is k in this case.

14Note that the mapping F is different from the previously defined function f , in the sense that it does
not map positions between two sequences, but bases of the sequences themselves.

15However, in the cases that there is no fusion, one of these sequences will not be used therefore the whole
alignment will take place in only one of these sequences. Yet such a formation will not be forced prior to the
alignment but will emerge naturally from the best scoring alignment itself.
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Ps(A,B) =



Hn(B.p−A.p− 1) for (A,B ∈ G ∨A,B ∈ S) ∧A.p < B.p

Hn(A.p−B.p− 1) for (A,B ∈ G′ ∨A,B ∈ S′) ∧B.p < A.p

Hb(A.p−B.p+ 1) for (A,B ∈ G ∨A,B ∈ S) ∧A.p ≥ B.p
Hb(B.p−A.p+ 1) for (A,B ∈ G′ ∨A,B ∈ S′) ∧B.p ≥ A.p
Hi(|A.p−B.p|) for (A ∈ G ∧B ∈ G′) ∨ (A ∈ G′ ∧B ∈ G)

∨(A ∈ S ∧B ∈ S′) ∨ (A ∈ S′ ∧B ∈ S)

Cf for (A ∈ G ∨A ∈ G′) ∧ (B ∈ S ∨B ∈ S′)

Hn, Hb and Hi are functions satisfying the convex cost property given in (2.2), and

Cf is a constant penalty representing switching cost from the first sequence to the second

as a transcriptional fusion. Even though there is a freedom in this formulation for the

relative costs of H functions, in a realistic transcript to genome alignment setting, Hb

function that represents backwards junctions in the genome (for detection of duplications

and rearrangements) and Hi function that represents the junction between exons on different

strands (for detection of inversions) are expected to be more costly than Hn function which

corresponds to the regular intron spanning junction.

In the alignment score function defined above; the splice signal scoring function, Js that

returns an additional score depending on the existence of splice signals at the junction sites,

is defined as follows:

Js(A,B) =


0 for (A,B ∈ G ∨A,B ∈ S) ∧ 1 ≤ B.p−A.p < min int

0 for (A,B ∈ G′ ∨A,B ∈ S′) ∧ 1 ≤ A.p−B.p < min int

Jb(A) + Je(B) otherwise

given constant min int value defined as the minimum possible length for an intron and Jb,

Je defined as follows:

Jb(A) =



0 for (A ∈ G′ ∨A ∈ S′) ∧A.p ≤ 2

0 for (A ∈ G ∧A.p > M − 2) ∨ (A ∈ S ∧A.p > L− 2)
Css
2 for (A ∈ G ∨A ∈ S) ∧ v(A.p+ 1) =′ G′ ∧ v(A.p+ 2) =′ T ′

Css
2 for (A ∈ G′ ∨A ∈ S′) ∧ v(A.p− 2) =′ A′ ∧ v(A.p− 1) =′ C ′

0 otherwise
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Je(B) =



0 for (B ∈ G ∨B ∈ S) ∧B.p ≤ 2

0 for (B ∈ G′ ∧B.p > M − 2) ∨ (B ∈ S′ ∧B.p > L− 2)
Css
2 for (B ∈ G ∨B ∈ S) ∧ v(B.p+ 1) =′ A′ ∧ v(B.p+ 2) =′ G′

Css
2 for (B ∈ G′ ∨B ∈ S′) ∧ v(B.p+ 1) =′ C ′ ∧ v(B.p+ 2) =′ T ′

0 otherwise

In the following two subsections, we extend the initially described WTTA-1 and WTTA-

2 algorithms to the new formulation of transcript to genome alignment with structural

alterations (Transcriptome to Genome Alignment with Structural Alterations), staying

within their original run-time and memory complexity.

Algorithm TGASA-1: Extending WTTA-1

The extension from the algorithm WTTA-1 to TGASA-1 within the complexity bound of

O(NM2) is fairly straight forward if several key points are handled carefully: These are

(1) four interdependent alignment matrices need to be defined with different properties (for

fusions and inversions), (2) a cell in a row can update the values of the cells in the following

row with both forwards and backwards genomic transitions, and (3) each gap will have a

score based on its beginning and ending positions in the genome.

In the initialization step, we first identify the positions in G, G′, S, S′ that correspond

to the beginning or ending of the GT-AG splice sites in accordance with the Js(A,B)

function definition given above. This task only requires a linear scan in all four sequences,

corresponding to O(M + L) comparisons. In this and the following complexity analyses,

we will assume that without loss of generality, M ≥ L. Thus performing this initialization

step will take O(M) comparisons. The positions for canonical splice sites are stored in a

constant time access table, so that whenever Js score function is called, we can assume the

result to be obtained instantly.

Furthermore, we define the four alignment matrices XG, XG′ , XS , XS′ , that correspond

to aligning the transcribed sequence T with the four genome sequences G, G′, S, and S′.

The initialization step of XG is the same as in the WTTA-1 algorithm; however, the

initialization step of XG′ will be performed with the complements of the bases taken from

T .

∀j ∈ [1,M ], XG[1, j].score← max(Sm(t1, gj), Sm(t1, φ))
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∀j ∈ [1,M ], XG[1, j].parent← source

and for the complement sequence G′

∀j ∈ [1,M ], XG′ [1, j].score← max(Sm(Comp(t1), g′j), Sm(Comp(t1), φ)

∀j ∈ [1,M ], XG′ [1, j].parent← source

And similarly the initialization steps for XS and XS′ are:

∀j ∈ [1,M ], XS [1, j].score← max(Sm(t1, Sj), Sm(t1, φ))

∀j ∈ [1,M ], XS′ [1, j].score← max(Sm(Comp(t1), S′j), Sm(Comp(t1), φ))

∀j ∈ [1,M ], XS [1, j].parent← source ∧ XS′ [1, j].parent← source

After the initialization, for each row i from 2 to N, the following steps are employed for

the four alignment matrices:

• For each column j from, 1 to M

– XG[i, j].score← (XG[i− 1, j] + Sm(ti, φ)) and XG[i, j].parent← (XG, j)

– Update16 XG[i, j].score by max
1≤k≤M

(XG[i−1, k]−Ps(gk, gj)+Sm(ti, gj)+Js(gk, gj))

∗ If XG[i, j].score value is modified, XG[i, j].parent← (XG, k)

– Update XG[i, j].score by max
1≤k≤M

(XG[i−1, k]−Ps(g′k, gj) +Sm(ti, gj) +Js(g′k, gj))

∗ If XG[i, j].score value is modified, XG[i, j].parent← (XG′ , k)

– XG′ [i, j].score← (XG′ [i− 1, j] + Sm(ti, φ)) and XG′ [i, j].parent← (XG′ , j)

– Update XG′ [i, j].score by max
1≤k≤M

(XG′ [i−1, k]−Ps(g′k, g′j)+Sm(ti, g′j)+Js(g′k, g
′
j))

∗ If XG′ [i, j].score value is modified, XG′ [i, j].parent← (XG′ , k)

– Update XG′ [i, j].score by max
1≤k≤M

(XG′ [i−1, k]−Ps(gk, g′j)+Sm(ti, g′j)+Js(gk, g′j))

∗ If XG′ [i, j].score is updated, XG′ [i, j].parent← (XG, k)

• For each column j from, 1 to L

– XS [i, j].score← (XS [i− 1, j] + Sm(ti, φ)) and XS [i, j].parent← (XS , j)

16The operation “Update A by X” stands for A← max(A, X).
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– Update XS [i, j].score by max
1≤k≤L

(XS [i− 1, k]− Ps(sk, sj) + Sm(ti, sj) + Js(sk, sj))

∗ If XS [i, j].score value is modified, XS [i, j].parent← (XS , k)

– Update XS [i, j].score by max
1≤k≤L

(XS [i− 1, k]− Ps(s′k, sj) + Sm(ti, sj) + Js(s′k, sj))

∗ If XS [i, j].score value is modified, XS [i, j].parent← (XS′ , k)

– Update XS [i, j].score by max
1≤k≤M

(XG[i− 1, k]− Cf + Sm(ti, sj) + Js(gk, sj))

∗ If XS [i, j].score value is modified, XS [i, j].parent← (XG, k)

– Update XS [i, j].score by max
1≤k≤M

(XG′ [i− 1, k]− Cf + Sm(ti, sj) + Js(g′k, sj))

∗ If XS [i, j].score value is modified, XS [i, j].parent← (XG′ , k)

– XS′ [i, j].score← (XS′ [i− 1, j] + Sm(ti, φ)) and XS′ [i, j].parent← (XS′ , j)

– Update XS′ [i, j].score by max
1≤k≤L

(XS′ [i−1, k]−Ps(s′k, s′j) +Sm(ti, s′j) +Js(s′k, s
′
j))

∗ If XS′ [i, j].score value is modified, XS′ [i, j].parent← (XS′ , k)

– Update XS′ [i, j].score by max
1≤k≤L

(XS′ [i−1, k]−Ps(sk, s′j) +Sm(ti, s′j) +Js(sk, s′j))

∗ If XS′ [i, j].score value is modified, XS′ [i, j].parent← (XS , k)

– Update XS′ [i, j].score by max
1≤k≤M

(XG[i− 1, k]− Cf + Sm(ti, s′j) + Js(gk, s′j))

∗ If XS′ [i, j].score value is modified, XS′ [i, j].parent← (XG, k)

– Update XS′ [i, j].score by max
1≤k≤M

(XG′ [i− 1, k]− Cf + Sm(ti, s′j) + Js(g′k, s
′
j))

∗ If XS′ [i, j].score value is modified, XS′ [i, j].parent← (XG′ , k)

After all the rows are filled with their best scoring values, the best alignment ending cell

is searched among the last rows of all four matrices. The backtracking step is similar to

WTTA-1, with the only difference that; the parent of a cell is a pair representing the parent

matrix and the column number for the previous row of in that matrix. Similar to WTTA-1,

backtracking stops when the top row is reached.

Since each of the individual steps above can be performed in O(M) operations corre-

sponding to a complete scan of the previous row, repeating them for each column in each

row will give O(NM2) run-time complexity similar to WTTA-1. Since total number of

cells that are held in memory is less than four times than that in WTTA-1, the memory

complexity is still within the O(MN).

More advanced splice signal scoring schemes can also be handled within this run-time

complexity with little modification to the algorithm. If we were to change the scoring scheme
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from summation to conjunction, the only modification that needs to be added is checking if

canonical splice signals exist on both sides during each Js function call above. If the splice

signal scoring is not based on canonical signals, but a matrix of scores based on the signals

at the beginning and ending sites, the main part to modify in TGASA-1 algorithm would

be the original splice site scanning of the G, G′, S, S′ sequences. We can use the row and

column indices of this splice score matrix in order to indicate which score should be used

from the matrix for each Js function call. Since we initially assumed that splice signals are

of constant length, such a matrix will have a constant number of rows and columns, thus

the initial splice site scan procedure will stay within O(M) complexity bound, and each Js

call be will performed in constant number of operations.

Algorithm TGASA-2: Extending WTTA-2

The extension from WTTA-2 to TGASA-2 is analogous to the extension from WTTA-1

to TGASA-1 in terms of the use of four interdependent matrices and backwards/forwards

transitions in the genome. In the case of TGASA-2, the special data structure and algorithm

that is used to lower O(NM2) run-time complexity to O(NMlog(M)) in WTTA-1 for convex

gap cost functions should be applied in both backwards and forwards directions and also

from different matrices. However, the main difficulty is to adapt the splice signal score

functions to the convex gap penalty scheme; since in its current definition the final gap

penalty function is not necessarily convex and Theorem 1 does not hold. Thus the original

speed-up cannot be used upon the alignment matrix in its current state and the matrices

should be initially modified in order to apply this speed-up.

For the sake of simplicity, throughout the description of TGASA-2, the summation

of signal scores scheme is used as in the original definition given for the Js function. The

extension for more general splice signal scoring schemes will be discussed after the algorithm

is fully described.

A key point that is utilized in the TGASA-2 algorithm is that; if we consider only the

subset of columns in a row that only consists of positions that correspond to canonical

splice beginning sites (or only consists of positions that do not represent a canonical splice

beginning sites), assuming that Js is defined as sums of beginning and ending signal scores,

the list of transition scores from the cells in the ith row to the kth column in the (i+1)th row

show a convex gap cost property. Therefore Theorem 1 applies to each of two sub-cases

even though it does not apply to the entire row.
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Assume that the initialization step of TGASA-2 for all four alignment matrices to be

same as TGASA-1. In the following steps we describe how to fill the remaining values of the

matrices XG and XG′ . Since the explicit description of TGASA-2 operations would involve

about 33 times as many operations as in the WTTA-2 algorithm, we give a sketch of the

algorithm with references to the operations in WTTA-2 and TGASA-1.

For each of the rows i, from 1 to N − 1:

• Initialize parents of all cells in the (i + 1)th row of XG and XG′ as ∅ and define

X[i, ∅].score as −∞.

• For each of the positions in the ith row of XG that represent canonical splice beginning

sites, form an artificial row X+
G that consists of only such positions (by masking the

scores of remaining positions as −∞) and form X−G that only represent the remaining

positions that do not have a canonical splice beginning site. Similarly create X+
G′ and

X−G′ for the ith row of XG′ , considering the reverse complement splice beginning sites.

We often denote these sets as (+) or (−) in the solution described below.

• Initialize sixteen linked list structures B1 to B16 for XG and XG′ together, similar

to the definition B in WTTA-2; each node representing the block of columns in the

(i + 1)th row that have the same parent pointer. The reason for handling sixteen

separate linked lists is because each list differs by, (1) whether the current row belongs

to XG or XG′ , (2) whether the following row belongs to XG or XG′ , (3) whether the

junctions between the two adjacent rows are towards the left-side (backward for XG

and forward for XG′) or towards the right-side (forward for XG and backward for XG′)

of the alignment matrix, (4) whether the junctions are from (+) or (−) subsets of the

columns in the ith row.

• B1 and B2: In the case of the forward transitions (towards the right side) from XG to

XG with the set of columns that have canonical splice signals (+), the score values and

parents in the (i+ 1)th row are calculated exactly as the WTTA-2 case, with the only

difference that the left-to-right scan of ith row for forward looking assignments only

stop at the columns that are within the (+) set. Instead of filling in the actual values

of XG, we store the resulting (i+ 1)th row in an artificial row R1[1..M ]. Similarly for

the (−) subset, we only stop at cells that do not represent a canonical splice beginning

site and store the calculated (i+ 1)th row in the artificially constructed row R2[1..M ].
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• B3 and B4: The case for the forward transitions (towards the right side) from XG to

XG′ involve the same calculations performed for B1 and B2, but making transitions

from ith row of XG to the (i+ 1)th row of XG′ . The score calculation of this transition

can also be calculated in constant time as described inHi penalty scheme in Ps function

definition. Resulting rows are stored in rows R3[1..M ] and R4[1..M ]

• B5, B6, B7 and B8: The case of forward transitions (towards the left side) from XG′ to

XG′ with (+)/(−) subsets (B5 and B6), involve the same calculations used in B1 and

B2 cases, with the only difference that the scan of the ith row is done from right-to-left

and all block operations in the linked list is performed in the reverse direction (as if

each column index k is replaced with M − k + 1)17. The results from (+) and (−)

sets are stored in artificially constructed rows R5[1..M ] and R6[1..M ] respectively.

Similarly forward transitions (towards the left side) from XG′ to XG for (+)/(−)

subsets are calculated and stored in the same way in R7[1..M ] and R8[1..M ], with the

difference of using Hi penalty scheme in Ps function definition.

• An important point to note here is that; for B1, B2, B5, and B6 linked lists, we

only consider the transitions that are longer than min intron. We compute forward

transitions in XG that are shorter than min intron separately and merge the results

with B1 and B2 cases. Similarly we compute forward transitions (towards left-side)

in XG′ that are shorter than min intron separately and merge with the results that

are obtained from B5 and B6 cases.

• B9 to B16: These cases correspond to the backward transitions instead of forward

in each of the cases from B1 to B8. Cases B9 to B12 represent backward transitions

(towards the left side) XG to XG or XG′ from (+)/(−) column subsets. The direction

to construct and handle the lists are right-to-left, similar to B5 to B8, but the transition

penalties are calculated accoring to the Hb penalty scheme defined in Ps. The resulting

rows are stored within artificially constructed arrays R9[1..M ] to R12[1..M ]. Cases B13

to B16 correspond to the backward transitions (towards the left side) from XG′ to XG

or XG′ from (+)/(−) column sets. The direction to handle the lists are left-to-right

similar to the cases from B1 to B4 with the difference that gap penalties are calculated

17Therefore, the blocks that represent same parent blocks do not actually hold ending column indices but
beginning column indices and all splits and merges are handled accordingly.
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as described in the Hb penalty scheme of Ps function. The corresponding results are

stored in R13 to R16.

• After all of the rows R1 to R16 are generated, the eight arrays that correspond to

XG (the cases that represent transitions from XG or XG′ to XG) are merged into the

(i + 1)th row of XG by selecting the cell with the maximum score from these arrays

for each column. Similarly, the other eight arrays that correspond to XG′ (the cases

that represent transitions from XG or XG′ to XG′) are merged into the (i+ 1)th row

of XG′ by selecting the maximum values among them for each column.

After the matrices XG and XG′ are constructed in the way described above, the con-

struction of XS and XS′ take place as follows.

For each of the rows i, from 1 to N − 1:

• Determine the highest scoring column ZG amongst the ith row of XG according to the

following function XG[i, Z] + Jb(Z).

• Determine the highest scoring column ZG′ amongst the ith row of XG′ according to

the following function XG′ [i, Z] + Jb(Z) (Note that Jb function in this case will check

for reverse complement splice beginning signal).

• Initialize the parents of all cells in the (i+1)th row of XS and XS′ as the highest scoring

cell between the two cell values18, XG[i, ZG] and XG′ [i, ZG′ ]. Calculate and store the

corresponding score values from these fusion transition functions (e.g. XG[i, Z] +

Jb(Z)−Cf if XG[i, ZG] > XG′ [i, ZG′ ] ). The reason that all the cells are assigned the

same parent is because fusion transitions are independent from genomic distance and

alignment direction of the bases (as well as the direction matrix) on two sides of the

fusion19.

• Apply all of the steps described in the construction of XG and XG′ matrices apart

from initialization and the final merging steps by replacing the terms XG with XS ,

XG′ with XS′ , R1[1..M ] to R16[1..M ] with R1[1..L] to R16[1..L].

18Note that, the transition being representing an inversion does not affect the penalty of a fusion transition.
19This independence causes all of the sixteen different cases handled in the construction of XG and XG′

to merge into a single case.
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• The difference in the final merging step is that, when merging the eight R arrays that

correspond to the (i+ 1)th row of XS , we also consider the actual (i+ 1)th row values

of XS that are initially assigned by fusion transitions. Similarly when merging the

other eight R arrays we take the (i + 1)th row of XS′ into account together with the

fusion transitions.

The backtracking step of TGASA-2 is same as TGASA-1.

It is clear that the number of operations for each specific case in TGASA-2 is in the

same order as WTTA-2 algorithm. Since there are only a constant number of different cases

to be considered, TGASA-2 algorithm also has the same overall complexity as WTTA-2.

Changing the splice signal scoring from the summation scheme to the conjunction scheme

in TGASA-2, is not as straightforward as in the case with TGASA-1. In this particular

case; since the splice site properties from both sides would affect the convexity property of

the gap cost function, the (+)/(−) cases that represent the column subsets of the ith row

with respect to the existence of canonical splice beginning sites should further be divided

into three (++)/(+−)/(−) cases ((−+) and (−−) can be merged into (−)), that represent

subsets from both ith and (i+1)th rows, which are handled as separate B cases that satisfies

the convexity property within each case.

In order to extend the splice sginal scheme to the most generalized case of a splice signal

score matrix (of c1 splice beginning signals and c2 splice ending signals) would require the

analysis of c1×c2 different B cases for each forward assignment in TGASA-2. However; since

c1 and c2 are assumed to be constants, the run-time complexity of the extended algorithm

is not more than the original TGASA-2 algorithm.

Further improvements to TGASA-2

Extending TGASA-2 for affine gap penalty model on the transcript side is analogous to the

extension of WTTA-2.

We should modify the Sm function to Sma as

Sma(ti, F (ti)) =


Cmatch for v(ti) = v(F (ti))

Cmismatch for j 6= φ ∧ v(ti) 6= v(F (ti))

Cgap−open for j = φ ∧ F (ti−1) 6= φ

Cgap−extend for j = φ ∧ F (ti−1) = φ
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and split each of the matrices XG, XG′ , XS , XS′ into three as XM
G , XG

G , XG, XM
G′ , X

G
G′ ,

and so on.

In the definition above, regardless of the original matrix; XM [i, j] represents the align-

ment of (i, j) pair as a match or mismatch, XG[i, j] as a gap, and X[i, j] best of both.

When calculating the scores of X[i, j], XG[i, j], and XM [i, j] in the forward assignment

step of TGASA-2; which matrix to use for the base score is as described in the case with

WTTA-2, with the difference that the previous alignment pair can be from different genomic

sequences.

The reduction fromO(MNlogM) run-time complexity toO(MN) for convex gap penalty

functions that satisfy “closest zero property” was described for the improvements for WTTA-

2. A similar improvement can be made for TGASA-2, by replacing the binary search in

each one of the cases B1 to B16 for both G and S, with the exact calculation of the same

parent block breakpoint. The difference in this case would be the binary search for the re-

verse ordered parent blocks (that hold beginning column parent index instead of the ending

column), but this issue can also be easily solved by switching indices as if each column index

k is replaced with M − k + 1.

2.2 Low-sensitivity Fragment Chaining Framework for Tran-

scriptome to Genome Alignment with Structural Alter-

ations

As described in the previous section, the problem of transcriptome to the genome alignment

with structural alterations20 can be optimally solved in polynomial time. However; for high-

throughput transcriptome to genome alignment studies, run-time and memory requirements

of TGASA-2 will be costly even with the improvements for log-scale gap cost functions.

In this section we propose a lower sensitivity solution for transcript to genome alignment

with structural alterations by initially generating a set of homologous fragments between the

transcript and genome sequences and stitching a list of fragments from this set afterwards

in order to obtain a chain of substring alignments from the transcript to the genome.

Different than the previous section, we directly introduce the formulation of fragment

chaining with structural alterations, without an introduction for the wild-type alignment

20As in the problem definition given in Problem 1.
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version. However, we initially introduce a simpler version of the problem with no overlapping

fragments in Problem 3 and provide a solution for this version. A more complex version

of the problem with overlaps between chained fragments is investigated in subsection 2.2.2,

which is a more realistic model of real-life fragment chaining applications.

In this section we do not describe methods for generating a comprehensive set of align-

ment fragments, but the method we use to efficiently construct a set alignment fragments

is described in detail in the following section that introduces our transcriptome to genome

alignment tool, Dissect. But for the following problem formulations to be complete, ini-

tially we mathematically define the properties of an alignment fragment and a valid set of

fragments.

A pairwise alignment fragment F between a transcribed sequence T and a genomic

sequence G is a data point that represents a homologous region of specific length between

A and B. Each fragment holds the following pieces of information: starting position in the

transcribed sequence, identity of the genome sequence21, starting position in the genome

sequence, direction of alignment in the genome22, the length of the fragment, and the score

of the fragment; respectively denoted by F = (F.ts, F.gen, F.gs, F.dir, F.len, F.score). An

important point to note here is that; F.dir only represents the direction of the alignment

on the genome side and the direction of all fragments on the transcript side are assumed

to be (+)23. Another important property of an alignment fragment is that; there is only a

single length value for both the genome and transcript sequences, which indicates that there

cannot be any insertions or deletions within the transcript on either side24. This, however,

does not mean that there cannot be mismatches within the fragment. Actually, the score of

a fragment is directly related to the number of matches and mismatches within the fragment

according to the scoring scheme defined below:

F.score = (Cmatch ∗ (F.len− #mismatches in F)) +Cmismatch ∗ #mismatches in F (2.11)

21This information will be useful in the fragment chaining method when two chained fragments are aligned
to different genomic sequences.

22From here on, we often refer to the forward (downstream) alignment direction as (+), and refer to the
reverse direction alignment (upstream on the reverse complement strand) as (−).

23This property comes without a loss of generality due to the fact that any fragment that is in the reverse
direction in the transcript can be converted to a forward direction fragment by only changing the direction
on the genome side and modifying fragment start positions accordingly.

24This property is not compulsory for the described algorithms below from a theoretical standpoint, yet due
to its simplicity and closer representation of the fragment construction methodology adopted in our alignment
tool Dissect; we also assume this property for the following set of problem definitions and solutions.
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For the following set of problems we are given a set, Fset = {F1, F2, . . . , FK}, of K

alignment fragments between a transcribed sequence and a genomic sequence. For our

problem case, we have four separate sets for each of the genome sequences G, G′, S, and

S′ as described in the previous section (the gen value for these would be 1, 1, 2, and 2

respectively, indicating the sequences’ genomic origin as the first sequence or the second

sequence). The sets for G and S only comprise of forward fragments, whereas the sets for

the sequences G′ and S′ are in the reverse direction and the scores are calculated based on

the complement similarity of each corresponding base pair. One key point to note about

these fragment sets is that; they are concise in the way that the same fragment is not listed

twice and no fragment is a sub-fragment25 of another fragment in the set, thus all fragments

are maximal. Also two fragments in Fset are called disjoint if they do not overlap in the

transcribed sequence T and they are called overlapping fragments if they contain at least

one common base in T .

It is also important for complexity concerns to mention that in this formulation described

below, the maximum number of mismatches in a fragment is bounded by a constant number

independent from the length of the fragment. This property is of particular importance due

to the fact that transition penalty between two overlapping fragments will be related to the

number of mismatches within the overlap interval for both fragments. Even though this

property is not necessarily strict in the simpler Problem 3 formulation of disjoint fragment

chaining, it is crucial for the complexity analysis of overlapping fragment chaining to have

a well-defined mismatch model. At the end of each algorithm description, we discuss the

effect of having an unbounded error rate to the complexity of the algorithm. Also we denote

the list of mismatches of a fragment F as Fmm, and the position of its ith mismatch in the

transcript as Fmmi .

2.2.1 Problem 3: Disjoint fragment chaining with structural alterations

In our problem formulation, a valid fragment chaining between T and [G, G′, S, S′], of length

N and [M ,M ,L,L] respectively, is a sequence of k ≤ K fragments Lc = (F1, F2, . . . , Fk),

with each element Fi ∈ Fset satisfying the following two constraints:

• ∀i ∈ [1, k − 1], Fi.ts+ Fi.len ≤ Fi+1.ts

25We define a sub-fragment as a fragment generated by removing leading or trailing matching/mismatching
base pairs from a larger alignment fragment.
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• ∀i ∈ [1, k − 1], (Fi.gen = 2) =⇒ (Fi+1.gen = 2)

The first constraint defined above ensures that the starting indices of the fragments on

the transcript monotonously increase throughout the chain and it also prohibits any overlaps

in between adjacent fragments. The second constraint ensures that when a fragment chain

switches to the secondary fused sequence, all of the downstream fragments are also within

the second sequence. This prevents multiple fusions within a transcript.

For conciseness in the following algorithm description, we will use the terms, Fi is chained

to Fi+1 and Fi+1 is chained from Fi referring to the adjacency of the fragments Fi and Fi+1

in a chain.

With the definition of a valid fragment chain as described above; our goal is to find the

highest scoring chain Lb (of length B ≤ K without loss of generality) over Fset, given the

fragment chain scoring function Fscore and the transition penalty function P described as

below:

Fscore(Lb) =
B∑
i=1

Fi.score−
B∑
i=0

P (i, i+ 1)

P =


Pt(Fi.ts− 1) for i = 0

Pt(N − Fi.te) for i = B

Pt(Fi+1.ts− Fi.e− 1) + Ps(Fi.ge, Fi+1.gs)

−Js(Fi.ge, Fi+1.gs)
for 0 < i < B

Even though F.ge is not defined as part of fragment F , for simplicity purposes we assume

that F.ge denotes the ending index of a fragment in its respective genome considering the

directionality of the fragment. Similarly F.te denotes F.ts+ F.len− 1.

In the transcript and genome gap penalties given above, the alignment is penalized

globally on the transcript side considering trailing and leading gaps and locally on the

genome side omitting trailing/leading gaps.

Similar to the formulations in the previous section, the transcript gap distance penalty,

Pt is a linear function26 defined as follows.

Pt(d) = Cgap × d

The genomic transition penalty function Ps and canonical splice signal scoring function

Js are the same as their definition in Section 2.1.2. However; it is important to note that

26This function can be chosen as an affine gap penalty function without affecting the solution complexities
throughout the section.
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the value Fk.gs sent to Ps or Js functions does not represent an integer value of size Fk.gs,

but rather the genomic base (Fk.gen)(Fk.gs). Sequence origin is crucial for the calculations

of the genomic transition penalty function and the canonical splice signal score function.

We describe our method of solving the problem of disjoint fragment chaining with struc-

tural alterations as follows:

• Sort all fragments Fi ∈ Fset = {F1, . . . , FK}, in a non-decreasing order based on their

transcript starting positions (Fi.ts). From here on, we refer to Fi as the ith fragment

in the sorted sequence Flist = (F1, . . . , FK). We also denote the best chaining score of

Fi as Fi.chain and the fragment that it is chained from as Fi.parent.

• Initialize all fragment chains Fi, as the beginning of their own chain.

– Fi.chain← (Fi.score− Pt(Fj .ts− 1))

– Fi.parent← source

• For each i from 1 to K − 1:

– jstart ← minimum k such that Fi.ts+ Fi.len ≤ Fk.ts

– For each j from jstart to K

∗ Transcript gap penalty, tp← Pt(Fj .ts− Fi.te− 1).

∗ If Fi.chain−Ps(Fi.ge, Fj .gs)+Js(Fi.ge, Fj .gs)+Fj .score > Fj .chain, replace

Fj .chain and update Fj .parent← Fi.

∗ Otherwise, do not update Fj .chain or Fj .parent.

• Finalize each chain by subtracting the penalties for reaching the end of the transcript

sequence from each fragment Fi:

Fi.chain← (Fi.chain− Pt(N − Fi.te))

• Return the chain score of the fragment Fi with the highest Fi.chain value. In order

to reconstruct the chain, backtrack through parents of each fragment until source is

reached.

Such an algorithm would correctly calculate best non-overlapping fragment chaining

given the set of fragments Fset.
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The sorting step at the beginning takes O(min(Klog(K), N+K)) operations depending

on whether merge sort or counting sort is applied. However, this is dominated by the two

nested loops that iterate along fragments, which has a run-time cost of O(K2), calculating

the transition cost for each pair in constant time. Finally, the backtracking step will take

O(min(K,N)) operations, yielding an overall algorithm run-time complexity of O(K2). The

memory complexity of the overall algorithm will be O(K), or alternatively O(K +N) if we

employ counting sort instead of merge sort.

We can also generalize this method to unbounded mismatch scheme27 staying within the

same run-time complexity. This is due to the fact that we do not consider any overlaps that

would require detailed mismatch resolution for calculating transitions between fragments.

However, due to the maximal extension property of the fragments; in real life transcriptome

datasets, overlapping fragments can be caused by either over-extension of the fragments or

existence of homologous genomic sequences in the leading and trailing flanking sequences of

fragment alignments.

In the following set of problem formulations, we consider the cases in which the fragments

that are chained can contain overlapping intervals.

2.2.2 Observations upon overlapping fragment chaining

In a real-life experimental setting, the set of maximal fragments is likely to contain fragments

that are over-extended on either side. This might be due to a homology between the flanking

sequences in the transcript and the genome, even though the extended region can be part

of another fragment exhibiting higher similarity within the extended region. In Problem

3 formulation given above, such two fragments are not allowed to be chained together.

However, since each fragments are maximal28, the ideal chaining might be missed due to

the overlap between a fragment pair on the transcript side. The ideal chaining in the case

described above could be the chaining to a suffix of the second fragment from a prefix of

the first fragment, such that they are not overlapping. In this section, we investigate several

possible problem formulations and solutions for chaining fragments that might overlap in

the transcript sequence.

27in which each fragment Fi can hold O(Fi.len) mismatches in its mismatch list F mm.
28There can be no sub-fragments within the given set.
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Defining the fragment chaining problem for overlap resolution is tougher than the orig-

inal disjoint chaining problem defined above, due to the different approaches of overlap

resolution schemes involving length of the overlap, mismatches within fragments and/or up-

dated genomic distance of the newly constructed fragments after overlap resolution. Below

we redefine the concept of valid fragment chains described in the previous subsection and

investigate several transition scoring models for different overlap resolution schemes.

In this new problem formulation, a valid fragment chaining between T and [G, G′, S,

S′], of length N and [M ,M ,L,L] respectively, is a sequence of k ≤ K fragments Lc =

(F1, F2, . . . , Fk), with each element Fi ∈ Fset satisfying the following two constraints:

• ∀i ∈ [1, k − 1], Fi.ts < Fi+1.ts ∧ Fi.ts+ Fi.len < Fi+1.ts+ Fi+1.len

• ∀i ∈ [1, k − 1], (Fi.gen = 2) =⇒ (Fi+1.gen = 2)

Therefore, the fragments in a chain are allowed to overlap as long as the transcript starting

indices of the fragments in the chain are monotonously increasing and no fragment is fully

contained within another.

With the definition of a valid fragment chain with overlaps, the score of a given fragment

chain Lb of length B is defined as follows:

Fscore(Lb) =
B∑
i=1

Fi.score−
B∑
i=0

P (i, i+ 1)

P =


Pt(Fi.ts− 1) for i = 0

Pt(N − Fi.te) for i = B

Pt(Fi+1.ts− Fi.e− 1) + Ps(Fi.ge, Fi+1.gs) for 0 < i < B ∧ Fi.te < Fi+1.ts

Po(Fi, Fi+1) for 0 < i < B ∧ Fi.te ≥ Fi+1.ts

Fi.te indicating the ending position of Fi in T , Po(Fi, Fi+1) representing the transition

penalty for overlapping fragment pairs.

Note that, the splice signal score Js is omitted from the definition of P function in this

subsection. This is due to the complications that will be caused by the integration of splice

junction scores into the formulation. This concern is addressed in detail in the final part of

this subsection.

Before going into the details of different Po function definitions, we first define the notion

of overlap split position of a fragment pair overlapping in the transcript.



CHAPTER 2. METHODS 43

Given a valid fragment chain Lc = (F1, . . . , Fk), an overlap split position between two

overlapping fragments, Fi and Fi+1, is an index r ∈ [Fi+1.ts − 1, Fi.te] in the transcript

sequence indicating the transcript ending position of the updated Fi fragment, F ′i , and the

position right before the transcript beginning position of the updated Fi+1 fragment, F ′i+1.

Without detailing how the new score values are obtained, the exact properties of the

updated fragments with respect to the split position r, are as follows:

F ′i ← (Fi.ts, Fi.gen, Fi.gs, Fi.dir, r − Fi.ts+ 1, F ′i .score)

F ′i+1 ←

{
(r + 1, Fi+1.gen, Fi+1.gs+ β, Fi+1.dir, Fi+1.len− β, F ′i+1.score) Fi+1.dir = (+)

(r + 1, Fi+1.gen, Fi+1.gs− β, Fi+1.dir, Fi+1.len− β, F ′i+1.score) Fi+1.dir = (−)

β = r + 1− Fi.ts

Hence, the overlap splitting procedure given above will return two new fragments adja-

cent in the transcript and these will be sub-fragments of the original fragment pair.

In the remainder of this subsection, we describe several different overlap resolution

schemes, which utilize the overlap splitting procedure described above with different score

values for the updated fragments. We also talk about the limitations of the overlap model

and the overlap splitting scheme given above, such as the exclusion of the cases in which the

overlap region covers one of the fragments entirely and the cases in which there are more

than two fragments overlapping at a single transcript position.

Overlap resolution based on length of the overlapping interval and genomic

distance

In this overlap resolution scheme, Po penalty function is not specifically dependent on the

overlap split position but only on the length of the overlap interval and the distance of the

genomic gap29 in between after the fragments are updated. Given an overlap split position

q for overlap resolution of Fi and Fi+1, Po is defined as:

Po(Fi, Fi+1) = Ps(genpos(Fi, q − F.ts), genpos(Fi+1, q + 1− Fi+1.ts))

+(Fi.te− Fi+1.ts+ 1)

29Note that there will be no gap in the transcript in between the updated fragments obtained from an
overlap resolution.
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The returned value from genpos(A, x) is the base in A.gen that corresponds to the xth

position of the fragment in the genome, namely:

genpos(A, x) =

{
Q(A.gs+x−1) for A.dir = (+)

Q(A.gs−x+1) for A.dir = (−)

Q representing the genome sequence the fragment is aligned to.

Therefore; in this overlap resolution model Po function does not depend on how the

updated fragments are formed, but only on the cut position q and the overlap length. Since

the overlap length is set given Fi and Fi+1, the problem to solve for this model is to select

the optimal q split position that minimizes Po, thus Ps(genpos(Fi, q−F.ts), genpos(Fi+1, q+

1− Fi+1.ts)).

It is important to note here that, if the fragment pair is very closely located in the

genome, there might be a change of transition type when overlap resolution is applied. For

instance, the original fragment pair might have a backward transition (which has a penalty

determined by Hb function), whereas the updated fragment pair can have a regular forward

transition (which has a penalty determined by Hn function). On the other hand, it is

clear that an overlap procedure cannot convert an inverted transition into a regular forward

transition or vice versa. Furthermore, it is also not possible to alter a fusion transition

through overlap resolution into a non-fusion transition.

As described above, the only way an overlap resolution can convert a transition type is

from a backward genomic transition into a forward one. Such cases can only occur when

considering an overlap between two fragments in the same direction, hence the overlap res-

olution position will not affect the distance between the updated fragment pair. Due to the

fact that this distance is constant with respect to the cut position, it requires only constant

number of operations to check whether the transition type is altered. If so, the resulting

penalty for the constant genomic distance can also be calculated in constant number of

operations without affecting the run-time complexity of the overall algorithm.

Apart from genomic transition type concerns, it can be observed that; if Fi.dir =

Fi+1.dir ∨ Fi.gen 6= Fi+1.gen, the distance is not affected by the split position and any

arbitrary split position q within the interval [Fi+1.ts − 1, Fi.te] will yield the same score.

To be consistent with the splitting scheme throughout the fragment chaining, the overlap

split is chosen as the earliest possible index in the transcript, q = Fi+1.ts − 1. However; if

Fi.dir 6= Fi+1.dir ∧ Fi.gen = Fi+1.gen, the split position will affect the size of the genome

gap.



CHAPTER 2. METHODS 45

For the second case above, it might seem that the gap penalty function h needs to be

calculated at many split positions. However; for any arbitrary gap penalty function that is

non-decreasing with respect to the gap distance, there are only three potential cut positions

to be considered. If the overlap suffix of Fi in the genome comes strictly after the overlap

prefix of Fi+1, q should be selected as the position in the transcript that corresponds to the

lowest position value in the genome30. Reversely, if it comes strictly before, q should be

selected as the position in the transcript that corresponds to the highest position value in

the genome31. Finally, if these two regions in the genome are overlapping, we can select q to

be the position that makes the ending of F ′i meet with the beginning of F ′i+1 in the genome.

Such an overlap split selection guarantees the genomic gap distance between F ′i and F ′i+1

to be 0 or 1, minimizing Ps(F ′i , F
′
i+1). Calculation of q value is performed as follows:

q ←

{
bFi.gs+(Fi+1.ts−Fi.ts)+Fi+1.gs

2 c for Fi.dir = (+)

bFi.gs−(Fi+1.ts−Fi.ts)+Fi+1.gs
2 c for Fi.dir = (−)

Since Po calculation can be done in constant time as described above for each fragment

pair32, the complexity bound will be again O(K2) if the solution described in the previous

subsection is used, with the omission of splice signal scores and definition of the new P

penalty function.

Extension for splice signal scores will be investigated later as a limitation of this problem

definition. However, the exclusion of Js score function from this problem formulation is

mainly due to the requirement of scanning the positions within each overlap region (that is

of size O(N)), significantly increasing the run-time complexity of this solution method.

Minimal mismatch penalty model for the resolution of overlapping fragments

In this overlap resolution scheme, updated F ′i , F
′
i+1 fragments are considered to have scores

based on their length and the number mismatches retained in each fragment. With the

updated scores of F ′i and F ′i+1, overlapping penalty function, Po, is defined as:

Po(Fi, Fi+1) = Ps(genpos(Fi, q − F.ts), genpos(Fi+1, q + 1− Fi+1.ts))

+(Fi.score− F ′i .score) + (Fi+1.score− F ′i+1.score)

30This position is Fi+1.ts− 1 for Fi.dir = (+), and Fi.te for Fi.dir = (−).
31This position is Fi.te for Fi.dir = (+), and Fi+1.ts− 1 for Fi.dir = (−).
32Even when we consider overlapping fragments, there are O(K2) valid fragment pairs.
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genpos function as defined earlier and q being the overlap split position.

The scores of the updated fragments F ′i and F ′i+1 are calculated as in the following, given

q:

F ′i .score = Fi.score− Cmatch ∗ (Fi.te− Fi+1.ts+ 1) + Cmismatch ∗mis(Fi, Fi+1.ts− 1, q)

F ′i+1.score = Fi+1.score−Cmatch ∗ (Fi.te−Fi+1.ts+ 1) +Cmismatch ∗mis(Fi+1, q+ 1, Fi.te)

mis(F, a, b) is defined as the number of mismatch positions p ∈ Fmm that have a value

within the interval from a to b, a ≤ p ≤ b.
With the score functions defined as above, the optimal cut position q is the value that

minimizes both the genomic distance and the summation of the number of mismatches

retained within the updated fragments F ′i , F
′
i+1.

We can minimize the overlap penalty function applying the following solution steps:

• Merge the mismatch lists Fmmi and Fmmi+1 in a new list L, in the increasing order of

transcript positions, and note the fragment origin of each mismatch.

• Assign ri ← 0 and ri+1 ← |Fmmi+1 |, which respectively indicate the number of mis-

matches retained in Fi and Fi+1 for q = Fi+1.ts− 1

• Evaluate scorediff = (Fi.score−F ′i .score)+(Fi+1.score−F ′i+1.score) for the current

q = Fi+1.ts− 1 value and save as L0.score

• For each mismatch position j in L:

– If the mismatch is obtained from Fi, increase ri by one,; if it is obtained from

Fi+1, decrease ri+1 by one.

– Evaluate scorediff = (Fi.score − F ′i .score) + (Fi+1.score − F ′i+1.score) for the

current q = Lj value and save as Lj .score.

• Note that the scorediff value for each q ∈ [Lj , Lj+1 − 1] is the same33.

• For each same score interval calculate the lowest Ps(F ′i , F
′
i+1) value similar to the

previous solution34 (by choosing the smallest possible q value if Fi.dir = Fi+1.dir ∨
Fi.gen 6= Fi+1.gen and evaluating the three possible q values described in the previous

method if Fi.dir 6= Fi+1.dir ∧ Fi.gen = Fi+1.gen).

33for the last interval, assume that L|L|+1 = Fi.te
34Also considering the potential change of transition type during the overlap resolution.
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• Among the lowest Ps positions in each interval, return the optimal split position that

yields the lowest Po value35.

Run-time complexity of this solution depends on the number of mismatches in the frag-

ment pair. Since we have a constant number mismatches in each fragment, we can calculate

Po in constant time for each fragment pair. Thus, the run-time complexity bound of the

overall chaining solution is again within O(K2).

Limitations of the overlap resolution scheme

Even though the extension of the chaining formulation to the overlapping fragments do

not change the complexity of the original disjoint chaining algorithm, there are certain

limitations of this new model.

Firstly, the definition given above prevents a fragment in the chain to be contained

within another. This property might cause the exclusion of the chaining of fragments, in

which a low quality extension of the first fragment covers the second fragment entirely that

has a relatively higher quality (or vice versa). However, we assume that the fragment error

rate constraints for the maximal fragment set construction step will prevent such low quality

extensions from occurring. Inclusion of such cases within the model would abolish the uni-

directional monotonous increasing property, which we base our algorithm on, in order obtain

a O(K2) solution. A naive solution method for the extended case will be O(K2N4) run-

time complexity, constructing all distinct sub-fragments and applying the non-overlapping

chaining algorithm described in the previous subsection.

Another chain formation that is not addressed in the formulation given above is the case

in which three or more fragments are overlapping on the same position in the transcript.

Given that, Fi, Fi+1, Fi+2 are three adjacent fragments lying on a fragment chain and Fi

and Fi+2 also overlap at some transcript position. Since the intermediate fragment is not

allowed to be contained in any of the adjacent fragments, Fi+1 should cover point where Fi
and Fi+2 meet in the transcript and thus should contain separate overlaps with both Fi and

Fi+2, outside of their common overlap region. Below we investigate the conditions in which

such a chain formation might occur.

If all three fragments are on a wild-type transcript (facing the same direction and have

an ordered alignment in the genome) and the overlap resolution is performed regardless of

35The summation of Ps and scorediff values.
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the number of mismatches in the overlapping region according to the first formulation given

above, such a formation cannot occur due to the fact that the chaining score directly from

Fi to Fi+2 is higher than through Fi+1, assuming that Hn distance penalty function is a

convex gap cost function that return a positive value that increases with gap distance. This

is also the case with transcripts that contain rearrangements if Hb is a convex gap cost

function with the properties mentioned above.

Hn and Hb were already assumed to be proper gap cost functions at the beginning of

the formulation. There is actually no strict rule defined for the relative values between Hn,

Hb and Hi, but in a proper Ps function definition Hi is assumed to be more costly than

both Hn and Hb for any gap distance. If it were not for this property, two fragments could

be chained through a fragment facing the other direction in order to increase their chaining

score (decrease their fragment transition penalty). But with such a property given, it will

always be more costly to chain through an inverted fragment, in comparison to chaining

directly from Fi to Fi+2.

With the cases analysed above, it is clear that with proper assumptions upon gap cost

functions and their relative magnitude, in the first (simpler) overlap resolution scheme there

will not be more than two fragments chained together that overlaps at a single position in

the transcript. Below we investigate the same situation with the second overlap resolution

scheme that takes mismatches also into account.

Within the overlap resolution scheme with mismatches, three adjacent fragments Fi,

Fi+1, and Fi+2 in a fragment chain can actually overlap at a common position in the tran-

script, even as a wild-type transcript alignment. A fragment formation like this could occur

when the intermediate fragment shows similarity to both of the genomic flanking sequences

of Fi and Fi+2 but represents a higher similarity alignment (with less number of mismatches)

than the extending regions of its adjacent fragments, so that the gap penalty cost of adding

the intermediate fragment is dominated by the benefit of removing the mismatches in the

overlapping region of Fi and Fi+2.

Even with a multiple overlap formation as described above; the updated fragments

cannot contain contradicting indices if the overlap split position q from Fi, Fi+1 overlap

resolution comes earlier in the transcript, than the split position r from Fi+1, Fi+2 overlap

resolution; since this leaves a positive length fragment for the updated intermediate fragment

F ′i+1. The q,r relation that satisfies this property is q+1 < r. Below we investigate whether

an overlap resolution case in which q + 1 ≥ r might occur.
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In a wild-type transcript, in which all fragments have the same direction and are ordered

in the genome; a selected q position indicates that in any interval [j, q] (Fi+1.ts ≤ j ≤ q), Fi
contains less mismatches than Fi+1 (or equal), since otherwise we could shift q to an earlier

position in the transcript to further minimize Po(Fi, Fi+1). Similarly r position selection

indicates that within any interval [q + 1, j] ( q + 1 ≤ j ≤ Fi+1.te), Fi+2 contains less

mismatches than Fi+1 (or equal), since otherwise we could shift r to a later position in the

transcript in order to minimize Po(Fi+1, Fi+2). From these constraints upon mismatches

within the overlap interval, we can infer that within the interval [r, q] (q ≥ r), both Fi and

Fi+2 have less mismatches than Fi+1, therefore any cut position within the interval [r−1, q]

from Fi to Fi+2 would reduce (or not increase) the number of mismatches in comparison

to the summation of mismatches in the transitions from Fi to Fi+1 and from Fi+1 to Fi+2.

Combined with the effect of convex gap penalty Hn in this situation, it is clear that the

split positions q + 1 ≥ r always have a better or same scoring alternative split selection

q′ + 1 < r′. For the reasons described earlier, this condition similarly applies to transcripts

with rearrangements if Hb is convex, and also to transcripts with inversions if Hi is selected

to be more costly than both Hn and Hb gap cost functions. Hence, within the assumed gap

cost model, the updated fragments will not be problematic if a pairwise overlap resolution

is applied to Fi, Fi+1 pair and Fi+1, Fi+2 separately, instead of a joint overlap analysis of

Fi,Fi+1, and Fi+2 all together.

In the formulation given above for the overlapping fragment chaining problem, splice

signal score function Js is not included within the penalty function P . Due to the fact

that each fragment’s location in the genome is independent from the other fragments in the

chain; there are O(min(KN,M+L)) positions in the genome36 that needs to be checked for

splice signal existence for the entire fragment set, Fset. However, since there is no particular

way of determining the ideal cut position for each fragment pair without evaluating the

combined splice signal score for each cut position, O(N) operations need to be performed

per transition penalty calculation. Therefore the overall run-time complexity for such an

algorithm solving fragment chaining with splice signals is O(K2N).

In the following section we describe the set of methods and design preferences that

are adopted in our high-throughput transcriptome to genome alignment tool sensitive to

structural alterations in the transcript. Handling of splice junctions and fragment overlaps

36K,N ,M , and L representing the size of Fset, T , G/G′ and S/S′ respectively.
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in our aligner is described in detail in Step 2 and Step 3 subsections.

2.3 Efficient Whole Genome Search of Novel Transcriptional

Structural Alterations

In the previous sections, we set up a theoretical framework for the transcriptome to genome

alignment problem with structural alterations via base-to-base alignment and fragment

chaining approaches. However, there are still other challenges to be considered when per-

forming such an alignment in a high-throughput fashion from a large list of transcrip-

tomic sequences (assemblies or long reads) to a whole genome sequence in the order of 109

bases. In this section we describe the detailed computational aspects of our transcriptome

to whole genome alignment software, Dissect (DIScovery of Structural Event Containing

Transcripts), in terms of the approaches adopted to tackle these challenges.

The first challenge for such a method would be to reduce the search space within whole

genome to the putative gene/gene pair that the wild-type or abnormal transcript is located.

Therefore the initial problem to be addressed in a whole genome aligner is to efficiently

locate the genomic region(s) that the given transcript is likely to be located.

In this study, we propose a general approach for tackling this challenge, based on ex-

tracting sample anchors from the transcript, mapping to the whole genome, and detecting

regions that these anchors are densely distributed. This method does not assume a fixed

length region size, but tries to infer the location and the length of the region together

according to an optimization score. This method is described in the subsection Step 1.

Another challenge is to efficiently construct a comprehensive list of alignment fragments

between the given transcript and the genomic region within given length and mismatch

constraints. In the subsection Step 2, we describe the fragment generation method we

have used in Dissect and further describe how these fragments are chained together in our

fragment chaining method using the algorithms described in section 2.2.

Furthermore; after obtaining the best scoring fragment chain, due to the loss of resolu-

tion caused by mismatch and length constraints of the alignment fragments, there can be

unwanted divergence in the exon boundaries from the optimal base to base alignment. In

this final post-processing step we try to resolve small scale misalignments and divergence

from an optimal alignment. In the subsection Step 3 we describe these post-refinement

methods in detail.
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And in the final subsection, we describe the implementation details of our aligner that are

not mentioned in Steps 1-3, mostly regarding disk and memory use optimizations throughout

these steps and design considerations for functionality.

2.3.1 Step 1: Genomic region inference from anchor mappings

Genome region inference step of Dissect starts with sampling anchors from the transcribed

sequence. Many of the commonly used methods in the literature of transcript to whole

genome alignment employ some form anchor based genome region inference[21][46][41][2].

Even though they adopt the approach of sampling anchor sequences from the transcript and

try to map them to the genome in order to infer the genomic subregion to perform the align-

ment, they have key differences in how to infer putative genes from anchor mappings. For

instance, GMAP employs a method for finding the entire span of the transcript by sampling

anchors from the beginning and end of the transcript, mapping them to the genome within

a maximum region length threshold. However, in our problem with structural alterations,

such an approach will cause rearrangements to be missed due to the long translocated se-

quences within the transcript that might be aligned to a location outside of this region.

Alternatively, BLAT infers a genomic region by initially splitting the genome into constant

size bins and measuring the density of anchor mappings in each bin that are sampled from

the transcript sequence. After these measurements, they employ a heuristic method that

identifies bins or combination of bins as valid regions based on several mapping density and

gap distance constraints. However, this heuristic region inference method is aimed for lo-

cating the local alignment regions of the transcript and is not a global scale region inference

for transcripts with structural alterations such as fusions, inversions and rearrangements.

Even though the bin merging heuristic can be applied to infer homologous regions in our

problem (other than fusion cases that should be located as two separate regions), diagonal

gap constraints considered within the region inference heuristic will cause rearrangements

or inversions to be missed or split into different local alignments.

To describe our version of the homologous region inference approach, we initially define

a comprehensive model for singular/fusion regions and give a general scoring scheme with

multiple parameters that can be optimized by users for specific structural variation studies.

Afterwards; we describe our formulation and solution method for finding the optimal loca-

tion and length of the genomic region, given a sample of anchors from the transcript with

their multiple mapping locations in the genome.
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An anchor is a substring of constant length LA, of the transcribed sequence T of length

N . Given a set of anchor mappings Smap = {m1,m2, . . . ,mK} of size K, each mapping mi

consists of the following set of information: starting position of the anchor in the transcript,

beginning position of the mapping in the genome37, a positive score of the individual anchor

mapping corresponding to the similarity of the anchor sequence in the transcript to its

aligned counterpart in the genome38, and if the genome sequence is composed of multiple

chromosome sequences, the chromosome identifier the anchor is mapped to. These values

are denoted in their respective order as: mi = (mi.t, mi.g, mi.score, mi.chr)

In a whole genome alignment setting, we have smaller disjoint anchor mapping sets

S1
map, S

2
map, . . . , S

#chr
map contained within Smap that correspond to the set of mappings for

each individual chromosome sequence even though the anchors themselves might be shared

in multiple mappings across several chromosomes.

We define an inferred genomic region, Rj = (Rj .b, Rj .e, Rj .chr), as a pair of positions in

the genome that represents the beginning and ending positions of the region and the chro-

mosome sequence that the region belongs to. Even though the number of potential regions

to be considered appears to be in O(N2), most of these regions’ scores are overshadowed by

more compact regions that border on anchor mapping boundaries. Therefore, we restrict

the definition of valid regions Rv, to only have Rv.b indices that coincide with the beginning

position of a mapping (mp.g for some p); and similarly we restrict Rv.e indices to coincide

with the ending position of a mapping (mr.g + LA − 1 for some r). With such a definition

of a valid region, the number of regions in the entire genome is constrained by O(K2).

The genomic region inference problem aims to find the highest scoring region within the

set of valid regions, according to the following parametric region scoring scheme:

Score(Rj) =
CN ×M(Smap, Rj)Cα

L(Rj) + CL

L(Rj) = Rj .e−Rj .b+ 1

37This corresponds to the aligned position of the first base of the anchor if the alignment direction is
forward, or aligned position of the last base of the anchor if the alignment direction is reverse.

38Note that, the length of these anchors and mappings are not included due to the fact that all of the
anchors sampled from the transcript are of the same length and the mapping scheme does not allow indels
within the anchor alignment.
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M(Smap, Rj) =
N∑
k=1

max
mi ∈ Smap

mi.t = k

mi / Rj

(mi.score)

mi / Rj ⇐⇒ mi.chr = Rj .chr ∧Rj .b ≤ mi.g ∧mi.g + LA − 1 ≤ Rj .e

In the definitions above, CN , and Cα ≥ 1 are normalization parameters given by the

user to adjust the relative importance of the number of mappings within the region with

respect to its length. CL > 0 is a length normalization parameter that prevents the bias for

very short but densely populated regions that can otherwise dominate the score of sparser

and larger regions that cover more anchor samples.

M(Smap, Rj) is a score function correlated to the number of anchor samples taken from

the transcript, which have a mapping onto the genome within the boundaries of the region

Rj . However; instead of returning the number of these anchor samples, it returns the

summation of the scores for the best scoring mapping of each anchor sample39.

Below, we describe our anchor sample selection, mapping and genomic region inference

methods used in our alignment software, Dissect.

Initially we sample a number of equally distanced anchors of length LA (a user defined

constant value), such that the first sample starts from the beginning of the transcript and

the last sample taken ends at the last base of the transcript. Which value to select as LA is

a problem of sensitivity over speed. As LA gets larger, less hits will be obtained from the

mapping; thus less time will be spent for the downstream genomic region inference method.

On the other hand, continuity of more anchor samples will be disrupted by exon-exon

junctions, rendering the anchor sample unable to map to the genome as a single sequence.

The number of sampled anchors can be determined in two separate schemes: (1) a user

defined constant number of anchors are extracted from each transcript sequence or (2) a

separate anchor is sampled from every constant number of bases. Thus, in the second scheme

the number of anchor samples is correlated to the length of the transcript sequence, N . One

of the main practical differences in these two schemes is that; in short sequences, the first

39Note that the outer summation iterates from 1 to N as the position in the transcript, yet only the positions
that an anchor is sampled from will return proper score values. In order to prevent any inconsistencies, we
can assume that a zero-score dummy mapping is created for the positions in the transcript that do not have
an anchor sampled from them.
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sampling scheme may create redundant samples per exon. This is the same problem that

is caused for longer transcript sequences when using the second scheme, in which longer

exons are sampled from many places. The second scheme is also a safer method for long

transcript sequences that contain relatively short exons that are involved in rearrangements

outside of the main span of the transcript; or similarly fusion instances, in which one side is

significantly shorter than the other. However, this additional safety comes with significant

run-time cost in the genomic region inference method, which is described later in the section.

For the sake of simplicity, in the remainder of this section we assume that the first anchor

sampling scheme is used.

The construction of the set Smap in Dissect is performed using a cache-oblivious short

read mapper, mrsFAST [15]. mrsFAST employs a cache-oblivious seed matching algorithm

for the optimization of cache usage during read mapping and finds all of the mappings of

a given read within a constant number of mismatches but no indels. In Dissect, we allow

this constant error rate per sampled anchor also to be a user defined parameter within

certain bounds that will ensure a run-time and memory efficient mapping by mrsFAST.

After each anchor is mapped to the genome within a constant error threshold, their score

and position in the genome are determined by the mapping results and the set Smap is

constructed together with its chromosomal subsets.

For the genomic region inference step in Dissect, we solve two different problem types:

(1) inference of a single highest scoring region and (2) inference of two separate regions

and a transcript cut position that will give the highest double region inference score. We

define the double region score to be the summation of scores taken from the first and second

region with the constraint that; the first region score is only calculated over the anchor

samples taken from upstream of the transcript cut position and the second region score is

only calculated upon the samples taken from downstream. Below we describe the solution

method for these two problems that are used in Dissect and analyse their complexities. We

describe the further details of parameter selection and the score comparison between single

and double region results in Implementation part of this section.

As mentioned above, there are O(K2) possible regions in the genome that represent an

interval between two mappings (including the mappings themselves) that both lie on the

same genomic sequence (chromosome). A simple method to solve the single region inference

problem would be to calculate the score of each one of these regions in linear time, yielding

a O(K3) solution. We can reduce this complexity to O(K2) by visiting the regions in a
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particular order and dynamically reusing the calculated scores from the previous regions.

For following algorithm description, we assume that we are given a sorted list of sampled

anchors from the transcript A1, . . . , ACA
. The given list of anchors is sorted based on their

beginning positions in the transcript, Ai.b, and thus their ending positions, Ai.e, as well.

We define the set of mappings for an anchor sample, S(Ai) = {mk ∈ Smap : mk.t = Ai.b}.
We also denote the index of the anchor sample of a mapping mk as a(mk)

• Initialize best scoring region, BestRegion, as an empty interval in the genome and

the best region score, BestScore, as 0.

• For all chromosome sequences k, from 1 to #chr.

– Sort the mappings in Skmap and obtain the sorted list (m1,m2, . . . ,m|Sk
map|)

– For each ps = mi.g, i from 1 to |Skmap|, representing the beginning position of a

region:

∗ Initialize CurrentScore ← 0, representing the current score of the visited

genomic regions that start at ps.

∗ Initialize a best anchor table B (of size CA). This table holds the information

of whether for each anchor Ax, there is a mapping my ∈ S(Ax) such that

it is contained within the currently considered region, Rz (my / Rz). In

addition, the table cell Bx holds the max(my.score) information for all such

my. Initially all of the cells in the table are set to 0, representing the absence

of any mappings.

∗ For each pt = mj .g+LA, j from i to |Skmap|, representing the ending position

of a region:

· If mj .score > Ba(mj), update Ba(mj) and add the difference between

the new and old values of Ba(mj) to CurrentScore. This current longer

region contains a mapping that is superior to the mappings of the same

anchor within the previous region.

· If CurrentScore > BestScore, updateBestScore and assignBestRegion

as an interval in chromosome k that starts at ps and ends at pt.

• Return BestRegion and BestScore.
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In the algorithm above, the values in the best anchor table and CurrentScore are reused

for larger regions that contain the previous smaller regions that start at the same position,

ps. If we assume that, the number of chromosomes and number of sampled anchors are

constant values; there are two nested loops that iterate through all the mappings which yield

a run-time complexity of O(K2) for the algorithm above. However, if we assume the anchors

to be sampled as in the second sampling scheme described earlier (CA depending on the

length of T ), the number of anchor samples would be O(N). Since we create a best anchor

table for each mapping, the complexity would increase to O(K(K +N)) or alternatively to

O(K2log(min(N,K))) if we do not initialize a static anchor table but maintain a balanced

binary tree for only the anchor sample that has mappings within the region.

For the second problem (double region inference), there are O(K4) possible region pairs

in the genome that represent a containment of anchor mappings in the genome for a partic-

ular fusion cut in the transcript. A naive method that calculates the score for each region

pair and each anchor cut position can solve this problem in O(K5) time for a constant

size anchor sample list. If the number of sampled anchors are dependent on the length of

the transcript as in the second anchor sampling scheme, the complexity will be O(NK5)

considering a linear number of possible transcript cut positions. However; since the overall

optimization score is based on the summation of two independent region scores, we can

apply the following method to reduce the complexity to O(K2) for the first anchor sampling

scheme and to O(NK2) for the second40.

• Best double region score, Dscore ← 0.

• For each i ∈ [1, CA − 1]

– P ← Ai.e and S−map =
⋃

1≤k≤i
S(Ak) and S+

map =
⋃

i<k≤CA

S(Ak)

– D−score ← score obtained by solving the single region inference problem for S−map.

– D+
score ← score obtained by solving the single region inference problem for S+

map.

– If Dscore < D−score +D+
score

40Note that in these complexity calculations, we assume N and K to be independent variables due to the
fact that there is no direct dependency relation in between; whereas if we assume a constant value for the
number of mappings per anchor sample, a change in the number of samples would also affect the number
of mappings. In practice, it would be reasonable to assume that the number of mappings and number of
samples are linearly correlated. Therefore for relatively long transcript sequences, switching from the first
anchor sampling scheme to the second is likely to cause a slowdown in the order of O(N3) for this problem.
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∗ Replace Dscore, and set D−reg and D+
reg as the region intervals returned from

the single region inference calls.

• Return the best double region pair as D−reg and D+
reg.

In the algorithm above; there is a loop over the indices of anchors and in each iteration,

the algorithm makes two single region inference calls that are solved within O(K2) time,

yielding a total run-time complexity of O(CAK2). If CA is a constant value as in the first

anchor sampling scheme, the run-time complexity will be O(K2), whereas in the second

sampling scheme in which CA = Θ(N), the complexity will be O(NK2).

Even though, in the two algorithms described above the outputs contain only a single

region or a single region pair; in order to allow lower scoring alternatives to be considered

for the alignment, Dissect returns a constant number of different region/region pair results

determined by a user determined parameter. Since the size of this resulting list is constant,

an additional constant number of comparisons and updates upon the list do not affect the

overall complexity of the algorithms described above. Further details of constructing these

result lists are described in the Implementation subsection.

After the inference of a single region or a pair of regions using the algorithms described

above, Dissect employs its homology search and fragment chaining methods upon these as

described in the next subsection.

2.3.2 Step 2: Homology search and fragment chaining

The second step of Dissect, consists of two separate problems: (1) searching for homologous

fragments between the transcript and the inferred genomic region in order to construct a

fragment set and (2) finding the optimal fragment chaining within this given fragment set.

In order to find homologous regions between the transcript and the inferred genomic

sub-region, we developed a modified version of mrsFAST aligner, mrsFAST-HS, which sam-

ples short constant size seeds from every few bases in the transcript and maps them to the

genomic region using the cache-oblivious mapping method of mrsFAST. The implementa-

tion details of this extension and parameter selections are described in the Implementation

subsection. However, the main difference between mrsFAST-HS and the original mrsFAST

is the unbounded seed extension step, in which the seed mappings are extended towards

both sides as long as the number of mismatches intercepted are lower than a constant
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threshold (and some other error rate constraints are satisfied, which are described in the

Implementation subsection).

In short, given a transcript sequence T and a genomic sequence G; the fragment set Fset
returned from mrsFAST-HS contains a comprehensive set of alignment fragments of different

sizes and similarity scores between T and G, in both forward and reverse directions. In the

case of a region pair, G1 and G2, instead of a single region, the same mapping is applied to

both of these sequences, returning separate fragment sets F 1
set and F 2

set respectively.

After the fragment sets are obtained, we employ the overlapping fragment chaining

algorithm based on the problem solutions described in subsection 2.2.2. If there is only a

single genomic region, fragment chaining is applied to only that region, whereas in the case

of two fusion regions, the chaining is applied considering the possibility of chaining from a

fragment in F 1
set to F 2

set but not the other way around.

In subsection 2.2.2 that defines separate formulations for the overlapping chaining prob-

lem; we addressed concerns upon overlaps between fragments and mismatch resolution

schemes for determining the optimal split position within the interval. In Dissect, due to the

heavy cost of evaluating optimal overlap split position for each transition (even though this

cost does not affect the complexity of the algorithm); we only consider overlap resolution

based on overlapping interval length without considering the optimal split position with

respect to mismatches. However, a more advanced overlap resolution scheme is applied in

Step 3 as a post-processing step for the best scoring fragment chain.

The result of this step is a chain of fragments that represents the tentative exon structure

of the transcript with potential structural alterations. In the next step, we describe Dis-

sect’s post-processing methods for alleviating small-scale misalignments that may be caused

because of the minimum length and error rate thresholds in the fragment set construction

step.

2.3.3 Step 3: Post-processing of fragment chains

In the post-processing step, Dissect applies modifications to some of the fragment pairs

(adjacent fragments in the chain) in the final fragment chain that might potentially contain

some form of minor misalignment. In order to fix these, Dissect employs several different

procedures that can handle cases such as: (1) fragments overlapping in the transcript or (2)

having short gaps in between, as well as handling situations such as (3) very short overlaps

of two adjacent fragments in the genome and (4) fragments that are separated by an indel
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or a mismatch in their alignment.

Among the cases noted above, case (4) covers the instances of fragment pairs that are

separated by one mismatching base in the transcript and in the genome. Or an alternative

situation is that, the fragments are adjacent in the transcript but contain a single base gap in

between in the genome or vice versa. Such situations can occur due to the error threshold of

mrsFAST-HS described in the previous section and its inability to extend over indels. Even

though the resulting fragment chain is not wrong in the case of indels (each fragment was

initially assumed to represent homologous sequences that contain few mismatches and no

indels); it is preferable to report these pair of fragments as a single fragment that contain an

indel or a mismatch. The merging operation can be performed in constant time, allowing

us to fix all such instances in a linear scan of each fragment pair.

Moreover, the case (3) noted above includes the fragment pairs in the list that are

adjacent in the transcript, yet have a very short overlap in the genome not longer than

several base pairs41. In a structural variation study, such short cases would usually be

uninteresting due to the fact that they do not represent statistically significant aberrations

from a wild-type transcript alignment. We encounter such instances frequently in cases that

there is a single or a couple base pair insertion to the transcript sequence which at the same

time shows similarity to the adjacent bases in the transcript. Removal procedure of such

short overlaps is straightforward and performed as a linear scan of the fragment pairs in the

chain. The finalized fragment pair becomes adjacent in the genome but contains a gap of

the same length in the transcript, not implying any structural alterations.

Even though the cases described above does not require detailed computational meth-

ods, handling cases (1) and (2) will require some algorithmic perspective. These cases are

described in detail below.

Refining overlapping fragments :

Case (1) mentioned above covers the fragment pairs that are disjoint in the genome but are

overlapping in the transcript. Such cases can occur due to the appearance of an overlapping

sequence twice in the genome, one as the trailing sequence of the first fragment in the

genome and the other as the leading sequence of the second fragment. Such a fragment

formation might indicate a duplication in the given genomic sequence, yet Dissect is aimed

41We allow this threshold to be user defined within a realistic range of values.
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to find structural alterations on the transcript side, and such duplications on the genome

side are not reported. Instead, Dissect employs an optimal junction finding procedure upon

such overlapping fragment pairs as follows:

Given two overlapping fragments F1, F2, the length of their overlapping sequence is

LO = F1.ts + F1.len − F2.ts. Dissect assumes that the optimal resolution of this fragment

pair is another fragment pair F ′1, F ′2 such that; F ′1 is contained within F1 as a prefix fragment

and F ′2 as a suffix fragment of F2, and the following transition scoring function is optimized42:

TScore(F ′1, F
′
2) = F ′1.score+ F ′2.score+ FJs(F ′1, F

′
2)

FJs function definition is similar to the Sj function defined in subsection 2.1.2, which

returns Css/2 if there is a canonical splice beginning signal after the ending of F ′1 in the

genome (taking the direction of the fragment into account), and Css/2 if there is a canonical

splice ending signal prior to the beginning of F ′2 in the genome, or Css if both conditions

are satisfied.

According to the fragment score defininition given in (2.11), we can determine the scores

of F ′1 and F ′2 as:

F ′1 = F1.score− Cm ∗ (F1.len− F ′1.len) + Cmm ∗#mismatches in F1[(F ′1.len+ 1)..(F1.len)]

F ′2 = F2.score− Cm ∗ (F2.len− F ′2.len) + Cmm ∗#mismatches in F2[1..(F2.len− F ′2.len)]

Cm representing the Cmatch and Cmm representing the Cmismatch used in the previous sec-

tions.

It is clear from these equalities that; if we would like to maximize F ′1.score+F ′2.score, we

should search for the cut position that maximizes the number mismatches in the discarded

regions from both sequences. Or we can alternatively describe as the cut position that

minimizes the number of mismatches retained by F ′1 and F ′2 within the overlapping region.

Therefore, in order to find the optimum cut position from the fragment score perspective, it

is enough to calculate the number of mismatches retained on both sides. However; in order

to maximize TScore(F ′1, F
′
2), we should also take FJs into account. Since even in the most

general splice signal scoring scheme, calculating FJs for a pair of fragments will be done

in constant time, we can perform a linear scan over all cut positions across the overlapping

42A valid F ′
1, F ′

2 pair satisfies all of the following equalities: F ′
1.ts + F ′

1.len = F ′
2.ts, F ′

1.ts = F1.ts,
F ′

1.len ≤ F1.ts, F ′
2.ts + F ′

2.len = F2.ts + F2.len, and F ′
2.ts ≥ F2.ts.
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region and calculate FJs for each pair on the go. A simple method for counting number

of mismatches for each cut position while holding two counters for number of intercepted

mismatches on both sides would be as follows:

• BestCutScore← −∞ and BestCutPosition← ∅

• Number of retained mismatches of F ′1 before the cut within the overlap interval,

mm(−) ← 0

• Count the number of mismatches in F2 within the overlap interval and assign to

mm(+), which represents the retained number of mismatches in F ′2 after the cut within

the overlap interval.

• For each cut position, i from 0 to LO:

– If i = 0, calculate the TScore(F ′1, F
′
2) with the current mm(−) an mm(+) values

and calculate FJs for F ′1 = F1[1..(F1.len−Fo)] and F ′2 = F2. Store BestCutScore

and update BestCutPosition as 0.

– If i > 0

∗ If F1[F1.len+ i] corresponds to a mismatch, then increase mm(−) by one.

∗ If F2[i] corresponds to a mismatch, then decrease mm(+) by one.

∗ Calculate TScore(F ′1, F
′
2) for F ′1 = F1[1..(F1.len− Fo + i)] and F ′2 = F2[(i+

1)..(F2.len)], and the retained number of mismatches in F ′1 and F ′2 within

the overlap region (mm(−) and mm(+) respectively)

∗ If the new score at the current cut position is higher than BestCutScore,

replace it with the new best score and update BestCutPosition as i.

• Return F ′1 = F1[1..(F1.len−Fo+BestCutPosition)] and F ′2 = F2[(BestCutPosition+

1)..(F2.len)] as the optimal overlap resolution.

The solution method described above iterates over a loop of size LO for each fragment

pair, which is bounded by O(N). However; when an overlapping fragment pair is resolved,

all consequent resolutions are performed over the updated fragments from the earlier overlap

resolutions. For this reason, number of transcript positions iterated are bounded by O(N)

for the entire fragment chain (in contrast to a single fragment pair), yielding an overlap

resolution complexity of O(N) for the entire chain.
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Refining gap boundaries :

A more advanced post-processing step in Dissect is for the case (2) mentioned above, which

covers the fragment pairs that are apart from each other in the transcript sequence by a

relatively short gap. Such a gap may be caused by a novel insertion in the transcript or

alternatively it may be caused by an insufficient extension of the adjacent blocks (due to

the possible existence of indels and/or frequent mismatches within the gap interval). A

mismatch based scan across the region as in case (1), would not help in this particular case

due to the possibility of intercepting indels.

For these cases, Dissect employs a gap refinement post-processing step based on a joint

two sided pairwise alignment method extending neighbouring fragments towards the center

of the gap region. This method used in Dissect is an adapted version of the “sandwich

dynamic programming” described in [46]. The mathematical definition of the problem is as

follows:

We are given a gap interval in the transcript, IG = T [pb..pe] located between a fragment

pair F1 and F2. The trailing flanking sequence of F1 in the genome is denoted as R1 and

the leading flanking sequence of fragment F2 in the genome is denoted as R2. The length of

these flanking sequences will be described shortly, but currently assume that they are long

enough to fully align IG to them.

Given IG, we would like to find p1, p2, `1, `2 values with given constraints that pb− 1 ≤
p1 < p2 ≤ pe + 1, `1 ≥ 0, and `2 ≥ 0; that maximizes the summation of Needleman-Wunsch

global pairwise alignment [36] scores of T [pb..p1] to the prefix of R1 of length `1 and T [p2..pe]

to the suffix of R2 of length `2.

The alignment score function for global pairwise alignment problem is not re-defined

here; but for the problem solution given below, it would suffice to note that match scores,

mismatch and indel penalties are all constant values that are symmetric on the transcript

and the genome sides. In the solution below, we denote these constants respectively as Cm,

Cmm and Cin.

This problem formulation covers the cases in which there is no extension from the F1 side

(p1 = pb−1) and also the case in which there is no extension from the F2 side (p1 = pe+ 1).

Therefore, different from the overlap resolution method described earlier, the gap resolution

scheme allows the preservation of novel insertions in the transcript when there is no proper

extension from either side or when the extensions do not meet within the gap region.
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For our version of this two-sided extension alignment scheme, we create two alignment

score matrices M1 and M2; one for aligning IG with R1 and the other for aligning IG with R2

in the reverse direction. The dimensions of both of these matrices are (LG + 1)× (KG + 1),

with an additional 0th row and column in M1 and an additional (LG+1)th row and (KG+1)th

column in M2 for alignment initialization purposes.

KG value above, is defined as the maximum sequence length that IG can be aligned with

a non-negative alignment score. This length can be calculated as LG + bCm∗LG
Cin

c. We also

denote K1 as the prefix of R1 of length KG and K2 as the suffix of R2 of length KG.

Each cell M1[x, y] represents the alignment of xth base of IG with yth base of K1, simi-

larly M2[x, y] represents the alignment of xth base of IG with the yth base of K2. However,

the score value representations are different between the two matrices: M1[x, y].score indi-

cates score of the best scoring alignment of IG[1..x] with K1[1..y], whereas M2[x, y].score

represents the score of the best scoring alignment of IG[x..LG] with K2[y..KG].

The gap-refinement algorithm employed in Dissect is as follows:

• For each column j, from 1 to KG: M1[0, j]← (−Cin ∗ j) and M1[j, 0]← (−Cin ∗ j).

• Apply global pairwise alignment dynamic programming algorithm for filling in the

values of each M1[i, j].score and M1[i, j].parent using Cm, Cmm and Cin for match,

mismatch and indels respectively.

• For each column j, from 1 to KG: M2[(LG + 1), (KG + 1 − j)] ← (−Cin ∗ j) and

M2[(LG + 1− j), (KG + 1)]← (−Cin ∗ j).

• Apply global pairwise alignment dynamic programming algorithm in the reverse di-

rection for filling in the cell values of M2. The algorithm should be applied for each

row i, from LG to 1 and within each row for each column j, from KG to 1. When

determining the best score of M2[i, j], the match/mismatch transition score is calcu-

lated from M2[i+ 1, j + 1] and indel transition scores are calculated from M2[i+ 1, j]

and M [i, j + 1].

• At this step, in order to make an easier comparison between the two tables; we create

arrays MR1 and MR2 that represent the maximum cells in the rows of both arrays.

MR1[i] (for i from 0 to LG) represents the maximum scoring cell in the ith row of M1,

and similarly MR2[i] (for i from 1 to LG + 1) represents the maximum scoring cell in

the ith row of M2.
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• Furthermore, we derive two more arrays from MR1 and MR2, forming BR1 and BR2.

BR1[i] represents the best scoring cell within the interval MR1[0..i] and similarly

BR2[i] represents the best scoring cell within the interval MR2[i..(LG + 1)]. A key

point here is to select the cell with the lowest index value i in tie situations for BR1

and select the cell with the highest index value i for equal scoring cells in BR2
43.

• For obtaining the highest scoring combination of alignments, it would suffice to do

a linear scan of BR1 and BR2 together in order to find the index i ∈ [0, LG] that

maximizes BR1[i] +BR2[i+ 1]

• After the optimum i and corresponding MR1[q] and MR2[r] cells are found. The

indices of the cell M1[x1, y1] that MR1[q] is pointing towards, form p1 and l1 values,

whereas the indices of the cell M2[x2, y2] that MR2[r] is pointing towards, form p2 = x2

and l2 = KG − y2 + 1.

According to the returned p1, l1, p2, and l2 values, Dissect updates the fragments F1

and F2 adjacent to the gap region.

The final post-processing step in Dissect is the identification of different types of struc-

tural alterations existing in the finalized fragment chain. Since the methods used for this

classification step are fairly straightforward, they are described in the following Implemen-

tation subsection together with description of structural alteration labels.

2.3.4 Implementation of Dissect

Earlier in this section, we described the three algorithmic steps that Dissect employs for

an efficient whole genome alignment of a given transcript set that might contain structural

variants. All of these stages described are implemented as decoupled modules in Dissect

that can be run individually, and each stage generates an output that will be used as the

input for the following stages. Since each of these sub-procedures are specialized in solving

their corresponding problems, Dissect has an external main body that employs these runs

and handles the input/output for the other steps44.

43The reasoning behind this tie breaking scheme is to favor novel insertion cases over extension of blocks
with low similarity. For example, if there is an extension to the center of the gap region with the alignment
score 0, the algorithm will return p1 = 0, p2 = KG +1 representing an entire novel insertion in the gap region
instead of a very low scoring extension reaching the center of the gap interval.

44Since Dissect’s main program handles situations other than the algorithmic concerns noted in the previous
section (such as indexing of the genome sequence or pre-sorting anchor mappings), the numbering for the
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For the Dissect program to be executed, the following input files are required: (1) A

genome file in FASTA format as a single file or multiple files for each chromosome. (2) A

set of transcripts in FASTA format to be aligned to the genome. (3) A list of configuration

parameters.

As the first step, Dissect reads the configuration file for identifying the following pa-

rameters (the pipeline stages in which each parameter is used is given in parentheses){and

default values are given in curly brackets}:

• Anchor index size: (Stage 0){12} The seed size to index the input genome for

mapping anchors.

• #Sampled anchors: (Stage 1){20} The number of anchors to be sampled from each

transcript sequence.

• LA: (Stage1){24} Length of each anchor in the region inference step.

• Anchor error rate: (Stage 1 and 2){1} Number of substitution errors that can exist

in an anchor alignment to the genome . This number should be less than or equal to

(LA/anchor index size - 1) for ensuring %100 detection of all mappings within this

error rate constraint.

• Max anchor hits: (Stage 2 and 3){150} The maximum number of anchor mapping

hits to be returned from the alignment of a single anchor. The reasoning behind this

limit is described in Stage 2.

• CN,CL,Cα: (Stage 4){1,3,400000} Normalization parameters for the inferred region

fitness function. These regulate the relative importance of the number of mappings

within the region with respect to the region length.

• CR: (Stage 4){3} Number of regions that are maintained and returned in the highest

scoring region list.

• Region merging distance: (Stage 4){400000} Highest distance threshold for merg-

ing two regions into one. This can either be applied in order to merge two fusion

regions into one or merge two single regions in the high scoring list into one.

stages in Dissect can be different than the steps described in the previous section.
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• Marginal region score ratio: (Stage 4){%90} The ratio of a region to the highest

scoring region, which a region needs to maintain in order to get into or stay in the

highest scoring list.

• Transcript seed size: (Stage 5){7} This is the size of the samples that are taken from

the transcript in order to be mapped to the inferred genomic region and extended.

• Transcript extension constraints (Stage 5){%90,3} These two values represent the

constraints that are enforced on the fragment extension scheme. They indicate the

minimum similarity constraint and maximum consecutive errors constraints respec-

tively.

• Minimum fragment size: (Stage 5){10} This threshold determines the minimum

sized fragment that will be considered within the fragment set construction step.

• Maximum fragment set size: (Stage 6){10000} This is the maximum number of

fragments to be kept in the final fragment set.

• Transcript gap limit: (Stage 6.2){150} This is an extra constraint that is used for

a speed-up by pruning branches that contain longer insertions in the transcript than

this value. This is not a required constraint; if such a limit is not desired, it can be

set as a very large value.

• C1
n,C

2
n,C

1
b,C

2
b,C

1
i ,C

2
i ,Cf : (Stage 6.2){0, 1, 5, 2, 10, 1, 50} Penalty function param-

eters for wild-type, rearranged/duplicated, inverted and fusion transcripts.

• Marginal alignment score ratio: (Stage 6.5){%50} This value represents a marginal

score boundary similar to Marginal region score ratio, but it is used for eliminating

low scoring fragment chains from the output.

Each of the following stages in Dissect program are employed for all of the transcripts

in the sequence at once (apart from Stages from 6.1 to 6.5, which are always done together

without intermediate files generated in between). Each stage requires processing all tran-

scripts from a certain aspect to produce the input for the next stage. Therefore; these stages

are decoupled and can be employed in pieces instead of a single run, or one stage can be

employed with different parameters without requiring the previous stages to be redone.
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Stage 0: Indexing the genome

This is the step for generating the index file required for mapping anchor samples to the

genome using mrsFAST[15]. Index file generated basically represents a hash-table of k-mers

found in the genome, k being defined by the user parameter anchor index size.

An important difference of Stage 0 from Stages 1-6 is that, this step needs only to be run

once for a given genome file. For each subsequent experiment that uses the same genome

file with the same anchor index size, this step can be skipped. This is very useful due to

the slow nature of the indexing step. One of the options in the user defined configuration

file determines whether to skip Stage 0 or not.

Stage 1: Sampling anchors from transcript

This stage is the step in which Dissect samples the anchors from all transcripts in order

to map them onto the genome as a batch short-read query set. LA and #sample anchors

are the user defined parameters in this step that determine the anchor sampling length and

density. The first sample is taken from the beginning of the transcript and the last sample

is taken from the end. All of the remaining anchors are sampled with equal distance from

the beginning/end anchors and from each other.

In this stage, we also filter low quality anchors from the printed list. Low quality anchors

are defined as strings that have Hamming distance of less than or equal to anchor error rate,

from poly-A/poly-T strings or strings in the form (C)GCGCGC . . ., (C)ACACAC . . ., etc.

Stage 2: Mapping anchors to the genome

In this stage, Dissect maps the sampled anchors to the genome within the user defined

constraints anchor error rate and max anchor hits. The purpose of using these parameters

is mentioned in the configuration list above, however the main reasoning behind using a

maximum threshold for the number of mappings for a single anchor is described below.

Due to the long repetitive regions in the genome, some anchor samples can map to

significantly more places in the genome than others. Incorporating these large number of

mappings in the region inference step will not help accuracy and will slow down the inference

process, therefore mappings by these anchors should not be considered when searching for

the optimal region. However, there is not an accurate way of determining if an anchor will

be mapped to many places in the genome before actually performing the mapping (apart
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from the low quality mappings eliminated in the previous stage). Therefore, Dissect utilizes

this maximum mapping threshold as an identifier that there might be more mappings of the

same anchor if the mapping process is continued . For example, if this value is selected as

101; after all anchors are mapped, any anchor that contains 101 mappings will be removed.

The remaining set of anchors with certainty will contain less than or equal to 100 mappings.

At the end of this stage the anchor mapping output is returned in SAM format [27]. This

file is not ordered based on the order of queried anchors, but based on order of mappings

in the hash table and order of chromosome file names in the genome. Therefore, a sorting

step is required before this file can be used as an input to the region inference stage.

Stage 3: Sorting anchor mappings

Since the total number of the anchor mappings can be large, the following region inference

stage cannot store all mappings in the memory. In addition, the generated file size is

generally too large to seek back and forth in order to obtain all mappings of individual

transcripts.

For this reason, Dissect sorts the anchor mappings in their respective order in the tran-

script dataset. However, since the file size can be very large (e.g. > 15GB for a whole

transcriptome assembly experiment of around 570000 contigs), any O(nlogn) sorting al-

gorithms (such as quicksort[17] or mergesort[25]) will be costly for this step in terms of

run-time or disk/network bandwidth usage for data transfer.

In order to tackle this challenge; Dissect utilizes an iterative version of the counting sort

solution [25], using the fact that it does not need to sort the given inputs according to the

order of anchor samples but only in the order of transcript sequences in the original list.

As a first step, Dissect allocates an adequate space in the memory that can handle X

of the Y mappings. In the following Y
X iterations; in ith iteration, Dissect loads the anchors

corresponding to the transcripts from X ∗ i to X ∗ (i + 1) − 1, to their allocated position

in the memory and prints them in their sorted order. This method requires Y
X scans of the

mapping file and linear time to sort each batch of anchor mappings.

Apart from sorting, the anchor elimination step described in the previous stage is actually

performed during the counting sort step while the anchors are loaded to the memory.
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Stage 4: Region inference

Given the anchor mapping for each transcript sequence, the region inference stage aims

to solve the problem of finding the highest scoring CR regions defined in Step 1 earlier.

However, there are some detailed aspects of the region inference stage that are not described

in the algorithmic solution in Step 1.

One important point is about how the highest scoring region list of constant size CR is

maintained. At any point, this list contains at most CR elements, in which all elements have

a region score that is within the marginal score boundary with respect the highest scoring

region. Therefore; if the highest region score within the list is Sc, then all regions within

the list should also have a score higher than or equal to Marginal region score ratio×Sc.
At every step of the region inference algorithm, the current region score is compared to

the highest scoring list in order to check whether the region should be added to the list or

not. As a first step, the current region score is compared to the highest scoring region in

the list; if it is not within the marginal score boundary, it is disregarded. If it is within

the marginal score boundary and there is an empty position in the list, current region is

automatically added to the list. But if it is within the boundary but not higher than any of

the regions within the list and there are no empty spaces in the list, it will be eliminated.

If it is within the boundary and has a higher score than some other regions within the list,

it will replace the lowest scoring region within the list. Finally, if the current region score is

higher than the highest scoring region in the list, then the current region is automatically

added to the list and all of the other regions in the list that are not within the current

region’s marginal score boundary are eliminated; if all are, then the lowest scoring region is

eliminated if there is no empty space.

Since the highest scoring region list maintenance steps described above take at most

O(CR) steps, they can be performed in constant time and can be integrated to the algorithm

described in Step 1 without affecting the original time complexity.

After CR, or less number of, highest scoring regions are determined, there are additional

post-processing steps applied to the list of regions.

Firstly, for any double (fusion) region in the list, a merge check is performed. If the

distance between two fused regions inferred are shorter than Region merging distance, they

are merged together with the intermediary region and reported as a single region. Further-

more, if there are regions in the highest scoring list that overlap or are within the Region
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merging distance in the genome, they are merged together as well (two fusion regions are not

merged unless both sides representing the cuts on the same side coincide with each other).

Resulting set is reported as the set of inferred regions. The number of regions reported here

is denoted as NR, to be referred to in the following stages.

Furthermore, another point that is not mentioned in the algorithm description in Step 1

is the score comparison between fusion regions and single regions. Since a successful single

region inference can be considered as a double region that consists of adjacent fused regions

and the single region will always score higher than the fusion region in this case for Cα > 1;

fusion regions are only searched in the absence of a good quality single region. A good

quality region is defined by a user defined parameter and is not mentioned above due to its

elaborate purpose, and its default value is %87 representing the ratio of number of anchors

that have a mapping within the region, to the total number of anchors that are mapped

for the transcript and not eliminated in the previous stages due to excessive number of

mappings. If a good quality region is not found within the highest scoring single region

list, fusion region search is employed. A good quality region is also defined by the same

score value, but considering both regions. If there is no good quality region for a double

region selection either, no output is reported. If there are, they are reported as the inferred

regions.

Stage 5: Mapping and extending fragments

Mapping and extending fragments are done by the homology search tool mrsFAST-HS

modified from mrsFAST. According to the given parameter transcript seed size, γ, an index

is created for the inferred genomic region. Afterwards, a seed of size γ is sampled from every

dγ2 e
th location in the transcript and mapped onto the genomic region. Instead of reporting

mapping seed outputs directly, mrsFAST-HS applies the following extension and duplicate

removal scheme.

According to minimum similarity constraint and maximum consecutive error constraint,

the mapped seed is extended to both sides until either the first or second constraint fails.

After a seed is fully extended, it is verified if it has been reported earlier; depending on

this, it is not printed twice in the maximally extended fragments list.

At this stage, Dissect also applies a minimum length threshold to the maximally extended

fragments. If an extended fragment is shorter than minimum fragment size parameter, then

it is not reported.
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The reason that minimum fragment size is not used as transcript seed size is due to

the fact that the inferred genomic region is shorter than the larger sequences mrsFAST is

originally optimized to index (whole genomes). For this reason, we choose a smaller seed size

(index size for mapping) than needed in order to keep the hash table used in the mapping

step smaller.

Stage 6.1: Constructing fragment set

This is a precautionary step in Dissect, which prevents the execution of fragment chaining

procedure for transcripts that have an overwhelmingly large amount of alignment fragments.

This cut-off is determined by the user defined parameter Maximum fragment set size.

Since this parameter directly affects the memory and run-time cost of the chaining stage,

it should be carefully chosen taking the memory size of the machine and the time to be spent

per transcript sequence into account.

In this stage, Dissect iteratively removes smaller fragments in the maximally extended

fragment list until the total number of fragments in the final fragment set is less than or

equal to Maximum fragment set size parameter.

Stage 6.2: Fragment chaining

This step employs the chaining algorithm described in Step 1.

One point that is not mentioned earlier is the maximum transcript gap size considered

when applying the chaining method.

Depending on the transcript gap limit parameter given, Dissect only considers chaining

fragments only within this transcript distance limit.

Transition penalties for each fragment pair is calculated according to the C1
n,C2

n,C1
b ,C2

b ,

C1
i ,C2

i ,Cf parameters given. Among these C1
n, C

2
n represent constant addend and the loga-

rithmic coefficient respectively for wild-type transition pairs (towards downstream and on

the same sequence). Similarly, C1
b , C

2
b represent the addend and coefficient for log-scale

transition penalty function of rearranged/duplicated fragments (towards upstream and on

the same sequence). Moreover, C1
i , C

2
i represents the same values for the transition penalty

function of inverted fragments (between reverse complemented sequences). Finally Cf pa-

rameter determines the constant fusion transition penalty between fused genomic sequences.
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Stage 6.3: Post-refining fragment boundaries

In this stage, Dissect employs its post-processing methods upon the highest scoring chain for

refining potential small-scale misalignments at the transition boundaries of fragment pairs.

These methods were described in detail in Step 3.

One point that is not mentioned earlier is reporting ambiguous transitions for overlap

resolution. As described earlier in Step 3, the overlap resolution scheme with mismatches

is iteratively applied to the fragment pairs in the highest scoring chain. During the overlap

resolution process for a fragment pair; if there are multiple split positions that score equally

well, Dissect selects one of them arbitrarily for the main result and reports the existence

of the other equally scoring split positions in a special data field in the alignment output.

Using this field, one can obtain all possible splits that Dissect might have reported as the

main alignment result. These instances occur frequently when there are no mismatches and

no canonical splice sites within the overlap interval of an overlapping fragment pair.

Stage 6.4: Classifying alignments into events

In this stage, Dissect identifies the structural event labels each alignment result belongs to

in a straight forward manner. A single transcript can be identified as containing different

structural alterations since it can be aligned to NR different regions in the genome.

If the alignment contains two fragments belonging to separate fusion sequences, it is

identified as a fusion transcript. Thereafter, a more detailed analysis can be made in order

to verify if either side of the fused sequences contain further structural alterations.

If the alignment contains two fragments that belong to reverse complement sequences

with respect to each other, it is identified as containing an inversion. It can further be

analysed in order to determine if it is an inverted duplication, inverted rearrangement, or

an in-place inversion of an exon or exon group.

If the alignment contains a back-jump between two fragment pairs in the resulting chain,

this is identified as containing either a forward (non-inverted) duplication or a forward

rearrangement. In order to differentiate between these two cases, Dissect checks whether

the back-jump results in some fragments sharing at least several bases together. If it does,

then the alignment is identified as containing a duplication event, otherwise a rearrangement

event.
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If some of the alignments that are identified as duplications have a duplication inter-

val shorter than 5 bases, it is more likely to be a result of an insertion (exhibiting some

homology to the flanking sequences) rather than a very short duplication caused by a ge-

nomic translocation or a novel splicing mechanism. However, since these cases can still be

of interest, they are identified as a separate “ambiguous short insertion/duplication” label.

All of the remaining alignments that do not contain any of the structural events described

above are denoted as “non-event” alignments. Furthermore, any transcript that does not

contain any valid inferred regions or valid alignments is collected under the “no output”

label.

Stage 6.5: Reporting alignment output

In this stage, Dissect employs a final filtering procedure among reported fragment chains

for the same transcript (but for different inferred regions). Given Marginal alignment score

ratio parameter, Dissect removes low scoring chains according to their score ratio to the

highest scoring chain for the transcript. Furthermore, this is the stage Dissect prints the

output for the alignment results.
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Experiments

In this chapter we report the alignment quality and structural event discovery accuracy

results of our transcriptome to genome alignment tool, Dissect. Reported results include

experiments upon simulation datasets derived from RefSeq transcript and Known Gene

gene structure databases, which are subjected to nucleotide level substitution/indel noise

at different frequencies, novel oligonucleotide sequence insertions and structural alterations

at different size distributions; such as exon duplications, inversions, rearrangements and

transcript-transcript fusions.

Apart from simulation, as a demonstration of our aligner’s transcriptional novelty de-

tection performance in real-life transcript databases, we aligned a whole transcriptome set

of assembled 50bp RNA-seq reads sequenced from a human prostate cancer individual, as-

sembled by de novo transcriptome assembler Trans-Abyss [6][37].

Due to the fact that there is no efficient way to accurately determine the positive predic-

tive value of the structural events detected by our algorithm; for the analysis of experimental

results, we consider a wild-type transcriptome to genome aligner, BLAT [21], as a surrogate

for false positive event identification.

Furthermore, since the experiments performed upon real-life datasets also include the

alignments of mis-assembled transcripts, the reported results cannot be assumed as a direct

indication of structural alterations, but should go through the process of validating the

assembled sequence before biological implications can be analysed. Conversely, comparison

of validated results from other studies upon the prostate cancer RNA-seq dataset used, will

indicate the combined accuracy of the assembly and alignment together. Since such validated

datasets are not abundant, they will not serve as a large scale accuracy test; therefore such

74
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comparisons with validated transcriptional variations are omitted in this chapter.

3.1 Experiments upon Wild-type Transcripts with Novel In-

sertions and Nucleotide-level Alterations

In this set of experiments, we aim to evaluate the performance of Dissect in wild-type

transcript datasets and several variant datasets altered with different types and levels of

noise.

For the first experiment, we used the latest NCBI RefSeq mRNA annotation dataset

for whole mouse transcriptome. We acquired this database from the latest build1 in UCSC

Genome Browser FTP server. Assuming that this annotation dataset is composed of wild-

type transcripts that do not contain structural alterations, we evaluated Dissect’s false event

discovery rate by aligning these sequences to the mm9 build mouse reference genome. Since

most of these sequences have very close matches to genes in human genome, we also used

this dataset to evaluate the accuracy of Dissect alignments at a nucleotide-level resolution.

For the second experiment, we modified the original RefSeq sequences by adding nucleotide-

level substitution/indel errors. These are performed uniformly at random for each base in

a transcript and applied at different density levels in order to measure the increase in false

event detection rate as the sequences diverge more from the original transcripts.

For the last experiment in this section, we used the latest RefSeq mRNA annotation

dataset for whole human transcriptome. We acquired this database also from its most

recent build in the UCSC Genome Browser FTP server2. The aim of this experiment is to

evaluate Dissect’s false event discovery rate in the existence of short-to-medium size novel

insertions.

In order to simulate a realistic sample of novel human genome insertions, we sampled

substrings of different sizes from the set of insertion sequences from a novel insertion char-

acterization study by Kidd et al. [22], and inserted them to the transcript sequences at

random exon breakpoints3.

1as of the week of July, 18th.
2This dataset is also acquired on same week as the mouse build.
3We restrict the novel insertion simulations only to exon breakpoints due to the fact that, in a large

set of transcripts containing mid-exon insertions, there frequently are cases in which the insertion displays
a local similarity to the flanking sequences that would result in over extension of the maximal fragments
of the adjacent exons. Fragment chaining algorithm of these over-extended fragments will result in short
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Alignment results without noise

For the RefSeq mouse mRNA dataset; as a pre-processing step, we removed any sequences

that contain base values that are different from A,C,G,T (such as n,y,w,r). We further

removed any leading or trailing exact poly-A/poly-T sites that were longer than 5bp4.

Remaining dataset after the pre-processing step contained 28058 transcript sequences of

an average length of 2848 bases.

We aligned the full set of transcript sequences to the entire mm9 build mouse reference

genome including 35 sequences; chr1 to chr19 and chrX/Y , as well as the random sequences5

for 12 of these chromosomes, chrUn random6 and chrM representing mitochondrial DNA.

After aligning the entire set of sequences with the default parameter values as described

in the previous chapter, we obtained the highest scoring alignment for each sequence. Within

these resulting alignments, 27893 (%99.4) of them did not contain any positive structural

alterations. 71 (%0.25) of the sequences were reported as containing a structural event.

Among these 12 are detected as fusion transcription, 25 of them contained at least one

inverted exon (including inverted duplications, inverted rearrangements and in-place inver-

sions), 25 of them were same direction duplications and 9 of them were same direction

rearrangements.

Apart from the 71 reported events, 40 transcripts were identified as containing a short

ambiguous location (2-5bp) that cannot be clearly resolved whether they are short duplica-

tions or short insertions longer than a single nucleotide indel. In a reference transcriptome,

these are more likely to be short insertion cases that show similarity to their flanking se-

quences in the transcript, causing the over-extended maximal fragments detecting a short

duplication when they are chained together.

duplications between the leading and trailing regions of the inserted sequence (increasing the number of
ambiguous insertion/duplication cases). In a large set of insertion simulations, such cases dominate the
number of events and the main focus of this experiments is hindered, which is mainly the identification of
the alignments that discover a false event by the alignment of the inserted sequence to the genome in a way
that alters overall structure of the transcript alignment.

4Removing poly-A/poly-T sites is essential for Dissect, due to the fact that the transcript sequence is
considered to be globally aligned to a local region in the genome. Since Dissect is also sensitive to structural
alterations, a long poly-A/poly-T site at the end can cause structural alterations if there is a corresponding
poly-A/poly-T site within a nearby genomic region.

5These represent the sequences that cannot be placed in a specific position in the corresponding chromo-
some with certainty.

6This represents the sequences that cannot be placed to any of the sequences with certainty.
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The remaining 54 sequences did not produce any alignment results. Among which 7 re-

ported low quality alignments but were discarded by the final low scoring alignment filtering

scheme, and 47 of them could not locate a proper genomic region in the region inference

step that satisfy the quality threshold.

Other than the alignment type detected, we also investigated the number of transcripts

that Dissect was able to align accurately7 within a nucleotide-level resolution.

Including the 54 transcripts that Dissect did not report any valid alignments, all sequence

alignments other than 1844 are observed to be accurate at a nucleotide-level resolution.

This corresponds to a %93.8 percentage of accurate nucleotide-level alignments for the

full datasets. However, some of these 1844 alignments may contain gaps due to potential

existence of novel insertions in the transcript, inaccurate removal of poly-A/poly-T sites

from ends and/or absence of a proper region within the used build of reference genome for

the alignment of the transcript sequence. In order to estimate the rate of such alignments,

we used wild-type transcriptome to genome aligner BLAT (version 34x10) to align these

1844 sequences and find out for how many of these sequences there is an accurate8 wild-

type alignment that Dissect has missed. Among the 1844 aligned sequences, BLAT was

able to align 690 of them to the genome as an accurate alignment at a nucleotide-level

resolution. Therefore, since there is no clear evidence that the remaining sequences have a

nucleotide-level accurate alignment, we consider the effective nucleotide-level sensitivity of

Dissect for this experiment to be 26214
26214+690 = %97.4.

In order to analyse the difference of alignment accuracies between BLAT and Dissect,

we also performed the converse alignment experiment. We aligned the 26214 sequences that

Dissect aligned accurately at a nucleotide level, using BLAT. Among 26214 transcripts,

BLAT also aligned 25936 accurately.

With a modern single core processor, aligning the entire dataset of 28058 sequences

took about 70 minutes with Dissect using default parameters, whereas it took more than

400 minutes for BLAT with its default parameters that do not apply additional speed

7Definition of an accurate nucleotide-level alignment here is a fragment chaining that do not contain any
gaps within the transcript sequence including the end regions. Mismatches are allowed within the fragments
as long as they satisfy the original fragment construction constraints.

8The definition of an accurate alignment for BLAT is parallel to the definition for Dissect. We considered
any alignment that contains a gap within the transcript as not an accurate alignment. In order to verify the
accurate property of a BLAT alignment, we checked whether ”Q gap count” (number of exon-exon gap blocks
within the transcript) is 0 and whether ”Q start”/”Q end” (starting and ending positions of the alignment
in the transcript) positions correspond to the transcript end-points.
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optimization upon commonly repeated regions.

Simulation of nucleotide-level substitutions and indels

After applying the pre-processing steps to the 28058 mouse transcript sequences as described

in the previous subsection, we applied a nucleotide-level error addition according to the

following scheme, for a given error density value k.

• For each of the indices ti, from 1 to |Tj |, within all transcript sequences Tj within the

database:

– With 1
k probability, decide whether to add an error to the current location.

– If error will be added:

∗ With 1
2 probability, substitute the base value of v(ti), with another character

and continue with the next character in the sequence.

∗ With 1
4 probability, remove ti and continue with the current index in the

updated sequence, in which the remaining sequences are shifted to the left.

∗ With 1
4 probability, insert a random nucleotide to the current index, and

continue with the next character in the sequence.

For this nucleotide-level noise addition experiment set, we used two different density

values, k = 500 and k = 100.

In the k = 500 simulation dataset, 27871 (%99.3) sequences out of 28058 were aligned

as wild-type transcripts without any detected structural alterations. For 54 sequences,

a proper alignment was not reported. 95 of the sequences were identified as containing

structural alterations (12 fusions, 26 inversions, 49 duplications, 8 rearrangements). Apart

from these, 38 sequences were identified as containing ambiguous short duplication/insertion

sequences.

In the k = 100 simulation dataset, 27732 (%98.8) sequences were aligned as wild-type

transcripts without structural alterations. 57 sequences, did not return any alignments.

232 sequences were identified as containing structural alterations (13 fusions, 29 inversions,

178 duplications, 12 rearrangements). Lastly, 37 sequences were identified as containing

ambiguous short duplication/insertion sequences.

As it can ben seen from the rate of false event detection and distribution of different event

types; the detected number of false events is correlated to the density of nucleotide-level
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noise, even though a large majority of the sequences stay within their wild-type alignment

form. One noticable difference between the three experiments k =∞, k = 500 and k = 100

is increase in the number of detected false duplications.

Simulations upon short-to-medium size novel sequence insertions in human tran-

scriptome

The aim of this experiment is to evaluate the event detection specificity of dissect due

to novel sequence insertion to wild-type transcripts. For this experiment we derived the

simulations from RefSeq mRNA annotation dataset for whole human transcriptome.

After the preprocessing step that removes sequences with unwanted characters and poly-

A/poly-T sites, number of sequences in the dataset is 37568 and the average number of bases

per sequence is 3022.

We aligned these sequences with Dissect9, and obtained 33652 sequences that are not

reported as structural alteration containing transcripts and show nucleotide-level accurate

alignment as described above.

Making use of the aligned fragment information reported in the Dissect output; we

identified valid insertion locations in the transcript (apart from transcript end points) that

represent an exon-exon boundary and represent an intron of longer than the inserted se-

quence10.

We distributed this set of 33652 sequences into four equal sized disjoint subsets. For

the first subset of transcripts, we inserted novel insertion sequences of length 6 to 20 bases,

uniformly distributed within the length interval. For the second subset, we inserted novel

sequences of length 21-35 bases. For the third subset, 36-50 and for the fourth subset, 51-65

base length sequences are inserted.

For obtaining realistic novel insertion sequences, we acquired 2363 characterized novel

insertion sequences published by Kidd et al. [22]. For sampling the insertion sequences, we

randomly located a sequence position among these novel insertion sequences and extracted

the sequence of the required length.

The procedure of simulating novel insertions is described as follows:

9The full dataset alignment took less than 100 minutes.
10This constraint is for reducing contamination by short duplication events due to over-extension of ho-

mologous sequences as mentioned earlier.
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• For each of the four subsets:

– For each transcript sequence within the subset:

∗ Randomly generate the size of sequence to be inserted according to the in-

sertion length distribution of the subset.

∗ Randomly select an end point of the transcript or one of the valid insertion

locations identified earlier.

∗ Extract the sequence from a randomly selected position within the dataset

of 2363 novel insertions, and insert to the selected location in the transcript.

In the resulting alignment of the 33652 modified sequences that contain a novel insertion,

32874 (%97.7) returned a wild-type alignment without any structural alterations. 645 (%2.0)

of the returned alignments contained at least one structural alteration. The insertions also

caused 45 (%0.1) sequences overall to lose their originally inferred regions and resulted in

88 (%0.3) of the sequences to contain short ambiguous duplication/insertion regions.

However, the results shown above represent the overall simulation dataset. If we analyse

each subset separately with respect to insertion length distributions, we can see that the

distribution of events among sets clearly displays a bias upon the number of events detected

in the presence of longer insertions. Details of this phenomenon can be viewed in Table 3.1,

and the distribution of different structural alteration types are given in more detail in Table

3.2.

Insertion length Total Wild-type All events Amb. dup./ins. No output
6-20 bases 8413 8367 26 (%0.3) 19 1
21-35 bases 8413 8298 87 (%1.0) 21 7
36-50 bases 8413 8189 186 (%2.2) 22 16
51-65 bases 8413 8020 346 (%4.1) 26 21

Table 3.1: Alignment results of Dissect for simulated wild-type transcriptome dataset with
novel insertions. Rows represent the length interval of the novel insertion distributions
(e.g. insertions reported in the first row are uniformly distributed between 6 and 20 bases).
Columns indicate the output labels of Dissect: All events column represents the total number
of transcripts that Dissect has identified a structural alteration, Amb. dup./ins. column
represents the alignments that contain a short ambiguous interval that cannot be verified
with certainty as an insertion or a duplication and No output column indicates the number
of transcript sequences that Dissect did not return a valid alignment for.
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Ins. length All events Fusion Inversion Forw. Dup. Forw. Rear.
6-20 bases 26 2 6 16 2
21-35 bases 87 2 20 25 40
36-50 bases 186 0 59 43 84
51-65 bases 346 30 151 52 113
All intervals 645 34 236 136 239

Table 3.2: Alignment results of Dissect showing the number of structural alterations with re-
spect to insert length distribution intervals and event types as fusion, inversion, forward du-
plication and forward rearrangement. Inversion column represents inverted rearrangements,
inverted duplications, in-place inversions and single-breakpoint inversions altogether.

In Table 3.1 and Table 3.2, we can observe that as the length of the novel insertion

increases, so do the false event detection rate of Dissect. Table 3.1 displays low false event

detection rate for novel insertions shorter than 35 bases. However, we see a clear difference

in false event detection rate of transcript sequences with insertions of length 6-35 bases, and

sequences that contain insertions of length 36-65 bases. This high rate of false positives can

be caused by Dissect’s high sensitivity to structural events when there is strong evidence of

sequence similarity. Since the insertion sequences are obtained from a real novel insertion

study for human genome, in the neighbourhood of the aligned gene loci there might be

sequences homologous to the insertion and these potentially increase the risk of detecting

false positive rearrangements. As such, the correlation between the increase in the number

of false inversions and false forward rearrangements in the results table is expected, due to

the fact that the number of reported inversions also includes the inverted rearrangements.

3.2 Experiments upon Simulated Transcriptional Events

The experiments performed in this section are designed to determine Dissect’s event detec-

tion sensitivity for various event types with various additional characteristics.

Below we describe 13 different simulation experiments upon mouse transcriptome derived

from Known Gene gene structure annotation database.

In order to prepare the wild-type transcriptome dataset that the simulations are going

to be applied upon, we extracted genome annotation files for each chromosome from chr1 to

chr19 and chrX/Y. We obtained each wild-type transcript by extracting and concatenating
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exons in each gene in their respective order.

The dataset at this stage contained more than 50,000 transcripts. In order efficiently

analyse a large amount simulation cases, we reduced the dataset to one tenth of its original

size by sampling each tenth sequence for each chromosome. Afterwards, any transcript

sequence that is shorter than 50 is removed due to the fact that they cannot properly

express the structural alteration simulations performed in many cases.

At this stage, the dataset consisted of 5256 sequences. This wild-type transcript dataset

is aligned with Dissect and 5234 transcripts that aligned successfully with no structural

alterations were kept for applying the simulations described below.

The thirteen simulation experiments described below aim to emulate the aberrant for-

mations that can occur in transcripts due to structural alterations. These experiments

are:

1. Forward tandem duplication of the full transcript sequence.

2. Forward tandem duplication of the longest exon in the transcript.

3. Forward tandem duplication of the shortest exon in the transcript

4. In-place inversion of the longest exon in the transcript

5. In-place inversion of the shortest exon in the transcript

6. Folding inversion of the transcript from a position close to mid-point. (Split interval:

%36-%65)

7. Folding inversion of the transcript from a position close to the beginning/end. (Split

interval: %16-%35 or %66-85)

8. Full split rearrangement of transcript. (Rearrangement of the full transcript sequence

from a particular split position)

9. Rearrangement of adjacent exons.

10. Rearrangement of non-adjacent exons.

11. Fusion transcript with a well-balanced split ratio (shorter fused sequence is ≥ %60 the

longer one)
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12. Fusion transcript with a moderately balanced split ratio (short to long sequence ratio

is ≥ %30 but < %60)

13. Fusion transcript with an imbalanced split ratio (short to long sequence ratio is < %30)

The distribution of transcript alignments according to event type labels for different

event simulation experiments are given in Table 3.3.

Tot. No out. Non-E. Amb. Tot-E. Fusion Inv. F. Dup. F. Rea.
Exp. 1 5234 8 85 2 5139 1 43 5095 0
Exp. 2 5234 5 58 2 5169 5 1 5163 0
Exp. 3 5234 0 139 3 5092 0 0 5092 0
Exp. 4 4788 0 27 0 4761 0 4761 0 0
Exp. 5 4788 0 507 0 4281 0 4272 0 9
Exp. 6 3188 1 12 0 3175 3 3171 0 1
Exp. 7 4654 2 101 0 4551 2 4547 0 2
Exp. 8 4788 2 166 6 4614 2 106 2 4504
Exp. 9 4788 1 165 6 4616 1 10 2 4603
Exp. 10 4316 0 41 2 4273 0 30 6 4237
Exp. 11 1312 16 12 0 1284 1279 5 0 0
Exp. 12 1558 25 31 0 1502 1500 1 0 1
Exp. 13 2363 15 1751 0 597 595 1 0 1

Table 3.3: Number of structural alterations detected by Dissect for the designed simulation
datasets (Tot. = Total number of transcript sequences, No out. = The number of transcripts
that Dissect did not return any valid alignment for, Non-E. = Number of transcripts Dissect
returned a wild-type alignment for (with potential insertions), Amb. = Number of transcripts
containing ambiguous short duplication/inversion regions, Tot-E. = Total number of dis-
covered structural event containing transcripts, Inv. = Inversion events including inverted
duplications, inverted rearrangements, in-place inversions, and single-breakpoint inversions,
F. Dup. = Forward duplication events, F. Rea. = Forward rearrangement events.)

3.3 Searching Structural Alterations in Prostate Cancer Tran-

scriptome Assemblies

For this experiment we obtained 50bp RNA-seq reads of a human prostate cancer individual.
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These reads were assembled using short-read transcriptome assembler Trans-Abyss [6]

version 1.2.0 that is based upon de novo short read assembly tool, Abyss [40] version 1.2.5.

For the assembly runs, we used two different k-mer sizes, 26 and 4911. Furthermore, for

two separate contigs to be merged (regulated by n parameter), we required 10 pair mappings

between the contigs.

We aligned this transcriptome assembly dataset to whole genome using Dissect with the

default parameters described in the end of the previous chapter, and obtained the following

alignment type distributions.

Among a total number of 576, 381 assembly contigs given input to our aligner: For

167, 218 transcripts Dissect did not return a valid output. For 391, 504 contigs, Dissect

identified no structural alterations, with the exception of potential insertions to the contig

sequence. In 4279 contigs, Dissect detected an ambiguous short insertion/duplication region.

Finally for 13380 contigs, Dissect discovered a structural alteration.

Among the 13380 detected structural event containing contigs, 946 were identified as

fusions, 1381 were identified as duplications, 513 were identified as rearrangements and

10540 were inversion events including inverted duplications, inverted rearrangements and

in-place inversions.

In order to check the number of false positive events detected in this result, we again

used BLAT alignments as a surrogate in order to determine whether there is a high scoring

alignment.

Among 13380 transcripts BLAT returned a valid output for 13241. Considering the

remaining 139 contigs as having 0 score value, we report the distribution of BLAT alignment

similarity scores for event detected transcripts in Table 3.4, similarity score being calculated

as the ratio of number of matching nucleotides to the overall length of the contig.

Among the 1576 contigs in the [%95,%100[ interval, 1088 of them contained at least one

gap that is longer than an indel and for 602 of them total size of the gaps in the transcript

was larger than or equal to 10.

11k-mer size parameter determines the size of the overlap required between two reads in order to connect
them within a contiguous sequence.
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Sim. interval [%0,%50[ [%50,%65[ [%65,%80[ [%80,%90[ [%90,%95[ [%95,%100]
# contigs 418 7682 2204 920 580 1576

Table 3.4: Similarity score distribution of BLAT alignments for assembly contigs that Dissect
detected a structural alteration. Each column in the first row indicates the percentage
similarity distribution of the alignment and the second row represents the number of contigs
that fall into the corresponding interval.



Chapter 4

Summary and Conclusion

In this thesis, we introduced two novel frameworks for the problem of aligning transcribed

sequences to the genome in order to discover structural alterations such as duplications,

inversions, rearrangements and fusions within the transcript. For both frameworks, the

structural alterations are considered as copies of substrings from the genome forming the

transcript sequence, allowing a problem formulation that can be solved in polynomial time.

The first framework we defined is based on nucleotide-level alignment model that involves

transitions from each position pair (ti, gj) alignment between the transcript and the genome

to any position pair (t′i, g
′
j) with the only condition that t′i > ti forming a monotonously

increasing set of indices on the transcript side of the alignment. However, this rule is not

the same case for the genome side and positions throughout the alignment are not required

to be monotonously increasing or decreasing. For this reason, instead of a regular 2-row

alignment matrix we define the alignment formulation as a function from the positions in the

transcript to the positions in the genome with an additional a gap character. We defined the

best alignment as the optimal function definition that maximizes a certain alignment score

model and we proposed solution methods for this problem definition. Our best algorithms

for this formulation was O(NMlog(M)) for convex genomic gap penalties and O(MN) for

simple convex functions (including log-scale) that satisfy a certain zero-calculation property,

M ,N representing the size of the transcript and genome sequences respectively.

The second framework we defined is a low-sensitivity problem formulation that allows a

faster alignment in a whole genome alignment setting. Given a set of homologous fragments

between the transcript and the genome (defined as intervals in the transcript corresponding

to an interval in the genome with a particular direction and similarity score), we described

86
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our problem as finding a chain of fragments that maximizes a certain fragment chain score

model with the constraint that within the fragment chain the transcript start positions are

monotonously increasing. Since this problem can be reduced to the first problem, it can

also be solved in polynomial time and we describe O(K2) solutions for two versions of this

problem (disjoint and overlapping fragment chaining), K being the number of fragments in

the given fragment set.

Furthermore, in this thesis we presented an efficient transcriptome to whole genome

alignment tool, Dissect, which is formed as a pipeline of the following steps; reducing the

solution space from the whole genome to a smaller putative gene region, constructing a

comprehensive set of homologous fragments between the transcript and the genomic region,

applying a fragment chaining algorithm that is sensitive to structural alterations and finally

refining potential small-scale misalignments that could have been caused by length and

similarity constraints of the fragment construction step.

We evaluated the accuracy and efficiency of our aligner upon simulation datasets and

assembled RNA-seq reads of a human prostate cancer individual.

We split the simulation tests into two separate directions: (1) estimating false event de-

tection rate of Dissect in wild-type transcripts with simulated noise and novel insertions and

(2) evaluating event detection sensitivity of Dissect in event simulation datasets constructed

from gene structure annotation.

We estimated the false detection rate of Dissect to be very low, less than %1.2 up to

a substitution/indel noise frequency of 1/100 bases. We also estimated the nucleotide-

level alignment accuracy of Dissect, using BLAT wild-type alignments as a surrogate and

estimated this accuracy to be %97.4 in a wild-type transcriptome dataset with no noise

addition.

Furthermore, in novel insertion simulations we observed the false event detection rate

to be less than %2.2 up to novel insertions of size 50 bases. However, for novel insertions

of sizes longer than 51 bases, we detected a higher error rate up to %4.1 of the overall

transcript sequences (mostly due to rearrangements).

In the second simulation dataset, we evaluated event detection sensitivity of Dissect to

be over %94 for all the experiments performed apart from short in-place inversions and

fusion transcripts with an imbalanced ratio of the fused sequences.

In the final experiment, we reported event detection results of Dissect in an assembly

dataset. Even though there is no comprehensive event annotation for this dataset, we
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estimated that for more than %88 of the reported events, corresponding transcripts do not

have a global high-quality alignment of the transcript when aligned with a wild-type spliced

aligner.

In the remainder of this section, we discuss some potential improvements to this study

from theoretical, biological analysis and software engineering standpoints.

4.1 Future Works

In this thesis study the best algorithms given for nucleotide level alignment algorithms are

within the run-time complexity of O(NMlog(M)), N ,M representing transcript and genome

sequence lengths respectively. The algorithm for the wild-type transcript alignment with

convex functions is known to be reduced from O(NMlog(M)) complexity to O(NMα(M)),

α representing very slowly growing inverse Ackermann function, using the matrix searching

method introduced by [23]. However, as also noted in [10], this method has a high constant

in comparison to the WTTA-2 algorithm due to the heavy cost of matrix searching meth-

ods. This cancels the advantage gained by the reduction from O(M) to α(M) for genomic

purposes, especially when considering mouse/human genomes of size 2.5-3Gb1. Therefore

for practical purposes, the use of the lower complexity solution is not encouraged. For this

reason, we did not investigate the possibility of improving our “alignment with structural

alterations” solution in TGASA-2, using the matrix searching method in [23]. However; for

theoretical purposes, it might be worthwhile to investigate this problem as a future study.

Furthermore; in this thesis study, the solution given to the chaining problem does not

consider dynamic programming sparsification techniques in order to reduce chaining solution

complexity. The version of the chaining problem with no structural alterations, no overlaps

and perfect fragments is known to have a lower complexity solution for several transition

penalty functions slightly different than described in our formulation[8][10][24].

There are further improvements upon the affine (linear) gap penalty version of the

chaining problem, useful for genome-to-genome alignment purposes in which a gap penalty

is described in an affine gap penalty setting. In this case, for an overlapping fragment def-

inition that is slightly different than the one described in our formulations, a workaround

has been proposed by [39] that sparse solution methods can be applied upon. Moreover,

1Gigabases.
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in [7] a genome-to-genome alignment fragment chaining method is proposed involving ge-

nomic structural variations such as inversions, duplications and translocations, extending

the sparse chaining solution given in [9] for linear gap penalties.

As of this thesis study, we are not certain whether sparse solution methods can be applied

to our chaining formulation; which involves structural alterations, overlapping fragments

and an advanced genomic gap penalty scheme that involves a convex gap penalty function

combined with splice signal scores as well as an additional penalty based on mismatch

resolution of overlapping fragments. However; as a future study, it might be worthwhile

to investigate the potential ways to extend this in order to gain speed and provide an

improved theoretical framework for transcriptome-to-genome fragment chaining problem

involving transcriptional structural alterations.

Another possible improvement to the fragment chaining formulation and the corre-

sponding implementation would be to extend the currently given fragment definition to

maximal fragments involving mismatches and indels within similarity and minimum length

constraints. There two challenges that need to be addressed before attempting this new

problem: (1) a homology searching tool is needed that can find maximally extended frag-

ments containing mismatches and indels within certain error rate constraints and (2) the

overlap resolution scheme should be changed in order to allow resolution of two fragments

that contain mismatches and indels. Adding this functionality will increase nucleotide-level

accuracy of the aligner, due to the fact that the majority of small-scale misalignments are

caused by inadequate/improper extension of maximal fragments that are not allowed to

contain indels.

There are several other improvements that can be made to this study from a down-

stream analysis standpoint. A joint analysis can be made for gene structure annotation

and transcripts that contain structural alterations identified by Dissect, in order to evaluate

biological significance of detected events and prioritize events that are more likely to be

authentic. Furthermore, for the experiments with assembled RNA-seq reads, it is possi-

ble to further estimate the authenticity of the detected events by evaluating the score of

the assembled contigs with the analysis of the original reads that are used to construct

the contigs. A parallel study to ours, [44] (unpublished) addresses this aspect of identifying

transcriptional novel events, which can be integrated to Dissect in order to obtain alignment

results prioritized with respect to the biological relevance of identified events and RNA-seq

read support analysis of assembled transcript sequences.
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Also from a software engineering perspective, Dissect can be further improved in terms of

usability, accessibility and visualization. In this thesis study, the main focus was on develop-

ing an efficient alignment tool that follows the guidelines given by the alignment frameworks

described. However, contribution of an alignment tool to the transcriptomics research com-

munity is also correlated to accessibility of the software. Upgrading this software to a

server-client architecture requires a lot of modifications on both Dissect and mrsFAST HS

implementations, but setting up a server that already has the genome and mrsFAST index

loaded in the memory will allow client processes make instantaneous queries to the server

returning a single transcript alignment with structural alterations. In the current version

each transcript query takes around 10-200 milliseconds on average with a modern processor.

However, it will also take around 10 minutes of loading time per input dataset, regardless

of the number of transcripts in the input. Within a server-client framework, this overhead

time can be minimized allowing faster access of users for small number of queries. Similarly

an associated visualization tool for Dissect will improve the user experience by real-time

visualization of the transcript alignments containing structural alterations. This addition

will improve manual evaluation of biological relevance of the structural variations to the

applied study.



Bibliography

[1] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J.
Lipman. Basic local alignment search tool. Journal of molecular biology, 215(3):403–
410, October 1990.

[2] Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schffer, Jinghui Zhang, Zheng
Zhang, Webb Miller, and David J. Lipman. Gapped blast and psi-blast: a new gener-
ation of protein database search programs. Nucleic Acids Research, 25(17):3389–3402,
1997.

[3] Alissa M. Anderson and Jonathan P. Staley. Long-distance splicing. Proceedings of the
National Academy of Sciences, 105(19):6793–6794, 2008.

[4] Yan W. Asmann, Asif Hossain, Brian M. Necela, Sumit Middha, Krishna R. Kalari,
Zhifu Sun, High-Seng Chai, David W. Williamson, Derek Radisky, Gary P. Schroth,
Jean-Pierre A. Kocher, Edith A. Perez, and E. Aubrey Thompson. A novel bioinfor-
matics pipeline for identification and characterization of fusion transcripts in breast
cancer and normal cell lines. Nucleic Acids Research, 2011.

[5] Steven A. Benner, Mark A. Cohen, and Gaston H. Gonnet. Empirical and structural
models for insertions and deletions in the divergent evolution of proteins. Journal of
Molecular Biology, 229:1065–1082, 1993.

[6] Inan Birol, Shaun D. Jackman, Cydney B. Nielsen, Jenny Q. Qian, Richard Varhol,
Greg Stazyk, Ryan D. Morin, Yongjun Zhao, Martin Hirst, Jacqueline E. Schein,
Doug E. Horsman, Joseph M. Connors, Randy D. Gascoyne, Marco A. Marra, and
Steven J. M. Jones. De novo transcriptome assembly with abyss. Bioinformatics,
25(21):2872–2877, 2009.

[7] Michael Brudno, Sanket Malde, Alexander Poliakov, Chuong B. Do, Olivier Couronne,
Inna Dubchak, and Serafim Batzoglou. Glocal alignment: finding rearrangements dur-
ing alignment. Bioinformatics, 19(suppl 1):i54–i62, 2003.

[8] David Eppstein. Sequence comparison with mixed convex and concave costs. J. Algo-
rithms, 11:85–101, February 1990.

91



BIBLIOGRAPHY 92

[9] David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. Sparse dy-
namic programming i: linear cost functions. J. ACM, 39:519–545, July 1992.

[10] David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. Sparse dy-
namic programming ii: convex and concave cost functions. J. ACM, 39:546–567, July
1992.

[11] Zvi Galil and Raffaele Giancarlo. Speeding up dynamic programming with applications
to molecular biology. Theor. Comput. Sci., 64:107–118, April 1989.

[12] Huanying Ge, Kejun Liu, Todd Juan, Fang Fang, Matthew Newman, and Wolfgang
Hoeck. Fusionmap: detecting fusion genes from next-generation sequencing data at
base-pair resolution. Bioinformatics, 2011.

[13] Thomas R. Gingeras. Implications of chimaeric non-co-linear transcripts. Nature,
461(7261):206–211, September 2009.

[14] Xun Gu and Wen-Hsiung Li. The size distribution of insertions and deletions in human
and rodent pseudogenes suggests the logarithmic gap penalty for sequence alignment.
Journal of Molecular Evolution, 40:464–473, 1995. 10.1007/BF00164032.

[15] Faraz Hach, Fereydoun Hormozdiari, Can Alkan, Farhad Hormozdiari, Inanc Birol,
Evan E. Eichler, and S. Cenk Sahinalp. mrsFAST: a cache-oblivious algorithm for
short-read mapping. Nature Methods, 7(8):576–577, August 2010.

[16] Roberto Hirochi Herai and Michel E. Beleza Yamagishi. Detection of human interchro-
mosomal trans-splicing in sequence databanks. Briefings in Bioinformatics, 11(2):198–
209, 2010.

[17] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.

[18] Takayuki Horiuchi and Toshiro Aigaki. Alternative trans-splicing: a novel mode of
pre-mrna processing. Biol. Cell, 98(2):135–140, 2006.

[19] Jonathan Houseley and David Tollervey. Apparent non-canonical trans-splicing is gen-
erated by reverse transcriptase In Vitro. PLoS ONE, 5(8):e12271, 08 2010.

[20] Koichiro Inaki, Axel M. Hillmer, Leena Ukil, Fei Yao, Xing Y. Woo, Leah A. Vardy, Kel-
son F. Zawack, Charlie W. Lee, Pramila N. Ariyaratne, Yang S. Chan, Kartiki V. Desai,
Jonas Bergh, Per Hall, Thomas C. Putti, Wai L. Ong, Atif Shahab, Valere Cacheux-
Rataboul, Radha K. Karuturi, Wing-Kin Sung, Xiaoan Ruan, Guillaume Bourque,
Yijun Ruan, and Edison T. Liu. Transcriptional consequences of genomic structural
aberrations in breast cancer. Genome Research, 21(5):676–687, May 2011.

[21] W. James Kent. Blat—the blast-like alignment tool. Genome Research, 12:656–664,
2002.



BIBLIOGRAPHY 93

[22] Jeffrey M. Kidd, Nick Sampas, Francesca Antonacci, Tina Graves, Robert Fulton,
Hillary S. Hayden, Can Alkan, Maika Malig, Mario Ventura, Giuliana Giannuzzi, Joelle
Kallicki, Paige Anderson, Anya Tsalenko, N. Alice Yamada, Peter Tsang, Rajinder
Kaul, Richard K. Wilson, Laurakay Bruhn, and Evan E. Eichler. Characterization of
missing human genome sequences and copy-number polymorphic insertions. Nature
Methods, 7(5):365–371, April 2010.

[23] Maria M. Klawe and Daniel J. Kleitman. An almost linear time algorithm for general-
ized matrix searching. Siam Journal on Discrete Mathematics, 3:81–97, 1990.

[24] James R. Knight and Eugene W. Myers. Approximate regular expression pattern
matching with concave gap penalties. ALGORITHMICA, 14:67–78, 1992.

[25] Donald E. Knuth. Art of Computer Programming, Volume 3: Sorting and Searching
(2nd Edition). Addison-Wesley Professional, 2 edition, May 1998.

[26] Joshua Z. Levin, Michael F. Berger, Xian Adiconis, Peter Rogov, Alexandre Melnikov,
Timothy Fennell, Chad Nusbaum, Levi A. Garraway, and Andreas Gnirke. Targeted
next-generation sequencing of a cancer transcriptome enhances detection of sequence
variants and novel fusion transcripts. Genome biology, 10(10):R115+, October 2009.

[27] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor
Marth, Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data Process-
ing Subgroup. The sequence alignment/map format and samtools. Bioinformatics,
25(16):2078–2079, 2009.

[28] Xin Li, Li Zhao, Huifeng Jiang, and Wen Wang. Short homologous sequences are
strongly associated with the generation of chimeric rnas in eukaryotes. Journal of
Molecular Evolution, 68:56–65, 2009. 10.1007/s00239-008-9187-0.

[29] Yang Li, Jeremy Chien, David I. Smith, and Jian Ma. Fusionhunter: identifying fusion
transcripts in cancer using paired-end rna-seq. Bioinformatics, 2011.

[30] Andrew McPherson, Fereydoun Hormozdiari, Abdalnasser Zayed, Ryan Giuliany,
Gavin Ha, Mark G. F. Sun, Malachi Griffith, Alireza Heravi Moussavi, Janine Senz,
Nataliya Melnyk, Marina Pacheco, Marco A. Marra, Martin Hirst, Torsten O. Nielsen,
S. Cenk Sahinalp, David Huntsman, and Sohrab P. Shah. defuse: An algorithm for
gene fusion discovery in tumor rna-seq data. PLoS Comput Biol, 7(5):e1001138, 05
2011.

[31] Andrew McPherson, Chunxiao Wu, Iman Hajirasouliha, Fereydoun Hormozdiari, Faraz
Hach, Anna Lapuk, Stanislav Volik, Sohrab Shah, Colin Collins, and S. Cenk Sahinalp.
Comrad: detection of expressed rearrangements by integrated analysis of rna-seq and
low coverage genome sequence data. Bioinformatics, 27(11):1481–1488, 2011.

[32] Webb Miller and Eugene Myers. Sequence comparison with concave weighting func-
tions. Bulletin of Mathematical Biology, 50:97–120, 1988. 10.1007/BF02459948.



BIBLIOGRAPHY 94

[33] Richard Mott. Est genome: a program to align spliced dna sequences to unspliced
genomic dna. Computer applications in the biosciences : CABIOS, 13(4):477–478,
1997.

[34] Gene Myers and Webb Miller. Chaining multiple-alignment fragments in sub-quadratic
time. In Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms,
SODA ’95, pages 38–47, Philadelphia, PA, USA, 1995. Society for Industrial and Ap-
plied Mathematics.

[35] Serban Nacu, Wenlin Yuan, Zhengyan Kan, Deepali Bhatt, Celina Rivers, Jeremy Stin-
son, Brock Peters, Zora Modrusan, Kenneth Jung, Somasekar Seshagiri, and Thomas
Wu. Deep rna sequencing analysis of readthrough gene fusions in human prostate
adenocarcinoma and reference samples. BMC Medical Genomics, 4(1):11, 2011.

[36] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology, 48(3):443–453, March 1970.

[37] Gordon Robertson, Jacqueline Schein, Readman Chiu, Richard Corbett, Matthew
Field, Shaun D. Jackman, Karen Mungall, Sam Lee, Hisanaga Mark M. Okada,
Jenny Q. Qian, Malachi Griffith, Anthony Raymond, Nina Thiessen, Timothee Cezard,
Yaron S. Butterfield, Richard Newsome, Simon K. Chan, Rong She, Richard Varhol,
Baljit Kamoh, Anna-Liisa L. Prabhu, Angela Tam, YongJun Zhao, Richard A. Moore,
Martin Hirst, Marco A. Marra, Steven J. Jones, Pamela A. Hoodless, and Inanc Birol.
De novo assembly and analysis of RNA-seq data. Nature methods, 7(11):909–912,
November 2010.

[38] Andrea Sboner, Lukas Habegger, Dorothee Pflueger, Stephane Terry, David Chen, Joel
Rozowsky, Ashutosh Tewari, Naoki Kitabayashi, Benjamin Moss, Mark Chee, Francesca
Demichelis, Mark Rubin, and Mark Gerstein. FusionSeq: a modular framework for
finding gene fusions by analyzing paired-end RNA-sequencing data. Genome Biology,
11(10):R104+, October 2010.

[39] Tetsuo Shibuya and Igor Kurochkin. Match chaining algorithms for cdna mapping. In
In Proc. Workshop on Algorithms in Bioinformatics (WABI), volume 2812 of LNCS,
pages 462–475. Springer, 2003.

[40] Jared T. Simpson, Kim Wong, Shaun D. Jackman, Jacqueline E. Schein, Steven J.
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