OPWET Feetmologies; inc. OPNET Feetmologies; inc.

Dual-Trigger Handover Algorithm for WiMAX Technology

Nabil Al-Rousan, Omar Altrad, and Ljiljana Trajkovic Simon Fraser University Vancouver, British Columbia, Canada http://www.ensc.sfu.ca/~ljilja/cnl/

Copyright © 2011 OPNET Technologies, Inc.

CONFIDENTIAL - RESTRICTED ACCESS: This information may not be disclosed, copied, or transmitted in any format without the prior written consent of OPNET Technologies, Inc. Used with permission of the Author.

OPNETWORK2011

Introduction

- Network model
- Proposed handover algorithm
- OPNET validation scenarios and simulation results
- Conclusions
- References

- IEEE 802.16e is a version of Worldwide Interoperability Microwave Access (WiMAX) technology that supports mobility
- Various handover schemes have been already proposed and developed
- We propose a new Dual-Trigger Handover (DTHO) algorithm
- DTHO depends on the computation of signal to noise ratio (SNR) received at the Mobile Station (MS) from various Base Stations (BSs)
- The proposed handover algorithm is implemented in both MS and BS nodes and improves the accuracy of handover decisions
- The handover decision is not triggered individually by the MS node or the BS node and is instead a combined decision between the two nodes
- The algorithm was implemented using OPNET Modeler v. 14 running on Windows operating system

- Handover occurs frequently because of:
 - channel traffic load
 - wireless environment that causes channel fading and shadowing

OPNETWORK

- Reported algorithms depend on various handover criteria (SNR)
- Handover algorithms divided into three categories
 - SNR
 - Relative SNR and the threshold
 - Relative SNR with threshold and a margin

SNR:

- Handover decision is initiated when the received signal strength of the serving BS is lower than the received signal strength of target BS
- Repeated and unnecessary handovers may occur even if the MS receives a signal with acceptable SNR
- Affects the performance of the system and degrades QoS of the connection
- Relative SNR and the threshold:
 - Handover decision is based on relative signal strength and the threshold
 - Prevents the repeated handovers between two BSs
 - Optimization for the threshold value is required
 - Choosing a large threshold value will reduce the handover attempts and, consequently degrade the connection quality

Relative SNR with threshold and a margin:

- Handover is initiated only when the current received signal strength from the serving BS is lower than a certain threshold and the SNR of the target BS is higher than the SNR of the serving BS
- Ping-pong effect is prevented
- The coverage area of the BSs is maximized
- The drawback of this method is the optimization overhead of both the handover threshold and the margin:
 - low threshold causes degraded connections due to late handover
 - high threshold causes premature handover
- Both affect the coverage and the system throughput

- Introduction
- Network model
- Proposed handover algorithm
- OPNET validation scenarios and simulation results
- Conclusions
- References

Network Model

- Based on the WiMAX OPNET model
- Each BS is assigned a Media Access Control address (MAC) address (BS ID) corresponding to its name: MAC i for BS_i, (i = 0, 1, 2, 3)
- MS nodes have a constant downlink traffic flow of 64 kbps to a server throughout the uplink of the target BS
- The handover messages are negotiated through the backbone links between the serving BS and the neighboring BSs
- We employ the network topology with the same object's attributes configuration for all scenarios
- BSs initially have 0.704 Msps free upload link capacity

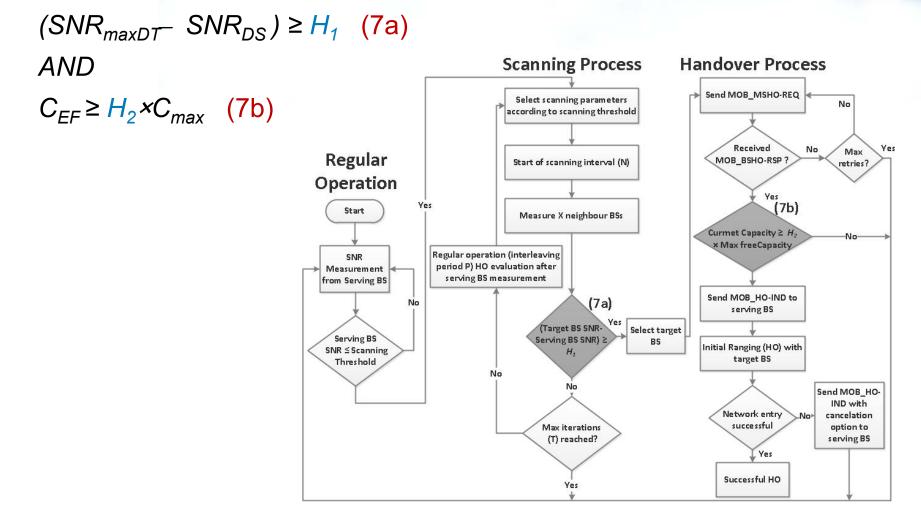
Network Model

Mobility parameters configurations

Scanning parameters configuration

Scanning threshold (dB)	35
Scan duration (N) (frames)	3
Interleaving interval (P) (frames)	255
Scan iteration (T)	5
Maximum scan request retransmissions	8

• Handover parameters configuration


Handover threshold hysteresis (dB)	6.0
MS handover retransmission timer (ms)	30
Maximum handover request retransmissions	6
Multitarget handover threshold hysterias (dB)	0.0
Maximum handover attempts per BS	3

- Introduction
- Network model
- Proposed handover algorithm
- OPNET validation scenarios and simulation results
- Conclusions
- References

Proposed Handover Algorithm

The proposed triggering condition is defined as:

NPNFTWNF

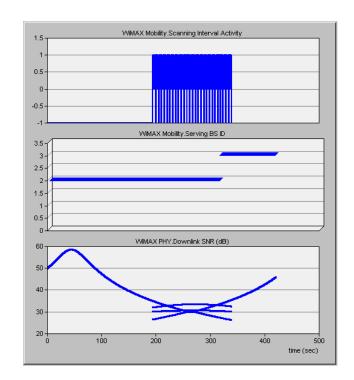
11

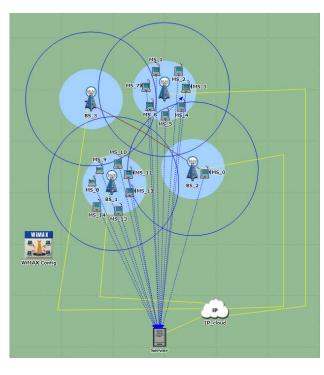
- Introduction
- Network model
- Proposed handover algorithm
- OPNET validation scenarios and simulation results
- Conclusions
- References

OPNET Validation Scenarios and Simulation Results

- WiMAX OPNET model
- MS nodes have a constant downlink traffic flow of 64 kbps to a server throughout the uplink of the target BS

NPNFTWNR

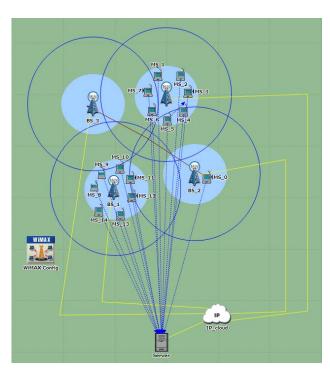

The mobility parameters for simulations:

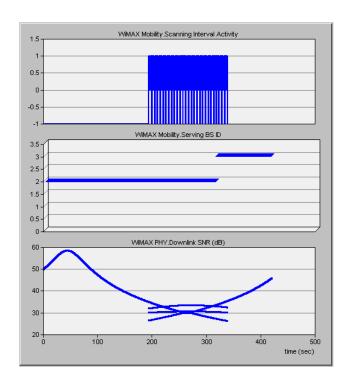

Scanning threshold (dB)	35
Scan duration (N) (frames)	3
Interleaving interval (P) (frames)	255
Scan iteration (T)	5
Maximum scan request retransmissions	8
Handover threshold hysteresis (dB)	6.0
MS handover retransmission timer (ms)	30
Maximum handover request retransmissions	6
Multitarget handover threshold hysterias (dB)	0.0
Maximum handover attempts per BS	3

Each BS initially has 0.704 Msps free upload link capacity

OPNET Validation Scenarios and Simulation Results: Scenario A

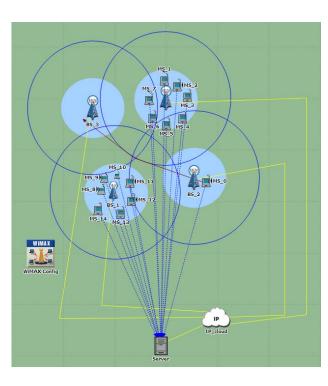
- MS_0 is moving based on a predefined trajectory between BS_2 and BS_3
- BS_0 and BS_1 are selected to have 33% free capacity (< 40%)
- MS_0 exceeds the scanning threshold (35 dB) and begins scanning at 194 s
- MS_0 does not perform handover to either BS_0 or BS_1. MS_0 performs handover to BS_3 at 317 s



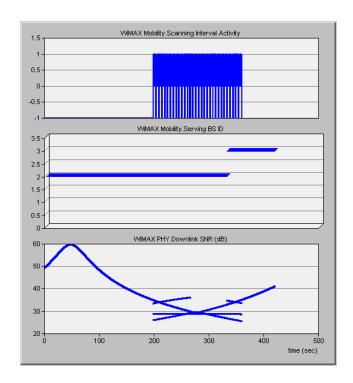

Copyright @ 2011 OPNET Technologies, Inc. CONFIDENTIAL - RESTRICTED ACCESS: This information may not be disclosed, corpied, or transmitted in any format without the prior written consent of OPNET Technologies, Inc. Used with permission of the Author

OPNET Validation Scenarios and Simulation Results: Scenario A

- Regardless of whether or not (7a) is met, (7b) is not satisfied. Hence, MS_0 does not perform handover
- MS_0 repeatedly cancels the handover requests

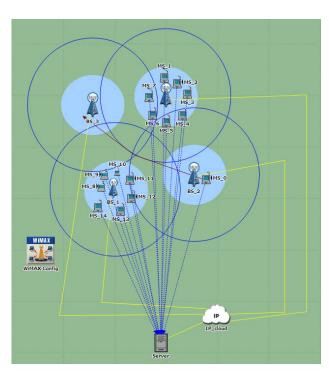


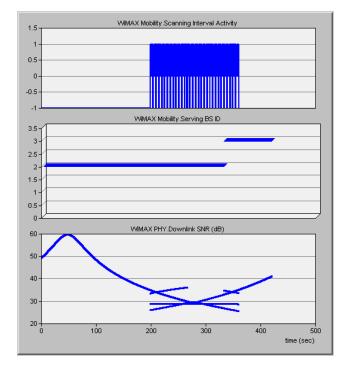
- MS_0 remains in the scanning process until it reaches the BS_3 cell boundary
- Scanning interval (top), serving BS ID (middle), and downlink SNR (bottom) for MS_0



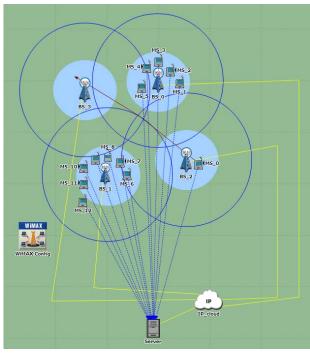
OPNET Validation Scenarios and Simulation Results: Scenario B

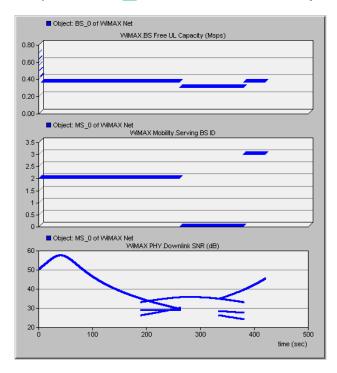
 We redefined the trajectory so that MS_0 passes close BS_1 to verify that even if (7a) is satisfied, no handover will be performed unless the free capacity for the target BS is larger than or equal 40% (7b)




- The free capacity of BS_0 and BS_1 are identical as in scenario A
- SNR_{maxDT} SNR_{DS} reaches 8.9 dB
- In this scenario SNR_{maxDT} SNR_{DS} is equal or larger than H₁ (7a)

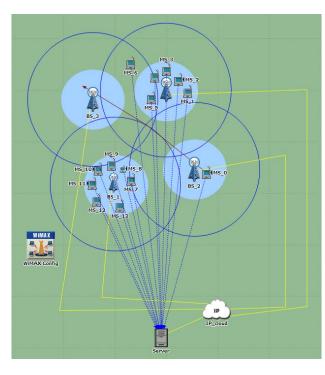
OPNET Validation Scenarios and Simulation Results: Scenario B


- MS_0 does not perform a handover until 333 s, when it performs handover to BS_3
- Scanning interval (top), serving BS ID (middle), and downlink SNR (bottom) for MS_0

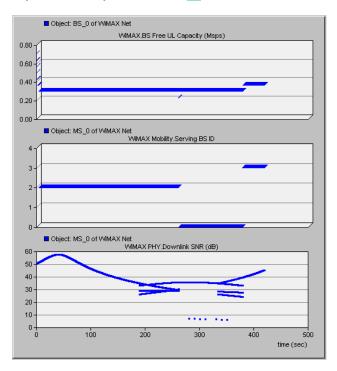


OPNET Validation Scenarios and Simulation Results: Scenario C

- We increased the free uplink capacity of BS_0 to 52% (≥ 40%) that it may offer resources to an arriving MSs
- The trajectory has been redefined so that MS_0 passes close to BS_0
- Both (7a) and (7b) are satisfied



- MS_0 performs handover at 262 s and 380 s to BS_0 and BS_3, respectively
- Upload free capacity of BS_0 changes from 0.368 Msps (0.52%) to 0.3008 Msps (0.43%) and back to 0.368 Msps (0.52%) as MS_0 arrives and departs



OPNET Validation Scenarios and Simulation Results: Scenario D

- In this scenario, we increase the free capacity of BS_0 to 42.7% (≥ 40%) by assigning MS_1, ..., MS_6 to BS_0
- BS_0 may handle only one additional MS. However, its free capacity falls below 40% (32.2%)

- The BS_0 performs the capacity handover and forces MS_6 to perform handover to BS_3
- BS_0 Free Upload Capacity (top), serving BS ID (middle), and downlink SNR (bottom) for MS_0

- Introduction
- Network model
- Proposed handover algorithm
- OPNET validation scenarios and simulation results
- Conclusions
- References

Conclusions

- We employed OPNET Modeler as a simulation tool for testing and developing WiMAX handover algorithms
- The proposed handover triggering algorithm was validated in various simulation scenarios
- We demonstrated that the proposed handover triggering algorithm for mobile WiMAX shows significant improvement in system performance
- The SNR measurements for handover triggering mechanism combined with estimation capacity reduces the probability of call loss and maximizes the overall system throughput
- We also introduced predefined heuristic values to avoid repeated handovers while trying to balance users across the cells
- The future work calls for implementation of an adaptive mechanism for optimizing thresholds of the handover hysteresis values

- Introduction
- Network model
- Proposed handover algorithm
- OPNET validation scenarios and simulation results
- Conclusions
- References

References

- IEEE standard for local and metropolitan area networks part 16: air interface for fixed broadband wireless access systems, IEEE Standard 802.16, 2004.
- IEEE standard for local and metropolitan area networks part 16: air interface for fixed and mobile broadband wireless access systems, *IEEE Standard 802.16*, 2005.
- H. Yaghoobi, "Scalalable OFDMA physical layer in IEEE 802.16 wireless MAN," Intel Technology Journal, pp. 201–212, Aug. 2004.
- L. Nuaymi, WiMAX: Technology for Broadband Wireless Access. New York, NY: Wiley, 2007.
- J. G. Andrews, A. Ghosh, and R. Muhamed, *Fundamentals of WiMAX:* Understanding Broadband Wireless Networking. Upper Saddle River, NJ: Prentice Hall, 2007.
- WiMAX Forum [Online]. Available: http://www.wimaxforum.org.
- B. Lee and S. Choi, Broadband Wireless Access and Local Networks: Mobile WiMAX and WiFi. Boston, London: Artech House, 2007.

References

- V. Erceg, L. Greenstein, S. Tjandra, S. Parkoff, A. Gupta, B. Kulic, A. Julius, and R. Bianchi, "An empirically based path loss model for wireless channels in suburban environments," *IEEE Journal on Selected Areas in Communications*, vol. 17, no. 7, pp. 1205–1211, July 1999.
- M. Gudmundson, "Correlation model for shadow fading in mobile radio systems," Electronics Letters, vol. 27, no. 23, pp. 2145–2146, Nov. 1991.
- M. R. Ashayeri and H. Taheri, "Mobile WiMAX capacity estimation in various conditions," in *Proc. 18th Iranian Conference on Electrical Engineering, ICEE 2010*, May 2010 pp. 483–488.
- C. Tarhini and T. Chahed, "On capacity of OFDMA-based IEEE802.16 WiMAX including adaptive modulation and coding (AMC) and inter-cell interference," in *Proc. 15th IEEE Workshop on Local and Metropolitan Area Networks, LANMAN 2007*, Evry, France, June 2007, pp. 139–144.
- Understanding WiMAX Model Internals and Interfaces [Online]. Available: http://coloftp.opnet.com/x/69eeff7ffd6dbeb8af5eacb13975bd08/1579/1579_pres. pdf.