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NUMERICAL INTEGRATION FOR HIGH ORDER PYRAMIDAL
FINITE ELEMENTS ∗, ∗∗

Nilima Nigam1 and Joel Phillips2

Abstract. We examine the effect of numerical integration on the accuracy of high order conforming
pyramidal finite element methods. Non-smooth shape functions are indispensable to the construction of
pyramidal elements, and this means the conventional treatment of numerical integration, which requires
that the finite element approximation space is piecewise polynomial, cannot be applied. We develop
an analysis that allows the finite element approximation space to include non-smooth functions and
show that, despite this complication, conventional rules of thumb can still be used to select appropriate
quadrature methods on pyramids. Along the way, we present a new family of high order pyramidal
finite elements for each of the spaces of the de Rham complex.
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1. Introduction

Our aim in this paper is to present a careful account of the variational crime arising from the use of numerical
quadrature with arbitrarily high order pyramidal finite elements.

Pyramidal finite elements are used in applications as “glue” in heterogeneous meshes containing hexahedra,
tetrahedra and prisms. In prior work, [17], we presented a family of high-order finite element spaces that
approximate each of the spaces of the de Rham complex, on a pyramidal element. Various constructions of high
order pyramidal elements have been proposed [7,11,12,17,21,22]. A useful summary of the approaches taken
for H1-conforming elements is given by Bergot et al. [3], who also provide some motivating numerical results
for the performance of methods based on meshes containing pyramidal elements. If they are to be used to
implement stable mixed methods, such elements should also satisfy a commuting diagram property. In addition
to our work, an approach based on the theory of local exact sequences, was suggested by Zaglmayr, [21], and
are summarised in [9].

In [17] we demonstrated that approximation spaces consisting only of polynomials would not suffice. For
example, there is no polynomial whose trace is the lowest order bubble on one triangular face and zero on all
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other faces of a pyramid. The need to include non-polynomial functions in our finite element approximation
spaces arose because we must match polynomial traces on all faces with data from neighbouring tetrahedra or
hexahedra. We used rational functions on the pyramid in our construction, as have other authors [17,19,20].

In practice, numerical quadrature will be necessary for matrix assembly. Recent work on the use of quadrature
schemes for finite element methods has been focussed on issues of efficiency and fast implementation, see e.g. [14].
The classical analysis of the effect of quadrature, see, e.g. [5,6], has the lesser objective, nicely summed up in [6],
of

“[giving] sufficient conditions on the quadrature scheme which insure that the effect of the
numerical integration does not decrease [the] order of convergence”.

Typically the stiffness matrix and load vector in the finite element formulation of a given PDE are computed
using an inexact numerical quadrature. The errors introduced by these quadrature rules can be treated as a
variational crime and, provided the finite element approximation spaces are piece-wise polynomials, are well-
understood. The approximation spaces we presented in [17] were shown to include complete sets of polynomials
and so, at first glance, one might expect the classical analysis of errors due to numerical quadrature should hold
in the case of the pyramidal finite elements as well [3]. Somewhat surprisingly, this is not the case. As we will
see in Example 2.4, the importance of the rational functions in constructing interpolants means that it is not
possible to achieve global estimates of the consistency error by summing element-wise estimates that only deal
with polynomials.

Our exclusive focus in this paper, therefore, is a careful analysis of the errors introduced by quadrature when
pyramidal finite elements are used. The main challenge in this analysis arises from the fact that pyramidal
elements necessarily include functions other than polynomials and that the rational functions favoured by us
and most other authors are not arbitrarily smooth. This means that the Bramble-Hilbert Lemma cannot be
applied directly.

In this paper we address this particular difficulty. We demonstrate that an nth order quadrature rule can
be used for the integration of bilinear forms involving nth order elements without decreasing the overall order
of covergence of the method. Specifically, we introduce a new definition of a family of high order pyramidal
finite elements and show that what Stroud calls the “conical product formulae” [18] are an appropriate choice
of quadrature rule. We present a unified analysis of the consistency error due to using these quadrature rules
for each of the approximation spaces of the discrete de Rham complex.

We have chosen to restrict our analysis to meshes composed solely of parallelogram-based pyramids. We will
refer to a general such pyramid as an affine pyramid. Note that the restriction to purely pyramidal meshes is for
the sake of exposition; in practice, the necessity and utility of pyramidal elements is evident in meshes comprised
of tetrahedral, prismatic and parallelipiped elements as well. Our accounting of quadrature errors is based on
local estimates and the elements on the pyramid are conforming so extending our arguments to mixed meshes is
straightforward. On the other hand, the extension to meshes that include general quadrilateral-based pyramids,
for which there is no affine map from a single reference pyramidal element, may not be straightforward and we
make no claims about the applicability of our analysis to this case.

In Section 2 we summarise the classical theory for the effect of numerical integration on finite element methods
and show that it is insufficient when, as in the case of pyramidal elements, a basis contains functions that are
not arbitrarily smooth. As a first step towards overcoming this, we derive a generalisation of the standard
Bramble-Hilbert argument.

Section 3 introduces a framework that will allow us to unify our analysis for discrete approximations to each
of the spaces of the de Rham complex. We think of members of these spaces as differential forms, but we will
introduce a notation that should be accessible to readers who prefer to think in terms of vector calculus. We
also introduce our reference pyramid(s).

In Section 4 we introduce a new family of approximation spaces that can be used to construct pyramidal
finite elements for each space of the de Rham complex and in Section 5 we demonstrate that the conical product
rules are a good choice to use with these (and our original) pyramidal finite elements.
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Proofs of the properties of the new family of pyramidal elements are contained in an appendix. In most cases
these are either similar to, or based on, those for our original family of elements.

In what follows, we shall use the notation P k to denote polynomials of maximal total degree k.

2. Background

2.1. Quadrature errors on pyramidal finite elements cannot be analyzed using the classical
theory

Let K be a pyramid in R
3 with triangular faces and a parallelogram base. In [17] we constructed pyramidal

finite elements for each of the spaces in the de Rham complex, H1(K), H(curl,K), H(div,K) and L2(K), that
also satisfy a commuting diagram property. Members of these four spaces can be regarded as s-forms where
s ∈ {0, 1, 2, 3} (forms are quickly introduced in Sect. 3). Accordingly, in this paper we will denote the kth order
approximation spaces on a pyramid K, as U (s)

k (K). We recall the definitions of these spaces in the appendix, but
for this section, we only need the fact that these spaces included rational functions whose high-order derivatives
may have poles on the boundary of the pyramid K. We will demonstrate that this causes the classical theory
of the effect of quadrature on finite elements to break down, and derive a generalisation of the Bramble Hilbert
Lemma that will help us to resolve the problem.

Let us first recall the standard framework for analyzing the variational crime due to quadrature. Let V be a
Hilbert space, a : V × V → R be an elliptic bilinear form and let the problem of finding u ∈ V such that

a(u, v) = f(v) ∀v ∈ V (2.1)

be well-posed for all functionals f ∈ V ′ . A discrete version of this problem is to find uh ∈ Vh such that

ah(uh, v) = f(v) ∀v ∈ Vh, (2.2)

where Vh is an approximating subspace of V and ah approximates a using numerical integration.1 When Vh is
assembled using polynomials of degree k on shape-regular elements with maximum diameter, h, the analysis of
the effect of the numerical integration is well-known, and may be found in [5,6]. An analysis for mixed problems
can be found in [10]. The conclusion is the same: in order to preserve an O(hk) approximation error, each
(numerically computed) bilinear form must satisfy an O(hk) consistency error estimate.

For an example, take an elliptic bilinear form a : H1
0 (Ω) ×H1

0 (Ω) → R, defined as

a(u, v) =
∫

Ω

A(∇u,∇ v) dx (2.3)

where A a uniformly positive definite covariant tensor with entries in W k,∞(Ω).
Assume that Vh ⊂ H1

0 (Ω) is some approximation space assembled using kth order polynomial finite elements.
Let Sh,k,Ω(·) be a quadrature rule, which satisfies Sh,k,Ω(∂iu∂jv) =

∫
Ω
(∂iu∂jv) for any i and j and all pairs of

functions u, v ∈ Vh. Let ah(u, v) = Sh,k,Ω(A(∇u,∇v)). It is shown in [6], page 179, that the solution of (2.2)
will satisfy the error estimate:

‖u− uh‖1 ≤ Chk(|u|k+1 + ‖A‖k,∞‖u‖k+1).

This result is contingent on an estimate of the consistency error:

sup
wh∈Vh

|a(Πhu,wh) − ah(Πhu,wh)|
‖wh‖1

≤ Chk‖A‖k,∞‖u‖k+1, (2.4)

1We choose not to consider the effect of approximating f(·) by some fh(·) using numerical integration because it is no different on
the pyramid than for other elements. Error estimates may be obtained by applying the standard argument and using Theorem 5.2.
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where Πh : H1
0 (Ω) → Vh is a bounded interpolation operator. The constant C = C(Ω, k) is independent of h.

The key ingredient in the proof of the consistency error estimate, (2.4) is a local estimate:

Theorem 2.1 (see [6], Thm. 4.1.4). Given some k ≥ 0 and a simplex, K ∈ Th, where Th is a shape-regular
mesh with maximum element diameter h, assume that there exists a quadrature rule on K which is exact for
P 2k−2. That is, the error functional Ek,K for the quadrature rule satisfies Ek,K(ψ) = 0 for any polynomial
ψ ∈ P 2k−2(K). Then there exists a constant C independent of K and h such that

∀A ∈W k,∞(K), ∀p, q ∈ P k(K)

|Ek,K(A∂ip∂jq))| ≤ Chk‖A‖k,∞,K‖∂ip‖k−1,K .‖∂jq‖0,K .

This theorem, in turn, is proved by combining a scaling argument with the following famous result from [4].

Theorem 2.2 (Bramble-Hilbert Lemma). Let Ω ⊂ R
n be open with Lipschitz-continuous boundary. For some

integer k ≥ 0 and p ∈ [0,∞] let the linear functional, f : W k+1,p(Ω) → R have the property that ∀ψ ∈ P k(Ω),
f(ψ) = 0. Then there exists a constant C(Ω) such that

∀v ∈ W k+1,p(Ω), |f(v)| ≤ C(Ω)‖f‖W k+1,p(Ω)′ |v|k+1,p,Ω

where ‖·‖W k+1,p(Ω)′ is the operator norm.

We observe that the partial derivatives that appear in Theorem 2.1 are in fact components of the gradient
and since ∇U (0)

k (K) ⊂ U (1)
k (K) we might conjecture the following analogous statement:

Conjecture 2.3. Let K ∈ Th be a pyramid. Let A ∈ W k,∞(K). Suppose that there exists a quadrature rule
(with error functional Ek,K) that integrates products of shape functions in U (1)

k (K) exactly. Then

∀v, w ∈ U (1)
k (K) (2.5)

|Ek,K(Avw)| ≤ Chk‖A‖k,∞,K‖v‖k−1,K‖w‖0,K . (2.6)

This conjecture (and the analogs for U (s)
k (K), s = 0, 2, 3 which are used for the analysis of mixed problems)

is in fact true, but useless. We are indeed able to construct a quadrature rule which is exact for products of
shape functions. The problem is that we cannot differentiate basis functions in U (0)

k (K) arbitrarily, unlike the
situation for purely polynomial spaces. The following example is illustrative:

Example 2.4. Let K̂ denote the reference pyramid:

K̂ = {(ξ, η, ζ) | 0 ≤ ζ ≤ 1, 0 ≤ ξ, η ≤ ζ}.

Take the U (0)
k (K̂) shape function associated with the base vertex, (1, 1, 0):

v(ξ, η, ζ) =
ξη

1 − ζ
· (2.7)

The third partial ζ-derivative ∂3v
∂ζ3 �∈ L2(K̂):

∫
K̂

(
∂3v

∂ζ3

)2

dx̂ =
∫ 1

0

∫ 1−ζ

0

∫ 1−ζ

0

(
−6ξη

(1 − ζ)4

)2

dξdηdζ =
∫ 1

0

9
(1 − ζ)2

dζ. (2.8)

Hence v �∈ H3(K̂).
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Similar issues arise for each of the finite element spaces U (s)
k (K̂). This means that a direct application of

the argument in [6], Section 4.1, would fail when we attempt to use the Bramble-Hilbert Lemma (Thm. 2.2) to
obtain the estimate ∣∣∣Π(s)

k,K̂
u
∣∣∣
r,K̂

≤ C |u|r,K̂ ∀r ∈ {0, . . . , k}, (2.9)

where Π(s)

k,K̂
is any bounded interpolant to U (s)

k (K̂).

An attempt is made to avoid this problem in [3] by using the additional projector πr : Hr+1(K) → P r

satisfying

∀p ∈ P r(K) πrp = p

on each element, K. This allows element-wise estimates to be established. Unfortunately, there is no conforming
interpolant onto element-wise polynomials for pyramidal elements (see [17] or [20]). In particular, there will be
discontinuities at the element boundaries, which means that ‖u− πru‖1,Ω cannot be bounded. The alternative
interpretation of πr as a global projection onto polynomials would not allow the element-wise estimates to be
obtained.

2.2. Interpolation errors revisited

Fortunately, not all of the members of each U (s)
k (K) behave as badly as the function v defined in (2.7). There

are subspaces of polynomials and of rational functions that are more regular. For example, we readily observe
that, again taking the function v defined in (2.7), v(ξ, η, ζ)ξr ∈ Hr+2(K̂) ∩ U (0)

r (K̂). In order to analyze the
consistency error introduced via quadrature, we will thus need an analog of the interpolation error estimate
(2.9) that allows us to use this regularity when it is available.

Theorem 2.5. Let K ⊂ R
n be an open set with Lipschitz boundary. Fix α ≥ 0 and let k ≥ α be an integer.

Suppose that:

• Rk ⊂ Hα(K) is a finite dimensional space which includes all polynomials of degree k;
• Π : Hα(K) → Rk is a bounded linear projection;
• There exist Vr ⊂ Hr(K) for each r ∈ {0, . . . , k} such that we can decompose

Rk = V0 ⊕ · · · ⊕ Vk. (2.10)

That is, given u ∈ Hk(K), its interpolant, Πu ∈ Rk, may be decomposed into unique functions, vr ∈ Vr,

Πu = v0 + · · · + vk.

Then we have the following estimates for some of the functions, vr:

• For each r satisfying α ≤ r ≤ k:

|vr|r ≤ C |u|r . (2.11)

• If, additionally, P̃ r ⊂ Vr, where the space P̃ r consists of polynomials of homogeneous degree, r, then
for each r satisfying α ≤ r + 1 ≤ k:

|vr|r ≤ C |u|r+1 + |u|r . (2.12)
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Proof. For a given r ≥ α, write Wr = Vr +P r−1. The space Rk contains all polynomials of degree k, so Wr ⊂ Rk

and we can write Wr = Vr ⊕
(
P r−1

⋂⊕
i�=r Vi

)
. This means that we can find a surjective linear projection,

Ψr : Rk →Wr that satisfies (Ψr ◦ Π)u = vr + p for some p ∈ P r−1.
Ψr is a linear map between finite spaces, so the operator (I − Ψr ◦ Π) : Hr(K) → Wr ⊂ Hr(K) is bounded.

Both Ψr and Π are projections, so ker(I − Ψr ◦ Π) = Wr ⊃ P r−1. Therefore we can use the Bramble-Hilbert
Lemma to see that

‖(I − Ψr ◦ Π)u‖r ≤ C |u|r ,

so |u− vr − p|r ≤ C |u|r, which in turn implies that

|vr|r ≤ C |u|r + |u|r + |p|r = (C + 1) |u|r .

The proof of (2.12) follows a similar argument. The operator (I−Ψr◦Π) : Hr+1(K) →Wr ⊂ Hr(K) is bounded
because r + 1 ≤ k. The additional condition, P̃ r ⊂ Vr, means that P r ⊂Wr and so P r ⊂ ker(I − Ψr ◦ Π). �

3. Definitions

3.1. Differential forms, reference coordinate systems

From now on, we will want to make general statements that apply to approximations to each of the spaces of
the de Rham complex. It is natural and increasingly popular to use differential forms and the exterior calculus
in such a discussion [1,2], and since we work with pyramids in R

3, calculations are simplified. We refer the
reader to [1], Section 2.3, for a comprehensive account of the exterior calculus on R

n.
Let Ω be an open set in R

3. A point, x ∈ Ω, has coordinates (xi)i=0...3 in terms of some global coordinate
functions. We can define Λ(s)(Ω), the space of differential s-forms on Ω, as consisting of elements of the form

u =
∑

1≤α1<..<αs≤3

uαdxα1 ∧ · · · ∧ dxαs

where each uα ∈ C∞(Ω) and the multi-index, α = α1 · · ·αs. If we allow uα ∈ Hr(Ω), u is a member of the
Hilbert space HrΛ(s)(Ω) with norm and semi-norm

‖u‖2
r,Ω :=

∑
α

‖uα‖2
Hr(Ω), |u|2r,Ω :=

∑
α

|uα|2Hr(Ω).

If r = 0, we denote H0Λ(s)(Ω) ≡ L2Λ(s)(Ω).
It is conventional to think of differential forms in terms of proxy fields. The spaces Λ(0)(Ω) and Λ(3)(Ω)

are isomorphic to the scalar field, C∞(Ω). The spaces Λ(1)(Ω) and Λ(2)(Ω) are isomorphic to the vector field,
(C∞(Ω))3. With these identifications, the exterior derivatives, d : Λ(s)(Ω) → Λ(s+1)(Ω) for s = 0, 1, 2 become
the familiar grad, curl and div, and the de Rham complex

0 �� Λ(0)(Ω)
d �� Λ(1)(Ω)

d �� Λ(2)(Ω)
d �� Λ(3)(Ω) �� 0

becomes

0 �� C∞(Ω)
grad

�� (C∞(Ω))3 curl �� (C∞(Ω))3 div �� C∞(Ω) �� 0.
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Using the exterior derivatives, we have an elegant correspondence between the familiar H1(Ω), H(curl,Ω), H
(div,Ω) and L2(Ω) spaces for the proxy-fields and the spaces Hs(Ω), s = 0, 1, 2, 3 respectively, with

H(s)(Ω) :=
{
u ∈ L2Λ(s)(Ω)|du ∈ L2Λ(s+1)(Ω)

}
, ‖u‖2

H(s) := ‖u‖2
L2Λ(s) + ‖du‖2

L2Λ(s+1) . (3.1)

Define Θ(s)(Ω) to be the space of all (covariant) tensors, A : Λ(s)(Ω)×Λ(s)(Ω) → C∞(Ω) that can be defined
in terms of the pointwise representation,

A(u, v)(x) := Aαβ(x)uα(x)vβ(x) ∀u, v ∈ Λ(s)(Ω), x ∈ Ω (3.2)

where we are using the Einstein summation convention, Aαβuαvβ :=
∑

α,β∈Υs
Aαβuαvβ . We will insist that

Aαβ is anti-symmetric in the first s and second s components, which makes the representation unique. For
A ∈ Θ(s)(Ω), we define

|A|2k,∞,Ω :=
∑

1≤i,j∈(3
s)

∣∣Aij
∣∣2
W k,∞(Ω)

, ‖A‖2
k,∞,Ω :=

k∑
r=0

|A|2r,∞,Ω

and define W r,∞Θ(s)(Ω) to be the completion of Θ(s)(Ω) in ‖·‖r,∞,Ω.
We will decorate the subscripts (and superscripts) of proxies with symbols to indicate the coordinate system

that is being used to determine the components of the proxy fields. Given some u ∈ Λ(s)(Ω), ui′ is the ith
component of its proxy in the coordinate system x′ =

(
x1′
, x2′

, x3′
)
. We will also write u′ = (ui′)i∈{1,...(3

s)} to
indicate all the components of the vector (or scalar) field. Differential forms are contravariant, so the components
transform as:

uα′ =
∑

α∈Υs

∂xα1

∂xα′
1
· · · ∂x

αs

∂xα′
s
uα. (3.3)

The components of a covariant tensor, A ∈ Θ(s)(Ω) transform as:

Aα′β′
=
∑

α,β∈Υs

∂xα′
1

∂xα1
· · · ∂x

α′
s

∂xαs

∂xβ′
1

∂xβ1
· · · ∂x

β′
s

∂xβs
Aαβ . (3.4)

For a coordinate change, x = φ(x′), the weights appearing in the contravariant and covariant transformation
rules, (3.3) and (3.4), can be written in terms of the entries of a

(
3
s

)
×
(
3
s

)
matrix, w(s)

φ . We choose to let w(s)
φ

to be the weight in the covariant transformation so that, for u ∈ Λ(s)(Ω)

∑
i≤i′≤(3

s)

(
w

(s)
φ

)
i,i′
ui′ = ui ∀1 ≤ i ≤

(
3
s

)
. (3.5)

The weights can be calculated in terms of the Jacobian, Dφ:

w
(0)
φ = 1, w

(1)
φ = Dφ−1t

, w
(2)
φ = det(Dφ−1)Dφ, w

(3)
φ = det(Dφ−1). (3.6)

It is useful to identify a specific and convenient coordinate system. The use of a reference coordinate system is
a familiar concept. In the engineering literature, shape functions for finite elements on simplices are often defined
in terms of barycentric coordinates. After thinking of a scalar or vector field as a proxy to a differential form,
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the use of the reference coordinate system to study a shape function is analogous to mapping the differential
form to a reference element using a pullback.

Let T be a partition of Ω where every K ∈ T is the image of a simple reference domain, K̂ ⊂ R
n, under

a diffeomorphism φK : K̂ → K. On each K, the reference coordinates, x̂ = (xî)̂i=1...n of any point x ∈ K,
are given by x̂ = φ−1

K (x). Given u ∈ Λ(s)(K) and A ∈ Θ(s)(K) the reference coordinate system induces new
sets of components uα̂ and Aα̂β̂ , using the rules (3.3) and (3.4). If A ∈ Θ(s)(Ω) and u, v ∈ Λ(s)(Ω), we note
that Aαβ(x)uα(x)vβ(x) = Aα̂β̂(x̂)uα̂(x̂)vβ̂(x̂) is just a 0-form. Hence we have the important change of variables
formula on each element, K: ∫

K

Aαβuαvβdx =
∫

K̂

Aα̂β̂uα̂vβ̂ det(DφK)dx̂, (3.7)

where DφK is the Jacobian of φK and det(DφK) is the determinant of the Jacobian.
The exterior derivative is an intrinsic property of any manifold. This means that it is independent of

coordinates; equivalently, the exterior derivative commutes with coordinate transformation.

3.2. Reference pyramidal element and scaling laws

To contain the proliferation of indices, we will use the notation (ξ, η, ζ) for the reference coordinates (x1̂, x2̂, x3̂).
The reference domain is defined as the pyramid:

K̂ = {(ξ, η, ζ) | 0 ≤ ζ ≤ 1, 0 ≤ ξ, η ≤ ζ}.

Suppose each φK satisfies

‖DφK‖ ≤ h and ‖Dφ−1
K ‖ ≤ ρ

h
(3.8)

for some h > 0 and ρ ≥ 1. For any u ∈ HkΛ(s)(K) and A ∈ W k,∞Θ(s)(K), we have the inequalities

1
Cρk+s

hk+s

det(DφK)1/2
|u|k,K ≤ |u|k,K̂ ≤ C

hk+s

det(DφK)1/2
|u|k,K (3.9)

1
Cρk

hk−2s |A|k,∞,K ≤ |A|k,∞,K̂ ≤ Cρ2shk−2s |A|k,∞,K (3.10)

for some constant C = C(k, n) which is independent of h. These can be deduced from the standard scaling
argument for Sobolev semi-norms of functions (see, for example, [6]) combined with the transformation rules,
(3.3) and (3.4) and the observation that (3.8) implies that ∂xαi

∂x̂α̂j
≤ h and ∂x̂α̂j

∂xαi
≤ ρ

h for all i, j.
As in [17] we will also use the infinite pyramid,

K∞ = {(x, y, z) | 0 ≤ x, y ≤ 1, 0 ≤ z ≤ ∞},

as a tool to help analyse and define the pyramidal elements. The finite and infinite pyramids may be identified
using the projective mapping φ : K∞ → K̂ defined as

φ : (x, y, z) �→
(

x

1 + z
,

y

1 + z
,

z

1 + z

)
, (3.11)

which can also be thought of as a change of coordinates and so induces the infinite pyramid coordinate system
defined as x̃ = φ−1x̂. We shall usually write x̃ = (x, y, z).
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The corresponding weights in the change of coordinates transformation rule 3.5 can be calculated explicitly:

w
(0)
φ = 1, (3.12a)

w
(1)
φ = Dφ−1t

= (1 + z)

⎛
⎝1 0 0

0 1 0
x y 1 + z

⎞
⎠ , (3.12b)

w
(2)
φ = det(Dφ−1)Dφ = (1 + z)2

⎛
⎝1 + z 0 −x

0 1 + z −y
0 0 1

⎞
⎠ , (3.12c)

w
(3)
φ = det(Dφ−1) = (1 + z)4. (3.12d)

Suppose that (Th)h>0 is a family of shape-regular partitions of Ω, where every K ∈ Th is affine equivalent to
K̂. For a given element K ∈ Th, u ∈ Λ(s)(K) and A ∈ Θ(s)(K), we define the reference semi-norms2:

|u|k,K̂ :=
∑

1≤î≤(3
s)
|uî|Hk(K̂)

, |A|k,∞,K̂ :=
∑

1≤î,ĵ≤(3
s)

∣∣∣Aîĵ
∣∣∣
W k,∞(K̂)

.

4. A family of pyramidal finite elements

Theorem 2.5 allows us to contemplate an argument based on the Bramble Hilbert Lemma for approximation
spaces containing non-smooth basis functions. The spaces U (s)

k (K) can, in fact, be decomposed in the manner
necessary for Theorem 2.5 to apply but, unfortunately, we are not able to use it to analyse their consistency error
directly3. To overcome this problem we will identify subspaces R(s)

k (K) of U (s)
k (K) that allow us to construct

finite elements which are also conforming, and which satisfy a commuting diagram property. We will show
the new spaces contain the same complete space of polynomials and which are compatible with neighbouring
tetrahedral and hexahedral elements (See [3] for an analysis of the H1-conforming case). They thus have the
same approximability properties as U (s)

k (K).
The easiest way to establish the properties of these new elements is to utilize the properties of the original

U (s)
k (K) elements established in [17]. Since these proofs are interesting, but distracting from our main argument,

we have included them in an appendix.

4.1. Construction

We start the construction of the new approximation spaces in the infinite pyramid coordinate system intro-
duced in Section 3.2 using spaces of k-weighted polynomials, Q[l,m]

k , which we define in terms of basis functions
xayb

(1+z)c , a,b and c are non-negative integers.

Q
[l,m]
k = span

{
xayb

(1 + z)c
: c ≤ k, a ≤ c+ l − k, b ≤ c+m− k

}
. (4.1)

2These are the norms induced by the metric in which the reference coordinates are orthonormal. They are used in the scaling
argument in Section 5.

3If we applied the argument in Section 5 directly to the spaces, U(s)
k (K), it would fail at equation (5.8) in the proof of Lemma 5.3.



248 N. NIGAM AND J. PHILLIPS

These spaces can be characterised via a decomposition into spaces of exactly r-weighted tensor product poly-
nomials,

Q
[l,m]
k =

k⊕
r=0

Qr+l−k,r+m−k,0
r , (4.2)

where Ql,m,n
r [x, y, z] is spanned by the set4

{
xaybzc

(1 + z)r
, 0 ≤ a ≤ l, 0 ≤ b ≤ m, 0 ≤ c ≤ n

}
.

It is also helpful to observe that xayb

(1+z)c �→ ξaηb(1 − ζ)c−a−b under the coordinate transformation, (η, ξ, ζ) =
φ(x, y, z) given by (3.11). So if the representation in the infinite pyramid coordinate system of some polynomial
f(x̂) is f̃ ∈ Q

[l,m]
k then f is at most degree k in (ξ, η, ζ) and at most degree l and m in (ξ, ζ) and (η, ζ)

respectively.

Definition 4.1. We define the spaces R(s)
k on K∞, for s = {0, 1, 2, 3} and k ≥ 0 as

R(0)
k = Q

[k,k]
k , (4.3a)

R(1)
k =

(
Q

[k−1,k]
k+1 ×Q

[k,k−1]
k+1 × {0}

)
⊕ {∇u : u ∈ Q

[k,k]
k }, (4.3b)

R(2)
k =

(
{0} × {0} ×Q

[k−1,k−1]
k+2

)
⊕
{
∇× u : u ∈

(
Q

[k−1,k]
k+1 ×Q

[k,k−1]
k+1 × {0}

)}
, (4.3c)

R(3)
k = Q

[k−1,k−1]
k+3 . (4.3d)

The decomposition in the definitions (4.3) means that with the identification made as in Section 3.1, the
exterior derivatives, d : R(s)

k → R(s+1)
k are well defined. The gradient is injective onQ[k,k]/R; the curl is injective

on
(
Q

[k−1,k]
k+1 ×Q

[k,k−1]
k+1 × {0}

)
and the divergence is a bijection from

(
{0} × {0} ×Q

[k−1,k−1]
k+2

)
to Q[k−1,k−1]

k+3 ,
so the sequence,

R
�� R(0)

k

∇ �� R(1)
k

∇×
�� R(2)

k

∇· �� R(3)
k

�� 0 (4.4)

is exact. We can readily define these approximation spaces on any K ∈ Th.

Definition 4.2. For a given s ∈ {0, 1, 2, 3} and k ≥ 0, we define the approximation space R(s)
k (K) on a pyramid,

K, as those differential forms whose infinite pyramid coordinate representation lie in R(s)
k :

R(s)
k (K) =

{
u ∈ Λ(s)(K) : (uĩ) ∈ R(s)

k

}
. (4.5)

Let us first show that despite the presence of rational functions, these approximation spaces conform on each
element:

Lemma 4.3. For a given K and s ∈ {0, 1, 2, 3} let u ∈ R(s)
k (K). Each component uî (where î ∈ {1, ...,

(
3
s

)
}) of

u in the reference coordinate system satisfies

uî ◦ φ ∈ Qk,k,k
k . (4.6)

This means that

R(s)
k (K) ⊂ H(s)(K). (4.7)

4If l, m or n is negative then Ql,m,n := {0}.
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Proof. The relationship between the representations of u in the reference and infinite pyramid coordinate systems
is given by equation (3.5): û ◦ φ = w

(s)
φ ũ, where the weights, w(s)

φ , are given by (3.12). To establish (4.6), each
s ∈ {0, 1, 2, 3} needs to be dealt with as a separate case.

When s = 0, the weight, w(0)
φ = 1 and it is clear from (4.3a) that R(0)

k ⊂ Qk,k,k
k . When s = 1, inspection

of (4.3b) reveals that R(1)
k ⊂ Qk−1,k,k

k+1 × Qk,k−1,k
k+1 × Qk,k,k−1

k+1 . The weight, w(1)
φ = (1 + z)

⎛
⎝1 0 0

0 1 0
x y 1 + z

⎞
⎠, so

w
(1)
φ ũ ∈ Qk,k,k

k ×Qk,k,k
k ×Qk,k,k

k . The cases s = 2 and s = 3 follow similarly.
Since Qk,k,k

k ⊂ L∞(K∞) each uî◦φ is bounded on K∞, which means that uî is bounded on K̂ and therefore ui

is bounded onK. Hence ‖u‖0,K is finite. By (4.4), du ∈ R(s+1)
k (K), so ‖du‖0,K is finite too and u ∈ H(s)(K). �

The approximation spaces may be equipped with interpolation operators. We summarize the properties of
the resulting pyramidal elements, and defer proofs to the appendix:

(1) Approximability: each space R(s)
k (K) contains the same complete polynomial subspace that was shown

to be present in the space U (s)
k (K) in [17]. This is established in Lemma 4.4

(2) Compatibility: the elements are compatible with existing high order tetrahedral and hexahedral elements
(as first outlined in [16] for s = 1, 2). Lemma 4.5 establishes this.

(3) Commutativity: equipped with interpolation operators Φ(s)
k,K defined via degrees of freedom, the elements

satisfy a commuting diagram property, Theorem 4.7. �

Lemma 4.4. If K is an affine (i.e. parallelogram-based) pyramid then, for k ≥ 1,

P k ⊂ R(0)
k (K)(

P k−1
)(3

s) ⊂ R(s)
k (K) s ∈ {1, 2, 3}.

Lemma 4.5. Let K be a pyramid. For each s ∈ {0, 1, 2} there is a trace operator that takes elements of H(s)(K)
to some distribution on the boundary, ∂K. The image of R(s)

k (K) under this operator consists of all traces of
elements of H(s)(K) whose restriction to each triangular or quadrilateral face of K is the traces of a function
belonging to the approximation space of the corresponding kth order Lagrange, Nedelec edge or Nedelec face
element.

Lemma 4.6. The new approximation spaces are subspaces of the original approximation spaces.

R(s)
k ⊆ U (s)

k . s ∈ {0, 1, 2, 3}.

In [17], we had defined degrees of freedom for U (s)
k (K) which ensured unisolvency; these induced interpolants

Π(s)
k,K : H2Λ(s)(K) → U (s)

k (K). In part consequence of Lemmas 4.4 and 4.6, we can define bounded linear

interpolants Ξ(s)
k,K : U (s)

k (K) → R(s)
k (K) which leave the data on the boundary of K invariant. The composition

of these two interpolants, Φ(s)
k,K := Ξ(s)

k,K ◦ Π(s)
k,K provides interpolants which yield the commuting diagram

property. The definition and properties of Ξ(s)
k,K are technical, and are postponed until the appendix, where we

also prove the following Theorem which establishes the commuting diagram property:

Theorem 4.7. There exist bounded interpolation operators, Φ(s)
k,K : H2Λ(s)(K) → R(s)

k (K) that satisfy the

identity d ◦ Φ(s)
k,K = Φ(s)

k,K ◦ d.
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As a consequence, for a given k, we can assemble a global approximation space,

S(s)
h = {v ∈ Hs(Ω) : v|K ∈ R(s)

k (K) ∀K ∈ Th} (4.8)

and define a global bounded interpolation operator Φ(s)
h : H2Λ(s)(Ω) → S(s)

h by (Φ(s)
h u)|K := Φ(s)

k,K(u|K) for all
K ∈ Th.

4.2. Decomposition

The next step is to show that the spaces R(s)
k (K) possess a decomposition that is compatible with Theo-

rem 2.5.

Definition 4.8. Let K ∈ Th be a pyramid, and s ∈ {0, 1, 2, 3}. For each r ≥ 0 we define

X (s)
r,k (K) =

{
v ∈ R(s)

k (K) : vî ◦ φ ∈ Qr+1,r+1,0
r

}
.

That is, X (s)
r,k (K) is the subspace consisting of s-forms in R(s)

k (K) whose components are exactly r-weighted
when composed with φ : K∞ → K̂.

Note that although the domain of vî◦φ is K∞, the condition is on the components in the reference coordinate
system, vî, rather than the infinite pyramid coordinate system vĩ. In effect, what we are saying is that each
X (s)

r,k (K) is spanned by s-forms whose components have the form

e(ξ, η, ζ) = ξaηb(1 − ζ)r−a−b, a, b ≤ r + 1. (4.9)

Lemma 4.9. For an affine pyramid, K and for each s ∈ {0, 1, 2, 3} and k ≥ 1, each of the spaces X (s)
r,k (K)

satisfies the criterion for Vr, (2.10), from Theorem 2.5. In fact,

X (s)
r,k (K) ⊂ Hr+1Λ(s)(K).

Additionally, the Sobolev semi-norm |·|r,K is actually a norm on each space X (s)
r,k (K).

Proof. Let u ∈ X (s)
r,k (K). Each uî can be written in terms of functions, e(ξ, η, ζ) = ξaηb(1 − ζ)r−a−b. When

a+b > r, these will be rational functions with a singularity at ζ = 1. We need to understand their differentiability
on the finite pyramid. Let γ = (γ1, γ2, γ3) be a multi-index. The partial derivative,

∂γe

∂x̂γ
= Cξa−γ1ηb−γ2(1 − ζ)r−b−a−γ3

where C = C(γ, a, b, r) is a (possibly zero) constant dependent only on γ, a, b and r. Hence

∫
K̂

(
∂γe

∂x̂γ

)2

= C

∫ 1

0

∫ 1−ζ

0

∫ 1−ζ

0

ξ2a−2γ1η2b−2γ2(1 − ζ)2r−2b−2a−2γ3dξdηdζ (4.10)

= C

∫ 1

0

(1 − ζ)2(r+1−γ1−γ2−γ3)dζ. (4.11)

This integral is finite if r + 1 − |γ| > −1/2, so e ∈ H�r+3/2−ε	(K̂). By affine equivalence of K and K̂,
ui ∈ H�r+3/2−ε	(K) ⊂ Hr+1(K), and therefore u ∈ Hr+1Λ(s)(K).

Finally, (4.9) shows that each e(ξ, η, ζ) is either a rational function, or a polynomial of degree exactly r, so
|e|r,K̂ �= 0. Hence u �= 0 implies that |u|r,K �= 0 and so |·|r,K is a norm on X (s)

r,k (K). �
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Theorem 4.10. For an affine pyramid, K and for each s ∈ {0, 1, 2, 3} and k ≥ 1, each of the spaces R(s)
k (K)

may be decomposed:

R(s)
k (K) = X (s)

0,k (K) ⊕ · · · ⊕ X (s)
k,k(K).

Proof. The decomposition (4.2) and the definitions in (4.6) make the claim look plausible. The details are
technical and are left to the appendix. �

5. Numerical integration on pyramidal elements

In this section we will prove the main consistency result of this paper, a version of Theorem 2.1 for bilinear
forms applied to each of the families of pyramidal elements. We start by presenting some pyramidal quadrature
formulae and showing that they integrate products of pyramidal shape functions exactly.

5.1. Conical product rule

Quadrature rules on the pyramid can be deduced as special cases of the conical product rule presented by
Stroud [13,18]. Let K̂ be the reference pyramid, and f ∈ C(K̂). We are specifically interested in the case when
f is a product of pair of kth-degree polynomials, k ≥ 0. Following his work, we define the quadrature scheme
of degree 2k + 1 to approximate

∫
K̂
f dx as follows:

Sk,K̂(f) :=
∑
i,j,l

f(ξi(1 − ζl), ξj(1 − ζl), ζl)λiλjμl. (5.1)

Stroud showed that given k ≥ 0, a sufficient condition for S(k, K̂)(p) =
∫

K̂
p dx̂ for any polynomial, p ∈

P 2k+1(x̂), is that the two quadrature schemes given by the points ξi and ζl with respective weights λi and μl

satisfy

∑
i

λig(ξi) =
∫ 1

0

g(x)dx ∀g ∈ P 2k+1, (5.2a)

∑
i

μih(ζi) =
∫ 1

0

(1 − z)2h(z)dz ∀h ∈ P 2k+1. (5.2b)

The k+ 1 point Gauss-Legendre quadrature rule can be used to generate nodes ξi and weights λi that make
(5.2a) exact for polynomials of degree 2k+1. The k+1 point Gauss-Jacobi scheme based on the shifted Jacobi
polynomial5, P (2,0)

k+1 , generates nodes ζi and weights μi that make (5.2b) exact for polynomials of degree 2k+ 1.
This is the quadrature rule we shall use for the pyramidal elements. With this, the quadrature error,

Ek,K̂(f) := Sk,K̂(f) −
∫

K̂

f(x̂)dx̂

= 0 if f ∈ P 2k+1.

5The Jacobi polynomials, P
(a,b)
n (s), n ≥ 0, are typically defined on the interval [−1, 1]. Under the change of variables, s = 2t−1,

we obtain the shifted Jacobi polynomials which are orthogonal with respect to the weight (1 − t)atb on the interval [0, 1].
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When f ∈ C(K), where K is a pyramid equipped with a change of coordinates φK : K̂ → K, we can define
the quadrature and error functionals:

Sk,K(f) := Sk,K̂

(
|DφK | f̂

)
∼
∫

K

f(x)dx, (5.3)

Ek,K(f) := Ek,K̂

(
|DφK | f̂

)
= Sk,K(f) −

∫
K

f(x)dx, (5.4)

where f̂ = f ◦ φK , i.e. the expression of f in the reference coordinate system, x̂.

5.2. Quadrature errors

Lets look at the effect of the conical product rules on our approximation spaces. Following (5.3), the rule
Sk,K(·) is exact for functions in P 2k+1 on the pyramid, K. Hence, if u and v are polynomials of degree k then
their product, uv ∈ P 2k so, clearly, Sk,K̂(uv) =

∫
K̂
uv.

We first demonstrate which functions our quadrature scheme integrates exactly.

Lemma 5.1. Suppose that f be defined on the pyramid K, and that the representation of f in the infinite
pyramid coordinate system, f̃ = f ◦φK ◦φ, lies in the space Q2k+1,2k+1,2k+1

2k+1 . Then the quadrature scheme, Sk,K

is exact for f :

Sk,K(f) =
∫

K

fdx.

Proof. It suffices to consider functions p with a representation in the infinite pyramid coordinate system:

p̃(x, y, z) =
xayb

(1 + z)c
0 ≤ a, b, c ≤ 2k + 1,

since these monomials span the space Q2k+1,2k+1,2k+1
2k+1 . In finite reference coordinates, p has the form p̂(ξ, η, ζ) =

ξaηb(1 − ζ)c−a−b, and so, using (5.1):

Sk,K(p) = Sk,K̂(det(DφK)p̂)

= det(DφK)
∑
i,j,l

ξa
i (1 − ζl)aξb

j (1 − ζl)b(1 − ζl)c−a−bλiλjμl

= det(DφK)
∑

i

λiξ
a
i

∑
j

λjξ
b
i

∑
l

μl(1 − ζl)c

= det(DφK)
∫ 1

0

sads
∫ 1

0

tbdt
∫ 1

0

(1 − ζ)c+2dζ.

The last step is justified because each of the sums is a quadrature rule applied to a polynomial of degree ≤ 2k+1
and so we can apply (5.2a) and (5.2b). We use the change of variables ξ = (1 − ζ)s and η = (1 − ζ)t to obtain:

Sk,K(p) = det(DφK)
∫ 1

0

∫ 1−ζ

0

∫ 1−ζ

0

(1 − ζ)c−a−bξaηb dξdηdζ

= det(DφK)
∫

K̂

p̂(ξ, η, ζ)dx̂ =
∫

K

pdx. �

We can now examine the behaviour of our quadrature scheme on the kinds of products arising in a typical
weak formulation. In fact, we will only need Lemma 5.1 to be true for f̃ ∈ Q2k,2k,2k

2k , which is a subspace of
Q2k+1,2k+1,2k+1

2k+1 .
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Theorem 5.2. Let K be an affine pyramid; fix k ≥ 1; let s ∈ {0, 1, 2, 3} and let A ∈ Θs(K) be a constant
tensor field. Then for any u, v ∈ U (s)

k (K), the quadrature scheme Sk,K is exact for the 0-form A(u,v), i.e.

Sk,K(Aijuivj) =
∫

K

Aijuivj dx.

Proof of Theorem 5.2. Let u, v ∈ R(s)
k (K). A ∈ Θ(s)(K) is a constant and so, by the first part of Lemma 4.3,

in infinite reference coordinates, the function A(u, v) satisfies:

Aĩj̃uj̃vĩ ∈ Q2k,2k,2k
2k .

Hence by Lemma 5.1,

Sk,K

(
Aijujvi

)
=
∫

K

Aijujvi. �

Observe that for the spaces U (3)
k (K), the integrand, Aĩj̃uj̃vĩ ∈ Q2k−2,2k−2,2k−2

2k−2 , so we could in fact use the
scheme Sk−1,K .

5.3. Consistency error estimates

Having constructed approximation spaces which satisfy the hypotheses of Theorem 2.5, and demonstrated a
quadrature rule which is exact for products of basis functions, the final step is to establish an estimate of the
quadrature-related consistency error for each of the spaces in the decompositions in terms of the reference norms.
We will use the quadrature scheme, Sk,K(·) and associated error functional Ek,K(·) introduced in Section 5.1.
We will also use the pointwise representation, A(u, v) = Aijuivj given in (3.2).

Lemma 5.3. For any s ∈ {0, 1, 2, 3} and an affine pyramid, K, let v ∈ X (s)
r,k (K), w ∈ R(s)

k (K) and
A ∈ W k+1,∞Θ(s)(K). Then the quadrature error in the evaluation of

∫
K A(u, v) =

∫
K Aijuivj using the scheme

Sk,K(·) can be bounded in terms of the reference (semi-)norms

|Ek,K(A(v, w))| ≤ C det(DφK) |A|k−r+1,∞,K̂ |v̂|r,K̂ ‖ŵ‖0,K̂ (5.5)

where C = C(k) is a constant that depends only on k.

Proof. We can transform the error functional onto the reference pyramid using (5.4).

Ek,K(A(v, w)) = Ek,K

(
Aijviwj

)
= Ek,K̂

(
det(DφK)Aîĵvîwĵ

)
= det(DφK)Ek,K̂

(
Aîĵvîwĵ

)
. (5.6)

We are able to take det(DφK) outside the integral because φK is affine. Define the linear functional
G ∈ W k−r+1,∞Θ(s)(K̂)′ as

G(B) = Ek,K̂

(
B îĵvîwĵ

)
∀B ∈W k−r+1,∞Θ(s)(K̂). (5.7)

Since Sk(·) takes point values of its argument,

|G(B)| ≤ C‖B îĵvîwĵ‖∞,K̂ ≤ C‖B‖k−r+1,∞,K̂‖v̂‖∞,K̂‖ŵ‖∞,K̂ .

Furthermore, all norms are equivalent on the finite dimensional spaces, X (s)
r,k (K̂) and R(s)

k (K̂), and, by the

last part of Lemma 4.9, |·|r,K̂ is a norm for X (s)
r,k . So G is continuous and ‖G‖ ≤ C |v̂|r,K̂ ‖ŵ‖0,K̂ . All of the



254 N. NIGAM AND J. PHILLIPS

equivalences of norms are done on the reference pyramid, so the constant, C depends only on k (in particular,
it does not depend on K).

From the definition of X (s)
r,k , we know that each vî ◦ φ ∈ Qr+1,r+1,0

r and by Lemma 4.3, wĵ ◦ φ ∈ Qk,k,k
k for

each ĵ ∈ {1, . . . ,
(
3
s

)
}. Now suppose that B is polynomial of degree k − r, i.e. each component, B îĵ ∈ P k−r for

each î, ĵ ∈ {1, . . . ,
(
3
s

)
}. Then B îĵ ◦ φ ∈ Q

[k−r,k−r]
k−r . We can assemble these facts to see that

(
B îĵvîwĵ

)
◦ φ =

(
B îĵ ◦ φ

)
(vî ◦ φ)

(
wĵ ◦ φ

)
∈ Q2k+1,2k+1,2k+1

2k+1 . (5.8)

So, by Lemma 5.1, the quadrature error, Ek,K̂

(
B îĵvîwĵ

)
= 0. Therefore, P k−r ⊂ kerG and we can apply

Theorem 2.2 (the Bramble-Hilbert Lemma) to obtain

|G(A)| ≤ C |A|k−r+1,∞,K̂ |v|r,K̂ ‖w‖0,K̂ ∀A ∈W k−r+1,∞Θ(s)(K̂).

For some constant C = C(k). Substituting (5.7) and (5.6) gives the desired result. �

We can now apply a scaling argument to get an element-wise estimate on the quadrature error. Recall that
we defined the interpolation operator, Φ(s)

K : H(s),1/2+ε(K) → R(s)
k (K) in (A.9).

Lemma 5.4. Let K be an affine pyramid satisfying the shape-regularity condition, (3.8), for some ρ ≥ 1. Fix
s ∈ {0, 1, 2, 3} and take k ≥ 2. Then

∀u ∈ HkΛ(s)(K), w ∈ R(s)
k (K) and A ∈W k+1,∞Θ(s)(K) (5.9)∣∣∣Ek,K(A(Φ(s)

k,Ku,w))
∣∣∣ ≤ (Chk+1)

)
‖A‖k+1,∞,K‖u‖k,K‖w‖0,K (5.10)

where C = C(k) a constant dependent only on k, and 0 < h < C.

Proof. Use the decomposition given in Theorem 4.10 to write

Φ(s)
k,Ku = v0 + · · · + vk where vr ∈ X (s)

r,k (K).

By Lemma 5.3, we know that for each r ∈ {0 . . . k},

|Ek,K(A(vr , w))| ≤ C |DφK | |A|k−r+1,∞,K̂ |vr|r,K̂ ‖w‖0,K̂ . (5.11)

The interpolation operator is bounded on H(s),1/2+ε(K) which is a subset of H3/2+εΛ(s)(K) so Theorem 2.5 is
applicable with α > 3/2. Pick some α ∈ (3/2, 2] so that when r ≥ 2 we can use the first estimate, (2.11), to
obtain:

|Ek,K(A(vr , w))| ≤ C |DφK | |A|k−r+1,∞,K̂ |u|r,K̂ ‖ŵ‖0,K̂ . (5.12)

Now apply the inequalities (3.9) and (3.10) to the semi-norms (and norm) on the right-hand side to obtain

|Ek,K(A(vr , w))| ≤ C |DφK |hk−r+1−2sρ2s |A|k−r+1,∞,K

hr+s

|DφK |1/2
|u|r,K

hs

|DφK |1/2
‖ŵ‖0,K

= Chk+1 |A|k−r+1,∞,K |u|r,K ‖w‖0,K ,

where the generic constant, C still depends only on k.
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When r = 1, we can similarly apply the second estimate from Theorem 2.5 given in (2.12) to obtain:

|Ek,K(A(v1, w))| ≤ Chk+1 |A|k,∞,K

(
|u|1,K + h |u|2,K

)
‖w‖0,K . (5.13)

For r = 0, note that ‖v0‖0,K̂ ≤ C‖u‖3/2+ε,K̂ ≤ C
(
|u|0,K̂ + |u|1,K + |u|2,K̂

)
, so

|Ek,K(A(v0, w))| ≤ Chk+1 |A|k+1,∞,K

(
|u|0,K + h |u|1,K + h2 |u|2,K

)
‖w‖0,K . (5.14)

Summing over the vr, we obtain (5.10). �

Summing these errors over each element gives an estimate for the global consistency error due to the numerical
integration (we shall ignore the O(hk+2) terms). Recall that in (4.8) we defined the global approximation space,
S(s)

h ⊂ H(s)(Ω).

Theorem 5.5. Let s ∈ {0, 1, 2, 3}, k ≥ 2 and assume that S(s)
h is constructed using a shape regular mesh,

Th and finite elements, R(s)
k (K) for each K ∈ Th. Let A ∈ W k+1,∞Θ(s)(Ω) and u ∈ H(s)Λk(Ω. Then the

interpolant Φ(s)
h u ∈ S(s)

h satisifies

sup
wh∈S(s)

h

∣∣∣∫ΩA(Φ(s)
h u,wh) −

∑
K∈Th

SK,k

(
A(Φ(s)u,wh)

)∣∣∣
‖wh‖0

≤ Chk+1‖A‖k+1,∞,Ω‖u‖k,Ω

sup
wh∈S(s)

h ,‖wh‖0=1

∣∣∣∣∣
∫

Ω

A(Φ(s)
h u,wh) −

∑
K∈Th

SK,k

(
A(Φ(s)u,wh)

)∣∣∣∣∣ ≤ Chk+1‖A‖k+1,∞,Ω‖u‖k,Ω.

Here C > 0 is a constant which only depends on k, and 0 < h < C.

Proof. Let wh ∈ S(s)
h .

∣∣∣∣∣
∫

Ω

A(Φ(s)
h u,wh) −

∑
K∈Th

SK,k

(
A(Φ(s)u,wh)

)∣∣∣∣∣ ≤ C
∑

K∈Th

Ek,K(A(Φ(s)
k,Ku,wh))

≤ Chk+1
∑

K∈Th

‖A‖k+1,∞,K‖u‖k,K‖wh‖0,K

≤ Chk+1‖A‖k+1,∞,Ω

( ∑
K∈Th

‖u‖2
k,K

)1/2( ∑
K∈Th

‖wh‖2
0,K

)1/2

≤ Chk+1‖A‖k+1,∞,Ω‖u‖k,Ω‖wh‖0,Ω

Dividing through by ‖wh‖0,Ω gives the result. �

Note that as with the classical theory, the error estimates decay like O(hk+1) but these are emphatically not
hp-estimates. The degree, k, enters into the constants in several places, which is to be expected from arguments
that rely on the Bramble-Hilbert Lemma.
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6. Conclusion

The conventional finite element wisdom is that a kth order method requires a kth order quadrature scheme.
More specifically, the conventional wisdom is that the quadrature scheme must be able to integrate products of
shape functions and of their exterior derivatives exactly. We have shown that this is still true for a family of
high order pyramidal finite elements, but that the non-polynomial nature of pyramidal elements requires some
unconventional reasoning to justify the wisdom.

We finish with a few observations.

6.1. The new elements

The description of the family of high order finite elements for the de Rham complex that we introduced is
new. We will examine these elements in more detail in future work, but a couple of notes are worth recording
here.

• The approximation spaces for the first family in the sequence, R(0)
k (K) are the same as Zaglmayr’s

elements, as described in [9], and which [3] describes as optimal with respect to their dimension and
compatibility with neighbouring elements.

• Lemma 4.4 shows that the R(s)
k (K) spaces contain polynomials corresponding to the tetrahedron of the

first type. Zaglmayr has constructed pyramidal elements containing polynomials corresponding to both
types of tetrahedron, but only those corresponding to the second type are presented in [9]. It would,
clearly, be interesting to compare our R(s)

k (K) spaces with the construction for the first type.

6.2. The original elements

From Lemma 4.6, we know that R(s)
k (K) ⊆ U (s)

k (K) and hence the interpolant Φ(s)
h u also lives in the original

finite element space based on U (s)
k (K). The important property of w used in Lemma 5.3, was that wĵ◦φ ∈ Qk,k,k

k ,

which was proved in Lemma 4.3. In fact, Lemma 4.3 is still true when R(s)
k (K) is replaced by U (s)

k (K). Hence
we could take w ∈ U (s)

k (K) in Lemmas 5.3 and 5.4 and derive a version of Theorem 5.5 that gives a consistency
error approximation for finite elements based on the original spaces.

6.3. General bilinear forms

The error estimate may be applied to more general bilinear forms because of the commutativity d ◦ Π(s)
h =

Π(s+1)
h ◦ d. For example, the consistency error for the elliptic bilinear form, (2.3), is

sup
v∈S(0)

h

∣∣∣a(Φ(0)
h u, v) − ah(Φ(0)

h u, v)
∣∣∣

‖v‖1
≤ sup

v∈S(0)
h ,‖dv‖0=1

∫
Ω

A(dΦ(0)
h u, dv) −

∑
K∈Th

SK,k(A(dΦ(0)
h u, dv))

≤ sup
w∈S(1)

h ,‖w‖0=1

∫
Ω

A(Φ(1)
h du,w) −

∑
K∈Th

SK,k(A(Φ(1)
h du,w))

≤ Chk+1‖A‖k+1,∞,Ω‖du‖k,Ω

< Chk+1‖A‖k+1,∞,Ω‖u‖k+1,Ω.

Appendix A. Properties of the new approximation spaces, R(s)
k

In this appendix, we have collected proofs of various Lemmas in that describe the properties of the approx-
imation spaces R(s)

k which were introduced in Section 4. We also prove Theorem 4.10, which is the key result
required to obtain the main result of this paper. We begin, however, by briefly recalling the approximation
spaces U (s)

k (K) for the finite elements presented in [17].
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We remind the reader that the goal in [17] was to construct a family of high-order conforming finite elements
which were compatible through the appropriate boundary traces with data from neighbouring tetrahedral and
hexahedral elements. The trace spaces for the tetrahedral Lagrange, Nedelec edge and Nedelec face elements
are given in [15], and are polynomial in nature. Our construction proceeded by first constructing underlying
approximation spaces U (s)

k defined for each order, k ≥ 1, and then identifying subspaces U (s)
k (K) whose members

have the correct exterior traces.
• H1-conforming element underlying space:

U (0)

k = Qk,k,k−1
k ⊕ span

{
zk

(1 + z)k

}
· (A.1a)

• H(curl)-conforming element underlying space:

U (1)

k = Qk−1,k,k−1
k+1 ×Qk,k−1,k−1

k+1 ×Qk,k,k−2
k+1 ⊕

⎧⎪⎨
⎪⎩

zk−1

(1 + z)k+1

⎛
⎜⎝
z ∂r

∂x

z ∂r
∂y

−r

⎞
⎟⎠ , r ∈ Qk,k[x, y]

⎫⎪⎬
⎪⎭ . (A.1b)

• H(div)-conforming element space:

U (2)

k = Qk,k−1,k−2
k+2 ×Qk−1,k,k−2

k+2 ×Qk−1,k−1,k−1
k+2

⊕ zk−1

(1 + z)k+2

⎛
⎝ 0

2s
sy(1 + z)

⎞
⎠⊕ zk−1

(1 + z)k+2

⎛
⎝ 2t

0
tx(1 + z)

⎞
⎠ ,

(A.1c)

where s(x, y) ∈ Qk−1,k[x, y], t(x, y) ∈ Qk,k−1[x, y].
• L2-conforming element underlying space:

U (3)
k = Qk−1,k−1,k−1

k+3 . (A.1d)

For an element defined on a pyramid, K, the underlying approximation space, U (s)

k (K) is defined as the space
containing all the s-forms whose components induced by the infinite pyramid coordinate system lie in U (s)

k :6

U (s)

k (K) =
{
u ∈ Λ(s)(K) : (uĩ)̃i∈{1,...,(3

s)} ∈ U (s)

k

}
. (A.2)

By inspection, it can be seen that the exterior derivative d : U (s)

k → U (s+1)

k is well defined, and so, since d is
independent of coordinates, the exterior derivative on the spaces on each element,

d : U (s)

k (K) → U (s+1)

k (K) (A.3)

is also well defined.
In order to construct pyramidal elements that are compatible with neighbouring tetrahedral (and hence

polynomial) elements, subspaces of the underlying approximation spaces, U (s)

k (K) are identified that contain

6We are using coordinate transformations here, but in [17], we used the equivalent approach of defining the underlying spaces

as the pullbacks, U(s)
k (K̂) =

{
(φ−1)∗v : v ∈ U(s)

k

}
and U(s)

k (K) = {φ∗
Kv : v ∈ U(s)

k (K̂)}.
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only those functions whose traces on the triangular faces of the pyramid are contained in the trace space of the
corresponding tetrahedral element. By construction, the traces of the underlying spaces on the quadrilateral
face of the pyramid already match those of the corresponding hexahedral elements. Upon enforcing these
constraints, the approximation spaces obtained are denoted U (s)

k (K). We shall denote by U (s)
k,0(K) the subspaces

of U (s)
k (K) with zero boundary traces.

Each approximation space U (s)
k (K) is equipped with a set of degrees of freedom, Σ(s)(K). These included

(exterior) degrees of freedom which are identical to those of neighbouring tetrahedral and hexahedral elements,
and projection-based degrees of freedom. In turn, Σ(s)(K) induces a linear interpolation operator,

Π(s)
k,K : H2Λ(s)(K) → U (s)

k (K), so that m(u) = m(Π(s)
k,Ku) ∀m ∈ Σ(s)(K), (A.4)

which completes the definition of the finite elements. The regularity assumption is not optimal, and can perhaps
be relaxed; it should allow for point evaluations at the vertices of the pyramid for the s = 0 elements. In [8], the
authors specify the optimal regularity needed for the projection-based interpolants of, we anticipate a similar
result holds for the more explicit construction given in [17].

We now examine the properties of the new approximation spaces, R(s)
k introduced in Section 4.

Proof of Lemma 4.4. Since the set of polynomials P k is invariant under affine transformation, we can work in
the reference coordinate system, x̂. Recall the components of the proxy representation of some u ∈ Λ(s)(K) in
this coordinate system are denoted û = (uî), where 1 ≤ î ≤

(
3
s

)
. We will need to show that if all the components,

uî ∈ P k−1 for s = 1, 2, 3 (or, for s = 0, uî ∈ P k) then u ∈ R(s)
k (K). Equivalently, we need to show ũ ∈ R(s)

k .
We use the transformation rule, (3.5), along with the explicit weights associated with the coordinate change
φ : K∞ → K̂ given in (3.12a)-(3.12d).

First, consider the case when s = 0. Let u ∈ Λ(0)(K) be a monomial with reference coordinate representation
û(ξ, η, ζ) = ξaηb(1 − ζ)c where a+ b+ c ≤ k. Then

ũ =
(
w

(0)
φ

)−1

û ◦ φ =
xayb

(1 + z)a+b+c
∈ Q

[k,k]
k = R(0)

k .

Similarly, for s = 3, take u ∈ Λ(3)(K) as û(ξ, η, ζ) = ξaηb(1 − ζ)c for a+ b+ c ≤ k − 1. Then

ũ =
xayb

(1 + z)a+b+c+4
∈ Q

[k−1,k−1]
k+3 = R(3)

k .

The s = 1 case involves a little more work. Let u ∈ Λ(1)(K) have polynomial components, uî ∈ P k−1. We
can find q ∈ Λ(0)(K) with representation q̂ ∈ P k such that v := u − ∇q = (v1̂, v2̂, 0). By the result for s = 0,
q ∈ R(0)

k (K), and so (by (4.3b)) ∇q ∈ R(1)
k (K). We need to show that v ∈ R(1)

k (K). Both v1̂ and v2̂ are in
P k−1. Suppose first that v1̂ = ξaηb(1 − ζ)c where m := a+ b+ c ≤ k − 1 and v2̂ = 0.

ṽ =
(
w

(1)
φ

)−1

v̂ ◦ φ =
1

(1 + z)2

⎛
⎝1 + z 0 0

0 1 + z 0
−x −y 1

⎞
⎠
⎛
⎜⎝

xayb

(1+z)m

0
0

⎞
⎟⎠

=

⎛
⎜⎜⎝

xayb

(1+z)m+1

0
− xa+1yb

(1+z)m+2

⎞
⎟⎟⎠ =

1
(1 + z)m+1

⎛
⎜⎝
(
1 − a+1

m+1

)
xayb

− b
m+1x

a+1yb−1

0

⎞
⎟⎠+ 1

m+1∇
xa+1yb

(1 + z)m+1
·
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We compare this last expression with the definition, (4.3b), to verify that ṽ ∈ R(1)
k . Note that when a = m

(which includes the case a = k− 1), the first term vanishes, because b = 0 and 1 − a+1
m+1 = 0. That is, (ξa, 0, 0)t

is an exact 1-form. An identical calculation establishes the same result when v1̂ = 0 and v2̂ = ξaηb(1 − ζ)c.
For s = 2, the change of coordinates formula for u ∈ Λ(2)(K) is

ũ =
(
w

(2)
φ

)−1

û ◦ φ =
1

(1 + z)3

⎛
⎝1 0 x

0 1 y
0 0 1 + z

⎞
⎠
⎛
⎝u1̂

u2̂

u3̂

⎞
⎠ ◦ φ. (A.5)

Suppose that u1̂ = ξaηb(1 − ζ)c with m := a + b + c ≤ k − 1. Apply (A.5) to see that the contribution

to ũ is
(

xayb

(1+z)m+3 , 0, 0
)t

. Let p = 1
m+2

xayb

(1+z)m+2 ∈ Q
[k−1,k−1]
k+1 and observe that xayb

(1+z)m+3 = −∂p
∂z and ∂p

∂x =
a

m+2
xa−1yb

(1+z)m+2 ∈ Q
[k−1,k−1]
k+2 (the case b = m implies that a = 0 and therefore ∂p

∂x = 0). Hence

(
w

(2)
φ

)−1

⎛
⎝ξaηb(1 − ζ)c

0
0

⎞
⎠ ◦ φ = ∇×

⎛
⎝0
p
0

⎞
⎠−

⎛
⎝ 0

0
∂p
∂x

⎞
⎠ ∈ R(2)

k .

Polynomials in the second component u2̂ can be dealt with similarly. When u3̂ = ξaηb(1− ζ)c, the contribution

to ũ is
(

xa+1yb

(1+z)m+3 ,
xayb+1

(1+z)m+3 ,
xayb

(1+z)m+2

)t

. Hence

(
w

(2)
φ

)−1

⎛
⎝ 0

0
ξaηb(1 − ζ)c

⎞
⎠ ◦ φ = ∇× 1

m+ 2

⎛
⎜⎜⎝
− xayb+1

(1+z)m+2

xa+1yb

(1+z)m+2

0

⎞
⎟⎟⎠+

⎛
⎜⎝

0
0(

1 − a+b+2
m+2

)
xayb

(1+z)m+2

⎞
⎟⎠ ∈ R(2)

k .

Note that xayb

(1+z)m+2 ∈ Q
[k−1,k−1]
k unless a = m or b = m, but in these cases,

(
1 − a+b+2

m+2

)
= 0.7 Hence ũ ∈ R(2)

k ,
proving the assertion. �

Proof of Lemma 4.5. An alternative, but less self-contained, way of stating this lemma would be to claim that
the trace spaces of the R(s)

k (K) elements are identical to those of the original U (s)
k (K) elements, and are

hence compatible through their exterior traces with neighboring elements. Consequently, the strategy and tools
from [17] may be reapplied in an identical fashion. We will therefore just provide a sketch of how this may be
done.

We must demonstrate that the appropriate exterior traces of the R(s)
k (K) functions lie in the trace spaces of

the corresponding tetrahedral or hexahedal approximation spaces. Secondly, we need to show that if a function
has a valid (polynomial) trace on the boundary of the pyramid, then it can be represented by some member of
R(s)

k (K).
For the first step, convenient definitions of the tetrahedral and hexahedral spaces may be found in [15] and

the traces of these spaces are identified explicitly in [17]. It is just a matter of exhaustive checking to determine
that the inclusion holds. As an illustration, observe that members of the R(0)

k which are non-zero on the face
y = 0 of the infinite pyramid can be expressed in terms of monomials xa

(1+z)c , where a + c ≤ k, which map to
ξaζk−a−c. These will span all polynomials of degree k on the face η = 0 of the finite pyramid, which is precisely
the trace space of the kth order Lagrange tetrahedron.

The second step is equivalent to requiring that the combined external degrees of freedom inherited from the
tetrahedra and hexahedra across all the vertices, edges and faces of the pyramid be dual to the trace spaces

7This is the observation that (0, 0, ξa)t and (0, 0, ηb)t are exact 2-forms.
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on the pyramid. This can be proved by demonstrating a linearly independent set of pyramidal shape functions
with non-zero traces that is the same size as the set of external degrees of freedom. This task can be made
more manageable by instead showing that it is possible to achieve the lowest order bubble on each face, edge
and vertex of the pyramid that is zero on every other face, edge or vertex, respectively. (N.B. For completeness
we actually presented an example of all the bubbles in the appendix of [17], not just the lowest order). Happily,
the shape functions associated with the external degrees of freedom presented for the U (s)

k (K) in Tables 2–4
of [17] also suffice for the R(s)

k (K). �

Note that the original approximation spaces, U (s)
k (K) were defined by explicitly identifying the subsets of

underlying spaces, U (s)

k (K) which had such polynomial trace spaces. For the R(s)
k (K), the polynomial trace

property is inherent and this additional step is not required.

Proof of Lemma 4.6. We must first establish the inclusions

R(s)
k ⊆ U (s)

k ∀s ∈ {0, 1, 2, 3}.

The inclusions

Q[l,m]
n ⊆

(
Ql,m,min{l,m}−1

n +Q0,0,min{l,m}
n

)
⊆ Ql,m,min{l,m}

n . (A.6)

can be verified from the definition, (4.1). By the first inclusion, Q[k,k]
k ⊆ Qk,k,k−1

k +Q0,0,k
k , which gives the s = 0

case: R(0)
k ⊆ U (0)

k .

The s = 0 result implies ∇R(0)
k ⊆ ∇U (0)

k . For s = 1, first recall that R(1)
k =

(
Q

[k−1,k]
k+1 ×Q

[k,k−1]
k+1 × {0}

)
⊕

{∇u : u ∈ Q
[k,k]
k }. Since ∇U (0)

k ⊂ U (1)

k , we have ∇Q[k,k]
k ⊂ U (1)

k . Additionally, apply (A.6) and the definition of

U (1)

k given in (A.1b), to obtain

(
Q

[k−1,k]
k+1 ×Q

[k,k−1]
k+1 × {0}

)
⊆
(
Qk−1,k,k−1

k+1 ×Qk,k−1,k−1
k+1 × {0}

)
⊂ U (1)

k .

This establishes that R(1)
k ⊆ U (1)

k .

The s = 2 case may be proved similarly. Again, first recall R(2)
k =

(
{0} × {0} ×Q

[k−1,k−1]
k+2

)
⊕ {∇× u : u

∈
(
Q

[k−1,k]
k+1 ×Q

[k,k−1]
k+1 × {0}

)}
. We also have that ∇× U (1)

k ⊂ U (2)

k . Using the result for s = 1, therefore, we

see that ∇×
(
Q

[k−1,k]
k+1 ×Q

[k,k−1]
k+1 × {0}

)
⊂ U (2)

k . Next, we apply (A.6) to
(
{0} × {0} ×Q

[k−1,k−1]
k+2

)
to see that

this is also a subset of U (2)

k . These two set inclusions show that R(2)
k ⊂ U (2)

k .

Another application of (A.6) gives R(3)
k = Q

[k−1,k−1]
k+3 ⊆ Qk−1,k−1,k−1

k+3 = U (3)

k .

Finally, Lemma 4.5 shows that each R(s)
k also satsifies the trace constraints of of the U (s)

k . �

As suggested in the preamble to Theorem 4.7, we can reuse the interpolation operators from the old
spaces, (A.4), to create interpolation operators for the new spaces. Since the trace spaces of R(s)

k are the
same as U (s)

k , we just need to define projections Ξ(s)
k,K : U (s)

k (K) → R(s)
k (K) that do not change the trace data.

We denote the subspace of all shape-functions in R(s)
k (K) with zero trace as R(s)

k,0(K).

Definition A.1. For u ∈ U (s)
k (K), define Ξ(s)

k,K : U (s)
k (K) → R(s)

k (K) as

Ξ(s)
k,Ku := vu + wu
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where vu ∈ R(s)
k (K) is some function satisfying vu|∂K = u|∂K and wu ∈ R(s)

k,0(K) is the minimizer of the

functional v → ‖d(u− vu − v)‖0 over the admissible set A(s)
k,K , defined as:

A(0)
k,K := R(0)

k,0(K) (A.7)

A(s)
k,K :=

{
v ∈ R(s)

k,0(K) : (v, dw) = 0 ∀w ∈ R(s−1)
k,0 (K)

}
, s = 1, 2, 3. (A.8)

Lemma 4.5 means that the trace spaces of R(s)
k (K) and U (s)

k (K) are identical, so it is always possible to
find an extension, vu. The spaces A(s)

k,K are non-empty because they always contain the zero-element so there
always exists a minimiser, wu. The uniqueness of wu (for a given choice of vu) can be established using a
Friedrichs-type inequality and it is then clear that Ξ(s)

k,Ku is independent of the choice of vu.

In fact, the operators Ξ(s)
k,Ku are just the projection-based interpolants of U (s)

k (K) onto R(s)
k (K). More

details of projection-based interpolation can be found in [8], which also establishes the important commutativity
property: Ξ(s+1)

k,K ◦ d = d ◦ Ξ(s)
k,K .

The proof of Theorem 4.7 now follows easily:

Proof. Define the maps Φ(s)
k,K : H2Λ(s)(K) → R(s)

k (K) as

Φ(s)
k,K = Ξ(s)

k,K ◦ Π(s)
k,K . (A.9)

Since both Ξ(s)
k,K and Π(s)

k,K commute with d, so does Φ(s)
k,K . �

Of course, defining an interpolation operator is equivalent to defining degrees of freedom. Whereas the old
elements used bases for Helmholtz decompositions of U (s)

k,0(K) as test functions for the degrees; the new elements

require Helmholtz decompositions of R(s)
k,0(K); these can readily be determined from the full-space Helmholtz

decomposition implied in the definitions, (4.3). The external degrees of freedom for both sets of elements are
identical. Note also that if Π(s)

k,K were a projection based interpolant, then Φ(s)
k,K would be too.

Finally, we prove Theorem 4.10:

Proof. Each X (s)
r,k is a subset of R(s)

k , so

X (s)
0,k (K) ⊕ · · · ⊕ X (s)

k,k(K) ⊂ R(s)
k (K).

For the reverse inclusion, we will deal with each s ∈ {0, 1, 2, 3}, in turn. For every s ∈ {0, 1, 2, 3}, the transfor-
mation rule, (3.5), gives û ◦ φ = w

(s)
φ ũ.

For 0-forms, the weight in the change of coordinates formula w(0)
φ is equal to 1 so any u ∈ R(s)

k (K) satisfies

û ◦ φ = ũ ∈ R(0)
k = Q

[k,k]
k . The decomposition, (4.2) gives

Q
[k,k]
k = Q0,0,0

0 ⊕ · · · ⊕Qk,k,0
k

which is a subset of Q1,1,0
0 ⊕ · · · ⊕Qk+1,k+1,0

k so u ∈ X (0)
0,k (K) ⊕ · · · ⊕ X (s)

k,k(K).

When s = 1 we will consider a basis for R(1)
k (K) and show that each element, u, of the basis is a member of

X (1)
r,k (K) for some r ∈ {0 . . . k}, which amounts to showing that each uî ◦ φ ∈ Qr+1,r+1,0

r .

From the definition given in (4.3c) it is natural to consider three cases for an element of a basis for R(1)
k (K).

First suppose that ũ ∈
(
Q

[k−1,k]
k+1 × 0 × 0

)
with u1̃ = xayb

(1+z)c . From the definition of Q[k−1,k]
k+1 we see that
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0 ≤ a ≤ c − 2 and 0 ≤ b ≤ c − 1 and so 2 ≤ c ≤ k + 1. Then w
(1)
φ ũ =

(
xayb

(1+z)c−1 , 0, xa+1yb

(1+z)c−1

)t

and so each

uî ∈ Qa+1,b,0
c−1 ⊂ Qr,r,0

r where r = c − 1 ∈ {1 . . . k}. The second case is when ũ ∈
(
0 ×Q

[k,k−1]
k+1 × 0

)
and the

reasoning is identical to the first. Finally suppose that ũ = ∇p where p = xayb

(1+z)c ∈ Q
[k,k]
k . If c = 0, p = 1 and

therefore ∇p = 0. So we can take c ≥ 1 and see that each entry of

w
(1)
φ ũ =

⎛
⎜⎜⎝

a xa−1yb

(1+z)c−1

b xayb−1

(1+z)c−1

(a+ b− c) xayb

(1+z)c−1

⎞
⎟⎟⎠

is in Qr+1,r+1,0
r for some r ∈ {0 . . . k}.

When u ∈ R(2)
k (K), let us start with the case ũ ∈

(
0 × 0 ×Q

[k−1,k−1]
k+2

)
and write u3̃ = xayb

(1+z)c . Again, it is

simple to check that each of the entries in the vector w(2)
φ ũ =

(
− xa+1yb

(1+z)c−2 ,− xayb+1

(1+z)c−2 ,
xayb

(1+z)c−2

)t

is in Qr+1,r+1,0
r

for some r ∈ {0 . . . k}. Now suppose that ũ = ∇× ṽ where ṽ ∈
(
Q

[k−1,k]
k+1 × 0 × 0

)
with v1̃ = xayb

(1+z)c . From the
s = 1 case, we know that c ≥ 2 and so it is straightforward to verify that each of the entries in

w
(2)
φ ũ = (1 + z)2

⎛
⎜⎜⎜⎝

1 + z 0 −x
0 1 + z −y
0 0 1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

0
−cxayb

(1+z)c+1

bxayb−1

(1+z)c

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

−bxa+1yb

(1+z)c−2

−cxayb

(1+z)c−2 + −bxayb

(1+z)c−2

bxayb−1

(1+z)c−2

⎞
⎟⎟⎟⎟⎠

are in Qr+1,r+1,0
r for some r ∈ {0 . . . k}. The argument for ũ = ∇× ṽ with ṽ ∈

(
0 ×Q

[k,k−1]
k+1 × 0

)
is the same.

Finally, u ∈ R(3)
k (K) means that ũ ∈ Q

[k−1,k−1]
k+3 . The weight w(3)

φ = 1
(1+z)4 so û ◦ φ = 1

(1+z)4 ũ ∈ Q
[k−1,k−1]
k−1

and the reasoning is the same as the 0-form case. �
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