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further manipulations of the relevant integrands to render the integrals amenable to
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favorably with several classical method both for points close to the line where the
poles are located and at high-frequencies while remaining competitive with them in
every other instance.

Key words: Green’s function periodic domain, rough-surface, high-frequency,
free-space, Helmholtz equation.

∗ Corresponding author.
Email addresses: hka50@sfu.ca (Harun Kurkcu), nigam@math.sfu.ca (Nilima

Nigam), reitich@math.umn.edu (Fernando Reitich).

Preprint submitted to Journal of Computational Physics



1 Introduction

The evaluation of the potential due to an infinite number of acoustic point
sources arranged periodically along a line in three space dimensions presents
numerical challenges. Knowledge of this potential is useful, for example, in the
design of line array loudspeakers. These are collections of speakers arranged in
a vertical or horizontal configuration; patterns of constructive and destructive
interference lead to more directionality and sound intensity compared to a
single speaker. The effects of increased directionality was documented by [1].
Another interesting feature of these speakers is that in certain limits, the
intensity of acoustic power varies inversely with the distance, rather than
inversely with the square of the distance as one might expect with a radiating
point source. Since the 1960’s, such line array speakers have become popular
especially in large venues. Challenges arise with faithful sound reproduction in
the near field as well as in the high frequency domain, and the ability to rapidly
and accurately compute the potential due to such an arrangement of sources is
key in the optimal design of such speakers. In this paper we introduce a novel
method for the evaluation of this potential (the Green’s function). The method
is applicable even in the regimes where existing methods are not competitive.

The general area of computing periodized Green’s functions has attracted
significant attention from engineers and mathematicians over the last 40 years
and has resulted in some novel methods, including the work in [2–4] for two-
dimensional problems with one-dimensional periodicity (i.e., a planar array of
line sources) and [5,6] for three-dimensional problems with two-dimensional
periodicity (i.e., a planar array of point sources). Indeed, while the present
paper describes an intermediate problem of one-dimensional periodicity in
three dimensions [7], part of the motivation is to use this method as a building
block for the full three-dimensional problem with two-dimensional periodicity.

The classical algorithms based on using spatial or spectral representations,
or the Ewald’s transform [7], result in series with slowly decaying terms. We
shall show that these algorithms develop problems especially in the extremely
near-field, as well as at high-frequencies.

The method we introduce can effectively provide solutions at very high-frequencies
or in the very near field, while remaining competitive with the optimal choices
of currently available schemes throughout their domain of applicability. Briefly,
the method begins with a new integral representation similar to one developed
in [8] for the case of a planar array of line sources. The method is based on the
spatial representation of the Green’s function, G, from which an integral rep-
resentation is derived. The integrand in the latter is an exponentially decaying
function f(x, y, z; u) for u ≥ 0 where (x, y, z) denote the spatial variables and
the sources are placed along the z−axis. At low-frequencies and/or for small
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values of the distance ρ =
√

x2 + y2 the function f and its derivatives remain
bounded and a standard quadrature can provide an efficient means to evaluate
the integral. As the frequency increases, the integrand f displays progressively
larger and more rapid oscillations which cancel out to produce a significantly
smaller integrated value. In this case classical quadratures tend to be unstable
and inadequate. To overcome these difficulties our scheme is based on poly-
nomial expansions of quotients of f and suitably chosen functions to allow for
explicit evaluations, and on judicious integration by parts in order to improve
stability and reduce the computational cost.

The rest of the paper is organized as follows. First, and for the sake of com-
pleteness, in §2 we briefly review the most popular methods that have been
devised to compute G, including those based on spatial and spectral represen-
tations, and on the Ewald transform. We discuss the problems that arise with
each of these, either as the observation point approaches the array or as the
frequency increases. In section §3 we derive a new integral representation and
§4 is devoted to the presentation of our new high-frequency algorithm. Finally
in §5 we present numerical results that confirm that this method significantly
outperforms classical procedures. As we show, the method enables accurate
simulations even in the regimes where other methods fail.

2 Problem statement and review of existing algorithms

In this paper, we are concerned with the problem of evaluating the scalar
potential due to point sources arrayed along a line with equal spacing. These
sources are assumed to be operating with equal amplitude and with phases
that are allowed to vary linearly with the source location. In [1], the charac-
teristic features of such line arrays are described. For example, the directional
behavior of such an array is observed only within a range of frequencies. In or-
der to maintain directionality at high frequencies, it is known that the spacing
between the sources must be reduced.

We will be working in the frequency domain, and thus a time dependence
of e−iωt has been factored out. The point sources are assumed to be located
at positions ndk̂ for n ∈ Z, d > 0. There is thus a natural periodicity with
period d in the z direction. We assume further that the line array is embedded
in a medium with background wave number k, and we are interested in the
outgoing solution of the Helmholtz equation.

The problem can be rephrased in terms of a Green’s function G(x, y, z): Find
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the solution of

∆G(x, y, z) + k2G(x, y, z) = −
∞∑

n=−∞
exp(iαnd)δ(x)δ(y)δ(z − nd),

where the nth point source is located at Rn = ndk̂, α = k sin(θ) for a fixed
incidence angle θ, and the potential is being evaluated at point (x, y, z). Given
the axial symmetry in the problem, it is appropriate to use cylindrical coor-
dinates. The observation point (x, y, z) is therefore (x, y, z) = ρρ̂ + zk̂. We
also need to specify a radiation condition and to derive this relation we note
the periodicity of the structure implies that the fields can be represented as
Fourier-like series. Indeed letting,

αn = α +
2πn

d
and βn =

√
k2 − α2

n

we have

G(ρ, z) =
∞∑

n=−∞
Ane

iαnzH
(1)
0 (βnρ) +

∞∑
n=−∞

Bne
iαnzH

(2)
0 (βnρ),

where

H
(1,2)
0 (z) = J0(z)± iY0(z)

and J0(z), Y0(z) are the zeroth order Bessel functions of the first and sec-
ond kind respectively. In terms of Fourier coefficients the radiation condition
(outgoing field) can be stated as

Bn = 0 for all n.

Note that radiation may propagate axially along the array (as a Floquet wave).

We shall now describe some popular representations of G(ρ, z) which are used
in some existing numerical strategies. We discuss the difficulties which arise
in the high frequency (large k) and nearly-axial (small ρ) regimes. In each
case, these difficulties lead to an increase in computational cost and/or the
deterioration of the stability properties of these methods.

1. Spatial representation: The simplest method for evaluating G(ρ, z) fol-
lows from the explicit knowledge of the free-space Green function Gswith a

single point source located at the origin: Gs(x, y, z) = Gs(ρ, z) = eik
√

ρ2+z2

4π
√

ρ2+z2
.

For an array of such point sources, we can simply add these contributions. For
fixed α and wave number k,

G(ρ, z) =
1

4π

∞∑
n=−∞

eiαnd eikrn

rn

(1)
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where

rn =
√

ρ2 + (z − nd)2.

The terms of this series only decay as 1
n
, and the series does not converge

absolutely. Therefore, summation of this series is an inefficient technique at
best; the problems are independent of frequency. More precisely∣∣∣∣∣G(ρ, z)− 1

4π

N∑
n=−N

eiαnd eikrn

rn

∣∣∣∣∣ ∼
∣∣∣∣∣ 1

2π

ei(k+αd)(N+1)

N + 1

∣∣∣∣∣ = 1

2π(N + 1)
(2)

and

G(ρ, z) ∼ 1

4π

eikr0

r0

.

2. Spectral representation: Another approach for computing G relies on its
Fourier series representation [7]. Since G is a (quasi) periodic function, one can
easily use Poisson’s summation formula to obtain a ”spectral representation”:

∞∑
n=−∞

f(nd) =
1

d

∞∑
q=−∞

f̃(
2π

d
q),

where

f(nd) = eiαnd eikrn

4πrn

, rn =
√

ρ2 + (z − nd)2,

and

f̃(
2π

d
q) =

1

4id

∫ ∞

−∞
ei 2π

d
quf(u)du.

Specifically, this spectral representation becomes

G(ρ, z) =
1

4id

∞∑
n=−∞

eiαnzH
(1)
0 (βnρ), (3)

where H
(1)
0 is the zeroth order Hankel function of the first kind. The n-th

Floquet wave number along the axial (z) direction is

αn = α +
2π

d
n,

and the n-th transverse Floquet wave number is

βn =
√

k2 − α2
n =

√
k2 − (α +

2π

d
n)2.

In contrast with the representation in (1) the series in (3) converges exponen-
tially for ρ > 0. If α is real and the medium is lossless (k is real), then for
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α2
n < k2 the βn describe radially propagating waves, while for α2

n > k2 the βn

index Floquet waves attenuating in the ρ direction. The critical index is

N =
|k|d− αd

2π
;

for |n| > N the terms in the series (3) decay exponentially, corresponding
to the attenuating Floquet modes. This is easily seen from the asymptotic
behavior of the Hankel function,

H
(1)
0 (a) ∼

√
2

πa
ei(a−π

4
) for 1 � |a| [9, Equation 9.2.3].

Clearly if βn is complex-valued, which happens for |n| > N , H
(1)
0 (βnρ) is an

exponentially small term provided ρ > 0. The method does not converge if
ρ = 0.

It is worth examining the computational cost of this method. We would need
to retain, at a minimum, enough terms n in the series such that |βn|ρ > 1.
For example, n > N must be chosen large enough such that

|βn|ρ =

∣∣∣∣∣∣
√

k2 − (α +
2π

d
n)2

∣∣∣∣∣∣ ρ > 1 or, equivalently n > 2N+
2

ρ2π
d

(
kρ +

√
kρ2 + 1

) .

Clearly if k is large, or ρ
d

is small, n must be chosen to be large enough to
provide accurate results.

3. Ewald transformation: The Ewald summation technique for this prob-
lem due to Capalino et. al. [7] is based on the integral representation

eikr

4πr
=

1

2π3/2

∫ ∞

0
e−r2s2+ k2

4s2 ds,

to accelerate the convergence of the spatial representation series in (1). To
review this approach, let us begin with fixing E > 0, and defining

Gspectral(ρ, z) =
1

2π
√

π

∞∑
n=−∞

eiαnd
∫ E

0
e−r2

ns2+ k2

4s2 ds,

and

Gspatial(ρ, z) =
1

2π
√

π

∞∑
n=−∞

eiαnd
∫ ∞

E
e−r2

ns2+ k2

4s2 ds,

where rn =
√

ρ2 + (z − nd)2 so that, from (1),

G(ρ, z) = Gspectral(ρ, z) + Gspatial(ρ, z). (4)
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Next we note that the series Gspectral(ρ, z) rewritten as

Gspatial(ρ, z) =
1

8π

∞∑
n=−∞

eiαnd

rn

[
e−ikrnerfc(Ern− i

k

2E
) + eikrnerfc(Ern + i

k

2E
)

]
,

(5)
where erfc(a) is the complementary error function. The other series Gspectral,
in turn, can be written as

Gspectral(ρ, z) =
1

4πd

∞∑
n=−∞

eiαnd
∞∑

m=0

(−1)m

m!
(ρE)2mEm+1(−

β2
n

4E2
), (6)

where the mth order exponential integral Em(x) is defined by

Em(x) =
∫ ∞

1
u−me−xudu.

Now, the combined exponential decay of the series (5) and (6) make this into
a efficient method for moderate values of k. In this case, it can be shown that
the optimal choice of E is

E =

√
π

d
, (7)

in which case both series converge at the same asymptotic rate [7]. However, as
also shown in [7], this choice of the parameter E leads to unstable evaluations
for larger frequencies and must be modified to ensure the boundedness of the
terms in the series. More precisely, we have

erfc(a) ∼ e−a2

/
√

πa and E1(a) ∼ e−a/a for |a| � 1,

so that, for large k,

Gspatial(ρ, z) ∼
∑
n

e
k2

4E2−E2(ρ2+(z−nd)2),

and

Gspectral(ρ, z) ∼
∑
n

4E2

k2 − (α + np)2
e

k2−(α+np)2

4E2 .

Thus, for large k, a choice of E that is independent of frequency (such as
that in (7) leads to large values of the terms in the series (5) and (6) and
to inaccurate values of the G(ρ, z) as a result of cancellations. To avoid this
difficulty, one may choose

E = max

{
Espectral =

C1

√
k√

2
√

ρ2 + z2
, Espatial =

C2

√
k2 − α2

2

}
(8)

for some constants C1,2 which are related to the maximum allowable value of
the terms in (5) and (6).
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As can be easily verified this choice will allow evaluations of Gspatial(ρ, z) with
a computational cost independent of frequency and will put the computational
burden on the calculation of Gspectral(ρ, z). In detail, we can approximate

Gspectral ≈
1

4πd

N∑
n=−N

eiαnd
∞∑

m=0

(−1)m

m!
(ρE)2mEm+1(−

β2
n

4E2
) (9)

to within an accuracy of ε provided

N ≥ log(ε)k

And this, in turn, leads to a computational cost that is similar to that of
evaluation of standard spectral series (3).

Moreover, once E chosen as in (8), its stability properties deteriorate signifi-
cantly for large k due to the correspondingly large values of

(ρE)2m

m!
∼ max

{(
kρ2/

√
ρ2 + z2

)m

m!
,
(kρ)2m

m!

}
(10)

in the inner sum (9), (see also [7, §4.2]) resulting an unavoidable loss of accu-
racy in its evaluation.

3 A new integral representation of the Green’s function

In this section we will derive an alternative representation for the Green’s
function for a line array. This representation will form the backbone of our
computational method. As in [8], the starting point for this derivation is the
spatial form (1), and the simple observation that

∞∑
n=1

e−ianenv =
e−ia

ev − e−ia
.

If L(f) is the Laplace transform of a function f , then we can use the identity
above to get

∞∑
n=1

e−ianF (n) = e−ia
∫ ∞

0

f(v)

ev − e−ia
dv.

For our purposes, we use the identity [10, Equation 4.146.1]

L−1{eβm e−β
√

m2+γ2

√
m2 + γ2

} = J0(γ
√

v2 + 2βv)
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to see that for n > 0, the sum in (1) becomes

∞∑
n=1

eiαnd eikrn

rn

=
∫ ∞

0

eikd

ev − eikd

(
1

d
e−ikz+ z

d
vJ0

(
ρ

√
(
v

d
)2 − 2ik

v

d

))
dv.

We can use a similar argument for the remaining terms of the sum in (1):

−1∑
n=−∞

eiαnd eikrn

rn

=
∞∑

n=1

e−iαnd eik
√

(z+nd)2+ρ2√
(z + nd)2 + ρ2

=
∫ ∞

0

ei(k−α)d

ev − ei(k−α)d

(
1

d
eikz− z

d
vJ0

(
ρ

√
(
v

d
)2 − 2ik

v

d

))
dv

Putting these expressions together, the Green’s function G(ρ, z) can be written
as

G(ρ, z) =
1

4π

eikr0

r0

+
eikz

4πd

∫ ∞

0

ei(k−α)d

ev − ei(k−α)d
e−

z
d
vJ0

(
ρ

√
(
v

d
)2 − 2ik

v

d

)
dv

+
e−ikz

4πd

∫ ∞

0

ei(k+α)d

ev − ei(k+α)d
e

z
d
vJ0

(
ρ

√
(
v

d
)2 − 2ik

v

d

)
dv.

Next, a change of variables v = kdζ2 is applied to put this in a more convenient
form

G(ρ, z) =
1

4π

eikr0

r0

+
k

2π

[ ∫ ∞

0
f (1)(ζ)dζ +

∫ ∞

0
f (2)(ζ)dζ

]
(11)

with

f (a)(ζ) = ζei(2a−3)kz ei(k−(2a−3)α)de−(2a−3)kzζ2

ekdζ2 − ei(k−(2a−3)α)d
J0

(
kρζ

√
ζ2 − 2i

)
, (12)

for a = 1, 2 which provides the desired representation.

4 A new algorithm

In this section we provide a derivation of a new procedure based on the new
integral representation described in the previous section. More precisely, it re-
lies on further manipulation of the integrals in (11) in a manner so as to reduce
the integration problem to one where the application of classical quadrature
formulas becomes simultaneously stable and efficient.

In what follows, and for the sake of the presentation, we shall assume α = 0,
and focus on the plane z = 0. The arguments for other values of α and z follow
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largely along the same lines. In this case, we note that G(ρ, 0) in (11) can be
rewritten as

G(ρ, 0) =
1

4π

eikρ

ρ
+

k

π
I∞ (13)

where

I∞ =
∫ ∞

0
f(ζ)dζ and f(ζ) = ζ

J0

(
kρζ

√
ζ2 − 2i

)
ekd(ζ2−i) − 1

. (14)

Lemma 4.1 Given ε > 0, there exists a C ∈ R such that

|
∫ ∞

0
f(ζ)dζ −

∫ C

0
f(ζ)dζ| < ε

√
π√

4kd
(15)

where C satisfies

ekρC

ekdC2 = ε or, equivalently, C =
ρ +

√
ρ2 − 4d log(ε)

k

2d
. (16)

To see (4.1), we will use

|J0(a)| ≤ e|=(a)| for all a [9, Equation 9.1.62] ,

|=(ζ
√

ζ2 − 2i)| = ζ

√
2

ζ2 +
√

ζ2 + 4
≤ min{ζ, 1} for all ζ ≥ 0,

and
ζekρ min{ζ,1} ≤ ekρζ for all ζ ≥ 0.

From these it follows

|ζ
J0

(
kρζ

√
ζ2 − 2i

)
ekd(ζ2−i) − 1

| ≤ |ζe
kρζ

√
2/(ζ2+

√
ζ2+4)

ekd(ζ2−i) − 1
| ≤ | ζekρ min{ζ,1}

ekd(ζ2−i) − 1
| ≤ | ekρζ

ekd(ζ2−i) − 1
|.

Finally,

|
∫ ∞

C
f(ζ) dζ| ≤

∫ ∞

C
|f(ζ)| dζ ≤ 2

∫ ∞

C
exp(kρζ − kdζ2) dζ ≤ ε

√
π√

4kd

since

| 1

ekd(ζ2−i) − 1
| ≤ | 2

ekd(ζ2−i)
| for u ≥ C if ε ≤ 1,

and ∫ ∞

C

ekρζ

ekdζ2 dζ =
ekρC

ekdC2

∫ ∞

0

ekρv−2kdCv

ekdv2 dv ≤ ε

√
π√

4kd

provided C is chosen as in (16). Thus, it suffices to design an efficient way to
evaluate

I =
∫ C

0
f(ζ)dζ. (17)
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To do this we first we note that

|
∫ ∞

0
f(ζ)dζ| ∼ 1

kd
as k →∞

and

max |f(ζ)| ∼ ekρ2/4d

√
πkd

and max |f ′
(ζ)| ∼ e

kρ2

4d . (18)

To see (18) we look at the behavior of the integrand given in (13). For ζ ∼ 0
we have that

kρζ
√

ζ2 − i ∼ kρζ(1− i),

and for fixed kρ

J0(kρζ
√

ζ2 − i) ∼
√

2

πkρζ(1− i)
exp(ikρζ(1− i)− i

π

4
). (19)

Therefore,

f(ζ) ∼ ζ

ekdζ2 − eikd

√
2

πkρζ(1− i)
exp(kρζ(1 + i)− i

π

4
)

∼
√

2ζ

πkρ(1− i)

ekρζ(1+i)−i π
4

ekd(ζ2−i)

and therefore for large k,

max
0≤ζ≤∞

∣∣∣f(ζ)
∣∣∣ ∼ ekρ2/4d

√
πkd

.

Thus a canonical quadrature provides a stable and efficient way to evaluate
(13) accurately with a computational complexity independent of the wave
number provided

ekρ2/4d

√
πkd

<
constant

kd
(20)

where the integrand does not oscillate rapidly within the range [0, C]. In Fig-
ure 1, we display plots of f(ζ) near ζ = 0 and of its logarithm in a larger
region for values that satisfy (20).

On the other hand and as we anticipated, for large values of kρ2

4d
, the integrand

f(ζ) in (12) displays large and fast oscillations which cancel out to produce a
significantly smaller integrated value, see Figure 2. Indeed, choosing

ekρ2/4d

√
πkd

> 10A 1

kd
(21)

leads to difficulties in attempting to accurately determine the integral value
in finite precision arithmetic since a canonical quadrature will lead to a loss
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Fig. 1. The integrand f(ζ) in (14) Left: <(f(ζ)) and =(f(ζ)), Right:
log(<(f(ζ))),with k = 105 + 0.2, d = 2π, (ρ, z) = (0.015, 0) and kρ2/(4d) = 0.89.

of A significant digits in the value of the integral. For the sake of definiteness
we shall take

A = 5

in double precision arithmetic. There remains then to design an effective way
to evaluate the integral in (13) for values of k and ρ that falls in the regime
(21).
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Fig. 2. The integrand f(ζ) in (14) and its approximation f̃(ζ) as defined in (19).
Left: <(f(ζ)), Right: <(f(ζ)/f̃(ζ)), with k = 105 + 0.2, d = 2π, (ρ, z) = (0.15, 0),
and kρ2/(4d) = 89.

To this end we first expand the denominator of the integrand in (14)

1

ekd(ζ2−i) − 1
=

1

e(M+1)kd(ζ2−i) − eMkd(ζ2−i)
+

M∑
j=1

1

ejkd(ζ2−i)

to rewrite the integral in (17) as

I =
∫ C

0
ζ
J0

(
kρζ

√
ζ2 − 2i

)
ekd(ζ2−i) − 1

dζ

=
∫ C

0
fM

new(ζ)dζ +
M∑

j=1

eijkd
∫ C

0
ζ
J0

(
kρζ

√
ζ2 − 2i

)
ejkdζ2 dζ

(22)
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where

fM
new(ζ) =

ζJ0

(
kρζ

√
ζ2 − 2i

)
e(M+1)kd(ζ2−i) − eMkd(ζ2−i)

. (23)

The first integral in (22) can be treated similarly to its analogue in the case
of line arrays [11–13]. Indeed we first note that choosing

M ≈ kρ2

20d

allows us to capture all significant contributions to the integral. With this
choice of M large variations can be avoided since (see Figure 3)

|fM
new(ζ)| � |f(ζ)| and |fM ′

new(ζ)| � |f ′
(ζ)|.

This in turn enables a truncation of the interval [0, C] to [0, Cnew] where

Cnew =
ρ +

√
ρ2 + 4Md log(ε)

k

2Md
� C

so that
fM

new(Cnew) = ε

for any given ε, and a canonical quadrature can be applied to evaluate the
integral ∫ Cnew

0
fM

new(ζ)dζ

accurately with a computational complexity independent of the wave number.

0 0.005 0.01 0.015 0.02 0.025 0.03
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

35

0 ≤ ζ ≤  ρ/d

← Re(f+(ζ))

0 0.5 1 1.5 2 2.5 3

x 10
−3

−8

−6

−4

−2

0

2

4

6
x 10

−3

0 ≤ ζ ≤  C
new

← Re(fM
new

(ζ))

Fig. 3. The integrand f(ζ) in (12) and fM
new(ζ) as defined in (23). Left: <(f+(ζ)),

Right: <(fM
new(ζ)),with k = 105 + 0.2, d = 2π, z = 0, ρ = 0.15.

The treatment of the last integral in (22) however cannot proceed as in [11,12].
There the basic idea was to construct a quotient of the form

J0

(
kρζ

√
ζ2 − 2i

)
J0

(
kρ(1− i)ζ

) = h(ζ) =
∞∑

n=0

anζ
n (24)
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to allow for the representation of the integral as

∫ C

0
ζ
J0

(
kρζ

√
ζ2 − 2i

)
ejkdζ2 dζ =

∫ C

0
ζ
J0

(
kρζ

√
ζ2 − 2i

)
J0

(
kρ(1− i)ζ

) J0(kρ(1− i)ζ)

ejkdζ2 dζ

=
∞∑

n=0

an

∫ C

0
ζn+1J0(kρ(1− i)ζ)

ejkdζ2 dζ

=
∞∑

n=0

anI
(0)
n+1,j

(25)

where I
(0)
n,j is defined by

I
(0)
n,j =

∫ C

0
ζn J0(kρ(1− i)ζ)

ejkdζ2 dζ. (26)

However, in contrast when compared to the case treated in [11,12], here this
procedure is numerically stable only for a much smaller region

kρ2/(2d) ≤ 1

which does not offer any further improvement over the case where classical
quadratures are effective. The difficulty arises from the size of the coefficients
in (25) when n is small for large kρ. Indeed


a2n ∼ (

kρ

2
)2n−2 for small n and kρ � 1,

a2n+1 = 0 for n ≥ 0.

and, as shown below (cf. (38)), the integrals behave like

I
(0)
n+1,j ∼

iρ2n

2n+1k(dj)2n+1
ei kρ2

2jd for kρ � 1 and n ≥ 1,

so that

anI
(0)
n+1,j ∼ (

kρ2

2d
)2n−2.

As we shall show however a modification of this scheme can be used to derive
a stable representation of J0

(
kρζ

√
ζ2 − 2i

)
. More precisely, since

√
ζ2 − 2i ∼ 1− i for ζ ∼ 0

14



we can expand

J0

(
kρζ

√
ζ2 − 2i

)
= J0

(
(1− i)kρζ +

[
kρζ

√
ζ2 − 2i− (1− i)kρζ

])

=
∞∑

n=0

[
ζ
√

ζ2 − 2i− (1− i)ζ
]n

n!

(
DnJ0

)(
(1− i)kρζ

)

=
∞∑

n=0

[
ζ
∑∞

m=1 r2mζ2m
]n

n!

(
DnJ0

)(
(1− i)kρζ

)
(27)

where √
ζ2 − 2i = (1− i) +

∞∑
m=1

r2mζ2m for ζ ≤
√

2

and the coefficients r2m can be easily evaluated via the recursive formula

r0 = 1− i and r2m =
(2m− 3)

2m

(−1)m+1

2i
r2m−2, m = 1, 2, ...

Next, using

D

(
J0(a)

)
= −J1(a) and D1

(
J1(a)

)
= J0(a)− J1(a)

a
,

the decomposition in (27) can be rewritten as

J0

(
kρζ

√
ζ2 − 2i

)
= J0

(
kρ(1− i)ζ

)
h0(ζ) + J1

(
kρ(1− i)ζ

)
h1(ζ) (28)

where

h0(ζ) =
∞∑

n=0

bnζ
n and h1(ζ) =

∞∑
n=0

cnζ
n.

The coefficients bn and cn are explicitly given by

b2n =



1 if n = 0,

0 if n = 1, 2,∑bn
3
c

m=1

(−i)n+m

2n+m

(n− 2m− 1)!(n− 2m)!

(n− 3m)!(n−m)!

((1− i)kρ)2m

m!(m− 1)!
if n ≥ 3,

and

c2n+1 =


0 if n = 0,∑bn−1

3
c+1

m=1

(−i)n+m−1

2n+m

n− 2m + 1)!(n− 2m + 1)!

(n− 3m + 2)!(n−m + 1)!

((1− i)kρ)2m−1

(m− 1)!2
if n ≥ 1,

with
b2n+1 = c2n = 0 for n ≥ 1

and where the “floor function” is defined by bxc = max{n ∈ Z | x ≤ n}.
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This decomposition provides a more stable way to compute J0

(
kρζ

√
ζ2 − 2i

)
since the coefficients bn and cn are smaller than the an’s in (24)

b2n ∼
((1− i)kρ)2bn

3
c

(2n
3

)!24n/3
for kρ � 1 and n ≥ 3, (29)

c2n+1 ∼
((1− i)kρ)2bn−1

3
c+1

(2n
3

)!24n/3
for kρ � 1 and n ≥ 1. (30)

Then, substituting (28) into (22) we obtain

∫ C

0
ζ
J0

(
kρζ

√
ζ2 − 2i

)
ejkdζ2 dζ =

∞∑
n=0

bn

[ ∫ C

0
ζn+1J0(kρ(1− i)ζ)

ejkdζ2 dζ

]

+
∞∑

n=0

cn

[ ∫ C

0
ζn+1J1(kρ(1− i)ζ)

ejkdζ2 dζ

]

=
∞∑

n=0

bnI
(0)
n+1,j +

∞∑
n=0

cnI
(1)
n+1,j

=
∞∑

n=0

b2nI
(0)
2n+1,j +

∞∑
n=1

c2n+1I
(1)
2n+2,j.

(31)

where

I
(1)
n,j =

∫ C

0
ζn

J1

(
kρ(1− i)ζ

)
ejkdζ2 dζ.

and I
(0)
n,j is as in (26).

The evaluation of the integrals I
(0)
2n+1,j and I

(1)
2n,j in (31) is clearly preferable

to that in (13), on account of the diminishing values and faster decay of the

former as j increases. Moreover, as we show next, I
(0)
2n+1,j and I

(1)
2n,j can be

computed explicitly, with the use of Hankel’s formula [14]:

∫ ∞

0
ζµ−1

Jν

(
aζ
)

ep2ζ2 dζ =
Γ(1

2
ν + 1

2
µ)(1

2
a/p)ν

2pµΓ(ν + 1)
1F1(

1

2
ν+

1

2
µ; ν+1;− a2

4p2
), if <(µ+ν) > 0,

(32)
where 1F1 denotes the confluent hypergeometric function of the first kind.

To this end we will first consider the evaluation of I
(0)
2n+1,j and let

V
(0)
2n+1,j =

∫ ∞

0
ζ2n+1

J0

(
kρ(1− i)ζ

)
ekdu2 dζ
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Then from (32) (with ν = 0 and µ = 2n + 2)

V
(0)
2n+1,j =

n!

2(kdj)n+1 1F1(n + 1, 1;
ikρ2

2dj
) (33)

where for fixed b the hypergeometric function 1F1(n, b; ikρ2

2dj
) can be evaluated

through the recursive formula [9, Equation 13.4.1]

1F1(a + 1, b, c) =
(c + 2a− b)

a
1F1(a, b, c) +

(b− a)

a
1F1(a− 1, b, c), (34)

with

1F1(b, b; c) = ec and 1F1(b + 1, b; c) =
(c + b)

b
, (35)

with b = 1. Alternatively 1F1(n, 1; ikρ2

2dj
) can be evaluated explicitly as

1F1(n + b, b;
ikρ2

2dj
) = ei kρ2

2dj

n∑
m=0

n!

m!(n−m)!(n−m + b− 1)!
(i

kρ2

2dj
)n−m.

As we shall see V
(0)
2n+1,j provides a good approximation to I

(0)
2n+1,j for n small.

For n large, on the other hand, it follows from (33) that

V
(0)
2n+1,j →∞ as n →∞

and these values do not provide a good estimate of I
(0)
2n+1,j. However, in this

case, we can simply estimate

|I(0)
n,j | < εCn+1 for n > N,

where ε is as in (16), provided

N =
kρ2

8d
− log(ε)

2
+

kρ

4d

√
ρ2 − 4d log(ε)

k
.

Given such N then we have

|I(0)
n,j − V

(0)
n,j | ≤ εCn for n ≤ N.

A similar argument delivers

|I(1)
n,j | < εCn+1 for n > N,

and
|I(1)

n,j − V
(1)
n,j | ≤ εCn for n ≤ N,
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where

V
(1)
2n,j =

∫ ∞

0
ζ2n

J1

(
kρ(1− i)ζ

)
ekdu2 dζ.

As before, from (32) (ν = 1 and µ = 2n + 3), we have

V
(1)
2n,j =

Γ(n + 2)(kρ(1− i))

4(kdj)n+2 1F1(n + 2, 2;
ikρ2

2dj
) (36)

where 1F1(n, 2; ikρ2

2dj
) can again be calculated through (34) and (35) (with b =

2).

Finally using (33) and (36) the Green’s function G(ρ, 0) can be written as

G(ρ, 0) ≈ eikρ

4πρ
+

k

π

∫ Cnew

0
fM

new(ζ) dζ

+
k

π

M∑
j=1

eikjd
N∑

n=0

b2n
n!

2(kdj)n+1 1F1(n + 1, 1;
ikρ2

2dj
)

+
k

π

M∑
j=1

eikjd
N∑

n=1

c2n+1
(n + 1)!(kρ(1− i))

4(kdj)n+2 1F1(n + 2, 2;
ikρ2

2dj
).

(37)

To see that (37) improves on the stability of a direct application of (13) we
first note that

n!

2(kdj)n+1 1F1(n + 1, 1;
ikρ2

2dj
) ∼ iρ2nei kρ2

2jd

2n+1k(dj)2n+1
for kρ � 1 and n ≥ 1, (38)

and using (29), the terms in the first inner sum decay as

∣∣∣∣∣b2n
n!

2(kdj)n+1 1F1(n + 1, 1;
ikρ2

2dj
)

∣∣∣∣∣ ∼ 1

2kdj

(
kρ4

8
√

2(dj)3

)2n/3
1

(2n/3)!
for n ≥ 1.

(39)
A similar argument applies to the second inner sum in (37). In this case

(n + 1)!(kρ(1− i))

4(kdj)n+2 1F1(n+2, 2;
ikρ2

2dj
) ∼ (1 + i)ρ2n−1ei kρ2

2jd

2n+1k(dj)2n
for kρ � 1 and n ≥ 1,

and, using (30), we see that

∣∣∣∣∣c2n+1
(n + 1)!(kρ(1− i))

4(kdj)n+2 1F1(n+2, 2;
ikρ2

2dj
)

∣∣∣∣∣ ∼ 1

2(kρ)2/3

(
kρ4

16d3j3

)2n/3

for n ≥ 1.

(40)
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Finally we note that, for stability, (39) and (40) demand only that

kρ4

d3
< constant

which significantly improves upon (13); see Tables 5– 8.

5 Set of Numerical Results

In this section, we provide two sets of numerical experiments where we com-
pare the values and computational times associated with the Green’s func-
tion G(ρ, z) = G(x, y, z) obtained from the new integral representation (11),
the classical spatial and spectral representations(cf. (1), (3)), and the Ewald’s
transform (4). More precisely these sets correspond to the cases when kρ2/(4d) .
1 and 1 � kρ2/(4d), respectively.

The implementation of every scheme is largely straightforward, as it entails
evaluations of standard special functions and simple sums and products. For
the Ewald method the necessary evaluations of the complementary error func-
tion – for complex arguments – are performed using the algorithm in [15].
The method introduced above, on the other hand, relies on the evaluation of
integrals (cf. IM

new in (23)) with integrands that display exponentially small
(odd order) derivatives at the boundary of the integration domain and are
thus amenable to very accurate evaluations via the trapezoidal rule.

For comparison purposes, and to ensure the accuracy of both representations,
all calculations were performed in double precision arithmetic. For the evalu-
ation of the relative error

Err =
|GExact(ρ, z)−GMethod(ρ, z)|

|GExact(ρ, z)|
(41)

an “exact solution” GExact(ρ, z) was computed in quadruple precision arith-
metic (using the spectral representation to avoid biases). The tables confirm
the expected behavior of each methodology, as discussed above.

In both tests the sums in the spatial representation are truncated for N1 =
105 and N2 = 106 to display the first order convergence demonstrated in (2).
Truncation for the spectral representation, on the other hand, is based on the
exponential convergence of the method. The Ewald transformation, on the
other hand, displays a stronger instability, enhanced for increasing ρ, as the
values of the wave number exceed the ratio max{

√
ρ2 + z2/ρ2, 1/ρ} (cf. (10)).

The cases where this method does not converge (“dnc”) are labeled as such.
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In the first set of the numerical experiments (Tables 1-4), we consider the

case where d = 2π, z = 0.1 for ρ = 0.001 and ρ =
√

d/k leading to values

kρ2/(4d) . 1. Here α = 0, for (Tables 1-2) and α = k sin(π
3
), for (Tables 3-4)

In the second set, (Tables 5-8), on the other hand, we let d = 2π, α = 0, z = 0
for ρ = 0.01, 0.1, 0.3 and ρ = 0.5 which lead to values 1 � kρ2/(4d).

As the tables show, the schemes introduced here can be seen to consistently
outperform the alternative procedures within its domain of applicability, where
it delivers higher accuracy in shorter computational times.

Table 1
Error (41) and computational times (t) for evaluation of G(ρ, z) with α = 0, k =
10n + 0.2, (ρ, z) = (0.001, 0.1).

n Spa. tN1
Spa. Spa. tN2

Spa. Spe. tSpe. Ewa. tEwa. NA tNA

1 1.4e-7 0.3s 1.4e-8 3s 3e-15 5s 1.9e-16 0.1s 3e-16 0.2s

2 2.2e-7 0.3s 2.2e-8 3s 6e-15 5s 5.8e-14 0.2s 2e-15 0.2s

3 2.4e-7 0.3s 2.4e-8 3s 9e-15 5s 1.1e-13 2s 7e-15 0.2s

4 1.4e-7 0.3s 1.4e-8 3s 2e-13 5s 4.8e-13 40s 2e-13 0.2s

5 2.5e-7 0.3s 2.5e-8 3s 7e-13 17s dnc ... 6e-12 0.2s

6 2.7e-7 0.3s 2.7e-8 3s 9e-12 163s dnc ... 3e-11 0.2s

7 2.6e-7 0.3s 2.6e-8 3s 1e-10 1648s dnc ... 2e-10 0.2s

Table 2
Error (41) and computational times (t) for evaluation of G(ρ, z) with α = 0, k =
10n + 0.2, (ρ, z) = (

√
d/k, 0.1).

n Spa. tN1
Spa. Spa. tN2

Spa. Spe. tSpe. Ewa. tEwa. NA tNA

1 9.9e-7 0.3s 9.9e-8 3s 1e-15 0.1s 1.1e-13 0.1s 2e-15 0.2s

2 6.6e-7 0.3s 6.6e-8 3s 3e-15 0.1s dnc ... 1e-15 0.2s

3 2.9e-7 0.3s 2.9e-8 3s 1e-14 0.2s dnc ... 8e-15 0.2s

4 1.5e-7 0.3s 1.5e-8 3s 1e-13 1.6s dnc ... 2e-13 0.2s

5 2.5e-7 0.3s 2.5e-8 3s 1e-12 16s dnc ... 6e-12 0.2s

6 2.7e-7 0.3s 2.7e-8 3s 1e-11 163s dnc ... 2e-11 0.2s

7 2.6e-7 0.3s 2.6e-8 3s 1e-10 1645s dnc ... 2e-10 0.2s
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Table 3
Error (41) and computational times (t) for evaluation of G(ρ, z) with α =
k sin(π

3 ), k = 10n + 0.2, (ρ, z) = (0.001, 0.1).

n Spa. tN1
Spa. Spa. tN2

Spa. Spe. tSpe. Ewa. tEwa. NA tNA

1 7.1e-07 0.5s 7.6e-08 5s 1.0e-14 7s 2.1e-14 0.1s 1.8e-15 0.2s

2 1.1e-06 0.5s 1.1e-07 5s 2.0e-14 7s 2.9e-12 0.4s 6.7e-16 0.2s

3 1.7e-05 0.5s 1.7e-06 5s 5.5e-13 7s 5.6e-13 4s 6.3e-13 0.2s

4 1.7e-07 0.5s 4.3e-09 5s 1.2e-13 7s 9.3e-13 110s 1.8e-13 0.2s

5 3.4e-07 0.5s 3.5e-08 5s 2.6e-12 30s dnc ... 2.6e-12 0.2s

6 2.0e-07 0.5s 2.2e-08 5s 1.6e-11 275s dnc ... 1.2e-11 0.2s

7 2.1e-06 0.5s 2.5e-07 5s 5.6e-10 2900s dnc ... 2.8e-10 0.2s

Table 4
Error (41) and computational times (t) for evaluation of G(ρ, z) with α =
k sin(π

3 ), k = 10n + 0.2, (ρ, z) = (
√

d/k, 0.1).

n Spa. tN1
Spa. Spa. tN2

Spa. Spe. tSpe. Ewa. tEwa. NA tNA

1 6.2e-06 0.5s 6.6e-07 5s 1.1e-14 0.1s 1.4e-13 0.2s 1.8e-14 0.2s

2 2.6e-06 0.5s 2.7e-07 5s 3.1e-15 0.1s dnc ... 5.7e-15 0.2s

3 2.4e-05 0.5s 2.4e-06 5s 8.2e-13 0.3s dnc ... 9.2e-13 0.2s

4 1.7e-07 0.5s 4.4e-09 5s 1.5e-13 3s dnc ... 2.6e-13 0.2s

5 3.3e-07 0.5 s 3.4e-08 5s 1.1e-12 27s dnc ... 7.1e-12 0.2s

6 2.0e-07 0.5 s 2.0e-08 5s 1.9e-11 278s dnc ... 2.1e-11 0.2s

7 2.2e-06 0.5 s 2.3e-07 5s 5.7e-10 2850s dnc ... 2.6e-10 0.2s

Appendix A: Formulation of the new algorithm for arbitrary inci-
dence and evaluation points

In this appendix we provide the details on the extension of the formulas (13)–
(17) to the most general case. For this we look at the integral representation
given by (11)–(12)

G(ρ, z) =
1

4π

eikr0

r0

+
k

2π

[ ∫ ∞

0
f (1)(ζ)dζ +

∫ ∞

0
f (2)(ζ)dζ

]
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Table 5
Error (41) and computational times (t) for evaluation of G(ρ, z) with α = 0, k =
10n + 0.2, (ρ, z) = (0.01, 0).

n Spa. tN1
Spa. Spa. tN2

Spa. Spe. tSpe. Ewa. tEwa. NA tNA

1 2.7e-08 0.3s 2.7e-09 3s 4.1e-15 0.5s 1.1e-15 0.1s 1.1e-16 0.2s

2 2.7e-08 0.3s 2.7e-09 3s 1.2e-15 0.5s 2.8e-12 0.2s 1.1e-16 0.2s

3 2.7e-08 0.3s 2.7e-09 3s 4.8e-15 0.5s 1.3e-10 2s 9.0e-16 0.2s

4 2.7e-08 0.3s 2.7e-09 3s 1.2e-14 1s dnc ... 9.8e-15 0.2s

5 2.7e-08 0.3s 2.6e-09 3s 1.0e-13 9s dnc ... 8.4e-14 0.2s

6 2.7e-08 0.3s 2.5e-09 3s 1.5e-12 89s dnc ... 5.6e-12 0.2s

7 2.7e-08 0.3s 2.5e-09 3s 1.5e-12 890s dnc ... 5.6e-12 0.2s

Table 6
Error (41) and computational times (t) for evaluation of G(ρ, z) with α = 0, k =
10n + 0.2, (ρ, z) = (0.1, 0).

n Spa. tN1
Spa. Spa. tN2

Spa. Spe. tSpe. Ewa. tEwa. NA tNA

1 2.6e-07 0.3s 3s 2.6e-08 8.9e-16 0.5s 2.0e-14 0.1s 4.3e-16 0.2s

2 2.7e-07 0.3s 3s 2.7e-08 1.4e-15 0.5s 1.7e-12 0.1s 1.6e-15 0.2s

3 2.8e-07 0.3s 3s 2.8e-08 4.2e-15 0.5s dnc ... 3.4e-15 0.2s

4 2.6e-07 0.3s 3s 2.6e-08 5.7e-13 1s dnc ... 8.7e-14 0.2s

5 2.7e-07 0.3s 3s 2.7e-08 1.4e-12 9s dnc ... 7.1e-13 0.2s

6 2.7e-07 0.3s 3s 2.4e-08 3.9e-11 85s dnc ... 1.5e-10 0.4s

Table 7
Error (41) and computational times (t) for evaluation of G(ρ, z) with α = 0, k =
10n + 0.2, (ρ, z) = (0.3, 0).

n Spa. tN1
Spa. Spa. tN2

Spa. Spe. tSpe. Ewa. tEwa. NA tNA

1 7.8e-07 0.3s 7.8e-08 3s 2.2e-16 0.1s 4.5e-14 0.1s 1.1e-15 0.2s

2 8.8e-07 0.3s 8.8e-08 3s 4.8e-15 0.1s dnc ... 4.7e-15 0.2s

3 8.9e-07 0.3s 8.9e-08 3s 2.8e-14 0.1s dnc ... 5.0e-14 0.2s

4 7.7e-07 0.3s 7.7e-08 3s 2.4e-12 1s dnc ... 3.9e-13 0.2s

5 8.3e-07 0.3s 8.1e-08 3s 3.1e-11 10s dnc ... 3.5e-11 0.6s

6 7.5e-07 0.3s 8.2e-08 3s 4.6e-10 100s dnc ... 1.0e-02 2s

where

f (1)(ζ) = eikzζ
ei(k−α)de−kzζ2

ekdζ2 − ei(k−α)d
J0

(
kρζ

√
ζ2 − 2i

)
dζ,

f (2)(ζ) = e−ikzζ
ei(k+α)dekzζ2

ekdζ2 − ei(k+α)d
J0

(
kρζ

√
ζ2 − 2i

)
dζ,
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Table 8
Error (41) and computational times (t) for evaluation of G(ρ, z) with α = 0, k =
10n + 0.2, (ρ, z) = (0.5, 0).

n Spa. tN1
Spa. Spa. tN2

Spa. Spe. tSpe. Ewa. tEwa. NA tNA

1 1.6e-06 0.3s 1.6e-07 3s 2.1e-16 0.1s 3.4e-14 0.1s 1.2e-15 0.2s

2 1.6e-06 0.3s 1.6e-07 3s 7.7e-15 0.1s dnc ... 1.6e-14 0.2s

3 1.2e-06 0.3s 1.2e-07 3s 3.5e-14 0.1s dnc ... 9.4e-14 0.2s

4 1.3e-06 0.3s 1.3e-07 3s 6.1e-12 1s dnc ... 2.5e-12 0.2s

5 1.5e-06 0.3s 1.4e-07 3s 8.4e-11 9s dnc ... 1.3e-03 0.6s

6 1.2e-06 0.3s 1.2e-07 3s 8.5e-10 95s dnc ... 3.7e+07 7s

note that for α = 0 and z = 0, we have f (1)(ζ) = f (2)(ζ). As in (4.1) these
integrals are truncated to the intervals

C1,2 =
ρ +

√
ρ2 − 4(d±z) log(ε)

k

2(d± z)

Finally Green’s function can be approximated by

G(ρ, z) ≈ 1

4π

eikr0

r0

+
k

2π

[ ∫ C1

0
f (1)(ζ)dζ +

∫ C2

0
f (2)(ζ)dζ

]
.
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