
FINDING EMAIL CORRESPONDENTS IN SOCIAL

NETWORKS

by

Yi Cui

B.Eng., Shanghai Jiao Tong University, 2009

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

c© Yi Cui 2011

SIMON FRASER UNIVERSITY

Summer 2011

All rights reserved. However, in accordance with the Copyright Act of

Canada, this work may be reproduced without authorization under the

conditions for Fair Dealing. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law, particularly

if cited appropriately.

APPROVAL

Name: Yi Cui

Degree: Master of Science

Title of Thesis: Finding Email Correspondents in Social Networks

Examining Committee: Dr. Jiangchuan Liu,

Associate Professor, Computing Science

Simon Fraser University

Chair

Dr. Jian Pei,

Associate Professor, Computing Science

Simon Fraser University

Senior Supervisor

Dr. Andrei A.Bulatov,

Associate Professor, Computing Science

Simon Fraser University

Supervisor

Dr. Wo-Shun Luk,

Professor, Computing Science

Simon Fraser University

Examiner

Date Approved:

ii

lib m-scan11
Typewritten Text
9 August 2011

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

Email correspondents play an important role in many people’s social networks. Finding

email correspondents in social networks accurately, though may seem to be straightforward

at a first glance, is challenging. To the best of our knowledge, this problem has not been

carefully and thoroughly addressed in research. Most of the existing online social networking

sites recommend possible matches by comparing the information of email accounts and social

network profiles, such as display names and email addresses. However, as shown empirically

in this thesis, such methods may not be effective in practice.

In this thesis, we systematically investigate the problem and develop a practical data

mining approach. Our method not only utilizes the similarity between email accounts and

social network user profiles, but also explores the similarity between the email communica-

tion network and the social network under investigation. We demonstrate the effectiveness

of our method using two real data sets on emails and Facebook.

iii

To my parents and Yan

iv

“Science without religion is lame, religion without science is blind.”

— Albert Einstein, 1879 - 1955

v

Acknowledgments

Foremost, I would like to convey my special gratitude to my senior supervisor, Dr. Jian Pei,

for his guidance, support, and supervision throughout my master’s program. He gave me

invaluable insights that shaped my ideas and approaches to my research. His detailed and

constructive suggestions were indispensable in development of the conducted research and

the thesis.

I would like to express my sincere thanks to Dr. Andrei A.Bulatov for being my supervisor

and Dr. Wo-Shun Luk for being my examiner and taking the time to review the thesis. I

also would like to express my sincere thanks to Dr. Jiangchuan Liu for chairing my thesis

defense.

Additionally, I would thank all my friends, lab mates, classmates, faculty and support

staff in our school.

Last but not least, I truly appreciate the support of my parents and my girl friend Yan

Ding for their supporting and understanding all the time.

vi

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Contents vii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivations . 1

1.2 Technical Challenges . 3

1.3 Contributions . 4

1.4 Thesis Organization . 4

2 Background and Problem Framework 6

2.1 Graphs . 6

2.1.1 Graph Preliminaries . 6

2.1.2 Neighbors of Vertices . 7

2.1.3 Adjacency Matrices . 8

vii

2.1.4 Weighted Graphs . 8

2.1.5 Bipartite Graphs . 9

2.2 Problem Formulation . 10

2.3 The Framework of Our Solution . 11

3 Related Work 14

3.1 Email Mining . 14

3.2 String Similarity Measure . 15

3.3 Graph Matching . 15

3.3.1 HITS and Iteration Framework . 16

3.3.2 Vincent D. Blondel, et al. , 2004 . 18

3.3.3 M. Heymans and A.K. Singh, 2003 . 20

3.3.4 L.A. Zager and G.C. Verghese, 2008 21

3.3.5 Summary of Existing Iterative Methods on Subgraph Matching 22

4 Profile Matching 24

4.1 The Two String Similarity Measures . 24

4.1.1 Jaro-Winkler String Similarity . 24

4.1.2 Overlap String Similarity . 25

4.2 Integrating the Two String Similarity Measures 26

5 Graph Matching 27

5.1 The Universal Connection Heuristic . 27

5.2 The Graph Matching Problem . 28

5.3 Computing Graph Matching Similarity . 29

5.4 Enhancing Graph Matching Similarity . 31

5.5 Integrating Profile Similarity and Graph Matching Similarity 33

6 Experimental Results 34

6.1 Real Data Set Preparation . 34

6.2 Evaluation Method . 35

6.3 Effectiveness of Profile Matching . 36

6.4 Effectiveness of Graph Matching . 37

6.5 Effectiveness of Integrating Profile Matching and Graph Matching 42

viii

6.6 The Effect of ǫ and the Runtime . 43

6.7 The Effect of the Threshold . 45

7 Conclusions and Discussion 48

Bibliography 50

ix

List of Tables

2.1 Neighbors of every vertex in Gun . 7

2.2 Neighbors of every vertex in Gdi . 8

6.1 The statistics of the two real data sets. 35

x

List of Figures

1.1 A motivation example, where the accounts Cathy and Kathy, William and

Super gamer, respectively, are owned by the same persons. 2

2.1 Two example graphs. 7

2.2 Two example bipartite graphs. 9

2.3 The framework of our approach. 12

3.1 Expanding the root page set into a base page set [19]. 16

3.2 Two graphs GA and GB for vertices similarity computation [3] 19

6.1 The matching accuracy of the two string similarity measures. 37

6.2 The Jaccard coefficient between the two string similarity measures in profile

matching. 38

6.3 Profile similarity parameter tuning. 38

6.4 Accuracy comparison of four methods in the 1st experiment 39

6.5 Accuracy comparison of four methods in the 2nd experiment 40

6.6 Summation of FJ’s accuracy . 41

6.7 The matching accuracy of the graph matching methods. 42

6.8 The matching accuracy of the integrated method with respect to parameter γ. 43

6.9 Comparison of different matching algorithms 44

6.10 Accuracy with respect to ǫ. 44

6.11 Runtime and number of iterations. 45

6.12 Accuracy with respect to the threshold. 46

6.13 Similarity score distribution at convergence 46

xi

Chapter 1

Introduction

1.1 Motivations

Many people use emails everyday. Emails and the social network formed by email corre-

spondents play an important role in many people’s social life. Therefore, many online social

networks, such as Facebook, LinkedIn, and Twitter, associate users with their emails in

one way or another. For example, Facebook uses email addresses as user-ids. Moreover,

some online social networks are trying to integrate multiple messaging channels, including

SMS, chat, email, and messages. Users can send and receive messages through whatever

medium or device preferred by or convenient to them. Recently, Facebook is providing an

@facebook.com email address to every user so that a user can share with her friends over

email no matter they are on Facebook or not.

One interesting and important task is to find a user’s email correspondents in a target

social network, such as Facebook.

Example 1 (Motivation) Figure 1.1(a) shows some of Ada’s email contacts. Two con-

tacts are linked by an edge if they two are involved together in an email. Ada is a member

of a social network, shown in Figure 1.1(b). The problem addressed in this thesis is how

Ada can find her email contacts in the social network.

Ada may add Doe as her friend in the social network, and thus an edge is added in

Figure 1.1. Suppose Ada does not know her other email contacts’ account information in

the social network. How can she find her other email contacts, such as Cathy and William,

in the social network?

1

CHAPTER 1. INTRODUCTION 2

(b) Some of Ada’s friends in a social network

Ada (ada@mail.net)

Doe (doe@mail.net)

William (william@work.gov)

(a) Some of Ada’s email contacts

Cathy (cathy@joke.org)

Ada (ada@mail.net)

Doe (doe@mail.net)

Super gamer (bill@noname.net)

Kathy (kathy@cool.net)

Figure 1.1: A motivation example, where the accounts Cathy and Kathy, William and Super
gamer, respectively, are owned by the same persons.

The task of finding a user’s email correspondents in a social network may seem to be easy

at a first glance. A straightforward solution is to search the user profiles in a social network

using email account information, such as display names and email addresses. Many online

social networking sites provide such functionalities, such as “find friends” in Facebook and

“search for someone by name” in LinkedIn.

Example 2 (Motivation cont’d) In our motivation example (Figure 1.1), Ada may use

the user profile search function of the social network to search for her email contacts. For

example, by searching for “Cathy”, a good search function may recommend “Kathy” as a

possible match since the two names are very similar. However, the function may not be able

to match the account “Super gamer” in the social network with the email contact “William”.

As many experienced social network users may know, matching only based on profiles is

far from enough to satisfactorily solve the problem of finding email corespondents in social

networks. There are at least two major difficulties.

First, a contact may use different email addresses in email communication and social

networks. Many users may have multiple email addresses. One may use a private email

address for most of the email communication, and use another public email address, such

as one from a free Web-based email service (e.g., hotmail and gmail), as her public email

address. In such a case, searching using a contact’s private email address cannot find her

correctly in a social network where she registers using her public email address.

Second, one may think searching using names is reliable. However, a popular name may

be used by many people. Moreover, one may not use her real name in a social network.

Instead, she may use her nickname to register in a social network, or even use multiple

nicknames for multiple accounts. Consequently, the results from searching using names,

CHAPTER 1. INTRODUCTION 3

though providing some candidate matches, may still contain much ambiguity and need

resolution.

Although Facebook once provided a contact import functionality for Gmail users (which

was disabled due to data reciprocity issue between Google and Facebook), the importer only

did simple searching. If one contact’s email address was found in existing Facebook user-

ids, the importer gave the Gmail user a friend recommendation, otherwise sent an email to

invite the contact to join Facebook. It did not utilize any linkage information. Moreover,

the contact owner may have already joined Facebook with its public email address and the

invitation email turns out to be annoying.

The task of finding email correspondents in social networks is important not only for

individual users but also for social networking sites. First, it is a critical functionality to

attract users. If a user can easily find her correspondents in a social network, she may be

better committed into the social network, and more communication traffic between her and

her friends may be migrated to the social network. Second, it is a critical functionality

to integrate multiple messaging channels. This is particularly important for both social

networking and email service providers. For example, there are some add-on applications

that can let Microsoft Outlook users to keep connected with their email correspondents’

Facebook statuses. Finding email correspondents in social networks effectively can help

the integration of multiple messaging channels significantly. Last but not least, finding

email correspondents in a social network is an instance of mapping users in two social

networks, since the email communication network itself indeed is a social network. This is

an interesting and challenging problem for many social network service providers, since an

effective solution to this problem definitely helps those service providers to gain more users

and communication traffic volume.

1.2 Technical Challenges

The main technical challenge of this thesis is the privacy issues. To work on the problem of

finding email correspondents in social networks, data from both emails and social networks

should be ready before algorithms go. Two volunteers provide us their data from emails

and social networks for testing, whose details are in Section 6.1.

For data from emails, volunteers may concern about their information disclosure. They

do not want to completely share their emails, which is understandable. We have to compile

CHAPTER 1. INTRODUCTION 4

program, deliver the program to them, and ask them to run on their machine to preserve

email privacy. In this case, it is nearly impossible to analyze the data in a white box. More-

over, programs have to be built being compatible with different platforms, since volunteers

may prefer different operating systems.

For data from social networks, the online social network websites have certain terms

of use to prohibit crawling unless you apply and get a permission from them. However,

it is very hard to get a permission due to the company policies and their protections on

customers’ privacy as well. In addition, there is no available APIs to retrieve what you want

for this work, such as a given user’s friends lists. For this thesis, we build our own crawler

which can download and parse over 400, 000 pages per day.

1.3 Contributions

The problem of finding email correspondents in social networks has not been carefully and

thoroughly addressed in research. In this thesis, we tackle the problem from a practical

data mining angle, and make several contributions:

1. We model the problem of finding email correspondents in social networks.

2. We develop a practical method, which not only utilizes the similarity between email

accounts and social network user profiles, but also explores the similarity between the

email communication network and the social network.

3. We design a graph vertices mapping algorithms for both directed and undirected

graphs, which significantly outperforms other previously known graph matching algo-

rithms.

4. We evaluate our methods using real data sets. Empirically, we show that only when

both the profile similarity and graph similarity are considered, good accuracy can be

obtained.

1.4 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we formulate the problem and

present our solution framework. Chapter 3, we review the previous studies related to ours

CHAPTER 1. INTRODUCTION 5

briefly. We discuss the profile similarity in Chapter 4, and develop the neighborhood based

similarity and the computation methods in Chapter 5. We report an empirical evaluation

in Chapter 6, and conclude the thesis in Chapter 7.

Chapter 2

Background and Problem

Framework

In this chapter, we first outlines the background for this thesis which contains graph def-

initions and matching problems formulation. Then, we formulate the problem of finding

email correspondents in social networks. Finally, we decompose the problem and present

our solution framework.

2.1 Graphs

In mathematics and computer science, a graph G = (V,E) is an abstract structure of a

set of vertices V and edges E (E ⊆ V × V), where every edge connects two vertices as a

representation of linkage between vertices. To be specific, the set of vertices is on behalf of

a set of objects from a certain collection while the set of edges reflects pairwise relations in

objects.

2.1.1 Graph Preliminaries

For an edge (u, v) where (u, v) ∈ E, the source of the edge is vertex u and the target of

the edge is vertex v. The edges could be either directed or undirected. If the edge (u, v) is

undirected, edge (v, u) also exists in the graph. For one graph, if it only contains undirected

edges, it is undirected graph; otherwise, it is directed graph. To be specific, if one graph

contains both undirected and directed edges, undirected edges (u, v) can be replaced by two

6

CHAPTER 2. BACKGROUND AND PROBLEM FRAMEWORK 7

directed edges (u, v) and (v, u) to preserve directed characteristic. Two example graphs are

shown as blow in Figure 2.1.

a b

cd

(a) An example undirected graph
Gun

a b

cd

(b) An example directed graph Gdi

Figure 2.1: Two example graphs.

2.1.2 Neighbors of Vertices

In undirected graph, a vertex v is the neighbor of u if there is an edge between u and v.

In directed graph, neighbors of a vertex split into in-neighbors and out-neighbors according

to their directions. An edge (v, u) directed from v to u introduces an in-vertex for vertex

u. The in-neighbors of vertex u are the collections of all in-vertices of u. Similarly, we can

define out-vertex and out-neighbors. In Figure 2.1, the neighbors of every vertex of each

example are shown as following tables:

Vertex Neighbors
a b, c, d

b a

c a, d

d a, c

Table 2.1: Neighbors of every vertex in Gun

CHAPTER 2. BACKGROUND AND PROBLEM FRAMEWORK 8

Vertex In-neighbors Out-neighbors
a c, d b, c, d

b a ∅
c a a, d

d a, c a

Table 2.2: Neighbors of every vertex in Gdi

2.1.3 Adjacency Matrices

To represent a graph, in contrast to list all vertices and edges, a convenient and easy way

is to use adjacency matrix. For a graph G = (V,E), if the cardinality of V is n, the graph’s

adjacency matrix M is an n × n matrix in which entry mij = 1 if and only if the edge

(i, j) exists, mij = 0 otherwise. Take Gun and Gdi as examples again, we could get their

adjacency matrices Mun and Mdi as follows:

Mun =















0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0















(2.1)

Mdi =















0 1 1 1

0 0 0 0

1 0 0 0

1 0 1 0















(2.2)

2.1.4 Weighted Graphs

A weighted graph is a graph whose edges are assigned to weighted values. In contrast to

unweighted graph, whose adjacency matrix is filled with 0 and 1, weighted graphs have

weighted adjacency matrices with various values. For a given weighted graph, the entry of

its adjacency matrix mij is equal to the weight of the edge (i, j).

Rather than weighted-edge graph, it is also possible to have weighted-vertices in graph.

However, the weighted vertices is beyond the discussion of this thesis.

CHAPTER 2. BACKGROUND AND PROBLEM FRAMEWORK 9

2.1.5 Bipartite Graphs

A bipartite graph is a graph whose vertices are composed of two disjoint vertex sets such

that there are no inner-connected edges in the graph but only inter-connected edges. In

other words, all edges in bipartite graph connect one vertex of one set to another vertex of

the other set. Figure 2.2(a) shows an example of a bipartite graph Gbi, where no edges exist

inside of the disjoint vertex set {a, b, c} or {d, e, f}.

For a given graph, a matching is a collection of edges such that there are not any two

edges sharing a common vertex. For instance, a matching of Gbi in Figure 2.2(a) can be

{(a, f), (b, d), (c, e)}, {(a, d), (c, e)}, etc. In this thesis, we restrict our matching problem to

bipartite matching problem.

If the given graph is a weighted bipartite graph, one of the most canonical problems

in graph theory is maximum weighted bipartite matching problem. This problem is to find

maximum weighted matching in bipartite graph, which is defined as the matching with the

highest sum of weight of edges. For example, the maximum weighted bipartite matching in

Figure 2.2(b) is {(a, e), (b, f)} with weight sum 3.8.

a

b

c

d

e

f

(a) An example bipartite
graph Gbi

a

b

c

d

e

f

1.9

0.9

2 1

1.8

1

(b) An example weighted bi-
partite graph Gwb

Figure 2.2: Two example bipartite graphs.

CHAPTER 2. BACKGROUND AND PROBLEM FRAMEWORK 10

2.2 Problem Formulation

We consider email communication. For each email account, we assume that there is a

profile. Typically, the profile of an email account in practice contains the email address

and optionally the display name. The email communication can be modeled as an email

network GM (VM , EM), where VM is a set of email accounts, and for two accounts u and v,

(u, v) ∈ EM is an edge if u and v are involved together in at least one email. Here, an email

account u is involved in an email if u is appears in the from, to, or cc fields of the email.

For the sake of simplicity, we consider an email network only as an undirected, unweighted,

simple graph in this thesis.

For an account u ∈ VM , an account v ∈ VM is called an email correspondent, or a

contact, of u if (u, v) ∈ EM . We denote by Cu = {v|(u, v) ∈ EM} the set of u’s contacts.

We also consider a social network GN = (VN , EN) among people, where VN is a set of

accounts in the network, and EN is a set of edges between accounts. Again, for the sake of

simplicity, we assume that GN is an undirected, unweighted, simple graph. Each account in

the social network also has a profile, which contains information like name, email address,

gender, and location. To keep our discussion simple, we assume that each person has at

most one account in a social network. We will discuss how this assumption can be removed

easily in Section 7.

The people in the email graph and those in the social network may overlap. That is,

some people may participate in both networks. Formally, we assume that there exists a

ground truth network G = (V,E), which captures all relationships among all people.

One person has one and only one vertex in the ground truth graph.

Thus, there exists a mapping f : VM → V from the email accounts to their owners, such

that for any email accounts u, v ∈ VM , if (u, v) ∈ EM , then either (f(u), f(v)) ∈ E, i.e.,

u and v are connected in the ground truth network, or f(u) = f(v), i.e., u and v belong

to the same person. The mapping f in general is many-to-one, since one person may have

multiple email addresses.

Analogously, there exists a mapping g : VN → V from the social network accounts to

their owners, such that for any social network accounts u, v ∈ VN , if (u, v) ∈ EN , then

either (f(u), f(v)) ∈ E or f(u) = f(v). It may not be one-to-one, either, since one person

may have multiple social network accounts. In general, the ground truth graph G and the

mappings f and g may not be known.

CHAPTER 2. BACKGROUND AND PROBLEM FRAMEWORK 11

The problem of finding email correspondents in social networks is to find a

mapping h : VM → VN such that for any u ∈ VM and v ∈ VN , h(u) = v if f(u) = g(v).

That is, h maps an email account u to a social network account v if both u and v belong to

the same person. Technically, we define the mapping from VM to VN because the owner of

a social network account may have more than one email account.

To tackle the problem of finding email correspondents in social networks, we need to

assume the email network and the social network being available. However, in many cases

this assumption cannot be met due to the privacy preservation constraint. To make our

study practical, we focus on the personal view version of the problem, which only finds

the mapping h for the set of contacts Cu for a given email account u. By focusing on the

personal view version of the problem, we only have to assume that all emails involving a

given account are available, and only the neighbors of a social network account are searched.

This is practically achievable. The personal view version of the problem does not share the

emails of an account with any other party, and can be run on the user side. Thus, the

privacy of the email account is not breached.

A solution to the personal view version of the problem can be directly employed by email

client tools like Outlook, or email service providers like hotmail and gmail. We also assume

that our method can crawl the neighborhood of an social network user, or part of it. This

assumption is practical since many social networks do allow such crawling in one way or

another.

Straightforwardly, our method can be extended to tackle the general problem of finding

email correspondents in social networks, such as the situation where a social network and

an email provider have some business agreement in place. We will discuss this issue in

Section 7.

In this thesis, instead of computing the mapping h directly, we will develop a top-k

recommendation solution. That is, for each email contact u, we provide up to k social

network accounts that are most likely owned by the email address owner, where k is a

user-specified parameter. This design decision responds to the need and practice in existing

social networking sites where more often than not a user is offered a list of recommendations.

2.3 The Framework of Our Solution

As discussed in Section 2.2, we have two types of information in finding email correspondents.

CHAPTER 2. BACKGROUND AND PROBLEM FRAMEWORK 12

Step 3: integrating email/name similarity and neighborhood based similarity
in the social network

Similarity

The neighborhood graph
of email communication

Step 1: email/name search

somebody@private.com
Richard Pop

Candidate accounts in the social network

Step 2: similarity learning using neighborhood graphs

The neighborhood graph

Figure 2.3: The framework of our approach.

Profile information. We have the profiles in both the email network and the social net-

work. Therefore, we can match the email accounts and social network accounts ac-

cording to the profile information. We call this the profile matching problem,

which will be discussed in Chapter 4.

Graph information. We have the email network and the social network themselves as

graphs. Heuristically, if two persons communicate well by email, they may have a

good chance to be connected in a social network. Thus, we can compare the email

graph and the social network graph to identify possible matching. We call this the

graph matching problem, which will be discussed in Chapter 5.

Overall, we should integrate the results obtained from the two aspects. Thus, the frame-

work of our method has two steps, as illustrated in Figure 2.3.

1. Profile-based similarity search. For each contact whose social network account u

to be found, we search the social network using u’s email account profile information,

such as the email address and display name. Here, we assume that the social network

GN provides a search function. This step is built directly on the existing services

available in many social networks. For each candidate returned by the social network

search function, we calculate a similarity score between the contact and the possible

match, which is called the profile similarity.

CHAPTER 2. BACKGROUND AND PROBLEM FRAMEWORK 13

2. Graph-based similarity search. We extract the email communication graph of

the contacts and the neighborhood subgraph of the possible matches obtained in the

first step. Then, we compare the two graphs and derive a graph similarity between a

contact and each possible match.

3. Integration. In the last step, we integrate the two similarity scores and recommend

for each contact a ranked list of possible matches in the social network.

Chapter 3

Related Work

In general, our study is related to the existing work on email mining, string similarity

measures, and graph matching. Limited by space, we only review the related work briefly

in this section. A thorough review is far beyond the capacity of this thesis.

3.1 Email Mining

Email is one of the most popular communication ways nowadays. Emails and the email

communication networks carry both the text messages people pass on to each other and the

implicit social information, such as the email account owner’s friends and the topics they

often discussed.

Many techniques have been used in email mining. For example, Pal [24] and Carvalho et

al. [6] applied clustering, natural language processing and text mining techniques to group

email recipients. Balamurugan et al. [2] and Sahami et al. [27] used classification methods

to detect spam emails.

Many applications have been developed based on email mining. For example, Roth et

al. [26] suggested friends based on an implicit social graph built on email senders, receivers

and interactions. Their study led to two interesting Gmail Labs features. The first one

suggests to a user contacts for the “To:” field once she inputs more than two receivers in

that field. The other function detects whether there is any current recipients entered by

the user can be replaced by a more related contact. As another example, in the context

of a “personal email social network” on people’s email accounts, Yoo et al. [34] tackled

the email overloading problem using the importance of email messages according to the

14

CHAPTER 3. RELATED WORK 15

email senders’ priorities. A sender’s priority is calculated based on three features: the social

clusters that the sender belongs to in the social network, the social importance that is the

sender’s centrality level in the social network, and the importance propagation level in the

range from 1 to 5.

Most of the previous studies on email mining focus on emails themselves, such as mining

email elements like senders, receivers, and textual contents. Different from those studies,

our study is on a novel problem, mapping email correspondents and social network accounts.

3.2 String Similarity Measure

Measuring similarity between strings is a well studied problem and a widely used technique in

information retrieval. Many methods have been proposed to capture the similarities between

strings. For example, the Hamming distance [14] counts the total number of different

characters between two equal length strings. The Jaccard similarity coefficient [25] is given

by the size of the intersection over the size of the union of two sets. It can be extended to

strings. The Dice similarity [10] and the overlap similarity [22] are related to the Jaccard

similarity coefficient.

Many applications use one measure or a combination of multiple measures to decide the

similarity between strings or documents. For example, Michelson et al. [23] employed a score

that combines the Jaro-Winkler similarity [33], the Jaccard similarity [25] and some others

to determine the best candidate from a collection of reference sets matching a post that is

essentially a piece of text. Cohen et al. [8] compared the performance of different string

similarities and their possible combinations for the task of matching names and records,

including the Jaccard similarity, the Jaro-Winkler similarity, the Jaro similarity [18], and

some others. Elmagarmid et al. [12] surveyed different types of string similarity measures

on strings when they are applied to duplicate record detection.

In our study, we adopt two similarity measures for strings based on the nature of our

problem. We use their combinations in matching profiles.

3.3 Graph Matching

As a fundamental problem in pattern recognition, graph matching [5] has numerous ap-

plications in various areas, such as web search, semantic networks, computer vision, and

CHAPTER 3. RELATED WORK 16

biological networks. There are a wide spectrum of graph matching algorithms with different

characteristics. Bunke [4] presented a systematic survey.

Cordella et al. [9] and Ullmann et al. [30] proposed subgraph matching algorithms based

on tree search. Almohamad et al. [1] suggested a linear programming approach to the

weighted graph matching problem. Van Wyk et al. [31] presented a graph matching algo-

rithm from the functional interpolation theory point of view.

3.3.1 HITS and Iteration Framework

Kleinberg et al. [19] used an iterative method to update hub and authority scores to

identifies good authorities and hubs of a topic for web searching which provided a general

framework for iterative computing scores of vertices.

The motivation of Kleinberg’s Hypertext Induced Topic Selection (HITS) is to find the

high quality search results for queries. Traditional text-based search engines rank pages

based on the query’s appearing frequency which always fail to find most relevant pages for

a given query. Consider the query SFU, its most authoritative page should be www.sfu.ca.

However, the page of www.sfu.ca is not the one that uses SFU most often, and may not

be favored by traditional text-based search engines.

root

base

Figure 3.1: Expanding the root page set into a base page set [19].

CHAPTER 3. RELATED WORK 17

Instead of global approaches which involve all pages and may contain millions of pages,

Kleinberg proposed a local approach that only contain relatively small size of pages which

are however rich in relevant pages. To get the base pages set, a collection of pages for

authority and hub scores computation, Kleinberg collect the text-based search engine’s top-

t highest ranking pages for the query σ, which compose the page set root as shown in Figure

3.1 (figure is from [19]). Then a number of neighbors of every page in root page set is fetched

and added into base page set. The workflow of expanding the root pages set to the base

page set is shown in Algorithm 1 [19]:

Algorithm 1 Get Base (σ,t,d)

σ : a query
t, d : natural number parameters
Rσ ← the top-t results of the text-based search engine on σ

Bσ ← Rσ

for each page p ∈ Rσ do
Γ+(p)← the set of all pages p points to
Γ−(p)← the set of all pages pointing to p

Bσ ← Bσ ∪ Γ+(p)
end for
if |Γ−(p)| ≤ d then
Bσ ← Bσ ∪ Γ−(p)

else
Bσ ← Bσ∪ an arbitrary set of d pages from Γ−(p)

end if
return Bσ

For each page in the base page set Bσ, it is associated with two non-negative scores,

authority score and hub score. The initial values for all scores are 1. Kleinberg uses a

formula to update these two scores until they are stable:

authority score(p) ←
∑

(q,p)∈E

hub score(q)

hub score(p) ←
∑

(p,q)∈E

authority score(q)

That is, authority scores will be transferred along edges to update correspond-

ing hub scores while hub scores are transferred along edges reversely to update cor-

responding authority score. Each run finishes, these two scores are normalized to

CHAPTER 3. RELATED WORK 18

∑

p∈Bσ
(authority score(p))2 = 1,

∑

p∈Bσ
(hub score(p))2 = 1. The larger the scores are,

the “better” the authorities and hub are respectively.

Kleinberg also proved that the authority and hub scores can always converge if they are

initially assigned to 1.

3.3.2 Vincent D. Blondel, et al. , 2004

Based on the intuition of two vertices in different graphs are “similar” if the vertices in their

neighborhoods are “similar”. Blondel et al. [3] introduced a similarity measure of vertices

between directed graphs, which is a generalization of Kleinberg’s HITS algorithm.

Similar as Kleinberg’s authority and hub scores updating, Blondel proposed his similarity

updating equations as Equation 3.1 [3]:

simij ←
∑

(r,i)∈EB ,(s,j)∈EA

simrs +
∑

(i,r)∈EB ,(j,s)∈EA

simrs (3.1)

That is, if vertex i and j are pointing to r and s respectively, the similarity between r

and s will be taken into account for the similarity between i and j at the next round. The

similar situation happens for the vertices pointed by i and j.

Two directed graphs GA and GB can be presented by adjacency matrices A and B

respectively. The number of vertices of GA is nA, and nB for GB . Blondel defines an nA×nB

matrix S to represent the similarity of every vertex pair between GA and GB . Then the

previous equation can be written into a compact matrix form as shown in Equation 3.2.

X ← BXAT +BTXA, (3.2)

where all entries of the similarity matrix X are initialized to 1. A stable similarity matrix

can be obtained by a limited number of iterations of updating the equation. Extensions of

this measurement have been proposed with emphasis in different aspects.

More precisely, Blondel’s algorithm for measuring the similarity between graph vertices

is shown in Algorithm 2:

In Algorithm 2, the matrix norm || · ||F is the Euclidean or Frobenius norm which is

equal to the square root of the sum of all squared entries. Additionally, Blondel proved that

the subsequences X2k and X2k+1 converge to Zeven and Zodd.

Figure 3.2 shows an example of two graphs GA, GB [3]. And their similarity matrix is

shown in Equation 3.3 [3].

CHAPTER 3. RELATED WORK 19

Algorithm 2 Get Similarity Matrices of Graphs

X0 ← 1
Iterate an even number of times

Xk+1 =
BXkA

T +BTZkA

||BXkAT +BTZkA||F
and stop upon convergence

return the last value of Xk

1

2

3

4

1

2

34

5

6

Figure 3.2: Two graphs GA and GB for vertices similarity computation [3]

























0.2636 0.2786 0.2723 0.1289

0.1286 0.1286 0.0624 0.1268

0.2904 0.3115 0.2825 0.1667

0.1540 0.1701 0.2462 0

0.0634 0.0759 0.1018 0

0.3038 0.3011 0.2532 0.1999

























(3.3)

Blondel connects his updating formula with classical power method to compute the

principle eigenvector of a matrix:

vec(BXAT) = (A⊗B)vec(X),

where vec is the matrix-to-vector operator which transforms a matrix into a vector by taking

its columns one by one, and ⊗ is the Kronecker product:

vec(A) = [a11, ..., am1, a12, ..., am2, ..., a1n, ..., amn]
T

CHAPTER 3. RELATED WORK 20

A⊗B =

















































a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q

a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q
...

...
. . .

...
...

...
. . .

...

a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...

am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q

am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q
...

...
. . .

...
...

...
. . .

...

am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq

















































(3.4)

Therefore, the updating formula can be rewritten as

vec(X) ← (A⊗B +AT ⊗BT)vec(X).

If we use x = vec(X) and M = (A⊗B+AT ⊗BT), the graph vertices similarity updating

formula is shown in Equation 3.5 if normalization also applies.

x←
Mx

||Mx||F
(3.5)

Thus, Equation 3.5 is a matrix analogue to how to compute the eigenvector of the Matrix

M by using classical power method [16]. Therefore, if x0 = 1 which is not orthogonal to

the principal eigenvector of M (otherwise the principal eigenvector is 0), Mx
||Mx||F

converges

to the principal eigenvector [16].

3.3.3 M. Heymans and A.K. Singh, 2003

From the vertex’s point of view, in addition to the similarity of the connected neighborhoods,

Heymans et al. [15] considered positive flows from the not connected neighborhood and

penalty flows from the “mismatched” neighborhood as well. These additional positive flows

and penalties can be directly added on the Equation 3.1, thus Heymans’s updating formula

CHAPTER 3. RELATED WORK 21

is obtained as shown in Equation 3.6

simij ←
∑

(r,i)∈EB ,(s,j)∈EA

simrs +
∑

(i,r)∈EB,(j,s)∈EA

simrs

+
∑

(r,i)/∈EB,(s,j)/∈EA

simrs +
∑

(i,r)/∈EB,(j,s)/∈EA

simrs

−
∑

(r,i)∈EB ,(s,j)/∈EA

simrs +
∑

(i,r)∈EB,(j,s)/∈EA

simrs

−
∑

(r,i)/∈EB,(s,j)∈EA

simrs +
∑

(i,r)/∈EB,(j,s)∈EA

simrs

(3.6)

By using matrix form, the updating equation can be rewritten into a more compact

form. Let IB denote the matrix of all ones with the same dimension as B. The similarity

matrix X is computed as [35]:

X ← BXAT +BTXA (3.7)

+ (IB −B)X(IA −A)T + (IB −B)TX(IA −A) (3.8)

− BX(IA −A)T −BTX(IA −A) (3.9)

− (IB −B)XAT − (IB −B)TXA (3.10)

Equation 3.7 adds the scores from the connected neighbors, which is the same as Equation

3.2 in [3]; Equation 3.8 adds the scores from the not connected neighbors; Equation 3.9

subtracts the score from the mismatched neighbors such that vertex r is mismatched to s if

r is the neighbor of i but s isn’t such a case for j; Equation 3.10 subtracts the score from

the mismatched neighbors similar to Equation 3.9 [35].

This complement updating method for vertices similarity also converges. When applying

vectorization to the similarity matrix X, the updating equation is [35]:

vec(X) ← (A⊗B +AT ⊗BT + (IA −A)⊗ (IB −B) + (IA −A)T ⊗ (IB −BT)

−(IA −A)⊗B − (IA −A)T ⊗BT −A⊗ (IB −B)−AT ⊗ (IB −B)T)vec(X).

3.3.4 L.A. Zager and G.C. Verghese, 2008

From the edge’s point of view, Zager et al. [36] brought forward a “vertex-edge” score.

Before this work, all of the iterative methods to calculate the similarity between graph

CHAPTER 3. RELATED WORK 22

vertices only include node similarity. Zager is the first one who consider the similarity of

edges in iterative graph similarity framework.

Similar as nodes, two edges are considered to be “similar” if their starting and ending

vertices are “similar”, respectively. Let yij denote the similarity between edge i in Graph A

and j in B, and let s(i) and e(i) denote the starting and ending vertices of edge i respectively.

The updating equation for similarities of vertices and edges take the following form as shown

in Equation 3.11 [36].

yij ← xs(i)s(j) + xe(i)e(j)

xij ←
∑

e(k)=i,e(l)=j

ykl +
∑

s(k)=i,s(l)=j

ykl (3.11)

In [35], Zager also gives the matrix form of the linear iterative updating framework

between vertex similarity and edge similarity:

Y ← BT
SXAS +BT

TXAT

X ← BSY AT
S +BTY AT

T ,

where X is still the vertex similarity matrix, Y is the edge similarity matrix, AS is the edge-

source matrix of graph A, and AT is the edge-terminus matrix of graph A. If expanding the

coupled X and Y updating formulations, X turns out to be irrelative to edges [35]:

X ← BXAT +BTXA

+ DBS
XDAS

+DBT
XDAT

,

where DBS
/DBT

is the diagonal matrix with the i-th diagonal entry equal to vertex i’s

out-degree/in-degree.

3.3.5 Summary of Existing Iterative Methods on Subgraph Matching

Many applications use graph matching. For example, Blondel et al. [3] used a similarity

score to extract synonyms automatically. Le Saux et al. [28] proposed a graph matching

based classifier for image processing.

Unluckily, these existing Iterative methods on subgraph matching could only be applied

on directed graphs, and they also assign very high similarity scores to vertices of high

degree [7]. If we applied Blondel’s method [3] on undirected graph, the similarity matrix X

will converges to a matrix of rank 1 which violates the truth.

CHAPTER 3. RELATED WORK 23

The idea of graph similarity in this thesis is inspired by [19, 3, 15]. In Chapter 5, We

develop a fuzz Jaccard approach for subgraph matching problems, which not only outper-

forms existing methods, but also is applicable to undirected graph. Later, we tackle the

computation problem, and apply graph matching on social network mapping.

Chapter 4

Profile Matching

We discuss the profile matching problem in this chapter. To measure the similarity be-

tween an email contact’s profile and a social network account’s profile, we can calculate the

similarity based on the names and the email addresses of the two profiles. As names and

email addresses are typically text strings, this can be achieved by adopting some existing

similarity measures on strings.

4.1 The Two String Similarity Measures

In our study, user names and email addresses are often short strings. There are two kinds

of similarity that we need to capture: the similarity of two strings without considering the

possible substring relation, and a string is similar to a substring of the other string. We

consider two popularly used measures, namely the Jaro-Winkler similarity, and the overlap

similarity to address those two situations, respectively.

4.1.1 Jaro-Winkler String Similarity

The Jaro-Winkler similarity [33] is a similarity measure good for short strings. It is widely

used in record linkage and duplicate detection.

For a string s, denote by s[i] (i > 0) the i-th character in s. Consider two strings s1

and s2. Two characters s1[i] and s2[j] are regarded matched if s1[i] = s2[j] and |i − j| ≤
⌊

max(|s1|,|s2|)
2

⌋

− 1. Let m be the number of matching characters between s1 and s2. Let s
′
1

(s′2) be the list of matched characters in s1 (s2) in the sequence order of s1 (s2). Apparently,

24

CHAPTER 4. PROFILE MATCHING 25

s′1 and s′2 have the same length m. The number of transpositions t is the number of

positions i such that s′1[i] 6= s′2[i] (1 ≤ i ≤ m) divided by 2, rounding down. Then, the Jaro

distance [18] is defined as

JaroScore(s1, s2) =
1

3

(

m

|s1|
+

m

|s2|
+

m− t

m

)

.

The Jaro-Winkler similarity is a variant of the Jaro distance, which favors strings sharing

a common prefix. Specifically, the Jaro-Winkler similarity is defined as

JWScore(s1, s2) = JaroScore(s1, s2)

+(l · p · (1− JaroScore(s1, s2))),

where l is the length of the common prefix between s1 and s2, up to a maximum of 4,

and p is a scaling factor that determines the amount of adjustment towards the common

prefixes. Typically, p is set to 0.1.

It is easy to see that the Jaro-Winkler similarity is normalized. A similarity value of 0

means no similarity at all, and a value of 1 means an exact match.

Example 3 (Jaro-Winkler similarity) Consider two strings “martha” and “marhta”.

We have

JaroScore(martha, marhta) =
1

3
×

(

6

6
+

6

6
+

6− 1

6

)

= 0.944 ,

and

JWScore(martha, marhta) = 0.944 + (3× 0.1× (1− 0.944)) = 0.961

We consider the Jaro-Winkler similarity because it has been shown effective in detecting

duplicate or almost duplicate names in record linkage. We also empirically test some other

similarity measures for this purpose, such as the string version of the Dice similarity [10].

Their effectiveness on the real data sets are close to but weaker than that of Jaro-Winkler

similarity.

4.1.2 Overlap String Similarity

The overlap similarity [22] is a commonly used string similarity measure. It returns a high

score when one string is the substring of the other one.

CHAPTER 4. PROFILE MATCHING 26

In email systems and social networks, people sometimes only register their first names or

last names as usernames. In such kind of case, overlap similarity can capture the “subname”

feature.

Technically, given two strings s1 and s2, the overlap similarity is defined as

OvlpScore(s1, s2) =
|bigram(s1) ∩ bigram(s2)|

min(|bigram(s1)|, |bigram(s2)|)
,

where for a string s, bigram(s) = {s[i]s[i+ 1]|1 ≤ i < |s|} is the set of bigrams [20] in s.

Example 4 (Overlap similarity) Consider strings “marh” and “marhta”. It can be ver-

ified that

OvlpScore(marh, marhta) =
|{ma, ar, rt, th} ∩ {ma, ar, rh, ht, ta}|

min(|{ma, ar, rt, th}|, |{ma, ar, rh, ht, ta}|)

=
4

min(4, 6)
= 1.00

The overlap similarity ranges from 0 to 1. The value is 0 if two strings are not similar

at all; while the value is 1 if either two strings are identical or one string is a substring

of the other one. We consider the overlap similarity because it is capable of capturing the

similarity between a string and its substrings.

4.2 Integrating the Two String Similarity Measures

The two similarity measures have different strengths. In our method, we integrate them

by affine combination to achieve a profile similarity score. Please note that both similarity

measures are in the range of 0 to 1, and the larger the similarity value, the more similar two

strings are.

We define the profile similarity between two strings s1 and s2, which can both be

email addresses, display names, or any other corresponding attributes in email and social

network profiles, as

ProfSim(s1, s2) = α · JWScore(s1, s2)

+(1− α) · OvlpScore(s1, s2),
(4.1)

where 0 ≤ α ≤ 1. We learn the parameter value for α empirically using a set of training

data, as described in Chapter 6. In the experiment, we iterate α from a range of 0 to 1 with

a step of 0.1.

Chapter 5

Graph Matching

Profile matching can identify email correspondents in a social network only if the correspon-

dents provide the same or very similar information in both the email and social network

profiles. If a correspondent uses a different email address and/or name in the profiles, profile

matching may not work.

In this section, we explore the graph matching approach to identifying email correspon-

dents in a social network. We first present a universal connection heuristic. Then, we

formulate the graph matching problem, present our approach with the proof of the conver-

gence of our method, and integrate our graph matching approach with the profile matching

approach.

5.1 The Universal Connection Heuristic

Heuristically, if two persons communicate well by email, likely they may be connected in a

social network, and vice versa. We call this the universal connection heuristic.

Example 5 (The universal connection heuristic) Consider our motivation example

in Figure 1.1 again. Suppose Doe and Cathy in the email network are matched with Doe

and Kathy in the social network by profile matching.

By searching the neighbors in the social network (Figure 1.1(b)), we can find out that

Doe and Kathy have a common neighbor “Super gamer”. Interestingly, Doe and Cathy in

the email network (Figure 1.1(a)) also have a common neighbor, “William”. Heuristically,

“William” in the email network and “Super gamer” in the social network may belong to the

27

CHAPTER 5. GRAPH MATCHING 28

same person. In other words, we may map email correspondent “William” to social network

account “Super gamer”.

According to the universal connection heuristic, comparing the email network and the

social network may provide us some hints in finding email correspondents in the social

network.

5.2 The Graph Matching Problem

Using all emails sent by and to a given user u, we can obtain the set of u’s contacts.

Moreover, by analyzing the sent-to and cc fields of the emails, we can build connections

between u’s contacts. The u’s email contact graph is a graph Gu = (Cu, Eu), where Cu

is the set of u’s contacts, and (v1, v2) ∈ Eu if (1) v1 = u or v2 = u; or (2) there is an email

sent by or to u where both v1 and v2 are recipients. Here, an email address is a recipient if

the address is listed in either the sent-to field or the cc field.

For email address u and all of u’s contacts, we search the social network GN using

their profiles, and obtain a set of social network accounts VCu that are possible matches. By

visiting the pages of those accounts, we can also know their friends in the social network. Let

Vu = VCu ∪ {v|v is a friend of w,w ∈ VCu} be the set of accounts in the social network that

are either possible matches of u and u’s contacts, or their friends in the social network. We

can construct a social network subgraph SNu = (Vu, Eu) on Vu such that for v1, v2 ∈ Vu,

(v1, v2) ∈ Eu if v1 and v2 are friends in the social network, i.e., (v1, v2) ∈ GN , and at least

one of v1 and v2 is in VCu .

Now, the problem of finding email correspondents using graph matching is to find, for

each email address v ∈ Cu, the social network accounts in Vu that most likely belong to the

owner of v.

One may think that we can find some isomorphic subgraphs between Gu and SNu to

solve the problem. However, this is infeasible in practice, since it is not necessary that two

persons exchanging emails are also connected in the social network, or vice versa. A method

based on isomorphic subgraphs assumes a too strong assumption of the completeness and

consistency of the information in the email contact graph and the social network.

Under the universal connection heuristic, a vertex v1 in Gu and a vertex v2 in SNu are

similar if many neighbors of v1 in Gu can find similar peers in the neighbors of v2 in SNu,

and vice versa. We formulate this idea as follows.

CHAPTER 5. GRAPH MATCHING 29

Let S be a |Cu|×|Vu| matrix such that sv,w is the graph matching similarity between

vertex v ∈ Cu and w ∈ Vu. Initially, we set

S(0) =















1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1















(5.1)

Let A and B be the adjacency matrices of graphs Gu and SNu, respectively. Let fiter

be a function that refines the graph matching similarity. Then, we iteratively evaluate S by

S(i+1) = fiter(A,B, S(i)) (5.2)

The iteration continues until the graph matching similarity matrix converges.

The similar framework of evaluating a similarity matrix has been used in may previous

studies. For example, Blondel et al. [3] used S(i+1) = AS(i)B. This method is simple.

However, it assigns very high similarity scores to vertices of high degree [7]. In addition,

the method can only be applied to directed graphs. In the case of undirected graphs, the

similarity matrix S converges to be a matrix of rank 1. That is, S+∞ = I · JT where I and

J are both column vectors. Clearly, it cannot be used to solve our problem. Next, we will

develop a function fiter for our problem.

5.3 Computing Graph Matching Similarity

Fuzzy Jaccard similarity [32] can measure the similarity between two disjoint sets of vertices

in a graph. For two disjoint sets of vertices T1 and T2 in a graph, the fuzzy Jaccard

similarity is defined as

FJ(T1, T2) =
FIT1,T2

|T1|+ |T2| − FIT1,T2

(5.3)

Here, Fuzzy Intersection (FI) is a value determined by the maximum weighted bipartite

matching between T1 and T2. Let m be any bipartite matching and define m(x, y) = 1 if

and only if (x, y) is covered by m or m(x, y) = 0 otherwise. The fuzzy intersection can thus

be computed as

FIT1,T2 =
∑

x∈T1,y∈T2

weight(x, y)M(x, y),

CHAPTER 5. GRAPH MATCHING 30

where weight(x, y) is the weight of edge (x, y) and M is the maximum weighted bipartite

matching, or

M = argmax
m

∑

x∈T1,y∈T2

weight(x, y)m(x, y)

Let weight(x, y) be the similarity score between vertex x and y, that is, weight(x, y) =

sx,y. Since sx,y ∈ [0, 1], we have 0 ≤ FIT1,T2 ≤ min(|T1|, |T2|).

We can rewrite Equation 5.3 as

FJ(T1, T2) =

∑

x∈T1,y∈T2

sx,yM(x, y)

|T1|+ |T2| −
∑

x∈T1,y∈T2

sx,yM(x, y)
(5.4)

The range of FJ(T1, T2) is [0, 1].

Heuristically, two vertices are similar if their neighbors are similar. Therefore, an in-

tuitive solution to measure the similarity of two vertices is to compute the fuzzy Jaccard

similarity of their neighbors. Formally, let N(v) and N(w) be the sets of neighbors of ver-

tices v and w respectively. Using Equation 5.4, we can define the similarity of vertices sv,w

as

sv,w = FJ(N(v), N(w))

=

∑

x∈N(v),y∈N(w)

sx,yM(x, y)

|N(v)| + |N(w)| −
∑

x∈N(v),y∈N(w)

sx,yM(x, y)
(5.5)

In each iteration, we apply Equation 5.5 to update each entry of the similarity matrix.

We rewrite Equation 5.5 into an iterative form.

si+1
v,w = FJ i(N(v), N(w))

=

∑

x∈N(v),y∈N(w)

six,yM
i
v,w(x,y)

|N(v)|+|N(w)|−
∑

x∈N(v),y∈N(w)

six,yM
i
v,w(x,y)

, (5.6)

whereM i
v,w(·) denotes the maximum weighted bipartite matching between the neighbor sets

of vertices v and w at the ith iteration. M i
v,w(x, y) = 1 if edge (x, y) is in the maximum

matching, and 0 otherwise. We prove that our iterative method converges.

Theorem 1 (Convergence) Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. For

each vertex pair (v,w), v ∈ V1, w ∈ V2, the sequence {siv,w} (i = 1, 2, . . .) converges.

CHAPTER 5. GRAPH MATCHING 31

Proof We show by induction that the sequence {siv,w} is non-increasing.

Basis. According to Equation 5.1, s0v,w = 1. In the 1st iteration, the value of

maximum weighted bipartite matching for pair (v,w) equals the smaller size of neighbor

sets of v and w, since the initial similarity of every two vertices is 1. Thus, we have

s1v,w = min(|N(v)|,|N(w)|)
max(|N(v)|,|N(w)|) ≤ 1 = s0v,w.

Inductive step. Assume that the sequence (siv,w)
k
i=0 is non-increasing. In other words,

skx,y ≤ sk−1
x,y for any pair (x, y). Then, we have

∑

x∈N(v),y∈N(w)

skx,yM
k
v,w(x, y) ≤

∑

x∈N(v),y∈N(w)

sk−1
x,y Mk

v,w(x, y) (5.7)

Since Mk−1
v,w (·) is the maximum weighted matching in the (k − 1)th iteration, for any

matching mv,w(·),

∑

x∈N(v),y∈N(w)

sk−1
x,y mv,w(x, y) ≤

∑

x∈N(v),y∈N(w)

sk−1
x,y Mk−1

v,w (x, y)

Consequently, we have

∑

x∈N(v),y∈N(w)

sk−1
x,y Mk

v,w(x, y) ≤
∑

x∈N(v),y∈N(w)

sk−1
x,y Mk−1

v,w (x, y) (5.8)

Combining Equations 5.7 and 5.8, we have

sk+1
v,w =

∑

x∈N(v),y∈N(w)

skx,yM
k
v,w(x, y)

≤
∑

x∈N(v),y∈N(w)

sk−1
x,y Mk−1

v,w (x, y) = skv,w.

Apparently, siv,w ≥ 0 for any i > 0. Therefore, the non-increasing sequence {siv,w} has a

lower bound 0. Thus, the sequence converges.

Theorem 1 shows the correctness of our graph matching method. For the sake of effi-

ciency, we conduct iterations until the changes in the graph matching similarity matrix are

all smaller than a user-specified threshold ǫ > 0 in the last iteration.

5.4 Enhancing Graph Matching Similarity

Equation 5.6 only considers the neighbors. To be more accurate, we borrow a similar idea

from Heymans et al. [15], where the remaining vertices other than the neighbors are also

CHAPTER 5. GRAPH MATCHING 32

taken into account in the similarity computation. More generally, we consider a directed

graph G where each vertex j ∈ G has an in-neighbors set N(j, in) and an out-neighbors

set N(j, out). Let Ñ(j, in) and Ñ(j, out) be the complement set of N(j, in) and N(j, out),

respectively. The enhanced vertices similarity can thus be computed by the following equa-

tion

ṡi+1
v,w =

1

4
(FJ i(N(v, in), N(w, in)) + FJ i(N(v, out), N(w, out))

+FJ i(Ñ(v, in), Ñ (w, in)) + FJ i(Ñ(v, out), Ñ(w, out))

−FJ i(Ñ(v, in), N(w, out))− FJ i(N(v, in), Ñ(w, out))

−FJ i(Ñ(v, out), N(w, in))− FJ i(N(v, out), Ñ (w, in))) (5.9)

Since FJ has value from 0 to 1, our enhanced fuzzy Jaccard similarity has value from

−1 to 1. In our graph matching similarity problem, the higher the similarity value between

two vertices, the more similar they are.

For undirected graph, there is no difference between in-neighbors and out-neighbors for

a given vertex. Formally, let Ñ(j) be the complement set of N(j), that is,

Ñ(j) ∪N(j) = V ∀G(V,E), ∀j ∈ V

Ñ(j) ∩N(j) = ∅ ∀G(V,E), ∀j ∈ V

The enhanced vertices similarity (undirected version) can thus be computed by the

following equation

ṡi+1
v,w =

1

2
(FJ i(N(v), N(w))

+FJ i(Ñ(v), Ñ (w))

−FJ i(Ñ(v), N(w))

−FJ i(N(v), Ñ (w))) (5.10)

Here, common not-connections provide positive score as well as common connections

(neighbors), but mismatched neighbors are penalizing the similarity score instead of “ab-

stentions” in Equation 5.6. Since the range of FJ(·) is [0, 1], our enhanced fuzzy Jaccard

similarity (undirected version) has value from −1 to 1.

CHAPTER 5. GRAPH MATCHING 33

5.5 Integrating Profile Similarity and Graph Matching Sim-

ilarity

The profile similarity and the graph matching similarity capture different characteristics

of email and social network accounts. To take the advantages of both, we use the affine

combination of the two similarity scores. Formally, for email account v and a social network

account w, the overall similarity between them is calculated by

Simi(v,w) = γProfSim(v,w) + (1− γ)siv,w, (5.11)

where siv,w is the graph matching similarity between v and w, and 0 ≤ γ ≤ 1, and Sim is

also a |Cu| × |Vu| matrix of the same size as S (in Section 5.2). As the postprocessing, we

normalize the graph matching similarity matrix such that for each row in S, the sum of the

squared similarity scores equals 1. We learn the parameter value for γ empirically using a

set of training data, as discussed in Chapter 6.

Chapter 6

Experimental Results

In this section, we report an empirical study of our methods on two real data sets. We

first describe how the real data sets were collected, and how the evaluation was conducted.

Then, we report the effectiveness of profile matching and graph matching as well as their

combinations.

6.1 Real Data Set Preparation

To test our methods, we need both email data and social network data about individuals. It

is very difficult to obtain such data. Since there are not sufficient and well accepted statistics

about such data, synthetic data generated based on some simple probabilistic models may

not approach the reality, and thus may not be reliable.

Luckily, two volunteers agreed to let us test our methods on their email and Facebook

data. Under the agreement, the two volunteers have to be kept anonymous all the time, and

no details about their specific communication or friends can be disclosed. Only aggregate

statistics can be reported in this thesis. These two volunteers know each other, but they

only share less than 30 email contacts. In other words, they do not have a heavy overlap in

their friends.

We call the two volunteers A and B hereafter. For each volunteer, we downloaded all her

emails and constructed an email network by creating a vertex for any contact and linking

two contacts by an edge if the two contacts are involved in an email. For each contact, we

used both the email address and the display name (if available) as the profile information.

The email contacts owned by A and B are also in the email networks. We also need to find

34

CHAPTER 6. EXPERIMENTAL RESULTS 35

a match for them.

To construct the social network for each volunteer, we used the emails of the contacts

to search Facebook. If no exact match was returned, we used the display names to search

again, and obtained the candidate matches. We only used the Facebook accounts of such

candidates, since the search results may contain Facebook pages that have no specific users

behind. Moreover, some popular names may return hundreds or even thousands of Facebook

accounts. In such cases, we selected the first 50 of them. We then connected all returned

accounts if they have friendship relationship by visiting their personal Facebook pages. In

the rest of this section, we call the social network formed as such the Facebook network.

Note that the Facebook network graph may not be a connected graph.

The statistics of the two data sets, denoted by DA and DB , respectively, are summarized

in Table 6.1. While the social networks contain the possible candidate matches returned

from searching Facebook using the display names, the common vertices (VM ∩ VN) and

the common edges (EM ∩ EN) were calculated according to the ground truth provided

by the volunteers. The statistics show that the a non-trivial percentage of one’s email

correspondents appear in the Facebook networks (18.66% for A and 45.58% for B), but

only a relatively smaller portion of email correspondents are also connected in the Facebook

networks (1.33% for DA and 15.73% for DB). This observation also demonstrates the task

of finding email correspondents in social networks is meaningful.

Email network Social network
|VM | |EM | |VN | |EN | |VM ∩ VN | |EM ∩ EN |

DA 2439 180524 7575 440325 455 2392
DB 452 4676 11176 566491 206 736

Table 6.1: The statistics of the two real data sets.

6.2 Evaluation Method

We evaluated the effectiveness of profile matching, graph matching, and their combination.

On each data set, we computed the similarity between an email contact in the email network

and a Facebook account in the Facebook network using the matching method under test.

For each email account that there is a corresponding Facebook account in the Facebook

network, determined by the corresponding volunteer, we used the top-k Facebook accounts

CHAPTER 6. EXPERIMENTAL RESULTS 36

in similarity as the matching result, where k is called the answer set size. If the top-k

results contain the correct Facebook account, the matching is counted successful.

The matching accuracy is thus defined as the percentage of successful matchings. We

do not consider the matching recall since the ground truth is incomplete. We report the

matching accuracy with respect to various answer set size (k).

One challenge in evaluation is that even the volunteers do not know the complete ground

truth. In other words, the volunteers do not know exactly whether their email contacts have

Facebook accounts or not. The volunteers only can determine whether whether a Facebook

account belongs to an email contact based on the Facebook personal page. Consequently,

we cannot measure the recall of any methods.

All our experiments were conducted on an Apple Macbook Pro computer with a 2.4

GHz Intel Core 2 Duo CPU, 4 GB of 1066 MHz DDR3 SDRAM main memory, running the

64 bit Mac OS X v10.6 Snow Leopard operating system. Our programs were implemented

in C++. By default, we set ǫ = 10−5 as the termination condition in our iterative method.

6.3 Effectiveness of Profile Matching

In this section, we report the evaluation results of profile matching. There are many string

similarity measures that may be used for profile matching. This section by no means tries

to evaluate all or the best string similarity measures for our problem. As discussed in

Chapter 4, we use the Jaro-Winkler similarity and the overlap similarity to address the

similarity between two independent strings and that between a string and its substrings,

respectively. The evaluation here is to understand whether the two similarity measures

complement each other, and how the two can be integrated to form a profile similarity

measure.

Figure 6.1 shows the matching accuracy of the two similarity measures with respect to

various answer set size on the two real data sets. On both data sets, the Jaro-Winkler

similarity outperforms the overlap similarity when the answer set size ranges from 1 to 5.

The accuracy of both methods are low, less than 30% on both data set even when the answer

set size k = 5. This clearly illustrates that profile matching only is insufficient in tackling

the problem of finding email correspondents in social networks.

To understand how much the two similarity measures complement each other, Figure 6.2

shows the Jaccard coefficient on the matching results of the two similarity measures. The

CHAPTER 6. EXPERIMENTAL RESULTS 37

results indicate that the two similarity measures are in general correlated. This also suggests

that the effectiveness of profile matching may not be very sensitive to the choice of specific

string similarity measures.

1 2 3 4 5
0%

10%

20%

30%

k

A
cc

ur
ac

y

Jaro−Winkler
Overlap

(a) Dataset DA

1 2 3 4 5
0%

10%

20%

30%

k
A

cc
ur

ac
y

Jaro−Winkler
Overlap

(b) Dataset DB

Figure 6.1: The matching accuracy of the two string similarity measures.

To learn the parameter α in the profile similarity (Equation 4.1), we compute the match-

ing accuracy with respect to α, varying from 0 to 1 of step 0.1. Figure 6.3 shows the results.

For answer set size in the range from 1 to 5, the matching accuracy is the highest when

α = 0.8. Therefore, we set α = 0.8 by default.

6.4 Effectiveness of Graph Matching

In this section, we report the evaluation results of graph matching. We compare the fuzzy

Jaccard similarity (Section 5.3, denoted by FJ) and the state-of-the-art graph matching

methods developed by Blondel et al. [3] (denoted by BV), Zager et al. [36] (denoted by ZV)

and Heymans et al. [15] (denoted by HS). All methods were implemented in C++.

The synthetic graph of n vertices is generated by using the random graph model from

Erdös and Rényi [13] where each pair of vertices is connected with a probability p, denoted

as graph Gn,p. More precisely, each entry of Gn,p’s adjacent matrix has a value of 1 with

probability p and 0 with probability 1− p. To construct a subgraph Gm induced from Gn,p,

CHAPTER 6. EXPERIMENTAL RESULTS 38

1 2 3 4 5
75%

80%

85%

90%

95%

100%

k

Ja
cc

ar
d

C
oe

ffi
ci

en
t

Jaro−Winkler & Overlap

(a) Dataset DA

1 2 3 4 5
75%

80%

85%

90%

95%

100%

k

Ja
cc

ar
d

C
oe

ffi
ci

en
t

Jaro−Winkler & Overlap

(b) Dataset DB

Figure 6.2: The Jaccard coefficient between the two string similarity measures in profile
matching.

0 0.2 0.4 0.6 0.8 1
0%

10%

20%

30%

α

A
cc

ur
ac

y

k=1
k=2
k=3

k=4
k=5

(a) Dataset DA

0 0.2 0.4 0.6 0.8 1
0%

10%

20%

30%

α

A
cc

ur
ac

y

k=1
k=2
k=3

k=4
k=5

(b) Dataset DB

Figure 6.3: Profile similarity parameter tuning.

CHAPTER 6. EXPERIMENTAL RESULTS 39

8 9 10 11 12 13 14 15
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

m

A
cc

ur
ac

y

FJ
BV
HS
ZV

(a) p = 0.2

8 9 10 11 12 13 14 15
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

m

A
cc

ur
ac

y

FJ
BV
HS
ZV

(b) p = 0.4

8 9 10 11 12 13 14 15
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

m

A
cc

ur
ac

y

FJ
BV
HS
ZV

(c) p = 0.6

8 9 10 11 12 13 14 15
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

m

A
cc

ur
ac

y

FJ
BV
HS
ZV

(d) p = 0.8

Figure 6.4: Accuracy comparison of four methods in the 1st experiment

CHAPTER 6. EXPERIMENTAL RESULTS 40

8 9 10 11 12 13 14
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

m

A
cc

ur
ac

y

FJ
BV
HS
ZV

(a) p = 0.2

8 9 10 11 12 13 14
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

m

A
cc

ur
ac

y

FJ
BV
HS
ZV

(b) p = 0.4

8 9 10 11 12 13 14
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

m

A
cc

ur
ac

y

FJ
BV
HS
ZV

(c) p = 0.6

8 9 10 11 12 13 14
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

m

A
cc

ur
ac

y

FJ
BV
HS
ZV

(d) p = 0.8

Figure 6.5: Accuracy comparison of four methods in the 2nd experiment

CHAPTER 6. EXPERIMENTAL RESULTS 41

we randomly select a subset of vertices with size of m and maintain their connectivity in

Gn,p. Note that Gm may not be a connected graph.

We conduct two graph matching experiments on Gn,p. The first one is to match one of

its subgraph Gm with Gn,p and the other one is to match its two random subgraphs Gm1 and

Gm2 with the same size, say m1 = m2. The matching results are returned after comparing

the similarity of each pair of vertices in the two graphs. As before, we compute the matching

accuracy which is the number of the matched pairs over the size of the subgraph.

In the first experiment, n is set to be 15 and m scales from 8 to 15. The value of the

connectivity probability p is selected from a range of 0.2 to 0.8 with a step of 0.2. For each

setting of (m, p), we generate 500 random subgraphs and compute the average matching

accuracy by using our FJ and the other three methods, as shown in Fig. 6.4. We see that

our FJ provides consistently better performance than others with a considerable gap.

In the second experiment, m1(m2) scales from 8 to 14 (we omit the size of 15 to avoid

the case when the two subgraphs are equivalences of the original graph). p has the same

value as that in the first experiment. Again, we compute the average matching accuracy

and compare our FJ with others. Fig. 6.5 demonstrates the superiority of FJ.

An important remark is that our FJ is robust to different subgraph sizes as that in

other methods. This is particularly important as the practical applications, e.g., the social

network have a huge number of users coexist in the network graph.

8 9 10 11 12 13 14 15
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

m

A
cc

ur
ac

y

p=0.2
p=0.4
p=0.6
p=0.8

(a) The 1st experiment

8 9 10 11 12 13 14
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

m

A
cc

ur
ac

y

p=0.2
p=0.4
p=0.6
p=0.8

(b) The 2nd experiment

Figure 6.6: Summation of FJ’s accuracy

CHAPTER 6. EXPERIMENTAL RESULTS 42

We also apply different graph matching algorithms on real data sets. Figure 6.7 shows

the results. The results clearly show that FJ outperforms the existing graph matching

methods significantly with respect to a wide range of answer set size. In other words, our

graph matching method is dramatically more effective the the other general graph matching

methods on the problem of finding email correspondents in social networks.

1 2 3 4 5 6 7 8 9 10
0%

2%

4%

6%

8%

10%

k

A
cc

ur
ac

y

FJ
BV
HS
ZV

(a) Dataset DA

1 2 3 4 5 6 7 8 9 10
0%

2%

4%

6%

8%

10%

k

A
cc

ur
ac

y

FJ
BV
HS
ZV

(b) Dataset DB

Figure 6.7: The matching accuracy of the graph matching methods.

However, the matching accuracy is poor, less than 10%, for all graph matching methods

tested. This is not surprising. There are many small subgraphs in the email network and

the Facebook network that are similar to each other if only the subgraph structures are

considered. This observation clearly shows that only graph matching is ineffective either to

tackle the problem of finding email correspondents in social networks.

6.5 Effectiveness of Integrating Profile Matching and Graph

Matching

In Section 5.5, we advocate integrating profile matching and graph matching. In this section,

we report the evaluation results of this integrated approach.

First, we learn the value of parameter γ in Equation 5.11. Similar to learning the value

of parameter α in profile matching, we compute the matching accuracy with respect to

CHAPTER 6. EXPERIMENTAL RESULTS 43

γ, varying from 0 to 1 of step 0.1. Figure 6.8 shows the results. The results show that,

empirically in our cases, the best performance is achieved by setting γ = 0.5.

0 0.2 0.4 0.6 0.8 1
0%

10%

20%

30%

40%

50%

γ

A
cc

ur
ac

y

k=1
k=2
k=3
k=4
k=5

(a) Dataset DA

0 0.2 0.4 0.6 0.8 1
0%

10%

20%

30%

40%

50%

γ
A

cc
ur

ac
y

k=1
k=2
k=3
k=4
k=5

(b) Dataset DB

Figure 6.8: The matching accuracy of the integrated method with respect to parameter γ.

Figure 6.9 shows the matching accuracy of the integrated method. For the convenience

of comparison, the figure also plots the accuracy of graph matching only and profile match-

ing only. The results clearly show that the integrated method can achieve much better

performance than graph matching only and profile matching only. The accuracy of the in-

tegrated method is even higher than the sum of the accuracies of graph matching only and

profile matching only. The results verify that the integration of the two matching methods

iteratively is effective.

6.6 The Effect of ǫ and the Runtime

As discussed at the end of Section 5.3, we use a parameter ǫ to control the termination of

our iterative method. Figure 6.10 shows the accuracy on the two data sets with respect to

ǫ. Please note that the ǫ is plotted in logarithmic scale.

Clearly, the smaller the value of ǫ, the more accurate the results. However, the marginal

improvement of lowering down ǫ decreases exponentially.

The runtime cost of our method is composed of two parts: the cost of crawling the social

networks (Facebook in our experiments) and the cost of running the matching algorithms

CHAPTER 6. EXPERIMENTAL RESULTS 44

1 2 3 4 5 6 7 8 9 10
0%

10%

20%

30%

40%

50%

60%

k

A
cc

ur
ac

y

FJ+Prof
FJ
Prof

(a) Dataset DA

1 2 3 4 5 6 7 8 9 10
0%

10%

20%

30%

40%

50%

60%

k

A
cc

ur
ac

y

FJ+Prof
FJ

Prof

(b) Dataset DB

Figure 6.9: Comparison of different matching algorithms

10
−5

10
−4

10
−3

10
−210%

20%

30%

40%

50%

60%

ε

A
cc

ur
ac

y

k=1
k=3
k=5
k=10

(a) Dataset DA

10
−5

10
−4

10
−3

10
−210%

20%

30%

40%

50%

60%

ε

A
cc

ur
ac

y

k=1
k=3
k=5
k=10

(b) Dataset DB

Figure 6.10: Accuracy with respect to ǫ.

CHAPTER 6. EXPERIMENTAL RESULTS 45

presented in this paper. The cost of crawling the social networks varies dramatically in

different applications. For examples, on the one hand, if our method was run in Facebook,

then the crawling time is largely ignorable. On the other hand, if one uses only one computer

to crawl a social network that does not provide a proper API, it may take much time in

crawling.

Since the crawling problem is orthogonal to the algorithms developed in this paper, we

decided to focus on the runtime cost of the similarity computation. Thus, we report here

the runtime that does not count the crawling cost.

10
−5

10
−4

10
−3

10
−20

50
100
150
200
250
300
350
400
450

ε

R
un

tim
e

(s
ec

on
d)

Dataset D
A

Dataset D
B

(a) Runtime

10
−5

10
−4

10
−3

10
−20

5

10

15

20

25

30

ε

N
o.

 o
f I

te
ra

tio
ns

Dataset D
A

Dataset D
B

(b) Number of iterations

Figure 6.11: Runtime and number of iterations.

Figure 6.11 reports, with respect to ǫ, the runtime and the number of iterations of our

method on the two data sets. Again, ǫ is plotted in the logarithmic scale. The results clearly

show that parameter ǫ can be used to control the tradeoff between accuracy and efficiency.

Please note that our method can be sped up substantially by distributed computing adopting

similar techniques in many other matrix computation problems. Limited by space, we have

to leave this as a future work.

6.7 The Effect of the Threshold

As we make recommendations even if the similarity scores between an email contact and

all of the social network accounts is low, those recommendations based on low similarity

CHAPTER 6. EXPERIMENTAL RESULTS 46

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−5

0%

10%

20%

30%

40%

50%

60%

Threshold

A
cc

ur
ac

y

k=1
k=2
k=3

k=4
k=5

(a) Dataset DA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−5

0%

10%

20%

30%

40%

50%

60%

Threshold

A
cc

ur
ac

y

k=1
k=2
k=3
k=4
k=5

(b) Dataset DB

Figure 6.12: Accuracy with respect to the threshold.

0 0.5 1 1.5 2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

The number of entries (107)

A
cc

um
ul

at
ed

 s
co

re

Dataset D
A

Dataset D
B

(a) Dataset DA

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
70

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

The number of entries

A
cc

um
ul

at
ed

 s
co

re

Dataset D
A

Dataset D
B

(b) Dataset DB

Figure 6.13: Similarity score distribution at convergence

CHAPTER 6. EXPERIMENTAL RESULTS 47

scores may hurt the performance. Figure 6.12 shows the accuracy on the two data sets with

respect to the threshold. The results show that the performance could be improved slightly

if the threshold is set in the range of [0.5, 1]∗10−5 . However, if the threshold is set too high,

it will eliminate more valid recommendations. One extreme situation is that the accuracy

gets 0 if the threshold is higher than the maximal similarity score.

Figure 6.13 reports the accumulated similarity score when all similarity scores converge.

As we discussed in Section 5.5, all of the similarity scores can be fetched in the matrix Sim,

and we compute the matrix iteratively until it converges. The size of the similarity matrix

of dataset DA is 2439 × 7575, and that of dataset DB is 452× 11176. Therefore, there will

be 18, 475, 425 similarity scores for DA, and 5, 051, 552 similarity scores for DB. We sort

these scores in descending order, and accumulate them one by one. As we normalize the

matrix at the postprocessing of every iteration, the final accumulated score is always 1. In

Figure 6.13, we plot two figures, one with linear scale and another with logarithmic scale.

From the results we obtained, the similarity score distribution is consistent with power-law

distribution.

Chapter 7

Conclusions and Discussion

In this thesis, we tackled a practical and interesting problem of finding email correspondents

in social networks. We considered two ways to tackle the problem. First, we considered

using profile similarity that can be computed using string similarity. Second, we developed

a novel graph matching similarity approach. Our experimental results showed that neither

profile matching nor graph matching individually can solve the problem. Our integrated

method can achieve much higher accuracy on the real data sets.

Although we only discussed the personal view version of the problem, our solution can

be straightforwardly extended to tackle the general problem of finding email correspondents

in social networks, where it is assumed that the whole email network and the social network

are available. For the profile similarity computation, we can compare the profile of each

email account with that of each social network account. For the graph matching similarity,

we can use the two graphs to compute the graph matching similarity matrix. Besides the

personal view and the whole network view, our solution can be applied in the cluster view as

well. We can partition the email networks and social networks into several clusters according

to users’ education or workplace, then compute the similarity among users belonging to the

same cluster.

In this thesis, we assumed that one person as only an account in a social network.

In practice, this assumption may not hold for some social networks. One idea to break

this assumption is to conduct “entity identification” in social networks, that is, identifying

multiple accounts that are owned by the same person. This is an interesting problem for

future study.

48

CHAPTER 7. CONCLUSIONS AND DISCUSSION 49

In our work, the vertices of email networks are connected because of their email commu-

nications. To simplify the problem, we only consider whether two vertices have an edge or

not. One idea to improve the email networks is to assign weight on edges. Technically, we

can assign two kinds of weight in our problem. One is the frequency of communication, that

is how many emails interacted between two vertices, and the number of emails is assigned to

weight of the edge of the two vertices. Another is the timestamps of emails. Heuristically,

the latest emails have higher priority than the oldest emails, and the priority of emails af-

fects the sender or receiver’s priority. Therefore, when an email comes, it obtains a constant

value which decreases by a given amount or by a given percentage daily. We can also use

similar way to get weight of edges in social networks by referring messaging communication

in social networks.

In contrast to weight of edges, it is also possible to assign direction to edges. Directions

come naturally in email networks since every email always goes from its sender to its receiver.

In social networks, directions cannot be retrieved directly, except Twitter in which every user

has its followers and followings corresponding to incoming and outgoing vertices respectively.

However, we still can fetch direction in social networks from users’ communications. It is

obvious to find that discussion happens everywhere in Facebook, for example discussion on

one user’s recently uploading photo, that on one’s updated status, and so on. From such

discussion, we could get some kind of following relationship among users and translate the

following relationships into directions of edges.

Bibliography

[1] H. A. Almohamad and Salih O. Duffuaa. A linear programming approach for the
weighted graph matching problem. IEEE Trans. Pattern Anal. Mach. Intell., 15(5):522–
525, 1993.

[2] S. Appavu Alias Balamurugan, G. Athiappan, M. Muthu Pandian, and Ramasamy
Rajaram. Classification methods in the detection of new suspicious emails. Journal of
Information and Knowledge Management(JIKM), 7(3):209–217, 2008.

[3] Vincent D. Blondel, Anah́ı Gajardo, Maureen Heymans, Pierre Senellart, and Paul Van
Dooren. A measure of similarity between graph vertices: Applications to synonym
extraction and web searching. In SIAM Review (SIAM Rev.), pages 647–666, 2004.

[4] Horst Bunke. Graph matching: Theoretical foundations, algorithms, and applications.
In Version Interface 2000, pages 82–88, 2000.

[5] Tibério S. Caetano, Julian John McAuley, Li Cheng, Quoc V. Le, and Alexander J.
Smola. Learning graph matching. IEEE Trans. Pattern Anal. Mach. Intell., 31(6):1048–
1058, 2009.

[6] Vitor R. Carvalho and William W. Cohen. Preventing information leaks in email. In
SIAM Data Mining Conference (SDM), 2007.

[7] Thomas P. Cason, Pierre-Antoine Absil, and Paul Van Dooren. Review of similarity
matrices and application to subgraph matching. In Book of Abstracts of the 29th
Benelux Meeting on Systems and Control, page 109, 2010.

[8] William W. Cohen, Pradeep D. Ravikumar, and Stephen E. Fienberg. A comparison
of string distance metrics for name-matching tasks. In IIWeb, pages 73–78, 2003.

[9] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub)graph
isomorphism algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach.
Intell., 26(10):1367–1372, 2004.

[10] Lee R. Dice. Measure of the Amount of Ecologic Association Between Species. Ecology,
26(3):297–302, 1945.

50

BIBLIOGRAPHY 51

[11] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic effi-
ciency for network flow problems. J. ACM, 19:248–264, April 1972.

[12] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate
record detection: A survey. IEEE Transactions on Knowledge and Data Engineering,
19:1–16, 2007.

[13] P. Erdös and A. Rényi. On random graphs. Publ. Math, 6:290–297, 1959.

[14] Richard Wesley Hamming. Error detecting and error correcting codes. Bell System
Technical Journal, 29(2):147–160, 1950.

[15] M. Heymans and A.K. Singh. Deriving phylogenetic trees from the similairty analysis
of metabolic pathways. Bioinformatics, 19(suppl 1):138–146, 2003.

[16] R.A. Horn and C.R. Johnson. Matrix analysis. Cambridge university press, 2005.

[17] P. Jaccard. Nouvelles recherches sur la distribution florale, volume 44. Bulletin de la
Société Vaudoise de la science naturelle, 1908.

[18] Matthew A. Jaro. Advances in Record-Linkage Methodology as Applied to Matching
the 1985 Census of Tampa, Florida. Journal of the American Statistical Association,
84(406):414–420, 1989.

[19] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM (J. ACM), 46(5):604–632, 1999.

[20] Grzegorz Kondrak, Daniel Marcu, and Kevin Knight. Cognates can improve statistical
translation models. In North American Chapter of the Association for Computational
Linguistics - Human Language Technologies (HLT-NAACL), 2003.

[21] H.W. Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[22] Lawrence R. Lawlor. Overlap, Similarity, and Competition Coefficients. Ecology,
61(2):245–251, 1980.

[23] Matthew Michelson and Craig A. Knoblock. Semantic annotation of unstructured
and ungrammatical text. In International Joint Conference on Artificial Intelligence
(IJCAI), pages 1091–1098, 2005.

[24] Chris Pal. Cc prediction with graphical models. In 3rd Conference on Email and
Anti-Spam (CEAS), 2006.

[25] Jaccard Paul. Étude comparative de la distribution florale dans une portion des alpes
et des jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37:547–579, 1901.

BIBLIOGRAPHY 52

[26] Maayan Roth, Assaf Ben-David, David Deutscher, Guy Flysher, Ilan Horn, Ari Leicht-
berg, Naty Leiser, Yossi Matias, and Ron Merom. Suggesting friends using the implicit
social graph. In 16th ACM SIGKDD Conference on Knowlegde Discovery and Data
Mining (KDD), pages 233–242, 2010.

[27] Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A bayesian
approcah to filtering junk e-mail. In Association for the Advancement of Artificial
Intelligence (AAAI) Workshop on Learning for Text Categorization, 1998.

[28] Bertrand Le Saux and Horst Bunke. Feature selection for graph-based image classifiers.
In Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA) (2), pages
147–154, 2005.

[29] Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning object identification
rules for information integration. Information Systems (Inf. Syst.), 26(8):607–633, 2001.

[30] Julian R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM (J.
ACM), 23(1):31–42, 1976.

[31] Michaël A. van Wyk, Tariq S. Durrani, and Barend J. van Wyk. A rkhs interpolator-
based graph matching algorithm. IEEE Trans. Pattern Anal. Mach. Intell., 24(7):988–
995, 2002.

[32] J. Wang, G. Li, and J. Feng. Fast-join: An efficient method for fuzzy token matching
based string similarity join. In Proceedings of the 24th IEEE International Conference
on Data Engineering (ICDE), 2011.

[33] William E. Winkler. String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage. In Proceedings of the Section on Survey Research,
pages 354–359, 1990.

[34] Shinjae Yoo, Yiming Yang, Frank Lin, and Il-Chul Moon. Mining social networks for
personalized email prioritization. In 15th ACM SIGKDD Conference on Knowlegde
Discovery and Data Mining (KDD), pages 967–976, 2009.

[35] Laura Zager. Graph Similarity and Matching. Master’s thesis, Massachusetts Institute
of Technology, USA, 2005.

[36] Laura A. Zager and George C. Verghese. Graph similarity scoring and matching. Appl.
Math. Lett., 21(1):86–94, 2008.

