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1. Introduction

High order conforming finite elements for H (curl) and H (div) spaces based on meshes composed
of tetrahedra and hexahedra were first presented by Nédélec (1986). The demands of the specific
problem geometry (regions with complex features as inclusions) or efficient calculation (design
of unstructured hexahedral meshes) may necessitate the use of hybrid meshes which include
both tetrahedral and hexahedral elements, see e.g. Bergot et al. (2010). If these meshes are to
avoid hanging nodes then they will, in general, contain pyramids. A hybrid mesh may contain
tetrahedra to provide localised h-refinement and computationally-efficient cuboids to fill large
spaces in which the solution is regular, and pyramids to glue these together. This situation
is nicely illustrated in Owen & Saigal (2001). Note that (triangularly) prismatic elements are
also required; these turn out to be relatively straightforward to construct and analyse, see e.g.
Chen & Douglas (1989). Pyramidal elements also arise more explicitly when attempting to
mesh thin three dimensional structures using prismatic elements, see Lee & Xu (2005); Gatto
& Demkowicz (2010).

Consider a contractible domain D € R3 which is triangulated using a mesh containing both
tetrahedral and hexahedral elements. If one is to avoid hanging nodes or edges, the triangulation
must also, in general, include quadrilateral-based pyramids. In what follows, we assume these
pyramids can be mapped in an affine manner to a reference pyramid, {2, which has a square
base and is defined as:

Q={E=(En) R |&n,¢>0,6<1-¢ n<1-C) (1.1)

It is our aim to construct high order finite elements on such a pyramid. Concretely, in this
paper we present finite element triples, (Q,L[(S)vk(ﬂ), E(S)vk), for positive integers k which are
unisolvent conforming finite elements for H'(£2), H(curl, £2), H(div, 2) and L?(§2) respectively
for s =0,1,2,3. Here U*)*(£2) denotes the kth order finite dimensional approximation space
for the relevant Sobolev space and the sets X(9)% are the associated degrees of freedom. We
seek finite elements with the following properties P1-P3:

P1) Compatibility: Not only should the elements be conforming, but the restriction of each
element to its triangular and quadrilateral face(s) should match that of the corresponding
canonical tetrahedral and hexahedral finite element. This means that both the spaces
spanned by the traces and the external degrees of freedom on faces and edges are the
same as those of the usual tetrahedral/hexahedral elements (see Table 1). In other words,
the elements should satisfy the correct patching conditions on inter-element boundaries,
(see Gradinaru & Hiptmair, 1999). We will use Monk (2003) as our reference for the
tetrahedral and hexahedral spaces and external degrees of freedom, see Table 1.

P2) Approzimation: The discrete spaces U(*)#(£2) should allow for high-order approximation
to the spaces H'(£2), H(curl,§2), etc. In particular, given a positive integer p, it should be
possible to choose k such that all polynomials of degree p (we denote these by P* = P*(2))
are contained in U(*)*(12).
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P3) Stability: The elements satisfy a commuting diagram property:

H(2) —Y s H™ Y(cwl, ) — H™ M(div,2) —Y— H" 1)

H(ml H(l)l H<2>l H(a)l (1.2)

Uk Y Wk XX @k Y Bk

Here I1(8), s=0,1,2,3, denote interpolation operators induced by the degrees of freedom,
Y():k and r is chosen so that the interpolation operators are well defined.

Edge e Face f
tetrahedra tetrahedra hexahedra
& hexahedra
H'(2) [.pqds J;padA [;padA
Vg€ PF2(e) Vg € Pr—3(f) Vg e Q"2 2(f)
H(curl, £2) feu-tqu ffu-qu ffu><1/~qu
Yg€ P*H(e) vac P2 (f),q-v=0 ae Q¥ TE T QR ()
H(div,2) - ffu‘uqu ffu-z/qu
Vg e PM1(f) Vg e Q" M)

Table 1. Edge and face degrees of freedom for tetrahedral and hexahedral reference elements. The vertex degrees
of freedom for the H!(§2) elements on tetrahedra and hexahedra are the same. There are no exterior degrees of
freedom for the L?(£2) approximants. t is the unit tangent along an edge, and v the unit outer normal to a face.
We denote by P* polynomials of mazimal degree k; we employ the same notation for scalar and vector-valued
objects.

Gradinaru & Hiptmair (1999) constructed "Whitney” elements satisfying properties P1 and
P3 and our family of elements includes these as the lowest order case, see Section 5. In the
engineering literature, Coulomb et al. (1997); Zgainski et al. (1996) appear to have discovered
the same first order H (curl)-conforming element independently and also demonstrated a second
order element. Bergot et al. (2010) describe high-order finite elements for H'(2), but not
the other spaces. Graglia & Gheorma (1999) constructed H(curl) and H(div) elements of
arbitrarily high order. Similarly, Sherwin (1997) demonstrated H'-conforming elements also
satisfying properties (1) and (2). These high order constructions provide an explicit scheme for
determining nodal basis functions; none of them address the commuting diagram property, P3.

The mimetic finite difference method, originally presented in Hyman & Shashkov (1997)
and further developed by several authors (e.g. Kuznetsov et al., 2004; Campbell & Shashkov,
2001; Brezzi et al., 2005b,a) develops low-order approximations on polyhedral meshes and hence
includes pyramids as a special case.

Our starting point is an observation: that it is not always possible to extend polynomial
data on the faces of a pyramid using a polynomial within the pyramid. Indeed, it is impossible
to construct useful H'(2) pyramidal finite elements using only polynomial basis functions.
Specifically, in Theorem 1.1, we demonstrate an H!(§2) function which has polynomial traces
on the faces of the pyramid, but which does not admit a polynomial representation in the
pyramid itself.
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THEOREM 1.1 Let £2 be the pyramid defined in (1.1). Consider the function u : 2 — R defined
by

ulgon ) = SEEEZDUTCED,

Then,
1. ue HY(92),
2. u has polynomial traces on the pyramid faces,

3. u cannot be represented by any polynomial function on {2 which also satisfies property
(P1).

Proof. 1t is straightforward to verify (1). It is easy to see u|y—o = —£¢({+(—1) and u =0 on
the other faces of the pyramid. This establishes (2).

We prove (3) by contradiction. Since {2 has Lipschitz boundary, we can extend u to a
function U € H(R?) (see, for example Adams, 1975). Suppose that we could represent u = U],
by a polynomial function p, in a manner consistent with property (P1). The traces of U
on the faces will then be interpolated exactly by the polynomial Whitney forms specified by
adjacent neighbouring tetrahedra and hexahedra. Since an H'-conforming approximation must
be continuous across interelement faces, we must have p = U on each face of the pyramid.

Since U = u =0 on four of the faces of the pyramid, we can factorise:

where r and s are polynomial. Further, U = —£((£+{ —1) on the face n =0 and so:
p(§0,0) =&C(E+C—1)(C—=1)r(&,¢) = =€C(E+ ¢ — 1), (1.4)
which implies that (¢ —1)r(£,{) = —1. This contradicts the polynomial nature of 7. O

A similar result is presented by Wieners, where it is claimed that, under the assumption
that shape functions must be polynomial, there exists no continuously differentiable conforming
shape functions for the pyramid which are linear / bilinear on the faces.

The insufficiency of polynomials can be seen in all previous successful attempts to construct
pyramidal finite elements. In addition to Gradinaru & Hiptmair (1999), finite element bases
that include rational functions are given by, e.g., Graglia & Gheorma (1999); Sherwin (1997);
Coulomb et al. (1997); Zgainski et al. (1996) and Wieners. In Felippa (2004); Owen & Saigal
(2001); Liu et al. (2004), the authors use piecewise polynomial functions via a macro-element
that divides the pyramid into two or four tetrahedra. Interestingly, although Wachspress (1975)
only applies his construction to a class of polyhedra that does not include pyramids, this
restriction appears to be unnecessary and the “rational finite elements” given therein appear
to include the high order H! pyramidal elements as a special case.

The major contribution of this paper is a comprehensive development of high-order finite
elements on a pyramidal element. We will present candidate approximation spaces U (3)’k((2)
for s =0,1,2,3 and k € N, by first developing these on an infinite reference pyramid. We also
show that these spaces admit convenient Helmholtz-like decompositions, and that their traces
on faces and edges are consistent with traces from neighbouring elements. Hence property P1
is satisfied by U (5)*k((2). As a concrete example, we verify that our first order elements agree
with those presented in Gradinaru & Hiptmair (1999).
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Next, we provide a description of the degrees of freedom, X(*)* and demonstrate unisol-
vency. The exterior degrees of freedom agree precisely with those specified by neighbouring
tetrahedral or hexahedral elements. Properties P2 and P3 are also established. We will use
the projection-based interpolation described in Demkowicz & Buffa (2005); Demkowicz et al.
(2000) to solve the difficult problem of defining the internal degrees of freedom on a pyramid.
It is possible to use projection based interpolation for the external degrees too, and we believe
that the hp framework of which it is a part will also accommodate our element. However, this
is not our immediate objective and the external degrees described in Monk (2003) allow for a
more explicit exposition.

In Section 6, we show that the discrete spaces U (s)’k(()) form an exact subcomplex. That is,
we show that did(5)F(02) c UGTDF(Q) for s =0,1,2, and that any discrete (s + 1)-form which
has a vanishing exterior derivative is derivable from a discrete potential which is an s—form.
These spaces, along with the interpolants which are induced by the degrees of freedom, satisfy
a “commuting diagram property” which is crucial to the stable computation of mixed problems.
Finally we show that these finite elements are indeed high-order in the sense that they include
high-degree polynomials. While the inclusion of high-degree polynomials is an important step
towards approximability, we shall show in a subsequent paper that the usual finite element
arguments need modification in our context. In particular, since the spaces U (S)’k(Q) contain
rational functions, it is not true that high derivatives evaluate to 0, in sharp contrast to the
situation for polynomials.

The organization of the rest of this paper is as follows:

Section 2 The infinite reference element: some preliminaries

Section 3 The approzimation spaces Z/I(s)’k((loo) on the infinite pyramid
Section 4 The approximation spaces U(S)’k(Q) on the finite pyramid
Section 5 The degrees of freedom X)* and unisolvency

Section 6 Interpolation and exact sequence property

Section 7 Polynomial approzimation property

Section 8 Appendiz: Shape functions

2. The infinite reference element: some preliminaries

As discussed earlier, pyramidal finite element spaces must include rational functions. To con-
struct the finite elements, we shall make use of two reference elements: the finite pyramid, (2,
already introduced in (1.1), and the infinite pyramid {2oo. The infinite pyramid is an unusual,
but instructive domain; it possesses hexahedral symmetries which will allow us to specify or
study important properties for the approximation spaces. We will then map these spaces to
the finite pyramid.

We will typically use the symbols (x,y,z) as coordinates on the infinite pyramid and (&,,()
on the finite pyramid. The infinite reference pyramid is defined as

Qoo = {x=(2,9,2) ER?Uoo | z,y,2>0, 2 <1,y < 1}. (2.1)

Figure 1 shows the two pyramids. The vertical faces of the infinite pyramid lie in the planes
y=0,z=1y=1, =0. We denote them as S1 0,52 0. ,53,0., and S . respectively,
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—23,
3 52
- s
Si ]
(1,1,0)
7 by €
(0,0,0) _ (1,0,0) 7 v; = (0,0,0) vy = (1,0,0)

Fic. 1. Left: The infinite pyramid 2. Right: The finite reference pyramid {2

and the corresponding faces on the finite pyramid S; o = ¢(S; 0., ). Let Bo__ refer to the base
face, z =0, of the infinite pyramid and By, the base face of the finite pyramid. The vertices of
the finite pyramid are denoted v;, i = 1..5, with v5 the point (0,0,1).

2.1 The infinite reference element: pullbacks

To associate the finite and infinite pyramids, define the bijection ¢ : 2o — {2

x Yy z
142" 142" 142

o) = ). ol =00.), (2.2

which is a diffeomorphism if we restrict the domain to {2o,\oo (and the range to the finite
pyramid with its tip removed).

The infinite pyramid will serve as a tool for the construction of the function spaces for the
elements. We thus need to understand how to map functions between spaces on the finite
pyramid, U (S)’k(Q) and the infinite pyramid, U (S)’k(Qoo). A major consideration is for approx-
imation spaces on the infinite pyramid to satisfy an exact sequence property. To have this exact
sequence property preserved on the finite pyramid, it is necessary that the mappings between
the spaces on the finite and infinite pyramids commute with the grad, curl and div operators.

In the language of differential geometry, where the elements of each space can be considered
to be proxies for 0, 1, 2 and 3-forms, the mappings should be pullbacks. We shall use the
same notation for each map - the context will never be ambiguous. We point the reader to
Arnold et al. (2006) for an excellent treatment of the finite element exterior calculus. In this
paper, we will switch between referring to objects as forms or functions, depending on the
context. Formally (because we have not yet defined the appropriate Sobolev spaces on the
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infinite pyramid):

Vu € HY(9) P u=wuog, (2.3a)
VE € H(curl, ) ¢*E = D¢l - [Eog], (2.3b)
Vv € H(div, ) ¢*v=|D¢|Dp~t-[wod), (2.3¢c)
Vg e L*(2) ¢"q=1D¢llgo¢l, (2.3d)
z+1 0 —x
where D¢ is the Jacobian matrix, ﬁ 0 z4+1 —y |. The pullback is a bijection and

0 1
the inverse pullback, (¢*)~! is equal to (¢~ 1)*. Since z >0, D¢T D¢ is positive definite.
The infinite reference element is a convenient tool, since it possesses both rotational symme-
tries and the tensorial nature of regular hexahedral elements. This is particularly useful while
discussing traces onto the boundaries of the pyramid.

2.2 The infinite reference element: Sobolev spaces

The infinite reference pyramid has obvious symmetries, which make it easier to specify and
analyze approximation spaces. However, it has semi-infinite extent along the z-direction, and
we must therefore describe analogues of H'(£2), H(curl, £2) etc. on 2. Not surprisingly, these
Sobolev spaces will have weighted norms.

DEFINITION 2.1 Let 25 be the infinite pyramid defined in (2.1), and ¢ : 2o — {2 be the
pullback map. We define the following inner product spaces:

H! () is the closure of the set of smooth scalar-valued functions v : £2o, — R under the
norm induced by the inner product

uv
(uﬂ))H&)(Qw) = /_QOO er(Vu)TAVvdx.

Here A= \D¢|D¢*1D¢*1T is positive definite. H,,(curl, {2 ) is the closure of the set of smooth
vector-valued functions (1-forms) F : 2o, — (R)3 under the norm induced by inner product

(PG, ey = [ (F)TAG)+ (curl )T BleurlG)dx.
oo

Here B = |D¢~1|D¢pT Do, and is positive definite. H,(div,2s) is the closure of the set of
smooth vector-valued functions (2-forms) F: 2, — (R)? with inner product

(F.C) 1, v,y = / (F)TB(G)+ (div F)T (1 + 2)(div ) dx.
L2 (£2,) is the closure of the set of smooth scalar-valued functions (3-forms) with inner product,

(U, V) L2 (9200) ::/Q (1+2)*(uwv)dx.
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REMARK 2.1 We observe that the inner products on the infinite pyramid are weighted by

powers of ﬁ The subscript w is used to emphasize that these are weighted norms. The

weights are entirely specified by the projective mapping, ¢, and the associated pull-backs for
2

the various forms. It is important to note, for example, that ||UH2L?U(QOO) = f!?oo Uiizyldx if u

is a zero form, while Hu||2L2 (200) = fQoo u?(1+2)%dx if u is a 3-form.

These inner product spaces can be related to more familiar Sobolev spaces on the finite
pyramid, as is done in the following theorem:

LEMMA 2.1 Tt is easy to verify that the inner product spaces H. (£2s0), Hy (curl, 2o ), Hy (div, £25)
and L2 (£2.,) in Definition 2.1 are Hilbert spaces. Morever, ¢* : H(£2) — H} (25 ) is an isom-
etry. The analogous statements are true for H, (curl, 2« ),Hy, (div, £250) and L2, (2).

Proof. The pullbacks, ¢* are formally bijections because {2 and 2o, have the same dimension.
Suppose @ is a 0-form in H'(£2) and let u = ¢*ii. Then

- 1
sy = |, Dol Pax= [ siuto P

Now, the gradient and pull-back operator commute. We can thus use the appropriate pull-back
to obtain

- - 1T —
||Vu||2LQ(m:/Q|Vu\2d§:/g|p¢ Y Vuop=12d¢

= / 1D¢|| Do~ VulPdx = | VuT AVudx.
o0 'QOO
Hence ||71||%{1(Q) = ||11H2LQ(Q)+||V11||2L2(Q) = |lull g3, (200)- The proofs for Hy, (curl, o), Hu(div, £2o0)
and L2 (£2) follow analogously. O
We collect here, for convenience, concrete instantiations of the inverse pullback mapping.
Vu € HL (240, (6 Hu=uop 1, (2.4a)
10 0
VE € Hy curl, 2), (0YV'E=[1+2) |0 1 0 | -Elogp™ !, (2.4b)
rz y 14z
142 0 —x
Yo € Hy (div, 2u0), (D v=[1+22[ 0 1+z —y| -v]oo™ ! (2.4c)
0 0 1
¥ € Ly, (£200), (67 q=[1+2)"qloe™". (2.44)

2.3  Rotations and traces

Define R : {200 — {25 to be the affine mapping that sends the infinite pyramid to itself and
rotates it a quarter turn about the axis x =y = %7 that is, the vertical face S1 . is mapped
to S2. 0., the face S2 o is mapped to S3 o, etc. Explicitly,

R : (zyy,2) = (1—y,x,2). (2.5)
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We can also define a mapping that sends the finite pyramid to itself, rotating the faces, R :
2 — 2 by

R=¢oRg, 00",  R:(&n,0) = (1-n—-(E0Q).
It is clear that if an approximation space U (S)’k(()oo) is invariant under the mapping Ry,__, its
(inverse) pullback to the finite pyramid will be invariant under R. This property will prove
convenient when we consider exterior shape functions and exterior degrees of freedom.

The trace map from a manifold to a submanifold is the pullback of the inclusion map for
differential forms (see, for example, Arnold et al., 2010, pg 41 ff.) and so we expect that
zero trace data will be preserved by the pullback mapping. The following lemma makes this
explicit in our concrete vector calculus formulation, where traces for 1-forms consist only of
the tangential components and for 2-forms the normal components. We suppose that Sp__ is a
surface of the infinite pyramid and let S, be its image under ¢ on the finite pyramid.

LEMMA 2.2 e A 1-form w is normal to Sp, at a point £ = ¢(z) if and only if the pullback
¢*u is normal to Sp_ at x.

e A 2-form w is tangent to S at a point & = ¢(z) if and only if the pullback ¢*u is tangent
to S, at .

Proof. Let S, be described (locally) by S ={£: f(§) =0}. Define g = fo¢, then S, = {x
g(z) =0}. To establish the first result, let u be a 1-form which is normal to Sg; at &, then

u(§) = A&V (€) (2.6)

for some scalar function A. By the chain rule, and substituting (2.6)

Vy(z) = (D)7 (2)- (Vf)(¢(x)) = (D)7 (z) - (Egi A(ﬁb?x))

= Mo(2))Vy(z) = ¢ u(x).

Hence, ¢*u is normal to Sp_ at x if w is normal to S at £. The converse statement follows
since ¢ is a bijection. To establish the second result, let u be a 2-form which is tangent to S,
then u-Vf=0. The chain rule gives us Vg = (D¢)T (Vf) o ¢ and by definition of the pullback,
¢*u=|D¢|(D¢)~ 1 (uo¢), hence:

9" U-Vg=|D¢\(u0¢)T~( ¢~ )T (DO)T - [(Vf)og]
=|D¢|(u” -V f)op=0.

Hence ¢*u is tangent to S . Again, the proof of the converse follows by noting that ¢ is a
bijection. O

Any construction of conforming finite elements must include consideration of the traces of
approximants onto inter-element boundaries. To this end, we introduce some notation for the
trace maps to the different faces of the reference pyramids. We do not need to define traces for
the approximants in L2(£2).

DEFINITION 2.2 Let S; ., be a vertical face of {2,,. For s =0,1,2 define the pullback of the
inclusion S; o, < {2 as the trace map I, —on U* *(02y) for all k€N and i =1..4. We
denote by I} 0 the corresponding trace onto the triangular faces of the finite pyramid (2. We
similarly deﬁne the trace maps onto the base faces, that is, FB 0., and I'g ¢ are the trace maps
to B, and B respectively. ’
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The consequence for us is that trace maps commute with ¢*, (e.g. IPg. o o* = ¢* OFiS’_Q)
so results we establish on faces and edges of 2o, will carry over to the finite pyramid.

We can now describe the inter-element compatibility conditions to be satisfied by the traces
of our approximation spaces. From Monk (2003), we can concisely denote trace spaces on each
face of the kth order tetrahedral and hexahedral elements by the polynomial spaces 7(5)* and
o8} respectively. On the triangular face 51,02 and the base face By, these spaces are defined
as

TOF(g,0) = PH(¢,0) O (& m) = Q% (&,m)
TRE) = (P00 oW REn =@M Em x @ Em)
(IO E (3 o oPE(Em) = QM (g m)
where S¥2(€,¢) = {w(£,¢) € (P*)?|(€ = &0,¢ — Co) -w = 0} for some fixed (£,Cp). In order to
satisfy the compatibility condltlon (P1), then, we will have to enforce the constraints
[T g uet®reE ) YueuD Q) vs=0,1,2 (2.7)

on the face 1, . Analogous constraints will hold on all the other faces of the pyramid 2.

The discussions above suggest the face-wise constraints which must be satisfied by any
approximation spaces U (%)% (2). However, as was demonstrated by Theorem 1.1 the difficulty
of interpolation on a pyramid stems from the need to find an interpolant that match trace data
on all the faces simultaneously. This point will be discussed later.

3. The approximation spaces L{(S)’k(.@oo) on the infinite pyramid

In this section we present the approximation spaces U (S)’k(Qoo) on the infinite pyramid. These
will be used, via the pullback map, to construct the approximation spaces (S)’k(Q) on the finite
pyramid. As a preliminary step, we identify families of “rational polynomials” on (2., which
will be used extensively. We want the spaces on the finite pyramid {2 to contain all polynomials
up to a specified degree. Consider the effect of the pullback mapping ¢ on a polynomial of
degree k, p=£nP¢7 € HY(2), where a+ 3+~ = k:

xyP 2
(1+2)k"
From Lemma 2.1, the pullback ¢*p € H] (£2+). This motivates our next definition:

¢*p= (3.1)

DEFINITION 3.1 Let Q4™ (z,7,2) to be the space of polynomials of maximum degree I,m,n
in x,y, z respectively. Define the space of k-weighted tensor product polynomials

lLm, _ u . lm,
Q" (z,y,2) = { ArofF ue@"m ”(m,y,z)}.
It will be helpful to remember the inclusion:
l7 9 l7 b +1
Q" T (3.2)

Let P™(x,y,z) be polynomials of maximum total degree n in (z,y,z) and define the space of
k-weighted polynomials of degree n

Pl (x,y,2) = {W s u(w,y,2) € P"(x,y,z)}. (3.3)
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3.1  H](£2s)-conforming approzimation spaces

We recall from Monk (2003) that the finite element approximation space for a hexahedral el-
z%yP 27 c
(1+2)k
H! (), if a+ B+~ =k We might therefore expect to base an approximation space for
H! () on the k-weighted space, le’k’k. However, there are some elements of QZ’k’k which,
when pulled back to the finite pyramid, become undefined at €, = (0,0,1). The problem arises

ement consists of polynomials of form p = £*n®¢7. From (3.1), we know that ¢*p =

a, b_k
with elements of the form Z¥-2- on the infinite pyramid. The following examples are illustra-
(l+z)k g
tive.

ExXAMPLE 3.2 Consider the monomial pj(z,y,z) = on the infinite pyramid. The inverse
pull-back onto the finite pyramid is (¢~1)*p = 1%4 The limit limg ¢, (¢~ 1)*p depends on the
path by which we approach &,. Specifically, if we take the path ay(t) = (A(1—¢),0,t) then
limg 1 (67 1)*plaxn(t)) = A

ExXAMPLE 3.3 Consider the function pa(z,y,z) = ﬁ on the infinite pyramid. Pulled back
to the finite pyramid, (¢—!)*ps = ¢*. We must therefore retain py in the approximation space

on the infinite pyramid.

LEMMA 3.1 Let {2 be the infinite pyramid described above, and k > 1 be a fixed integer.

a, b_c
e Functions p(z,y,2) := Zglﬁzjk € Q:’k’k_l satisfy p € H} (2s0).

k
o If p(x,y,2) = r(z.y)z r(z,y) € Q% *(x,y), then lim6ﬁ50(¢*1)*(p) is only well-defined if

(I+2)k
r(z,y) =1.
Proof. We can verify the first statement by using Definition 1. The second statement can be
proved by contradiction, as in Example 3.2. O

This result and the examples suggest the basis functions to include in a finite-dimensional
approximation space for H} ().

DEFINITION 3.4 Let k be a positive integer. We define the underlying spaces Uk (£2.,)

k
0).k _ nkkkE—1 <
a,b_c
LEMMA 3.2 The rational polynomials {Eﬂl}:z;k ,0<a,b<k0<c<k— 1} and ﬁ form a
basis for U(0):% (). Moreover, U(©):F(£2,,) can be represented as
k,k,k k—1,k,k— k,k—1,k—1 k,k,kE—1
UDF( Q) = {ue QM : Vue QM x Q) xQuit k- (3.5)
Proof. The basis functions are determined by using the definition of ¢/(9)-*(£2,,) and Lemma
a,b_c
3.1. The gradients of rational functions of the form ZYZ_ are 1-forms in QF MFF=1
& (1+z)k k
k fsk—1

QZ’k_l’k_l X Q],z’_]:ik_l. Moreover, V—=—~ = (0,0 )T. The reverse inclusion follows

o~ 00 @
readily by a similar calculation. This establishes the alternative characterization of U(?):%(£2.).
O
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We must now constrain these spaces to obtain the approximation spaces which satisfy the
compatibility constraints P1. This follows the discussion in Section 2.3, and specifically (2.7).

DEFINITION 3.5 Let k be a positive integer. We define the k-th order approximation spaces
UOR(L):

UKD ={ucUOk(Q) | I o, € PFlx,2], similarly on S; o ,i = 2,3,4}. (3.6)

Since we will be working in the projection-based interpolation framework while specify-

ing internal degrees of freedom, we define a subspace UO(O) ’k(Qoo), consisting of functions in

UOF(0Q,) with zero trace on the boundary of Q.. Clearly, L{éo)’k(ﬁw) ={z(1—2)y(1-

k—2,k—2,k—2
y)zu, u € Q) }.

In the Appendix, we present the shape functions in U (0)’k((loo) associated with the faces,
edges and vertices of {2,. These are linearly independent. Moreover, the number of these
functions associated with a given triangular or squareface is exactly the same as the dimension
of trace spaces 7(0F or ¢(0):F regpectively.

3.2 Hy(curl, 2)-conforming approximation spaces

We now present the construction of the approximation space U (1)7'“((200) of Hy(curl, 25). As
before, this construction is motivated by the ultimate goal of constructing a finite element
approximation space for H,,(curl, {2) which satisfies property (P1).

To satisfy the commuting diagram property we will need, at the very least, to have Vi/(0)F () C

UMD F(Q,). The alternate characterization of U©)k(£2.) in Lemma 3.2 suggests that we
might consider the space Q’;_l’k’k_l X QZ7k_1’k_1 X Q’,:’_]:’lk_l as a candidate for an approxi-
mation space for H,,(curl, {2o,). However, this space includes functions that are undefined at
the point €, = (0,0,1) on the finite pyramid. We must be careful here to identify what kind
of discontinuities we wish to exclude on the finite pyramid. Firstly, we are not interested in
point values of these functions, only their tangential components. Secondly, given a particular
tangent direction, ¥ on a face of the finite pyramid, it only makes sense to consider limits taken
along paths on faces tangent to ©. The following examples illuminate these points.

y/(1+2)
ExAMPLE 3.6 Consider u = 0 € Qz_l’k’k_l X QZ’k_l’k_l X Qz’fik_l. Its (inverse)
0
n/(1=¢)
pullback to the finite pyramid is, (¢p~1)*u = 0
&n/(1-¢)?

Let 7= (0,—1,1) and consider the path a(t) = (A(1—¢),1—¢,t). This path lies on the face
S3 for A €[0,1], and S3 is tangent to . The limit of the component of (¢~1)*u tangent to v at
&, along the path «ay is limy_yj () (t))- ¥ = A. This limit therefore depends on the path taken
to approach &.

T2
k-1
EXAMPLE 3.7 Let u= W ryz |, reQFFa,yl,r, = %,ry = g—;, be a 1-form defined
—r
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0
. . . . _ rzk _ 0 .
on the infinite pyramid. Note that we can write u = v(7(1+z)k+1) (bt yrck—1 |7 from which
(142)k+2

it is apparent that u € Hy, (curl, 25).
With these examples in hand, we are able to define approximation spaces for H,, (curl, 2).

DEFINITION 3.8 Let k > 1 be an integer. We define the underlying space for H,,(curl, 2):

WA k—1,kk—1 kk—1,k—1 Kok k—2
UDF (Do) = Qrt1 X Qi X QT

Zk—l Ty ok
O @t | 7vr | el (37)
T

We have again used the notation r, := %,ry = g—; An equivalent characterization of the

underlying space U(1):k(2,.) is given as

WA k—1,kk _ ~kk—1,k _ ~kkk—1 .
UDF(2y0) ={u e Qi1 XQyy 7X@y
kk—1,k—1 k—1,k,k—1 k—1,k—1k
VXUGQkJrQ XQk+2 ka+2 }3 (38)

We now add constraints on the tangential traces, analogous to (2.7), to get the full definition
of the approximation space U1)¥(02.,). Concretely, let n; be the (outward) normal to the

vertical faces S; ., of £2o. Then I’ilﬂoou =uX ni|5i,noo for u € UDF(0,).

DEFINITION 3.9 Let k > 1 be an integer. Define

1),k — k(O | ! k—1 2 Bk—1 142
UDH(2n) = {u € UOR(2) | T ue (Pl o Pltloa+4 (1))

and similarly on S; 0,7 =2,3,4, }, (3.9)

where 1
pk—1 a k—1—a
= ———— S L<a<k-— .
Pl 14 2] 17200 bpan{x (1+2) ,0<a<k 1}
We can also identify elements in 2/(1):F(£2,.) whose (tangential) traces vanish on 9§2.,. We

denote the set of these as Mél)’k(Qoo).

In the Appendix we have tabulated the edge and face shape functions for ¢/(1)-% (£25). These
are linearly independent, and are consistent along shared edges. The same will be true of the
pull-backs onto the finite pyramid.

3.3 Hy(div, ) and L2 (2s)-conforming approzimation spaces

Following a similar strategy to the previous sections, in this section we construct approximation
spaces U2 F (02 for Hy(div, 2s), such that their pull-backs to the finite pyramid provide
approximation spaces for H(div,2). Again, we want curlu € U3 F(02), Vu € UV E(02).
Now, the curls of functions u € U(1):-F(2..) satisfy

kk—1,k—1 E—1,kk—1 k—1,k—1,k—1
VxueQ, X Qo X Qi1 .
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Not all of these will have well-defined normal traces, and we must exclude these.

DEFINITION 3.10 The underlying space for the H (div)-conforming element is defined as:

ZTQ)JC(QOO) _ Qk,kfl,k72 y qu,k,kfz « Qkfl,kfl,kfl

k+2 k+2 k+2
. k1 20 . k1 2Ot (3.10)
s s s
k+2 k+2
A+ 12 D\ ay

Here s(z,y) € Q¥ VF[z,y], Sy 1= g—z, and t(z,y) € QF*F [z, y,t, == %. An alternate charac-
terization of U2k (02y.) is

k,k—1,k—1 k—1,k,k—1 k—1,k—1,k . k—1,k—1k—1
UK (D) = {ueQps X Qpyo X Qp o :Vou € Q3 oo (3.11)
We equip this space with constraints on normal traces to obtain the full definition of the
approximation space U(2)#(£2,,) on the infinite pyramid:

DEFINITION 3.11 The kth order approximation space for H,,(div,2) is

UDF(Q)={ued@k | Fl(?f)loo € P,itgl [z, 2], similarly on S; o__,i=2,3,4}. (3.12)

Again, we can identify the 2-forms in 2/(?):¥(£2.,) with vanishing normal traces on the faces
of 2. We denote this set by U52)7k(900). In the Appendix, we have written down a basis for

(2),k

Uy™"" (2), and augmented it with shape functions for the faces.

Since we want the divergence operator to be surjective as a map from U®)*(2.) to the
associated approximation space of L2 (f2), the approximation space for L?(£2.,) (considered
as the space of 3-forms) consists precisely of divi/ (2)’k(900). There is no longer any need to
define an underlying space.

DEFINITION 3.12 We define the approximation space U®)*(£2..) for L2 (£25) as

UDF (D) = Qg1 (3.13)

4. The approximation spaces Z/l(s)’k(Q) on the finite pyramid

We are now readily able to define the approximation spaces for the de Rham sequence on the
finite pyramid, based on the approximation spaces on the infinite pyramid {2:

DEFINITION 4.1 Let {2 be the finite reference pyramid as defined in (1.1). Then, the kth order
conforming subspaces on the finite pyramid {2 are

u(s),k(Q) ::{<¢71)*u:ueu(s)yk(9w)}) s=0,1,2,3. (4.1)
We also denote by
m;:{((b_l)*u:uGW(Qm)}, s=0,1,2,3. (4-2)

the underlying spaces.
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THEOREM 4.2 Let k be a positive integer. The finite dimensional spaces defined in (4.1) satisfy:

Uk c HY(2),  UDF(2) c H(curl, 2), (4.3)
UDF(Q) c H(div,2), UDF0)c L) (4.4)

Proof. The proof follows from the definitions and properties of U (S)’k(Qoo), the pull-back map
¢, and Lemma 2.1. O

In the following subsections, we shall establish several useful properties of these spaces. The
analysis will typically be performed for the approximation spaces on the infinite pyramid, where
the basis functions are tensorial in nature, and hexahedral symmetries can be used, which allows
for simple calculations in many cases. The properties of the pull-back operator will allow us to
demonstrate the results on the finite pyramid.

4.1  HY($2)-conforming approzimation spaces

In this subsection, we demonstrate that the grad operator is injective on Z/léo)’k(ﬂ), the set of
bubble functions on the pyramid.

LEMMA 4.1 Let Z/{éo)’k((?) be the subset of U(9)-#(2), consisting of functions whose trace onto

the faces and edges of (2 are zero. If Vv =0 for some v € Zx{éo)’k(ﬂ), v=0 on 2.

Proof. This follows from the divergence theorem. O
We can easily see that L{éo)’k(ﬁ) = {((b‘l)*u tu € Z/{éo)’k((?oo)} . From the remarks following

(3.6), it follows that dimu(()o)’k(.(?) = dimZ/{éO)’k(()oo) = (k—1)3. Note that from the definition

of Zz{éo)’k(ﬁm) and the discussion in Section 2.3, the face traces of functions in U(?)¥(02) are
compatible with those of neighbouring tetrahedral and hexahedral elements. Finally, the shape
functions in the Appendix show that the edge traces are well-defined, and that edge traces can
be specified in consistent manner.

4.2 H(curl, 2)-conforming approzimation spaces

We shall establish that the grad operator maps U(0):k(2) into £/(1):k(£2). This is an important
step towards showing exactness of the diagram in 1.2. We then show that the curl operator is
injective on a certain subspace of U (1)»16((2)’ which will be used in establishing unisolvency of the
edge elements on the pyramid. We will finally demonstrate a discrete Helmholtz decomposition.

Note that from the definition of Uél)’k(ﬂoo) and the discussion in Section 2.3, the face traces

of functions in ¢ (1)-*(2) are compatible with those of neighbouring tetrahedral and hexahedral
elements.

LEMMA 4.2 The gradient operator is well defined as a map from U(0):%(2) into U1k ($2).

Proof. Tt is easier to work on the infinite pyramid. Recall that a basis for U(0)-*¥(§2..) is given

a,b_c
by functions of the form wugp . = %, where a,b and ¢ are integers and a € [0,k], b € [0, k]

We will show that the gradients of each of these functions

and c € [0,k —1] or ugp. = ﬁ
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lie in U(1):k(§2). The result is trivial for c=0. For ¢ > 1,

axaflyb(zc+1 + ZC)

1
Viug pe=———7 byt (2ot 4 z¢
> (1 Z)k_H a by ( c c—)l
2%y’ ((c—k)z¢+cz¢7)
k—1kk—1

If ¢ <k —2 then Vug . € Q) X QI T x QTR In the case =k —1, we can
let 7 = x%® in (3.7) and then the remainder

k=1 TyZ 1 axafblyfz:i
Vugpe— 5 | 92 | = == | ba%y” 2" |, (4.5)
GPE (14 2)ktt _yr (14 2)k+1 catybh—2

which is in QZ;i’k’k_l X Q:f;l’k_l X Q’;fik_z Finally, if ¢ =k then choosing » =1 in (3.7)

suffices. Now use the definition of 2/(5):k(£2) in terms of the inverse pull-back of functions in
Uk (2,), and the commutativity of the grad with the pull-backs, to conclude the result. [

Note that the previous result also follows immediately from the (unproven) equivalent char-
acterisations of the underlying spaces, (3.5) and (3.8). An important subset of 4 ()-*(£2) is the
functions with vanishing tangential traces.

DEFINITION 4.3 Define Z/{(gl)’k(ﬁ) to be the subspace of functions in U1):*(2) with zero tan-
gential component on the boundary of (2.

From Lemma 2.2, we know that if u € /(1):F(£2) has zero tangential traces on a particular
face or edge of {2, then its pullback to 2o, will have zero tangential traces on the associated

face or edge. This allows us to characterize Z/{(gl) k(())

LEMMA 4.3 Functions in Z/{él)’k(Q) can be represented as (¢~1)*(u), where u € Z/l(gl)’k(ﬂoo)

have the form

y(1—y)zq1 k-1 ToZ
u= z(1—x)zq F—— | Ty2 (4.6)
1 k+1 Y ’
x(1—2)y(1—y)gs (1+2) —r
k—1,k—2,k—2 k—2,k—1,k—2 k—2,k—2,k—2 2 k—
where g € Q] X Qi1 X Qi1 andr=z(1—z)y(1—y)p, p€ Q¥ ~2k=2[z 4.

We have denoted 15 := %,Ty = %_

Proof. Tt is easily verified that the functions u in (4.6) have zero tangential traces on the edges

and faces of 2o, and therefore their inverse pullbacks (¢~1)*(u) belong to L{él)’k(()). Note
also that

dimU{MF(2) = dmU P (200) = Kk — 1)2 + k(k—1)%+ (k—1)3 + (k—1)2 = 3k(k— 1)

O
The curl operator has a non-empty null space in Z/l(gl) ’k(Q), consisting of gradients. We can

precisely characterize the complement of the gradients in él)’k(()).
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DEFINITION 4.4 Define ¢\ * () c Mél)’k(ﬂ) as

0,curl

U i (2) = {olo = (071w u e U (200) |

0,curl 0,curl

, where Ué’lc)l’lljl(ﬂoo) C Mél) ’k(Qoo) consists of functions u of the form

y(1—y)zq
u= x(1—x)zq , (4.7
z(1-z)y(1—y)p

. k—1,k—2,k—2 k—2,k—1,k—2 k—2,k—2
withq € Qk+1 ,q2 € Qk+1 WS Qk+1 [z,y].

We now show that Z/lélc)]ﬁl(()) contains no gradients.

LEMMA 4.4 Let U\VF (£2) be defined as above. Then Utk () C I/{él)’k(ﬂ), and the curl

0,curl 0,curl
operator is injective on L{élc)l’fl(ﬂ). In other words, gradu(go)’k(ﬂ) ﬂL{élc)l’lfl(Q) ={0}.
p . . 1),k (1),k s 1),k
roof.  The set inclusion U ;' (£2) C Uy " (£2) follows by the definitions of U .., (£2) and
L{él)’k(()). To see that the curl operator is injective on Z/lélc)l’lljl(f}), we first show that the curl
operator is injective on u(glgﬂfl(gw)- The argument proceeds by contradiction.
If k=1 then Mé}g&]ﬁl(ﬂw) is empty. Assume k > 2 and let u € Ué}gdlsl(ﬂoo) be as in (4.7).
Let either p or g not equal to zero and write p = ey e Qkfz’k*Q(x,y). Suppose that

(1+z)k+1 ’
V xu =0. From the z-component, we obtain

1 0

42 oy (y(1—y)r) — 9 (2q2) = 0.

0z
There is no z-dependence in r so we can factorise g2 = f(2)g(x,y), where f € P*~2(z) satisfies

d zf(2) 1

dz (L+2)F+1 7 (14 2)k+1

This is impossible, and so p = g2 = 0. A similar consideration of the y-component shows that
q1 = 0. We have just established that the curl operator is injective on Y H* (£25). Since the

0,curl

pullback and curl commute, the curl is injective on Ué}c)ufl(ﬂ) (]

We can now state a discrete Helmholtz decomposition for Z/{él)’k(()):

LEMMA 4.5 The discrete approximation space L{él)’k(ﬁ) C H(curl, §2) of functions with van-
ishing tangential traces on 0f2 admits a Helmholtz decomposition. That is, if v € U(gl)’k(ﬁ), we
can write v = Vg+w with ¢ € Z/léo)’k(.Q) and w e Y F (92).

0,curl

Proof. 1If q € L{éo)’k((]), it has zero trace on all the faces and edges of {2. Therefore, the
tangential components of Vq are also zero on the faces and edges. We already know that grad

maps U(0)-%(2) into U1)-#(2) from Lemma 4.2, and so it is clear that grad maps L{éo)’k(ﬁ) into
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Uél)’k(ﬁ). Injectivity of this map follows from Lemma 4.1 Now we count dimensions. From

Section 4.1 we saw that dimUéO)’k(Q) = (k—1)3, and from Lemma 4.4,

dimU 1V E (2) = dimUDF (260) = k(b= 1)2 +k(k—1)2 + (k—1)2 = (2k+ 1) (k— 1)2.

0,curl 0,curl

From the same lemma, we know gradL{éO)’k(Q) ﬂl/lé,lc)l’lfl(()) = 0. Both of these are subspaces of
UM (92). So,

0,curl

dim {gradu(go)’k(()) uu* (Q)} = 2k+1)(k—1)2 4 (k—1)® = 3k(k— 1)

which is the dimension of Uél)’k(ﬁ). Hence Mél)’k(ﬂ) = gradu(go)’k(ﬂ) @I/{él)’k (92). O

curl

4.3  H(div,2)-conforming approzimation spaces

In this subsection we shall establish that curl/(1):% () C U(2):k(§2). We then show that the div
operator is injective on a certain subspace of U (2)-* (£2). We finally demonstrate a decomposition
of this discrete space.

LEMMA 4.6 The curl operator maps elements of U(1):%(£2) into U2k ().

The proof of this lemma is a calculation similar to the one in Lemma 4.2, and is omitted
here.
We now need to identify elements of ¢/(2):F(£2) which have vanishing normal traces on the

faces of the finite pyramid. Denote these by Z/l(gz)’k(ﬂ). From Lemma 2.2, we know that if

I'?u =0 for some u € UP*(12), then the pull-back I'?, ¢*u =0 on the associated face of

2. This allows us to characterize Z/l(g2)’k((2) easily.

LEMMA 4.7 Functions in L{é2)’k(()) can be represented as (¢~1)*(u), where u € USQ)’]C(_QOO)

have the form

k-1 2t z(1—z)x1
ey 2s +1y(l—y)xz (4.8)
k+2 )
(1+2) (I4+2)(sy+1tz) 2X3
. k—2,k—1,k—2 k—1,k—2,k—2 k—1,k—1,k—2
Wheres:y(lfy)a, t:x(1*$)77 Wltther+2 5 XQEQk+2 7X3€Qk+2 )

o€ Q¥ 12 (z,y), 5, = G5, and T € QF PR (a,y), 1, = GE.

Proof. 1t is easily verified that functions of the form (4.8) have vanishing normal components

on the faces S; o of the infinite pyramid; their (inverse) pullbacks to the finite pyramid will

thus have vanishing normal components on the faces S; o of f2. O
We note also that

dim2U{?* (2) = dimU{?* (2.0)
=k(k—1)24+k(k—1)2+k*(k—1)+k(k—1)+k(k—1)
= 3k3 — 3k2.

u(2)7k

We now present a subspace of U,”""" ({2) on which the divergence operator will be injective.
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DEFINITION 4.5 Define U{%F(12) 1= {v]v = (¢~ 1)* (u),u € U (260)} where

(2),k zk‘—l Ty + 2t 0
Uy diy (200) = span{m T+ 28 }@span{( 0 |} (4.9)
(1+2)(rey + sy +tz) ZX3

and where r(z,y) = (1 - 2)y(1 — y)p(z,y),p € Q"2+t = z(1 — m)f,T € P*=2(x), s = y(1 -

y)$,5 € P’“*Z(y)7 and x3 € Q:;;k k=2 Again, the subscripts denote partial differentiation.

LEMMA 4.8 The divergence operator is injective on L{ég(ii’f((}).

Proof. We shall first show that the divergence operator is injective on Uéiii’f (2%). Let u be
as in (4.9). If V-u =0, then

(k—1)zk2

TS

(roy +te+s )+3(z )

Ty T Yy 0z X3)-
. k—2 zi

We factorize X3 = E i=0 W(]Z

and s have no dependence on z, we obtain

(k‘_1>zk72(7ﬂzy + s +8y) d <I§ ZH_l(Ii(mvy))

0= @
(14 z)kt+2 T ‘ (14 2)k+2

(z,y) and compare coefficients of like powers of z. Since r,¢

1=

k—1)25"2(rpy 4ty +5 K22 itk — 1) + (1 44) 2
e (1+(Z),f:; . y)+<z ( (1+z))ki§ el qz‘(%y))-

i=0
This is impossible, unless

(Txy""tx +3y) =0, Qi(xay) =0.
However, t only depends on z, and s only depends on y. From the form of 7, it must be that

r=0=t=s. Therefore, Vu # 0 for any non-zero u € Ué%i{f(ﬁoo)- Using the properties of the

pullback operator, V-v=0=>v=0 for all v € U{*;¥(£2). The desired result on 2 will follow
by the properties of the pullback operator ¢ and the commutativity of ¢ with the divergence.
[ It is easy to see that

dimU e (2) = dmUS Y (o) = (k=12 +2(k— 1) + K2 (k—1) = k> — 1.

Just as in the previous section, we can use Lemma (4.8) to exhibit a convenient decomposition
of the discrete approximation space.

LEMMA 4.9 Any v € Uéz)’k(ﬁ) can be decomposed as v =V X wj +wg with w; € yx (2),

0,curl
wa € Uiy ().

Proof. Lemma 4.6 tells us that the curl operator maps U(1):5(£2) into U(2)-*(£2). Observe that
if the tangential components of v are zero on some surface then the component of V x v that is

normal to the surface will also be zero and so the curl operator maps Z/lélc)l’l]il(ﬁ) into USQ)’k(Q).
By Lemma 4.4 we know that this mapping is injective.
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By construction, Z/lé?lf(()) is a subset of UéQ)’k(!?) and by lemma 4.8, V-w # 0 for all w €
Z/{(()?i’\’f((}). Hence Z/{égcii’f(ﬂ) ﬂL{élc)l’l]jl(Q) is empty. We now count dimensions. We established

in the proof of Lemma (4.8) that L{é?glf((?) has dimension k3 — 1 and from the previous section
we know ¢\")F (£2) has dimension 2&3 — 3k2 + 1. Thus,

0,curl

dim(curl2$ Dk (2) UUSP)E (2)) = 3k3 — 3k% = dimU(P ¥ (92),

0,curl 0,div
. @)k 1),k (2),k . . .
which shows that Uy™""" (£2) = curlldy /., (£2) @ Uy 4iy (£2). This establishes the desired decom-
position. 0

4.4 L2(02)-conforming approrimation spaces

We note that the dimension of U3)F(2) = dimU®)*(2.,) = dim(Qzlé’k_l’k_l) =k Ttisa

straightforward matter to determine that the divergence operator is well defined as a map from
URE(D) to UB)F(£2). We record the result here in a lemma.

LEMMA 4.10 The divergence operator maps elements of U(2):%(£2) into U3)*(12).

LEMMA 4.11 Any element u € U(3)’k(9) can be written uniquely as

u=V-w+A, weu(g?gi’f(ﬁ),)\e]&.

Proof.  From Lemma 4.10, we know that divué?gi’f(ﬂ) CcUB)*(2). We also know that the

constants belong to U®3)*¥(02). Now, dim(divuo(zgi’f(ﬁ)) = k3 — 1, which is one less than the

dimension of U®)*(2). Now, suppose we could find w € din/{éai’f(()) so that Vw =1 on (2.

By definition of Uéiii’f(ﬂ), we know that w has zero normal components on the faces of (2.
From the divergence theorem, this is impossible. Hence, we have shown that the constants are
not contained in divuéii;f((z), and therefore divb{éi}i’f(ﬁ) @R =U)* (). This completes the
proof. O

We finish this subsection with an important component of the proof that our elements satisfy

property P1.

LEMMA 4.12 The spaces of traces of the approximation spaces, U(S)’k(()) on the faces of
the pyramid are the same as those of the corresponding tetrahedral and hexahedral elements.
Specifically I77 oU(*)*(£2) = 7()F and Ty U F(02) = o)+,

Proof. In the Appendix, we collect shape functions in Tables 2, 3 and 4 of the approximation
spaces U k() for s = 0,1 and 2 respectively. It can also be easily (though tediously) verified
that the traces of these shape functions on each face span the corresponding trace space from
the tetrahedral and hexahedral elements. This demonstrates that F;Qu(shk(fz) D 7)E(S; )
for i =1,2,3,4 and I'§ U F(2) D ol*)*(B).

Set equality is seen by examining the infinite pyramid case. By construction, if u € U*(£25),

. (s) : .k (pk—1 2 . pk—1 142
then its trace I' , uon the vertical face S1 o liesin Py, (P [#,2])" @ Py (2,14 2] ( o >
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or P,f;; for s = 0,1,2 respectively. This means that dim (F(S!%Z/{(S)’k(ﬂ) < dimr(s)’k(S@Q),

i,
which establishes that (Fi(;)zu(s%k(()) = 7'(5)7’“(51'79). Also, elements of Fiﬂgw»k((z) consist of
the pullbacks of functions in I, U (s):k(02.). Therefore, rotational symmetry means similar
statements hold for the other faces as well. Finally, the dimension of I'y U ()% (£2) is equal to
that of ¢(*)*(B) and so I'y U**(2) = o(*)*(B)

O The implication of Lemma 4.12 is important: the
spaces U (S)’k(ﬂ) allow for full compatibility of relevant traces with well-known tetrahedral and
hexahedral finite elements, across interelement boundaries. This should allow for the seamless
integration of pyramidal elements into a hybrid mesh consisting of tetrahedra and hexahedra.

5. First order elements on the pyramid

The approximation spaces U (%) (£2) constructed above include the elements presented by Grad-
inaru & Hiptmair (1999) as the special case k = 1. To demonstrate this, we will map the basis
functions presented in that paper onto the infinite pyramid, and demonstrate that these (pulled-
back) elements belong to U (S)’k((}oo). The properties of the pullback then allow us to conclude
the set inclusions on the finite pyramid. The reason for this indirect approach is the tensorial
nature of the approximation spaces on {2,,, which makes it easier to examine basis functions.

e The lowest-order H!({2) element: The basis functions for the H!(§2) element given
in (Gradinaru & Hiptmair, 1999, equation 3.2) are denoted 7;, i = 1..5. Set 71; = ¢* ;.

(e-D(y-1) _  xy-1) . (z—-1)y _  wxy
777 7.[-27 b Tr b 7.[-47 9

1+2 142 1+2 1+2
4

142

Ty =

It is clear that 7; € U0 (2y).

e The lowest-order H(curl,{2) element: We proceed as in the H!({2) case. Set 4; = ¢*v;
where the ~;, i = 1..8 are the basis functions for the curl-conforming element in Gradinaru
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& Hiptmair (1999)1:

o (Y (Y L[y
= (1+Z)2 0 y 2 (1+Z>2 y V3= (1+Z)2 0 3
1 0 1 zgl—y; 1 z(y—1)
,‘747 p) 1—2 ’ ,‘757 2 2(l1-z ’ 16: 2 ZT )
1 “Y 1 &Y
F7 = 51 2@-1 ], =75 |22

(5.1)

These are also the pullbacks of the basis functions for the first order curl conforming
element given by Graglia & Gheorma (1999). Note that these are all edge shape func-
tions. It is easy to see that 4; are shape functions specified in the previous section for
Hy(curl, £2+,) with k= 1.

e The lowest-order H(div,{?2) element: Set Ci = ¢* (i, where (i, i = 1..5 are the divergence-
conforming basis functions

. 1 0 . 1 2(x—1)

1= m (y_ 1) , G= m 2 )

) 1 o ] 1 0 ) 1 (5.2)
(3= m 2 , Q= m y|,¢(s= m .

For completeness, we note that I/ (3)’1(9) consists of the constants, which map to multiples

1

of e

on the infinite pyramid. The above collections of functions are consistent with the

definitions (3.4), (3.7), (3.10) and (3.13).

IThere are minor typographical errors in Gradinaru & Hiptmair (1999) for two of the one-forms. Based on
the preceding calculations in that paper, the correct expressions are

_ Y=z
zZ+ 1—=z 1—2
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6. The degrees of freedom X(%)** and unisolvency

We now define degrees of freedom X(5)** which are linearly independent and unisolvent for the

finite element approximation spaces U(*):¥(£2). Our construction is based on the premise of
“patching” as discussed in Gradinaru & Hiptmair (1999): “the traces of discrete differential
forms onto any interelement boundary (a (n-1)-face) have to be unique and they have to be
fixed by the degrees of freedom associated with that face”. This means the exterior degrees of
freedom for {2 must be identical with those of neighbouring tetrahedra or hexahedra. Thus,
to satisfy property P1, we insist that the degrees of freedom are the same on interelement
boundaries (vertices, edges and faces) as those from neighboring tetrahedra and hexahedra.
Another important consideration is locality. Gradinaru & Hiptmair (1999) correctly identify
that: “expressions for integrals on edges contained on a face S; , should only depend on the
degrees of freedom on that face”; addressing this challenge reveals the difficulty of treating a
pyramid as a degenerate finite hexahedral element. In our case, the degrees are chosen to be
local ab initio, but the challenge is to prove unisolvency.

In this section we use the same exterior degrees of freedom as specified in Monk (2003).
We show that these are indeed dual to the exterior shape functions specified in the Appendix.
We then have to specify degrees of freedom for the remaining objects in the approximation
space; for these we use the projection-based degrees of freedom as in Demkowicz et al. (2000).
We finally show that the set of degrees of freedom are unisolvent. Throughout this and the
subsequent sections, if P is some finite-dimensional vector space, we will use the notation B[P]
to denote an arbitrary basis.

6.1  H'-conforming element

In order to fully describe the H'—conforming finite element on a pyramid, we need to specify 4
classes of functionals which form a dual set to the approximating basis functions: vertex, edge,
face and volume degrees of freedom. We call the set of these functions (9% and then show
that (£2,U(0):%(02), 2(0):F) is a conforming and unisolvent element for H'(£2). We shall follow
the presentation in (Monk, 2003, chapter 5).

Depending on k not all of the degrees of freedom will be needed. We explicitly design
the vertex, edge and face classes of these degrees of freedom to match those of tetrahedral or
hexahedral elements. In order that the function evaluations be well-defined, let p € H3/2+¢(82).

1. Vertex degrees of freedom: let v;, i = 1..5 be the vertices of the finite pyramid. Then My,
is the set of vertex degrees of freedom m,,; where

Mo, (p) := p(vi),i = 1.5.
These are identical to the vertex degrees of freedom on tetrahedral or hexahedral elements.

2. Edge degrees of freedom: these are given by the set Mg of functionals of the form
Meq(p) := /pqu7 geB [Pk_Q(e)] , for each edge, e. (6.1a)
e

There are k — 1 linearly independent functionals m. 4 for each of the eight edges e € E.
The form of these degrees of freedom is the same for “vertical” edges, e;, and base edges,
b;. Again, these are identical to the edge degrees of freedom on tetrahedral or hexahedral
elements. If k£ < 2 these degrees of freedom are not used.
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3. Face degrees of freedom: the degrees of freedom on the triangular faces, Mg correspond
to those on the faces of tetrahedral elements. They have the form:

mg, ¢(p) = / pqdA, qeB [Pk_?’(Siyg)} , i=1.4. (6.1b)

I

There are (k—1)(k—2)/2 such degrees for each face.

The degrees of freedom on the base face, Mp correspond to those for hexahedral elements:

mai) = [ pada, qeB[Q 2], (6.1¢)

There are (k—1)2 such degrees. The face degrees of freedom are Mp = MgUMp. If
k < 2 these degrees of freedom are not used.

4. Volume degrees of freedom: denote by L{éo)’k(ﬂ) the subset of (9)-#(£2) with zero bound-
ary traces. Then the volume degrees of freedom are given by

<Mb::{pF9%;VpWMdV; quP¢m$um}}. (6.1d)

The dimension of L{éo)’k(()) is (k—1)3. If k < 2 these degrees of freedom are not used.

The set of all degrees of freedom for s =0 is YOk .= My, UM UMpUM. We can now state
the major conformance and unisolvency result:

THEOREM 6.1 The element (£2,U()*(£2), £(0:%) is H'-conforming and unisolvent.

Proof. To show that this element is conforming, we need to establish that the vertex, edge
and face degrees of freedom of p € Y(©): *(£2) vanish on a face of the pyramid, if and only if
p =0 on that face. By Lemma 4.12 the trace FOQp to the triangular face S; o lies in 7(0):k,

The trace I'% B.oP lies in 0(9-*. Now, we have chosen the degrees of freedom so that on each
cach face they are also identical to to those of the corresponding (conforming) tetrahedral or
hexahedral element. The vanishing of the external degrees of freedom associated with a face
therefore implies that p =0 on that face, see (Monk, 2003, lemmas 5.47 and 6.9)

i 5(0)k : .
For unisolvency we need to show that for any vector (u;) € R4 © , there exists a unique

element u € UOF(2) with m;(u) = u; Vm; € ()% We first observe that dim X(0:% = g3 4
3k 41 = dimU(?#(2) and so uniqueness implies existence, i.e. we need to show that if all
the degrees of freedom of p € L{(O)’k(ﬂ) vanish, then p =0 on 2. We have just seen that the

vanishing of the external degrees of freedom implies p =0 on 92 and hence p € U (0) k(Q). The
vanishing of the volume degrees of freedom implies that

/VpVMV:Q Vg e U{"F(02).
(9]

Hence [, |Vp|2dV =0, from which we easily see that p = 0. O
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6.2 H(curl)-conforming element

A curl-conforming pyramidal element is defined by the triple (£2,U/()-*(£2), 2(1):F) where the
degrees of freedom Y(1):F are associated with the edges, faces, and volume of the pyramid.
Again, we follow the presentation of Monk (2003): let ¢ be a unit tangent vector along the
edge e, v be the normal to a given face, and let u € H" (curl, £2) be smooth enough so that the
following functionals are well-defined:

1. Edge degrees of freedom:
Mpg = {ul—)/wtqu, quB[Pkfl(ei)] VeEE} (6.2a)

2. Face degrees of freedom: here we must differentiate between the triangular and square
faces of the pyramid. On the triangular faces, we specify face degrees of freedom which
are identical to those for tetrahedral elements:

Mg = {un—>/ u-qdA, VYqeB[T] i= 1..4} (6.2b)
Si,0

where T = {q € (P*7%(5;0)% | ¢-v =0} and on B, the degrees of freedom are identical
to those for hexahedral elements:

Mg := {u — /Bu .qdA, VqeB [Qk_2’k_1(B) X Q’f—lvk—Q(B)] } : (6.2¢)

The class of face degrees of freedom is then Mp = MgU Mp.

3. Volume degrees of freedom: here we must specify the degrees of freedom associated with
“gradient bubbles” VUéO)’k(Q) and “curl bubbles” ¢\ (92).

0,curl
vt = fues [ wvaar, voen @)}, (6:20)
2
urti= L [ Srwveoar, wesfh@]l o)
[ |

The volume degrees are then My, := M %rad U Mgl

We must demonstrate that the finite element (£2,U™)-*(£2), (1):*) is indeed curl-conforming
and that specifying the degrees of freedom for a u € U (1)”“((2) uniquely specifies u. This is the
content of the next theorem:

THEOREM 6.2 The element (£2,U(1-F(02), 2(1):#) is curl-conforming and unisolvent.

Proof. By an analogous argument to that given for the s =0 case in Theorem 6.1 we see that
the vanishing of the external degrees for any u € U (1)-#(£2) implies that u € L{él)’k(ﬂ) and thus
that the element is conforming. All that remains is to show that if u € L{él)’k(()) and all the
volume degrees also vanish, then u = 0. From Lemma 4.5 we can write

u=Vqg +7, q EUSO)’k(Q),v’ eulV* (02).

0,curl
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F1a. 2. A representation of the curl degrees of freedom for k = 2. The degrees solely associated with the two

rear triangular faces have been omitted. Bold arrows indicate two degrees of freedom. uéo),2 contributes one
1),k
UL

volume degree and U
,cur.

| contributes four (two pairs).

Since the gradient-bubble degrees of freedom, M %rad(u) vanish, we have
/ (W +V¢)-VqdV =0, YqeU""*(2),= / IVq' [ =0.
2 2

This allows us to conclude V¢’ = 0. Moreover, since the curl-bubble degrees of freedom Mfz‘“l(u)
also vanish, we have

0,curl

/VX(U’+Vq/)-VdeV:07 Vveu(l)’k((z)@/ IV x o/ |2dV = 0.
2 2

Since the curl map was injective on Uélc)l’llrcl (£2), we know that v' = 0. This establishes unisolvency.
O

6.3 H(div)-conforming element

By now the strategy of defining a conforming element using the space 24(5)-F is familiar: we define

exterior degrees of freedom to ensure conformancy, and use a Helmholtz-like decomposition of
the approximation space to ensure unisolvency. For the triple (£2,U(2):%(£2), 2(2):F) e define
the degrees of freedom by specifying the face and volume degrees:

1. Face degrees of freedom: we have to specify separate degrees of freedom on the triangular
and square faces. On the triangular faces S; o, = 1..4, we specify degrees of freedom Mg
in terms of the basis functions ¢ of (Pk_l(Si,_Q). On the base face B, we specify the face
degrees of freedom Mp in terms of the basis function ¢ of Q*~1+~1(B).

Mg := {u|—>/ u-vqdA, VqeB [(Pk*l(si,(z)} , 1= 1-~4} (6.3a)
S0

Mp = {ut—>/Bu~yqu, vqu[Qk—Lk—l(B)”. (6.3b)
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The set of face degrees of freedom are then Mp = MgU Mp.

2. Volume degrees of freedom: Mg = MS”I UMgiV where

Mg .= {u o / w-VxvdV, YoeB [uélgl;’jl(rz)} } (6.3¢)
B ,
div ,__ . . (2),k
MGV :=u— | V-uV-vdV, YveB|Uyi, (2)] ;. (6.3d)
. ,

Again, X2k .= MpUM,.

THEOREM 6.3 The finite element triple (£2,U(2)k(02), X(2)k) is divergence-conforming and
unisolvent.

Proof. Conformance follows by an argument similar to that for Theorems 6.1 and 6.2. For
unisolvency, if all the degrees of freedom for a given u € 2(2):%(£2) vanish, then we must show
that u = 0. Now, since the element is conforming, we know that vanishing face degrees of
freedom means u € L{éz)’k(ﬂ).

From Lemma 4.9, u € Z/IéQ)’k(Q) can be written as u =V x w; +ws with wy € Y{)F (92),

0,curl
wa € L{éigi’f(()). The vanishing of the M&"! (u) and M@ (u) degrees of freedom implies that

V xwy = 0,divws = 0. Now, the curl operator is injective on ylH* (£2) from Lemma 4.4, and

0,curl
so w1 = 0. The div operator is injective on U(giilf(ﬂ) from Lemma 4.8, and so wy = 0. This

establishes the result. O

6.4  L2-conforming element

Functions in L?(£2) do not have well-defined traces on 92, so we only need to specify volume
degrees of freedom to completely define the finite element triple (£2,U®3)F(£2), 2(3):*), The
volume degrees specify the contribution from the “divergence bubble” and the constants

Mg = {p o / pV-vdV, YueB [ué%i;f((z)} } (6.42)
_Q ’
M;i(p) = {pi—)/ pdV}. (6.4b)
2
This specifies X3)* := M U M;. Unisolvency follows immediately by using Lemma, 4.11.

7. Interpolation and exact sequence property

We have now constructed approximation subspaces U ()% for H Y($2),H(curl, 2), H(div, £2) and

L?(£2). During the process of construction, we saw that dlj(s)’k(ﬁ) C H(H_l)’k(ﬂ) for s=0,1,2.
In this section, we define interpolation operators I1(*) so that the finite elements satisfy a
commuting diagram property. This will enable us to show that in fact the approximation space
u (s)’k(ﬂ) satisfy an exact sequence property. The degrees of freedom induce an interpolation
operator on each element. We have to be careful about choosing the spaces that we are able
to interpolate; for example, the vertex degrees for the H'-conforming element require us to
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take point values, which are not defined for a general H'(2) function. Details of the regularity
required for the external degrees can be found in Monk (2003). The problem is discussed for
projection-based interpolation in Demkowicz & Buffa (2005). For our purposes it is enough to
know that it is possible to choose r > 1 such that all the degrees of freedom are well defined
on the spaces H"(£2), H"~(curl,£2), and H"~!(div,2). The sets of degrees of freedom then
induce interpolation operators in the expected way.

DEFINITION 7.1 Let k € N be given, and let u be an s—form, s =0,1,2,3 which possesses
enough regularity such that the degrees of freedom X (S)’k(u) are well-defined. We define the
local interpolation operator II(*) by requiring that I7(*) (u) € 4(5)-F(£2) and for all degrees of
freedom m e X(5):k,

m(u) = m(IT®)u). (7.1)
The interpolation operator is well-defined, since the X()** are unisolvent. It is is local
on the faces, edges and vertices of (2, and agrees with the choice for high-degree elements
presented in Monk (2003). Therefore, the construction of a global interpolant on a mesh which
includes pyramidal elements will be simple. The volume degrees of freedom are reminiscent of,
and inspired by, the projection-based interpolation framework of Demkowicz & Buffa (2005).
Providing optimal hp estimates of the interpolation error in this framework is technical, and
relies on the use of a basis-preserving extension operator. We leave this for future work.
Equipped with these interpolation operators, the finite elements satisfy a commuting dia-
gram property:

THEOREM 7.2 Let r > 0 be chosen so that the interpolation operators I7() are well-defined.
Then the diagram

H'(Q) —% HY(cwl,2) —%— H™'(div,2) —%— H™1(0)

H(O)l H(UJ H(?)J H(B)l (7.2)

UKDy —L o yWkgy L Y@k L yBlk()

commutes.

Proof. For each s =0,1,2, we have to show that dII*p = II**'dp for any s—form, p. This is
equivalent to showing that H(S'H)d(pf H(S)p) =0, which, in turn is equivalent to showing that

vm e XEHE - md(p— 1) p) =0,. (7.3)

We split the proof by considering the exterior degrees of freedom seperately. For each
s=0,1, the external degrees of freedom are identical to those stated in Monk (2003). Therefore
we can adopt components of the proofs of commutativity from Nédélec (1986); Monk (2003)
to see that the m(d(p— II(®)p) = 0 for each exterior degree of freedom, m € Xtk 5 —0,1.
There are no external degrees of freedom in X3)-F,

We still need to demonstrate (7.3) for the volume degrees of freedom in £(T1:F  The
argument follows that of Demkowicz & Buffa (2005). Let s =0. There are two classes of

volume degrees of freedom in (1)-*. The first is given in (6.2d). Let m, € Mfzurl be a degree
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of freedom associated with the test function v € Z/{(g )k (2)

curl

ma(d(p— ITOp)) = / V xV(p—IVp)-VxuvdV =0.
2

The second type of volume degree is given in (6.2¢). Let mq € M gad be the degree of freedom
associated with some ¢ € Z/{SO)’k(Q). Then

mg(d(p—1T1p) / Vip—HIVp).-VgdV =0 (7.4)

because of the definition of the interpolation operator, (7.1) and the H! volume degrees of
freedom, (6.1d). Here the important point is that the same function spaces is used in each of
these sets of degrees of freedom. The proof for s =1 follows from a similar argument, this time
using the equivalence of (6.3¢) and (6.2¢) to deal with the homogenous divergence-free part.

For s =2, the degrees, M, given in (6.4a) can be dealt with in the same fashion as (7.4).
For the final degree of freeom, M7, given in (6.4b), we note that

/V(pfﬂ(”p):/ (p—1®)p)-vdS =0
(% a8

because we have already established the commutativity of the external degrees and the test
functions used for the external degrees include constants on each face. O

THEOREM 7.3 The following sequence is exact

B UO k() v, UMK () _Ux, U () _v UBF(D) —— 0.
- ’ (7.5)

Proof. We need to show the inclusions dif(*):*(£2) c t(+1):F(2) for s =0,1,2 and the property
if u is an s+ 1 form with du = 0, then u = dv for some v € U)*(12).

By the definitions, (3.4), (3.7), (3.10) and (3.13), we see that di/(s):k(£2) C U(s+1):k () for
s =0,1,2. By Theorem 4.12 it follows that the face restrictions inherit the exact sequence
property for tetrahedral and hexahedral elements, so that di/(*)F(2) c U+Dk(2).

To show the second property, which is equivalent to demonstrating the existence of discrete
potentials, we shall use Theorem 1.2. First let s = 0, and suppose u € U(l)’k((l) satisfies
V xu=0. Then there is a continuous v € H'(£2) such that u = Vuv. Using the commuting
diagram property, u = II(Ny = IMVy = VI Oy, and thus v is derivable from a discrete
potential. The argument for s =1 and s = 2 is identical. O

8. Polynomial approximation property

We now need to show that our approximation spaces U (5)7’“((2) allow for high-degree approxi-
mation. Concretely, given any desired degree q € N, we need to demonstrate that we can choose
k so that polynomials of degree ¢ are contained in ¢/(*)-*(£2). We start with the L?-conforming
element.

LEMMA 8.1 The L?-conforming element exactly interpolates all polynomials up to degree k — 1.
That is, P*=1(2) cU®) k().
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Proof. A basis for P*~1(£2) is given by functions of the form
u= £’ (1-0)°

where a, b, c are non-negative integers and a+b+c < k — 1. Using the pullback formula, we see

that
{anb(]. + Z)k—l—(c+a+b)

(14 z)k+3 ’

which is in Q3" =u@)Hk(0). O

o"u=

LEMMA 8.2 The H(div)-conforming element exactly interpolates all polynomials up to degree
k—1. That is, P*~1 c U@ k().

Proof. A basis for P*~1 is given by functions of the form:

guphr(1—¢)* 0 0
0 | €210 ], 0 (8.1)
0 0 guanbs (1-¢)e

where the a;,b;,c; are non-negative integers and a; +b; + ¢; < k— 1. Pullback these functions
to the infinite pyramid to get:

s P (14 2)" 0

(1+z)F+2 2%2yb2 (14 2)% Byt (142)% [ 7 ) (8.2)
8 (1+8)k+2 (1+Z)k+2 14s

Here we have written ¢ = k—1— (¢; +a; +b;). The constraint a; +b; +¢; < k— 1 ensures
that if « is as in (8.1), then ¢*u € Q’;f;l’k_l X QZ;;’k’k_l X QZ;;’k_l’k. Moreover, since
divergence commutes with pullback, so V-¢*u = ¢*V-u. Now u € P*~1 = V.u e P*~2 and
so by Lemma 8.1, ¢*V -u € QZ;é’kfl’kfl. We have thus established that ¢*(u) € U(2):F(2),
where we used the characterization of the underlying space (3.7).

Now, since u is a polynomial 2-form, its normal trace onto a triangular face of {2 will be
a polynomial of the same or less degree, and hence the surface constraints in (3.12) will be
satisfied automatically. Hence ¢*u € U2 F(£..), which means that u € U2)*(12). O

The existence of polynomials in the H (curl)-conforming element may be proved in a similar
manner:

LEMMA 8.3 The H(curl)-conforming element exactly interpolates all polynomials up to degree
k—1. That is, P*~1 c M-+ ()

Proof. Take basis functions for P*~! as in (8.1). The pullbacks of these 1-forms to the infinite
pyramid are:

0

2y’ (1+2) Z?)rl 2y’ (1+2)% 21 - 8.3

TS e R e ool S A T TORE i (83)
(14 2)k+1

The constraint on the a;,b;,c; ensures that these functions are all members of Qi;}kk X

QZf;lk X QZfikil. We then use the commutativity of the curl operator with the pull-back, the
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previous lemma, and the fact that the tangential traces I i(lrgu for polynomial 1-forms u satisfy

the surface constraints of (3.9), shows that the functions in (8.3) are in fact in U()F(24,). O
For the H'-conforming element, we gain an extra degree in the polynomials (in fact, there
are some polynomials of degree k present in U(1):*(£2) and U(2)*(£2), but not all of them).

LEMMA 8.4 The H'-conforming element exactly interpolates all polynomials up to degree k.
That is, P* c Uk ()

Proof. Let p=£%1°¢C, a,b,c be non-negative integers and a +b+c < k.

.’anbzc(l + Z)kf(a+b+c)
- (1+2)" ’

¢*p (8.4)
If aJkrb #0 it is clear that ¢*p € Qﬁ’k’k_l. On the other hand, if a +b =0, we obtain i)*p €
{(1_7_72),“} Therefore, polynomial zero-forms p of the form (8.4) satisfy ¢*p € QZ’k’kﬂ @ (sziz)k =
U0k ((2), as required. Arguments similar to the previous cases demonstrate the inclusion
¢*p e UOE(0), and hence p € UO)*(12). O

9. Conclusion

We have shown that the finite element approximation spaces U} (§2) equipped with the external
degrees of freedom from Monk (2003) and projection-based interpolation for the internal degrees
of freedom are unisolvent and satisfy a commuting diagram property. All the kth order spaces
include the complete family of polynomials of degree k — 1 and the H'-conforming space includes
all the degree k polynomials too.

These finite element spaces are based on rational basis functions. It is not surprising that
arguments which rely on the polynomial or highly differentiable nature of regular finite element
spaces will fail in the current situation. In upcoming work we present a careful analysis of
quadrature errors for these approximation spaces.
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In Tables 2, 3 and 4, we present shape functions for U(S)’k(ﬂ) for each s =0,1,2. This is not a
hierarchical construction, and no attention has been paid to the conditioning of any resulting

stiffness matrices.

Representative shape functions for O-forms on a pyramid.

Infinite Pyramid

Finite Pyramid

Comments

1—2z)(1-— Qeo
w e Vertex function associated with vertex vq.
(1+z)k (1=¢)2*k
_Z ¢ k Vertex function associated with vertex vs.
(1+2)k
1—xz)(1—y)z° agant”
M 57% Edge functions associated with edge eq,
(1+2)k (1—¢)2ta=k 1<a<k-—1.
1—y)(1—xz)z® aganl®
% (150% Edge functions associated with base edge
. _
b1, 1<a<k—1.
1—2)(1—y)z2’ agang®¢”
(1—z)( ?Qx z % Face shape functions associated with tri-
(1+2) 1-0 angular face S1 o, 1 <a,b,a+b<k—1.
_ 1_ a b Qeanfl b
(=2)(d=y)z"y 577—577 Face shape functions associated with base
(1+Z)k (1_<)2+a+b7k

z(1—x)y(l— y)zac“ybzC

(1+2)k

1,0+1 1
gaJr + CC+ agan

n

(1 _ <)5+a+b+c—k

face B, 1 <a,b<k—1.

Volume shape functions, 0 < a,b,c < k—2.

Table 2. Shape functions on a pyramid. Since the approximation space L{(O)’k(ﬁoo) is invariant under the
rotation, Reo : 200 — {200, it is only necessary to demonstrate shape functions for a representative base vertex,
vertical edge, base edge and vertical face. Then, using (2.5) and the subsequent remarks, the inverse pullback
of these to the finite pyramid will also be invariant under the rotation R. Note that o := (1—{—¢) and

an:=(1-¢-n)



34 of 37

Representative shape functions for 1-forms on a pyramid.

Infinite Pyramid

Finite Pyramid

Comments

0
0

(z—1)(y—1)(1+2)°
(142)kt1

8
X
P
OOT
<@
N

1
(e

(14 z%(1+42)°
ALY 0
142)k+L

(142) 0

0

s(-a)(i-y) [

(I+2)FFT . e
Tz

A-p-apr @i [
(14z)k+1

1
(L 0

z(1—a)z%y®
0

1

0

0

1
eSS

abc

y(d—y)zz®y
(1+Z)k+1

a,b_c

z(l—z)zay’z
(1+z)k+1 0

0
z(1—2)y(1—y)z*y"2° [
(142)k+1 1

Zkfl

z
(142z)k+1 ?

| JSFY

r

=z(1—z)y(1 —y)z"y’

0
0

_ Gnag
a=gp+er

gC
1=0 1+c A=0)T+c—Fk

‘)

1

0

5
—C

|‘M©>—‘
Pt

Cang”
a= C)2+(‘+n (3

0
0
£1+aa£an<c
anag’C
0
_ana§£a+l
En b1

€ bHlplte
(I=C)3Fatbte—F

gatlpgbeltey
(1=¢)3Fatbte—F

£1+an1+bcca£anq~
(1_()3+a+b+c—k

¢kt <3, (1-0)

_T+C(£a§ +7ian)

- £1+aa£nl+b
= e

Edge functions associated
with e1, 0 <e< k—1.

Edge functions associated
with base edge b1, 0 < ¢ <
k—1.

Face functions associated
with triangular face Sp o,
0<a,c, ct+a<k—2.

Face functions for Sy o, 0 <
c,a, ct+a<k—3.

Face functions for Sq o, 0 <
a<k—2.

Face shape functions for
base face Bg, a <k—1,b; <
k—2.

Face shape functions for By,
a<k—2b<k-1.

Volume shape functions, 0 <
a<k—1,0<bec<k—2.

Volume shape functions, 0 <
b<k—1,0<a,c<k—2.

Volume shape functions, 0 <
a,b,e < k—2.

Volume shape functions,
0<a,b<k—2.

Table 3. Curl-conforming shape functions on a pyramid. Since the approximation space L{U)*k(

) is invariant

under the rotation, R : 200 — {200, it is only necessary to demonstrate shape functions for a representative

base vertex, vertical edge, base edge and vertical face.

Then, using (2.5) and the subsequent remarks, the

inverse pullback of these to the finite pyramid will also be invariant under the rotation R. There are three
distinct types of shape functions for the vertical faces, two for the base face, and four for the volume. Note that

ag:=(1-(—=&),an:=(1-C—n)



35 of 37

Representative shape functions for 2-forms on a pyramid.

Infinite Pyramid Finite Pyramid Comments
0 157 0 . Face shape functions associ-
b 2 @ .
W 2(1 —y)kmaz Ck ﬁ + (1_572]% la;tzdeltih SL_Q, a,b>0, a+
—z —1 0 x h— 1.
0 g Base face shape functi
1 0 (1- C)k_a_b_l @ bl ase face shape functions,
=22 | ., & 0<ab<k—1.
Y £
. 21 2i -
U-T-Zw 0 o )+ ¢k, % Volume shape functions,
(1+2)(tz) 0 1 0<a<k—20<b<k—-1.
t=z(l—z)zy’ f=§1+a0¢§77b(1_0 sz
IS
0 0 — 1=
B 2 k=1 2§ N Volume shape functi
T y ﬁ olume shape functions,
(I+2)(sy) 0<a<k—-1,0<b< k-2
s:y(l—y xayb §=¢ b+1(1 C) a— b 2
2yt ¢ r 10_ z) gonbee 535 Volume shape functions, 0 <
(1+ 2)k+2 0 = C““*b“ F 0 a,c<k—-20<b<k—1.
2yt ¢ (10 ) gonbee 0 Volume shape functions, 0 <
(1+Z)k+2 Yy Yy (i— C2+a+b+c 13 770“7 b7c<k_270<a<k_1
2yt ¢ 8 gonbeett B Volume shape functions, 0 <
a+ap (1) FeFore=F 1—774 a,b,e <k—2.

Table 4. Shape functions for 2-forms on a pyramid. Since the approximation space U (2)-k (2o0) is invariant under
the rotation, R : 200 — {200, it is only necessary to demonstrate shape functions for a representative base vertex,
vertical edge, base edge and vertical face. Then, using (2.5) and the subsequent remarks, the inverse pullback of
these to the finite pyramid will also be invariant under the rotation R. Note that a¢ :=(1—-{—¢§),a:=(1-(—n)
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