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The securitization of and creation of credit derivatives based on large portfolios in the bank-

ing industry has expanded at a rapid pace. The theoretical value of such contracts depends

critically on the degree of comovement of default risk among borrowers, or other sources of

correlation in security returns, within the portfolio. Similarly, intra-portfolio correlations are a

primary determinant of Value-at-Risk in large portfolios and thus concern management, rating

agencies and regulators. Tractable correlation structures and matching estimation methods

are essential for the business of banking. This paper provides maximum likelihood estima-

tors for the parameters of symmetric, equicorrelated Weiner processes observed at discrete

intervals. This is a natural starting point for the problem of portfolio derivatives. Situa-

tions are considered where the underlying processes have either zero or constant drift or are

mean-reverting.

The estimation procedure developed in this paper addresses a number of practical issues

in financial economics. First, it is applicable to the case of partially observed state variables

which is quite common in financial applications. For example, in the context of borrower

credit states, some borrowers/firms may have no credit history or publicly traded debt at the

start of observation, or may drop out part way through maturity of their debt or default.

Estimation methods requiring a complete observation matrix, with no missing data, could fail

as the number of missing observations increases. The maximum likelihood estimators pre-

sented in this paper have the advantage of being applicable to the samples with missing data

of any pattern. Second, since the estimation procedure does not require computation of co-

variance matrix inverse and determinant, it is readily applicable to high-dimensional systems.

Numerical maximization of likelihood functions becomes cumbersome and can breakdown as

the number of state variables increases. For example, as reported by Engle and Kelly (2009),

the Dynamic Conditional Correlation (DCC) model developed by Engle (2002) has been suc-

cessfully applied up to just 100 assets. Portfolio size is not a restriction for our estimation

procedure. Third, the model provides maximum likelihood estimates of equicorrelation that

is widely applied by both practitioners and academics to problems ranging from portfolio se-

lection to risk management and derivatives pricing. Major applications of the equicorrelation

structure are briefly reviewed below. Finally, the capability of the estimation procedure to

handle incomplete time series provides a natural way of dealing with outliers.
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The paper is organized as follows. Section I briefly reviews the major application areas of

equicorrelation modeling. Section II sets out candidate correlation structures in continuous

time. Section III obtains the discrete time processes corresponding to feasibly observable data.

Section IV derives maximum likelihood estimators for the more general case of mean-reverting

processes, allowing for missing observations, and describes how to obtain asymptotic standard

errors. Section V performs simulation testing, both to verify large sample and to explore small

sample properties of the estimators. In section VI, the estimation procedure is applied to a

dataset of stock prices and time varying features of stock return volatility and correlation

are investigated. The gain from using incomplete data estimators is also illustrated in this

section. The final section provides concluding remarks. Estimators for the special cases of

complete data and zero drift model are presented in appendices.

I. On the applications of equicorrelation modeling

Modeling of average sample correlation (mean of off-diagonal elements of the correlation ma-

trix), or equicorrelation (which results from assuming the same pairwise correlation between

all the assets in a portfolio), has recently received increasing attention in financial economics.

Though a thorough survey of models and applications of equicorrelation is beyond the scope

of this paper, we present the major areas of growing interest.

1. Portfolio selection

The covariance matrix of stock returns along with the vector of expected stock excess returns

are the main inputs in portfolio selection models. Sample covariance matrix is the standard

statistical estimator for the covariance matrix, but, as well documented by Jobson and Korkie

(1980), it suffers from severe sampling errors. This problem is amplified when the length of

the time series is small compared to the size of the portfolio. This is a typical problem in

many financial applications as the length of the time series available for estimation is limited

to the shortest-lived stock in the portfolio. Moreover, the sample covariance matrix typically

includes a large number of correlation parameters which are almost impossible to interpret in

asset allocation applications.

One way to cope with the shortcomings of the sample covariance matrix is to impose some
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structure such as equicorrelation. Equicorrelation is obtained by assuming the same degree of

correlation between all the assets in the portfolio. This leaves fewer parameters to estimate

and controls for the impact of extreme sample covariance parameters. The first application

of equicorrelation in portfolio management goes back to Elton and Gruber (1973). They

showed that assuming the same pairwise correlation among all assets results in superior asset

allocation and lower estimation errors over a wide range of alternative correlation structures.

Equicorrelation as the only scalar which summarizes the degree of comovements in the stock

prices is also quite simple to interpret by portfolio managers.

Some authors, like Ledoit and Wolf (2003, 2004) and Disatnik and Benninga (2007), how-

ever, argue that the estimation of the structured covariance matrix introduces specification

errors, so propose a combination of structured and sample covariance. Ledoit and Wolf (2003,

2004) suggest shrinking extreme values of the sample covariance matrix toward the center.

The shrinkage covariance matrix, Σshrink, is defined as

Σshrink = αΣstruct + (1− α)Σsample

where Σstruct is the estimated covariance matrix from a highly structured (like equicorrelation)

model, Σsample is the sample covariance matrix and α is the shrinkage parameter. Ledoit and

Wolf show that if implemented properly, the shrinkage covariance matrix results in superior

portfolio allocations.

Other studies simply use an equally weighted average of the sample and other estimate

of the covariance matrix (e.g. set α = 0.5). Look at Disatnik and Benninga (2007) and

references provided there for a review of this method which they call portfolio of covariance

estimators. Disatnik and Benninga compare the relative performance of the shrinkage method

and portfolio of covariance estimators, and conclude there is no real gain from applying the

more complicated shrinkage method.

Whether one prefers the shrinkage or the portfolio of covariance estimator, the question

remains to what target should the sample covariance be shrunk, or simply what is the best

candidate for Σstruct.
1 Our estimates of equicorrelation could serve both as a target value in

shrinkage and portfolio of covariance estimators methods and as a direct indicator of comove-

1See Disatnik and Benninga (2007) for a review of the target values used by different authors.
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ments in asset portfolios.

2. Derivatives valuation

Equicorrelation is also a common assumption in derivatives pricing. In a dispersion trading

strategy, for example, which consists of a long (short) option position on an index of stocks and

short (long) option positions on all its constituents where all the positions are delta-hedged,

the return will solely depend of the correlations between the stocks. The industry standard

approach in computing implied correlation is to assume an equicorrelation structure.

Equicorrelation is even more common in the area of credit derivatives. The assessment of

joint default probability in a credit portfolio is the natural starting point for valuing credit

derivatives and hedging. Gaussian copula is frequently assumed for building the joint de-

fault distribution by both practitioners and academics, in the context of both structural and

reduced-form credit risk models. The most important parameter in any copula is the cor-

relation structure, which is either calibrated from market prices of credit derivatives (like

Collateralized Debt Obligations (CDO’s)) or estimated from historical data. Calibration tech-

niques usually assume equicorrelation between obligors in a pool of assets or in a single tranche.

Engle and Kelly (2009) review equicorrelation modeling in derivatives pricing.

II. Candidate correlation structures

Suppose we have a number of state variables xi(t) whose evolution in continuous time can be

described by stochastic differential equations

dxi = αi(x, t)dt+ σi(x, t)dzi i = 1, . . . , n (1)

in which dzi are increments in standard Weiner processes with correlations ρij(x, t) between

them. For example, xi might describe the credit quality of a given borrower or, price of a

given security, within a portfolio. The difficulty with this modestly general specification is

that, in situations of interest, n may be large and specific information about individual i’s

either unavailable or too costly to warrant acquisition. Moreover historical data available

is likely about specific firms or individuals that are distinct from the group relevant for an

application at hand. Let us thus assume that data has already been grouped so that the drift
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Table 1: Alternative correlation structures

dxi Total volatility Correlation No. of parameters

σ(ρ1/2 dz0 + (1− ρ)1/2 dzi) σ ρ 2

σi(ρ
1/2 dz0 + (1− ρ)1/2 dzi) σi ρ n+ 1

σ(ρ
1/2
i dz0 + (1− ρi)1/2 dzi) σ (ρiρj)

1/2 n+ 1

σi(ρ
1/2
i dz0 + (1− ρi)1/2dzi) σi (ρiρj)

1/2 2n

Notes: the table presents different correlation structres and number of paramters to be

estimated under each of them.

and volatility functions, αi and σi, are the same for all i both in the historical sample and

in some current application. Similarly, we must have simple structures for the correlation

coefficients ρij , both so that they may be reliably estimated with the limited and incomplete

data likely to be available, and so that parameter estimates may be applied to borrowers or

securities viewed as being of the same generic type, but for which no history is available.

With these considerations in mind, the particular structure we examine in this paper is

the linear, constant volatility, single common factor case:

dxi = κ(µ− xi)dt+ σ(ρ1/2dz0 + (1− ρ)1/2dzi) (2)

in which the zi(t), i = 0 . . . n are independent standard Weiner processes and the parameters

κ, µ, σ, 0 ≤ ρ ≤ 1 are constants.2 This structure includes the cases of zero, constant (as a

limiting case), and mean-reverting drift. z0 has the interpretation of a common factor giving

rise to correlation between the movements of the various xi. The resulting correlation matrix

has 1’s on the diagonal and ρ in all off-diagonal locations. Our problem is to estimate the

four fixed parameters from a time series of observations at discrete intervals of the xi.

For comparison, alternative simple correlation structures, ranked in order of number of

parameters to estimate, are suggested in Table 1 (drift terms suppressed). The last case is

equivalent to standard factor analysis with a single common factor. Note, however, that all

but the first case would require specific further information about a borrower/security not in

2The process extends to situations of −1/(n − 1) < ρ < 0 by defining dz0 ≡
∑n

1 dzi and changing

the random term in (2) to σ((1 − ρ)1/2dzi − ((1 − ρ)1/2 − (1 + nρ − ρ)1/2)/ndz0). For more negative

ρ, the covariance matrix is not positive-definite.
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the estimation group to permit application of results to another group. Thus only the first is

considered here.

III. Discrete time likelihood function

Let the n-vector x(t) ≡ (xi) be observed at T equally-spaced intervals of length h. Assume x

follows a constant coefficient, linear process in continuous time

dx = (Ax+ b) dt+ dz with E(dz dz′) = Ω dt (3)

A and b are respectively a n×n matrix and a column n-vector of constants. Following Wymer

(1972), the exact discrete time process for x is

x(t+ h) = ehAx(t) +A−1[ehA − I]c+ ηt where ηt ∼ N(0,

∫ h

0
eτAΩeτA

′
dτ) (4)

I denotes the n × n identity matrix. I.e., the distribution of x(t + h) conditional on x(t) is

joint normal. The expression eA is defined as V eDV −1, where V is a matrix whose columns

are the eigenvectors of A, and eD is a diagonal matrix with elements eλi , where the λi are the

corresponding eigenvalues of A. Note that the eigenvectors of hA are the same as for A but

with corresponding eigenvalues of hλi. For the process of equation (2), these components are

A = −κI A−1 = −1

κ
I c = κµe Ω = σ2[(1− ρ)I + ρee′] (5)

in which e denotes a column vector of 1’s. Observing that A has n eigenvalues all equal to −κ

with eigenvectors being the n unit vectors ei (ith element 1 and the rest 0), the covariance

matrix of x(t+ h) is obtained:∫ h

0
eτAΩeτA

′
dτ =

∫ h

0
e−τκIΩI ′e−τκ dτ = Ω

∫ h

0
e−2τκ dτ =

1− e−2hκ

2κ
Ω (6)

Substituting these relations into equation (4) and rearranging,

x(t+ h)− e−hκ︸︷︷︸
a

x(t)− (1− e−hκ)µ︸ ︷︷ ︸
b

e ∼ N( 0 ,
(1− e−2hκ)

2κ
σ2︸ ︷︷ ︸

s

[(1− ρ)I + ρee′] ) (7)

It is this expression that forms the basis for the likelihood function.

The likelihood function will be expressed, and estimation conducted, in terms of parame-

ters a, b, s as defined in equation (7). The continuous time parameters are then retrieved from
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the one-to-one relationships

κ = −1

h
ln a µ =

b

1− a
σ2 =

2s ln a

h(a2 − 1)
ρ = ρ (8)

The zero drift case obtains by setting a = 1 and b = 0. The constant drift case obtains by

setting a = 1, estimating b, and noting that the continuous time drift rate is simply b/h.

Now let nj denote the number of state variables observed at both (equally spaced) time

tj and time tj+1, j = 1 . . . T + 1. It indicates the situation with partial observation series for

some or all of the state variables which is quite likely to happen in the financial applications.

We assume that each state variable, for the period that it is visible, is observed at the same

interval h and is synchronized with the other state variables then being observed. Let ej

denote a column vector of ones with appropriate length nj , and define the nj-vector

yj ≡ x(tj+1)− ax(tj)− bej j = 1 . . . T (9)

Being joint normally distributed, and independent because the x process is Markov and the

time intervals do not overlap, the likelihood function for these observations is

L =
T∏
j=1

1

(2π)nj/2|Ω̃j |1/2
e−y

′
jΩ̃−1

j yj/2 (10)

where from equation (7)

Ω̃j ≡ s[(1− ρ)I + ρeje
′
j ] (11)

Maximizing L is equivalent to maximizing Λ, defined as

Λ ≡ 2 lnL = −Σnj ln 2π − Σ ln |Ω̃j | −
T∑
j=1

y′jΩ̃
−1
j yj (12)

We are almost there. One may verify that that Ω̃j satisfies the following:3

|Ω̃j | = snj (1− ρ)nj−1(1 + njρ− ρ) Ω̃−1
j =

1

(1− ρ)s
[I −

ρeje
′
j

1 + njρ− ρ
] (13)

Substituting into Λ gives

Λ = −Σnj ln 2π − Σ(nj − 1) ln(1− ρ)− Σnj ln s− Σj ln(1 + njρ− ρ)

− 1

(1− ρ)s
Σy′jyj +

ρ

(1− ρ)s
Σ

y′jee′yj

1 + njρ− ρ
(14)

3One may also verify that Ω̃j has unique largest eigenvalue of (1 + njρ − ρ)s with eigenvector λj ,

and nj−1 eigenvalues of value (1−ρ)s with (non-unique) eigenvectors −ei +(λj +
√
nje1)/(nj +

√
nj),

i = 2, . . . , n.
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Summations are understood to be over j = 1, . . . , T . The final step is to substitute for yj

from (9). Letting xj denote x(tj) and x̃j denote x(tj+1), yields the (two times) log-likelihood

in terms of the model parameters and moments of the data. Let N ≡ Σnj , M ≡ Σgjn
2
j and

gj ≡ 1/(1 + njρ− ρ) to simplify notation.

Λ = −N ln 2π −N ln s− (N − T ) ln(1− ρ) + Σ ln gj (15)

−
b2N + Σx̃′j x̃j − 2aΣx′j x̃j + a2Σx′jxj + 2abΣx′je− 2bΣx̃′je

s(1− ρ)

+
ρ(b2M + Σgj x̃

′
jee′x̃j − 2aΣgjx

′
jee′x̃j + a2Σgjx

′
jee′xj + 2abΣgjnjx

′
je− 2bΣgjnj x̃

′
je)

s(1− ρ)

IV. Maximum likelihood estimators: mean reversion model

For the general mean-reverting process case, the likelihood function is as in (15). Unlike the

zero drift model presented in Appendix B, the ML estimators for the mean-reverting process

model are too unwieldy to present in their entirety. Indeed, we resort partially to numerical

optimization of Λ as described below.

We proceed as follows. First, maximize Λ with respect to a, b, s for given ρ by setting the

partial derivatives with respect to those variables equal to 0 and solving for their values. This

gives

a =
(Σx′je− ρΣgjnjx

′
je)(Σx̃′je− ρΣgjnj x̃

′
je) + (Σx′j x̃

′
j − ρΣgjx

′
jee′x̃j)(ρM −N)

(Σx′je− ρΣgjnjx′je)(Σx′je− ρΣgjnjx′je) + (Σx′jxj − ρΣgjx′jee′xj)(ρM −N)

(16)

b =
(ρΣgjnj x̃

′
je− Σx̃′je)− a(ρΣgjnjx

′
je− Σx′je)

ρM −N
(17)

s =
Σy′jyj

N(1− ρ)
−
ρΣgjy

′
jee′yj

N(1− ρ)
(18)

Note that s is expressed above in terms of the expressions for a, b. Substitution of these into

Λ gives a concentrated likelihood function Λ∗(ρ). We maximize this numerically with respect

to ρ to obtain ρ̂, substituting the outcome into (16) to (18) to get â, b̂, ŝ.4

4The first order condition ∂Λ∗/∂ρ = 0 is revealed by Maple to be a third order polynomial in

ρ, so could in principle be solved analytically. However the polynomial coefficients are very lengthy
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An estimate of the state change attributable to movement in the common factor over the

jth observation interval, (ρs/h)1/2(z0(tj +h)−z0(tj)), is the average x change with estimated

drift removed5

ε̂j =
1

nj

nj∑
i=1

(x̃ij − âxij − b̂) (19)

An estimate of the change in z0—for comparison, say, with changes in other factors—is

ε̂j/(ρ̂ŝ/h)1/2. Note that this will be biased in small samples because only estimated ρ, s

values are available. It will also be noisy for arbitrarily large T (but small n) because random

comovement of the independent zi in the same direction will be erroneously attributed to

movement in z0.6

Distribution of estimated parameters

Under certain regularity conditions, the maximum likelihood estimates of a parameter vector

γ are asymptotically distributed around the true γ as follows:7

T 1/2(γ̂ − γ)
d→ N(0, lim(I/T )−1) (20)

in which I denotes the information matrix

I = −E(
∂2 lnL

∂γ∂γ′
) (21)

L is the sample size T likelihood function evaluated at the true γ, and the limit in (20) is as T

goes to infinity. There are a variety of methods for obtaining an estimate of this matrix. We

adopt a method of Berndt, Hall, Hall and Hausmann as given in Judge (1985, p.180, eq.5.6.8).

Their estimator for lim(I(γ)/T ) is

1

T

[
T∑
t=1

(
∂ lnLt
∂γ

)(
∂ lnLt
∂γ

)′]
γ=γ̂

(22)

expressions involving sixth moments of the data. Numerical maximization then seemed the more

expedient route.
5Compared to no mean reversion, a given movement in z0 has less impact on the states because its

effect is diminished by mean reversion between observation dates. I.e., ρs/h < ρσ for κ > 0.
6The asymptotic (T →∞) variance of the error in estimating ∆z0 is (1− ρ)h/ρn.
7See Dhrymes (1974, p.122) or Judge et al (1985, p.178)
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Table 2: Large sample simulation

κ µ σ ρ Λ

input value 1.0000 5.0000 1.0000 0.2500

avg. estimate 1.0030 5.0028 0.9985 0.2457 2.6452e+03

minimum 0.9216 4.7122 0.9427 0.1539 2.4628e+03
maximum 1.1221 5.2943 1.0552 0.3273 2.8386e+03

sample st. dev. 0.0267 0.0966 0.0193 0.0291 6.5957e+01
BHHH st. dev. 0.0277 0.1039 0.0203 0.0288

Notes: 100 observations of 100 diffusions. 500 Monte Carlo trials. Uniform starting distri-

bution on [0,10].

where Lt denotes the probability density of the one-period observation yt. Thus, for each ob-

servation date separately, we determine numerically the partial derivatives of the log-likelihood

with respect to the four parameters γ ≡ (σ, ρ, κ, µ)′ evaluated at the maximum likelihood es-

timate γ̂, and accumulate the outer product of that vector with itself.8 Standard errors for

the parameters are square roots of the corresponding diagonal elements of the inverse of this

matrix.

V. Simulation testing

To test the estimation method and determine the small sample characteristics of the param-

eter estimates, hypothetical data sets were created by Monte Carlo simulation. Benchmark

parameter values used for the mean-reverting case were κ = 1, µ = 5, σ = 1, ρ = .25 (assume

one year time unit). Observation intervals were set at .25 years. For each variation below,

500 simulations/estimations were performed.

To verify large sample performance, simulations of 100 joint diffusions over 100 observation

intervals are reported in Table 2. As can be seen, the average of each parameter estimate

8An alternative estimator tried based on the numerically evaluated matrix of second partials of the

log-likelihood (given in Judge as eq. 5.6.7) , behaved in a less satisfactory manner on some data sets.
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agrees closely with the true value used to create the data. Furthermore, the Berndt-Hall-Hall-

Hausmann estimate of the standard errors agrees quite well with the simulation standard

deviations, with no obvious bias in either direction.

Table 3 reports on simulation of 10 joint diffusions for progressively shorter numbers of

observation intervals from 50 down to 5. Aside from the understandably larger standard errors

as the number of observation intervals shrinks, the most notable feature is the progressively

larger bias toward 0 in the estimated ρ, mild downward bias in σ, and upward bias in the mean-

reversion coefficient κ. This is consistent with the idea that the randomly occurring ‘trend’

that will be present in any short series of the common factor can be equally (statistically)

construed as stronger reversion toward a mean particular to that sample. A second notable

feature is the increasing overstatement by the BHHH standard error of the true estimation

error—by a factor of 50 for T = 5. For T ≥ 20 the overstatement appears modest enough to

be ignored.

Table 4 reports on simulation for 50 observation intervals of progressively fewer joint

diffusions from 50 down to 2. Here no consistently developing bias appears to show up

in the value of any of the parameters. The BHHH standard errors slightly overstate the

true standard deviations, but the proportional overstatement is slight (sometimes even slight

understatement) and appears unconnected with sample size. Note that 2 is the minimum

number of diffusions for which the notion of correlation could have meaning.

VI. Application to stock prices

This final section applies the estimation procedure to time series of stock prices of North

America oil and gas companies listed on NYSE. List of the companies is obtained from NYSE

symbols file9 and the monthly stock prices from COMPUSTAT dataset. Our sample only in-

cludes companies with recorded stock prices for the full period of December, 2002, to March,

2011. We thus start with times series of 100 monthly observations for 99 firms. The com-

panies are further grouped into 8 sub-industries, according to NYSE symbols file: oil and

gas-contract drilling, exploration (CDE), oil and gas-crude production (CPR), oil and gas-

integrated domestic refiners (IDR), oil and gas-integrated international refiners (IIR), oil and

9The file is available at: http://www.nyxdata.com/Data-Products/NYSE-Group-Symbols-Package.
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Table 3: Simulation with varying time series length for N = 10

κ µ σ ρ Λ

input value 1.0000 5.0000 1.0000 0.2500

average: T = 50 1.0186 5.0250 1.0133 0.2392 2.0264e+02
standard dev. 0.0932 0.1660 0.0403 0.0502 3.3358e+01
BHHH st. dev. 0.1127 0.1703 0.0450 0.0562

average: T = 20 1.0233 5.0085 0.9964 0.2212 7.5998e+01
standard dev. 0.1052 0.2611 0.0572 0.0784 1.6694e+01
BHHH st. dev. 0.1544 0.2816 0.0782 0.0985

average: T = 10 1.0286 5.0793 0.9721 0.2327 3.0972e+01
standard dev. 0.1137 0.3470 0.0794 0.1053 1.2544e+01
BHHH st. dev. 0.2220 0.5270 0.1514 0.2013

average: T = 8 1.0199 5.0678 0.9660 0.2088 2.4899e+01
standard dev. 0.1154 0.3832 0.0918 0.1232 1.1745e+01
BHHH st. dev. 0.2667 0.6535 0.2000 0.2753

average: T = 6 1.0435 5.1334 0.9652 0.1892 1.8685e+01
standard dev. 0.1207 0.4361 0.1106 0.1321 1.0929e+01
BHHH st. dev. 0.4861 2.3931 0.4010 0.6070

average: T = 5 1.0489 5.1747 0.9547 0.1365 1.5684e+01
standard dev. 0.1309 0.5038 0.1217 0.1392 1.1105e+01
BHHH st. dev. 5.7953 14.6454 8.6073 6.7456

Notes: observations of 10 diffusions. 500 Monte Carlo trials. Uniform starting distribution.

T equals number of observation intervals.

12



Table 4: Simulation with varying number of diffusions for T = 50

κ µ σ ρ Λ

input value 1.0000 5.0000 1.0000 0.2500

average: N = 50 1.0025 5.0101 1.0016 0.2433 7.4240e+02
standard dev. 0.0468 0.1406 0.0296 0.0398 7.5991e+01
BHHH st. dev. 0.0546 0.1533 0.0321 0.0440

average: N = 20 1.0065 5.0097 1.0086 0.2510 3.3769e+02
standard dev. 0.0648 0.1702 0.0331 0.0423 4.7403e+01
BHHH st. dev. 0.0873 0.1632 0.0391 0.0508

average: N = 10 1.0186 5.0250 1.0133 0.2392 2.0264e+02
standard dev. 0.0932 0.1660 0.0403 0.0502 3.3358e+01
BHHH st. dev. 0.1127 0.1703 0.0450 0.0562

average: N = 5 1.0323 5.0346 1.0130 0.2333 1.1241e+02
standard dev. 0.1217 0.1743 0.0479 0.0660 2.1210e+01
BHHH st. dev. 0.1532 0.1860 0.0589 0.0729

average: N = 3 1.0693 5.0241 0.9988 0.2222 6.6727e+01
standard dev. 0.1564 0.1951 0.0563 0.0943 1.5212e+01
BHHH st. dev. 0.1869 0.1991 0.0692 0.1002

average: N = 2 1.0464 5.0673 0.9831 0.2515 4.2334e+01
standard dev. 0.1633 0.2360 0.0790 0.1386 1.5160e+01
BHHH st. dev. 0.2059 0.2304 0.0847 0.1474

Notes: T = 50 observation intervals. 500 Monte Carlo trials. Uniform starting distribution.

N equals number of diffusions observed.
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gas-services and equipment (S&E), gas services-distribution & integrated natural gas (DIN),

gas services-natural gas transmission companies (NGT), and other gas services(OGS). De-

scriptive statistics of log-returns are summarized in Table 5. Average sample correlation is

the average of off-diagonal elements of the sample correlation matrix. As can be seen, average

sample mean and correlation of OGS and DIN, and volatility of DIN are noticeably smaller

than those of the other sub-industries.

The goal is to estimate the model parameters, with σ and ρ being the focus of interest. As

the estimates of σ and ρ turn out to be fairly insensitive to the specification of the drift term,

we just report results based on the constant drift model. Table 6 presents maximum likelihood

estimates of the process parameters under the assumption of constant drift. Estimates based

on zero drift is reported for the whole sample to illustrate the insensitivity of the σ, ρ estimates

to the drift specification. As expected, estimates of µ match the sample means reported in

Table 5. Similar to what we observed in Table 5, the estimated equicorrelation for DIN and

OGS differ significantly from the other sub-industries. Estimated ρ for NGT also turns out

to be notably smaller than the average sample correlation and estimated ρ for the first 5

sub-sectors. Therefore, estimation for the whole sample is performed once excluding the three

gas services sub-sectors (i.e. DIN, NGT, OGS). CPR and IDR are the most correlated while

DIN and OGS are the least correlated groups. Equicorrelations of the first five sub-industries

are higher than those of the other three, ranging from 0.27 to 0.37.

Estimated equicorrelations generally differ from the average sample correlations presented

in Table 5. This is important, since the estimates used would alter choices in portfolio selection

and risk management. Note also that the average sample correlations show lower variability

across sub-industries. This suggests that average sample correlations may not be able to

capture sector-specific variability of equicorrelation. Further research is needed to shed light

on the implications of replacing average sample correlations by the suggested ML estimates

for portfolio allocation.

To investigate the variability of equicorrelation, rolling estimates are obtained for 24-month

windows with one month steps. Results are reported in Figure VI.. A significant increase in

stock return correlation could be seen in 2008, coinciding with the peak of the global financial

crisis. This happens somewhat earlier in gas services sub-sectors. The rise in correlation is

14
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Table 6: Estimation results for stock prices

µ σ ρ Λ∗

CDE 0.1099 0.5609 0.2705 2.5387e+03
(0.116) (0.007) (0.021)

CPR 0.1097 0.4441 0.3539 4.2905e+03
(0.096) (0.011) (0.035)

IDR 0.1377 0.4972 0.3733 6.1173e+02
(0.130) (0.009) (0.038)

IIR 0.1017 0.3887 0.2895 1.6993e+03
(0.083) (0.004) (0.022)

S&E 0.1092 0.4691 0.2940 3.6394e+03
(0.102) (0.008) (0.029)

DIN 0.0659 0.3265 0.1182 3.8544e+03
(0.047) (0.002) (0.013)

NGT 0.0885 0.4475 0.2242 1.2178e+03
(0.090) (0.006) (0.034)

OGS -0.0048 0.5447 0.1267 5.3052e+02
(0.100) (0.004) (0.036)

whole sample excluding gas 0.1102 0.4826 0.2901 1.2959e+04
sub-sectors (constant-drift) (0.102) (0.009) (0.026)

whole sample (constant-drift) 0.0964 0.4625 0.2430 1.8228e+04
(0.096) (0.007) (0.025)

whole sample (zero-drift) 0.4633 0.2457 1.8226e+04
(0.007) (0.024)

Notes: this table presents the estimation results of the constant drift model for different

sub-sectors. Volatility and equicorrelation estimates turn out to be insensitive to the drift

specification (this is observable from the estimation of zero drift model for the whole sam-

ple.) Numbers in the parentheses are BHHH standard errors of parameters. Whole sample

excluding gas sub-sectors is formed by removing DIN, NGT and OGS from to whole sample

to resemble a more homogeneous portfolio.
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most obvious in CDE, IRR, S&E , DIN and the two all-industry samples, while is quite weak

in the other sub-industries (with IDR being the weakest). In the first group of sub-industries,

this means that a higher proportion of stock return variations is explained by the common

factor, or simply indicates that the financial crisis brought higher systematic risk to the stock

market. In all of the graphs (except IDR and IRR), the correlation tends to decrease moving

toward the end of the sample period. This rising/falling pattern is weaker for CPR, NGT and

OGS, but quite obvious for CDE, S&E, DIN and the two whole samples. More specifically,

in the first sub-industry group the two times standard error band is wide enough to include

most of the variation in correlation over time.

Application to incomplete data

We now turn to applying the estimators to incomplete datasets, created by randomly removing

some data points from the sample of oil and gas companies. Without the incomplete data

estimators presented in this paper, there are two alternatives for handling incomplete data:

either the months or the firms with some missing data points must be removed to convert the

dataset with partial observations to a smaller sample with no missing data. However, in this

process some existing data is thrown way. For a less homogeneous portfolio (including assets

with wide range of volatility and pair-wise correlation), more valuable information is missed

by removing the firms with missing data. Whereas if the missing periods are less overlapping

across firms, removing the periods with missing observations becomes more costly. Our partial

data estimators permit all the available information to be utilized in the estimation.

To examine the relative performance of these three alternative methods, the following

experiment is performed. First, 50 firms are randomly picked from the whole sample of oil

and gas companies (excluding DIN, NGT, OGS)10 and 50 consecutive observations of all the

selected firms are removed, with the starting time interval being randomly picked11. The

resulting sample with partial data series is then used to estimate the parameters via the

10These three sub-sectors are excluded to work with a more homogeneous sample.
11We don’t let the starting point of missing observations vary across companies since it may result

in a null dataset when, following the first alternative method, all the months with missing data are

removed.
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Figure 1: Rolling estimation of equicorrelation and volatility

Notes: parameter estimates are obtained from rolling estimation of the constant drift model over 24-
month windows with one-month steps. Thus, estimated parameters for each month (say, November
04) are based on 24-month time series ending in that month (December 2002 to November 2004).
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incomplete data estimators and the two alternative methods. This experiment is repeated

100 times and the averages of mean square errors (MSE) of the estimated σ and ρ for each

method are reported in the upper part of Table 7. MSEs are calculated around the parameter

estimates obtained from the complete sample (reported in the lower part of Table 6). As

can be seen, MSE is relatively much larger if someone removes all the months with missing

observations. It is also smaller if one uses the incomplete data estimators than if one removes

completely the firms with missing data.

Given that sample is fairly homogeneous, the small MSE of the third method is somewhat

expected. The lower part of Table 7 reports the result of a similar experiment for a less

homogeneous portfolio consisting of only the PRO and DIN sub-industries. In this second

experiment, 50 consecutive months of 23 firms are removed each time in a similar manner to

the first experiment. As can be seen, the MSE for the third method increases substantially

and becomes about 3 times as big as the MSE of the incomplete data estimators. In summary,

the incomplete data estimators generally produce closer estimates to the values obtained if no

data was missing. The gain from using these estimators increases as the number of missing

months increases and as the portfolio becomes less homogeneous. In the extreme cases of short

and frequent periods of missing observations in majority of the state variables, incomplete

data estimators would be the only feasible way to estimate the parameters of the correlated

diffusions.

Dealing with outliers

Outliers can cause substantial bias in parameter estimation and serious problems in time series

analysis. The incomplete data estimators can be used to deal with this problem. A formal test

of the incomplete data estimators performance in handling outliers involves using legitimate

methods of identifying them and comparing the results to the available solutions. For the

sake of illustration, we identify two data points which could be considered outliers by looking

into the sample of stock prices: minimum and maximum values of the sample, which both lie

in CDE sub-industry. Table 8 presents the results after removing these two data points; this

removes 4 data points from the n-vector yj(j = 1, . . . , T ). As can be seen, estimates of the

parameters are noticeably different when the outliers are removed.
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Table 7: MSE of estimates for incomplete datasets of stock prices

Sample Method of handling incomplete data σ ρ

Whole sample
I. Incomplete data estimators .0006775 .0004646
II. Removing months with missing data .0277 .0140
III. Removing firms with missing data .0007854 .0007154

CPR and DIN
I. Incomplete data estimators .0002835 .0002939
II. Removing months with missing data .0134 .0157
III. Removing firms with missing data .0005973 .0008130

Notes: the table reports mean square errors of three alternative methods of handling in-

complete datasets. The upper part of the table presents MSE of estimates from the whole

sample excluding gas sub-sectors (DIN, NGT, OGS), and the lower section reports MSEs

for a less homogeneous portfolio consisting of CPR and DIN. To create incomplete datasets

from the whole sample, 50 firms are randomly picked and 50 consecutive observations of all

the selected firms are removed, with the starting time interval being randomly determined.

The same procedure with 23 firms is followed to create incomplete datasets from CPR and

DIN sample. This experiment is repeated 100 times and MSE is computed around the

estimated σ, ρ from complete samples.

Table 8: Estimation results after removing the outliers

µ σ ρ Λ∗

CDE (including outliers) 0.1099 0.5609 0.2705 2.5387e+03

CDE (removing outliers)
0.1058 0.4955 0.3255 3.3170e+03
(0.109) (0.008) (0.026)

whole sample (including outliers) 0.0964 0.4625 0.2430 1.8228e+04

whole sample (removing outliers)
0.0956 0.4477 0.2556 1.9254e+04
(0.101) (0.009) (0.028)

Notes: the table contains estimation results after removing the outliers. For the ease of

comparison, estimates with outliers are also reported. The sample min and max stock

returns are treated as outliers. Numbers in the parentheses are BHHH standard errors.
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VII. Conclusion

This paper suggests a specification for correlated diffusions more basic than factor analysis,

with widespread potential application in the financial industry. It recognizes the reality that

inference and valuation must often be based on limited observation of generic portfolios with

changing and anonymous constituents. It also recognizes that the dominant valuation frame-

works require knowledge of underlying continuous time processes, but the statistician must

work with discrete time observation. Within these constraints, we have provided, tested and

hopefully displayed the feasibility of maximum likelihood method.

The estimation procedure is applicable to systems of any size, with missing observations

of any pattern. This provides a solution to the situations where one needs to deal with large

asset portfolios while value of some or all of them are not observed at some times during

the life of the portfolio. The procedure was applied to the stock price returns of the North

America oil and gas companies traded on NYSE and time varying features of equicorrelation

was investigated. The performance of the estimation procedure on partially observed time

series was also examined. The incomplete data estimators outperform (by generating smaller

MSE) the estimates based on simply removing rows or columns with missing observations

from the data matrix. It is left to future studies to investigate the implications of using the

estimators suggested in this paper for portfolio selection, risk management and derivatives

pricing.
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Appendix

A. Complete data series

This appendix presents the likelihood function and the ML estimators for the case of no

missing data. Suppose we have observations on all n state variables at equally spaced times

tj (j = 1 . . . T ), with yj = xj+1 − axj − be being the n-vector of random parts of the changes

as in equation (9). The overall likelihood function is as in equation (10) with nj becoming n

and recognizing that the covariance matrix Ω̃ is of size n for all j. Making this adjustment

results in the revised two-times log-likelihood function corresponding to equation (14):

Λ = −nT ln(2π)−nT ln s−(n−1)T ln(1−ρ)−T ln(1+nρ−ρ)−
∑

j y
′
jyj

s(1− ρ)
+

ρ
∑

j y
′
jee′yj

s(1− ρ)(1 + nρ− ρ)

(A.1)

Substituting for yj and collecting terms allows Λ to be written in terms of the parameters and

data moments as

Λ = − nT ln(2π)− nT ln s− (n− 1)T ln(1− ρ)− T ln(1 + nρ− ρ) (A.2)

−
nTb2 + Σx̃′j x̃j − 2aΣx′j x̃j + a2Σx′jxj + 2abΣx′je− 2bΣx̃′je

s(1− ρ)

+
ρ(Tn2b2 + Σx̃′jee′x̃j − 2aΣx′jee′x̃j + a2Σx′jee′xj + 2nabΣx′je− 2nbΣx̃′je)

s(1− ρ)(1 + nρ− ρ)

Summations are understood to be over j = 1, . . . , T and the e is n-vectors of 1’s.

For given ρ, this may be maximized with respect to a, b, s by setting first partial derivatives

equal to 0 and solving for their values

a =
nT (1 + nρ− ρ)Σx′j x̃j − ρnTΣx′jee′x̃j − (1− ρ)Σx′jeΣx̃′je

nT (1 + nρ− ρ)Σx′jxj − ρnTΣx′jee′xj − (1− ρ)Σx′jeΣx′je
(A.3)

b =
Σx̃′je− aΣx′je

nT
(A.4)

s =
Σy′jyj

nT (1− ρ)
−

ρΣy′jee′yj

(1− ρ)(1 + nρ− ρ)
(A.5)

The concentrated likelihood function Λ∗(ρ) is obtained by substituting these values into (A.3).

This is then maximized numerically with respect to ρ to get estimates of the four parameters.

For the case of no mean reversion, a and b are fixed at 1 and 0 respectively when maximizing

with respect to ρ.

24



B. Zero drift model

This appendix specializes to the case of zero drift by setting a = 1 and b = 0 for the case of no

missing data. This could be readily extended to the case of partial data series. The likelihood

function reduces to

Λ = −nT ln(2π)− nT ln s− (n− 1)T ln(1− ρ)− T ln(1 + nρ− ρ)

−
∑

(x̃j − xj)′(x̃j − xj)
s(1− ρ)

+
ρ
∑

(x̃j − xj)′ee′(x̃j − xj)
s(1− ρ)(1 + nρ− ρ)

(B.1)

Taking partial derivatives with respect to s and ρ, equating to 0 then solving, gives explicit

maximum likelihood estimators:

ŝ =

∑
(x̃j − xj)′(x̃j − xj)

nT (1− ρ)
− ρ

∑
(x̃j − xj)′ee′(x̃j − xj)

(1− ρ)(1 + nρ− ρ)

ρ̂ =

∑
(x̃j − xj)′[ee′ − I](x̃j − xj)

(n− 1)
∑

(x̃j − xj)′(x̃j − xj)
(B.2)

≡ − 1

n− 1
+

1

(n− 1)nT ŝ

T∑
j=1

(

n∑
i=1

(x̃ij − xij))2

Λ∗ = −T ((ln 2π + ln ŝ+ 1)n+ (n− 1) ln(1− ρ̂) + ln(1 + nρ̂− ρ̂)) (B.3)

The continuous time volatility estimate is related to ŝ by

σ̂ = (ŝ/h)1/2 (B.4)

An unbiased estimate of the common component of the state change over the jth observation

interval, σρ1/2(z0(tj + h)− z0(tj)), is simply the average x change

ε̂j =
1

n

n∑
i=1

(x̃ij − xij) (B.5)

This will be a noisy estimate, with error variance converging to 0 only as the number of

diffusions n in the cross-section goes to infinity.
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