ROBUSTNESS AND EXCHANGE RATE VOLATILITY
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ABSTRACT. This paper studies exchange rate volatility within the context of the mone-
tary model of exchange rates. We assume agents regard this model as merely a bench-
mark, or reference model, and attempt to construct forecasts that are robust to model
misspecification. We show that revisions of robust forecasts are more volatile than revi-
sions of nonrobust forecasts, and that empirically plausible concerns for model misspec-
ification can easily explain observed exchange rate volatility.
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1. INTRODUCTION

Exchange rate volatility remains a mystery. Over the years, many explanations have
been offered - bubbles, sunspots, ‘unobserved fundamentals’, noise traders, etcetera. Our
paper offers a new explanation. Our explanation is based on a disciplined retreat from
the Rational Expectations Hypothesis. The Rational Expectations Hypothesis involves
two assumptions: (1) Agents know the correct model of the economy (at least up to a
small handful of unknown parameters, which can be learned about using Bayes rule), and
(2) Given their knowledge of the model, agents make statistically optimal forecasts. In
this paper, we try to retain the idea that agents process information efficiently, while at
the same time relaxing what we view as the more controversial assumption, namely, that
agents know the correct model up to a finite dimensional parameterization.

Of course, if agents don’t know the model, and do not have conventional finite-dimensional
priors about it, the obvious question becomes - How are they supposed to forecast the fu-
ture? Our answer is to suppose that agents possess a simple benchmark model of the
economy, containing a few key macroeconomic variables. We further suppose that agents
are aware of their own ignorance, and respond to it strategically by constructing forecasts
from the benchmark model that are robust to a wide spectrum of potential misspecifica-
tions. We show that revisions of robust forecasts are quite sensitive to new information,
and in the case of exchange rates, can easily account for observed exchange rate volatility.

Our paper is closely related to prior work by Hansen and Sargent (2008), Kasa (2001),
and Lewis and Whiteman (2008). Hansen and Sargent have pioneered the application of
robust control methods in economics. This literature formalizes the idea of a robust policy
or forecast by viewing agents as solving dynamic zero sum games, in which a so-called ‘evil
agent’ attempts to subvert the control or forecasting efforts of the decisionmaker. Hansen
and Sargent show that concerns for robustness and model misspecification shed light on
a wide variety of asset market phenomena, although they do not focus on exchange rate
volatility. Kasa (2001) used frequency domain methods to derive a robust version of the

Date: January, 2012.



2 EDOUARD DJEUTEM AND KENNETH KASA

well known Hansen and Sargent (1980) prediction formula. This formula is a key input
to all present value asset pricing models. Lewis and Whiteman (2008) use this formula
to study stock market volatility. They show that concerns for model misspecification
can explain observed violations of Shiller’s variance bound. They also apply a version of
Hansen and Sargent’s detection error probabilities to gauge the empirical plausibility of the
agent’s fear of model misspecification. Since robust forecasts are the outcome of a minmax
control problem, one needs to make sure that agents are not being excessively pessimistic,
by hedging against models that could have been easily rejected on the basis of observed
historical time series. Lewis and Whiteman’s results suggest that explaining stock market
volatility solely on the basis of a a concern for robustness requires an excessive degree
of pessimism on the part of market participants. Interestingly, when we modify their
detection error calculations slightly, we find that robust forecasts can explain observed
exchange rate volatility.'

Since there are already many explanations of exchange rate volatility, a fair question
at this point is - Why do we need another one? We claim that our approach enjoys
several advantages compared to existing explanations. Although bubbles and sunspots can
obviously generate a lot of volatility, these models require an extreme degree of expectation
coordination. So far, no one has provided a convincing story for how bubbles or sunspots
emerge in the first place. Our approach requires a more modest degree of coordination.
Agents must merely agree on a simple benchmark model, and be aware of the fact that
this model may be misspecified.? It is also clear that noise traders can generate a lot of
volatility. However, as with bubbles and sunspots, there is not yet a convincing story for
where these noise traders come from, and why they aren’t driven from the market. An
attractive feature of our approach is that, if anything, agents in our model are smarter
than usual, since they are aware of their own lack of knowledge about the economy.?

Our approach is perhaps most closely related to the ‘unobserved fundamentals’ argu-
ments in West (1987), Engel and West (2004), and Engel, Mark, and West (2007). These
papers all point out that volatility tests aren’t very informative unless one is confident

IThis is not the first paper to apply robust control methods to the foreign exchange market. Li and
Tornell (2008) show that a particular type of structured uncertainty can explain the forward premium
puzzle. However, they do not calculate detection error probabilities. Colacito and Croce (2011) develop a
dynamic general equilibrium model with time-varying risk premia, and study its implications for exchange
rate volatility. They adopt a ‘dual’ perspective, by focusing on a risk-sensitivity interpretation of robust
control. However, they do not focus on Shiller bounds or detection error probabilities, as we do here.

20n bubbles, see inter alia Meese (1986) and Evans (1986). On sunspots, see Manuelli and Peck (1990)
and King, Weber, and Wallace (1992). It should be noted that there are ways to motivate the emergence
of sunspots via an adaptive learning process (Woodford (1990)), but then this just changes the question to
how agents coordinated on a very particular learning rule. Another possibility is to avoid the coordination
problem altogether, by postulating a collection of heterogeneous individuals who follow simple rules of
thumb, and whose behavior evolves over time via a selection process (see, e.g., Arifovic (1996).

30n the role of noise traders in fx markets, see Jeanne and Rose (2002). A more subtle way noise
traders can generate volatility is to prevent prices from revealing other traders’ private information. This
can produce a hierarchy of higher order beliefs about other traders’ expectations. Kasa, Walker, and
Whiteman (2010) show that these higher order belief dynamics can explain observed violations of Shiller
bounds in the US stock market.
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that the full array of macroeconomic fundamentals are captured by a model.* As a re-
sult, they argue that rather than test whether markets are ‘excessively volatile’, it is more
informative to simply compute the fraction of observed exchange rate volatility that can
be accounted for by innovations in observed fundamentals. Our perspective is similar,
yet subtlely different. In West, Engel-West, and Engel-Mark-West, fundamentals are only
unobserved by the outside econometrician. Agents within the (Rational Expectations)
model are presumed to observe them. In contrast, in our model it is the agents themselves
who suspect there might be missing fundamentals, in the form of unobserved shocks that
are correlated both over time and with the observed fundamentals. In fact, however, their
benchmark model could be perfectly well specified. (In the words of Hansen and Sargent,
their doubts are only ‘in their heads’). It is simply the prudent belief that they could be
wrong that makes agents aggressively revise forecasts in response to new information.

In contrast to ‘unobserved fundamentals’ explanations, which are obviously untestable,
there is a sense in which our model is testable. Since specification doubts are only ‘in
their heads’, we can ask whether an empirically plausible degree of doubt can rationalize
observed exchange rate volatility. That is, we only permit agents to worry about alterna-
tive models that could have plausibly generated the observed time series of exchange rates
and fundamentals, where plausible is defined as an acceptable detection error probability,
in close analogy to a significance level in a traditional hypothesis test. We find that given
a sample size in the range of 100-150 quarterly observations, detection error probabilities
in the range of 10-20% can explain observed exchange rate volatility.

The remainder of the paper is organized as follows. Section 2 briefly outlines the mone-
tary model of exchange rates. We assume agents regard this model as merely a benchmark,
and so construct forecasts that are robust to a diffuse array of unstructured alternatives.
Section 3 briefly summarizes the data. We examine quarterly data from 1973:1-2011:3
on six US dollar bilateral exchange rates: the Australian dollar, the Canadian dollar,
the Danish kroner, the Japanese yen, the Swiss franc, and the British pound. Section
4 contains the results of a battery of traditional excess volatility tests: Shiller’s original
bound applied to linearly detrended data, the bounds of West (1988) and Campbell-Shiller
(1987), which are robust to inside information and unit roots, and finally, and a couple
of more recent tests proposed by Engel and West (2004) and Engel (2005). Although the
results differ somewhat by test and currency, a fairly consistent picture of excess volatility
emerges. Section 5 contains the results of our robust volatility bounds. We first apply
Kasa’s (2001) robust Hansen-Sargent prediction formula, based on a so-called H* ap-
proach to robustness, and show that in this case the model actually predicts exchange
rates should be far more volatile than observed exchange rate volatility. We then follow
Lewis and Whiteman (2008) and solve a frequency domain version of Hansen and Sargent’s
evil agent game, which allows us to calibrate the degree of robustness to a given detec-
tion error probability. This is accomplished by assigning a penalty parameter to the evil
agent’s actions. We find that observed exchange rate volatility can be explained if agents
are hedging against models that have a 10-20% chance of being the true data-generating
process. Section 6 contains a few concluding remarks.

4Remember, there is an important difference between unobserved fundamentals and unobserved in-
formation about observed fundamentals. The latter can easily be accommodated using the methods of
Campbell and Shiller (1987) or West (1988).
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2. THE MONETARY MODEL OF EXCHANGE RATES

The monetary model has been a workhorse model in open-economy macroeconomics.
It is a linear, partial equilibrium model, which combines Purchasing Power Parity (PPP),
Uncovered Interest Parity (UIP), and reduced-form money demand equations to derive
a simple first-order expectational difference equation for the exchange rate. It presumes
monetary policy and other fundamentals are exogenous. Of course, there is evidence
against each of these underlying ingredients. An outside econometrician would have rea-
sons to doubt the specification of the model. Unlike previous variance bounds tests using
this model, we assume the agents within the model share these specification doubts.

Since the model is well known, we shall not go into details. (See, e.g., Mark (2001)
for a detailed exposition). Combining PPP, UIP, and identical log-linear money demands
yields the following exchange rate equation:

s¢ = (1= B)ft + BEs111 (2.1)

where s; is the log of the spot exchange rate, defined as the price of foreign currency.
The variable f; represents the underlying macroeconomic fundamentals. In the monetary
model, it is just
Je = (my —mi) = My — )

where m; is the log of the money supply, ; is the log of output, and asterisks denote
foreign variables. In what follows, we assume A = 1, where X is the income elasticity of
money demand. The key feature of equation (2.1) is that it views the exchange rate as a
an asset price. It’s current value is a convex combination of current fundamentals, f;, and
expectations of next period’s value. In traditional applications employing the Rational
Expectations Hypothesis, E; is defined to be the mathematical expectations operator.
We relax this assumption. Perhaps not surprisingly, 6 turns out to be an important
parameter, as it governs the weight placed on expectations in determining today’s value.
In the monetary model, this parameter is given by, 5 = «/(1 4+ «), where « is the interest
rate semi-elasticity of money demand. Following Engel and West (2005), we assume
95 < B <.99.

By imposing the no bubbles condition, lim; .. E37s;; = 0, and iterating eq. (2.1)
forward, we obtain the following present value model for the exchange rate

o
st=(1=B)E Y F fry (2.2)
§=0
which expresses the current exchange rate as the expected present discounted value of
future fundamentals. If f; is covariance stationary with Wold representation f; = A(L)ey,
then application of the Hansen-Sargent prediction formula yields the following closed-form
expression for the exchange rate,

StZ(l—ﬁ)[

L) - 44, (23)

L-p
We shall have occasion to refer back to this in Section 5, when discussing robust forecasts.
In practice, the assumption that f; is covariance stationary is questionable. Instead,
evidence suggests that for all six countries f; contains a unit root. In this case, we need
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to reformulate equation (2.2) in terms of stationary variables. Following Campbell and
Shiller (1987), we can do this by defining the ‘spread’, ¢, = s; — fi, and expressing it as a
function of expected future changes in fundamentals, Afi 1 = fiy1 — fi°

[e.e]
si— fo=E Y Ay (2.4)
j=1
Applying the Hansen-Sargent formula to this expression yields the following closed form
expression for the spread,

ZUER I

&—ﬁzﬁ[ 173 (2:5)

where we now assume that Af, = A(L)e;.

3. THE DATA

We study six US dollar exchange rates: the Australian dollar, the Canadian dollar,
the Danish kroner, the Japanese yen, the Swiss franc, and the British pound. The data
are taken from the IFS, and are quarterly end-of-period observations, expressed as the
dollar price of foreign currency. Money supply and income data are from the OECD
Main Economic Indicators. Money supply data are seasonally adjusted M1 (except for
Britain, which is M4). Income data are seasonally adjusted real GDP, expressed in national
currency units. All data are expressed in natural logs.

Table 1 contains summary statistics for As; and A f;.

TABLE 1
SUMMARY STATISTICS: QUARTERLY DATA (1973:1-2011:3)

Aus Can Den Jap Swz UK
As
Mean —.0024 —.0002 .0007 .0080 .0083 —.0030
StDev .0547 .0311 .0576 .0590 .0649 .0529
1 .067 178 .067 .060 —.008 151
af
Mean —.0091 —.0071 —.0105 —.0035 —.0053 —.0136
StDev .0307 .0197 .0277 .0273 .0455 .0236
£1 197 .367 277 .394 .092 1461

Notes: (1) USA is reference currency, with s = price of fx in US dollars.
(2) Both s and f are in natural logs, with f =m —m* — (y — y*).
(3) p1 is the first-order autocorrelation coefficient.

There are three noteworthy features. First, it is apparent that exchange rates are close
to random walks, while at the same time changes in fundamentals are predictable. This
apparent contradiction was explained by Engel and West (2005). They show that if the
discount factor is close to one, as it is with quarterly data, then exchange rates should
be close to random walks. Second, it is apparent that the mean of As; does not always
match up well with the mean of Af;. This simply reflects the fact that some of these

5This suggests that s; — f: should be stationary, i.e., s; and f: are cointegrated. As we show in the next
section, the evidence here is more mixed.
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currencies have experienced long-run real appreciations or depreciations. This constitutes
prima facie evidence against the monetary model, independent of its volatility implications.
Our empirical work accounts for these missing trends by either detrending the data, or
by including trends in posited cointegrating relationships. This gives the model the best
chance possible to explain exchange rate volatility. Third, and most importantly for the
purposes of our paper, note that the standard deviations of As; are around twice as large
as the standard deviations of Af;. Given the mild persistence in Af;, this is a major
problem when it comes to explaining observed exchange rate volatility.

As we discuss in more detail in the following section, variance bounds tests require
assumptions about the nature of trends in the data. The original tests of Shiller (1981)
presumed stationarity around a deterministic trend. Subsequent work showed that this
causes a bias toward rejection if in fact the data contain unit roots, which then led to the
development of tests that are robust to the presence of unit roots (Campbell and Shiller
(1987), West (1988)). Table 2 contains the usual tests for unit roots and cointegration.

TABLE 2
UNIT ROOT AND COINTEGRATION TESTS

Aus Can Den Jap Swz UK
Dickey-Fuller
s —1.43 —1.16 —1.96 —2.08 —2.56 —2.70
f —1.03 —2.09 —1.57 —1.24 —2.27 —1.43
(s—=1) —2.05 —1.91 —2.44 —2.37 —3.52 —3.25
Engle-Granger
(s /) —1.44  —1.60 —2.49 —4.16 —3.62 —3.30
Johansen (Trace)
(s, 1) 4.73 11.18 11.33 20.12 23.51 19.21

Notes: (1) DF and EG regressions include constant, trend, and four lags.
(2) (5%,10%) critical values for DF = (—3.44,—3.14).
(3) (5%,10%) critical values for EG = (—3.84, —3.54).
(4) Johansen based on VAR(4) with deterministic trend. 5% critical value = 18.40.

Clearly, there is little evidence against the unit root null for both the exchange rate
and fundamentals. This casts doubt on the applicability of the original Shiller bound.
One can also see that the cointegration evidence is more mixed. There is some evidence
in favor of cointegration for Japan, Switzerland, and the UK (especially when using the
Johansen test), but little or no evidence for Australia, Canada, or Denmark. Later, when
implementing tests based on the unit root specification, we simply assume the implied
cointegration restrictions hold.

4. TRADITIONAL VOLATILITY TESTS

As motivation for our paper, this section briefly presents results from applying tradi-
tional volatility tests. We present them roughly in order of their historical development.
Given our purposes, we do not dwell on the (many) statistical issues that arise when
implementing these tests.®

6See Gilles and LeRoy (1991) for an excellent summary of these issues.
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4.1. Shiller (1981). The attraction of Shiller’s original variance bound test is that it is
based on such a simple and compelling logic. Shiller noted that since asset prices are
the conditional expectation of the present value of future fundamentals, they should be
less volatile than the ex post realized values of these fundamentals. More formally, if we
define sy = (1 —f3) Z‘;‘;O [ fi4; as the ex post realized path of future fundamentals, then
the monetary model is equivalent to the statement that s; = Eysf. Next, we can always
decompose a random variable into the sum of its conditional mean and an orthogonal
forecast error,

* *
sy = Eisi+uy

= S+ u

Since by construction the two terms on the right-hand side are orthogonal, we can take
the variance of both sides and get

ag* = 0? + 05 = 0? < ag*
It’s as simple as that.” Two practical issues arise when implementing the bound. First,
prices and fundamentals clearly trend up over time. As a result, neither possesses a well
defined variance, so it is meaningless to apply the bounds test to the raw data. Shiller dealt
with this by linearly detrending the data. To maintain comparability, we do the same,
although later we present results that are robust to the presence of unit roots. Second,
future fundamentals are obviously unobserved beyond the end of the sample. Strictly
speaking then, we cannot compute 2., and therefore, Shiller’s bound is untestable. One
can always argue that agents within any given finite sample are acting on the basis of
some as yet unobserved event. Of course, this kind of explanation is the last refuge
of a scoundrel, and moreover, we show that it is unnecessary. Shiller handled the finite
sample problem by assuming that s7., the end-of-sample forecast for the discounted present
value of future fundamentals, was simply given by the sample average. Unfortunately,
subsequent researchers were quick to point out that this produces a bias toward rejection.
So in this case, we depart from Shiller by using the unbiased procedure recommended by
Mankiw, Romer, and Shapiro (1985). This involves iterating on the backward recursion
s; = (1= B)fi + Bs;,,, with the boundary condition, s7. = s7.

The first row of Table 3 reports results from applying Shiller’s bound. Evidently, rather
than being less volatile than ex post fundamentals, exchange rates are actually between 3
and 32 times as volatile as fundamentals.®

TAs emphasized by Kasa, Walker, and Whiteman (2010), matters aren’t quiet so simple in models
featuring heterogeneous beliefs. The law of iterated expectations does not apply to the average beliefs
operator. They show conventional applications of Shiller’s bound can easily generate false rejections when
there are heterogeneous beliefs.

8By way of comparison, Shiller (1981) found that U.S. stock prices were 5 times as volatile as funda-
mentals. In the first application to exchange rates, Huang (1981) found that the pound and deutschemark
were between 3 and 10 times too volatile. However, Diba (1987) pointed out that Huang’s results were
tainted by a miscalibrated discount factor. With empirically plausible values of 3, Huang’s tests showed
no signs of excess volatility.
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TABLE 3
TRADITIONAL VOLATILITY TESTS
Aus Can Den Jap Swz UK
Shiller
var(s)/var(s*) 3.13 7.85 25.7 2.93 14.2 32.5
Campbell-Shiller
var(¢)/var(¢*) 3.41 10.2 7.98 211.2 178.2 9.00
West
var(e)/var(é) 2.36 1.81 2.33 1.34 1.73 1.77
Engel-West
var(As)/var(Azg) 1.83 0.99 1.66 1.30 1.46 1.15
Engel
var(As)/var(AS8) 5.98 10.8 3.35 7.42 20.7 14.6

Notes: (1) Shiller bound based on detrended data, assuming s% = sp and 8 = .98.

(2) Campbell-Shiller bound based on a VAR(2) for (Af, ¢), assuming 3 = .98.
(3) Engel-West bound based on AR(2) for Af, assuming 8 = .98 ~ 1.

(4) Engel bound based on AR(1) for detrended

Perhaps the most striking result that Shiller presented was a simple time series plot of
s¢ versus s;. This, more than anything else, is what convinced many readers that stock
prices are excessively volatile.” Figure 1 reproduces the Shiller plot for each of our six
currencies. These particular plots are based on the assumption 8 = .98, but similar plots

ft, assuming 8 = .98.

are obtained for the empirically plausible range, .95 < 5 < .99.

Figure 1; Shiller Bounds
9 Canadea

Australia Denmark
1 0.5 1
9 -0.5 -1
50 100 150 50 100 150 50 100 150
Japan Switzerland United Kingdom
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
50 100 150 50 100 150 50 100 150

INot everyone was convinced. In particular, Kleidon (1986) warned that these plots could be quite

misleading if the underlying data are nonstationary.
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As with Shiller, these plots paint a clear picture of ‘excess volatility’. Unfortunately,
there are enough statistical caveats and pitfalls associated with these results, that it is
worthwhile to consider results from applying some of the more recently proposed bounds
tests, starting with the influential work of Campbell and Shiller (1987).

4.2. Campbell and Shiller (1987). The results of Shiller (1981) are sensitive to the
presence of unit roots in the data. As we saw in Table 2, there appear to be unit roots
in both s; and f; (even after the removal of a deterministic trend). Campbell and Shiller
(1987) devised a volatility test that is valid when the data are nonstationary. In addition,
they devised a clever way of capturing potential information that market participants
might have about future fundamentals that is unobserved by outside econometricians. To
do this, one simply needs to include current and lagged values of the exchange rate when
forecasting future fundamentals. Under the null, the current exchange rate is a sufficient
statistic for the present value of future fundamentals. Forecasting future fundamentals
with a VAR that includes the exchange rate converts Shiller’s variance bound inequality
to a variance equality. The model-implied forecast of the present value of fundamentals
should be identically equal to the actual exchange rate!

To handle unit roots, Campbell and Shiller (1987) presume that s; and f; are cointe-
grated, and then define the ‘spread’ variable ¢ = s; — f;. The model implies that ¢; is
the expected present value of future values of Af; (see eq. (2.4)). If we define the vector
(Aft, @)’ we can then estimate the following VAR,

e =V(L)xi—1 + &
By adding lags to the state, this can always be expressed as a VAR(1)
Ty = ‘i/i"t—1 + €

where U is a double companion matrix, and the first element of #; is Af;. The model-
implied spread, ¢f, is given by the expected present discounted value of {Af;;;}, which
can be expressed in terms of observables as follows,

¢; = el'BU(I — pb) "2, (4.6)
where el is a selection vector that picks off the first element of ;. The model therefore
implies var(¢;) = var(¢y).

The second row of Table 3 reports values of var(¢;)/var(¢;) based on a VAR(2) model
(including a trend and intercept). We fix § = .98, although the results are similar for
values in the range .95 < g < .99. Although Campbell and Shiller’s approach is quite
different, the results are quite similar. All ratios substantially exceed unity. Although the
Campbell-Shiller method points to relatively less volatility in Denmark and the UK, it
actually suggests greater excess volatility for Japan and Switzerland.

4.3. West (1988). West (1988) proposed an alternative test that is also robust to the
presence of unit roots. Rather than look directly at the volatility of observed prices and
fundamentals, West’s test is based on comparison of two innovation variances. These
innovations can be interpreted as one-period holding returns, and so are stationary even
when the underlying price and fundamentals processes are nonstationary. Following West
(1988), let I; be the market information set at time-t, and let H; C I; be some subset
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that is observable by the outside econometrician. In practice, H; is often assumed to
just contain the history of past (observable) fundamentals. Next, define the following two
present value forecasts:
o o
T = ZﬁJE(ft+j|Ht) Ty = ZﬁJE(ft+j|It)
Jj=0 Jj=0
West then derived the following variance bound,

E(z1,1 — Elzei,nlHi)? > B0 — Elwiga,g|L])?

This says that if market participants have more information than H;, their forecasts should
have a smaller innovation variance. Intuitively, when forecasts are based on a coarser
information set, there are more things that can produce a surprise. We apply this bound
to forecasts of the spread, ¢y = s; — fi, with H; assumed to contain both the history of
fundamentals and exchange rates. From the Campbell-Shiller logic, the inclusion of s; in
H; converts West’s variance bound inequality to a variance equality.

To derive the market’s innovation, we can write the present value model recursively as
follows

¢t = BE(dr41 + Afir1)

Exploiting the decomposition, ¢s11 + A fry1 = Ei(prr1+Afii1) +€e41, we can then derive
the ex post observable expression for the market’s innovation

%qbt

Note that 441 is just a one-period excess return. We can do the same for the predicted

€t41 = Gpq1 + Afip1 —

spread, ¢, estimated from the same VAR/(2) model used to compute the Campbell-Shiller
test. This yields the fitted excess return,

1
B
Under the null, var(e) = var(é). The third row of Table 3 contains the results. Interest-

ingly, the West test indicates a much less dramatic degree of excess volatility. Although
the point estimates continue to exceed unity, most are in the range 1.5-2.0.

i1 = e + Afiyr — =

4.4. Engel and West (2004). Engel and West (2004) use results from Engel and West
(2005) to derive a variance bound for the limiting case, 5 — 1. We implement this bound
assuming 3 = .98. Two things happen as § — 1. First, from West (1988) we know

12
32
Since var(zy g — ¢,) is bounded, it is clear that var(e; i) ~ var(esr) as § — 1. Second,
from Engel and West (2005) we know that s; converges to a random walk as 3 — 1.
Therefore, var(es;) ~ var(As;) as f — 1. Combining, we conclude that var(e; p) =~

var(As;) under the null as § — 1. To estimate var(e; z) we first estimate a univariate
VAR(2) for Af;,

var(ey g) = var(ze g — 1) + var(egr)

Afi =5 +NAfi—1 + YA fi—o + w
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We can then estimate var(e; i) as follows

var(e; ) = (1 — B41 — 3*42) " var(u)
The fourth row of Table 3 reports the ratio var(As;) /var(e; gr) for each of our six currencies.
Overall, the results are quite similar to the results from the West test, the only significant
difference being Canada, which has a point estimate (slightly) below unity. The results are
also quite similar to those reported by Engel and West (2004), although as noted earlier,
they interpret the results reciprocally, as the share of exchange rate volatility that can be
accounted for by observed fundamentals.

4.5. Engel (2005). Engel (2005) derives a variance bound that is closely related to the
West (1988) bound. Like the West bound, it is robust to the presence of unit roots. Let §;
be the forecast of the present discounted value of future fundamentals based on a subset,
H;, of the market’s information. Engel shows that the model, along with the Rational
Expectations Hypothesis, implies the following inequality'®

var(sy — sp—1) < var(8 — §;—1)

For simplicity, we test this bound by assuming that f; follows an AR(1) around a de-
terministic trend. That is, letting f; denote the demeaned and detrended f; process, we
assume f; = pfi—1 + us. In this case, we have

§t:a0+a1't+<1_ﬁ>ft = A§t=<1_ﬁ>Aft

1—pB 1—pB
The bottom row reports values of var(As;)/var(As;). Not surprisingly, given our previ-

ous results, they all exceed unity by a substantial margin, once again pointing to excess
volatility in the foreign exchange market.

5. RoBUST VOLATILITY TESTS

The results reported in the previous section are based on tests that make different as-
sumptions about information, trends, and the underlying data generating process. Despite
this, a consistent picture emerges - exchange rates appear to exhibit ‘excess volatility’. Of
course, we haven’t reported standard errors, so it is possible these results lack statistical
significance (although we doubt it). However, we agree with Shiller (1989). Pinning your
hopes on a lack of significance does not really provide much support for the model. It
merely says there isn’t enough evidence yet to reject it.

Although the previous tests differ along several dimensions, there is one assumption
they all share, namely, the Rational Expectations Hypothesis (REH). As noted earlier,
this is a joint hypothesis, based on two assumptions: (1) Agents have common knowl-
edge of the correct model, and (2) Agents make statistically optimal forecasts. Of course,
many previous researchers have interpreted Shiller’s work as evidence against the Ratio-
nal Expectations Hypothesis (including Shiller himself!). However, there is an important

10Engel (2005) also derives a second bound. As before, let s; denote the ex post realized present value
of future fundamentals. Engel shows that the model implies var(s; — s;_1) < var(s¢ — s¢t—1). Note, this is
like the Shiller bound, but in first differences. However, note that the direction of the bound is reversed!
Although we haven’t formally checked it, given our previous results, we suspect this bound would be easily
satisfied.
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difference between our response and previous responses. Previous responses have focused
on the second part of the REH, and so have studied the consequences of various kinds
of ad hoc forecasting strategies. In contrast, we try to retain the idea that agents make
statistically optimal forecasts, and instead relax the first part of the REH. We further
assume that the sort of model uncertainty that agents confront cannot be captured by a
conventional (finite-dimensional) Bayesian prior. As a result, we define an optimal forecast
in terms of ‘robustness’.!! Of course, it is possible to abandon both parts of the REH at the
same time. This has been the approach of the adaptive learning literature. For example,
Kim (2009) shows that (discounted) Least Squares learning about the parameters of an
otherwise known fundamentals process can generate significant exchange rate volatility
(although he does not focus on violation of variance bounds inequalities). Markiewicz
(2011) assumes agents entertain a set of competing models, each of which is adaptively es-
timated. She shows that endogenous model switching can generate time-varying exchange
rate volatility.

5.1. A Robust Hansen-Sargent Prediction Formula. In contrast to the previous sec-
tion, where agents knew the monetary model was the true data-generating process, here
we suppose agents entertain the possibility that they are wrong. Although the monetary
model is still regarded as a useful benchmark, agents suspect the model could be misspeci-
fied in ways that are difficult to capture with a standard Bayesian prior. To operationalize
the idea of a robust forecast, agents employ the device of a hypothetical ‘evil agent’, who
picks the benchmark model’s disturbances so as to mazimize the agent’s mean-squared
forecast errors. Since the sequence of error-maximizing disturbances obviously depends on
the agent’s forecasts, agents view themselves as being immersed in a dynamic zero-sum
game. A robust forecast is a Nash equilibrium of this game.

We provide two solutions to this game. The first makes the agent’s present value
forecasts maximally robust, in the sense that the (population) mean-squared error remains
totally invariant to a wide spectrum of potential dynamic misspecifications. As stressed
by Hansen and Sargent (2008), this may not be an empirically plausible solution, as it may
reflect concerns about alternative models that could be easily rejected given the historically
generated data. We want our agents to be prudent, not paranoid. It will also turn out
to be the case that maximally robust forecasts deliver too much exchange rate volatility.
Hence, we also construct a solution that limits the freedom of the evil agent to subvert
the agent’s forecasts. The more we penalize the actions of evil agent, the closer we get
to the conventional minimum mean-squared error forecast. Our empirical strategy is to
first select a penalty parameter that replicates observed exchange rate volatility. We then
calculate the detection error probability associated with this parameter value. We find
that detection error probabilities in the range of 10-20% can explain observed exchange
rate volatility.'?

Hpg is possible to provide axiomatic foundations that formalize the connection between robustness and
optimality. See, e.g., Strzalecki (2011).

12N ote, our focus on detection error probabilities differentiates our approach from the the ‘rare disasters’
literature. In that literature, agents are hedging against very low probability events. See, e.g., Farhi and
Gabaix (2011).
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To handle general forms of dynamic misspecification, it is convenient to solve the prob-
lem in the frequency domain. As a first step, let’s return to the problem of forecasting the
present value of fundamentals (eq. (2.2)) under the assumption that the data-generating
process is known. In particular, suppose agents know that the Wold representation for
fundamentals is f; = A(L)ey. Transformed to the frequency domain our problem becomes
(omitting the (1 — ) constant for simplicity),

min ! A(z) —g(z) dz

_— ki S/ 5.7
g(z)eH2 271 1—Bz71 z (5.7)

where § denotes contour integration around the unit circle, and H 2 denotes the Hardy
space of square-integrable analytic functions on the unit disk. Once we find g(z), the time-
domain solution for optimal forecast is s; = (1 — 3)g(L)es. Restricting the z-transform
of g(L) to lie in H? guarantees the forecast is ‘causal’, i.e., based on a square-summable
linear combination of current and past values of the underlying shocks, ;. The solution
of the optimization problem in (5.7) is a classic result in Hilbert space theory (see, e.g.,
Young (1988), p. 188). It is given by,

o) = || 6.9

where [-]; denotes an ‘annihilation operator’, meaning ‘ignore negative powers of z’. From
(5.8) it is a short step to the Hansen-Sargent prediction formula. One simply subtracts off
the principal part of the Laurent series expansion of A(z) around the point 3 (see, e.g.,
Hansen and Sargent (1980, Appendix A)). This yields

z) — 271
o) = 200

which is the well know Hansen-Sargent formula. (Note that g(z) € H? by construction,
since the pole at z = 3 is cancelled by a zero at z = 3).

Now, what if the agent doesn’t know the true Wold representation of f;? In particular,
suppose the z-transform of the actual process is A%(z) = A"(z) + A(z), where A"(z)
is the agent’s original benchmark (or nominal) model, and A(z) is an unknown (one-
sided) perturbation function. Applying (5.8) in this case yields the following mean-squared
forecast error:

2 A(z) dz
a _ n 2 -
£ o= CHBEE o § A0 ||
2 BA(B) dz
e HIAGI+ o § a6 (229 2 (59)
where [-]_ is an annihilation operator that retains only negative powers of z, and £* and

L" denote actual and nominal mean-squared forecast errors. The point to notice is that
L% could be much greater than £", even when ||A(z)||3 is small, depending on how A(%)
interacts with 3 and A(z). To see this, apply Cauchy’s Residue Theorem to (5.9), which
yields

L= L" + ||A)]13+ 2A(8)[A(B) — A(0)]
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Notice that the last term is scaled by A((3) which, though bounded, could be quite large.
It turns out that the key to achieving greater robustness to model misspecification is to
switch norms. Rather than evaluate forecast errors in the conventional H? sum-of-squares
norm, we are now going to evaluate them in the H supremum norm. In the H®-norm
the optimal forecasting problem becomes'?

2
AG) 9(2) (5.10)

min max|———
g(z)eH> |z]=1 |1 — ﬁz—l

where H* denotes the Hardy space of essentially bounded analytic functions on the unit
disk.'* Problem (5.10) is an example of a wide class of problems known as ‘Nehari’s
Approximation Problem’;, which involves minimizing the H*® distance between a two-
sided L* function and a one-sided H* function. For this particular case, Kasa (2001)
proves that the solution takes the following form

z Z)— 2
9(z) = Al i_gA(ﬁ) + 1f62

A(B) (5.11)

Notice that the first term is just the conventional Hansen-Sargent formula. The new
element here comes from the second term. It shows that a concern for robustness causes
the agent to revise his forecasts more aggressively in response to new information. Note
that this vigilance is an increasing function of 3. As § — 1 the agent becomes more
and more concerned about low frequency misspecifications.!® It is here that the agent is
most exposed to the machinations of the evil agent, as even small misjudgments about
the persistent component of fundamentals can inflict large losses on the agent. Of course,
the agent pays a price for this vigilance, in the form of extra noise introduced at the high
end of the frequency spectrum. An agent concerned about robustness is happy to pay this
price.

To illustrate the role of robust forecasts in generating exchange rate volatility, we con-
sider the spread, ¢; = s; — f;, as a present value forecast of future values of Af;, and
assume Af; is an AR(1), so that A(L) = 1/(1 — pL) in the above formulas. Because the
forecasts begin at j = 1 in this case, the Hansen-Sargent formula changes slightly (see
eq. (2.5)). One can readily verify that the second term in the robust forecast remains
unaltered.

Table 4 reports ratios of actual to predicted spread variances for both traditional and
robust forecasts.

13Using the sup norm to attain robustness is a time-honored strategy in both statistics (Huber (1981))
and control theory (Zames (1981)).

My principle, we should write ‘inf” and ‘sup’ in (5.10), but in our case it turns out that the extrema
are attained.

15This intuition is also the key to the Engel-West (2005) Theorem, which shows that exchange rates
converge to random walks as 6 — 1. This happens because agents become increasingly preoccupied by the
permanent component of fundamentals as § — 1.
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TABLE 4

RoBUST VOLATILITY TESTS

Aus Can Den Jap Swz UK
NonRobust AR(1) Forecast
var(¢)/var(d) 3486. 1091. 3482. 1162. 15661. 740.1
Robust AR(1) Forecasts

var(¢)/var() 227 291 AT8 .358 218 .363
AR coef 197 .380 281 .404 .092 .488

Notes: (1) Both bounds based on predictions of ¢ = s — f using an AR(1) model for Af.
(2) When computing present values, it is assumed 3 = .98.

Here traditional forecasts look even worse than before, partly because we are failing to
account for potential inside information, as we did in the Campbell-Shiller tests, and also
partly because an AR(1) benchmark model is probably a bit too simple. Note, however,
that this only makes our job harder when it comes to explaining excess volatility. The
key results are contained in the middle row of Table 4, which reports ratios of actual
to predicted spread variances with robust forecasts. Notice that all are well below one.
If anything, robust forecasts generate too much volatility! This is vividly illustrated by
Figure 2, which contains plots of the actual spread (blue line) against the nonrobust
predicted spread and robust predicted spread (red line). The Shiller plot is inverted!"

Figure 2: Actual vs. Robust Predictions of the Splsead
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Perhaps not surprisingly in light of eq. (5.11), the results here are rather sensitive
to the value of B. For example, the above results assume 3 = .98. If instead we set
B = .92, then all variance ratios exceed one and the model continues to generate excess
volatility. This is not a serious problem in our view, since with quarterly data G = .98 is a
more plausible value. A potentially more serious issue arises from the possibility that the

We use eq. (5.11) to generate the time path of the robust spread. Expressed in terms of observables,

this implies
2
<5P+ ﬁﬁ> Afe — ﬁﬁ Afi1

a1
T
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agent is being excessively pessimistic here, and is worrying about alternative models that
have little likelihood of being the true data-generating process. Fortunately, it is easy to
avoid this problem by parameterizing the agent’s concern for robustness. We do this by
penalizing the actions of the evil agent.

5.2. The Evil Agent Game. The previous results incorporated robustness by evaluating
forecast errors in the H°°-norm. This delivers the maximal degree of robustness, but
may entail unduly pessimistic beliefs. Following Lewis and Whiteman (2008), we now
go back to the H2-norm, and instead model robustness by penalizing the actions of the
hypothetical evil agent. In particular, we assume the evil agent picks shocks subject to a
quadratic penalty. As emphasized by Hansen and Sargent (2008), a quadratic penalty is
convenient, since in Gaussian environments it can be related to entropy distortions and
the Kullback-Leibler Information Criterion, which then opens to door to an interpretation
of the agent’s worst-case model in terms of detection error probabilities. This allows us to
place empirically plausible bounds on the evil agent’s actions.

Since our methods presume stationarity, we assume the agent has a benchmark (nom-
inal) model, Af; = A"(L)e;. In the conventional monetary model, this determines the
spread, ¢ = s; — f;, as in (2.4). At the same time, he realizes this model may be sub-
ject to unstructured perturbations of the form A(L)e;, so that the actual model becomes,
Afy = A*(L)ey = A™(L)er + A(L)e;. The Evil Agent Game involves the agent selecting
a forecast function, g(L), to minimize mean-squared forecast errors, while at the same
time the evil agent picks the distortion function, A(L). Hence, both agents must solve a
calculus of variations problem. These problems are related to each other, and so we must
solve for a Nash equilibrium. Following Lewis and Whiteman (2008), we can express the
problem in the frequency domain as follows

2
} LR

min max — \%
g(z) Ae(z) 2T { z

where for convenience we assume the evil agent picks A%(z) rather than A(z). The key
element here is the parameter 6. It penalizes the actions of the evil agent. By increasing
0 we get closer to the conventional minimum mean-squared error forecast. Conversely,
the smallest value of 6 that is consistent with the concavity of the evil agent’s problem
delivers the maximally robust H° solution.

The Wiener-Hopf first-order condition for the agent’s problem is

2

Bz"1A%(2)
1— 6271

A?(z) — A™(2)

—g(z) 1—ﬁz—1

.

-1

Bzt
g(z) — 1_7@2_114%@ => (5.13)

where 2;01 denotes an arbitrary function in negative powers of z. The evil agent’s Wiener-
Hopf equation can be written

-1

1- 8271 OA™ (2
_ﬁzl—ﬁz g(2) + 1_& Z (5.14)

(8% - 0)A*(2)
1- 06z
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Applying the annihilation operator to both sides of eq. (5.13), we can then solve for the
agent’s policy in terms of the policy of the evil agent

A?(z) — A(P)
z)=pf——"—7+-—=
9(2) = f——— 5
Then, if we substitute this into the evil agent’s first-order condition and apply the anni-
hilation operator we get

(8> - 0)A%(2) A%(z) — AY(B) | 0A"(2)
1-p3z -6 1-— 06z +1—ﬁz_0

which then implies

2
A(z) = A (2) + - A%(9) (5.15)

To determine A%((3) we can evaluate the evil agent’s first-order condition (5.14) at z = 3,
which implies A%(3) = ";‘;”—B(E). Substituting this back into (5.15) yields
ﬁ2
A" 5.16
T A0) (5.16)

This gives the worst-case model associated with any given benchmark model. In game-
theoretic terms, it represents the evil agent’s reaction function. Notice that as § — co we
recover the conventional minimum mean-squared error solution. Conversely, notice the
close correspondence to the previous H°° solution when 6 = 1.

A%(z) = A"(2) +

5.3. Detection Error Calibration. The idea here is that the agent believes A™(L)e,
is a useful first-approximation to the actual data-generating process. However, he also
recognizes that if he is wrong, he could suffer large losses. To minimize his exposure to
these losses, he acts as if Af; = A%(L)e; is the data-generating process when formulating
his present value forecasts. Reducing 6 makes his forecasts more robust, but produces
unnecessary noise if in fact the benchmark model is correct. To gauge whether observed
exchange rate volatility might simply reflect a reasonable response to model uncertainty,
we now ask the following question - Suppose we calibrate 8 to match the observed volatility
of the spread, s; — f;. (We know this is possible from the H results). Given this implied
value of 8, how easy would it be for the agent to statistically distinguish the worst-case
model, A%(L), from the benchmark monetary model, A"(L)? If the two would be easy to
distinguish, then our explanation doesn’t carry much force. However, if the probability
of a detection error is reasonably large, then we claim that model uncertainty provides a
reasonable explanation of observed exchange rate volatility.

To begin, we need to take a stand on the benchmark model. For simplicity, we assume
Af; follows an AR(1), so that A"(L) = 1/(1 — pL). (We de-mean the data). Given this,
note that eq. (5.16) then implies the worst case model, A*(L), is an ARMA(1,1), with
the same AR root. To facilitate notation, we write this model as follows,

1+x—prL
Aftzip

1—pL “t

where k = %ﬁ. Notice that k — 0 as 8 — oo, and the two models become increas-
ingly difficult to distinguish. As always, there are two kinds of inferential errors the agent
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could make: (1) He could believe A" is the true model, when in fact A is the true model,
or (2) He could believe A% is the true model, when in fact A™ is the true model. Denote
the probability of the first error by P(A™|A%), and the probability of the second error
by P(A%*|A™). Following Hansen and Sargent (2008), we treat the two errors symmetri-
cally, and define the detection error probability, £, to be 3[P(A"|A%) 4+ P(A%/A™)]. From
Taniguchi and Kakizawa (2000) (pgs. 500-503), we have the following frequency domain
approximation to this detection error probability,

where T is the sample size and ® denotes the Gaussian cdf.'” Note that detection error
probabilities decrease with T'. The I functions in (5.17) are the KLIC ‘distances’ between
the two models, given by

I(A", A%) = % _7; [—log ||‘jzgzs||+ﬁzgzs—1] dw (5.18)
(A% A") — % /_7; [—log ||jZ§Z;||+jZ8—1] duw (5.19)

The V functions in (5.17) can be interpreted as standard errors. They are given by the
square roots of the following variance functions

Y e I
iy = [ oo e o

By substituting in the expressions for A® and A™ and performing the integrations, we

obtain the following expressions for I functions'®
1 1
I(A" AY) = = |log(1l -1
a4 = g st +0) +
1
[(A%A") = 5 [—log(1+ k) + (1 +K)*(1L+ %) — 1]

1"The same formula applies even when the underlying data are non-Gaussian. All that changes is that
higher-order cumulants must be added to the variance terms in (5.20)-(5.21). However, for simplicity, we
suppose the agent knows the data are Gaussian. Intuitively, we suspect that relaxing this assumption
would only strengthen our results.

18we employed the following trick when evaluating these integrals. First, if A™(L) = ﬁ, we can then
write A% = (1+ H)%, where  is defined above and i = pk/(1+ k). We then have (omitting inessential

constants)
z
— =log(1
~ = log(1++)

|A™| dz dz 1—z|dz 1 d
—1 — = ¢ log(1 — 1 —— 91
% Og|A“|z 0g( +H)z+ & 1—pz| 2 & 1—pz
where the last equality follows from the well known innovation formula, 5= 7 log f(w)dw = log(c?),
where f(w) is the spectral density of a process, and o2 is its innovation variance. This cancels the last two
terms since they have the same innovation variance. The same trick can be used to evaluate the other log

integral.
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where 1) = pr/(1 4+ k). As a simple reality check, note that § — co =k — 0= 1 — 0,
which we know must be the case. Now, doing the same thing for the V functions gives us

1 1 1+ 9?2
VEHAT, AT = (1+r)2(1—42) [(1 +r)T = 2(1+ k) + ﬁ]
V(A4 A" = % [ﬁ —2(1+9%) + (L+ 4 + "1 + ;@)2]

We use these formulas as follows. First, we estimate country-specific values of p. These
are given in the bottom row of Table 4. Then we calibrate 6 for each country to match the
observed variance of its spread, s; — f;. The resulting values are reported in the first row of
Table 5. Since the earlier H* forecasts generated too much volatility, it is not surprising
that the implied values of 6 all exceed one (but not by much). Finally, as we have done
throughout, we set 6 = .98. We can then calculate the x and v parameters that appear
in the above detection error formulas. The results are contained in the second and third
rows of Table 5.

TABLE 5
EvIiL AGENT GAME: CALIBRATED DETECTION ERRORS
Aus Can Den Jap Swz UK
6 1.0442 1.0349 1.0178 1.0273 1.0454 1.0220
Det Error Prob(T = 150) .083 .109 112 119 .075 131
Det Error Prob (T = 100) .107 131 134 .140 .099 151

Notes: (1) 6 calibrated to match observed variance of ¢ = s — f.
(2) When computing present values, it is assumed 3 = .98.

We report detection error probabilities for two different sample sizes. The first assumes
T = 150, which is (approximately) the total number of quarterly observations available
in our post-Bretton Woods sample. In this case, the agent could distinguish the two
models at approximately the 10% significance level.'® Although one could argue this
entails excessive pessimism, keep in mind that the data are generated in real-time, and so
agents did not have access to the full sample when the data were actually being generated.
As an informal correction for this, we also report detection error probabilities assuming
T = 100. Now the detection error probabilities lie between 10-15%.

6. CONCLUDING REMARKS

This paper has proposed a solution to the excess volatility puzzle in foreign exchange
markets. Our solution is based on a disciplined retreat from the Rational Expectations
Hypothesis. We abandon the assumption that agents know the correct model of the

L1t is a little misleading to describe these results in the language of hypothesis testing. The agent is not
conducting a traditional hypothesis test, since both models are treated symmetrically. It is more accurate
to think of the agent as conducting a pair of hypothesis tests with two different nulls, or even better, as
a Bayesian who is selecting between models with a uniform prior. The detection error probability is then
expected loss under a 0-1 loss function.
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economy, while retaining a revised notion of statistically optimal forecasts. We show
that an empirically plausible concern for robustness can explain observed exchange rate
volatility, even in a relatively simple environment like the constant discount rate/flexible-
price monetary model.

Of course, there are many competing explanations already out there, so why is ours
better? We think our approach represents a nice compromise between the two usual routes
taken toward explaining exchange rate volatility. One obvious way to generate volatility
is to assume the existence of bubbles, herds, or sunspots. Although these models retain
the idea that agents make rational (self-fulfilling) forecasts, in our opinion they rely on an
implausible degree of expectation coordination. Moreover, they are often not robust to
minor changes in market structure or information. At the other end of the spectrum, many
so-called ‘behavioral’ explanations have the virtue of not relying on strong coordination
assumptions, but only resolve the puzzle by introducing rather drastic departures from
conventional notions of optimality.

As noted at the outset, our paper is closely related to Lewis and Whiteman (2008). They
argue that robustness can explain observed US stock market volatility. However, they also
find that if detection errors are based only on the agent’s ability to discriminate between
alternative models for the economy’s exogenous dividend process, then implausibly small
detection error probabilities are required. If instead detection errors are based on the
agent’s ability to discriminate between bivariate models of dividends and prices, then stock
market volatility can be accounted for with reasonable detection errors. This is not at all
surprising, since robustness delivers a substantially improved fit for prices. Interestingly,
we find that even if detection errors are only based on the exogenous fundamentals process,
exchange rate volatility can be accounted for with reasonable detection error probabilities.
Still, one could argue that they are a bit on the low side, so it might be a useful extension to
apply the bivariate Lewis-Whiteman approach to computing detection error probabilities.
We conjecture that this would only strengthen our results.
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