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Abstract

Computational methods offer new problem solving and analysis techniques that play a

key role in advancing the boundaries of many research disciplines. Particularly for social

systems, the precision and rigor offered by mathematical models facilitate establishing a

clear understanding of the underlying complex system. Computational models also allow

for dynamic testing and computer-assisted experiments that may be impossible to carry out

in the real world.

Modeling something as complex and diverse as a social system is a highly iterative

and potentially open-ended process, which calls for software development techniques that

address its specific needs. We present an integrated methodological framework and tool

environment for design, validation, and simulation of models of complex social systems. We

illustrate consistency and applicability of the framework through novel applications in two

different interdisciplinary contexts: Computational Criminology and Identity Management

Systems (IMS).

The Computational Criminology project, called Mastermind, aims at developing compu­

tational models of criminal behavior to facilitate systematic experimental studies of a wide

range of criminal activities in urban environments. The Mastermind model, developed in

close collaboration with criminologists, focuses on spatial and temporal aspects of different

forms of crime. Pushing beyond conventional empirical research, it provides a solid basis for

engaging the use of computational thinking and social simulations in crime analysis research

and practice.

The IMS project, called Identity Management Architecture, aims at consolidating diverse

multidisciplinary views on identity management in a systematic fashion. We propose a firm

semantic foundation that facilitates a rigorous study of IMS and provides improved accuracy

in reasoning about their key properties. The proposed framework is built upon essential
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Chapter 1

Introduction

We are living in a period of intellectual revolution that is powered to a great extent by

advances in information technology. Computational methods playa key role in advancing

the boundaries of a wide range of research disciplines in science and engineering. In many

research disciplines, such as biology or chemistry, the use of computational techniques has

become well-established and valuable in advancing the boundaries of those fields. Mathe­

matical and computational models are known to facilitate developing a better understanding

of complex systems of interacting elements by providing precision and rigor in defining such

systems and enforcing a focus on their essential aspects [17]. Beyond seeing computers as

tools, computational thinking [196] has become a way of solving problems and designing

systems in a variety of disciplines in the physical and social sciences.

More specifically for the social sciences, applying computational techniques helps in

overcoming some of the core limitations of studying social phenomena. Social scientists

have always been limited by the inextricability of the subject of their research from its

environment. Thus, it is difficult to study different factors influencing a phenomenon in

isolation. Systematic study of such systems using computational models facilitates dealing

with their inherent high complexity and high dynamics. Computer models of social systems

simulate dynamic aspects of individual behavior to study characteristic properties and dom­

inant behavioral patterns of societies as a basis for reasoning about real-world phenomena.

Using computer simulations, researchers can perform experiments that are difficult, if not

impossible, in real life. Furthermore, computational models can be used as decision support

tools for policy makers and practitioners in order to explore and analyze different 'what-if'

scenarios.

1



CHAPTER 1. INTRODUCTION

1.1 Modeling Framework for Social Systems

2

Arguably, the nature of modeling a system as complex and diverse as a social system is a

highly iterative and potentially open-ended process. Just as the rapid increases in computer

power and complexity of problems led to the software crisis of the 60s and 70s [69], the lack'

of structure and rigor in computational modeling of such complex systems could become

detrimental. This calls for existing software development techniques to be adapted or new

ones to be created to address the specific needs of such interdisciplinary settings. Our ap­

proach builds on the successful application of agile formalization techniques [95] in different

stages of design and development of computer-based systems, and the importance of the

precision and rigor offered by mathematical models in establishing a clear and consistent

understanding of a complex system. Building on our experience in applying the abstract

state machine (ASM) method [30, 22] to the study of key aspects of Web services architec­

tures [186, 86], here we consider a much broader context-one outside the usual comfort

zone of computer science.

Our goal is to develop a framework that facilitates a smooth transition between different

phases of the iterative process of modeling and simulation of complex systems in interdisci­

plinary settings. Such a framework brings together three important aspects of the iterative

process of model building. First, the use of formalism and the process of formal modeling

enforces structure and logical thinking, as well as precision and rigor in critical analysis of

even the basic assumptions about the system. Second, utilizing the freedom of abstraction

in the ASM method, we aim at building simple models that focus on key characteristics of

the systems with details and complexity added in a systematic fashion through proper re­

finements. Third, the framework explicitly accounts for different steps of validation through

analytical and mathematical reasoning, and also facilitates rapid prototyping.

Building a computational model of a complex social system requires overcoming two

major obstacles: (1) capturing the complexity of the domain in a systematic fashion while

ensuring the computational model reflects the understanding of domain experts, and (2)

transforming real-life events, which are not usually thought of in a discrete, mathemat­

ical manner, into a mathematical model. To address these issues, we distinguish three

essential phases in the process of modeling behavioral aspects of complex social systems,

namely conceptual modeling, mathematical modeling, and computational modeling, with
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several critical phase transitions and validation feedback loops. Furthermore, in an inter­

disciplinary research context, we recognize the need for clear and effective collaboration

among multidisciplinary team members and the importance of developing a common con­

ceptual view in order to succeed in the underlying goal of scientific discovery.1 We propos~

a novel methodological framework that addresses these practical needs by offering a sys­

tematic development method and supporting tools for interactive design, rapid prototyping

and computer simulation.

1.2 Case Studies

The proposed framework has been developed and tested in the context of two different case

studies, namely an interdisciplinary R&D project in Computational Criminology, called

Mastermind [45, 46, 47, 48, 113], and a project on Identity Management, called Identity

Management Architecture [114, 115].

The Mastermind project, jointly managed by the Institute for Canadian Urban Research

Studies (ICURS) and the Software Technology Lab at Simon Fraser University, is a step

forward in novel research directions in Criminology that aims at applying computational

methods to overcome limitations of conventional statistical methods [42, 144]. The goal

is to develop computational models of criminal activity patterns in urban environments,

with a special focus on spatiotemporal characteristics of crime, potentially involving multi­

ple offenders and multiple targets. Mastermind builds on top of widely-used approaches to

modeling human behavior and societies, and adopts an agent-based view for modeling crim­

inal behavior. Besides training and experiments, we aim at developing intelligent decision

support systems and advanced analysis tools for systematic reasoning about possible scenar­

ios. Such tools will not only be used by criminology researchers to analyze crime patterns,

but also can be used by modern policing agencies and city planners to assist with prediction

of criminal activities and effective urban planning by taking the geography of crime into

account. Developing a robust and scalable model also enables us to apply Mastermind in

other domains such as counterterrorism (e.g., developing real-time decision support systems

for emergency response).

IThe words multidisciplinary and interdisciplinary are often used interchangeably to refer to a field of
study that crosses traditional boundaries between academic disciplines. In this thesis, we use the word mul­
tidisciplinary to emphasize the existence of different views from different disciplines that are not necessarily
integrated.
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The Identity Management Architecture (IMA) project focuses on developing a firm uni­

fying semantic foundation for a systematic study of identity management and improved

accuracy in reasoning about key properties in identity management system design. Like

many complex systems of today, identity management systems are influenced by a combina-,

tion of social and technical aspects. They playa crucial role in many application contexts,

including e-government, e-commerce, business intelligence, crime investigation, and home­

land security. The variety of approaches to and techniques for identity management, while

they address some of the challenges, have introduced new problems especially concerning

interoperability and privacy. As such, any attempt to consolidate such diverse multidis­

ciplinary views and approaches to identity management in a systematic fashion requires a

precise and rigorous unifying semantic framework. Our proposed framework is built upon es­

sential concepts of identity management and serves as a starting point for bringing together

different approaches in a coherent and consistent manner.

Furthermore, we have applied the proposed modeling approach and supporting tools in

other application domains, including computational modeling and formal analysis of public

safety and security regulations, specifically focusing on civil aviation security [111, 112].

1.3 Significance of Our Research

The work presented in this thesis aims at

• Developing an integrated methodological framework and tool environment for design,

construction, validation, development and simulation of models of complex social sys­

tems. The framework

is based on universal mathematical notions, common abstraction principles, and

integrated modeling and design methodologies of the ASM method. This appli­

cation of ASMs to social systems is original and unprecedented.

specifically addresses the issues of building and validating a model, which are of­

ten neglected in widely-used agent-based approaches to modeling social systems.

• Illustrating consistency, applicability and scalability of the proposed framework through

novel applications in two, inherently different, interdisciplinary domains:

1. Computational Criminology: The Mastermind Project
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(a) Mastermind model of criminal activity in urban environments is developed

in close collaboration with criminologists and shows the robustness of our

approach in dealing with challenges of truly interdisciplinary research.

(b) Mastermind combines the ASM method with the established view of agent,

based modeling of social systems and provides a precise semantic foundation­

something multi-agent system modeling is lacking.

(c) Mastermind delivers the following results:

The main theoretical result is the abstract behavior model of person

agents interacting with their objective and subjective environments (for­

mally defined as the geographic environment).

The main practical result is the Mastermind system architecture which

serves as a platform for the construction and experimental validation of

discrete event simulation models.

The simulations, done at different levels of abstraction, illustrate the

advantages and huge potential of applying computational modeling as a

decision support tool for researchers (e.g., to test theories) and policy

makers (e.g., to explore different scenarios and intervention strategies).

(d) Mastermind is also scalable.

- It is not only applicable to a broad range of crimes but also to other envi­

ronments such as airports, ports, shopping centers, and subway stations.

It offers a reliable platform for systematic expansion and further applica­

tion in other domains (e.g., counterterrorism, chronic disease modeling).

2. Identity Management Systems: The Identity Management Architecture (IMA)

Project

(a) The IMA project highlights the potentials of our approach in dealing with

challenges of socia-technical systems, e.g., Identity Management Systems (IMS).

(b) It provides a novel semantic framework for

- unifying a bewildering list of notions in identity management.

- analyzing and reasoning about basic concepts and key properties of IMS.

(c) It also exemplifies the practicality and value of such a formal framework: the

model is applied to study semantic aspects of identity theft, clarifying the

basic underlying definitions.
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1.4 Thesis Structure

6

The rest of this thesis is organized as follows. Chapter 2 describes the background and moti­

vation behind this work. Chapter 3 provides an overview of the literature on computational

modeling and simulation of complex social systems. Chapter 4 presents our proposed mod~

eling framework and supporting tools. Chapter 5 describes in detail the key elements of the

Mastermind project on computational modeling of criminal activity in urban environments.

Chapter 6 provides an extensive review of cutting-edge identity management literature and

presents our work on Identity Management Architecture. Chapter 7 concludes the thesis

and outlines the ongoing and future directions of the research.



Chapter 2

Background and Motivation

For years, the benefits and shortcomings of using formal techniques in the software de­

velopment process have been discussed by researchers of the Software Engineering field

[120, 34, 136, 15]. In certain areas, the use of formal methods is now well established,

including safety-critical systems [33], the requirements specification phase of software devel­

opment [74], and semantic modeling of protocols, languages, and architectures for sequential,

parallel, or distributed systems.

In recent years, the value of using lightweight formal methods in different phases of

software development has been widely recognized in the literature [75, 87, 103]. Various

lightweight formal methods, which emphasize partial formalization and focused applica­

tion [132], exist that address the pragmatic needs of software development. Well-known

lightweight formal approaches include the Alloy object modeling notation [131] (which is

based on Z [180]), B [5], and abstract state machines (ASMs) [30]. Being state-based and

machine-based, these languages share a common conceptual foundation. They are widely

used in both academia and industry for the design and analysis of hardware and software

systems [24].

Abstract state machines are known for their versatility in computational and semantic

modeling of algorithms, architectures, languages, protocols and virtually all kinds of sequen­

tial, parallel and distributed systems [30]. We build.on the success of our previous work,

on semantic modeling and validation of Web services architectures using ASMs [86, 186],

and aim at applying formal modeling techniques in a much broader application context:

complex social systems. The precision and rigor offered by mathematical models helps es­

tablish a clear and consistent understanding of a complex system by revealing potential

7
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inconsistencies, vagueness, or loose ends in the assumptions made about the system under

study. A mathematical model can be formally analyzed either manually or using automated

tools such as model checkers. Furthermore, mathematical models can be made executable

for analyzing the system through simulation.

In this chapter, we first briefly outline the successful application of ASMs in our previous

work on Web services, and then review the fundamental concepts of the ASM method. The

ASM paradigm is known for its versatility in modeling a wide array of systems, and its

flexibility in blending different specification styles. Furthermore, its simple language and

operational character facilitate communication with domain experts and rapid prototyping,

which are key in modeling modeling complex social systems. In the next chapter, we focus

on modeling social systems and review some the most-widely used modeling approaches in

the literature.

2.1 Formal Modeling Using Abstract State Machines:

A Case Study

Our previous work on formalization of the Business Process Execution Language for Web

Services (BPEL4WS, or BPEL for short) [8] is an example of formal semantic modeling of

languages and architectures for distributed systems. BPEL is an XML based specification

language for automated business processes, proposed by OASIS (WSBPEL-TC 2004) as

an industrial standard for the e-business world. We developed an abstract operational

model of the language based on the ASM [30] formalism. That is, we abstractly modeled

dynamic properties of the key language constructs through the construction of a BPEL

abstract machine. The goal of our work was to provide a precise and well defined semantic

framework for establishing the key language attributes. To this end, the BPEL abstract

machine forms a comprehensive and robust formalization closely reflecting the view of the

informal language definition. As a result of building the ASM model, we discovered a

number of deficiencies in the language definition [86]. A comprehensive list of deficiencies

is provided in [81, 186].

Beyond reasoning about the language design and checking consistency and validity of

semantic properties, our BPEL abstract machine also served as a platform for experimen­

tal validation through simulation and testing [186]. Experimental validation of high-level

design specifications facilitates design exploration and helps eliminate deficiencies prior to
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coding. BPEL is going through different phases of standardization at OASIS, and the dy­

namic nature of standardization, being an ongoing and potentially open-ended activity, calls

for flexibility and robustness of the formalization approach. To this end, we believe that the

ASM formalism and abstraction principles offer a sensible compromise between mathemati

ical elegance and practical relevance-already proven useful for practical purposes in other

standardization contexts [108].

2.2 Abstract State Machine Method

The abstract state machine (ASM) modeling paradigm [30] offers a universal mathematical

framework for computational modeling of system requirements in abstract functional and

operational terms. The ASM design and analysis method offers a unified "precise yet simple

conceptual framework" that systematically integrates major software lifecycle activities with

principal techniques for modeling and analysis of complex systems [22].

Declarative, functional and operational description styles can be blended as desired in

order to model dynamic system properties at a level of abstraction that is considered most

appropriate, i.e., providing the right degree of detail and precision. By viewing the behavior

of a system under study as the evolution of abstract states, computational behavior is

represented by the executions, or runs, of an ASM. The underlying abstraction principles

also directly support concurrent and reactive behavior as well as timing aspects.

Abstract state machines have been used for modeling various kinds of sequential, par­

allel and distributed systems [30]. Applications of ASMs have been studied extensively by

researchers in academia and industry with the intention to bridge the gap between formal

and empirical approaches [84]. Widely recognized applications include semantic founda­

tions of popular system design languages, like SDL1 [108, 79, 130], VHDL [27, 26] and

SystemC [153]; programming languages, like Prolog [18, 19], JAVA [183, 29] and C# [25];

embedded control systems [28]; wireless networks [109]; communication architectures [110];

and Web services [86]. For a comprehensive list of references to ASM applications, we refer

the reader to the ASM Research Center at www.asmcenter.org.

The ASM method is based on three fundamental concepts: (1) abstract state machines

provide the underlying rigorous mathematical foundation, (2) ASM ground models provide

IThe ASM model of SDL is part of lTD's SDL standard [130]
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precise abstract blueprints of the system formulated in domain-specific terms, and (3) the

ASM refinement method allows for linking different stages of design and development in a

coherent and consistent way [30, 22]. Abstract state machine specifications can be directly

executed using several available execution engines. This facilitates using simulations to ;val­

idate ground models against the requirements. Furthermore, within the ASM conceptual

framework, ground models are seamlessly linked to the executable code via ASM refine­

ments. Refinements provide systematic documentation of linking abstract ground models

to executable code and contain explicit descriptions of the software structure and of the

major design decisions [22]. In the following, we review these concepts in more detail.

2.3 Distributed Abstract State Machines

The asynchronous computation model of distributed abstract state machine (DASM)

defines concurrent and reactive behavior as observable in distributed computations per­

formed by autonomously operating computational agents, in terms of partially ordered runs.

A DASM M is defined over a given vocabulary V by its program PM and a non-empty

set 1M of initial states. V consists of a finite collection of symbols denoting mathematical

objects and their relation in the formal representation of N/, where we distinguish domain

symbols, function symbols and predicate symbols. Symbols that have a fixed interpretation

regardless of the state of M are called static; those that may have different interpretations in

different states of M are called dynamic. A state S of M results from a valid interpretation

of all the symbols in V and constitutes a variant of a first-order structure. Intuitively, states

can be viewed as a variant of partial many-sorted structures, one in which relations are

formally represented as Boolean-valued functions.

Concurrent control threads in an execution of PM are modeled by a dynamic set AGENT

of computational agents. This set may change dynamically over runs of M, as required,

to deal with varying computational resources. Agents of M interact with one another, and

possibly also with the operational environment of M, by reading and writing shared locations

of a global machine state. The underlying semantic model regulates such interactions so

that potential conflicts are resolved according to the definition of partially ordered runs.

PM consists of a statically defined collection of agent programs PM!, ... , PMk , k ~ 1, each

of which defines the behavior of a certain type of agent in terms of state transition rules.
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The canonical rule consists of a basic update instruction of the form
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where f is an n-ary dynamic function symbol and the ti 's (0 :s i :s n) are terms. Intuitively,,
a dynamic function can be seen as a function table where each row associates a sequence of

argument values with a function value. An update instruction specifies a pointwise function

update, i.e., an operation that replaces an existing function value by a new value to be

associated with the given function arguments. Complex rules are inductively defined by a

number of simple rule constructors allowing the composition of rules in various ways.

A computation of an individual agent of M, executing program PM)' is modeled by a

finite or infinite sequence of state transitions of the form

t>.SO(PM) t>.Sj(PM) t>.S2(PM)
So ------t J SI ------t J S2 ------t J

such that Si+l is obtained from Si, for i ~ 0, by firing D..Si(PMj ) on Si, where D..sJPMj )

denotes a finite set of updates computed by evaluating PMj over Si. Firing an update set

means that all the updates in this set are fired simultaneously in one atomic step. The

result of firing an update set is defined if and only if the set does not contain conflicting

updates (attempting to assign different values to the same location).

2.3.1 Partially Ordered Runs

A DASM M performs a computation step whenever one of its agents performs a computation

step. In general, one or more agents may participate in the same computation step of M.

A single computation step of an individual agent is called a move. In this model, moves are

atomic. Naturally, conflicting moves must be ordered so that they do not occur in the same

step of M.

A partially ordered run p of M is given by a triple (A, A, 0-) satisfying the following four

conditions (adopted from [118, Section 6.5]):

1. A is a partially ordered set of moves, where each move has only finitely many prede­

cessors. Figure 2.1 presents one such partially ordered set of moves where each mi

represents a move.

2. A is a function on A associating agents to moves such that the moves of any single

agent of M are linearly ordered. In Figure 2.1, ml, m2, m4, and m6 belong to agent

al while m3 and ms belong to agent a2.
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Figure 2.1: A partially ordered set of moves for two agents where arrows represent the
ordering

3. a assigns a state of M to each initial segment X of A, where a(X) is the result of

performing all moves in X. An initial segment of A is a substructure Y of A such

that if y E Y and x < y in A then x E Y. In Figure 2.1, dashed circles specify initial

segments of A.

4. Coherence condition: If x is a maximal element in a finite initial segment X of A and

Y = X - {x}, then A(x) is an agent in a(Y) and a(X) is obtained from a(Y) by firing

A(x) at a(Y). In Figure 3-1, m6 is the maximal element of X and Y = X - {m6}'

A partially ordered run defines a class of admissible runs of M rather than a particular

run. In general, it may require more than one (even infinitely many) partially ordered

runs to capture all admissible runs of M. From the coherence condition it follows that all

linearizations of the same finite initial segment of a run of M have the same final state.

2.3.2 Reactivity and Time

A DASM M models interactions with a given operational environment, the part of the

external world with which M interacts, through actions and events as observable at external

interfaces, formally represented by externally controlled functions. Of particular interest

are monitored functions. Such functions change their values dynamically over runs of M,

although they cannot be updated internally by agents of M. A typical example is the

abstract representation of global system time.
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In a given state S of M, the global time (as measured by some external clock) is given by

a monitored nullary function now, taking values in a linearly ordered domain TIME. Values

of now increase monotonically over runs of M. Additionally, 00 represents a distinguished

value of TIME, such that t < 00 for all t E TIME \ {oo}. Finite time intervals are given &S

elements of a linearly ordered domain DURATION.

2.4 ASM Ground Models

A ground model is a system blueprint that captures the key functional requirements of a

system in a precise and reliable form, genuinely reflecting an intuitive understanding of the

system under study. The role of a ground model is to "ground the design in reality" by

providing an understandable and checkable characterization of the system that is inspectable

by both domain experts and system designers [20].

As discussed in [30], the concept of a ground model is inevitably present in every system

design, but often not in an explicit form. The ASM ground model technique makes this

concept explicit by addressing the most important properties of ground models, namely

understandability and checkability.

Abstract state machines build on universal mathematical notions that "accurately sup­

port the way domain experts use high-level process-oriented descriptions and software prac­

titioners use pseudo-code" [20, p. 151]. Furthermore, ASM models allow calibrating the

degree of precision in order to focus on key domain concepts. As such, ASM ground models

directly address the communication problem among the stakeholders by providing under­

standable blueprints of the system [20].

Checkability implies applying reasoning and experimentation to establish completeness

and correctness of a ground model; Le., to ensure that it conveys the intentions of the

domain experts. Since ASM ground models are formulated in application-domain terms,

they can be manually inspected by domain experts. The mathematical foundation also

facilitates mathematical checking for consistency. Furthermore, the operational character of

ASMs (in terms of ASM 'runs') allows for performing experiments by simulating the ground

models [20, 22]. Simulations are used to validate ground models against the requirements

("user scenarios"). They also provide another means to communicate with domain experts.

Several tools exist that facilitate checking of ASM models, including ASM execution engines

(e.g., ASM Workbench [66], XASM [10]' AsmL [151], and CoreASM [12]), model-checkers
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(e.g., [67]), and theorem provers (e.g., [170]).

In addition, given the mathematical nature of ASMs, the ASM ground model method

provides a way to build consistent and unambiguous, simple and concise, abstract and com­

plete blueprints of a system [20].

2.5 ASM Refinement Method

Refinement is a general methodological principle which is present wherever a

complex system or problem is described piecemeal, decomposing it into constituent

parts which are detailed in steps to become manageable. [21]

The ASM refinement method provides a framework to systematically link models at

successive stages of system development cycle, supporting a coherent system view through

different levels of abstraction. The abstract blueprint of the system (ground model) can be

linked to the executable code through a chain of stepwise refinements that reflects design

decision at each stage.

Abstract state machine refinements are not necessarily syntax-directed; i.e.,e.g., the syn­

tax may change from one stage to the next. Furthermore, successive refinements provide

a systematic documentation of the design decisions and code development which facilitates

capturing changes in the requirements. Clear separation of different levels of abstractions al­

lows for localizing the "right" level of abstraction at which the changes have to be performed,

and systematically transferring the changes to the lower levels. The notion of conservative

refinement, where changes are captured in a purely incremental fashion, further simplifies

validation, verification, and reuse of system components [23].

The ASM refinement scheme is mathematically defined as follows. In order to refine

an ASM M to an ASM M*, the designer has the freedom to define the following major

constructs [21]:

• a notion of refined state,

• a notion of states of interest and the correspondence between states of in­

terest in M and M* through the refinement,

• a notion of abstract computation segments in M (Tl, ... ,Tm , where Ti is

a single M-step) and corresponding refined computation segments in M*

(el , ... , en, where ei is a single M*-step), which in given runs lead from
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corresponding states of interest to (usually the next) corresponding states

of interest (the resulting refinements are called (m, n)-refinements),

• a notion of locations of interest in M and of corresponding locations in Jvl*,

• a notion of equivalence (denoted by the symbol '=') of the data in the

locations of interest; these local data equivalences usually accumulate to a

notion of equivalence of corresponding states of interest.

Once the notions of corresponding states and their equivalence are fixed, one

can define that M* is a correct refinement of Al if and only if every (potentially

infinite) refined run (in M*) simulates an (potentially infinite) abstract run with

equivalent corresponding states (in M).
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The flexibility in defining states of interest, their correspondence, and also the notion

of data equivalence, offers the ability to change the signature (or syntax) in a refinement.

Furthermore, changes in the control are achieved using flexible definition of corresponding

computations. As such, the ASM refinement method naturally "integrates declarative and

operational techniques and classical modularization concepts" [23]. They support architec­

tural and component design, reflecting modular techniques for accurately crossing system

design levels. They provide a systematic and controllable transformation of ground models

to code together with precise documentation that can be used for inspection, reuse and

maintenance [22, 23].

2.6 Summary

The ASM paradigm is known for its wide use in both academia and industry and its ver­

satility in design and analysis of virtually any type of sequential, parallel, and distributed

computer systems. Building on this body of work, we contend that the ASM paradigm

can be further applied for modeling systems beyond the conventional context of hardware

and software systems. Several features of the ASM method, including its pseudo-code style

syntax, its precise semantics and its operational character, can be effectively utilized in

modeling complex social systems. In the next chapter, we provide a review of some the

most-widely used approaches in the literature of social systems modeling and explore the

limitations of existing approaches.



Chapter 3

Modeling of Complex Social

Systems

The main focus of this work is on computational modeling and simulation of complex social

systems using agent based methods. In the following we briefly introduce key concepts

in complex systems modeling, mainly focusing on modeling social systems. Specifically, we

study multi-agent systems as one of the most popular approaches currently used in modeling

and simulation of complex social systems.

3.1 Complex Systems Modeling

There is no precise definition of complex systems. However, there is a general agreement on

the properties of a complex system [17]: a complex system is a system comprising a number

of interacting elements whose individual actions and interactions lead to emergent global

dynamics [17, 165]. This definition applies to a wide range of systems in different scientific

disciplines from biology and ecology to physics and economics.

Mathematical models have been widely used in studying such complex systems. They

facilitate studying a system by providing a "representation of the essential aspects" [11]

and precisely identifying the relevant questions about the system [17]. A variety of mathe­

matical approaches, such as differential equations, statistical models, game theory, cellular

automata, and agent-based systems, have been used to describe complex systems [17, 165].

Regardless of the particular approach, there are fundamental principles that are crucial in

16
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modeling and simulation of complex systems.

One key issue is the complexity of models. Although systems under study are inherently

complex, it is strongly argued that models of complex systems must be kept as simple as

possible [17, 168]. This, in turn, requires finding the right level of abstraction and detail

that is required to address modeling objectives [145].

Another important issue to address is validation. Having a clear and structured vali­

dation process, in order to ensure the model accurately captures the system under study,

is essential. Specifically for complex social systems, finding the right validation approach

has proven very challenging, as it largely depends on the purpose of the model and the

level of abstraction [145, 104]. For instance, although it is desirable to compare the output

of a model with empirical data, for many social systems such comparisons are not easy to

carry out and do not lead to a clear answer. Instead, abstract models of social systems

can be used as part of the process of developing theories. As such, they are subject to

the criteria normally applied in evaluating theories. That is, models should be based on

plausible micro-level behaviors and should produce expected macro level patterns that are

interpretable by domain experts. [104]. In order to guard against alternative explanations,

the fit between the model and the theory can also be evaluated through sensitivity analysis;

i.e., evaluating the changes in the macro-level behavior when parameters of the model are

systematically changed. The goal is to ensure that any changes in the behavior can be

reasonably interpreted by domain experts [104].

The literature on modeling complex social systems has repeatedly discouraged the use of

models for prediction, and instead has emphasized the advantages of modeling in developing

a better understanding of a complex system [145, 107, 182]. The goal is not to provide a

"silver bullet" or a single final answer to a question; rather, computational models offer

new ways of analyzing a system through running different "what-if" scenarios, studying

the dependencies between different variables, and running experiments in a trial and error

fashion [145, 104]. On the other hand, the structure that is imposed by the mathematical

modeling process helps clarifying basic assumptions and problems in the understanding of

a system [145]. Gilbert [104] emphasizes the role of models in specifying a research question

and compares the modeling process to stripping away the layers of an onion, from a "general

area of investigation, through a particular topic, to a question that could be answered".

Hence, it can be argued that one of the biggest advantages of modeling complex systems is

offering a process for identifying those key building blocks of the system whose interaction
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leads to the overall complex behavior [165].

3.2 Social Simulation
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Using computer simulations to conduct virtual experiments or to analyze "what-if" scenarios

is now commonly practiced in social sciences. Social simulations and modeling of social

systems serve many advantages. They allow capturing intricate dynamics of social systems,

developing interdisciplinary perspectives on those systems, and facilitate reasoning about

them [105]. In addition, they provide a sandbox for testing different hypotheses, integrating

different theories and building new ones [72]. Social simulation models also provide ways

of dealing with complicated interdependencies among a large number of components and

bring together multidisciplinary perspectives to analyze policy problems. As such, reasoning

about the target system is facilitated by analyzing different scenarios (simulation runs)

before making irreversible policy decisions [107, 105].

The history of social simulation starts with differential equations and goes through

stochastic processes, game theory, cellular automata and, finally, distributed artificial intel­

ligence and multi-agent systems [106]. The agent based modeling paradigm, which is popular

for describing self-organizing systems and processes that lack central coordination, has be­

come the focus of latest developments in computational modeling and simulation of social

phenomena [13, 107, 152].

Why Agent-Based Modeling?

For many years, cellular automata [171] have been used for modeling social systems [107].

A cellular automaton (CA) is formed by a collection of cells on a grid. Each cell has a

finite number of states, usually represented by different colors. The state of a cell evolves in

discrete time steps according to a set of rules which define the new state based on the cell's

current state and the state of its neighbors. Cellular automata can operate on different types

of grids, e.g., a one-dimensional line or a d-dimensional lattice. Similarly, it is possible to

specify the neighborhood in different ways, e.g., a sqU(1re neighborhood or a diamond-shaped

one [171].

Agent-based models can be seen as a natural progression of CA models. Agents, like

cells, operate in an environment and there are rules governing their interactions. However,

the behavior of an agent is usually much more complex than that of a cell. Agents are
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autonomous self-controlled units that define their own behavior based on perceptions of the

environment, including other agents. Rules governing agents' behavior range from simple

conditional statements to sophisticated machine learning algorithms [89]. The bottom-up

nature of agent-based system and the fact that each single agent controls its own behavior

make agent-based modeling a powerful tool for analyzing different "what-if" scenarios in

complex social systems [78]. Agent-based modeling opens new ways of understanding a

complex system through linking the micro-level behavior of individual agents to intricate

macro-level dynamics of the system as a whole. This feature gives agent-based modeling

and simulation an edge over more traditional modeling approaches [105, 104].

The literature on agent-based modeling and social simulation is, unfortunately, over­

loaded with terminology and, in some cases, redundant concepts. In order to better char­

acterize different areas of research that closely relate to our work, we use the classification

provided by Davidsson in [63]. Research on computational aspects of agent-based modeling

is broadly classified under the umbrella of Multi-Agent Systems (MAS). The application of

this paradigm in building simulation models of different sorts is studied under the sub-field

of Multi-Agent Based Simulation (MABS). The specific application of MABS for simulating

social systems is identified as Agent-Based Social Simulation (ABSS). We use this classifi­

cation to organize the review of key concepts in agent-based modeling of social systems.

3.3 Multi-Agent Systems (MAS)

A Multi-Agent System (MAS) [184, 198, 89] is a collection of autonomous agents that

interact with each other, and also with other objects that exist in a given environment.

In [89], Ferber identifies the followings basic elements of a MAS: an environment, a set of

passive objects situated in the environment, a set of active agents which can manipulate

the objects through operations, an assembly of relations among agents and objects, and the

laws of the universe. Normally, there is no global control in a MAS; data is decentralized

and computation is asynchronous. Moreover, a single agent has a limited viewpoint; i.e., it

does not have complete information or capabilities to solve the problem on its own [184].

Multi-agent systems have gained widespread popularity as a modeling paradigm for dis­

tributed systems, open dynamic environments, and systems that can naturally be regarded

as a society of interacting agents [105]. However, despite being widely used in different
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application contexts, there is still a bewildering list of notions that are not consistently de­

fined within the paradigm. For instance, there is no universally accepted definition of agents

[97]. Likewise, the distinction between the notions of agency (an agent) and autonomy (an

autonomous/intelligent agent) is not clearly defined [146].

In the following, we review some of the key aspects of multi-agent systems.

3.3.1 Agency and Autonomy

The literature on agent based systems offers a variety of definitions for the notion of agent.

Russel and Norvig even argue against a clear-cut definition of an agent and point out

that "the notion of agent is meant to be a tool for analyzing systems, not an absolute

characterization that divides the world into agents and non-agents" [167]. Here, we outline

some of the well-known definitions of the field. Later, we also discuss the need for formal

approaches to agent-based modeling.

• Wooldridge [197] defines an agent as "a computer system that is situated in some

environment, and that is capable of autonomous action in this environment in order

to meet its design objectives". This definition of agent reads as a hardware or (more

usually) software-based computer system with the following properties:

autonomy: agents operate without the direct intervention of humans or others,

and have some kind of control over their actions and internal state.

social ability: agents interact with other agents (and possibly humans) via some

kind of agent-communication language.

reactivity: agents perceive their environment, which may be the physical world,

a user via a graphical user interface, or a collection of other agents, and respond

in a timely fashion to changes that occur in it.

pro-activeness: agents do not simply act in response to their environment; they

are able to exhibit goal-directed behavior by taking the initiative.

• Ferber [89] describes an agent as a "physical or virtual entity which is capable of acting

in an environment, which can communicate, which is driven by a set of tendencies,

which possesses resources of its own, which is capable of perceiving its environment,

which has only a partial representation of this environment, which possesses skill, ... ".
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• Franklin and Graesser [97] describe the essence of agency and offer the following, in

an attempt to provide a more formal definition: "An autonomous agent is a system

situated within a part of an environment that senses environment, and acts on it, over

time, in pursuit of its own agenda and so as to affect what it senses in the future." I

Based on the key aspects addressed in the definitions outlined above, agents can be

classified in various categories. For instance, according to the type of the environment

they operate in [197] (e.g., static vs. dynamic, or discrete vs. continuous), according to the

individual agent reasoning mechanism (e.g., cognitive, reactive, or hybrid) [1S4, S9, 19S], or

according to their architecture (e.g., layered, reactive, belief-desire-intention, etc.) [19S]. In

the next sections we explore some of these aspects in more detail.

3.3.2 Architecture

An agent architecture dictates how the functional complexity of the agent is organized. In

[197], four well-known types of agent architecture are described, namely (1) Logic based,

(2) Belief-Desire-Intention (BDI) , (3) Reactive, and (4) Layered.

Logic based architectures follow the traditional approach to building artificial intelli­

gent systems, known as symbolic AI [124]. It suggests that intelligent behavior can be

generated in a system by providing a symbolic representation of the environment, iden­

tifying the desired behavior, and syntactically manipulating the symbolic representation.

Symbolic representations are logical formulae, and the syntactic manipulation corresponds

to logical deduction, or theorem proving; the agents can thus be seen as theorem provers.

This approach offers the great advantage of having a simple, elegant logical semantics for

the system. However, logic-based approaches also have some disadvantages. In particular,

the inherent computational complexity of theorem proving leads to efficiency problems espe­

cially in time-constrained environments. Moreover, there are still many unresolved problems

regarding representation of complex, dynamic, physical environments and reasoning about

them [197].

The BDI architecture has its roots in the philosophical understanding of human practical

reasoning developed by Bratman [49]. Practical reasoning is defined in terms of deciding

what goals we want to achieve (deliberation), and how we are going to achieve those goals

(means-ends reasoning). Therefore, the basic components of a BDI architecture are data
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structures representing beliefs, desires, and intentions of an agent; beliefs about the environ­

ment give rise to desires which in turn give rise to intentions, and these intentions playa

central role in determining the actions by way of deliberation and reasoning. The strength

of this architecture is in being intuitive, and in providing a clear functional decomposition,

which indicates what sorts of subsystems might be required to build an agent [102]. The

main difficulty, however, is properly linking the design with an efficient implementation

[197]. Due to its very nature, the BDI architecture is most widely used in modeling human

decision-making behavior [102].

Reactive architectures are specifically designed for agents who only react to their en­

vironment and do not reason about it. Although there are several advantages to reactive

approaches, including simplicity, traceability, and robustness, the inherent problem with

purely reactive architectures is that they are local in nature and have only a short term

view; i.e., no learning or adaptation takes place. Hence, we consider them not an appropri­

ate choice for modeling the behavior of individuals.

Layered architectures address the need for capturing both reactive and proactive behav­

iors of an agent by decomposing the systems into separate subsystems, each dealing with

one type of behavior. This idea leads naturally to a class of architectures in which the

various subsystems are arranged into a hierarchy of interacting layers. Typically, there are

at least two layers to deal with: reactive and proactive behaviors. However, in principle,

there is no reason why there should not be many more layers (for instance for capturing

social behavior). Layered architectures have gained wide-spread popularity mainly because

layering represents a natural decomposition of functionality [184]' but such a clear-cut dis­

tinction of behavior is not always easy to identify. Therefore, the main problem with layered

architectures is the lack of conceptual and semantic clarity in defining each layer. Another

issue is that layering creates an overhead due to the complexity of interactions between

layers [197].

3.3.3 Society of Agents

A multi-agent system, in essence, forms a society of .interacting agents. In such a setting,

some fundamental concepts such as the organization of agents, their interaction, means

of communication, coordination, and planning are introduced and discussed in the MAS

literature.
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Agent Interaction
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Interactions between agents occurs "when two or more agents are brought into a dynamic

relationship through a set of reciprocal actions. Interaction is the consequence of the plural

aspect of multi-agent societies, bringing in a dimension which goes beyond the individ'­

ual" [89].

Ferber [89] introduces three types of interactions: indifference, cooperation and antag­

onism. This classification is made based on agents' goals, their resources, and their set of

skills. For instance, cooperation offers a number of advantages such as accomplishing tasks

impossible that cannot be realized by a single agent given its resources and skills.

Organization

In a multi-agent system organization defines how the agents interact with each other. In

other words, it dictates the type of the agent society; e.g., predefined vs. emergent, or static

vs. dynamic.

Sycara [184] defines organization as "a framework for agent interactions through the

definition of roles, behavior expectations and authority relations". Dynamic organization

of agents and the issue of adaptivity (so that the organization can adapt to changes) are

identified as two crucial problems. Henceforth, depending on the goal of a MAS and the

type of interactions needed between agents, different organizational structures can be used.

Examples of such structures include a hierarchical model of authority, or, alternatively, a

market model where the agents compete for resources and task [184].

Communication

Communication is the means by which agents interact with each other. The basic com­

ponents of communication are sender-receiver links, mediums of communication, and the

intention to communicate. Communication can be point-to-point or broadcast [89].

Wooldridge [198] provides a survey of different agent-based communication languages

that have been developed. Examples include the Knowledge Interchange Format (KIF)

[101] language which is based on first-order logic and is used to express message content,

and KQML [198] and FIPA [90] languages which are both message-based and are used to

define a common format for messages sent among agents.



CHAPTER 3, MODELING OF COMPLEX SOCIAL SYSTEMS

Task Allocation and Collaboration
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Task allocation refers to the process of breaking a complex task into sub-tasks (i.e., task

breaking) and allocating those tasks to different agents (i.e., task allocation) to be performed

concurrently or sequentially and to complete the original task more effectively and efficiently:

Task allocation is a topic of active research for which various sophisticated protocols exist in

the MAS literature. However, this use of multi-agent systems for improving the performance

and efficiency of a system is out of the scope of this work and is not further explored here.

Coordination

In order to have cooperation between agents, certain supplementary tasks are required.

These tasks aim to satisfy the common goals rather than individual ones [89, 198]. This

concept is known as coordination in the MAS literature and is closely related to some other

MAS concepts such as planning, conflict resolution, arbitration, and negotiation [184]' which

are all topics of active research in MAS.

3.4 Formal Approaches to Agent-Based Systems

Although the field of agent-based modeling encompasses decades of research and experience,

its success is often hindered due to the lack of a formal platform. d'Inverno et. al [70] contend

that there is a dire need for formalism in agent-based systems:

There is a lot of formal theory in the area but it is often not obvious what such

theories should represent and what role the theory is intended to play. Theories

of agents are often abstract and obtuse and not related to concrete computational

models.

While a common terminology exists, the agreement seems, at best, syntactic and the

semantics differs considerably from one model to another [73]. The theoretical aspects

are often not directly and easily translated to practical concepts, which impedes their ap­

plicability. Consequently, a mature methodology that guides the process of specification,

verification and implementation cannot be achieved [126].

In [188], Wagner explains the need for formalism in very simple terms:
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We should not attempt to define what is an agent in general. This is not neces­

sary [. .. j, as there is no definition of what is a number in mathematics, but only

definitions of specific kinds of numbers [. .. j, such as natural or rational num­

bers. [. .. j While we can certainly not find a generic definition of the agent, we

should look what are the important cases of agent types to be captured by precise

mathematical definitions. Such a conceptualization can only be successful if it is

based on a sufficiently rich collection of practical experience.
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While some work has been done on formal approaches to multi-agent systems, e.g., [92,

146, 126], there is still a need for a robust formal framework that deals with methodological

aspects and software engineering techniques. This can be achieved either by construct­

ing new techniques for reasoning about and specifying multi-agent systems or by properly

adopting existing formalism.

Such fundamental issues regarding formalism in multi-agent systems were discussed in

[70] by a panel consisting of prominent researchers of the field. They categorized the ex­

isting formal approaches to multi-agent systems into three groups. Here, we use the same

classification and provide brief overviews of some of the more popular approaches under

each group.

• Adopting well-known formal specification languages from traditional software engineer­

ing: An example is the formal agent framework proposed by Luck and Inverno [146],

which uses the Z specification language [180] to precisely define common concepts in

agency and autonomy. They describe a three-tiered hierarchy composed of objects,

agents, and autonomous agents. Objects are entities with attributes and behavior.

Agents are viewed as objects with explicit goals, and autonomous agents are agents

with motivations that, in turn, give rise to goals. In [71], the original model is extended

by addressing methodological issues of agent systems specification, agent development

and agent deployment. The concepts of inter-agent relationships, social behavior and

agent plans aff'l also formalized. A criticism of their work relates to the limitations of

Z for modeling interactions between agents [91], To address this problem, the authors

propose using other formalisms such as Communicating Sequential Processes (CSP)

[127] in combination with Z. Additionally, in a critique of this work, Wagner [188]

raises questions about the practical relevance of the proposed approach based on Z.
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Wagner argues that the use of Z introduces many limitations in defining several as­

pects of an agent's behavior, including goals, the state of the external environment,

and perception mechanism. Furthermore, high-level functionalities regarding infor­

mation and knowledge processing are neglected, due to the limitations imposed by

Z.

Hilaire et al. [126] also present a formal approach to MAS based on a composition of

Object-Z [178] and statecharts [122] formalisms. One of the main goals of this work is

to offer a formalization that fits in with prototyping and simulation oriented processes,

bridging the gap between theory and practice. Object-Z is used to specify the transfor­

mational aspects of the system and statecharts is used to specify the reactive aspects.

Despite being practice-oriented, the approach faces some implementation limitations

including executability of Object-Z specifications .

• Using executable (temporal) logics, where specifications can be directly executed: Exe­

cutability is an important feature of these approaches; however, it usually introduces

limitations on the expressive power of the underlying logic. The framework proposed

by Wooldridge and Fisher [92] fits into this category. They outline a formal approach

for specification, verification, and rapid prototyping of multi-agent systems. Agent

specifications are developed in a temporal logic and are made executable by using

the Concurrent METAEM platform. One critique of these approaches relates to the

difficulty of understanding temporal logic specifications for non-experts, which makes

validation of the models more challenging.

• Using modal logic for defining relationships between various mental states (e.g., belief,

desire, intention): These approaches mainly aim at defining complex mental state

of the agents without much concern for their respective computational models. Some

work has been done in this direction by combining existing logics dealing with different

aspects of agency.! However, one of the most challenging problems of combining logics

is determining the expressive power of the combination. Also, depending on the com­

bination technique that is used the resulting logic may have different properties. For

instance, it may maintain only the common properties of both logics (called fusion),

or may be a completely symmetric combination of both logics (called full-fibring) [70].

IFor a more detailed description and a complete list of references, we refer to [70].



CHAPTER 3. MODELING OF COMPLEX SOCIAL SYSTEMS

3.5 Multi-Agent Based Simulation (MABS)

27

Multi-Agent Based Simulation (MABS) uses the MAS paradigm and builds on top of some

of the existing simulation paradigms, such as parallel and distributed discrete event simu­

lation, object oriented simulation, and dynamic micro simulation [63], to model a pletho~a

of systems- those ranging from simple entities to groups of complex entities, from sim­

ple to complex interactions, from static to open dynamic environments. The flexibility of

the paradigm in dealing with different notions of individuals, different types of behavior

(e.g., reactive and cognitive), and different levels of abstraction (e.g., group or individual)

facilitates its use in a variety of scientific domains, including biology, physics, ecology, and

economics [73].

Nonetheless, there is a lack of well-established frameworks, methodologies or software

engineering techniques for MABS. This is partly due to the lack of a well-defined semantic

model of agents, as discussed in 3.4. Most existing agent-based simulation models use weak

notions of agents and define agents only at a conceptual level rather than a concrete level.

While the concept of agent is used in designing simulation models, there usually is a semantic

disconnect between the agent as it is designed, and the one which is eventually implemented

(and used in simulation experiments). As a result, the success of MABS is hindered [73]:

The semantics associated [with the core multi-agent concepts) differ considerably

from one model to another, or from one implementation to another [. .. ) This

fuzziness, at the computational level, about what an agent really is can be found

in all the other levels required for the design of a simulation.

This lack of a coherent view to agents leads to inconsistencies between design and im­

plementation and intensifies the notorious validation problem. As [73] argues,

there is absolutely no guarantee that what is being designed and implemented

corresponds to what has been desired and modeled by the thematicians [domain

experts) [. .. ) Computational agents as they are defined in MAS are simply not

used in today '13 MABS.

Furthermore, in the major methodological frameworks of MABS (e.g., [106, 93]), the

task of transforming the initial domain model into a computational model is assumed to

be a natural one. There is not much attention paid to building the model, although such a

transformation is not trivial [73].
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To address this problem, [73] presents a design process for MABS as a role-playing

game and identifies three main roles; thematicians: domain experts, modelers: software

engineering people, and computer scientists: programmers.2 The role of the thematicians is

to provide relevant information about the target system by converting their knowledge of thy

system into a domain model which contains real agents3 and their respective behaviors taken

from observations, theories and assumptions. The modeler translates the domain model into

a more formal design model. At this level, the real agents are refined into conceptual agents

defined based on the principles of multi-agent systems (e.g., behavioral model, interaction,

environment, etc.). This step is considered the most difficult one, since the design model

has to remove ambiguities and inconsistencies in the domain model, clearly specifying the

conceptual agents. In the last step, the computer scientist translates the design model into

an operational model on top of which a computational system is built. The operational

model defines computational agents that are implementations of conceptual agents.

The proposed design process also includes participatory design of simulations through

role-playing games performed by the experts and non-experts. However, the approach does

not address the lack of a clear operational semantics for modeling multi-agent systems,

which still remains as an impediment in transforming conceptual agents to computational

ones.

In [175], the authors identify similar problems by citing "the number of commercial

agent-based applications is not large, for the lack of mature, off the shelf, methodologies

for agent based application development. One would like the advantages of an organized

development process such as re-usability, testing and maintenance to be applied to agent­

based systems as well."

Introducing formal methods in the realm of agent-oriented analysis and design can serve

as a solution to many of the problems that MABS is facing.

3.6 Agent-Based Social Simulation (ABSS)

In the recent years, agent-based models have gained wide-spread popularity for modeling

social phenomena [104]. As described in 3.2, the history of social simulations has evolved

2 Although the terminology used in this work does not match the widely-accepted terminology in computer
science, the presented model points out fundamental problems in designing MABS models.

3Real agents represent agents that can be observed and analyzed in the target system [73].
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into agent-based simulation models, and there are known advantages in using agent-based

modeling, especially, to capture non-linear dynamics of social systems [106].

In [107], Gilbert and Troitzsch point out that although social simulations can be used

both for exploration and prediction, the potential of simulation models to assist in discovery

and formalization is the main reason behind social scientists' increasing interest in simula­

tion. In this context, the algorithmic nature of agent-based models offers more flexibility in

specifying complex social systems, in comparison with other modeling techniques such as

system dynamics [94], or microsimulation [121].

Similarly, given the high complexity of social systems, Srbljinovic and Skunca [182]

point out that the primary purpose of agent-based modeling in social sciences should not be

prediction, as it is nearly impossible to attain a satisfactory level of accuracy. Thus, they

advocate the use of explanatory models rather than predictive ones, which would "provide

us with means of performing simulation-enhanced thought experiments aimed at improving

our intuition and understanding about the modeled phenomenon". As such, simulation

models are found useful in developing new theories and formalizing existing ones.

Along the same lines, Drogoul and Ferber [72] point out the advantages of using ABSS

in: (1) testing hypotheses about emergence of social structures from individual behavior

(by experimenting at the micro level and deriving patterns at macro-level), (2) building

theories that contribute to sociological development, and (3) integrating different theories

from different disciplines into a general framework.

Seror [173] highlights the advantages of using mathematical models as basis for simula­

tions. Mathematical models provide rigorous specifications that are accessible to scientific

criticism and replicable by other researchers. They also facilitate the development of rigor­

Oll."l frameworks based on specifications, and allow for formal or informal reasoning about

the model that provides insight into the behavior of the target system. de Marchi [64] also

discusses the virtues of having a unified framework for combining formal models, statistics,

and computation in the study of social sciences.

3.7 Summary

Several approaches from mathematical modeling, statistics, and simulation, spanning stochas­

tic processes, game theory, cellular automata and multi-agent systems have been used for

modeling complex social systems [105]. In particular, the agent-based modeling paradigm
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has become the focus of latest developments in computational modeling and simulation of

social phenomena [13, 152]. Multi-Agent Based Simulation (MABS) uses the MAS paradigm

and builds on top of some of the existing simulation paradigms, such as parallel and dis­

tributed discrete event simulation, object oriented simulation, and dynamic micro simula:­

tion [63], to model a plethora of systems. The paradigm has been used in a variety of sci­

entific domains, including biology, physics, ecology, and economics [73]. For social systems,

MABS models are used for testing hypotheses about social behavior, integrating different

theories from different disciplines, and developing new theories [72]. The specific applica­

tion of MABS for modeling and simulation of social systems is characterized as Agent-Based

Social Simulation (ABSS) [63].

Nonetheless, the lack of well-established frameworks, methodologies and software engi­

neering techniques for agent-based simulation has hindered its success [73]. This is partly

due to the lack of a well-defined semantic model of agents [70] that leads to inconsistencies

between design and implementation. It also makes validation more difficult since the con­

nection between what is desired by domain experts and what is being implemented is very

hard to establish [73].

Furthermore, in the major methodological frameworks of MABS and ABSS, including

[93] and [106], the task of transforming the initial domain model into a computational model

is assumed to be a natural one. There is not much attention paid to building the model,

although such a transformation is not trivial. This issue is addressed in some existing

frameworks, such as [73], by proposing a participatory design of simulations through role­

playing games performed by the experts and non-experts. However, the problem of the lack

of a clear operational semantics for modeling MAS is not addressed and still remains as an

impediment in transforming conceptual agents to computational ones.

In the next chapter, we propose a methodological framework and supporting tool envi­

ronment for computational modeling of complex social systems, specifically focusing on the

shortcomings of existing agent-based approaches.



Chapter 4

Vision and Methodology

Computational modeling of social systems, due to their inherent complexity and diverse

multidisciplinary aspects, is an iterative and potentially open-ended process that involves

frequent changes and adjustments. Lack of rigorous and structured approaches for modeling

could lead to a complex web of problems similar to the ones in early days of Software Engi­

neering. The variety of software development processes and methodologies available today

have been developed over the last few decades in response to the software crisis that orig­

inated in the 60s and 70s. Existing methodologies aim at providing systematic approaches

to deal with the complexity of software development, including poor specifications, size,

validation, and maintenance. Despite this variety, the focus of available methods is on the

end result; i.e., the software product., which can not be directly applied in modeling and

simulation of social systems.

In developing a methodology for computational modeling and simulation of social sys­

tems, it is important to note that such models serve two main purposes: (1) they offer

sandboxes and decision support tools for scientists, policy makers, and practitioners to ex­

plore different ideas or what-if scenarios in order to develop a better understanding of a

system, and explore the potential implications of different intervention strategies; (2) the

process of building a computational model enforces logical thinking which leads to critical

analysis of even the basic assumptions about a system. Such mathematical rigor opens new

ways of thinking about a system, and leads to identifying and resolving hidden assumptions,

ambiguities, loose-ends, and possible errors in the understanding of a system.

Any proposed methodological framework for computational modeling and simulation of

31
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complex social systems must support well-known best practices in complex systems model­

ing; models should be as simple as possible, the validation approach and its purpose must

be clearly defined, and the modeling process must be well-structured and assumptions must

be well-documented in order to uncover potential problems and support decision making

(see 3.1). It is argued that the biggest advantage of modeling social systems is in developing

a deeper understanding of the system under study, testing different hypotheses, evaluating

the interplay of different variables involved, and eventually providing a better framework

for thinking about alternative solutions. This requires a close collaboration between domain

experts, modelers and users of the models such as practitioners and policy makers.

Therefore, like any software development project, the communication problem presents

a major challenge [95, 15]. In interdisciplinary research, this is intensified because of the

inherent differences of disciplines involved. In order to effectively communicate, a shared

conceptual understanding of the system under study must be developed. Therefore, it is

important to find the right level of abstraction for communicating the essence of computa­

tional models in order to allow for critical inspection, validation and modification by domain

experts. Furthermore, contrary to most software projects where the focus is on producing

a final product, computational modeling projects are more concerned with testing theories

and generating new ideas. These characteristics shift the focus of the development cycle to

the design or prototyping phase instead of implementation [164].

We build on the successful application of agile formal methods [95] in software develop­

ment, and develop a framework that is specifically tailored for the above-mentioned require­

ments. Agile methods are well suited to our purpose, particularly because of their emphasis

on individuals and their interactions, and the idea of iterative development [95].

4.1 Framework Architecture

In the process of collaborative modeling of behavioral aspects of complex social systems,

we distinguish three essential phases, namely conceptual modeling, mathematical modeling,

and computational modeling, with several critical phase transitions and feedback loops as

illustrated in Figure 4.1. Starting from a conceptual model that reflects the characteristic

properties of the phenomena under study in a direct and intuitive way, as perceived by

application domain experts, a discrete mathematical model is derived in several steps. The

first phase transition focuses on model construction, gradually formalizing core properties



CHAPTER 4. VISION AND METHODOLOGY 33

Fnnnalizatinn Refinement>

Conceptual
Modeling

Mathematical
Modeling

Computational
Modeling

<: Volidatinn

Figure 4.1: Different phases in modeling complex social systems

of the system under study in abstract mathematical and/or computational terms. Different

mathematical modeling techniques may be used in this phase to capture key elements of

the system. 1 The resulting model is then transformed into an initial computational model

that is executable in principle; that is, any aspects that have been left abstract provisionally

should be filled in as the result of subsequent refinement steps. Ideally, any such refinement

would be restricted to just adding details as required for running experiments, both to

help establishing the validity of the formal representation of the conceptual model and for

further experimental studies. In reality, however, modeling is a highly iterative and non­

linear process with feedback loops within and also across the various phases, potentially

affecting the design of the model in its entirety.

The role of the mathematical model is to assist in formalizing the conceptual view of

the target domain, so as to provide an exact description of the characteristic properties

as a reliable basis for deriving a computational model. Marking the transition from an

informal (or semi-formal) to a formal description, the mathematical model serves three

main purposes:

1. it provides a precise and rigorous blueprint of the system under study and formalizes

key system attributes, allowing systematical analysis and reasoning about those at­

tributes. In turn, such formal analysis serves as feedback to the initial transformation

step, which is typically the most challenging orie;

2. the process of mathematical modeling enforces logical and structured thinking about

IThis includes well-established mathematical modeling techniquE'S e.g., queuing theory, cellular automata,
game theory, graph theory, etc.
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Figure 4.2: Model construction: The phase transition from the conceptual model to the
mathematical model

the key aspects of the system. Specifically, for social systems, it unveils hidden as­

sumptions, loose-ends, and gaps in the conventional understanding of such systems;

3. it serves as 'semantic middleware' for bridging the gap between the conceptual and the

computational view. It provides a platform to ensure that key attributes are properly

established and well understood prior to actually building the computer model.

Building the mathematical model involves several iterations in order to transform the

informal descriptions of the concept into precise, rigorous and clearly defined ones, as shown

in Figure 4.2. The process involves finding the right level of abstraction to represent the

conceptual elements in simple yet meaningful terms, and clarifying the scope and boundaries

of the model, which lead to a better understanding of the system itself. Depending on the

choice and representation of the mathematical model, its transformation to a computational

model can be less problematic, whereas the validation of the outcome of the computational

phase usually poses another difficult problem.

While many modeling techniques used in computational modeling of complex social sys­

tems have a firm mathematical foundation (e.g., graph theory), some of the most widely

used techniques, such as multi-agent systems (MAS), lack formal semantics and the re­

quired precision and rigor (see 3.5). This leads to a lack of coherence and consistency in

mapping the abstract intuitive understanding of the conceptual model to its computational

representation.

The approach we propose here emphasizes a smooth and seamless transition between the

three phases of modeling and accommodates the highly iterative process of modeling and
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validation. We build on common abstraction principles of applied computational logic and

discrete mathematics and use the abstract state machine (ASM) method as the underlying

mathematical paradigm [30, 22]. Abstract state machines are known for their versatility;

ASMs capture the principal models of computation and specification in the literature, in,

cluding classical models of computation such as automata. In particular, distributed ASMs

provide a natural fit for capturing key concepts of agent-based modeling in a formal frame­

work.

The popularity of the agent-based paradigm in modeling complex social system is mainly

due to its ability to deal with individual agents and its flexibility in defining those agents.

However, such flexibility has also led to a bewildering range of definitions and architectures

for agent based systems, where there is often no clear connection between conceptual agents

and their computational counterparts. Our approach aims at bridging this gap by adopting

concept-oriented agents (defined using common agent-based methods) and mapping them

to more computation-oriented agents (defined in ASMs). We take advantage of the power

of ASMs in dealing with semantic aspects at desired levels of abstraction to handle the

complexity of different aspects of agency and autonomy in a structured way. It is important

to emphasize that we do not offer ASMs as the solution to all complex issues in the MAS field

(e.g., cognition). Instead we propose the ASM method as a systematic approach to identify

and separate concerns through proper abstractions, to gain clarity and precision, and finally

to sharpen the blur between conceptual and computational views with mathematical rigor.

Furthermore, the role of ASMs in our methodology goes beyond the linkage with MAS

modeling. Many complex systems of today are influenced by a combination of social and

technical aspects, for which no established modeling methodology exist. Our proposed

framework and the precise, yet simple semantic ground provided by ASMs plays a key role

in identifying and analyzing essential properties of such systems and addressing the open

problems. Chapter 6 provides a comprehensive description of one such case study on identity

management architecture.

4.2 Formal Modeling Technique

A central question in computing science is how to precisely define the notion of algorithm.

Traditionally, Turing machines have been used in the study of the theory of computation as

a formal model of algorithms [177]. For semantic purposes, however, this model is utterly
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inappropriate due to its fixed level of abstraction.

The origin of abstract state machines was the idea to devise a generalized machine model

so that any algorithm, regardless of its level of abstraction, can be modeled at its natural

level of abstraction. That is, every computation step of the algorithm essentially has 't

direct counterpart (usually a single step) performed by the machine model. Theoretical

foundations show that both the notion of sequential algorithm and of parallel algorithm

are captured respectively by the models of sequential ASM [119] and parallel ASM [16] in

the aforementioned sense. For distributed algorithms (including concurrent and reactive

systems), the distributed ASM framework provides a generalization of the two other models

that is characterized by its asynchronous computation model with multiple computational

agents operating concurrently.2

An ASM ground model (see 2.2) serves as a precise and unambiguous foundation for

establishing the characteristic dynamic properties of a system under study in abstract func­

tional and operational terms with a suitable degree of detail that does not compromise

conceivable refinements [23]. A ground model can be inspected by analytical means (ver­

ification) and empirical techniques (simulation) using machine assistance as appropriate.

Focusing on semantic rather than on syntactic aspects, the very nature of ASM ground

models facilitates the task of critically checking the consistency, completeness and validity

of the resulting behavioral description.

Abstract executable specifications offer many advantages in model-based systems engi­

neering and serve as a a tool for design exploration and experimental validation through

simulation and testing [83]. Pertinent to our purpose, they greatly facilitate validating a

ground model by executing different scenarios and comparing the resulting behavior with

the behavior expected by the domain experts. In many cases, observation of system behavior

can lead to the discovery of new concepts or elements in the underlying system that may

have been previously neglected.

Abstract state machine models can be executed using any of the existing advanced

executable ASM languages, including (oreASM [83], Asmeta [100], AsmL [151], the ASM

Workbench [66], XASM [9], and AsmGofer [172]. However, among all available tools, only

(oreASM comes with a run-time system supporting the execution of distributed ASM mod­

els, which are essential in our work. Furthermore, the design of (oreASM is novel and the

2 As such, it closely matches the basic concepts of MABS (see 5.3.1).
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Figure 4.3: A sample (oreASM program in Eclipse: (oreASM offers minimal encoding and
maintains executability of abstract models

underlying design principles are unprecedented among other existing languages; it is de­

signed for systematic language extensions using an advanced plugin architecture. (oreASM

is also the only language that builds on untyped language concepts which is key to the

underlying theoretical model of ASMs. Besides facilitating experimental validation of ASM

models, (oreASM also provides support for model checking [147]. Through model checking

the correctness of a system with respect to all of its possible behaviors can be formally

verified [85].

In the following we review key features of the (oreASM tool environment which are es­

sential in our framework for computational modeling of complex social system. Specifically,

the Control State Diagram editor (CSDe) tool has been developed during the course of the

Mastermind project (further discussed in Chapter 5) to address the needs of interdisciplinary

research projects on computational modeling and simulation of social systems.
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4.2.1 Rapid Prototyping with CoreASM
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CoreASM is a novel executable ASM language3 which is well suited to exploring a prob­

lem space in early stages of designing a system through rapid prototyping of ASM system

models. By minimizing the need for encoding in mapping the problem space to a formi11

model, the language allows writing highly abstract and concise specifications, starting with

mathematically-oriented, abstract and untyped models, gradually refining them down to

more concrete versions with a degree of detail and precision as needed.

CoreASM maintains executability of even fairly abstract and incomplete models, which

is a great asset in improving communication with domain experts in order to reach a com­

mon 'computational' view of the system. The principle of minimality, in combination with

robustness of the underlying mathematical framework, improves modifiability of the design

while effectively supporting the highly iterative nature of specification and design [83].

CoreASM also offers a high level of flexibility in design through a well defined plugin archi­

tecture [82]. Specifically, it supports writing simple plugins that address the specific needs of

a domain, such as visualizing the results of an experiment or even defining domain-specific

languages. In other words, plugins allow for encapsulating the mathematical artifacts of

a computational model into a comprehensible and familiar format for the domain experts.

This greatly facilitates communication with domain experts and analysis of the results for

validation purposes. The use of this feature in our case study is explained in more detail in

Chapter 5. Figures 4.3 and 4.4 provide snapshots of a sample CoreASM code and a CoreASM

visualization plugin.

4.2.2 Interactive Design with Control State ASMs

One of the fundamental principles of our approach is the direct involvement of non-computing

experts in the design and development process. Arbitrary design choices made by computing

experts not intimately familiar with the social system under study are potentially dangerous

and can lead to fatal design flaws due to misconceptions or oversights. However, it is usually

difficult for non-computing team members to understand the development process and es­

pecially the formal representation of a system. Hence, it is necessary to make development

as transparent as possible, for instance, by using visual representation means, such as ASM

control state diagrams (CSD) , also called Control State ASMs.

3See www.coreasm.org for how to obtain the tool environment and documentation.
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Figure 4.4: Mastermind visualization plugin complements model execution with familiar
visualizations for domain experts
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Control State ASMs are a very practical class of abstract state machines. They can be

represented as a directed graph, where nodes consist of control states4 interspersed optionally

with conditions and/or rules. Conditions direct the flow of execution; rules denote actions

taken as part of state transitions [85]. As such, they are viewed as "a normal form fo~

UML activity diagrams [96] and allow the designer to define machines which below the

main control structure of finite state machines provide synchronous parallelism and the

possibility to manipulate data structures" [30, p. 44]. The expressive flexibility of this type

of ASM is demonstrated by their capacity for representing many classical automata such as

various extensions of finite state machines [30]. Control state ASMs, by definition, can be

depicted graphically, and offer a sound foundation for visual modeling.

Despite similarity to the more complicated UML activity diagrams, ASM CSDs do not

require any special training to understand. Their simplicity allows the interdisciplinary

reader to focus on the content of the description rather than the formalism. The accessibility

and ease of use of CSDs make them an integral part of our framework and modeling process.

In our experience, domain experts are able to understand a CSD, and even suggest changes to

it, regardless of their technical background. As such, CSDs act as both a means of clarifying

communication between development partners and of enabling conceptual validation.

The Control State Diagram editor (CSDe) is a software tool for creating and modifying

Control State ASMs. The tool was developed during the course of the Mastermind project

(see Chapter 5) to facilitate the involvement of non-computing domain experts in the mod­

eling and design process. The editor allows not only the construction and editing of CSDs

through a graphical interface, but also automatic translation of the diagrams into (oreASM

code. Since a CSD may not include the initial system state or other information required

to run as program, it is possible that the (oreASM file generated is not directly executable.

However, the resulting code acts as a foundation for further development of the structure

under consideration. This automated translation from a diagram into code improves the

ease oftransition from high-level design towards subsequent stages of development [85]. Fig­

ure 4.5 shows a control state ASM created using CSDe within the context of the Mastermind

project.

4Control states are similar to internal states of Finite State Machines and are used to describe different
system modes [30].
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We propose a methodological framework and supporting tool environment for computational

modeling and software development of complex social system in interdisciplinary research

contexts. We utilize the ASM formalism and (oreASM tool suite to facilitate interactive d~­

sign and validation of such models. One fundamental characteristic of our framework is the

focus on the model building phase of the development, emphasizing the importance of the

cooperative process of transforming an abstract concept into a computational artifact. The

ASM method also facilitates rigorous and seamless transitions between different phases of

modeling ensuring the coherence and consistency of the final models. The proposed frame­

work has been developed and tested in close collaboration with non-computing researchers,

as will be seen in Chapter ?? It has been successfully applied in different application con­

texts, including the Mastermind project and the Identity Management Architecture project,

as further discussed in the next two chapters.



Chapter 5

Mastermind: Modeling Crime

Patterns

Mastermind is an interdisciplinary R&D project in Computational Criminology, jointly man­

aged by the Institute for Canadian Urban Research Studies (ICURS) and the Software

Technology Lab (STL) at Simon Fraser University (SFU). The project aims at developing

computational models of criminal activity patterns in urban environments, with a special

focus on spatiotemporal characteristics of crime, potentially involving multiple offenders

and multiple targets.

5.1 Background

Here, we outline the basics of Computational Criminology and explore the existing ap­

proaches to modeling crime. We also study the existing literature on some of the key

elements required for building models of criminal activity, such as navigation, learning, and

the environment.

5.1.1 Computational Criminology

Crimes are complex multi-faceted events. They are comprised of at least four necessary

dimensions: the law, the offender, the target and the place [36]. For several decades,

criminologists have contended that there is definite patterning in the temporal and spatial

characteristics of physical crime [32]. In particular, Environmental Criminology focuses on

42
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studying crime in the context of people's movements in the course of everyday routines.

Three major theories of the field, namely, Crime Pattern theory [39], Routine Activity the­

ory [88], and Rational Choice theory [61] contend that crime locations are not random,

but rather are determined through a combination of habitual movement and activity pat{­

terns, each of which is at least partly determined by the perceptions of the physical and

social environment. Offenders choose good opportunities over bad risks through rational

decisions made based on cues from the environment. Within this setting, one can identify

the importance of several elements in analysis of criminal events, including offenders' move­

ment, routine activity patterns, perception of the underlying environment, and different

environmental cues influencing offenders' decision making.

Research in crime analysis strongly supports this theoretical theme for a broad range of

crimes [32, 199, 166], but the methods used are mostly statistical and empirical in nature

and rely entirely on direct extrapolations from past data. Furthermore, the conventional

research methods in Criminology, like in other social sciences, face the problem of lack of

control in running experiments. Novel research directions [40, 117, 144], thus, suggest a

fundamentally different approach. Due to the intricate and highly dynamic nature of the

underlying sociological systems, empirical deduction is not sufficient any more; mathematical

and computational models are needed for reasoning about most likely scenarios [42].

Computational Criminology aims at pushing the existing limits in study of crime through

interdisciplinary work with mathematics and computing science. Computational models al­

low for running experiments in simplified artificial situations where abstraction is used con­

veniently and systematically to analyze the influence of different elements under study. This

facilitates dealing with the highly complex and dynamic nature of most social phenomena.

Computer models can serve as a practical instrument for studying crime patterns and for

reasoning about likely scenarios, facilitating the understanding of and experimenting with

crime patterns.

Related modeling and simulation work in criminology [128, 40] confirm the value of

pursuing computational methods to predict patterns in crime. Given the predictive nature

of most crime analyses, especially those working from what is broadly construed the En­

vironmental Criminology perspective, the blending of criminology, computing science and

mathematics is a natural fit [51, 57, 117]. The application of computing science and model­

ing techniques in different branches of criminology have gained momentum in recent years.

This includes developing simulation models of criminal justice systems [7]' hotspot analysis
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[137, 143, 200], offender profiling [14], and database and information systems management

[31, 80, 125].

Environmental Criminology

Criminology has a rich history of interest in the spatial distribution of crime and criminal

events. The sub-field of Environmental Criminology stems, in part, from this early ecological

tradition [36]. Key concepts include the routine nature of many of our daily activities [88]

and the structured way in which we become aware of, and interact with, our environment

[37, 38]. These concepts are used in the analysis of violent and property offenses ranging

from serial homicides to robbery and burglary [166, 199, 194]. Environmental criminologists

contend that criminal events can be understood in the context of people's movements in

the course of their everyday lives; i.e., offenders commit offenses near places where they

spend most of their time, and victims are victimized near places where they spend most of

their time. This line of theory and supporting research argues that the location of crimes

is determined through a decision process shaped by perceptions of environment based on

which good criminal opportunities are separated from bad risks.This implies there are a

set of patterns/rules that govern the workings of a social system. One that is composed of

criminals, victims and targets, interacting with each other. The movement of each individual

in a given urban environment is influenced by the environment's underlying land use, street

networks and transportation patterns, as well as high activity nodes like shopping centers

and entertainment districts.

During the course of their everyday lives, most people are tied to at least three main

classes of activity nodes: home, work and recreation [88]. They travel between these nodes

using familiar pathways; the more often an area is visited, the more knowledge they will

gain regarding the immediate surrounds for both the nodes and the pathways connecting

them [39]. A person's general knowledge of the environment forms his/her awareness space.

Within this known environment, a person develops a more specialized understanding of the

places he/she frequently visits, which forms the activity space [36]. The activity space is the

playground for criminals to commit crime; i.e., motivated offenders observe opportunities,

or targets, within their activity space and potentially act upon them [39].

The following example further explains these ideas. If a person starts his or her day at

home, and then travels to work (or school), for example, he or she will typically take the

most direct and most easily navigated route. Along the way, this person will take notice of a
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range of phenomena in his/her activity space. Even if the person does not immediately react

to a specific phenomenon (e.g., stopping to purchase a coffee, or steal from a car), he/she

will often remember such sites and visit them at a later time. Environmental criminologists

view the learning and decision-making process for crimes to be much the same as those fqr

non-criminal activities. However, different people have different levels of criminal propensity

(i.e., the inclination to take advantage of observed criminal opportunities). People who are

more criminally predisposed will respond to observed crime opportunities more frequently

than people with lower crime potentials.

The process of choosing a target involves target templating [38]; i.e., potential criminal

opportunities are compared to the offender's crime template in order to assess the value of

potential rewards against the risks or the amount of energy required for successful execution

of the act [58, 61, 163]. As an example, we consider a typical crime such as burglary,

otherwise known as break and enter ("B & E"). For the offender to be aware of a potential

target, the site is usually located within his/her activity space. For instance, a burglar

may notice a residential building while traveling from home to work everyday and identify

it as a good target that fits his/her crime template. Criminology research [162, 163, 77]

suggests that several variables such as property value, obvious entry opportunities and lack

of occupants form cues [76] based on which a decision to commit crime is made by an

offender.

5.1.2 Related Work

In examining the theoretical foundation of the Mastermind project, we should mention the

research done at the Virginia Institute for Justice Information Systems (VIJIS). This group

at the University of Virginia applies statistical methods to the analysis of both physical

and cyber crime. In an outline of a design for a multi-agent simulation system [117] they

consider central aspects of criminological analysis, including spatial mobility, rational choice

and routine activities theories and unveil important issues to consider when building such

a system and the elements that it requires. Three hypotheses of criminal activity are ex­

amined in detail: spatiality, rational choice and routine behavior. Their justification for the

value of a multi-agent system (MAS) is worthy of consideration. We have also found many

of the points raised to be important in the development of Mastermind. In [200], criminal

incidents are viewed and analyzed as spatial choice processes. Xue and Brown [200] pro­

pose two models for criminal site selection, which they obtain by modifying a traditional
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discrete choice model. In a comparison based on real crime data both spatial choice models

outperform the hot spot model they are compared to in their predictions of future spatial

choices for crimes.

In terms of experimental focus, the Mathematical and Simulation Modeling of Criml1

project, called UC MASC [35], being undertaken at the University of California shares

several important characteristics with Mastermind. The value of agent-based modeling in

understanding offender behavior is highlighted in their work, and statistical and mathe­

matical methods are employed to determine the movement of agents within the simulation

environment. They also mention the use of geographic information systems for the com­

parison to real-world results and verifying the accuracy of the model. Their work is more

focused on large-scale patterns: they base their methods on the mechanics of swarm behav­

ior, while the Mastermind project looks more carefully at the decisions and planning made

at the individual level. However, it is important to heed the warning of the UC MASC

project: the results of a simulation are only as good as the veracity of the elements used to

build it [43].

Another project with related subject matter is the SimDrug project [155], which looks

at the trade and use of heroin in Melbourne, Australia, during the drug "drought" of 2000.

It differs from Mastermind because it is more concerned with inter-agent activity, and also

because it takes place in a hypothetical environment. An interesting contrast is emphasis on

the value of complexity. By including many sources of real-world data, the SimDrug project

hopes to give the generated results a better grounding in reality. On the other hand, the

systematic use of abstraction in Mastermind encourages simplicity in modeling. However,

it is also important to recognize the point that SimDrug presents: computing is an ideal

tool for the analysis of data-rich simulations.

5.1.3 Navigation

The problem of navigation, also called path finding or way finding, is a complicated one.

In simple terms, it can be viewed as moving an entity from source S to destination D

by identifying the different paths that can be taken, evaluating those paths under given

circumstances, and finally choosing the most suitable path. One such suitable path from

a source to a destination is the shortest path, or the path with the minimum cost. In the

following, we review some of the existing algorithms for navigation.
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Shortest Path Problem

47

The problem of finding the shortest path in static graphs/networks is well-studied after

decades of research and experimentation. The shortest path problem is also one of the most

fundamental issues in network optimization and robot path planning.

In [60], the shortest-path problem is formalized as follows.

• A weighted, directed graph G = (V, E) is given, where V = {VI, ... ,vn } is the set of

vertices, E ~ V x V is the set of edges on the graph.

• A weight function W : E ----+ R maps every edge in the graph to a real-valued weight.

• The weight of a path p =< Vo, VI, ... , Vk >, Vi E V is defined as the sum of the weights

of its constituent edges;
k

w(p) = L W(Vi-I' Vi)

i=I

• A path p between vertex u and vertex V is denoted by u ~ v, where u, V E V.

• The weight of the shortest path from u to v, where u, V E V, is defined by:

( )
{

min{w(p) : u ~ v} if there is a path from u to v.
8 u V =
'00 otherwise.

(5.1)

(5.2)

• The shortest path from vertex u to vertex V is defined as any path p such that weight

w(p) = 8(u,v).

The most famous shortest path algorithm is the one proposed by Dijkstra in 1959, known

as the Dijkstra's shortest path algorithm [68]. This greedy algorithm guarantees to find the

optimal shortest path in a given graph with non-negative edges in time O(n2 ). A brief

description of the algorithm is provided in Appendix A. There are several implementations

of this basic algorithm that use heap and queue data structures to achieve time and space

efficiency and improve the performance to O(n log(n)). Most other shortest path algorithms

are variations of this generic algorithm. A good description of the classical shortest path

algorithms and their implementation appears in [99].

Instead of exploring all possible paths, the A* search algorithm uses heuristics to first

search more promising paths. This avoids exploring unfruitful directions and leads to a faster
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search. The A* algorithm is most widely used in gaming and Artificial Intelligence (AI).

The construction of the heuristic function involves some overhead and should be weighed

against its benefits. Furthermore, this algorithm is not guaranteed to find the optimal path,

although optimality can be achieved under certain imposed conditions (on the heuristiq

function).

Several surveys and experimental evaluations have been carried out to compare the per­

formance of different shortest path algorithms, classical and new. In [56], an exhaustive

study is performed on 17 shortest path algorithms including the Dijkstra's algorithm and

its different implementations. A number of simulated networks with varying degrees of com­

plexity are used in the experiments. The results show that there is not one best algorithm

for all problems; however, for graphs with non-negative weights, Dijkstra's algorithm out­

performs the rest. Zhan and Noon [154] have performed a similar study on road networks

which shows that Dijkstra-based algorithms outperform other algorithms. Primarily based

on the above studies, Zhan [202] identifies three fastest algorithms for real road networks,

two of which are Dijkstra-based algorithms.

5.1.4 Learning and Memory

In modeling the behavior of a person, or a potential offender, one important factor is to

build a model of a specific behavior that is as close as possible to reality. For instance,

a navigation algorithm that always provides the most efficient path is not ideal in our

application context; alternatively, an ideal solution would provide the most natural or the

most intuitive solution. Thus, the complexity lies in defining what is most natural, and

validating if a solution is natural.

One behavioral element that needs to be considered in this respect is learning. As

discussed in Section 5.1.1, a person's past experience has a substantial impact on his/her

behavioral patterns. This topic is extensively studied in the field of case-based reasoning,

which aims at incorporating learning into problem solving. In this section, we briefly review

this topic and explore its application in our project.

Case-Based Reasoning

The case-based reasoning (CBR) paradigm relies on remembering previous situations, called

cases, and applying this knowledge from past experiences to new problems [6]. It has
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been studied both from the Cognitive Science perspective, to model human reasoning and

learning, and the Artificial Intelligence perspective, to develop relevant computer reasoning

technologies. The CBR paradigm assumes a certain regularity about the world that allows

for adapting previous solutions to solve routine or novel problems [140]. Thus, learning

plays a central role in CBR. A case-based reasoner learns from its previous successes as well

as failures by incorporating those into its reasoning. As a result, it become more competent

and more efficient over time, as it encounters and solves more cases [140, 139].

A case-based reasoner can be either interpretive or problem solving. Interpretive reason­

ers use prior cases for classifying or characterizing new problems, while problem solvers use

previous cases to suggest solutions to a given problem based on past experiences [139].

All CBR approaches share a common four-step reasoning process: (1) retrieve a case,

from the library of past cases, that matches the current problem, (2) reuse the retrieved case

to solve the current problem, (3) revise and adapt the solution if necessary, and (4) retain

the final solution as a new case in the case library [4]. Each of these tasks is broken down

into sub-tasks and a variety of approaches has been proposed to implement each sub-task.

Case-based reasoning has a wide array of applications in different fields including medicine,

law, automation and robotics. Commercial applications of CBR include diagnosis systems

for retrieving past cases with similar symptoms, help desk systems used in the customer

service area, and decision support systems. For a comprehensive review of applications of

CBR, we refer to [193].

With respect to our problem domain, adopting case-based reasoning in Mastermind

could offer an effective way to incorporate learning in our model. Rather than re-solving

problems from scratch every time, we can develop a more natural and intuitive model of a

person's behavior by learning from past experiences and using them in solving new problems.

Hybrid Systems

In CBR, past experiences, in the form of cases, are utilized in order to solve a problem by

remembering instead of solving it from scratch using rules [6]. Rule-based approaches, on

the other hand, explicitly solve the problem from scratch using generalized rules [149].

Rules and cases have complementary strengths. Due to their interchangeable nature,

rules and cases can be easily integrated in order to produce an effective reasoning framework,

overcoming the disadvantages of each reasoning method [158]. In [116], an example of such

a hybrid system is provided where a case-based reasoner is used to improve the accuracy
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and efficiency of a rule-based reasoner (RBR) in a direction that the system could not have

achieved with the rules alone.

The architecture of a hybrid system may be rule dominant, case dominant, or balanced,

depending on which component has the primary role in the decision making process [1581:

Numerous successful examples of such hybrid systems applied in different domains can be

found in the litearature (e.g., [158, 116, 148]).

5.2 Project Overview

The goal of the Mastermind project is to capture the complexity and diversity of criminal

behavior in a robust and systematic way. A variety of software development methods were

applied and constantly reviewed with respect to their usability, expressiveness and effective­

ness, the result of which has led to the development of the modeling framework presented

in Chapter 4.

Our focus is on the concepts of Environmental Criminology, which argue that in spite of

their complexity, criminal events can be understood in the context of people's movements

in the course of everyday routines [36, 88]. Therefore, we place possible offenders in an

environment that they can navigate. Through movement within this environment, they

develop mental maps that correspond to the concepts of awareness space (the places a person

knows) and activity space (the places a person regularly visits) [36, 41]. In the course of their

daily routine activities, agents move from one location to another, and may visit potential

targets along the way [88]. In its core, Mastermind captures what is suggested by Crime

Pattern theory; i.e., crime occurs when a motivated individual encounters a suitable target

[41].

The main building block of Mastermind is a robust abstract state machine (ASM) ground

model (see 2.4) developed through several iterations. To this end, we applied simple graph­

ical notation for communicating the design, using CSDe (see 4.2), and utilized abstract exe­

cutable models in early stages of design, using (oreASM (see 4.2). Furthermore, the ground

model is refined into more concrete models with specific details systematically added, an

example of which is the simulation model of Mastermind implemented in Java. This version

provides a responsive user interface and a simulation environment based on real-world Ge­

ographical Information System (GIS) data. We also refined the (oreASM executable ground
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Figure 5.1: Mastermind system architecture

model to create more controlled experiments: which allow for a structured analysis of the­

ories in a hypothetical world. Both Java version and (oreASM version provide visualization

features which are a priority for criminology publications.

Figure 5.1 shows the core architectural components of the Mastermind system. We define

a single interface, called the adjustment interface, for dealing with the inputs to the model,

including different representation of the environment, various simulation parameters, and

characteristics of offenders captured in their profile. The system allows the environment to

be either hypothetical and defined manually, or to be imported from standard Geographic

Information System (GIS) databases. At this stage, offenders' profiles are set up manu­

ally, but the architecture allows for direct connections to offender databases in order to

automatically import information about known offenders (available in crime information

warehouses) into the simulation. This feature conceptually opens up different ways of using

the system by bringing together offenders' information and their dynamic spatiotemporal

behavior patterns in a single framework

Figure 5.2 shows snapshots of both implementatio~sof Mastermind, illustrating agents'

movement between activity nodes, the formation of their activity spaces and the effects

on crime hotspots. The (oreASM model is meant to study concepts at a higher level of

abstraction using a simple grid structure. In contrast, the Java version runs on the real

road network of downtown Vancouver, including Stanley Park, and captures a finer degree



CHAPTER 5. MASTERMIND: MODELING CRIME PATTERNS 52

Figure 5.2: Java & CoreASM implementations of Mastermind. The Java version (front) aims
at using computational power to simulate the dynamic interaction of a variety of factors,
including a street network based on real world data. The CoreASM version (back) is more
abstract, focusing exclusively on specific elements.

of detail and complexity.

The results of our work on the Mastermind project have been well-received both by the

researchers in academia and law enforcement officials. Building on this success, the project

is now continuing in several different directions as discussed in Section 5.5.

5.3 Mastermind Formal Model

As discussed in 4.1, the agent-based modeling paradigm plays a vital role in our modeling

framework, bringing together predominant views in the world of social systems with the

formal ASM view. The formal model we present here is based on a MAS view of a social

system. Accordingly, one needs to make a distinction between various entities that consti­

tute the underlying social urban environment. For instance, it is important to distinguish

criminals, police officers and regular people, who are independent alive entities, from traffic

lights and buses, which are lifeless entities with behavior, and Automated Teller Machines

(ATMs), buildings and streets, which are entities with specific properties but no behavior.
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Social System MAS Model ASM Model

Offender, Victim Autonomous Agent DASM Agent

Car, ATM Active Object Object

(Attributes, Behavior) (Static/dynamic functions)

Cash, Drugs Passive Object Object

(Attributes) (Static functions)

Table 5.1: Entity classification and taxonomy through different layers

5.3.1 Entity Classification: Linking Agent-Based Systems to ASM
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We propose a generic classification of entities into three different categories1 : passive objects,

active objects and autonomous agents. The core of this classification is based on the essentials

of the Belief-Desire-Intention (BD!) agent architecture [50, 197] and the framework for

agency and autonomy [146] (see 3.3).

A passive object is an entity that only comprises a set of attributes reflecting its charac­

teristic features. For instance, an ATM machine is a passive object that has attributes such

as location and bank name. An active object is an entity with attributes and an associated

behavior defined as observable changes in the state of the object. However, this behavior

is induced by the environment and not controlled by the object itself. A traffic light is an

active object that has a set of attributes (such as location) and a predefined but changing

behavior (such as being red, yellow, or green). An autonomous agent is an entity that, in

addition to attributes and behavior, has rules, motivations, and a memory. The behavior

of an autonomous agent is generated by a set of rules triggered by the agent itself to change

its internal state or the state of its environment. Consequently, an autonomous agent is

responsible for generating all of its behaviors. Motivations are incentives or goals that di­

rect the behavior, and memory is nothing but a collection of facts representing the agent's

knowledge of the environment.2 Hence, a criminal offender is an autonomous agent with

attributes (e.g., a personal profile), behavior (e.g., commuting), motivations (e.g., greed),

and a memory (e.g., knowledge about targets).

1Despite being generic, this categorization is not intended to be universal; it is only meant to capture the
dynamics of our target system.

2This is analogous to a BDI architecture, whereby memory represents the beliefs, motivations represent
the desires, and the rules represent the deliberative and means-end reasoning phase of the BDI agents.
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We map each MAS entity onto a mathematical object in the ASM model as follows.

We distinguish different types of MAS entities by defining different domains in the ASM

model. A passive object is modeled as an element of the passive domain for which only

static functions are defined representing the static attributes. Active objects are modeled,

as elements of the active domain for which both static and dynamic functions are defined.

Finally, autonomous agents are modeled as DASM agents (see 2.3) where the program of

each agent characterizes the rules governing its behavior, and its memory and motivations

are abstractly represented by functions. Table 5.1 illustrates the entity mapping through

the three different layers.

5.3.2 Agent Architecture

The central component of our model is an autonomously acting entity, called a person agent,

which represents an individual living in an urban environment and commuting between

activity nodes, such as home, work, and recreation locations. Here we mainly focus on the

criminal behavior of a potential offender, but, in general, person agents navigate within the

environment and may assume different roles such as offender, victim, or guardian (e.g., police

officers), depending on which they exhibit different behaviors.

The agent architecture presented here provides a robust yet flexible design to capture

different aspects of an individual's behavior. Intuitively, it is based on a Belief-Desire­

Intention (BDI) model providing a structural decomposition of the behavior into different

logical components as illustrated in Figure 5.3. Each component captures certain aspects of

the overall behavior following the classical Divide and Conquer approach.3 The proposed

architecture has gone through several iterations and has been tested in various senarios.

It has proven to be scalable and robust, as well as flexible for future extensions and for

accommodating other application contexts (see 5.5) for a detailed discussion).

An agent's personal attributes and preferences are represented by the profile. The profile

is a repository of all the factors that are specific to an individual agent and have an impact on

the behavior under study. These factors include agents' skills, activity nodes, or demographic

factors such as age and sex.

3In our Divide and Conquer approach to model criminal behaviour of intelligent agents we emphasize
a clear separation of concerns. We effectively break a complex computational problem into a number of
individual sub-problems that can be addressed separately. Each sub-problem is defined as a module focusing
on a specific aspect of the behavior, such as navigation or target selection. The solutions to the sub-problems
are then combined to provide a solution to the original problem.
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Figure 5.3: The architecture of a person agent

To model the urban environment, we follow extant theories of environment in behavioral

sciences and divide the environment into two broad categories: the objective and the subjec­

tive environment [138]. The objective environment is external to an agent and encompasses

the totality of all things jointly forming the physical reality. The subjective environment, on

the other hand, refers to perceptions; i.e., a filtered view of the objective environment as an

agent perceives it. The perception is modeled as a memory-like repository that is constantly

updated as the agent moves in the environment and commits crime. An agent's perception

is further divided into two sub-categories [179]. The part of the perception that an agent is

aware of through current events, past experiences and interaction with other agents forms

the awareness space of the agent. The activity space is the part of the awareness space that

the agent has visited more frequently over a recent period of time. The agent typically has

very detailed information about this part of the environment.

A person's navigation behavior is modeled by the Space Evolution Module (SEM). It

provides a navigation algorithm to move the agent from an origin to a destination considering

the particular preferences of the agent. These preferences reflect the importance of different

factors in navigation for different types of agent. For instance, teenagers have different

priorities in finding their paths compared to working adults. The SEM is also responsible

for recording the paths frequently used by agents which in turn leads to formation of their
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activity spaces and awareness spaces.

The Agent Decision Module (ADM) captures the decision making process that sets the

goals of the agent. This includes basic decisions such as selecting the next destination based

on the personal preferences of an agent. In other words, the ADM decides on 'what to do;

and then relegates the decision to other modules on 'how to do it'. While the ADM may

reflect a very simple decision making behavior, it is designed as an interface for incorporating

complex intelligent decision making behaviors using existing AI methods in our model.

The criminal behavior of offenders is captured by the Target Selection Module (TSM).

This module works in parallel with the SEM to monitor potential targets on the familiar

pathways, and to select attractive targets. Targets are selected based on agent-specific

selection criteria and also an agent's propensity to commit crime. The TSM carves out the

crime occurrence space of an agent at the micra-level, which leads to formation of crime

patterns at the macro-level.

We would like to emphasize the flexibility of this architecture for adding additional

behaviors to the model. For instance, a module can be added to model social interactions

between agents that lead to formation of social networks. Several factors such as common

spatia-temporal aspects or common criminal goals may be considered in the evolution of

social networks and captured by the module. Similarly, it is possible to enrich the behavior

of different types of agents; e.g., victims can take a more active role by adding a behavior

module to model their interaction with the environment.

5.3.3 Urban Landscape Model

We abstractly model the physical environment as representing some urban landscape with

an attributed directed graph. This model potentially includes everything from road and

rail traffic networks to walkways and hiking trails. In principle, it may also extend to the

layout of public spaces such as shopping malls, underground stations, and even airports and

seaports. In the following, we concentrate on street networks, although the same modeling

approach applies to virtually any type of urban traffic and transportation system. We

gradually define the physical environment model in several steps as follows.

Let H = (V, E) be a directed connected graph representing the detailed street network of

some urban area as specified by a city map or, more adequately, by a Geographic Information

System (GIS). Let V = {Vl' ... , vn } be the set of vertices representing the intersections and

other distinguished points of interest located on or next to a road, such as highway exit and
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entry points, gas stations, recreational facilities and shopping centers. Further, let E <:;;; V x V

be the set of directed edges representing the identifiable road segments; unidirectional road

segments are represented by a single edge and bidirectional ones by a pair of oppositely

directed edges connecting the same two vertices.4

For labeling the edges and vertices of H, let 8 e and 8 v denote two disjoint sets of labels,

called edge attributes and vertex attributes respectively. 8 e splits into two disjoint subsets:

8~tat and 8~yn. 8~tat consists of edge attributes that are statically defined such as distance,

road type and speed limit. 8~yn consists of those attributes that may change dynamically

depending on various factors; e.g., weather phenomena can affect road conditions, time of

the day affects traffic conditions, and special conditions may exist on a road, like blockages

or closures due to construction work.

In contrast, vertex attributes specify information on locations and characteristic features,

such as geographic coordinates and highway exit numbers, as well as other, more specific

information related to points of interest.

Next, we define the geographic environment as an attributed directed graph GCeoEnv =
(H, .lj;) by associating a non-empty set of attributes with each of the vertices and edges of H.

We therefore introduce a labeling scheme 't/J = ('t/Jv, 't/Je), with 't/Je = ('t/J~tat, 't/J~yn) consisting

of three finite mappings as follows:

1. 't/Jv : V -+ 28 ,. assigns a finite set of vertex attributes to each vertex in V.

2. 't/J~tat : E -+ 28~tat assigns a finite set of static edge attributes to each edge in E.

3. 't/J~yn : E -+ 28~yn assigns a finite set of dynamic edge attributes to each edge in E.

Figure 5.4 illustrates the representation of the geographic environment for a simple example

consisting of two interconnected points of interest.

GCeoEnv represents the objective urban environment-the physical reality-and serves

as the basis for defining an agent's subjective perception of this environment (see 5.3.2). We

model perception by introducing an additional labeling on top of GCeoEnv. The fact that,

in general, each agent perceives the geographic envi:r;onment differently implies that each

agent also sees different agent-specific attributes associated with certain edges and vertices

of GCeoEnv.

4Refining the granularity, one may also represent the individual lanes of a given street network in exactly
the same way.
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Figure 5.4: Geographic environment

Let Av and Ae denote two additional sets of labels for vertices and edges respectively.

The urban environment, integrating both the objective environment and the subjective

environment for each of the agents, is defined as an attributed directed graph G Env =
(GCeoEnv, A) where A = (Av , Ae ) abstractly represents the agent specific labeling of vertices

and edges by means of two injective mappings as follows:

• Av : AGENTx V ----t 21\u, for each agent in AGENT and each vertex in V, yields a

non-empty set of vertex attributes, and

• Ae : AGENTxE ----t 21\0, for each agent in AGENT and each edge in E, yields a

non-empty set of edge attributes.

GEnv can be seen as a attributed directed graph with colored attributes. Each color refers

to the specific perception of an individual agent. Av , for instance, specifies the frequency

of visits to a location, intensity of activity as well as the agent's subjective interest in this

location. Ae , for instance, specifies the frequency of using a road, and intensity of activity.

Finally, the awareness space and activity space of each agent in any given system state is

computed from the abstract representation of the urban environment by means of operations

on G Env that extract a ubgraph with edges and nodes with an associated intensity above a

certain threshold. Targets are located on edges or vertices, hence the opportunity space for

a certain type of crime is the set of edges and vertice on which the respective type of target

is located. Likewise, the crime occurrence space of an agent for a certain type of crime is a

subset of the inter ection of the opportunity space and the activity space of an agent.



CHAPTER 5. MASTERMIND: MODELING CRIME PATTERNS 59

StopTravelmg false

Figure 5.5: Control state diagram of the program of a DASM person (offender) agent

5.3.4 Person Agent

We formally describe the behavior of an offender by further refining the person agent

(see 5.3.2) and defining the interaction between its different behavioral components in terms

of an ASM rule. The control state diagram of Figure 5.5 defines the program of a DASM

person (offender) agent. The control states distinguish different modes of operation. At

every step, the person agent is in a certain control state which defines its behavior. Transi­

tions between control states occur when the conditions stated by the respective guards hold.

Update rules, shown in rectangular boxes, define the ASM rules that update the underlying

data structure.5

A person agent is in the idle mode until it decides to start a new trip. This decision,

which can be triggered by the ADM or any external event, is abstractly modeled with the

timeToLeave predicate. When it is time to leave, a new trip to a destination must be started.

This requires adopting the new destination and setting other preferences for navigation

which are encapsulated in the InitNewTrip rule. The mode then switches to Traveling.

At any step during traveling, the agent may decide to interrupt the trip or change the

destination captured by checking the continue Trip predicate. While the predicate is true

the agent will continue navigating the environment. At the same time, the agent may also

look for targets to commit crime or exchange knowledge with other agents in its group or

social network. When the trip is ended, the mode ehanges back to Idle where the agent

rests until the next trip.

The following (oreASM code shows how the control state ASM of the person agent is

5The II symbol is used to indicate ASM rules running in parallel.
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directly translated into CoreAsM code. This example also exemplifies the freedom of abstrac­

tion in the ASM method; abstract functions and rules are freely refined at different levels

and details are added as needed. For instance, here we refine the Navigate and LookForTar­

gets rules by using the respective SEM and TSM modules. However, the ExchangeKnowledg~

rule is intentionally left abstract, and may further refined in later modeling iterations.

rule Person Main =

par

if mode(selJ) = Idle then

if timeToLeave then

par

InitNewTrip

mode(selJ) := Traveling

endpar

if mode(selJ) = Traveling then

if continueTrip then

par

Navigate

LookForTargets

ExchangeKnowledge

endpar

else

par

StopTravelling

mode(selJ) := Idle

endpar

endpar



CHAPTER 5. MASTERMIND: MODELING CRIME PATTERNS

rule Navigate = SEMMain(spaceM(self))

rule lookForTarget = TSMMain(targetM(selJ))
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The LookForTilf9ct fule is fefined the cxccuricin to the T'S~\l 1l10dulc.

rule ExchangeKnowledge = skip

T1H: rltle is lell a!lsl r<lcl.

Similarly, abstract functions and predicates are refined at different levels and using

different approaches. For instance, the continue Trip predicate is defined to be true if an

error occurs in navigation (e.g., there is no path to a chosen destination), or if the agent has

reached its destination (which is determined by the SEM agent), or if the trip has taken too

long and the agent changes its mind. While the first two options are concretely defined in the

SEM module, the tripTookTooLong predicate is modeled using a probabilistic distribution.

rule continue Trip =

return r in

r:= not (errorOccured or destReached or tripTookTooLong)

5.3.5 Navigation

An agent's navigation behavior is a centerpiece in the context of the Mastermind project. It

is important to have a robust and flexible model of navigation behavior that reflects natural

and intuitive choices a person makes while moving in an urban landscape. In the following,

we explain the role of the Space Evolution Module (SEM) in more detail and describe our

proposed path finding algorithm.

Space Evolution Module: ASM Model

The main responsibility of the SEM is to model how a person agent navigates the urban

environment GEnv during the course of his or her daily routine activities. Intuitively, the

SEM moves a person agent in discrete steps from his or her current position on the graph~a

vertex or an edge as identified by functions currentNode and currentEdge~tothe destina­

tion. It also keeps track of the places visited by the agent leading to the evolution of agent's
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Start

currentEdge <- GPtAcoept..::tJleEdge

Figure 5.6: Control state diagram of the Space Evolution Module (SEM)

activity space, thus affecting the attribute values of GEnv. Such attributes are accessed and

manipulated through operations on the graph structure.

The SEM model presented here has gone through several iterations in order to capture

different variations of agent navigation behavior in a flexible and robust manner, and these

will be outlined below. Abstractly speaking, given an origin and a destination, the SEM

finds a potential path that reflects the specific preferences of the agent. It then moves the

agent on this path, traversing one road segment (edge) at the time. However, at anytime,

due to a variety of reasons the agent may divert from this path, e.g., deciding abruptly to

take a random road, or being forced to take an alternate road due to the traffic. At that

point, the SEM is required to re-route the agent toward the destination by finding a new

path. The trip ends when the agent reaches the destination.

We formalize the operation of the SEM in terms of a control state ASM, as illustrated

in Figure 5.6. The operation of the SEM starts in the StartNav mode, where the SEM is

initialized and the mode switches to CheckPath. In this mode, the SEM first checks if a
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new path is required (newPathRequired) , i.e., a new trip is started, or the previously found

path is no longer appropriate for any reason. In that case, a new path to the destination

is chosen. It is important to note that, at this point, we abstract away from the details of

the specific navigation algorithm used for path finding and add the details incrementally in,

further refinement steps.6 When a path to the destination is found, the SEM mode changes

to TakingARoad where a road is chosen to be traversed by the agent. Here, the roads on

the suggested path are examined on the fly and several possibilities are considered: (1) the

agent may decide to take a random road, or (2) the SEM attempts to take the next road on

the existing suggested path to the destination. However, this road may be not acceptable

due to local conditions such as traffic or construction. Thus, (a) the next road on the path

is taken if the local conditions are acceptable, or there is no other alternative; (b) otherwise,

an alternate road is chosen instead. We leave the details on how to choose an alternate road

abstract: it could be refined to simply choose a random road, or a more complex approach

may be used. Once the road is chosen, the mode switches to Running where the agent

is essentially moving on the selected road. If the agent reaches the destination, the mode

changes to Final. Otherwise, the mode switches back to CheckPath to continue the agent's

travel to the destination.

In order to exemplify how the abstract ASM model of Figure 5.6 is refined, we present

the refinement of the GetAcceptableEdge rule as formalized below. The first step is to take

the next edge available on the existing path and check its local conditions. If the conditions

are acceptable then no further search is required; otherwise, an acceptable alternative must

be found. This operation can be refined into a simple random choice among all the outgoing

edges, or a more complex one as presented here. When finding a viable alternative, it is

important to take into account that the current unacceptable edge may be the only way to

the destination. Therefore, if the search for an alternative leads to selecting the same edge

again, the edge must be taken regardless of bad conditions, such as heavy traffic.

6This path, called suggestedPath, is calculated using the information that the agent has about its en­
vironment. This may include using a map, or referring to the memory, if the destination is previously
known.
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GetAcceptableEdge(me) ==
return res in

let e = GetNextEdgeOnPath(me) in

if acceptable(e, me) then

res := e

else

res := FindAcceptableAlternative(e, me)

FindAcceptableAlternative(e, me) ==
return r in

if attemptedBefore(e, me) then

r:= e

else
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par

r := TakeRandomEdgelfPossible(me)

attemptedBefore(e, me) := true

endpar

Path Finding Algorithm

SD.IllC i:~ llscd if no alternative' exists

The algorithm used for path finding by the agents needs to capture natural and intuitive

choices a person makes while moving in an urban landscape. The path taken might not be

a globally optimal and best one, but a more natural and good-enough one. In collaboration

with the domain experts we have identified key factors that are known to influence human

path planning. These factors include global (and typically static) elements such as distance,

and local (and typically dynamic) factors such as traffic. These factors work as proxies

through which a person agent perceives the environment.

During the course of the Mastermind project, different models of path finding have been

developed and validated through experiments and discussions with the domain experts.

Here we briefly describe different phases in the evolution of the path finding algorithm into

its current version.
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First Iteration: Exploration & Learning
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In the first version, a sophisticated algorithm was designed to model path finding as a

combination of exploration and learning.

The exploration algorithm provides a model-based reasoning mechanism, and uses a'

number of influence factors which play an integrated role in influencing the path selection

process. They include distance, road type, number of intervening stops, angle toward the

destination, traffic, road condition and familiarity. On the other hand, learning is modeled

by developing a case-based reasoner which facilitates using agent's past experience in path

finding. As such, in this version of the algorithm the GetNewPath rule (see Figure 5.6) was

refined as follows:

rule GetNewPath(me) ==
seq

suggestedPath(me) := GetPath M emory (me, currentNode(me), destNode(me))

if suggestedPath(me) = undefthen

suggestedPath(me) := GetPathExplorer (me, currentNode(me), destNode(me))

endseq

The agent would first try to find a path using its past experiences that are stored in

memory. If the destination is new and there is no related experience in the memory to help

with path finding, path finding is done by exploring the environment.

Generally, a person agent has some global information about the environment. The

exploration algorithm uses this global information to perform global planning. On the other

hand, local information discovered on the fly is also considered to perform local re-planning.

This allows the agent to examine changes in highly dynamic factors such as traffic and road

condition and revise its decision accordingly.

Technically, the algorithm is a variation of the Dijkstra's shortest path algorithm [68].

Assume a person agent wants to move from source 5 to destination D. The preference of

an edge e = (5, B) for the agent me that choses the path is defined as:

edgePref(me, e, D) ==
globaIWeight(me) *globalEdgePref (me, e, D) +
locaIWeight(me) * localEdgePref (me, e, D)

where

• globaIEdgePref(me,e,D) yields the preference of taking a 'best' path from S to D via
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B considering agent's global knowledge of the environment (global planning). A best

path is computed using Dijkstra's shortest path algorithm.

• localEdgePref(me,e,D) yields the preference of choosing e considering local information

on the edge (local re-planning).

The effect of local re-planning and global planning in the overall preference of an edge

is controlled by the weights assigned to each type of preference, namely globalWeight and

localWeight.

Path finding using the memory, on the other hand, follows a hierarchical problem-solving

technique. First, the person tries to find a complete path in the memory that takes him/her

from the source to the destination; if no such path exists, the person relies on memory to

get a partial path that takes him/her close enough to the destination and then uses a map

(exploration) to find the rest of the path. Failure to find any such path in the memory

would prompt the explorer to take over. This process is formally defined as follows:

rule GetPathMemory(me, s, d) ==
let pathCBR r- GetPathcBR(me, 5, d) in

if not (complete(pathCBR)) then

The is not to the lim,l destination. but dose one

let pathEXP r- GetPathExplorer(me, tail (pathCBR) , d)

return Concat(pathCBR, pathEXP)

else

return pathCBR

where

complete(p) == tail(p) = d

This approach was refined and fully implemented in AsmL [176]. The same approach was

implemented and validated by running experiments using the Java version of Mastermind.

Simulation results closely followed the behavior expected by established theories; however,

the simulation model was too intimidating for criminologists to be used as a tool in exper­

imentation. The complexity of the algorithm and the interdependence of the underlying

factors hindered their confidence in the model. In other words, the algorithm was seen as a

black box that produced results not suitable for peer-review and precise analysis.

The Java version of Mastermind and respective validations marked the end of one major
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iteration of the modeling process. Running simulation experiments and our continued in­

teraction with our criminologist partners shed light on a new set of open research questions.

Despite the rich functionality offered by this version of Mastermind, the complexity of the

model hindered its use for answering some fundamental questions about different types o~

navigation. Furthermore, it became clear that developing a deeper understanding of the

exploration behavior is more crucial as the first step in studying underlying crime patterns.

Hence, the subsequent iteration of the path finding algorithm focused on these issues, as

explained below.

Second Iteration: Mobility Styles

Our experience in the first iteration indicated the need for more systematic ways of modeling

path finding behavior which are more tailored towards crime analysis needs. As such, we

focused on simplified path finding algorithms by separating different concerns. Instead of

integrating various complex aspects of navigation, these algorithms may only deal with

one aspect of path finding behavior to analyze their respective impact on crime patterns.

In this phase, we developed experiments using the CoreASM version of Mastermind. The

CoreASM program code is easier for a non-specialist to read, and it is well-suited for designing

controlled experiments.

We identified three categories of path finding approaches, called mobility styles: (1) pre­

determined where an agent always uses the same path (usually the optimal one) between

two nodes without any divergence, (2) random walk where edges are selected completely ran­

domly, and (3) mixed (called tear-drop7) where an agent may divert from its pre-determined

path by choosing a random road, but will continue on another pre-determined path from

there.

We then focus on different path finding factors, such as distance, travel time, and type of

road, separately. The algorithm used for finding a path that optimizes each of these factors

is based on Dijkstra's shortest path algorithm [68]. Factors such as angle to the destination

can also be incorporated into path finding using the A*-algorithm [174].

It is important to point out the robustness of the SEM model in accommodating this

new approach. Modeling different mobility styles did not require any changes to the SEM

model of Figure 5.6. Instead, each style can be modeled by properly refining the abstract

7The name refers to a pre-determined path with tear-drop perturbations
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function randomRoad, which determines whether or not to take a random road instead of

following the suggested path. For instance, modeling a completely random walk requires

refining this function such that it always returns true, whereas in the tear-drop style the

result is determined using a probability distribution.

Despite the simplicity of this approach, the results of our experiments using (oreASM

have led to interesting observations and proven useful for satisfying criminology queries,

which are discussed in more detail in Section 5.3.7.

5.3.6 Target Selection

The behavior of an offender in a physical environment is influenced by a number of social,

spatial and temporal factors. In Section 5.3.5, we presented an ASM ground model focusing

on movement patterns of a person, modeled as an agent, in an urban environment. While

the activity pattern of an agent is a major element in crime analysis, offence occurrence

behavior, called target selection behavior, is of equal importance in understanding crime

patterns. Here, we briefly describe how this behavior is defined in terms of an ASM ground

model. The model presented here is a refinement of the Target Selection Module (TSM)

introduced in 5.3.2.

One of the challenges of building target selection into Mastermind is abstraction of the

crime process such that it is applicable to a wide range of crime types. For our purposes,

we are interested in crime that takes place in the course of daily activities. We model

what is suggested by Crime Pattern theory; i.e., crime occurs when a motivated individual

encounters a suitable target [41]. This can either be the entire offence if an agent acts

immediately upon noticing a target, or simply the moment of awareness that leads to a

more complex plan.

Figure 5.7 shows the high level control state ASM of the TSM, where the key aspects of

the behaviour are captured while technical implementation details are left abstract.

The target selection process starts in the Idle mode. Agents come across opportunities,

and potentially commit crime, in the course of daily routine activities. Thus, the target

selection procedure becomes active when the agent is travelling between nodes. As such,

the moving predicate captures the interplay between the target selection and the navigation

processes. If this predicate is true, the mode changes to CurrentAction. In this mode, if

there is a triggeringEvent to persuade the agent to commit a crime, the agent will search for

a suitable target, and the mode changes to Search Completed. The triggeringEvent predicate
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Figure 5.7: Control state diagram of the Target Selection Module (TSM)
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abstractly captures the complex process that triggers criminal behavior in an agent. A num­

ber of factors are important in determining the result of this process, including the agent's

propensity to commit crime or the existence of guardians (such as police officers). In the

Search Completed mode, the agent checks if a suitable target is found (suitableTargetFound) , as

a result of which a crime has occurred.8 If no suitable target is found, the mode changes to

No Crime Occurs. Once one round of target selection process is complete the mode changes

back to Idle.

It is important to emphasize one of the key advantages of using ASMs in modeling

the target selection behavior: separation of design and implementation. For instance, the

triggeringEvent predicate is an abstract representation of a potentially complex process that

can be implemented in different ways; in the CoreASM version of Mastermind, this process

is refined using probabilistic methods, while in the Java version Fuzzy Logic [201] is used to

determine the viability of a potential target. Classical logic could also be used to implement

this component. However, at a higher level of abstraction these divergent decision-making

technologies are equivalent from a practical point of view. Each of them is able to take

the information given to them and make an evaluation about the present situation. Hence,

different technical approaches can be attempted as solutions without requiring the design

8The crime may not be committed immediately. Instead, the identification of a suitable target may lead
to a more complex plan to commit crime later.
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to change.

The TSM can also be extended to consider the impact of social interactions on crime.

Options for criminal targets are not only developed through direct personal experience, but

also by knowledge gained through social interaction [65]. This aspect is not explored in the,.

current version of Mastermind and is subject of future work.

5.3.7 Experiments

We have run a number of experiments using both versions of Mastermind. The Java version

of Mastermind was used to study differences in criminal behavior of agents with different

profiles (e.g. goal-oriented, wanderer, etc.). The simulation results are reported in [46].

The scale of these experiments has not been large enough to declare the results as defini­

tive. But they definitely provided food for thought, led to a better understanding of the

simulation needs, and spurred on the configuration of following experiments using CoreASM.

The Java version is currently used as the basis of a comprehensive tool environment for

counterterrorism planning and response (see 5.5).

On the other hand, the CoreASM version has proven to be extremely useful in the iter­

ative process of exploration, validation, and establishing the right level of abstraction for

the model. In CoreASM simulations we focused on different key elements of the model sep­

arately, and studied the influence of these elements on the overall behavior. In a series of

experiments, we focused on three different styles of movement in the environment: (1) a pre­

determined, deterministic (completely non-random) style using Djikstra's algorithm; (2) a

random walk; and (3) a variation of Djikstra with tear-drop perturbations.9 The hypothesis

was that these different styles of movement would produce different patterns of crime.

A grid structure was used for the road network in order to simplify the analysis. Ex­

periments were run on 8x8, 12x12, and 16x16 grids. We also explored the impact of new

urban developments by connecting some 8x8 grids by a bridge to a companion 8x8 grid.

In some experiments, the companion grid contained an activity node. Finally, the agents

could have different levels of motivation (e.g., high or low) for committing crime.

In the following we briefly present some of the mor.e interesting results. A more compre­

hensive analysis of the results can be found in our publication [46, 44].

gIn our experiments, tear-drop was modeled by having a 50% chance of choosing a random road instead of
following the pre-determined path. For random walk, the likelihood of choosing a random road was increased
to 95%. This ensures that the agent reaches its destination eventually, albeit in a longer time.
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Figure 5.8: On the 16x 16 gird, the tear-drop navigation (left) produces distinctly different
paths in comparison with the deterministic navigation (right).

Edge Effect

In the first set of experiments, we analyzed the behavior of agents on a 8x8 grid. Contrary to

expectations, we found that different mobility styles produced very similar crime patterns on

the 8x8 grid. These patterns were not sensitive to changes to activity nodes or motivation

levels. As such, the results did not support the hypothesis that mobility styles impact

crime patterns. However, when the 8x8 grid was expanded to a 16x16 one, with the same

set of variables, differences in the behavior became evident. The directed paths of the

deterministic agents were distinctly different from the-cloud-like explorations of the agents

using tear-drop navigation (see Figure 5.8).

After further analysis, it became clear that the anomaly on the 8x8 grid can be explained

with what is known in the Criminology literature as the edge effect. The limited movement

opportunities, imposed by the size of the grid, create a side-effect that overshadows the

role of mobility styles. This observation is important because it re-affirmis the key role
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Mean Crime Density

8x8 Grid 16x16 Grid
Deterministic 6.71 5.98
Tear-Drop 5.35 4.48
Random 5.50 3.94
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I Vanance 0.56 1.11

Table 5.2: Mean crime density as calculated from simulations on a 8x8 grid and a 16x 16
grid. The same agents were used on each grid. There were three agents in each simulation,
with three activity nodes and one shared activity node. Results were collected from 2000
runs. Motivation levels could vary in different simulations.

of environmental features in crime analysis. On the 16x 16 grid, agents (with the same

set of parameters) had more options to explore. Table 5.2 shows the summary of different

simulations on 8x 8 and 16 x 16 grids. Crime density was calculated by dividing the total

number of committed crimes by the total number of locations in which they were committed.

On the 16 x 16 grid the variance of the crime density was almost 2 times the variance on the

8x8 grid, showing the strong impact of environment boundaries on crime patterns.

Wanderer Behavior

An interesting question to investigate is whether or not wandering more in the environment

would increase crime activity. The hypothesis is that agents who spend more time moving

through the environment are more criminally active. In other words, since the random walk

and tear-drop navigation types force the agents to move in a less optimal manner (from

a time-efficiency perspective), they should be able to find more opportunities to commit

crime.

This question led to an in-depth analysis of the results and the design of new experiments.

In this series of experiments, we used 10 different agents with different activity nodes.

The behavior of each agent was simulated using all three different mobility styles. Each

experiment simulated 30 days with an average of 2 trips made per day and consisted of

maximum 30,000 simulation steps.

In the first set of experiments, a very simple ta~get selection process was simulated;

targets are uniformly distributed and selected once encountered by the agents. The results

showed that the total number of crimes committed by wanderer agents (the ones with some

degree of random behavior) is more than the deterministic agents on average; e.g., on a
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Average Number of Crimes
Deterministic 29
Tear-Drop 50
Random 79.2
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Table 5.3: Average number of crimes as calculated from simulations on a 12 x 12 grid using
basic target selection. There were ten agents in each simulation. Results were collected
from 30,000 simulation steps.

Average Number of Crimes
Deterministic 12.96
Tear-Drop 13.39
Random 13.44

Table 5.4: Average number of crimes as calculated from simulations on a 12x12 grid con­
sidering familiarity in target selection. There were ten agents in each simulation. Results
were collected from 30,000 simulation steps.

12 x 12 grid, the tear-drop navigation produces 1.72 times more crimes than the deterministic

style, and the random walk produces 2.7 times more crimes, as shown in Table 5.3.

The above-mentioned target selection mechanism can be refined by further emphasizing

the impact of familiarity with the environment on target selection. In the next set of

experiments, we refined the target selection process to take into account the intensity of

the location of the crime. The intensity of a location reflects the level of activity (visits)

at that location. Hence, agents are more likely to commit crimes at locations with higher

intensity; i.e., locations that they have visited more frequently. This scheme introduces

more complexity and changes the crime patterns dramatically. The results, as shown in

Table 5.4 revealed a much smoother impact for different mobility styles. On average, the

number of crimes committed by random walkers and tear-drop path finders were only 3.7%

and 3.3% more than deterministic path finders, respectively. This huge difference from

the previous experiment points out an important factor in analyzing criminal behavior:

although wanderers come across more opportunities for committing crime, in a given time

frame, they develop less familiarity with their neighborhood and hence their tendency for

committing crime will be lower. Although, this obse~vation does not refute the hypothesis

that wanderers commit more crimes, it raises questions about the real impact of random

behavior on the level of criminal activity.

We further compared the spatial aspect of crime patterns generated by different mobility
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~ Deterministic I Tear-Drop I Random Walk I
Crime Occurrence Space (COS)
(% of the grid) 19.58% 26.11% 27.15 %
Activity Space (AS)
(% of the grid) 33.04% 59.03% 91.37 %
Crime Occurrence Space /
Activity Space 59.28% 44.24% 29.72%
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Table 5.5: Coverage of activity space and crime occurrence space for different mobility styles
considering familiarity in target selection. The results were collected from simulations of
ten agents on a 12 x 12 grid.

styles against each other. First, we prune the crime occurrence space10 of each agent by

looking at locations with more than 1% chance of having a crime committed. As shown in

Table 5.5, the results confirm the expectation that wanderers have a bigger activity space;

Le., they visit more locations during their daily routine activities. For instance, a random

walker on a 12x12 grid (on average) covers around 91% of the grid. However, this coverage

is not as strong when we look at crime occurrence space; e.g., for the same random walker

crime locations only cover 27% of the gird. Hence, while around 59% of the activity space of

a deterministic path finder is covered by crime locations, for the random walker this number

is only 29%, hinting that the criminal activity of the random walker is not as widely spread

as his/her navigation.

In order to further compare the patterns created by each style, we looked at the inter­

section of crime occurrence spaces; i.e., for each set of experiments, we specifically looked

at those crime locations that were shared by each pair of styles. The results, as shown

in Table 5.6, do not show a strong similarity between patterns, confirming our hypothesis

that different mobility styles do create different crime patterns.

Micro vs. Macro Analysis

We would like to emphasize the power of the Mastermind simulation model in breaking

down the complexity of the system and providing means of analysis both at a micro-level

and a macro-level. The design of the model and the simulation environment allows for

analyzing the behavior of one single agent under different circumstances, e.g., different

mobility styles, or changes in the urban environment. At a macro-level, it is possible to

lOCrime occurrence space of an agent is a set of locations where the agent has committed a crime.
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Number of shared crime locations of A & B /
Number of crime locations of B

IICOS(A) n COS(B)II/IICOS(B)II*
*COS: Crime Occurrence Space

A = Deterministic
B = Tear-Drop 59.1%
A = Tear-Drop
B = Random Walk 49.02%
A = Deterministic
B = Random Walk 35.73%
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Table 5.6: Analyzing the similarity of crime occurrence spaces created by different mobility
styles. The results were collected from simulations of ten agents on a 12x 12 grid.

aggregate these results in several different ways. For instance, one can overlay all crime

occurrence spaces created by different agents to define the overall crime pattern. However,

our experiments showed that in this form of analysis understanding the impact of different

variables become too complex; e.g., different agents have different activity nodes whose

location strongly impact the overall pattern of the crime and can overshadow the impact

of other important factors such as mobility style when studying aggregate patterns. In our

experiments, we explored different ways of linking the macro-level behavior to macro-level

patterns. A proper analysis approach must be selected based on the requirements of the

question at hand. However, it is clear that the simple and systematic break-down of the

behavior provided by our model and supported by the simulation environment facilitates

dealing with the complexity and allows for systematic exploration of macro-level behavior

in a manageable manner.

5.4 Lessons Learned

Mathematical modeling of criminal activity in the form of discrete event models that de­

fine the cooperative behavior of multiple autonomous agents in abstract operational and

functional terms has proven to be a sensible choice in the cross-disciplinary research con­

text of the Mastermind project. The task of reasoning about and analyzing complex crime

activity patterns and their representation in computational form requires an amalgamation

of expertise from criminology and computer science. Therefore, developing a coherent and

consistent common view, one that has a virtually identical meaning in both worlds, is crucial
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in overcoming fatal misconceptions, especially in the transitions between modeling phases

(see 4.1).

A typical challenge in the early formalization phases is lack of a thorough understanding

of the functional requirements, which can lead to vague descriptions and fuzzy architectural,

concepts. Real-life events are not usually thought of in a discrete, mathematical manner that

would easily transform into something computable. Striving for more clarity and regularity,

any encoding should not only be minimal but also be as direct and intuitive as possible, so

as to not add extra weight to the overall problem scope. In light of such practical needs,

the relatively simple semantic foundation of the ASM formalism contributes a great deal

to the ease of using this approach as a precise analytical means for communicating ideas

and for reasoning about design decisions. Viewing states as first-order structures, or simply

as abstract mathematical data structures being manipulated by autonomously operating

computational agents, indeed greatly simplifies the formalization task. (oreASM facilitates

experimentation and supports design for change by providing an untyped language and

a minimal instruction set for describing state transition behavior, combined with flexible

extensibility and refinement techniques. Finally, the ability to freely choose and mix common

modeling styles, e.g., declarative, functional and operational, depending on what appears

most suitable in a given application context, is invaluable.

An important part of the modeling exercise is identifying the right level of granularity

required for modeling behavior at the micro-level and investigating the impact on the macro­

level behavior patterns. To facilitate this proces, we have used (oreASM to run experiments

in very early stages of design. Through these experiments, we have been able to identify

key elements which affect the macro-level patterns of behavior, but are often left unnoticed

at the micro-level. For instance, the specific method used by agents for finding a path to

the destination (e.g., completely deterministic vs. random walk) is generally expected to

have a huge impact on macro-level crime patterns. But the experiments have shown that

the impact of the boundaries (or restrictions) imposed by the environment, such as the size

of the road network, could be even stronger than individual path finding preferences. Such

results re-affirm the benefits of computational models in developing and testing theories of

crime.

The Java version of Mastermind is capable of simultaneously processing the daily activ­

ities of multiple agents whose activity spaces and selected targets are displayed on-screen.

With its recognizable landscape and dynamic agents, this simulation model turned out
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to be particularly effective at illustrating concepts in Environmental Criminology to non­

criminologists [41]. As such, it provides the core of a full-fledged decision support tool to

be used by police officers and crime analysts. As discussed in 5.2 the architectural design of

Mastermind allows for integration with offender databases as well as enhanced 3D visualiza- .'

tion features based on Geographic Information Systems (GIS). This direction is currently

followed by using Google Earth [2] visualization features and is further discussed in the next

section on the future work

The complexity of the Java version and the fact that it is considered as a black box by

domain experts introduces limitations on its academic usage. Even though the behavior of

the agents appeared to follow established theory, domain experts could not be confident that

the program semantics followed their understanding of the phenomena. Furthermore, if the

behavior of the program is not clearly explained, the produced results are not useful in an

academic publication. The (oreASM program code is easier for a non-specialist to read, and

it is well-suited for designing controlled experiments, 11 The results of our experiments using

(oreASM have been more focused and useful for satisfying criminology research queries. Fur­

thermore, taking advantage of the highly flexible plugin architecture offered by (oreASM we

were able to rapidly develop the Mastermind Plugin to address the specific needs of crimi­

nologists, especially with respect to visualizing the results, In other words, the Mastermind

Plugin encapsulates the mathematical structure of the ASM model in a comprehensible and

familiar format for domain experts, This greatly facilitates communication with domain

experts and analysis of the results for validation purposes,

Mastermind has been central to the creation of our framework for computational mod­

eling of complex social systems . It has shown the necessity of a robust and extensible, yet

flexihle, design that can be easily re-applied in new experiments. It has also illustrated the

importance of reducing the communication barriers between team members from different

disciplines, facilitating a smooth transition between different modeling phases and validation

of intermediate models in each iteration.

lIThe ASM formalism offers much of the freedom that comes with using pseudocode as a design language-­
just that pseudocode usually does not have a precise (unambiguous) meaning and thus is not executable,
For a direct comparison of (oreASM with other specification &' design languages, we refer to [134].
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5.5 Summary and Future Work
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We have adopted a novel approach to computational modeling of crime patterns and theories

in crime analysis and prevention. Pattern and Routine Activities theories suggest that

through a combination of decisions and innate understanding of environmental cues, likely'

offenders are able to separate good criminal opportunities from bad risks. The nature of

this process is highly structured and allows researchers to anticipate likely concentrations of

daily activities and a variety of criminal offences. We model spatial and temporal aspects

of crime in urban environments as a foundation for systematic development of simulation

models. With the proposed formal model, it is possible to better understand crime patterns,

and also to test crime pattern and prevention theory. Our model is designed in such a way

that it is scalable and applicable not only to a broad range of crimes, but also to other

environments such as airports, ports, shopping centers, and subway stations.

Our main theoretical result is the abstract behavior model of person agents (based on

the agent architecture) interacting with their objective and subjective environments which

jointly form the geographic environment. Our main practical result is the Mastermind system

architecture which serves as a platform for the construction and experimental validation of

discrete event simulation models.

Mathematical and computational modeling of crime serves multiple purposes. It has a

direct value in a range of criminal justice applications. For law enforcement purposes, crime

prevention interventions can be modeled and analyzed prior to physical implementation. For

proactive policing, modeling of crime makes it feasible to build scenarios in crime analysis

and prevention and provides a basis for experimental research, allowing experiments that

can often not easily be done in a real-world setting. Models such as Mastermind would

provide program planners and analysts with another tool to predict likely activity spaces

for both typical street crimes and those requiring more focused and long-term investigations,

such as those involving serial or persistent (chronic) offenders.

The Mastermind framework provides a scalable, reliable, and extensible platform provid­

ing a firm ground for applications beyond crime analysis and prevention, as further described

below.
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5.5.1 Genius: A Decision Support System for Counterterrorism Planning

and Response

In order to better position public safety communities against potential threats, it is of utmost

importance to set priorities, identify existing gaps and develop proper approaches to address"

those. Aiming at improving response capabilities and better organizing counterterrorism

activities, national security agencies in Canada have identified different priority areas [1].

One major area is risk assessment and priority setting, which focuses on developing advanced

tools and techniques for establishing a reliable understanding of threats, and providing

consolidated risk assessment and rating of threat scenarios. A well-defined risk assessment

approach leads to a systematic analysis of capability gaps and provides guidelines for setting

investment priorities such that the most critical gaps are addressed [1].

Computational and mathematical methods have an enormous potential for serving prac­

tical needs of counterterrorism initiatives; they offer new approaches and tools for assessing

the risks of various scenarios involving terrorist attacks and analyzing the impact of poten­

tial responses. The Cenius12 project aims at expanding the Mastermind framework to be

used in the analysis of terrorism and counterterrorism. It is built on top of the Master­

mind platform and provides an enhanced set of visual components using the Coogle Earth

platform and a 3D virtual environment. It also extends the Mastermind model to capture

a more general agent behavior in the environment (e.g., crowd behavior) and to address

different forms of threats (e.g., simultaneous occurrence of multiple threats).

The goal is to provide a decision support system for terrorist threat response planning

and risk assessment. The model uses spatia-temporal features of the environment and

(potentially real-time) threat indicators for risk analysis and real-time situation analysis.

The proposed system can be applied in different applications contexts including critical

infrastructure protection, dangerous hazard emergency response, and special event security

planning, such as the 2010 Winter Olympics in Vancouver.

5.5.2 Modeling Physical Activity and Chronic Diseases in Urban

Environments

The Mastermind framework is also being used in a completely different application domain

for modeling the impact of objective and perceived factors of the surrounding environment

12In Roman Mythology, a Genius is a tutelary deity or guardian spirit of a person or place
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on people's physical activity levels.

Physical activity (PA) shows benefits in many aspects of our health, such as reducing

the incidence of and mortality from type 2 diabetes and even some forms of cancer. A

growing body of research suggests that the built environment plays an important role in"

shaping people's behavior, as it can encourage or discourage healthy eating and taking part

in physical activity. The built environment is measured by both perceived and objective

environmental elements. However, whether perceived or objective measures of the built

environment are better predictors of physical activity behaviour is unknown.

The Mastermind-Obesity-PURE Study (MOPS) project aims at applying computational

modeling to better understand key factors that impact decision making regarding PA and

determine the relationship between perceived and objective environmental measures. Such

models would serve as experiment testbeds for identifying how PA is affected by changes to

the structure of an environment and to human perception of the environment. They also

serve as valuable decision support tools for planners and policy makers by facilitating the

analysis of intervention policies.

The project brings together three main components: (1) Mastermind framework on

modeling routine activity patterns in urban environment; (2) A comprehensive objective

environmental data set collected from 2 different neighborhoods in Vancouver (low income

and high income); (3) Individuals' data collected by the PURE study [185], where 358

adults from the two communities were assessed for socio-demographics, physical activity

levels, environmental perceptions, and anthropometry.

The modeling exercise has already proven useful in unveiling some hidden assumptions

and limitations of the previous studies in the field. The structure and rigor inherent in

the formal modeling process enforces logical thinking and precise analysis of the most basic

concepts and key assumptions about the underlying system. For instance, the initial phase

of the project has clarified a critical assumption made by the majority of studies in the

built environment literature; i.e., overall PA levels directly correspond with PA in home

neighborhood. Based on that assumption, correlations have been made between the envi­

ronmental features of a person's home neighborhood and their overall PA levels in a much

wider environment. We identify this as a major limitation of those studies. Interestingly,

some of the most recent studies in the literature have also started raising the same question,

critiquing the assumptions made by conventional approaches [150].



Chapter 6

Identity Management Architecture

The research presented in this chapter was funded in part by the Ministry of Labour &

Citizens' Services of British Columbia, Canada.

Identity and Identity Management are two key concepts that have been addressed by

researchers from different disciplines with different methods in various application domains.

Across disciplines, there is a consensus on the vital role of identity management in many

strategic applications, including investigation contexts, services provided by governments

(e-government), e-commerce, business intelligence, and homeland security; although, the

focus in each context is different. For instance, social scientists are mainly interested in

the theoretical discussion on 'what is identity?' and 'what constitutes identity?' [161]'

while in the digital world context, the main focus is on 'digital identity' and its required

elements [53]. One of the most challenging issues related to identity management is privacy.

Privacy related requirements impose important restrictions on the design and effectiveness

of allY identity management system, and hence are of utmost importance [55]. At a more

technical level, there are a number of outstanding issues, including resolution techniques

[156, 135, 189], centralized, distributed or federated design of systems [195], and differences

between identification and anonymous authentication [53].

Although there have been substantial efforts to address the challenges in each of the

above mentioned areas, the reality is that there is no common agreement or understanding

on even the basic concepts, such as what constitutes identity or what is identification. In

other words, in the absence of a common starting point for research on identity, different

assumptions have been used by different researchers in solving specific problems. The lack

of such a unifying view has several negative implications including, but not limited to:

81
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• interoperability problems (especially within government or surveillance contexts);
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• privacy related issues (e.g. What should be protected? What is 'personal data'? How

to maintain privacy in interchange data format in health applications);

• issues related to reconstructing identities for investigation or profiling purposes (e.g.

legitimate vs. illegitimate profiling);

• difficulty of bringing together research results (from different areas) on this topic.

In recent years, the need for a well-designed Identity Management System (IMS) has

widely been recognized by different groups working on identity management around the

globe. Namely, there have been several initiatives in Europe to address this issue. The

study "Identity Management Systems (IMS): Identification and Comparison" [129] provides

an overview of the open issues in the field. Future of Identity in Information Society (FIDIS)

[98] and Privacy and Identity Management for Europe (PRIME) [159] are two research ini­

tiatives by the European Union toward advanced research on identity management. Chal­

lenges include establishing proper associations between entities (civilians or institutions)

and their identities, matching of identities, detecting fake identities, etc. In the aftermath

of September 11th 2001, even more attention has been directed to this area in order to

provide governments and intelligence agencies with better intelligence and better tools for

identifying and responding to possible threats.

Following the principles of mathematical modeling of complex systems as presented in

Chapter 4, and building on our experience with semantic modeling of behavioral aspects of

complex distributed systems, such as semantic foundations of Web service architectures [86],

in this chapter we focus on developing a firm unifying semantic foundation for a systematic

study of identity management and improved accuracy in reasoning about key properties in

the IMS design. Like many complex systems of today, identity management systems are

influenced by a combination of social and technical aspects. Given the diversity and variety

of the concepts and disciplines involved, we argue that mathematical rigor and precision is

essential in consolidating existing approaches and harmonizing the sharing and integration

of information.

We propose a novel conceptual model of identity along with a simple, but universally

applicable, mathematical framework, based on the abstract state machine (ASM) method

[30], for establishing a precise semantic foundation for the most fundamental elements of
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identity management. This model serves as a starting point for bringing together different

approaches to identity management in a more systematic fashion. Through an extensive

review of the literature, we also identify key requirements of any IMS (such as privacy, user­

control, and minimality), and focus on the practical relevance of developing a distributed,

approach to identity management (as opposed to a centralized one). Finally, we illustrate

the practicality of our approach by applying the model to a rigorous definition of identity

theft.

Section 6.1 presents an extensive review of the identity management literature, summa­

rizing common identity management concepts and terminology. Section 6.2 introduces the

formal semantic framework, and Section 6.3 mainly focuses on the application of the model

in identity theft. Section 6.4 presents future directions and concludes the chapter.

6.1 Background

Identity, identity management and related issues are studied in different application contexts

and across disciplines. Given the variety of disciplines and application contexts involved in

the study of identity management, here we explore the existing literature in search of basic

definitions and a common terminology. We also review some related technical and non­

technical issues such as identity resolution, identity theft, and privacy and trust.

6.1.1 Basic Definitions

The issues surrounding identity, identity matching, and identity resolution are being dis­

cussed and studied in different application contexts and across different disciplines. As noted

by Camp [53] , "the word 'identity' refers to an increasing range of possible nouns-from a

set of personality-defining traits to a hashed computer password." A glossary of the termi­

nology used in digital identity systems is provided in [53], which is the result of a cooperative

attempt to develop a common understanding of the terminology across several disciplines

[54]. This glossary was developed to address the overload of identity terminology and "the

lack of conceptual clarity" [53]. Hence, we consider it as a main reference point in designing

our model of identity, although some of the terms are still loosely defined and, in some

cases, vague. The terms that are introduced and defined in the glossary include: attribute,

identifier, personal identifier, anonym, pseudonym, identity, identification, authentication,

identity authentication, attribute authentication and authorization. The complete definition
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of these terms is provided in Appendix B.

In [123], Harper provides a slightly different taxonomy of the elements involved in an

identity system. Identifiers are introduced as the building blocks of identification, and

special attention is dedicated to the classification of identifiers into the following groups;

something-you-are, something-you-are-assigned, something-you-know, and something-you­

have. Appendix B provides a closer look at this view.

Most of the work in the domains of digital identity, identity management, and iden­

tity matching, however, use a wide variety of terms not necessarily defined by any of the

above mentioned sources. For instance, in [59] the authors introduce the notion of "partial

identities" which are subsets of a person's identity and uniquely identify the person. They

also used the word "pseudonym" to refer to identifiers of subjects. Although these concepts

proved to be useful in modeling an identity management system, they are not introduced

or addressed in either [123] or [53].

6.1.2 Identity (Entity) Resolution

The problem of matching and relating identities fits under the broader Entity Resolution

problem, which is a well-known issue in databases and data mining. Specific to identities,

in [135] a matching technique known as identity resolution is described. This approach

was originally proposed to address identity matching problems in Las Vegas casinos and is

"designed to assemble i identity records from j data sources into k constructed, persistent

identities" [135]. It uses a deterministic technique based on expert rules in combination with

a probabilistic component to determine generic values for identifiers. Generic values, such

as the phone number of a travel agency, are so widely used that they can not be relied upon

in identity matching. In addition to identity matching, relationships between identities are

detected which leads to useful alerts about potentially dangerous relationships between the

identities in the system. Identity resolution is sold as an off-the-shelf product by IBM [3]

and has been used in several application domains including gaming, retail, national security,

and disaster response.

The Artificial Intelligence Lab at the University of Arizona focuses on developing algo­

rithms that automatically detect false identities to assist police and intelligence investiga­

tions. Wang et al. [189] propose a record comparison method to address the problem of

identifying deceptive criminal identities. The algorithm builds on a taxonomy of identity

deception developed from a case study of real criminal deception patterns [190]. In the same
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study, criminal deception patterns are categorized into four groups: name deception, resi­

dency deception, Date/Place of Birth (DPB) deception, and ID deception. The algorithm

focuses on these fields, and the overall disagreement between two records is then defined as

the summation of the disagreements between their constructing fields. A supervised training

process is used to determine an appropriate disagreement threshold for matching. Hence,

there is a need for training data. In [191], a probabilistic NaIve Bayes model is proposed to

address the same problem. The model uses the same four features for matching identities,

but a semi-supervised learning method is used that reduces the effort required for labeling

training data.

Phiri and Agbinya propose a system for management of digital identities using techniques

of information fusion [156]. Instead of relying on a single credential, such as PIN number or

password, for authentication, they suggest a multimode credential authentication involving

a combination of a number of credentials. In this approach, a set of credentials is presented

by the user and the result of the information fusion process determines the outcome of

authentication. This technique, however, requires training data to fine-tune the underlying

neural network which performs the information fusion process.

6.1.3 Identity Management Systems

With the growth of the Internet and its wide variety of applications (such as e-government

and e-business) in the recent years, the problem of managing several identities has attracted

much attention. Several attempts have been made recently to characterize the requirements

of such identity management systems (IMS) which addresses the need of both the users and

the managers of the identity.

In [129], a study is performed on systems providing user-controlled management of own

identities. The study is built on four pillars, (1) basic requirements for IMS, (2) usage sce­

narios, (3) evaluating identity management applications, and (4) survey of experts' expec­

tations. The definition and requirements of identity are analyzed in three different contexts:

social context, legal context and technical context, as shown in Figure 6.1. The figure also

shows how our work on Identity Management Architecture fits into these contexts.

For the purpose of usage scenarios, different application domains such as e-Government,

e-Commerce, and e-Health are considered. After evaluating a comprehensive list of existing

products and prototypes for identity management, the report concludes that "none of the

evaluated products meets all elaborated criteria". Most notable, "are significant deficiencies
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Definitions of Identity

Identity Management

Identity Management Systems

Identity
Management
Architecture

Figure 6.1: Major contexts in defining identity and identity management [129]. Our pro­
posed identity management architecture builds on basic definitions of identity and concepts
of identity management to provide a firm semantic foundation for identity management
systems.

regarding privacy, security and liability". Consequently, experts have consistently scored

privacy protection, security, and usability as the essential functions of IMS.

The authors of [59] present an approach for developing IMS with respect to multilat­

eral security. They emphasize the role of IMS in realizing privacy laws and its importance

for establishing user confidence in e-Commerce applications. They also highlight the lack

of universal or standardized approaches for IMS. Their proposed system is built on top

of SSONET, an architecture for multilateral security, and defines the requirements of an

identity manager (including creation and management of pseudonyms, certification and

managing credentials, user-control, and privacy). The requirements of the identity manager

are developed through analysis of different usage scenarios; however, issues regarding com­

plexity and confidentiality of the identity manager remain open. Furthermore, the proposed

identity manager relies on the secure functionalities provided by the SSONET framework.

In [62], the results ofthe Roadmap for Advanced Research in Privacy and Identity Man­

agement (RAPID) project are presented. Identity management is regarded as "definitions

and lifecycle management for digital identities and profiles, as well as environments for ex­

changing and validating such information". Similar to [59], the notion of nyms and partial

identities are used in this paper. A nym provides a identity for an individual to operate

in a specific environment, such as a user name to be used in a chat room. The paper also
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highlights three basic requirements of an IMS: (1) reliability and dependability, (2) con­

trolled information disclosure, and (3) mobility support. The paper explores the obstacles

and open problems in developing a system that supports Multiple and Dependable Digital

Identity (MDDI) in order to direct future research in this area.

In [169], the issue of rapid changes in the behavior of Internet users and the consequent

challenges of dealing with new (and sometimes conflicting) requirements are discussed. The

paper analyzes some of these new trends and the respective needs of the end users. One

of the important needs of end users is having "multiple identities that are also stream­

lined and portable". Portability of identities is a valuable feature, especially for users of

reputation-based services such as eBay or Craig's list. Another issue is preserving privacy

in an environment where highly personalized information is revealed in many networking

websites. Another problem is dealing with "dispatching" or killing an identity, which is an

important part of the digital identity lifecycle. The authors also point to the interesting

phenomenon of "generational shift" and how the behavior and needs of the younger genera­

tion are different from the previous generation. This shift introduces new challenges for the

design of identity management systems, since users are becoming less cautious or concerned

about revealing their personal information.

6.1.4 Identity Theft and Identity Fraud

Broadly speaking, identity theft or identity fraud is defined as the misuse of another person's

identity information. With a rapid growth in recent years, it has attracted much attention by

the law enforcement agencies in the US and Canada. According to a report by a bi-national

working group to the Minister of Public Safety and Emergency Preparedness Canada and

the Attorney General of the United States [160], "during a one-year period in 2002-2003,

total losses to individuals and businesses related to identity theft in the United States were

estimated at approximately US$53 billion. In Canada the losses for 2002 were estimated

at approximately CAN$2.5 billion". According to a 2007 report, identity theft loss in the

US declined to US$49.3 billion in 2006, due to an increased vigilance among consumers

and businesses [133]. Unfortunately, despite all the attention and public concern, there is

little agreement among researchers, practitioners and law enforcement officials on a clear

definition of identity theft and identity fraud.

Sproule and Archer address this problem by systematically developing a conceptual

process model of the problem domain by consulting different stakeholders [181]. The process
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model classifies activities related to identity theft and fraud into different groups which

contribute to each phase of the process. The process starts with collection of personal

information or creation of a fictitious identity/manipulation of one's own id. The collected

information is then used to develop a false identity or is directly used in committing crimes,

enabled by a false identity.

In [192], a contextual framework for identity theft is presented. The framework identifies

the major stakeholders in identity theft domain, the interactions between them and how the

information flows. The stakeholders include (1) identity owners, (2) identity issuers, (3)

identity checkers, (4) identity protectors, and (5) identity thieves. The paper also classifies

the activities important in combating identity theft and identifies the open problems of the

field. Such a framework facilitates harmonizing and integrating research and development

in the identity theft problem domain, but it is does not provide a precise definition of the

fundamental concepts of the domain such as identity and identity theft. For instance, the

term identity is loosely used in place of what seems to be identity information (or personal

information) .

6.1.5 Privacy and Trust

The issues of safety, privacy and trust in the digital world, and more particularly on the

Internet, are strongly linked to identity problems and the lack of a native identity layer

[52]. As pointed out by the Information and Privacy Commissioner of Ontario (Canada),

"the existing identity infrastructure of the Internet is no longer sustainable. The level of

fraudulent activity online has grown exponentially over the years and is now threatening to

cripple e-commerce. Something must be done now before consumer confidence and trust

in online activities are so diminished to lead to its demise" [55]. One proposed solution is

designing a unifying identity metasystem that provides interoperability among underlying

identity systems by offering a reliable way to establish who is connecting to what [52]. A

set of principles, called "Laws of Identity" [52], are developed through an open consensus

process among experts and stakeholders to capture the pragmatic requirements of such a

system. 1 These seven laws of identity are

1. User control and consent - identifying information must be only revealed with users'

consent;

IThese requirements have proven useful based on practical experience.
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2. Minimal disclosure for a constrained use - disclosing the least amount of identifying

information and limiting the use of information;

3. Justifiable parties - disclosure of information is limited to justified parties;

4. Directed identity - supporting both "omni-directional" and "unidirectional" identi­

fiers;

5. Pluralism of operators and technologies - allowing for multiple underlying identity

technologies;

6. Human integration - protecting against attacks through an unambiguous human­

machine communication mechanism;

7. Consistent experience across contexts - guaranteeing a consistent experience while

allowing multiple technologies.

It is argued in [55] that such an identity metasystem (based on the seven laws of identity)

contributes significantly to improving security and privacy in the online world.

As the issue of privacy is closely related to identification, any attempt of integrating

privacy protection into a system must address identity related issues. This is addressed by a

joint multi-national project, called Privacy Incorporated Software Agent (PISA) [157]. The

project aims at identifying possible threats to the privacy of individuals resulting from the

use of agent technology, and demonstrating ways of applying Privacy-Enhancing Technolo­

gies (PET) to agent technology in order to reduce the impact of these threats. Even the

most basic concepts such as personal data, identifiable data subjects, and identification are

essential in defining privacy and identifying privacy threats. These issues and other results

of the PISA project are addressed in [187].

6.1.6 Advanced Research on Identity Management

The Liberty Alliance project [142] aims at establishing open standards, guidelines, and

best practices for identity management, mainly focusing on identity-based Web services.

The project promotes a federated identity management approach which focuses on building

trust relationships between businesses and the ability to federate isolated accounts of users

among well-defined trust circles [141]. The goal is to develop open standards that address

interoperability, management of privacy, and identity theft prevention.
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Within the European Union, there have been several multidisciplinary initiatives to

study digital identities, their management, and related problems. The Future of Identity in

Information Society (FIDIS) project [98] aims at integrating research efforts across different

European nations focusing on challenging problems such as: (1) supporting identity and,

identification, (2) interoperability of identity and identification concepts, (3) Identity theft,

privacy and security, and (4) profiling and forensic implications. FIDIS defines seven re­

search branches, each of which focuses on one important aspect of identity, such as privacy,

interoperability, mobility, etc. One of the main research branches of the project focuses on

exploring the definition of identity and identification. This research branch, called Iden­

tity of Identity, aims at developing an inventory of definitions in the identity domain and

their respective use cases, presenting the existing models of identity management, as well

as developing an overview of future directions of such models.

The Privacy and Identity Management for Europe (PRIME) project [159] addresses

the lack of identity infrastructure for the Internet, identifies essential requirements such

as security and privacy, and aims at defining the right balance of such requirements in

emerging identity management architectures. Similar to [52] and [55], PRIME takes a user­

centric approach to identity management. A high-level architecture for identity management

is proposed and is accompanied by the PRIME toolbox and middleware to support and

implement user-centric privacy and identity management functionalities.

6.2 The Formal Model

This section presents a precise yet abstract semantic model of identity management concepts,

called IMAAM : Identity Management Architecture abstract model. Building on the existing

literature, we identify key concepts in the domain of identity management and formalize

their intuitive meaning in abstract functional and operational terms. We start with the

most basic definitions.

6.2.1 Basics

In principle, the term entity as used in the following may either refer to an individual or

an organization existing in the real world. However, the focus of this work is on individuals

rather than organizations.
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Attribute A characteristic associated with an entity, such as name, date of birth,

height, fingerprints, iris scan, genetic code, etc. [54, 53].

Identity We define identity as an abstract (mental) picture of an entity, such that, for

the identity management concepts considered here, an entity's identity is logically equivalent'

to the physical presence of this particular entity. In this view, any distinction between an

entity and its associated identity is irrelevant.

Partial Identity Any subset of properties (read attributes) associated with users (read

entity), such as name, age, credit card number, or employee number, that the user (entity)

uses for interacting with other parties [62].2

Identifier An identifier identifies a distinct person, place or thing within the context

of a specific namespace [54, 53]. There are two types of identifiers:3

• Personal Identifier: A persistent identifier associated with an individual human con­

sisting of one or more attributes that are difficult or impossible to change, such as

date of birth, height and genetic code.

• Pseudonym: An identifier associated with non-persistent attributes or sets of transac­

tions, with no permanent or personal identifier.

Context A context refers to a specific application domain or circumstance in which a

partial identity is defined and has a meaning.4 Henceforth, we associate with each partial

identity the specific context in which this partial identity is defined.

In the formal model, we regard an identity as the abstract representation of the corre­

sponding entity. All the attributes of the entity then help in defining its identity. Therefore,

the main building blocks of our model are as follows:

2In reality, one commonly uses a combination of characteristics in order to distinguish an entity from
other entities, so that it becomes identifiable based on a certain set of attributes; however, it seems virtually
impossible to find any such set that is generally suitable as a placeholder for an entity's identity in an absolute
sense as assumed here.

3For the purpose of the abstract model, we do not distinguish between personal identifiers and
pseudonyms. .

4Several contexts may come together under the umbrella of a domain. For instance, several contexts exist
within the health domain, including hospital records, health insurance records, etc.
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A number of identifying functions exist that map an identifier to its respective partial

identity within a context. These functions play the role of keys in databases.

9 : IDENTIFIER x CONTEXT -. PARTIAL-IDENTITY

A partial identity is used to represent an identity within a distinguished context. In

other words, a partial identity is the 'realization' of its respective identity within the context.

Hence, the ideal is to always have a one-to-one relation between partial identities and real

identities. In fact, an assumption often made by IMS designers is that a new partial identity

is created only if the respective identity is not already represented in the context by another

partial identity. However, this assumption is frequently violated in real world applications,

which is the cause of many of the core problems in identity management.

It is important to emphasize that from a context point of view the 'real' (actual) asso­

ciation between partial identities and identities typically remains hidden; that is, there is

no feasible way of checking or validating that the association is a correct one in an absolute

sense. For our modeling purposes, however, we assume to have this absolute knowledge,

although this possibility serves for illustrative purposes only. We therefore introduce an

oracle that provides that hidden information. The oracle is defined as the relation5 0 and

is meant to provide the real identity(ies) behind a partial identity. In each state of the

system, the oracle maps a partial identity defined within a context to the identity that is

represented by that partial identity.

0<;;; CONTEXT x PARTIAL_IDENTITY x IDENTITY

5It is important to note that the oracle is not necessarily a single-valued function.
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Figure 6.2: Mapping partial identities to identities within the same context
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As noted above, in any given context, the ideal situation is to have a one-to-one map­

ping between partial identities and real identities. We thus define the following integrity

constraints for the oracle. Of course, these constraints refer to the ideal situation and may

not (and often do not) hold in reality.

o is meant to be a single-valued mathematical function. (6.1)

That is, within one context any single partial identity cannot represent more than one in­

dividual identity.

o is meant to be injective. (6.2)

The second constraint means that two partial identities existing in the same context can

not be mapped to the same identity.

6.2.2 Mapping Partial Identities to Identities

Figure 6.2 illustrates four basically different cases of mapping partial identities to identities,

some of which are potentially problematic. Note that in any given state, the oracle represents
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these mappings. In other words, for each context, the oracle has an understanding similar

to the one shown in the diagram. Here, we describe each case in more detail.

1. Valid Mapping: In this case, a given partial identity PID I is uniquely mapped to an

existing identity ID I . In other words, the oracle knows that ID I is behind the partial

identity PIDI .

2. 0 is not a single-valued function: PID2 represents both ID2 and ID3 • This happens

when sufficient information about entities does not exist in a context. Hence, one

partial identity is created which maps to two actual identities. This is obviously NOT

a desired situation and violates the integrity constraint 6.1.

3. 0 is not injective: In this case, one identity is represented by several partial identi­

ties. This violates the injectivity constraint 6.2.

4. Fake (fictitious) Identity: This case captures situations where there IS no real

identity behind a partial identity.

Cases 2, 3, and 4 capture different undesired situations with respect to partial identi­

ties within one context. These cases can be categorized as logical inconsistencies and are

explained using the mathematical representation. When analyzing partial identities across

contexts, one can identify a second category of inconsistencies, called semantic inconsis­

tencies. In this case, within one context a mathematically valid mapping exists between a

partial identity and its respective identities (i.e., case 1 in Figure 6.2 applies); however, an

inconsistency can be detected when other contexts are included into the analysis. Figure 6.3

shows two different cases of mapping of two partial identities across different contexts. The

first case shows a valid mapping across contexts: PIDI and PID'I are mapped to the same

identity (ID I ) and thus need to be semantically consistent; i.e. there is no inconsistency in

their constituting attributes. In the second case, however, there is inconsistency between

PIDI and PID'I in the sense that respective attributes have different values. Semantic incon­

sistencies within one context, such as having outdated records in one context, contributes

to this type of inconsistencies across contexts.

One of the goals in identity management is to identify such cases, deal with them and

minimize their occurrence. This is further discussed in the next section.
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Figure 6.3: Mapping partial identities to identities across contexts

6.2.3 Evolution of Partial Identities

In general, the set of partial identities defined within a context changes dynamically over

time. New partial identities are introduced, existing ones are discarded or merged to form

new partial identities, or one partial identity is split into two. These changes define the

lifecycle of partial identities within a given context.

Identity Resolution

We consider identity resolution as the internal process of changing the state of a context with

respect to its partial identities. These changes are meant to improve the overall quality of the

mapping between partial identities and identities, and, as a result, target the problematic

cases discussed in Section 6.2.2. Several techniques have been proposed to identify and

resolve these problems [156, 135, 189]. We provide a high-level view of identity resolution,

abstracting from the operational details of how and when it is performed, and focusing on

the semantic aspects.

Formally speaking, identity resolution is required when a violation of one of the integrity

constraints (6.1) or (6.2) is detected. From the perspective of an outside observer, the

state of a context changes after performing an identity resolution operation. Here, we split

the identity resolution process into two sub-tasks, each dealing with one type of integrity

constraint.

IdentityResolution == FunctionResolve 1\ InjectivityResolve



CHAPTER 6. IDENTITY MANAGEMENT ARCHITECTURE 96

At the highest level of abstraction, we describe the effect of each operation in terms of pre­

conditions and post-conditions that hold before and after performing each task respectively.6

The function resolution operation is triggered when a new piece of information is ob­

tained that reveals that one single partial identity is referring to two or more identities. 7 In

our model, this new information is abstractly represented by the function newlnfo. Assuming

idSet(c, Pl, newlnfo) refers to the set of identities that, based on newlnfo, are all represented

by a single partial identity Pl in the context c, the FunctionResolve operation is specified as

follows.

pre :lidl , id2 E idSet(c,pl, newlnfo)

O(c,Pl,idl ) /\O(c,Pl,id2) /\idl =I- id2

FunctionResolve(c: CONTEXT, Pl : PARTIAL--"IDENTITY, newlnfo: INFO)

post Vid l , id2 E idSet(c,pl, newlnfo) , Vp E PARTIAL--"IDENTITY

O(c,p, idl ) /\ O(c,p, id2) {o} idl = id2

The injectivity resolution operation is triggered when a set of partial identities (pSet) is

detected, all elements of which refer to the same identity id l . Therefore, the InjectivityResolve

operation is specified as follows.

pre :l idl E IDENTITY, Vp E pSet O(c,p, idil

InjectivityResolve(c: CONTEXT, pSet: P(PARTIAL--"IDENTITY))

post VPl,P2 E PARTIAL--"IDENTITY

O(c,pl,idil/\ O(c,p2,idl ) {o} Pl = P2

It is worth mentioning that the existing literature does not provide a precise high­

level definition of identity resolution. Instead, identity resolution is commonly defined in

a bottom-up fashion by describing the underlying algorithms that perform the operation.

This is a potential source of inconsistencies, especially when interoperability is a priority. To

address this problem, we illustrate how one can properly specify each of the above mentioned

6We define here a more general case with n identities/partial identities.

7In practice, different heuristic approaches and AI-based techniques are used to extract this information
[156, 135, 189].
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operations in a systematic fashion, such that they can be further refined into appropriate

algorithms and implementations. While simple and easy to understand, the formalization

used here is precise and grounded in mathematical logic based on the abstract state machine

(ASM) [30] formalism and abstraction principles (see Chapter 2).

FunctionResolve(c: CONTEXT,PI : PARTIAL1DENTITY, newlnfo: INFO) ==
H('~()l\'('(l j! 1 ill! () di!rCfCll! ieis

Delete(c,PI)

SplitlntoNewPartiall Ds(c, PI, newlnfo)

InjectvtyResolve(c: CONTEXT,pSet: P(PARTIAL-.lDENTITY)) ==
idclltitic:s inlCJ onc

forall pid in pSet do [in parallel] Delete(c,pid)

MergelntoANewPartiall D(c, pSet)

The delete, split, and merge operations are purposefully left abstract at this level. Details

can be added as needed in systematic refinement steps.

As a result of the resolution process, one or more partial identities are deleted from the

context, and one or more new partial identities are created using the information from the

old ones. Here, we introduce a new concept: the new partial identities may come with two

additional attributes, specifying the confidence in the newly created partial identity and

the history of its evolution (allowing to undo the operation if necessary) respectively. The

confidence value is a standardized numerical value expressed as a real number in the interval

[0,1].

6.3 Applications

In this section, we explore potential applications for which the semantic framework of the

Identity Management Architecture could be used and illustrate how it would be helpful. An

important usage of the framework is for achieving interoperability across different domains,

which is impossible without a coherent and consistent semantic foundation. Here, we can

make an analogy to the programming languages domain and the importance of having a well

defined semantic for a given programming language. Otherwise, different implementations of

the same language may result in different interpretations of some concepts of the language,



CHAPTER 6. IDENTITY MANAGEMENT ARCHITECTURE

Collection of Identity Information
Searching public record Loss of 10
documents Dumpster diving

Theft Hacking

Development of False Identity
Documenc breeding ID trafficking
Counterfeiting Conspiracy

Creation of A Fictitious ID or
Manipulations of One's Own ID

Figure 6.4: Conceptual process model of identity theft domain presented in [181]
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leading to inconsistent behavior of the same program in different implementations. The

framework can also be applied in contexts such as identity theft, privacy, and criminal

investigations, as further discussed below.

6.3.1 Identity Theft

Section 6.1.4 provides a brief overview of the literature on identity theft. The authors of

[181] developed a conceptual model of identity theft and identity fraud by identifying related

common activities, as shown in Figure 6.4.

As a result, the following two definitions are provided [181]:

Identity theft: the unauthorized collection, possession, transfer, replication or

other manipulation of another person's personal information for the purpose of

committing fraud or other crimes that involve the use of a false identity.

Identity fraud: the gaining of money, goods, services, other benefits, or the

avoidance of obligations, through the use of a false identity.

A conceptual model clearly delineating identity theft and identity fraud is a valuable

contribution and a good starting point for integratirig research and practices in the field.

However, we believe that such fundamental concepts need to be more rigorously defined.

For instance, both definitions use the term false identity, which is only loosely defined and

lacks a precise semantics. In fact, the fundamental question of 'what constitutes an identity'
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is mostly neglected in the literature on identity theft. Consequently, it is difficult to infer

what exactly a false identity is. Here, we use the basic model of Section 6.2 and further

extend it using a conservative refinement approach (see 2.5) to capture the notion of identity

theft. In the following, we refer to the formal model of Section 6.2 as IMAAMcore

Our first goal in extending the formal framework is to better understand what exactly

is a false identity. We derive our definition based on the process defined in [181] and the

framework described in [192]. The latter defines five roles involved in identity theft: Identity

Owner, Identity Checker, Identity Issuer, Identity Protector, and Identity Thief (see 6.1.4).

In our model of identity theft, we introduce a new, more abstract role, called the Pre­

senter of Identity Information. In principle, this entity is either the owner of the presented

information or a third party. If the third party is not authorized to use the presented in­

formation, he/she is considered a thief. Hence, the presented information is a key element

in defining a presenter. As explained in 6.2, in the IMAAM core identities are defined as

abstract representations of entities. Here, we use this abstraction and define a presenter

p as a tuple consisting of an identity idp (the real person) and a set of attributes being

presented presAtrbtsp (the presented information).

vP E PRESENTER, p == (idp,presAtrbtsp)

where idp E IDENTITY 1\ presAtrbtsp E P(ATTRIBUTE)

We also formalize the notion of identification using the definition provided in [53]. In

the process of identification, a physical entity that presents a set of attributes8 is matched

to an existing identity.9

identification: PRESENTER -+ IDENTITY

We can now precisely define the difference between a presenter's identity and the iden­

tification of a presenter, which is a source of ambiguity. The identity (idp ) is an integral

part of the presenter; it is defined statically and can not be detached from the presen­

ter. Referring back to the 1M AAMcore, the attributeSet (idp) function provides the set of

attributes associated with idp . This set may change over time as the attributes of an iden­

tity change, whereas the identity itself does not change. Identification of a presenter, on the

BWe are not concerned with the authentication of the attribute Bet and assume the attributes are already
authenticated.

9Note that if matching results in several identities, a logical inconsistency exists (see case 2 in Figure 6.2)
which has to be resolved separately. Hence, we restrict here to one identity only.
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other hand, is a dynamic process which is based on the presented attributes of the presenter

(presAtrbtsp ) , not necessarily its real attributes-the ones that legitimately belong to the

presenter (attributeSet( idp)).

We abstractly define the process during which the presented attributes are mapped to

an identity. A presenter p presents a set of attributes presAtrbtsp to an issuer (or checker) of

partial identities. This is where identification happens. In the IMAAM core, partial identities

are used within a given context as representations of identities. As such, the identification

process logically splits into two consecutive steps: (1) mapping the attribute set to a partial

identity in a given context, and (2) implicit association between the partial identity and its

respective identity. The following schema summarizes the identification process.

presents At bt matches Id represents 'dp -----t pres r sp -----t p -----t t (6.3)

We now explicitly define what is referred to as false identity in the literature. A false

identity is assumed by a presenter when presenting attributes for identification that do not

belong to the presenter's identity, as stated below.

falseldentity(p) ¢:} presAtrbtsp 1- P( attributeSet(idp)) (6.4)

As shown in Figure 6.4, the conceptual process model of [181] identifies two different

categories of activities that happen before a false identity is developed: (1) collection of

personal information, and (2) creation of fictitious identity or manipulation of one's own

identity. However, only the activities in the first category are considered as identity theft.

We want to address this issue in further detail using our formal model. In the following, we

use the terms id, pld, and matches from Schema 6.3.

In the first case, in a given context c, the collected information presAtrbtsp forms a false

identity that matches a real identity id; i.e.,

:J pId E PARTIAL-lDENTITY,id E IDENTITY

matches(c, presAtrbtsp ) = pId /\ O(c, pId, id)

It is important to point out that, in this case, it is implicitly assumed that the collection

of personal information is not authorized by the owner of the identity information. We later

discuss the implications of this assumption and the importance of making it explicit.

A fictitious identity is a false identity which is not based on a real person [181]. This
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happens when the result of the identification process yields 'id = undef; more precisely, for

a presenter p in a given context c,

:J pld E PARTIALJ:DENTITY

matches(c,presAtrbtsp ) = pld 1\ O(c,pld, unde/) 0 ie- ilL(

Therefore, it is safe to assume that identity theft does not occur in the case of mapping

to a fictitious identity. However, if a false identity is created by manipulation of one's own

identity attributes, it may still match a real identity (similar to the first case). Hence, we

argue that identity theft can technically occur in the latter case.

In the following, we use our formal model to highlight some of the loose ends in the

existing definition, arguing that there is a need for more precision and rigor in defining

identity theft. In fact, we look at the problem from a different perspective and reorganize

different cases as follows. IO

1. The presented information does not belong to the presenter and is mapped to another

person's identity; i.e., idp =I- id and id =I- undef.

(a) The presenter (idp) has proper authorization from the owner ofthe identity infor­

mation (id); i.e., isAuthorized(idp,id,now) holds. It is important to point out the

need for real-time evaluation of the authorization, which emphasizes the dynamic

nature of the process. ll

(b) The presenter (idp) does NOT have proper authorization from the owner (id);

i.e., identity theft occurs.

2. The presented information lead to a fictitious identity; i.e., id = undef.

Hence, identity theft does not occur.

3. A person, by mistake, presents his/her own attributes incorrectly. Since these at­

tributes are not owned by that person, according to the Definition 6.4, a false identity

is assumed.

lOIt is important to point out that these cases capture the notion of identity theft, whereas, according
to [181], identity fraud occurs when the actual crime takes place.

llOther factors, such as the specific context where identification occurs, should also be considered in
authorization. For simplicity we use this broader definition of authorization.
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(a) Such a false identity may be fictitious, as described above (i.e., id = unde/). In

that case, identity theft does not occur.

(b) If the false identity still maps to the right person (i.e., 'id = idp '), for instance

due to the flexibility of the mapping algorithm, identity theft does not take plam

either.

(c) However, if the false identity is NOT fictitious and does NOT map to the right

person (i.e., idp i- id and id i- unde/) , identity theft has taken place, by

definition.

It is interesting to note the different insight that the formal definition provides. Firstly,

the notion of authorization introduces further complexity of real-time evaluation, context

of authorization, and validation that deserve clarification in the definition of identity theft.

Secondly, as far as identity theft is concerned, it is not important whether the presented

information is a manipulated/modified version of one's own attributes, or is completely

stolen. If the presented attributes are mapped to an identity which is different from the

identity of the presenter, an unauthorized use of the personal information of the person

behind that identity has happened; hence, there is a case of identity theft. This important

observation has not been clearly addressed before. In the conceptual model of [181], it

is implicitly assumed that "manipulation of one's own identity" is not malicious and IS

mostly used for preserving privacy. As a result, it is not included in the activities that

contribute to identity theft. Part of the problem may have been caused by the vague

definition of one '8 identity, which allows for using terms like 'multiple identities' for one

person, or 'manipulation of one's own identity' without differentiating between identity and

the attributes presented for identification.

Having a unified semantic framework facilitates integration across contexts and allows

for distributed analysis approaches for fraud detection. Within such a framework, one can

properly define and identify different cases of identity theft, and develop proper safeguards

against the misuse of identity.

6.3.2 Other Applications

In an investigation context, the identity management problem is viewed from a different

perspective. The police, or the investigators, collect bits and pieces of information in order

to derive the identity of a criminal offender. In the terminology of our framework, they try
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to collect enough attributes to reconstruct a partial identity which can be mapped to an

identity. This is a highly dynamic process, since every new piece of information may change

the constructed partial identity(ies) and their respective mappings. Crime investigation

techniques must deploy inference methods that oversee causal relationships between events

and partial identities, time and location of crime events, and crime signatures. The high

dynamics calls for systematic approaches to the design of computer-assisted investigation

tools. As such, we contend that our semantic framework can be the first building block in

that direction.

6.4 Summary and Future Work

Identity management is a challenging problem in many strategic application domains, es­

pecially in security-related and Web-based contexts. Identity management systems are

complex in nature and involve different social, legal and technical aspects. Although a wide

variety of solutions has been offered to address some of the key issues of identity man­

agement, there is still no common agreement on the definition of the most fundamental

concepts, such as what constitutes an identity.

Addressing the lack of such a unifying view, we adopt a formal modeling approach and

propose a precise semantic model based on common notions and structures of computa­

tionallogic using the ASM method. This model provides a well defined framework, called

Identity Management Architecture, for analyzing and reasoning about identity management

concepts and requirements on Identity management systems. To exemplify the practicality

of the framework in the systematic study of identity management, we applied the model

to semantic aspects of identity theft, trying to clarify the underlying definitions and basic

concepts.

This work can be further extended to study other critical requirements of IMS, such

as privacy. Having an abstract architectural view facilitates analyzing the impact of using

different privacy preserving techniques, such as anonymization, especially when multiple

parties (contexts) are involved. The framework can also be used to study the semantics

of some of the existing standards for identity management, e.g. the concept of federated

identity management.



Chapter 7

Conclusions

7.1 Summary of Contributions

The research presented in this thesis has produced four major contributions. First, we have

developed a methodological framework for computational modeling and software develop­

ment of complex social systems in interdisciplinary research contexts. Second, we have

adopted and further developed a supporting tool environment specifically addressing the

needs and requirements of modeling complex social systems. Third, the framework has

been successfully applied and tested in the context of the Mastermind project on modeling

crime patterns and theories in crime analysis and crime prevention, a key aspect in Com­

putational Criminology. Finally, we have shown the value of mathematical modeling and

rigorous analysis of highly complex socia-technical systems, such as identity management

systems, by applying a semantic model of identity management in systematic study of iden­

tity theft. We contend that these examples affirm consistency, applicability and scalability

of our approach.

Our work has addressed the lack of well-established methodologies for design, construc­

tion, validation and simulation of models of social systems. The inherent complexity of

such systems and the high interdependence and diversity of the variables involved make

the modeling process highly iterative and potentially. open-ended. Given the ever-growing

use of social systems modeling, we have emphasized the importance of developing proper

modeling methodologies in order to avoid a predicament similar to the software crisis of the

60s and 70s. In particular, we have considered agent-based modeling approaches which, due

to their flexibility in defining individual agent behavior, have gained wide-spread popularity
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for modeling social phenomena in the recent years. We have pointed out that, despite their

popularity, the shortcomings of existing agent-based approaches in addressing methodolog­

ical questions, e.g., how to build a model or how to validate a model, have raised concerns

about their reliability, limiting their success and applicability.

We have utilized the ASM formalism and (oreASM tool suite for interactive design and

validation of agent-based models of complex social phenomena. Although unconventional,

the application of the ASM paradigm to social systems has proven to be a promising ap­

proach. It addresses the fundamental needs and requirements of the iterative process of

modeling, namely:

1. Simplicity of models is managed by systematic use of the freedom of abstraction pro­

vided by the ASM paradigm;

2. Validation is integrated into all different phases of the process (i.e., conceptual, math­

ematical and experimental);

3. The inherent precision and rigor offered by the underlying mathematical foundation

enforces structure, logical thinking and critical analysis of the fundamental assump­

tions and key aspects of the systems under study.

The ASM paradigm nicely integrates with the established view of multi-agent modeling

of social systems and provides a precise semantic foundation~somethingmulti-agent sys­

tem modeling is lacking. One fundamental characteristic of our framework is its focus on

the model building phase of the development, emphasizing the importance of the coopera­

tive process of transforming an abstract concept into a computational artifact. The ASM

method also facilitates seamless transitions between different phases of modeling, ensuring

the coherence and consistency of the final models.

Application

The proposed framework addresses the needs of interdisciplinary R&D projects and has been

developed in close collaboration with non-computing researchers, in particular criminologists

[45,46,47,48,113]. It has been successfully applied in the context ofthe Mastermind project

on modeling crime patterns and theories in crime analysis and prevention. Mathematical

and computational modeling of crime serve multiple purposes in various contexts, including
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law enforcement, intelligence-led policing, and proactive crime reduction and prevention.

For intelligence-led policing, our model makes it possible to simulate likely activity spaces

for serial offenders for use in apprehension or precautions. For proactive policing, modeling

of crime allows analyzing different scenarios in crime analysis and prevention and provides a.
basis for experimental research; simulation models make it possible to run experiments that

can often not easily be done in a real-world setting. Furthermore, the Mastermind model

is designed in such a way that it is scalable and not only applicable to a broad range of

crimes but also to other environments such as airports, ports, shopping centers, and subway

stations.

The framework has also been applied in the context of identity management systems,

which are influenced by various social, legal and technical aspects. Despite a wide range

of research and development efforts in the domain, different aspects of identity manage­

ment are mostly studied separately, and there is no common agreement even on the most

fundamental concepts of the field. The lack of a unifying framework for bringing together

different aspects of identity management has caused new problems especially concerning in­

teroperability, privacy and identity fraud. We have adopted the proposed formal modeling

approach to build a precise semantic model capturing essential concepts of identity man­

agement. Our proposed Identity Management Architecture facilitates a systematic study of

identity management and provides improved accuracy in reasoning about key properties of

identity management system design. The successful application of the model to the study

of semantic aspects of identity theft has further affirmed its value by unveiling some of the

loose ends in the common existing understanding of identity theft and fraud.

These case studies have provided proof of the applicability of the framework in dif­

ferent contexts. Building on mathematical abstractions, the (oreASM tool suite facilitates

communication with domain experts, rapid prototyping and systematic construction of com­

puter simulations. Furthermore, the inherent rigor of the process provides a new means for

understanding the underlying systems, challenges the existing assumptions by eliciting am­

biguities, and creates new questions about the underlying systems. The ongoing research

and development on the framework and its application is another proof of its reliability and

scalability, as further discussed below.
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Beyond crime analysis and prevention, one may apply the Mastermind approach in coun­

terterrorism, specifically, in event planning and emergency response, or in public safety for
I

improving security measures or protecting public spaces. Mastermind is now being used as

a basis for developing a decision support tool for counterterrorism planning and developing

response strategies. The tool provides large-scale simulation models of crowd movement in

urban environments, and allows for analyzing different scenarios and the impact of different

types of potential threats. It features an enhanced 3D visualization system using the Google

Earth platform. The goal is to apply the tool for analyzing threats and developing response

strategies in safety and security planning of large events such as 2010 Winter Olympics in

Vancouver.

In a different context, the Mastermind model and the proposed framework is being used

to introduce computational modeling for studying the impact of environmental factors on

chronic diseases such as obesity. Mastermind offers a new computational approach, not

explored in the literature before, to modeling physical activity levels of people in their built

environment. The modeling exercise, within the proposed framework, enforces structured

logical thinking about the most basic concepts and demands precision and rigor in analyzing

key assumptions about the system under study. So far, it has helped unveiling some hidden

assumptions and limitations of the conventional studies in the field. Simulating the behavior

of individual agents in urban environments is invaluable in answering crucial questions for

policy makers in health care planning; e.g., what happens to physical activity levels if certain

changes take place in the environment, or what features of the environment can be changed

to have a desired impact on physical activity levels.

Exploring new directions and applying the framework in new contexts will help further

identify the requirements that need to be addressed by the methodology. This leads to the

development of new tools and best practices to support the modeling process. For instance,

we have already identified the need for a state explorer tool for the (oreASM tool suite. Being

able to closely monitor changes of the state would provide a better understanding of the

working of the model and facilitate debugging and validation processes. Providing better

visualization tools that closely match the needs of the domain experts is also essential in

this type of research. In particular, it is an integral requirement for making the models

applicable for practitioners and policy planners. As such, the next steps of development
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include defining well-structured interfaces to existing visualization tools, e.g., Google Earth

and available game engines, and providing standard visualization plugins for basic needs.

Final Remarks

Computational and mathematical modeling offer new problem solving and analysis tech­

niques that play a key role in advancing the boundaries of many research disciplines. For

the social sciences, in particular, the precision and rigor offered by mathematical models

facilitate establishing a clear and consistent understanding of the underlying complex social

systems. At the same time, computational models allow for dynamic testing and computer­

assisted experiments which may be impossible to carry out in the real world. As such,

computational models of complex social systems serve as decision support and exploration

tools. They facilitate analyzing the interplay between different variables of the system, ex­

ploring trade-offs, and developing alternate solutions by running experiments in a virtual

world. The research presented here further supports the efforts in applying computational

modeling techniques to the study of social phenomena by providing a systematic framework

for modeling and simulation, and showing the value of such rigorous approaches in novel

application contexts.
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Appendix A

Dijkstra's Shortest Path Algorithm

Dijkstra's shortest path algorithm guarantees to find the shortest path between a source

vertex s and every vertex v in a given graph in time O(n2 ) [68].

The algorithm is defined on a weighted, directed graph G = (V, E), where V is the set

of vertices, E <;;;; V x V is the set of edges on the graph, and a weight function w : E -+ R+

maps every edge in the graph to a non-negative real-valued weight. For each vertex v the

cost dv denotes the distance of the shortest path between sand v. A path p between vertex

s and vertex v is denoted by s !!... v.

The algorithm works as follows:

1. Initialize ds to o. For every other vertex v in V initialize dv to infinity, '00', representing

the fact that no path to those vertices is known yet.

2. Initialize the set of unvisited vertices Q to all the vertices in the graph except s;

i.e., Q = V - {s}.

3. While Q is not empty (Q -=1= 0), do the following:

(a) Find vertex u with minimum distance from source s.

(b) Remove u from Q.

(c) For each outgoing edge (u, v) from u, update the distance as follows:

ifdv > du+w(u,v) then
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• Update the distance of v from s: dv = du + w(u, v) .

• Add u to the shortest path of v; i.e., add u to s !!... v.
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When the algorithm finishes, dv will be the cost of the shortest path from s to v, or
.'

infinity, if no such path exists.
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Identity Management Glossary

Sources: [54, 53, 123]

• Anonym (as in anonymous): An authenticated attribute that is not linked to an

identifier. An identifier associated with no personal identifier, but only with a single­

use attestation of an attribute. An anonymous identifier ascertains an attribute, once.

An anonymous attribute used more than once becomes a pseudonym [54, 53].

• Attribute: A characteristic associated with an entity, such as an individual. Exam­

ples of persistent attributes include height, eye color and date of birth. Examples of

temporary attributes include address, employer and organizational role. A Social Se­

curity Number is an example of a long-lived attribute. Some biometrics are persistent

(e.g. fingerprints), some change over time or can be changed (e.g. hair color) [54, 53].

• Attribute Authentication: Proving an association between an entity and an at­

tribute. Confirming some one's age is an example. This is usually a two-step process,

where the association between an entity and an identifier is established, and then a

link between identifier and attribute is established [54, 53].

• Authentication: Proving an association between an identifier or attribute, and the

relevant entity. For example, an automobile is identified by its license plate, and that

is authenticated as legitimate by the database of cars that are not being sought for

enforcement purposes [54, 53].

• Authentication vs. Identification: Authentication accepts a possibility of error;

reasonable risk of misidentification or mis-authorization [123].
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• Authorization: A decision to allow a particular action based on an identifier or

attribute. Examples include the ability of a person to make claims on lines of credit,

the right of an emergency vehicle to pass through a red light or a certification of a

radiation-hardened device to be attached to a satellite [54, 53].

• Identification:

In [54, 53]: Association of a personal identifier with an individual presenting

certain attributes. For example, accepting the association between a physical

person and claimed name, or determining the association with a medical record

and a patient using physical attributes.

In [123]: Identification is "having enough assurance of who a person is to proceed

with a transaction. What constitutes "enough" is very contextual. It turns on

the risks of misidentification"

• Identifier:

In [54, 53]: An identifier identifies a distinct person, place or thing within the

context of a specific namespace. For example, an automobile, a bank account and

person each have identifiers. The automobile has a license plate and the bank

account has a number. The person may be associated with either the auto or

the account through additional information, such as a certificate or ownership,

or a social security number. One identity can have multiple identifiers: a car

has a permanent serial number and a temporary license place. Each identifier

is meaningful only in a specific context, or namespace, and can reasonably be

thought of as having a ithing identified, identifier, namespacel, set.

In [123]: Identifiers are building blocks of identification. These are facts that

distinguish people and entities from one another (same as characteristics or at­

tributes used for sorting or categorizing entities). Identifiers are classified as

follows:

1. Something-you-are: inherent characteristics (mostly) attached to physical

body, e.g. DNA. These are known as biometrics and are further categorized

into physiological and behavioral.

2. Something-you-are-assigned: socially defined titles such as names and ad­

dresses. These identifiers are not unique and are subject to change.
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3. Something-you-know: some distinct knowledge such as password, or mother's

maiden name. Known as epistemetric identification, the knowledge of a per­

son is compared to what he/she is supposed to know given her alleged identity

(Fact-Checking) .

4. Something-you-have: possessing some distinct item such as identity card (also

called 'token'). Tokens are physical objects that help identifying their bearer

(driver's license, access cards, etc.).

Identifiers are of different qualities. Some are unique (DNA), some are fixed

(mother's maiden name), and some are transient (wearing a specific shirt). Qual­

ity of identifiers are defined along the vectors of fixity, distinctiveness, and perma­

nence which determines how they should be used. Most importantly the quality

of an identifier depends on how useful it is over time.

• Identity: The set of permanent or long-lived temporal attributes associated with an

entity [54, 53].

• Identity Authentication: Proving an association between an entity and an iden­

tifier. For example, the association of a person with a credit or educational record

[54,53].

• Multifactorjmulti-identifier Identification: Using a combination of identifiers to

achieve higher quality [123].

• Personal identifier: Persistent identifiers associated with individual human and

attributes that are difficult or impossible to change, such as human date of birth,

height and genetic code [54, 53].

• Pseudonym: An identifier associated with attributes or sets of transactions, but with

no permanent or personal identifier. [54, 53]
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