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1. Introduction

Standard present value models have a difficult time explaining several features of observed

asset prices. Prices seem to be excessively volatile, excess returns seem to be predictable,

and the model’s cross-equation restrictions are typically rejected as well. As a result, linear

present value models have all but disappeared from serious academic research on asset pric-

ing.1 Instead, attention has shifted to models with time-varying risk premia. Unfortunately,

these models offer little improvement empirically, although Constantinides and Duffie (1996)

achieve some success by introducing heterogeneity, in the form of nondiversifiable labor in-

come risk.

Our paper returns to the linear constant discount rate setting, and argues that a different

form of heterogeneity, an informational heterogeneity, can account for many of the model’s

apparent empirical shortcomings. In particular, we make two simple changes to the standard

present value model: (1) We assume some fundamentals are unobserved by all speculative

traders. Although the variance of these unobserved fundamentals can be arbitrarily small,

this additional noise breaks the no trade theorems of Milgrom and Stokey (1982) and Tirole

(1982). (2) More importantly, we assume speculative traders are heterogeneously informed

about the observable fundamentals. Specifically, we assume observed fundamentals consist

of a sum of orthogonal components, and that in addition to observing the sum, each trader

observes realizations of one of the underlying components. We think of this as a natural

information structure. All traders no doubt observe current earnings or dividends, but at

the same time they are likely to have heterogeneous information about their underlying

determinants.2

Following Futia (1981), we derive conditions under which traders are unable to infer the

realizations of the other components of fundamentals. Instead, they are only able to infer

a weighted average of them. The weighted averages encode each trader’s forecast of other

traders’ forecasts (Townsend (1983)).

The two main contributions of the paper are the following: [i] Our paper provides an

explicit analytical characterization of the resulting higher-order beliefs dynamics. [ii] We

show how these additional dynamics play an important role in observed asset prices. More

specifically, we show that excess volatility, predictability, and the rejection of cross-equation

1Cochrane (2001) discusses the empirical failings of constant discount rate models. He argues that many of
these apparently distinct anomalies are manifestations of the same underlying problem; namely, misspecifi-
cation of the discount rate. He also points out that the same problems show up in all asset markets, e.g.,
stocks, bonds, foreign exchange, real estate, etc.
2Recent papers documenting an important role of heterogeneous beliefs in asset markets include Anderson,
Ghysels, and Juergens (2005) for the case of equity markets, and Piazzesi and Schneider (2009) for the case of
housing markets. However, this previous work does not formally link heterogeneous beliefs to heterogeneous
information within a dynamic equilibrium model.
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restrictions can all be reconciled with theory when asset price dynamics follow from the

persistent heterogenous beliefs equilibrium.

Of course, this is not the first paper to study asymmetric information in asset markets.3

However, our paper is the first to combine several key ingredients. First, our model is dy-

namic. It features persistent heterogeneous beliefs, and a stationary equilibrium. Following

Grossman and Stiglitz (1980), most work on asset pricing with asymmetric information is

confined to static, or nonstationary finite-horizon models. Although this is a useful abstrac-

tion for some theoretical questions, it is obviously problematic for empirical applications.

There has been some work devoted to dynamic extensions of the Grossman-Stiglitz frame-

work (see, e.g., Wang (1993), He and Wang (1995), Foster and Viswanathan (1996), Albagli,

Hellwig, and Tsyvinski (2011)). Most of this literature uses clever modeling assumptions

(e.g., hierarchical information structures, truncation solution strategies) to avoid the fore-

casting the forecasts of others problem first highlighted by Townsend (1983). We analytically

derive the component of the asset price that is due to higher-order beliefs.

Second, our approach features signal extraction from endogenous prices. This distinguishes

our work from most work on global games and imperfect common knowledge (Morris and Shin

(2003)). Although this literature has made important contributions to our understanding of

higher-order beliefs, it is not directly applicable to asset pricing, since it abstracts from asset

markets. As Atkeson (2000) notes, prices play an important role in aggregating information,

and it remains to be seen how robust the work on global games is to the inclusion of asset

markets.4

Third, our approach delivers an analytical solution, with explicit closed-form expressions

for the role of higher-order beliefs. Although this may seem like a minor contribution given

the power of computation, analytical solutions are extremely useful in models featuring

a potential infinite regress of higher-order beliefs. Numerical methods in this setting are

fraught with dangers. In particular, they require prior knowledge of the relevant state.

As first noted by Townsend (1983), it is not at all clear what the state is when agents

forecast the forecasts of others. Townsend argued that the logic of infinite regress produces

an infinite-dimensional state. Townsend short-circuited the infinite regress and obtained

a tractable numerical solution by assuming that information becomes common knowledge

after a (small) number of periods. This truncation strategy has been refined by a number of

subsequent researchers (see, e.g., Singleton (1987), Bacchetta and van Wincoop (2006, 2008),

and Nimark (2007)). However, recent work by Pearlman and Sargent (2005) and Walker

(2007) demonstrates that numerical approaches can be misleading.

3See Brunnermeier (2001) for a review.
4Angeletos and Werning (2006) and Hellwig, Mukherji, and Tsyvinski (2006) incorporate signal extrac-
tion from prices into the Morris-Shin framework. However, their models focus on the issue of equilibrium
uniqueness, and are essentially static.
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Our approach adapts and extends the frequency domain methods of Futia (1981). These

methods exploit the power of the Riesz-Fischer Theorem, which allows us to transform a

difficult time-domain/sequence-space signal extraction problem into a much easier function

space problem.5 Rather than guess a state vector and then solve a Kalman filter’s Ric-

cati equation, a frequency domain approach leads to the construction of so-called Blaschke

factors. Finding these Blaschke factors is the key to solving an agent’s signal extraction

problem. Our model’s solution takes the form of a nonfundamental (i.e., noninvertible)

moving-average representation, mapping the underlying shocks to agents’ information sets

to observed prices and fundamentals. Blaschke factors convert this to a Wold representation,

which delivers the endogenous information set of the agents. The (statistical) innovations of

the Wold representation turn out to be complicated moving averages of the entire histories of

the underlying (economic) shocks. These moving averages encode the model’s higher-order

belief dynamics. By solving the model in the frequency domain, we are able to isolate the

component of the equilibrium due to higher-order beliefs and derive conditions under which

heterogenous beliefs are preserved in equilibrium.6

A key contribution of our paper is that this equilibrium representation can be taken to

the data in a direct, quantitative way. This allows us to revisit past empirical failures of

linear present value models. In particular, we ask the following question - Suppose asset

markets feature heterogeneous beliefs, but an econometrician mistakenly assumes agents

have homogeneous beliefs, what will he conclude?

One might think, based on the conditioning down arguments of Hansen and Sargent

(1991a) and Campbell and Shiller (1987), that this would not create problems. Interestingly,

this is not the case because conditioning down does not work here. The arguments of

Hansen-Sargent and Campbell-Shiller apply to settings where agents and econometricians

have different information sets. They do not apply in general to settings where there is

informational heterogeneity among the agents themselves. This is because the law of iterated

expectations does not apply to the average beliefs operator (Allen, Morris, and Shin (2006),

Morris and Shin (2003)).

Using updated data from Shiller (1989) on the U.S. stock market, we show that many

of the empirical shortcomings documented by Shiller can be accounted for by higher-order

belief dynamics, as opposed to fads or ‘market psychology’. We show that present value

5Kasa (2000) uses frequency domain methods to solve Townsend’s model. He comes to the same conclusion
as Pearlman and Sargent (2005). Appendix B provides a review of the Riesz-Fischer Theorem.
6Makarov and Rytchkov (2008), Bernhardt, Seiler, and Taub (2010) and Rondina and Walker (2011) also
use frequency domain techniques to solve dynamic models with heterogeneously informed agents. Makarov
and Rytchkov (2008) argue that a finite-state equilibrium does not exist. However, their fundamentals
specification does not satisfy our existence condition, which could explain the nonexistence. Bernhardt,
Seiler, and Taub (2010) examine an asset pricing model with strategic use of information when traders are
influential. This additional complication calls for a numerical solution procedure. Rondina and Walker
(2011) extend (Futia 1981) and the results of this paper to the case of dispersed information.
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models with heterogeneous beliefs generate predictable excess returns, produce violations of

variance bound inequalities, and rejections of cross-equation restrictions. In fact, we argue

that rational heterogeneous belief dynamics could well be mistaken for fads or irrational

expectations.

Hence, our paper sounds a note of caution when interpreting previous rejections of present

value models. Perhaps it is not the constant discount rate that is the problem, but rather the

(implicit) assumption of homogeneous beliefs, or equivalently, a fully revealing equilibrium.

2. The Model

Consider the following linear present value model

pt = β

∫ 1

0

Ei
tpt+1di+ ft + ut (2.1)

where pt represents the price of an asset (e.g., an equity price or an exchange rate), ft rep-

resents a (commonly) observed fundamental (e.g., dividends or the money supply), and ut

represents the influence of unobserved fundamentals (e.g., noise or liquidity traders). The

parameter, β < 1, represents a constant discount factor. The model in (2.1) is entirely

standard, with two key exceptions.7 The first is the presence of the noise term, ut. Since

ultimately we are going to focus on nonrevealing, heterogeneous beliefs equilibria, it is im-

portant that some noise be present to sustain trade. (Milgrom and Stokey (1982), Tirole

(1982))8. The second key difference is that expectations in (2.1) are indexed by traders, to

acknowledge the possibility that beliefs may differ in equilibrium.

What gives rise to these heterogeneous beliefs? One possibility is heterogeneous priors

(Harrison and Kreps (1978)). Besides posing awkward questions about the source of this

heterogeneity, another problem with this approach is that it generates nonstationary equi-

libria, in which belief heterogeneity dissipates over time (Morris (1996)). In response, we

instead suppose that belief heterogeneity arises from, and is sustained by, an exogenous on-

going process of heterogeneous information. The idea is that each period investors acquire

information about some aspect of an asset’s underlying observed fundamentals. For simplic-

ity, we suppose there are just two types of traders, Type 1 and Type 2, and that observed

fundamentals are driven by the exogenous process:

ft = a1(L)ε1t + a2(L)ε2t (2.2)

7Appendix C develops a microfounded model that delivers (2.1).
8Although noisy rational expectations models have a long history in finance and macroeconomics, prior
applications assume homogeneous beliefs. Whiteman (1983) uses frequency domain methods to characterize
the solutions of equation (2.1) in the case of homogeneous expectations. He refers to models of the form
(2.1) as ‘perturbed equations’. Hansen and Sargent (1991a) refer to them as ‘inexact’ rational expectations
models.
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where a1(L) and a2(L) are square-summable polynomials in the lag operator L. The in-

novations, ε1t and ε2t, are zero mean Gaussian random variables, and are assumed to be

uncorrelated. Each period both traders observe pt and ft. However, in addition, Type 1

traders observe realizations of ε1t, while Type 2 traders observe realizations of ε2t. Both the

model and the information structure are common knowledge.

Specification of the information structure also requires assumptions about the noise pro-

cess, ut. Although neither trader observes ut, both its existence and its law of motion are

common knowledge.9 Again to keep things simple, we suppose ut is i.i.d., and is driven by:

ut = b1ε1t + b2ε2t + vt (2.3)

where vt is a zero mean, i.i.d. Gaussian random variable that is uncorrelated with both ε1t

and ε2t. Notice that in general the noise process, ut, can be correlated with the observable

component of fundamentals, ft. This assumption simply serves to simplify the algebra that

follows and is not necessary for our results. Moreover as we emphasize below, the excess

volatility delivered by the model with heterogeneous beliefs is not due to the additional

volatility generated by noise traders. In the results below, we show that excess volatility

holds as we drive the variance of the noise trader term to zero.

It is important to keep in mind that both traders behave in a competitive, price-taking

manner. By assumption, their only task each period is to forecast next period’s price. We

assume they do this in a statistically optimal way, given their information. In contrast to

the global games literature, there is no explicit effort here to infer other agents’ forecasts.

In our Walrasian environment, there is no need to, since nothing you do can influence

the expectations of others. However, and this is the crucial point, since traders use the

endogenously determined history of prices as a basis for their own individual forecasts, and

these prices depend on other agents’ forecasts, there is a sense in which each trader’s optimal

forecast does embody a forecast of other traders’ forecasts, but these forecasts are simply a

by-product of each agent’s own atomistic efforts to forecast prices.

A key aspect of the environment here is that it is both stationary and linear. As a result,

we can employ the tools of Wiener-Kolmogorov prediction theory to solve each trader’s

forecasting problem. The first step in doing this is to derive the mapping between what he

observes and the underlying shocks driving the system. The symmetry between the agents,

along with the orthogonality between ε1t and ε2t, implies that we can focus on the problem

of a single trader, say Type 1. Given the solution to Type 1’s problem, we can infer the

9Engel and West (2005) argue that noise, or unobserved fundamentals, appear to be necessary to reconcile
present value models with observed exchange rates. Hamilton and Whiteman (1985) argue that the mere
possibility of unobserved fundamentals vitiates standard bubbles tests. Our results suggest that it is the
interaction between unobserved fundamentals and heterogeneous information about observed fundamentals
that is critical to the success of present value models.
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solution to Type 2’s via symmetry. For Type 1 traders, the mapping between observables

and the underlying shocks takes the following form,







ε1t

ft

pt






=







1 0 0

a1(L) a2(L) 0

π1(L) π2(L) π3(L)













ε1t

ε2t

vt






(2.4)

where the πi(L) polynomials are equilibrium pricing functions. Each trader knows these

functions when forecasting next period’s price. Of course, these pricing functions depend

on the forecasts via the equilibrium condition (2.1), so we have a fixed point problem.

Traditionally, this fixed point problem is resolved in one of two ways. First, one may pursue a

‘guess and verify’ strategy. That is, posit functional forms for the πi(L) functions, use them to

solve the agents’ prediction problems, plug the predictions into the equilibrium condition, and

then match coefficients. This approach works well when the relevant state is clear (and low

dimensional). Unfortunately, in dynamic settings with potentially heterogeneous beliefs, it is

not at all clear what the state is, or equivalently, what forms the πi(L) functions should take.

What we are really searching for is an unknown function which, absent prior information,

lies in an infinite dimensional space. Kasa (2000) shows that this infinite dimensional fixed

point problem can be solved using frequency domain methods, and that will be the approach

we pursue here.

Before doing that, however, it might be worth considering the second strategy that is

commonly employed when solving this kind of fixed point problem. Rather than guessing an

unknown pricing function, and using it to forecast next period’s price, an alternative strategy

is to iterate equation (2.1) forward. With homogeneous beliefs, this strategy is quite powerful

as it produces an expression for the current price as a single conditional expectation of the

discounted sum of future fundamentals, which can then be solved, for example, using the

Hansen-Sargent prediction formula. No guessing and verifying is required. What makes this

work is the law of iterated expectations. Unfortunately, as noted earlier, the law of iterated

expectations does not apply when there are heterogeneous expectations. Still, one could in

principle approach the problem via iteration.10 To do this, define

Ē
0
t ft+1 =

∫ 1

0

E[ft+1|Ω
i
t]di

where Ωit denotes agent-i’s information set, and then analogously define

Ē
k
t ft+k+1 = ĒtĒt+1 · · · Ēt+kft+k+1

as the k-fold iteration of these averaged expectations. Using this notation we can then write

the equilibrium condition in (2.1) as

10Bacchetta and van Wincoop (2008) adopt this approach.
6



pt = ft + ut + β
∞
∑

k=0

βkĒkt (ft+k+1 + ut+k+1) (2.5)

The problem here is that Ē
k
t depends on the information conveyed by pt, but pt in turn

depends on the entire infinite sequence of Ēkt . Hence, we are back to an infinite dimensional

fixed point problem. Existing approaches either approximate the solution of this infinite

dimensional problem (e.g., Nimark (2007), Bernhardt, Seiler, and Taub (2010)) or effectively

truncate it by supposing that all relevant information becomes common knowledge after a

certain lag (e.g., Townsend (1983), Singleton (1987), Bacchetta and van Wincoop (2006,

2008)). In the next section we show how to tackle this problem head on by using frequency

domain methods.

3. Constructing a Nonrevealing Equilibrium

A frequency domain approach is useful here for two reasons. First, as noted above, we

have to solve an infinite dimensional fixed point problem. Without prior knowledge of

the functional forms of the equilibrium prices, we must be prepared to match an infinite

number of unknown coefficients. By transforming the problem to the frequency domain we

can convert this to the problem of finding a single analytic function, which via the Riesz-

Fischer Theorem, is equivalent to the unknown coefficient sequence.11 Second, and related

to this, the underlying source of our infinite dimensional fixed point problem is that we

are attempting to calculate an informational fixed point. In particular, we must somehow

guarantee that traders are unable to infer the private information of other traders via the

infinite history of observed market data. This is a difficult problem to even formulate in the

time domain. In contrast, handling this problem in the frequency domain is straightforward,

as the information revealing properties of analytic functions are completely characterized by

the locations of their zeros. Zeros inside the unit circle correspond to noninvertible moving

average representations and unobservable shocks.12

3.1. The Signal Extraction Problem. In our model each trader observes a vector of new

information each period, as summarized by (2.4), so noninvertibility relates to the zeros of

the determinant of a matrix. In particular, write (2.4) as x1t = M1(L)ε1t. If detM1(L)

has all its zeros outside the unit circle, then M1(L) possesses a one-sided inverse in positive

powers of L. In this case, the observed history of xt would reveal ε1t to Type 1 traders, and

therefore, they would be able to infer the private information of Type 2 traders, ε2t.

Letting M1(z) denote the z-transform of M1(L), one can readily verify from (2.4) that

11The Appendix provides a brief discussion of this theorem and its implications. See Whiteman (1983) for
a more detailed discussion.
12This point has been emphasized in particular in the work of Bart Taub. See, e.g., Taub (1990).
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detM1(z) = a2(z)π3(z)

Analogously, one can easily verify that the observer system for Type 2 traders implies

detM2(z) = a1(z)π3(z). Hence, a sufficient condition for neither trader to be able to infer

the other trader’s private information is if π3(z) turns out to have a zero inside the unit circle

(while at the same time neither ai(z) possesses a corresponding pole). It turns out, however,

to be more natural and convenient to suppose that noninvertibility stems from noninvertible

roots in the ai(z) functions. At the same time, it proves to be convenient to suppose that

these roots are identical, and that they are inherited by the equilibrium pricing functions.

To summarize, we assume the following,

Assumption 3.1. The analytic functions a1(z) and a2(z) have a single, identical root inside

the unit circle. This common root is shared by the equilibrium pricing functions, π1(z) and

π2(z). At the same time, the pricing component, π3(z), has no zeros inside the unit circle.

These assumptions are more restrictive than necessary. Their main purpose is to simplify

the mathematics. All we really need is for a1(·) and a2(·) to have coincident or non-coincident

zeros inside the unit circle for all the paper’s substantive conclusions to go through. This is

sufficient to ensure detM1(L) and detM2(L) remain noninvertible.

Ensuring that Assumption 3.1 is satisfied imposes restrictions on the observed fundamen-

tals, ft. Constructing a nonrevealing equilibrium involves deriving these restrictions. Fortu-

nately, as we shall see, these restrictions can be interpreted as merely imposing a scaling, or

relative variance factor.

Assumption 3.1 allows us to easily derive the Wold representation of each trader’s observer

system, which yields the trader’s information set. First write ai(z) and πi(z) as (z− λ)ãi(z)

and (z−λ)π̃i(z), where ãi(z) and π̃i(z) are analytic functions with all roots outside the unit

circle, and |λ| < 1 represents the common noninvertible root of the pricing and fundamentals

processes. Applying the methods of Rozanov (1967) and Hansen and Sargent (1991b) then

delivers the following Wold representation for Type 1 traders






ε1t

ft

pt






=







1 0 0

(L− λ)ã1(L) (1− λL)ã2(L) 0

(L− λ)π̃1(L) (1− λL)π̃2(L) π3(L)













ε1t

e2t

vt






(3.1)

where e2t = [(L − λ)/(1 − λL)]ε2t. Write this system as x1t = M∗

1(L)ε
∗

1t. Note that

detM∗

1(L) = (1−λL)ã2(L)π3(L). Hence, we have effectively ‘flipped’ the root inside the unit

circle, λ, to λ−1, which is outside the unit circle. The key point here is that Type 1 traders

are unable to use the observed history of x1t to infer realizations of Type 2 traders’ private

information, ε2t. The best they can do is estimate the moving average defined by e2t. The

lag polynomial (L−λ)/(1−λL), which relates e2t to ε2t is an example of a ‘Blaschke factor’.
8



It compactly summarizes Type 1’s best efforts to use Type 2’s information to forecast future

prices and fundamentals. Although it may appear as if e2t is autocorrelated, one can easily

show that it is in fact an i.i.d. innovation sequence.

Given (3.1), Type 1’s optimal forecast of x1,t+1 is a straightforward application of the

Wiener-Kolmogorov prediction formula

E1
t x1,t+1 =

[

M∗

1(L)

L

]

+

ε
∗

1t

= L−1[M∗

1(L)−M1(0)
∗]ε∗1t (3.2)

A completely symmetrical expression characterizes Type 2’s forecast, with the crucial differ-
ence that the unobservable shock is now ε1t. Using (3.2) and its Type 2 analog, yields the
following expressions for the optimal price forecasts

E
1
t pt+1 = L

−1 {[(L− λ)π̃1(L) + λπ̃1(0)]ε1t + [(1− λL)π̃2(L)− π̃2(0)]e2t + [π3(L)− π3(0)]ε3t} (3.3)

E
2
t pt+1 = L

−1 {[(1− λL)π̃1(L)− π̃1(0)]e1t + [(L− λ)π̃2(L) + λπ̃2(0)]ε2t + [π3(L)− π3(0)]ε3t} (3.4)

As noted earlier, symmetry between the traders and the orthogonality between ε1t and

ε2t allows us to focus on just one of the components. In what follows, let Ei,ε1
t denote

Type-i’s projection onto the time-t history of ε1. Without loss of generality, we can further

parameterize the unknown pricing functions as

π̃i(L) = ρi + Lgi(L) (3.5)

where gi(z) is assumed to be an invertible function. We then have

E1,ε1
t pt+1 = [ρ1 + (L− λ)g1(L)]ε1t (3.6)

E2,ε1
t pt+1 =

[

ρ1 + (L− λ)g1(L)−
ρ1(1− λ2)

1− λL

]

ε1t (3.7)

where we have used Type 2’s Blaschke factor, e1t = [(L− λ)/(1− λL)]ε1t, to substitute out

e1t in Type 2’s forecast function.

Equations (3.6) and (3.7) show explicitly how the forecasts of the two traders differ as

a function of the entire history of past realizations of ε1t. By combining these with the

analogous expressions for the ε2t projections, we obtain the following key result.

Proposition 3.2. If ρ1 and ρ2 are negative, then traders respond more aggressively to real-

izations of other traders’ (unobserved) signals.

Proof. This can be seen by differencing (3.6) and (3.7) and the analogous expressions in the

ε2 shock,

E1
t pt+1 − E2

t pt+1 =
1− λ2

1− λL
(ρ1ε1t − ρ2ε2t) . (3.8)

�
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At each point in time, forecasts of the two traders differ as a function of the infinite histories

of their observed signals. If the equilibrium ρi parameters are negative, then the trader who

has received higher signals (on average) will forecast lower prices. We shall see that ρi will be

negative when the bi coefficients in (2.3) are positive, i.e., when noise is positively correlated

with observable fundamentals. The intuition here is simple - when noise and observable

fundamentals affect prices in the same way, price increases due to noise, for example, are

partly attributed to other traders having good news about observable fundamentals. Thus,

traders ‘overreact’ to realizations of other traders’ (unobserved) signals. In other words, since

information about other traders’ signals is only obtainable by observing prices and commonly

observed fundamentals, Proposition 3.2 yields the well known result that agents overreact to

public signals (Allen, Morris, and Shin (2006)). We shall see that this overreaction to public

signals can generate apparent violations of variance bounds.

3.2. The Fixed Point Problem. From a technical standpoint, our paper makes two main

contributions. The first is the use of Blaschke factors to solve the traders’ otherwise difficult

signal extraction problems, as summarized by equations (3.3) and (3.4) in the previous

subsection. The second is to adopt a backsolving strategy to simplify the construction of a

nonrevealing Rational Expectations equilibrium. It is to this task that we now turn.

The sense in which we are working backwards is that we presume the equilibrium pricing

functions, πi(L), inherit a noninvertible root, λ, from the unobserved components of the

fundamentals process, ft. Clearly, this will not be the case for arbitrary specifications of ft.

Instead, specification of λ imposes a restriction on the fundamentals. In particular, we must

make the following assumption13

Assumption 3.3. Let κi = the share of Type-i traders. Then for any given value of |λ| < 1,

the components of the observable fundamentals satisfy the restrictions

βãi(β) + bi
κ−1
i − λβ

1− λβ
= 0 i = 1, 2

Although it will not be clear where this assumption comes from until we write down the

fixed point problem, it should be clear at this point that Assumption 3.3 merely imposes a

scaling, or relative variance, factor on the ft process. For example, suppose the functions

ãi(L) are identical, and that ãi(L) = ãi(0)/(1− γL), implying that ft is ARMA(1,1). Then

Assumption 3.3 requires the scaling factors, ãi(0), be equal to −bi(1−γβ)(κ−1
i −λβ)/[β(1−

λβ)].

13As noted earlier, this existence condition stems from our assumption that prices and fundamentals share
the common noninvertible root, λ. It is not a necessary condition. All that is necessary is that M1 and M2

remain noninvertible. It is not even necessary that the noninvertible roots of the fundamentals components
be the same.
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From here on we can follow entirely standard procedures to compute a Rational Expecta-

tions equilibrium. Assuming the share of each trader type is constant, we have the following

equilibrium condition

pt = β
[

κ1E
1
t pt+1 + κ2E

2
t pt+1

]

+ ft + ut (3.9)

Combining this with the solutions to the signal extraction problems in equations (3.3) and

(3.4) produces the follow central result

Proposition 3.4. Under Assumptions 3.1 and 3.3, for any |λ| < 1 there exists a hetero-

geneous beliefs Rational Expectations equilibrium for the model described by equations (3.9),

(2.2) and (2.3). The z-transforms of the equilibrium pricing functions are given by:

π1(z) =(z − λ)

{

ã1(β) +
κ2b1
κ1

λ

1− λβ
+

z

z − β

[

ã1(z)− ã1(β) +
κ2b1
κ1

λ

(

1

1− λz
−

1

1− λβ

)]}

(3.10)

π2(z) =(z − λ)

{

ã2(β) +
κ1b2
κ2

λ

1− λβ
+

z

z − β

[

ã2(z)− ã2(β) +
κ1b2
κ2

λ

(

1

1− λz
−

1

1− λβ

)]}

(3.11)

The proof is by construction. Notice that it is sufficient to verify the result for π1(z), due

to symmetry. Substituting the conditional expectations (3.3) and (3.4) into the equilibrium

condition (3.9), and using the notation in (3.5), gives

(L−λ)(ρ1+Lg1(L))ε1t = β

[

ρ1 + (L− λ)g1(L)− κ2
ρ1(1− λ2)

1− λL

]

ε1t+(L−λ)ã1(L)ε1t+ b1ε1t

The requirement that this hold for all realizations of ε1t implies the z-transforms of the two

sides must be identical as analytic functions inside the unit circle.14

(z − λ)(ρ1 + zg1(z)) = β

[

ρ1 + (z − λ)g1(z)− κ2
ρ1(1− λ2)

1− λz

]

+ (z − λ)ã1(z) + b1 (3.12)

Since (ρ1 + zg1(z)) is presumed analytic, the right-hand side of (3.12) must be zero when

evaluated at z = λ. (This ‘removes’ the singularity at z = λ). Setting the right side to zero

at z = λ determines the unknown constant, ρ1 = −b1/βκ1. If we then substitute this back

in, collect terms in g1(z), and divide by z − λ, we get

(z − β)g1(z) = ã1(z) +
b1
βκ1

+
κ2

κ1

b1

1−λ2

1−λz
− 1

z − λ
(3.13)

Notice the right-hand side is analytic by construction. Since g1(z) is also assumed to be

analytic, the right-hand side of (3.13) must be zero when evaluated at z = β. Evaluating

14The Appendix provides more detail concerning this solution method. See also Whiteman (1983).
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the right-hand side at z = β and setting it to zero yields the restriction

βã1(β) +
b1
κ1

+ β
κ2

κ1

b1

1−λ2

1−λβ
− 1

β − λ
= 0 (3.14)

which can be simplified to obtain the existence condition in Assumption 3.3. Finally, given

g1(z) and ρ1, the expression for π1(z) given by (3.10) follows from plugging into π1(z) =

(z − λ)(ρ1 + zg1(z)).

A few points are worth making about this result. First, the economics behind the existence

condition can now clarified. The existence condition places restrictions on the exogenous

process that guarantee Type 1 agents do not learn fully about ε2t and vice versa. Type 1

agents will use common knowledge to back out as much information as possible from the

endogenous variable, pt. This implies Type 1 agents will form expectations according to the

information in

pt − βκ1E
1
t pt+1 − ft = βκ2E

2
t pt+1 + ut (3.15)

That is, the left-hand side of (3.15) contains all variables in Type 1’s information set at

date t, and the right-hand side of (3.15) are the objects that Type 1 agents do not observe

directly but try to infer from endogenous variables. Assumption (3.3) guarantees that the

right-hand side of (3.15) is noninvertible (with root λ inside the unit circle).

Second, notice that no mention of π3(z) is made in Proposition 3.4. Since vt is known to

be i.i.d., it’s clear that in equilibrium π3(z) = 1.

Third, the expressions in (3.10) and (3.11) are less formidable than they appear. They

look complicated simply because they apply for any stationary specification of the observable

fundamentals (subject to the constraints described in Assumptions 3.1 and 3.3). This kind of

generality is a key virtue of a frequency domain approach. However, for simple specifications

of the ãi(z) functions, equations (3.10) and (3.11) produce simple expressions for equilibrium

prices. For example, suppose both components are ARMA(1,1), with common AR coefficient

γ and common MA root λ (i.e. ãi(z) = ãi(0)/(1− γz)). Substituting into (3.10) and (3.11),

imposing the existence condition, and then simplifying, produces the following ARMA(2,2)

process for prices15

pt =

(

L− λ

β(1− λβ)(1 − γL)(1 − λL)

)







∑

i=1,2

bi[βλκ
−1
i (1− κi)(1− γL)− (κ−1

i − λβ)(1− λL)]εit







Finally, note that no claim of uniqueness was made in Proposition 3.4. Uniqueness would

require an additional ‘regularity’ condition on the traders’ Wold representations, which would

impose analyticity conditions on the individual elements of M∗

i (z), in addition to conditions

on the roots of the determinant. We have already imposed these conditions on the πi(z)

15Ignoring, for simplicity, the vt term. One can readily verify that adding this term still produces an
ARMA(2,2).
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functions, so if we impose them on the individual ai(z) functions we obtain uniqueness as

well.16

3.3. Heterogenous Beliefs Dynamics. To interpret the heterogeneous beliefs equilibrium

given by equations (3.10) and (3.11), it is useful to consider the benchmark case of homoge-

neous beliefs. Suppose each trader observes both ε1t and ε2t. In this case, we can solve for

the equilibrium as usual by applying the Hansen-Sargent prediction formula. This yields,

πsi (z) =
z(z − λ)ãi(z)− β(β − λ)ãi(β)

z − β
+ bi i = 1, 2 (3.16)

where the superscript s in the πsi (z) functions emphasizes the fact that they pertain the a

symmetric information, homogeneous beliefs, equilibrium. Using these in (3.10) and (3.11)

we obtain the the following result

Proposition 3.5. For any specification of observable fundamentals that satisfy Assumptions

3.1 and 3.3, the heterogeneous beliefs pricing functions can be decomposed as the following

sum of the homogeneous beliefs pricing functions and an autoregressive component,

πi(z) = πsi (z) +
bi(κ

−1
i − 1)

1− λβ

(

1− λ2

1− λz

)

i = 1, 2 (3.17)

where the πsi (z) are given by (3.16).

This is a key result. The first term on the right-hand side of (3.17) shows how prices

respond to commonly observed shocks to fundamentals. The second term then exhibits the

additional dynamics induced when shocks to fundamentals are heterogeneously observed, and

traders must ‘forecast the forecasts of others’. Thus, the second term captures in a clear and

precise way the additional dynamics associated higher-order beliefs. These dynamics follow

an AR(1) specification, independently of any autoregressive components in the observed

fundamentals. The persistence is solely determined by the (noninvertible) moving average

components of fundamentals. Interestingly, Woodford (2003) obtains a qualitatively similar

result in a quite different setup.

Equation (3.17) makes clear how higher-order beliefs can generate additional price volatil-

ity. One manifestation of this is the following,

Corollary 3.6. If the bi coefficients are positive, heterogeneous beliefs amplify the initial

response of asset prices to innovations in fundamentals.

Proof. Evaluate (3.17) at z = 0. This yields

πi(0) = πsi (0) +
bi(κ

−1
i − 1)(1− λ2)

1− λβ
> πsi (0)

16See Whiteman (1983) for a discussion of the role of regularity in delivering unique solutions of multivariate
Rational Expectations models.
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4. Empirical Implications

As noted in the Introduction, there are by now many papers that discuss theoretical

aspects of heterogeneous belief dynamics in asset pricing. However, ours is the first to embed

these dynamics within a conventional, econometric, asset pricing model, which allows us to

explore the quantitative significance of heterogeneous beliefs in real world asset markets.17

Obviously, if conventional homogeneous beliefs versions of these models were successful, this

would not be an interesting exercise. However, in light of the well documented failures of

this model, it is of some interest to revisit these failures accounting for the possibility that

heterogeneous belief dynamics are present. Thus we now ask what kind of inferential errors

could result if the world is described by a heterogeneous expectations equilibrium, but an

outside econometrician interprets the data as if they were generated from a homogeneous

expectations equilibrium. We focus on three empirical results that have been common in

the asset pricing literature: (1) violations of variance bounds, (2) predictability of excess

returns, and (3) rejections of cross-equation restrictions.

Although it seems likely that heterogeneous expectations are present in all asset markets,

we focus our attention on the U.S. stock market, since this has been the most widely studied

case. Figure 1 displays annual data on real stock prices and dividends for the period 1871-

2006, downloaded from Shiller’s website.

Following the original work of Shiller (1981), a common exponential trend was removed

from both series. Of course, Shiller’s work unleashed a deluge of responses, many of which

pointed to biases in his methods. Removing a common deterministic trend is one of them.

However, we are not going to be concerned with this subsequent literature, for a couple of

reasons. First, as documented in Shiller (1989), the basic message from Shiller’s original

work survives these subsequent criticisms.18 Second, since the subsequent literature argued

that Shiller’s methods tended to produce false rejections, if we can explain his results with

heterogeneous beliefs, that only strengthens our argument. In other words, having to prove

violations of a bound that are biased toward rejection makes our job harder.

4.1. Wold Representation. As noted above, in this section we are putting ourselves in

the shoes of an outside econometrician. By ‘outside’ we mean the econometrician is not an

active participant in the market. In particular, he does not observe any of the underlying

17Recent work by Nimark (2010) also studies the empirical significance of heterogeneous beliefs. However,
his work focuses on the term structure of interest rates, and is based on a numerical approximation of the
equilibrium.
18In particular, Campbell and Shiller (1987) and West (1988) develop tests that are robust to the presence
of unit roots in prices and fundamentals, and continue to find evidence of excess volatility. Our methods
and conclusions apply equally to their tests.
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Figure 1: Data Plots

shocks driving observable fundamentals. Instead, he just witnesses the realizations of prices

and the fundamentals themselves. Using this information, he wants to see whether a linear

present value model can explain the data he observes, under the assumption that market

participants have homogeneous beliefs.

One mistake he does not make is to assume the data-generating process is linear. Thus,

like any econometrician his starting point is to fit VARs, or perhaps VARMAs, to the data.

His mistake will arise when using and interpreting these VARs. Specifically, he will make two

mistakes: (1) He will misinterpret the residuals as representing innovations to the information

sets of traders, when in fact they are not, and (2) He will incorrectly apply the law of iterated

expectations when constructing estimates of traders’ multiperiod forecasts.

The first step in our analysis, therefore, is to derive the Wold representation that the

econometrician will estimate. Estimates of this Wold representation are the best the econo-

metrician can do, given his (false) model and his information. Note first that deriving the

econometrician’s Wold representation requires a spectral factorization, since there are three

underlying shocks, yet the econometrician only observes the realization of two random pro-

cesses. In general, this is a messy problem. However, we can greatly simplify it by setting

σ2
v ≈ 0. This is reasonable for our purposes, since we are interested in the effects of higher-

order beliefs rather than unobserved fundamentals per se. Given this, the econometrician’s
15



Wold representation becomes19

[

ft

pt

]

=

[

(1− λL)ã1(L) (1− λL)ã2(L)

(1− λL)π̃1(L) (1− λL)π̃2(L)

][

e1,t

e2,t

]

(4.1)

where

ei,t =

(

L− λ

1− λL

)

εi,t (4.2)

It is natural to ask at this point what U.S. stock market data suggest about this Wold

representation. Note that if the fundamentals components are purely autoregressive and

ã1(L) = ã2(L), then the crucial parameter, λ, can be identified from the estimated MA

root of dividends, which play the role of observed fundamentals, ft, in this case. Another

possibility is that one shock dominates the other, in the sense that its variance is much

larger. This occurs when one component’s scale parameter ai(0) is much larger than the

other’s, which given the existence condition in Assumption 3.3, translates into a restriction

on the relative magnitudes of the free parameters bi. This is the identification strategy we

pursue in the following analysis, since it allows us to retain a general distribution of traders

across the underlying shocks. We shall see that many of the apparent failings of present

value models can be explained if a large fraction of traders observe a relatively high variance

shock.

Table 1 displays estimates of univariate ARMA(1,1) models for stock prices and dividends,

which is what the model would predict if ã(L) = ã(0)/(1 − γL). (Higher order terms are

insignificant).

TABLE 1

ARMA(1,1) estimates: Annual Data (1871-2006)

AR(1) MA(1)

dt .889 −.197

(.043) (.092)

pt .865 −.260

(.050) (.092)

Notes: (1) Estimates pertain to the model, xt =
1−λL
1−γL

et

(2) Asymptotic standard errors are in parentheses.

These estimates suggest that λ = −.20 would be a reasonable value. One can see from

our earlier example that the estimated price process is also predicted to be ARMA(1,1),

although it is ARMA(2,2) when expressed in terms of the underlying shocks. However, the

MA root will be a complicated function of λ and the other parameters, so it is easier to infer

λ from dividends. The estimates in Table 1 also suggest that one cannot statistically reject

19See Hansen and Sargent (1991b) or Rozanov (1967) for details.
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the model’s prediction that the AR coefficients of prices and dividends are identical. Hence,

to summarize, our subsequent analysis assumes that the variance of ε2 is vanishingly small,

and then we shall impose the restriction that ã1(L) = ã1(0)/(1 − γL), where ã1(0) is set

to satisfy the model’s existence condition in Assumption 3.3, given an exogenously specified

value of b1. As a benchmark, we set λ = −.20 and γ = .90.

4.2. Variance Bounds. Corollary 3.6 suggests that higher-order belief dynamics might

make asset prices appear to be ‘too volatile’ relative to their fundamentals. A key contri-

bution of our paper is the ability to quantify the degree of excess volatility associated with

higher-order belief dynamics. One way of doing this is to show that heterogeneous beliefs

equilibria can violate standard variance bounds inequalities. Violations of these bounds are

a robust empirical finding.

Variance bounds are based on the idea that observed asset prices should be less volatile

than their perfect foresight counterparts (i.e., the subsequent realization of discounted fu-

ture fundamentals). Since prices represent expectations of discounted future fundamentals,

it makes sense that they should be smoother than the realizations of discounted future fun-

damentals. However, the logic behind this rests on two key assumptions. First, there are no

missing fundamentals.20 Note, however, that the logic of variance bounds can still be ap-

plied when agents use unobserved information to forecast observed fundamentals.21 Since our

model embodies unobserved fundamentals, in the form of forecasts of other agents’ forecasts,

we will not emphasize this distinction, although when reporting estimates of cross-equation

restrictions, we report variance bounds that are robust to inside information. Second, and

more importantly, the logic of variance bounds is premised on the assumption that forecast

errors are orthogonal to forecasts. In models with heterogeneous beliefs, this simply is not

the case. Although each trader’s own individual forecast errors are of course orthogonal to

his own information set, which includes prices, there is no guarantee that the econometri-

cian’s forecast errors are uncorrelated with prices. Standard conditioning down arguments

do not apply here, for the simple reason that with heterogeneous beliefs, the law of iterated

expectations breaks down. It breaks down because traders are not just forecasting future

fundamentals, they are forecasting other traders’ beliefs. These forecasts play the role of

‘missing fundamentals’.

To show that heterogeneous beliefs equilibria can violate variance bounds, it therefore

suffices to show that the variance of observed prices can exceed the variance of perfect

foresight prices. Although one could demonstrate this even without imposing the restriction

var(ε2) → 0, the analysis becomes especially transparent when this is the case. Also, since

in practice variance bounds tests are based solely on observed price and dividend data, it is

20Hamilton and Whiteman (1985) emphasize this point.
21See, e.g., West (1988) and Campbell and Shiller (1987).

17



important that one derive the result using the econometrician’s Wold representation, using

the observable shocks, ei,t.

Proposition 4.1. As var(ε2) → 0, a necessary and sufficient condition for asset prices to

violate the standard variance bound is that β < 2λκ1/(1 + λ2κ2
1).

The proof is algebraically messy, so it is relegated to the Appendix. Note that bound

violations are more likely to occur when a dominant (i.e., high variance) shock is observed by

a large fraction of traders (in this case, as κ1 → 1). Although this is perhaps a rather special

result, it is important nonetheless. Previous criticisms of Shiller’s work have been based on

statistical problems. By way of contrast, this result is based on economic considerations,

namely, the assumption that prices fully reveal private information, so that in equilibrium

everyone makes the same forecasts. Without this assumption, the orthogonality that drives

the result goes out the window.

Of course, the issue here is whether the bound is breached for plausible parameter values.

Notice that violations cannot occur when λ < 0. Hence, we know our benchmark specification

for dividends will satisfy the Shiller bound. Moreover, Shiller’s work suggests the bound is

violated by a significant margin, by a factor of 2-5 depending on statistical assumptions. To

investigate whether significant bound violations occur for reasonable parameter values we

must resort to numerical simulations.22

Figure 2 reports plots of var(p)/var(ppf) for alternative parameter values. Since Proposi-

tion 4.1 presumes var(ε2) → 0, Figure 2 imposes the restriction σ2
ε2

= 0. Also, it is apparent

that b1 merely scales up both variances by the same amount, so for these plots the value of b1

is irrelevant. We set it at b1 = 0.2. What is important are the values of κ1 and κ2. One can

easily see from the necessary and sufficient condition in Proposition 4.1 that for violations

to occur for empirically realistic values of β and λ, it must be the case that κ1 exceed 0.5 by

a significant margin, about κ1 > 0.8. That is, most traders must observe the high variance

shock. Figure 2 is based on the value κ1 = .99. Finally, given annual data, we set β = .90.

This is close to the original discount rates used by Shiller.

Figure 2 plots the variance ratio as a function of γ, for two different values of λ. The top

panel displays the results when λ = −0.20, the value suggested by the univariate ARMA

estimates for dividends. One can see that the bound is comfortably satisfied for values of γ

close to the point estimates in Table 1.

In retrospect, it is not too surprising that small values of λ generate only a small amount

of additional volatility. One can see why by inspecting the price function decomposition

in Proposition 3.5. Notice that the persistence of heterogeneous beliefs is dictated by λ.

22Note, bound violations also occur without our simplifying Assumption 3.1. Relaxing the common root
restriction leads to the sufficient conditions: κ1 ≈ κ2, β > λ, and (1 + λ2)2 > (1 + β)(1 − λ)2(1 + λ)[2(1 +
λ2) + (1 − λ)/(1− β)]. Again, these are just sufficient conditions.
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Figure 2: Shiller Bound

When λ is close to one, heterogeneous beliefs will be very persistent. Conversely, when λ is

close to zero, as in the top panel of Figure 2, heterogeneous beliefs just add a small amount

high frequency noise to prices. In particular, since the variance of heterogeneous beliefs is

proportional to (1 − λ2)/(1 − λβ)2, one can see that it is an increasing function of λ for

plausible values of λ and β.

This intuition is confirmed in the bottom panel of Figure 2, which displays the variance

ratio when λ = 0.8. Now we see significant violations of the bound, of the same order

of magnitude that Shiller found. For example, when γ = .90, its benchmark value, the

variance of observed prices is more than double its hypothetical upper bound! Note this is

not an artifact of biased statistical procedures, since we are comparing population moments.

Unfortunately, when γ = .9 and λ = .8, the implied persistence of dividends is far too low.

One can see, however, that significant bound violations still occur as γ → 1. For example,

when γ = .98 the variance of observed prices exceeds the bound by about 50%, and in this

case dividends are fairly persistent, with a first-order autocorrelation above .55, which then

damps out slowly. Although we can statistically reject this specification, it does not produce

wildly implausible sample paths.

This point is reinforced in Figure 3, which compares the sample path of observed stock

prices with their perfect foresight counterparts. The top panel updates Shiller’s (1981)

original plot.
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Figure 3: Stock Prices vs Present Value of Future Dividends

This graph, more than anything else, is what struck a chord with the profession (and its

potential to be misleading is what motivated subsequent critics). The only difference is that

we’ve used the observed terminal price as the end-of-sample estimate of discounted future

dividends, rather than Shiller’s original strategy of using the sample average price. It is now

well known that using average prices produces a bias toward rejection, whereas use of the

terminal price is unbiased. (See, e.g., Mankiw, Romer, and Shapiro (1985)). The bottom

panel of Figure 3 follows the same procedure using data generated by our nonrevealing

Rational Expectations model. All the parameters are the same as before, except now we’ve

set λ = .8 and set γ = .98. Although it is not as striking as in the data, the plot still gives

the distinct impression that prices are too volatile relative to their fundamentals.23

4.3. Return Predictability. Another widely documented failure of linear present value

models is the ability to predict excess returns, which in the case of a constant discount rate,

just means the ability to predict returns themselves. Initially, excess volatility and return

predictability were thought to be distinct puzzles. However, it is now well known that they

are two sides of the same coin.24 In fact, a finding of excess volatility can be interpreted as

long (i.e., infinite) horizon return predictability. Both puzzles are driven by the violation of

23Our conjecture is that by relaxing Assumption 3.1 we could improve the fit of the model along this
dimension.
24Both Cochrane (2001) and Shiller (1989) emphasize this point.
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the model’s implied orthogonality conditions. Still, it is useful to show how and why this

occurs even in the case of one-period returns.

Of course, by construction the model’s orthogonality condition in (2.1) is satisfied. The

equilibrium pricing functions were computed by imposing this condition. However, this

is not the condition our econometrician is testing. He is falsely assuming that everyone

has the same expectation. Although average expectations of returns are indeed zero, our

econometrician does not observe the underlying shocks that generate these expectations, so

he cannot test this prediction of the model. Instead, he uses the the Wold representation

in (4.1) to construct what he (falsely) believes is the ‘market’s’ expectation of next period’s

price. The results are summarized as follows

Proposition 4.2. Define the time-t + 1 excess return as Rt+1 = βpt+1 + dt − pt. Then as

var(ε2) → 0 the Wold representation in (4.1) generates the following projection of Rt+1 onto

the (econometrician’s) time-t information set

Rt+1 = b1λ

(

ã−1
1 (L)

1− λL

)

dt.

Again, the proof is by construction. As var(ε2) → 0 and after several simplifications to

(3.10), we can write the equilibrium price as follows

pt = (L− λ)

[

Lã1(L)− βã1(β)

L− β
+

κ2

κ1

b1λ

1− λβ

1

1− λL

]

ε1t

Expressed in terms of the Wold representation we have

pt = (1− λL)

[

Lã1(L)− βã1(β)

L− β

]

e1,t +
κ2

κ1

b1λ

1− λβ
e1,t

≡ A(L)e1,t +
κ2

κ1

b1λ

1− λβ
e1,t

where e1,t = [(L− λ)/(1− λL)]ε1t. Therefore,

βEtpt+1 + dt − pt =
{

βL−1[A(L)− A(0)] + (1− λL)ã1(L)− [A(L) + κ2b1/κ1(1− λβ)]
}

e1,t

= λb1e1,t

The result now follows from the fact that dt → (1− λL)ã1(L)e1,t as var(ε2) → 0.

Proposition 4.2 suggests that if we regress Rt onto lagged information we should find statis-

tically significant coefficients. (The result is stated in terms of lagged dividends, but it could

just as easily have been stated in terms of lagged prices or returns, given their equilibrium

relationship). Table 2 contains a small set of results from these kinds of regressions, using

Shiller’s annual data. (Since in Shiller’s data prices are sampled in January and dividends

accrue throughout the year, we do not assume time-t dividends are in the time-t information

set).
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TABLE 2

Return Predictability

Rt−1 Rt−2 Dt−1 Dt−2 R̄2

Data

Rt = .344 .111

(.195)

Rt = .398 −.160 .127

(.166) (.141)

Rt = 3.19 .034

(1.29)

Rt = 12.9 −10.2 .046

(4.58) (5.10)

Model

Rt = −.504 .246

(.075)

Rt = −.681 −.354 .338

(.081) (.082)

Rt = 2.81 .214

(.459)

Rt = −3.72 1.90 .291

(.493) (.495)

Notes: (1) All regressions include a constant.

(2) Heteroskedascity-robust standard errors in parentheses.

The results here are quite consistent with previous results. There is some modest evidence

in favor of predictability, but it is not overwhelming. Evidence of predictability is somewhat

stronger using model-simulated data. There are of course a plethora of statistical pitfalls

associated with these regressions, but again, our results suggest that even if one had access to

the population second moments, we should still observe predictability. Finding that returns

are predictable is not a puzzle if investors have heterogeneous expectations of returns.

4.4. Cross-Equation Restrictions. The Rational Expectations revolution ushered in many

methodological changes. One of the most important concerned the way econometricians

identify their models. Instead of producing zero restrictions, the Rational Expectations Hy-

pothesis produces cross-equation restrictions. Specifically, parameters describing the laws

of motion of exogenous forcing processes enter the laws of motion of endogenous decision

processes. In fact, in an oft-repeated phrase, Sargent dubbed these restrictions the ‘hallmark

of Rational Expectations’. Hansen and Sargent (1991b) and Campbell and Shiller (1987)
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proposed useful procedures for testing these restrictions. When these tests are applied to

present value asset pricing models, they are almost without exception rejected, and in a

resounding way. There have been many responses to these rejections. Some interpret them

as evidence in favor of stochastic discount factors. Others intepret them as evidence against

the Rational Expectations Hypothesis. We offer a different response. We show that rejec-

tions of cross-equation restrictions may simply reflect an informational misspecification, one

that presumes a revealing equilibrium and homogeneous beliefs when in fact markets are

characterized by heterogeneous beliefs.

For reference purposes we repeat the Wold Representation given by equation (4.1)
[

ft

pt

]

=

[

(1− λL)ã1(L) (1− λL)ã2(L)

K(ã1(L)) K(ã2(L))

][

e1,t

e2,t

]

(4.3)

where we now write the pricing function (1−λL)π̃(L) as K(ã(L)) to emphasize the fact that

it is the output of a linear operator, K(·), defined by equations (3.10) and (3.11). Note that

the heterogeneous beliefs pricing operator actually consists of the sum of two linear operators,

K = Ks + Kh, where Ks denotes the conventional symmetric information operator, given

by the Hansen-Sargent formula, and Kh denotes the heterogeneous beliefs operator defined

in Proposition 3.5. This gives rise to the following result,

Proposition 4.3. Standard cross-equation restriction tests, which falsely presume a common

information set, can produce spurious rejections.

Proof. When there are heterogeneous beliefs, πi(L) = K(ai(L)), where K = Ks+Kh. Cross-

equation restriction tests based on the false assumption of homogeneous beliefs amount to

dropping the Kh component of the pricing operator. This can produce strong rejections

when Kh(ai(L)) is ‘big’ (in the operator sense). �

Again, the real issue here is the quantitative significance of this result. Although one

could perhaps investigate this analytically, it is simpler to just perform a simulation. Table

3 contains two sets of results. The top panel replicates the VAR testing strategy of Campbell

and Shiller (1987) using updated data from Shiller’s website.25 Given the annual frequency,

a VAR(1) appears adequate. The final three columns report the outcomes of various tests

and diagnostics. The χ2(2) column reports the Wald statistic for the model’s two cross-

equation restrictions. As many others have found, these restrictions are strongly rejected.

The var(P )/var(P̂ ) column reports the ratio

25In contrast to Campbell and Shiller (1987), we do not assume unit roots and cointegration. To maintain
consistency with our previous results we use detrended data.
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TABLE 3

Cross-Equation Restrictions: Annual Data (1871-2006)

Data Dt−1 Pt−1 R̄2 DW χ2(2) var(P )/var(P̂ ) corr(P , P̂ )

Dt = .912 .001 .842 1.72

(.036) (.001)

11.8 38.8 .47

Pt = −1.28 .927 .814 1.72

(1.16) (.040)

Simulation

Dt = .425 .004 .211 2.31

(.100) (.006)

91.4 451.4 .72

Pt = 3.85 .128 .106 2.14

(1.65) (.107)

Notes: (1) χ2(2) is the Wald statistic for the cross-equation restrictions (0, 1)[I − βψ] = (1, 0)βψ,

where ψ is the VAR(1) coefficient matrix.

(2) P̂ ≡ Expected present discounted value of dividends with β = .90.

(3) Asymptotic standard errors in parentheses.

between the variance of observed prices and the variance of predicted prices, using the

VAR to construct the present discounted value of future dividends. Under the null, this

ratio should be one. The point estimate suggests even a stronger rejection than the earlier

variance bound results, which is somewhat surprising in light of the fact that this estimate

is robust to presence of inside information, which would tend to make observed prices more

volatile than expected. The final column reports the sample correlation coefficient between

actual and predicted prices. As Campbell and Shiller (1987) emphasized, even though the

model is strongly rejected statistically, it does have some ability to track observed prices.

The bottom panel reports the results from following the exact same procedures using

data generated by the model, with the parameter values κ1 = .99, λ = .80, and γ = .98.

Interestingly, applying the Campbell-Shiller method to the model leads to even stronger

rejections. The strange looking coefficient estimates in the price equation arise from the

near ‘exactness’ of the model. With lagged dividends included, prices should have little

additional explanatory power for future prices. As in the data, the correlation between the

model’s predicted price and the actual price is fairly high. Instead, the failure in both cases

stems from the excessive volatility of prices. This can be seen in Figure 4, which plots actual

versus predicted prices for both observed data and model-generated data.

Note that the top half of Figure 4 is nearly identical to the top half of Figure 3. On the

other hand, the bottom portions of these two Figures, pertaining to model-generated data,
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Figure 4: Actual vs. Predicted Stock Prices

are quite different. According to the VAR, dividends are not very persistent or forecastable.

As a result, predicted prices, which are based on VAR forecasts of future dividends, are

nearly flat.

It is noteworthy that we continue to reject the model despite using procedures that are

robust to the possibility that agents have more information than the econometrician. This

kind of asymmetric information is not the issue here. Rather it is the presence of asymmetric

information among the agents themselves that is the source of the problem. When the agents

themselves have asymmetric information, prices are determined by average expectations, and

these averaged expectations do not adhere to the law of iterated expectations. Unfortunately,

the clever VAR procedures of Hansen and Sargent (1991a) and Campbell and Shiller (1987)

rely heavily on the law of iterated expectations.

5. Conclusion

For more than thirty years now, economists have been rejecting linear present value asset

pricing models. These rejections have been interpreted as evidence in favor of time-varying

risk premia. Unfortunately, linking risk premia to observable data has been quite challenging.

Promising approaches for meeting the challenge involve introducing incomplete markets and

agent heterogeneity into models.

This paper has suggested that a different sort of heterogeneity, an informational het-

erogeneity, offers an equally promising route toward reconciling asset prices with observed

fundamentals. Unfortunately, heterogeneous information does not automatically translate

into heterogeneous beliefs, and it is only the latter that generates the ‘excess volatility’ that
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is so commonly seen in the data. The hard work in the analysis, therefore, is deriving the

conditions that prevent market data from fully revealing the private information of agents

in dynamic settings. We have argued that frequency-domain methods possess distinct ad-

vantages over time-domain methods in this regard. The key to keeping information from

leaking out through observed asset prices is to ensure that the mappings between the two

are ‘noninvertible’. These noninvertibility conditions are easy to derive and manipulate in

the frequency domain.

Our results demonstrate how informational heterogeneity can in principle explain well-

known empirical anomalies, such as excess volatility, excess return predictability, and re-

jections of cross-equation restrictions. Ever since Townsend (1983) and Singleton (1987),

(or in fact, ever since Keynes!) economists have suspected that heterogeneous beliefs could

be responsible for the apparent excess volatility in financial markets. Our results at last

confirm these suspicions. Although we believe we have made substantial progress, there are

still many avenues open for future research. Two seem particularly important. First, like

the recent work of Engel, Mark, and West (2007), our paper offers some hope for linear

present value models. Unlike their work, however, which is largely based on statistical and

calibration issues, our paper points to a more radical reorientation of VAR methodology. In

particular, it would be useful to develop and implement empirical procedures that are robust

to heterogeneous beliefs, and perhaps even develop statistical tests that could reliably detect

their presence. Second, the entire analysis here rests heavily on linearity. However, most

macroeconomic models feature nonlinearities of one form or another. It is not at all clear

whether standard linearization methods are applicable in models featuring heterogeneous

beliefs. Resolving this issue will also be important for future applications.
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Appendix A. Proof of Proposition 4.1

The proof is by brute force computation. Let ppft denote the perfect foresight price. It is

given by

ppft =
∞
∑

j=0

βjft+j =
Lã1(L)(1− λL)

(L− β)
ε1,t +

Lã2(L)(1 − λL)

(L− β)
ε2,t

As var(ε2) → 0, the econometrician’s price process becomes

pt = (1− λL)

[

Lã1(L)− βã1(β)

L− β

]

ε1,t +
κ2

κ1

b1λ

1− λβ
ε1,t

= ppft − βã1(β)
1− λL

L− β
ε1,t +

κ2

κ1

b1λ

1− λβ
ε1,t

Using the existence condition in Assumption 3.3 to substitute out βã1(β) we can write this

as,

pt = ppft +
b1(κ

−1
1 − λL)

L− β
ε1,t

Using the residue calculus, we have

var(p) = var(ppf) + b21

∮

(κ−1
1 − λz)

z − β

(κ−1
1 − λz−1)

z−1 − β

dz

z

+ 2b1

∮
(

zã1(z)(1− λz)

z − β

)(

κ−1
1 − λz−1

z−1 − β

)

dz

z

= var(ppf) +
b21

β(1− β2)

[

2λκ−1
1 − κ−2

1 β − λ2β
]

From this it is clear that var(p) > var(ppf) iff β < 2λκ1/(1 + λ2κ2
1).

Appendix B. Frequency Domain Techniques (Not for Publication)

This appendix offers a brief introduction to the frequency domain techniques used to solve

the model. Rather than match an infinite sequence of unknown coefficients, we employ the

following theorem and solve for a fixed point in a function space.

Theorem (Riesz-Fischer): Let {cn} be a square summable sequence of complex numbers

(i.e.,
∑

∞

n=−∞
|cn|

2 < ∞). Then there exists a complex-valued function, g(ω), defined for

ω ∈ [−π, π], such that

g(ω) =

∞
∑

j=−∞

cje
−iωj (B.1)

where convergence is in the mean-square sense

lim
n→∞

∫ π

−π

∣

∣

∣

∣

∣

n
∑

j=−n

cje
−iωj − g(ω)

∣

∣

∣

∣

∣

2

dω = 0
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and g(ω) is square (Lebesgue) integrable
∫ π

−π

|g(ω)|2dω < ∞

Conversely, given a square integrable g(ω) there exists a square summable sequence such that

ck =
1

2π

∫ π

−π

g(ω)eiωkdω (B.2)

The Fourier transform pair in (B.1) and (B.2) defines an isometric isomorphism (i.e., a one-

to-one onto transformation that preserves distance and linear structure) between the space

of square summable sequences, ℓ2(−∞,∞), and the space of square integrable functions,

L2[−π, π]. The sequence space, ℓ2, is referred to as the ‘time domain’ and the function

space, L2, is referred to as the ‘frequency domain’. The equivalence between these two

spaces allows us to work in whichever is most convenient. A basic premise of this paper

is that in models featuring higher-order beliefs, the frequency domain is analytically more

convenient.

In the context of linear prediction and signal extraction, it is useful to work with a version

of Riesz-Fischer theorem that is generalized in one sense and specialized in another. In

particular, it is possible to show, via Poisson’s integral formula, that the statement of the

theorem applies not only to functions defined on an interval (the boundary of the unit circle),

but to analytic functions defined within the entire unit circle of the complex plane. However,

when extending the theorem in this way we exclude functions with Fourier coefficients that

are nonzero for negative k. That is, we limit ourselves to functions where c−k = 0 in

equations (B.1) and (B.2). This turns out to be useful, since it is precisely these functions

that represent the ‘past’ in the time domain. A space of analytic functions in the unit disk

defined in this way is called a Hardy space, with an inner product defined by the contour

integral,

(g1, g2) =
1

2πi

∮

g1(z)g2(z)
dz

z
.

Rather than postulate a functional form and match coefficients, we solve for a single an-

alytic function which represents, in the sense of the Riesz-Fischer theorem, this unknown

pricing function. The approach is still ‘guess and verify’, but it takes place in a function

space, and it works because the Riesz-Fischer theorem tells us that two stochastic processes

are ‘equal’ (in the sense of mean-squared convergence) if and only if their z-transforms

are identical as analytic functions inside the (open) unit disk. The real advantage of this

approach stems from the ease with which it handles noninvertibility (i.e., nonrevealing in-

formation) issues. Invertibility hinges on the absence of zeros inside the unit circle of the
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z-transform of the observed market data. By characterizing these zeros, we characterize the

information revealing properties of the equilibrium.

Appendix C. Microfoundations of the Model (Not for Publication)

This appendix develops a microfounded justification for the present value model of section

2. The model is a stylized noisy rational expectations model that is standard in the asset

pricing literature. We examine an infinite horizon trading model where time is discreet and

indexed by t = 0, 1, 2, ...

C.1. Assets. There is a risky asset (stock) and riskless asset (bond) that is traded at each

date. The riskless asset is in perfectly elastic supply with rate of return 1 + rt ∀t. The

stock pays a dividend with value ft. Shares of the stock are infinitely divisible and traded

competitively. Following the standard assumption in the literature, we assume that the

number of shares available to the market is random, ut. This assumption follows the usual

noise trading story in which a fraction of the traders are liquidity traders with inelastic

demand of 1 − ut shares of stock at t, leaving ut shares to be traded (normalizing the total

shares to one). We assume that the stochastic processes ut and ft are all stationary and

Gaussian.

C.2. Investors. We assume all traders are price takers in that they are not large enough to

influence the price. We assume investors submit demand schedules according to the linear

trading rule

X i
t = E[Qt+1|F

i
t ], Qt+1 = (1 + r)ft + pt+1 − (1 + r)pt (C.1)

where F i
t is the information set of trader i at t, pt is the price of the stock, and Qt+1 is the

excess return of the stock. Note that this is demand can be derived from the usual trading

rule assuming trader i chooses the amount of stock to purchase in accordance with a CARA

preference structure over wealth. The difference is that we have assumed the coefficient of

risk aversion and the conditional variance term are normalized to unity. Setting demand

equal to the stochastic supply delivers (2.1).
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