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Abstract

Asymmetric many-core processors (AMPs) consist of cores varying in size, frequency, power

consumption and performance, all exposing the same instruction-set architecture. Since this

architecture exploits both powerful fast cores and simple slow cores, it can oer a potential

speedup that is much greater than symmetric architecture. This work for the rst time

implements simple changes to the hypervisor scheduler, required to make it asymmetry­

aware, and evaluates the benets and overheads of these asymmetry-aware mechanisms.

Our results indicate the signicant performance improvements, reaching up to 36% in our

experiments. Most performance improvements are derived from the fact that an asymmetry­

aware hypervisor ensures that the fast cores do not go idle before slow cores and from the

fact that it maps virtual cores to physical cores for asymmetry-aware guests according to

the guests expectations. Other benets from asymmetry awareness are fairer sharing of

computing resources among VMs and more stable execution time.
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Chapter 1

Introduction

Asymmetric multicore processors (AMP) consist of cores exposing the same instruction-set

architecture (ISA) but delivering different performance [2] [13]. The cores of an AMP system

typically differ in clock frequency, power consumption, and possibly other microarchitectural

features. A typical asymmetric processor could consist of several large fast cores (high clock

frequency, complex out-of-order pipeline, high power consumption) and a large number of

small slow cores (low clock frequency, simple pipeline, low power consumption).

Unlike symmetric multicore processors (SMP), AMP systems better cater to a diversity

of workloads, and by doing so, they potentially deliver a better performance per watt and

per area than SMPs [12] [13] [17]. For example, on an AMP system, highly CPU-bound

applications with a lot of available instruction level parallelism (ILP) could be mapped to

fast cores, while memory-bound applications that frequently stall the processor due to a

high rate of memory requests could be mapped to slow cores. This mapping maximizes

performance per watt, because applications are mapped to cores according to their needs:

high-ILP applications that benefit from the features of complex cores run on fast cores, while

memory-bound applications are mapped to slow cores due to the notion that the speedup

they experience on fast cores relative to slow cores is disproportionately smaller than the

additional power that the fast cores consume. Furthermore, fast cores on AMP systems

could be used to accelerate sequential phases of parallel applications, effectively mitigating

Amdahl's law [2] [12].

The potential of AMP systems can only be realized by means of proper scheduling

support [4] [6] [15] [14] [20]. A process scheduler must ensure that the fast cores are allocated

to those processes or threads that can use them most effectively (e.g., high-ILP threads or

1



CHAPTER 1. INTRODUCTION 2

threads executing sequential phases of parallel applications). Furthermore, it must ensure

that scarce fast cores are shared equally among the threads.

Asymmetry-aware schedulers for operating systems have been proposed in recent work

[6] [14] [20]. This work has shown that an asymmetry-aware scheduler can deliver as much

as 38% improvement in comparison with an asymmetry-agnostic scheduler. These prior

schedulers typically measure the runtime characteristics of the threads and then map threads

to fast and slow cores based on these characteristics.

While these operating system-level solutions are very effective in the operating systems

that run on bare hardware, they would not work in virtualized environments because existing

hypervisor schedulers are not asymmetry-aware. As a result, the hypervisor could negate

an asymmetry-aware scheduling policy used in the guest operating system. For example,

suppose the guest operating system determines that one of its virtual CPUs is fast (e.g., by

probing the CPU speed) and then tries to map the most high-ILP threads on that virtual

CPU. However, if the hypervisor then remaps that virtual CPU to the slow physical core,

the asymmetry-aware scheduling done in the guest will not be effective. This presents a

problem for increasingly popular virtualized environments [16]. To address this problem,

hypervisor scheduling algorithms must also be made asymmetry-aware.

In this study, asymmetry support in scheduling algorithms of hypervisors is addressed.

To the best of our knowledge, this study is the first to address this problem. The first

goal is to provide proper support for asymmetry-aware guests. The second goal is to design

scheduling algorithms for asymmetry-unaware guests, since a vast majority of operating

systems are still asymmetry-unaware. We design, implement and evaluate the following: an

asymmetry-aware scheduler for hypervisors (AASH) that has the following properties:

1. Support for asymmetry-aware guest operating systems: We design a mech­

anism to ensure deterministic mapping of fast virtual cores to fast physical cores.

Assuming that each virtual guest is entitled to a limited number of fast-core cycles,

all fast-core cycles are given to the fast virtual core as opposed to being spread among

all virtual cores.

2. Equal sharing of fast cores cores among all guests: Hypervisors typically run

multiple guests on the same hardware. An asymmetry-agnostic scheduling algorithm

could lead to unequal sharing of scarce fast-core resources among virtual guests. This
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could result in unstable performance and complicate accounting. We provide a mecha­

nism that ensures equal sharing of fast cores. This mechanism is useful for asymmetry­

aware guests (when multiple such guests are running on the same asymmetric hard­

ware) as well as for asymmetry-unaware guests. In addition to improving fairness,

this algorithm significantly improves performance of parallel applications, because it

equally accelerates all threads performing the computation, resulting in a more bal­

anced utilization of resources.

3. Acceleration of sequential phases on fast cores: AMP systems can be effectively

used for mitigating Amdahl's law if sequential phases of parallel applications are ac­

celerated on the fast cores [2] [12]. The proposed scheduler provides this functionality

for asymmetry-unaware guests. Assuming that each virtual machine runs a single ap­

plication or service [10], our scheduler detects sequential phases in a virtual machine

by monitoring the number of active virtual CPUs. When the number of active virtual

CPUs reduces to one, the single active virtual CPU is mapped to a fast core, so that

the virtual machine's sequential phase is accelerated. This method also better serves

the asymmetry-aware operating systems when they enter their sequential phases.

4. Providing coarse-grained prioritization in using fast cores: We also implement

a mechanism that allows prioritizing the usage of fast cores. There are two priority

classes: high and low. A virtual machine in a high-priority class gets preference when

fast-core CPU time is allocated. The remaining fast-core CPU time is allotted to other

virtual machines. This mechanism can be used for implementing service differentiation

policies.

Although the provided mechanisms inspire the design of new interesting Quality of Service

policies, discussion of these policies is outside the scope of this work: our current focus is

on the mechanisms and their effectiveness.

The proposed asymmetry-aware scheduler is implemented on top of the Xen hypervisor

[5] and evaluated on a real multicore system that is configured to be asymmetric via Dynamic

Voltage and Frequency Scaling (DVFS). DVFS provides the ability to set the cores to run

at different frequencies. The effects of asymmetry-aware mechanisms on performance are

studied, and the associated overheads are analyzed. It is demonstrated that the proposed

asymmetry-aware scheduling mechanisms in the hypervisor delivers the following benefits:
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• The scheduler provides fair sharing of scarce fast cores and predictable performance.

We demonstrate that with the scheduler applications have much more stable comple­

tion times than with the default Xen scheduler.

• We show that asymmetry-aware guests can accomplish up to 16% better performance

with our scheduler.

• Virtual machines running parallel applications with sequential phases can experi­

ence up to 31% performance improvement with the proposed scheduler relative to

an asymmetry-unaware default scheduler.

The benefits of these solution are accomplished by means of periodic migrations of virtual

CPUs among fast and slow cores. These migrations, an essential tool of any asymmetry­

aware scheduling algorithm, may be quite costly since a migrated thread may lose the cache

state accumulated in the previous core and suffer performance degradation. The imple­

mentation in this work is carefully crafted to avoid this overhead. The migration related

performance degradation is very small with the proposed scheduler. It is negligible for most

applications and reaches at most 4% in isolated cases. Demonstrating how to implement

asymmetry-aware scheduling with low migration overhead is an important contribution of

this work.



Chapter 2

Design and Implementation

The proposed scheduler is called AASH (Asymmetry-Aware Scheduler for Hypervisors),

and it is implemented on top of the Credit scheduler. Credit scheduler, the default sched­

uler in the Xen hypervisor [5] [9], is a simple credit-based scheduler with a number of

characteristics that makes it a suitable choice for symmetric multicore processors (SMPs).

This scheduler automatically balances the load between all available cores. Before going

idle, CPUs will try to steal work from other CPUs if they can find any. It is a fair scheduler

which implies that all virtual machines get the same time slice to run on the CPUs. Credit

scheduler works by assigning credits. Virtual machines are assigned to CPUs based on the

amount of credit they have.

In the Credit scheduler, queues are local to CPUs and each CPU handles its own round­

robin scheduling. In order for a virtual CPU to be scheduled, it needs to be on a physical

core's run queue. This run queue is a priority queue. There are three types of elements

(virtual CPUs) in this queue: over virtual CPUs that have consumed all their credits and

can run on the physical CPU if there is extra time, under virtual CPUs that are yet to

consume their credits, and boosted virtual CPUs that have the highest priority. When there

is a boosted virtual CPU at the head of the run queue, it would cause the currently running

virtual CPU to get descheduled (if the currently running virtual CPU is not boosted itself).

There is a run queue that all virtual CPUs to be scheduled are put into and there is a current

virtual CPU which is currently running on the physical CPU. The CPU keeps the current

virtual CPU running, and when it is done with the current virtual CPU, it puts it back into

the run queue and takes another virtual CPU from the head of the run queue. A virtual

CPU keeps running on a CPU until it has consumed all its credits or until its time slice is

5



CHAPTER 2. DESIGN AND IMPLEMENTATION 6

over. In the first case, the priority of the running virtual CPU changes from under to over

and it will be inserted into the run queue. When inserting a virtual CPU into the run queue,

the virtual CPU will be inserted according to its priority. The scheduler needs to work in a

round-robin fashion, so every time a virtual CPU is descheduled, it will be inserted after all

virtual CPUs with the same priority to preserve fairness. In other words, the descheduled

virtual CPU will be inserted before the first virtual CPU with a lower priority.

Normally just under and over virtual CPUs exist in the run queue. Boosted virtual

CPUs are a special case of I/O bound virtual CPUs. I/O bound virtual CPUs usually do

not consume much CPU time, waking up periodically to process the data and then waiting

for I/O again. The concept behind boosted virtual CPUs is that this type of virtual CPUs is

likely to yield to other virtual CPUs because they are doing I/O. Therefore, it is reasonable

to schedule them first. If a boosted virtual CPU consumes more than a tick of CPU time,

its priority will be changed to under. In short, whenever a virtual CPU wakes up (e.g.

from I/O), it will have a boosted priority. If it consumes too much CPU, its priority will be

changed back to under.

A scheduling clock tick is a period of time during which the scheduler wakes up and

checks followings: (1) the state of the run queue for the presence of a virtual CPU with

higher priority, and (2) the current virtual CPU to find out if all its credits are consumed.

Time slices are equivalent to three ticks. Therefore, when the scheduler schedules a virtual

CPU on a CPU, it will wake up three times during the runtime of the virtual CPU to check

the states (e.g. if the tick time is 10ms, the time slice time will be 10 * 3 = 30ms. A virtual

CPU will be run for 30ms at most, and during this 30ms the scheduler wakes up every 10ms

to do some local accounting). Tick timers are per core. Every core wakes up independently

and checks its own run queue independent of the other cores.

These are the characteristics of the Credit scheduler which we retained in our scheduler.

The AASH scheduler inherits the same queues, clock ticks and time slices, and it works

based on the same mechanism as the Credit scheduler. Although these mechanisms work

well on SMPs, they are not sufficient for supporting AMP systems. The Credit scheduler

does not recognize the asymmetry of the underlying hardware and therefore cannot benefit

from this asymmetry.

The AASH scheduler addresses asymmetry support in scheduling algorithms of hypervi­

sors. Four main criteria have been considered in designing this algorithm: (1) equal distribu­

tion of resources in asymmetric many-core environments, (2) supporting asymmetry-aware
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operating systems, (3) mitigating the effects of Amdahl's law by scheduling single-threaded

workloads and sequential phases of multi-threaded applications on powerful cores, and (4)

providing coarse-grained prioritization. The following sections explain how each of these

goals is addressed by the AASH scheduling algorithm.

2.1 Equal sharing of fast cores among all guests

As mentioned earlier, the default Xen scheduler is unaware of the asymmetry of the system,

and as a result it arbitrarily assigns virtual CPUs to the physical cores. In this case, some

virtual machines may not be scheduled on the fast cores during their entire run time. In

some situations, where the number of active virtual CPUs is smaller than the number of

available physical cores, the default Xen scheduler may schedule no virtual CPU on the

fast cores. This results in unpredictable and unfair performance in the system. Besides

that, the default scheduler tries to avoid unnecessary migration of virtual CPUs on the

physical cores, in order to preserve cache affinity. Consider a hypothetical scenario where

each virtual machine is a container for a single application, so all threads in the virtual

machine cooperate. In multi-threaded applications these threads may often synchronize

with one another, so one thread cannot proceed until all threads reach the synchronization

point. If the default scheduler runs one of the virtual CPUs on a fast core, one thread among

all threads of the parallel application inside that virtual machine will finish earlier than the

others. However, the application as a whole does not necessarily experience proportional

speedup, because the mentioned thread cannot go beyond the synchronization points and

needs to wait for all other threads to finish and reach the synchronization point.

The AASH scheduler addresses these problems by exposing the asymmetric nature of the

system to the hypervisor and sharing fast cores equally among all virtual CPUs. Therefore

all virtual CPUs experience the same speedup proportional to the amount of time they were

scheduled on a fast core. In the above scenario, even virtual machines with a multi-threaded

application of cooperating threads may benefit from running on the fast cores. Remember

that this timesharing behavior is in effect when all virtual machines on the system have the

same priority. In cases when there are virtual machines with higher priorities, e.g. due to

entering a sequential phase, fast cores will not be timeshared between all virtual CPUs, but

between those virtual CPUs belonging to the virtual machine of a high priority. These cases

will be explained later in this section.
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In the AASH scheduler, a system-wide thread will wake up every three ticks to perform

global accounting. This thread updates the credits of the virtual CPUs. Credits are a metric

to make sure that every virtual CPU gets a specified amount of CPU time. The more credits

a virtual CPU has, the more it can run on a physical core. There are two types of credits in

our scheduler: fast and slow credits. Only virtual CPUs that have fast credits can run on

the fast cores. The whole accounting system is based on credits. On each accounting period,

a number of credits (fixed and determined by the resources of the system) is distributed

between all virtual CPUs. Virtual CPUs consume their credits when they are running on

a physical core. For example if there is a fast core that needs to be shared between two

virtual CPUs, in the first accounting period some fast credits will be assigned to the first

virtual CPU so that it can run on the fast core, and in the second accounting period the

same amount of fast credits will be assigned to the second virtual CPU so that the second

can run for an equal duration on the fast core. Both fast and slow credits are required to

make sure that every virtual CPU gets the same amount of CPU time on the physical cores.

In each accounting period, fast and slow credits will be distributed among virtual CPUs.

At first, the amount of slow credits is computed. This is equal for all virtual CPUs. To

get the number of slow credits to distribute, the scheduler divides the total slow credits

present in the system (determined by the number of slow cores) by the total number of

active virtual CPUs minus the ones that will be served by fast cores. To reduce the number

of migrations fast credits will only go to one virtual CPU per accounting period (i.e. one

virtual CPU if we have only one fast core, if we have two fast cores then fast credits will

go to two virtual CPUs per accounting period etc.). To make sure that every virtual CPU

gets fast credits to run on the fast cores, a list of virtual CPUs is maintained in the normal

queue. In the accounting period, a virtual CPU will be taken from the top of the normal

queue and assigned fast credits. This is a First In First Out (FIFO) queue, therefore, after

a virtual CPU gets to run on the fast core, it is inserted at the end of the normal queue.

This behaviour is generalized so that if there are multiple fast cores present in the system

(n), in each accounting period "n" virtual CPUs are taken from the normal queue and are

assigned fast credits. Note that only "n" cores are assigned fast credits, this is necessary to

minimize the queuing on the run queues.
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2.1.1 Migration and work stealing

9

Migration is the task of moving one virtual CPU from the run queue of one physical core

to another. There are two types of migrations:

1. It can be due to load imbalance (work stealing). Work stealing is performed when one

CPU has a non-empty run queue while another CPU is idle. Before a CPU goes idle,

it first checks the run queue of all other CPUs.

2. To ensure fair sharing of fast cores, virtual CPUs must be migrated to run queues of

the fast cores so that they can be scheduled. When they have consumed their fair

share of fast core credits, they must be migrated back to the run queue of a slow core

so that they can run there until the next time they can run on the fast core.

Physical cores do not steal virtual CPUs from physical cores of a different type. A fast

core does not steal work from the run queue of a slow core and vice versa. Instead the credit

distribution and the second type of migration (to ensure fair sharing of fast credits) are

done so as to preserve load balance. First, the credits are distributed so that a fast core will

never go idle before a slow core: in each accounting period n cores are assigned fast credits.

There are n fast cores and there are n virtual CPUs with fast credits. Therefore, a fast core

will never need to steal a virtual CPU from the run queue of a slow core. However, a fast

core may steal from another fast core. Second, when a migration is needed, the scheduler

does so in a way to make sure that it will not cause a load imbalance. Before explaining

how this is done, it is necessary to understand the second type of migrations.

The second type of migration occurs when a virtual CPU needs to be moved from the

run queue of a slow core to the run queue of a fast core (because now it has fast credits)

or when it needs to be moved from the run queue of the fast core it was running on to the

run queue of a slow core (because it has consumed all its fast credits). On each tick, each

physical core examines the currently running virtual CPU for an update in credits. If the

current virtual CPU has run out of credits the priority will be changed to over. If a virtual

CPU running on the fast core has finished its fast credits, that virtual CPU will marked

for a migration to a slow core. If a virtual CPU running on a slow core now has some fast

credits, it will be marked for migration to a fast core. There is a chance of creating a load

imbalance here: if the scheduler just moves the virtual CPU from fast core to any slow core

it may cause a load imbalance at the target slow core. Load imbalance is prevented by
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moving the virtual CPU from the fast core to the run queue of the slow core which is likely

to go idle in the next accounting period (because in the next accounting period the running

virtual CPU there would be assigned some fast credits and will be forced to move to the

run queue of a fast core). This is easy to detect since we are maintaining a list of virtual

CPUs that are going to get fast credits on the next period.

2.2 Support for asymmetry-aware guest operating systems

Mapping of virtual CPUs in a asymmetry-aware guest to fast and slow physical cores must

be deterministic so that the guest operating system can rely on its knowledge of fast cores.

If the guest operating system assumes the first virtual CPU is a fast core but the hypervisor

maps the first virtual CPU to a slow core, the guest operating system will fail to benefit

from its asymmetry-awareness. To address this issue, AASH scheduler maps a subset of

virtual CPUs to fast cores (assume there are "n" fast cores in the system and the AASH

scheduler maps the first "n" virtual CPUs to these physical fast cores) and lets the rest of

the virtual CPUs run on the slow cores. At the end of the accounting period, the AASH

scheduler scans the head of the normal queue. If it finds a virtual CPU belonging to a

asymmetry-aware guest that must not be assigned fast credits (because the virtual CPU id

is bigger than "n"), it swaps that virtual CPU with another virtual CPU from the same

virtual machine that can be assigned fast credits. Remember that the virtual CPUs that

are in the front of the queue will be assigned fast credits in the next accounting period. In

this way, the scheduler makes sure that only the first "n" virtual CPUs get fast credits and

that the credit distribution is fair and proportionate to the number of active virtual CPUs

of each virtual machine.

An example would help understanding how the AASH scheduler deals with asymmetry­

aware guests. Assume that there are two fast and six slow cores present on the system

and two virtual machines (VMl and VM2) are running. VMl runs an asymmetry-aware

guest while VM2 runs an asymmetry-agnostic guest. Since there are two physical fast cores,

only the first two virtual CPUs of VMl will be scheduled on the fast cores and the two

remaining ones will be scheduled to run on any of the six slow cores. However, the fast

cores will be time-shared between all four virtual CPUs of the second virtual machine.

AASH scheduler is still fair in this scenario, because it will assign twice as many fast credits

to each virtual CPU of the first virtual machine. In other words, each virtual machine gets
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fast credits proportionate to the number of virtual CPUs it has. If the virtual machine is

not asymmetry-aware, that amount of credits will be distributed between all virtual CPUs;

while if the virtual machine is aware of the asymmetry, that amount of credits is distributed

between the designated virtual CPUs in a way that only a subset of virtual CPUs run on

the fast cores and the asymmetry of the system will be visible in the virtual machine.

2.3 Acceleration of sequential phases on fast cores

We have slightly changed the behavior explained above to add support for phase-awareness.

Instead of keeping only one list of virtual CPUs, there are two lists. The first list, i.e., the

normal queue works as explained when the second list, i.e., the fast queue is empty. When

there are some virtual CPUs in the fast queue, they will be assigned fast credits first. If there

are fast credits remaining, that will be distributed between the virtual CPUs in the normal

queue. In other words, the fast queue's virtual CPUs have a higher priority than the normal

queue's virtual CPUs. A virtual CPU moves from the normal queue to the fast queue when

its virtual machine enters a sequential phase. The scheduler detects the sequential phase by

monitoring the number of active virtual CPUs of that virtual machine. The reason behind

this decision is that when a parallel virtual machine enters a sequential phase! it will not

use all its virtual CPUs. For example when a virtual machine with eight virtual CPUs is

only using one of its virtual CPUs, it means that virtual machine is running a sequential

application (or a sequential phase of a parallel application). Therefore, the decision is made

by monitoring the number of active virtual CPUs of each virtual machine. Whenever the

number of active virtual CPUs of a virtual machine is smaller than the number of the fast

cores present in the system, all active virtual CPUs of that virtual machine will be moved

to the fast queue. When the virtual machine begins using more virtual CPUs, the virtual

CPUs will be moved back to normal queue.

Since the AASH scheduler is capable of detecting the phase changes of parallel applica­

tions where unused threads go to sleep during sequential phases, it schedules the sequential

components on the fast cores in order to accelerate the sequential part of the application.

The AASH scheduler gives a higher priority to the virtual machines that are not parallel.

Consider a case where a virtual machine with only one virtual CPU is co-scheduled with

1We assume that threads will sleep during sequential phases. We do not address the case where threads
spin during sequential phase.
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a virtual machine with three virtual CPUs and the physical system only has one fast core.

There are three options for sharing the fast core in this scenario. The first option is to assign

the fast core to one of the cores of the parallel virtual machine and let the serial virtual

machine run on the slow core. It is most probable that this strategy would not improve the

performance of the parallel virtual machine. As we mentioned before, parallel applications

(which are running on parallel virtual machines) cannot finish earlier than normal if one of

their threads is accelerated. Usually all threads in an application are synchronized at one

point, and if one of the threads finishes earlier than others, it still needs to wait for the other

threads to finish. Therefore, accelerating one thread out of all threads of a parallel applica­

tion will not result in reducing the runtime of the application. The second option is to run

the serial virtual machine on the fast core and run the parallel virtual machine on the slow

cores. The parallel virtual machine is already benefitting from the parallelism. By running

the serial virtual machine on the fast core, the performance of that virtual machine will be

improved proportionally to the speed of the fast core. The third option is to timeshare the

fast core between both virtual machines. Since there are four virtual CPUs and only one

fast core, all virtual CPUs will run faster on our system. The fast core in our system runs

2X faster than slow cores, therefore, each virtual CPU will run 25% faster than if no fast

credits were assigned to it. With the third option, the performance of both virtual machines

is improved by 25%; while with the second option, the performance of one virtual machine

is improved by 100% and the performance of the other virtual machine is not hurt.

2.4 Coarse-grained prioritization in using fast cores

The AASH scheduler supports two levels of priorities. To prioritize a virtual machine, the

corresponding virtual CPUs of that virtual machine move from the normal queue to the fast

queue. In this way, fast cores will be given to the prioritized virtual machine first (as well

as to the serial virtual machines) and if there are extra fast credits remaining, they will be

distributed between the remaining virtual machines.



Chapter 3

Evaluation

In this chapter, we evaluate the efficiency of the AASH scheduler. The hardware config­

uration is described in Section 3.1. In Section 3.2, the overhead of inevitable migrations

performed by the AASH scheduler is evaluated. In Section 3.3, the mechanisms for fair

sharing is evaluated. This evaluation is mentioned before others, because this mechanism

is the basic algorithm on top of which other mechanisms are built. In Section 3.4, the

supports for asymmetry-aware operating systems are evaluated. Next in section 3.5, the

phase-awareness feature is evaluated. Finally, we evaluate the prioritization mechanism in

using fast cores in section 3.6. The results of the AASH scheduler are compared with those

of the Credit scheduler (the default Xen scheduler).

3.1 Hardware configuration

We chose an AMD Opteron 2350 Barcelona, with two quad-core chips, as our experimental

machine. Cores on the same chip share a 2 MB L3 cache and each core has a private 512

KB L2 cache, a 64 KB instruction cache and a 64 KB data cache. Our system is populated

with 8 GB of RAM. We assumed a system with two core types: fast and slow. Fast cores

are typically characterized by a large area, high clock frequency, complex superscalar out­

of-order pipeline and high power consumption. Slow core typically use small area, have

a lower clock frequency and a relatively simple pipeline, and consume a lot less power.

The reason for assuming only two core types is that this structure is mostly likely to be

adopted in future AMP systems. According to a study by Kumar et al. [13], supporting

only two core types is sufficient for achieving most of the potential of asymmetric designs.

13
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Asymmetry was emulated by setting cores to run at different frequencies using dynamic

voltage and frequency scaling (DVFS). Several test configurations were created for different

experiments. In some configurations, fewer cores than the total available were used to avoid

any performance effects due to cache sharing, and due to our console monitoring applications

that were running in administrative domain.

For evaluation we used primarily scientific applications, focusing on those that perform

little I/O, since these applications are especially sensitive to optimizations related to allo­

cation of CPU resources. Furthermore, scientific applications are increasingly executed in

data centers via Cloud Computing initiative or in other public data centers, such as West

Grid. Our evaluation provides insight into potential impact of asymmetry-awareness in

hypervisors. We found these benefits to be quite significant.

3.2 Evaluating the overhead of migrations

Recall that the AASH scheduler timeshares the fast cores among all virtual CPUs and

therefore causes more migrations than the default Xen scheduler. Migration of virtual CPUs

among physical cores of different types may be costly if the cores are located in different

memory hierarchy domains; by memory hierarchy domain we mean a group of cores sharing

a last-level cache (LLC). Cross-memory-domain migrations cause the migrated virtual CPU

to lose the state accumulated in the LLC. Rebuilding this state after migration may cause

performance degradation.

In order to evaluate the overhead of migrations, all cores were configured as slow (lGHz),

but the AASH scheduler still deems the system asymmetric (with one fast core) so it per­

forms its regular migrations. This experimental setup allows us to bring out the overhead

associated with AASH's migrations, while eliminating any performance improvements from

asymmetry-aware scheduling policy. We compare the completion time of the applications

running under the AASH scheduler to that under the default Xen scheduler; any additional

latency under AASH is due to migration overhead.

Migration overhead could manifest differently for applications with different memory

access patterns. Cache-sensitive applications (those with a large cache footprint and a high

cache access rate) could be sensitive to frequent migrations. Cache-insensitive applications

could be indifferent to additional migrations. We used the classification scheme similar to

that in [22] to determine which applications are cache-sensitive and which are not. For
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cache sensitive applications, we chose leslie3d and libquantum from the SPEC CPU2006

benchmark suite and me! from the SPEC CPU2000 benchmark suite. These workloads

are sensitive to changes in cache availability and have high cache miss rates. For cache

insensitive applications, we chose ealeulix, namd and sjeng from the SPEC CPU2006 and

sixtraek from the SPEC CPU2000. These applications have low cache access rates [22]'

and thus we expect a low sensitivity to the loss of cache investment when a migration is

performed.

Each workload was run under AASH scheduler with a 3ms, lOms and a 25ms scheduling

clock ticks and under the default Xen scheduler with a lOms clock tick. Figure 3.1 shows the

results (low bars are good). There is a negligible performance degradation with the AASH

scheduler for cache-sensitive applications. For the most cache-sensitive application me! the

overhead reaches 4%. Cache-insensitive applications are largely unaffected by migrations.

We have evaluated the sensitivity of performance to migration frequency, changing the

timeslice from 3 to 25 milliseconds, and found that the overhead slightly increases when the

timeslice is reduced, and decreases when it is increased.

1.2

1.04 1.03 1.03 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.01 1.02 1.llO 1.llO
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• AASH Scheduler 3m, • AASH Scheduler 10m, OAASHScheduler 25m,

Figure 3.1: Normalized execution times under the AASH scheduler with 3ms, lOms and
25ms clock ticks relative to the default scheduler

We conclude that migrations do have an effect on performance, albeit a small one. At the

same time, migrations are an integral part of any asymmetry-aware scheduling algorithm,

as they are the key mechanism used to accomplish various policies of resource sharing.

Since the overheads incurred with all migration frequencies, we chose to use lOms as the
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default clock tick in our scheduler to constitute a more fair comparison with the default Xen

scheduler that uses a 10ms clock tick and did not investigate the effects of using a larger

clock tick on other aspects of performance and fairness.

3.3 Evaluating equal sharing capability

In this section, an experimnet is explained to evaluate equal sharing capability of the AASH

scheduler, and following resulsts are demonstrated:

1. The AASH scheduler accomplishes equal sharing of fast and slow cores among virtual

CPUs, delivering more stable performance time, while the default asymmetry-unaware

scheduler is unable to provide these benefits.

2. The AASH scheduler delivers better performance for many applications, because it

accomplishes a better utilization of fast cores.

Three different types of workloads were used in this experiment. We used the same sets of

sensitive and insensitive benchmarks as in the previous section. Furthermore, we used several

parallel applications from the PARSEC benchmark suite (blackscholes, bodytrack, facesim,

ferret and uidanimate) , radix from the SPLASH benchmark suite, FFT- W benchmark

and BLAST benchmark suite. PARSEC is a benchmark suite composed of multi-threaded

programs. The suite focuses on emerging workloads and was designed to be representative

of next-generation shared-memory programs for chip-multiprocessors [7]. Stanford Parallel

Applications for Shared Memory (SPLASH) is a suite of parallel programs written for

cache coherent shared address space machines [21]. FFT- W is a C subroutine library for

computing the discrete Fourier transform in one or more dimensions, of arbitrary input size,

and of both real and complex data [11]. BLAST stands for Basic Local Alignment Search

Tool and is used to find similar sequences in biological databases [1]. We also use the eon

workload from the SPEC CPU2000 benchmark suite.

Two different configurations were used in this experiment. In the first configuration,

we used four identical virtual machines. Each virtual machine has one virtual CPU, and

the virtual machines were scheduled on the four physical cores (one fast core running at 2

GHz and three slow cores running at 1 GHz). We ran the same benchmark on all virtual

machines to simplify the comparison of the completion times for different virtual machines.

The completion time of each workload was measured in each virtual machine.
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Figure 3.2: Configuration 1: Completion times on four VMs
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Figure 3.2 shows the completion time of the benchmarks using the AASH scheduler and

the default Xen scheduler. The vertical bar shows the completion time. In Figure 3.2 each

bar is made of four parts showing the completion time of each instance of the benchmark in a

different virtual machine. The black line at the top of each bar shows the standard deviation

of the completion times. As evident from Figure 3.2, the bars for the AASH scheduler are

divided into four equal parts, meaning that the four virtual machines (running identical

benchmarks) are finishing their work at the same time. However, with the default Xen

scheduler, some virtual machines are finishing earlier than the others. This is because the

default Xen scheduler is asymmetry-unaware and it may run some VMs on fast cores more

than others. We also see that the standard deviation of completion times is much lower

under the AASH scheduler, meaning that it delivers a more predictable performance.

The goal of the second configuration was to show the better utilization of fast cores in

the AASH scheduler. We wanted to evaluate both single-threaded and parallel workloads,

and so we used only one virtual machine with eight virtual CPUs. Our experimental system

was configured with eight physical cores (one fast core running at 2 GHz and seven slow

cores running at 1 GHz). In case of single-threaded workloads, n identical instances of the

workload were run on the virtual machine, and for multi-threaded workloads the number of

threads was set to n (where n matches the number of virtual CPUs). In this way, we have

at most one running thread on each virtual CPU. Since threads would finish faster on the

fast cores, it would be the case under the default (asymmetry-unaware) Xen scheduler that

fast cores have no threads to run and they would go idle. In the AASH scheduler fast cores

never go idle before slow cores. Due to a better utilization of fast cores, we expected lower

completion times under the AASH scheduler.

Figure 3.3 presents the average completion time and the standard deviation of the com­

pletion times for each workload on the AASH and default Xen schedulers, and Figure 3.4

shows the speedup under the AASH scheduler relative to Xen. It can be seen that paral­

lel applications experienced significant performance improvements (up to 31% in FFT- W)

when they are run with the AASH scheduler. Sequential applications experienced small

performance overhead due to migrations as explained in Section 3.2. The parallel appli­

cations experienced a speedup under the AASH scheduler for two reasons. First, AASH

delivers a more balanced utilization of CPU resources. As a result, all virtual CPUs (and
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thus all threads l ) are equally accelerated on fast cores. Threads thus advance at an equal

pace rather than finishing at different times . The other source of performance improve­

ment comes from the fact that AASH utilizes the fast cores more efficiently for applications

with long sequential phases. BLAST and FFT- W have rather long sequential phases: they

spend 44% and 87% respectively running with only a single active thread (and a single

active virtual CPU). The AASH scheduler accelerates these sequential phases on the fast

cores, because it ensures that the fast cores are always busy as long as there is something to

run on them. The asymmetry-unaware default Xen scheduler, on the other hand, may leave

the virtual CPU running the sequential phase on the slow core, delivering no acceleration

to this bottleneck part of the application. The ability to utilize fast cores more effectively

enables AASH to deliver up to 31% performance improvement to parallel applications with

large sequential phases. Other parallel applications have smaller sequential phases (or none

at all), so they experience smaller (albeit still significant) performance improvements.

Note that in these single-application experiments, acceleration of sequential phases would

occur under any asymmetry-aware scheduler that was designed to ensure that the fast cores

do not go idle before slow cores. When multiple virtual machines are running, the scheduler

1Assuming one thread per virtual CPU and assuming that the guest operating system scheduler does not
move threads among virtual CPUs too frequently.
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needs to explicitly detect that a particular virtual machine has only a single virtual CPU

that is active and give that virtual CPU a priority on a fast core. Our scheduler is equipped

with this feature, and we evaluate it in Section 3.5.

3.4 Evaluating support for the asymmetry-aware guest as
In this section, we first present experiments with a single asymmetry-aware guest running on

top of the hypervisor equipped with the AASH scheduler. We show that it achieves better

performance than when it runs over a hypervisor using the default Xen scheduler. This is

due to the fact that our scheduler provides a deterministic mapping of fast virtual CPUs to

fast physical cores allowing the guest to implement its asymmetry-aware scheduling policies.

Our scheduler also supports the co-existence of asymmetry-aware guests and legacy

guests. We evaluate this feature in the second experiment, by running both types of the

guests simultaneously. In this case, comparing the average completion times on the AASH

and the default Xen schedulers shows that both guests benefit from running under our

scheduler.

The following sub-sections present these two experiments.

3.4.1 Single-VM experiments

To evaluate this feature, we use the same workloads as have been used in [20] to evaluate an

asymmetry-aware operating system scheduler. In that work, the following workloads made

up of the SPEC CPU2000 benchmarks were used: (l)sixtraek, crafty, mef and equake,

(2)gzip, sixtraek, mef and swim and (3)mesa, perlbmk, equake and swim. The first two

benchmarks in each set are CPU-bound and the second two are memory-bound. The exper­

iments in the aforementioned work were run on a system with two fast cores and two slow

cores. The asymmetry-aware operating system scheduler ended up mapping the CPU-bound

applications to fast cores and the memory bound applications to slow cores2 . To mimic that

scheduling policy in our experiment, we bind the CPU-bound applications to the first two

virtual CPUs and the memory-bound applications to the second two virtual CPUs inside

the guest operating system. Since the assumption made by the guest is that the first two

2A highly CPU-bound applications with a lot of available instruction level parallelism (ILP) would benefit
from running on the fast cores, while memory-bound applications that frequently stall the processor due to
high rate of memory requests could be mapped to slow cores.
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Figure 3.5: Single-VM Experiment

virtual CPUs are fast and the second two virtual CPUs are slow, the scheduler needs to

respect that mapping to the actual physical cores. The AASH scheduler is equipped with

this feature. The default Xen scheduler, on the other hand, is asymmetry-agnostic, and so

it performs an arbitrary mapping of virtual to physical cores.

Figure 3.5 shows the results of this experiment. As can be expected, the asymmetry­

aware guests performed better under the AASH scheduler. The mean speedup (Figure

3.5(d)) was as much as 16.27% for the mesa, perlbmk, equake and swim workload and reached

11% and 14% for the other workloads. For all workloads we see that (in Figures 3.5(a), 3.5(b)

and 3.5(c)) the first two CPU-bound applications in the workload speedup under the AASH
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scheduler, while the second two memory-bound applications slowdown. Since the speedup

experienced by the CPU-bound applications is greater than the slowdown experienced by

the memory-bound applications, the workload as a whole experiences an improvement in

performance.

3.4.2 Experiments with asymmetry-aware and legacy guests

In this experiment, we used two virtual machines, with each representing a type of guest: a

legacy guest and an asymmetry-aware guest. The first virtual machine runs an asymmetry­

unaware guest and has six virtual CPUs. It runs a parallel workload that has a significant

sequential phase. We ran an instance of BLAST with six threads on the first virtual machine.

The second virtual machine runs an asymmetry-aware guest and has two virtual CPUs (it

assumes the first virtual CPU is fast). It runs one instance of a CPU-intensive application

(sixtraek) and another instance of a memory-bound application (me!). As in the previous

experiment, we simulate asymmetry awareness in the second virtual machine by binding

sixtraek to the first virtual CPU (the one that is assumed to be fast) and me! to the second

virtual CPU. We ran virtual machines on our experimental platform with one fast core

running at 2 GHz and seven slow cores running at 1 GHz.

The AASH scheduler shares the fast core among all virtual machines. Since the second

virtual machine is asymmetry-aware, the AASH scheduler assigns fast-core shares to the first

virtual CPU in this guest. This results in: (1) equal sharing of scarce fast cores among both

guests and (2) providing the deterministic mapping of the fast core for the asymmetry-aware

guest.

Figures 3.6(a) and 3.6(b) shows the completion time and speedup for each benchmark

under the AASH relative to the default Xen scheduler. Sixtraek (the CPU-intensive work­

load on the asymmetry-aware guest) shows a 13% performance improvement. The mean

speedup of the asymmetry-aware guest is 6.7% (Figure 3.6(c)). The asymmetry-unaware

guest which runs BLAST also shows a 20% speedup. These results demonstrate that both

legacy and asymmetry-aware guests benefit from running under the AASH scheduler and

show the ability of the AASH scheduler to successfully mix and match different scheduling

policies.
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Figure 3.6: Experiments with asymmetry-aware and legacy guests

3.5 Evaluating acceleration of sequential phases

In this experiment, we evaluate the mechanism for accelerating sequential phases in the

AASH scheduler. Recall from Section 3.3 that when a single application is running, the base

AASH scheduler (without the sequential-phase acceleration feature) delivers the acceleration

of a sequential phase, because it would always schedule the single active virtual CPU to run

on the fast core. In this section, we show that the scheduler also accomplishes acceleration

of sequential phases when multiple virtual machines are running.

Depending on the number of threads and the size of the sequential phase, four possible

combinations of workloads may co-exist in the system:

1. All workloads are completely parallel, and have no or very short sequential phases.

2. Some workloads are single-threaded while others are parallel.

3. Some of the workloads are completely parallel, but others have sequential phases.

4. All workloads have sequential phases.

In the first scenario, since workloads have very small sequential phases, acceleration of

these phases on fast cores could not improve the overall performance. However, according to
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the results of Section 3.3, the asymmetry-awareness feature of the AASH scheduler provides

some improvement in comparison with the default Xen scheduler, due to the fact that the

AASH scheduler equally shares the fast cores among all virtual CPUs and speeds up all the

threads in parallel applications equally.

However, other scenarios could benefit from acceleration of their sequential phases on

the fast cores. The following sub-sections describe the experiments performed with those

three multi-VM workloads.
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3.5.1 Combination of sequential and parallel workloads

In this scenario, the AASH scheduler would assign a higher priority to the virtual machines

running single-threaded applications (recall that these virtual machines will have the active

virtual CPU count equal to one) and schedule them on the fast cores most of the time. If the

number of fast cores exceeds the number of single-threaded applications, the remainder of

the fast cores would be fairly shared among the virtual machines running parallel workloads,

otherwise the AASH scheduler would leave parallel workloads on slow cores. If any virtual

machine running a parallel application enters a sequential phase (i.e., the number of active

virtual CPUs reduces to one), that virtual CPU will share the time on the fast core with

the virtual machines running single-threaded applications (whose active virtual CPU count

never goes above one). As a result, the parallel applications will also experience some
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performance improvement relative to the default scheduler.

To evaluate this scenario, we run two virtual machines. The first virtual machine has

six virtual CPUs and runs a parallel application (we used BLAST). The other virtual

machine has a single virtual CPU and runs a sequential application (we used eon from

SPEC CPU2000). We ran the virtual machines with both the AASH scheduler and the

default Xen scheduler on our experimental platform with one fast core running at 2 GHz

and seven slow cores running at 1 GHz.

Figure 3.7(b) shows the results. The single-threaded application experienced a 36%

speedup and the parallel workload enjoyed an 8% speedup relative to the default Xen sched­

uler. This shows that both virtual machines benefit from running under our scheduler. While

eon benefits from running on the fast core most of the time under our scheduler, AASH also

accelerates sequential phases of the BLAST by co-running it on the fast core.

Figure 3.9 shows the behavior of these two applications on both schedulers. Figure

3.9(a) shows the changes in the number of the active virtual CPUs, the number of clock

ticks that each virtual machine spends on fast cores and the number of migrations. As

can be seen in this Figure, the AASH scheduler mapped eon most of the times to the fast

core. In sequential phases of BLAST, the AASH scheduler shared the fast core among both

virtual machines. It also shows that migrations of eon were limited to the sequential phases

of BLAST, during which it shares fast core with BLAST. Figure 3.9(b) on the other hand,

shows the behavior of BLAST and eon under the default Xen scheduler. As expected, the

default Xen scheduler shows arbitrary behavior.

3.5.2 Combination of parallel workloads with and without sequential phases

In this scenario, we expect that the AASH scheduler would improve the overall performance

due to the fact that the workloads with sequential phases would have those phases acceler­

ated on fast cores, while the complete parallel applications would not experience a significant

degradation by loosing their share of the fast cores.

We use two virtual machines, each representing one group of parallel applications. The

first virtual machine has six virtual CPUs and runs a parallel workload with significant

sequential phases (BLAST). The second virtual machine has two virtual CPUs and runs

a parallel application with negligible sequential phases (blackscholes from the PARSEC

benchmark suite). We ran virtual machines on our experimental platform (with one fast

core running at 2 GHz and seven slow cores running at 1 GHz) with both the AASH and
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default Xen schedulers.

The average completion times of both virtual machines are shown in Figure 3.7(c).

BLAST experienced a 17% speedup; the change in the completion time of blackscholes was

negligible (less than 1%).

Figure 3.10(a) shows the behavior of these two benchmarks on the AASH scheduler. It

can be seen that, whenever BLAST enters a sequential phase, the AASH scheduler migrates

it to the fast core and stops scheduling blackscholes on the fast core, while the rest of the

time the two virtual machines share the fast core based on the number of their virtual CPUs.

Figure 3.1O(b) shows the results of the same test on the default Xen scheduler. As expected,

the default Xen scheduler shows arbitrary behavior in phase changes due to the fact that it

is unaware of the asymmetry of the system.

3.5.3 Parallel workloads with sequential phases

In this scenario, we expect that each workload would experience a lower speedup in com­

parison with the previous scenario. This is due to the fact that the sequential phases of

different workloads may occur at the same time, and so the virtual machines must share

the fast cores. As a result, each virtual-machine's sequential phase would be accelerated to

a lesser extent than when no sharing of the fast cores occurs.

We ran BLAST and FFT- W benchmarks on the two virtual machines in this experiment.

Recall that both are parallel applications with long sequential phases.

Figure 3.7(d) shows that the workload as a whole achieved a speedup of 16% with the

AASH scheduler. FFT- W achieved a 27% speedup, and BLAST achieved a 6% speedup.

BLAST achieved a smaller performance improvement than in the experiment of Figure

3.4, because during its sequential phase it had to share the fast core with FFT- W. Figure

3.11 shows the behaviour of these two benchmarks under the AASH and the default Xen

scheduler. In Figure 3.10(a), it could be seen how BLAST and FFT- W share the fast core

in their sequential phases.

3.6 Prioritization experiment

In this experiment we evaluate the mechanism that allows prioritizing the usage of fast cores.

Recall that this mechanism provides two priority classes (high and low). We show that a
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virtual machine in the high-priority class gets preference when the fast-core CPU time is

allocated. As a result, it achieves better performance than a low-priority virtual machine.

BLAST blackscholes
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Figure 3.12: Prioritization experiment

To evaluate this experiment, we use two identical virtual machines, each representing one

type of priority class (high and low). Each virtual machine has four virtual CPUs. In order

to compare the results of the prioritization, both virtual machines run the same workload

(we used BLAST and blackscholes in this experiment). We run both virtual machines under

the AASH scheduler on our experimental platform (with one fast core running at 2 GHz

and seven slow cores running at 1 GHz).

Figures 3.12 and 3.13 show the results of this experiment. As can be seen in Figure

3.12(c) the virtual machines with high-priority label get most of the fast-cores' CPU time

and improve their performance. Figure 3.13 shows the distribution of the fast core in the

system within the virtual machines' life cycle. In both scenarios (BLAST and blackscholes),

fast cores get allocated almost always to the high-priority guest. It can be seen that the

low-priority guest gets a share of the fast core's CPU time when it enters a sequential phase

(Figure 3.13(a)) or when the high priority guest finishes its work.
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Chapter 4

Related Work

Most existing platform virtualization software is not designed to take advantage of asym­

metric many-core architectures. In study by Nikolopoulos et al. [19], an enhanced version of

the Xen hypervisor was proposed and used to leverage application feedback throughout the

scheduling process. However, this framework is not asymmetry-aware and thus it can not

deliver the benefits of AMP systems to guest operating systems. There has been no other

prior work in designing hypervisor support for AMPs. To our knowledge, neither the pop­

ular Xen hypervisor [5] [9], nor VMware's recent hypervisor-based ESX server consider the

asymmetric nature of the system in scheduling decisions. Our work is the first that provides

required scheduling support for delivering the benefits of AMP systems in the hypervisor.

Some studies have been done to show the better performance of AMP systems [13] [17].

However, these works have been done in the context of operating systems. Kumar et al.

in [14] presented a core assignment algorithm for maximizing performance on AMP systems.

They improved performance by using the diversity of instruction level parallelism (ILP) in a

workload on AMP systems. Kumar's algorithm assigned applications with high ILP to fast

cores based on the fact that these applications could effectively use the fast cores' resources to

extracting ILP. Their algorithm used normalized IPC as a heuristic for core assignment. The

study by Becchi and Crowley [6] is another well-known scheduling algorithm in this category.

This algorithm also use dynamic performance monitoring to determine the optimal thread­

to-core assignment. Shelepov et al. [20] proposed a similar algorithm. However, instead

of relying on dynamic monitoring, it exploits compact summaries of applications' runtime

properties. All of these algorithms, however, require our asymmetry-aware hypervisor to

work correctly in the hypervisor environment. Our scheduler provides the required support
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for these schedulers to use their knowledge of asymmetry and improve the performance of

their corresponding guests in the hypervisor environment. However, we do not implement

the same policies as in these operating system scheduling algorithms, because hypervisors

do not have such visibility into applications.

The study by Hill and Marty [12] presented a theoretical model that clearly demonstrated

the benefit of AMP systems for mitigating the effects of Amdahl's law. They showed better

performance of AMP systems for applications with small sequential regions and concluded

th~t the AMPs never performed worse than SMPs. Annavaram's study [2] demonstrated

how the effects of the Amdahl's law can be mitigated on AMP systems experimentally.

They showed this by modifying the application code and scheduling threads manually. This

manual approach, however, is not scalable to multiple applications and could not fairly share

scarce resources among all workloads. It is better to address this issue globally and provide

required scheduling support in operating systems and hypervisors in order to deliver the

benefit of AMP systems to the applications.

Although the aforementioned studies have clearly demonstrated, both theoretically and

experimentally, the benefits of AMP systems for mitigating the effects of Amdahl's law,

this issue has not been addressed in either operating systems or hypervisors. Most of the

prior works on AMP scheduling algorithms use AMP systems to leverage diversity of the

instruction level parallelism in a workload. The studies by Li [15] and Balakrishnan [4] tried

to address the goal of keeping the fast cores as busy as possible. This would automatically

accelerate the sequential phases in a single application. However they did not consider

scenarios with multiple workloads. Our study is the first that uses AMP systems to mitigate

the effects of Amdahl's law in hypervisors and it provides required scheduling support for

delivering the benefits of AMP systems to applications.



Chapter 5

Summary

In this study, we present the AASH scheduler (an asymmetry-aware scheduler) for AMP

systems. We also evaluate the implementation of our proposed algorithm on the Xen hy­

pervisor. Our main objective is utilizing the potential of asymmetric many-core systems to

improve the performance of the wide range of the applications.

Four main targets are addressed in this study: (1) equal distribution of scarce resources

in AMP environment, (2) providing required mechanisms to support asymmetry-aware guest

operating systems, (3) accelerating sequential phases on fast cores and mitigating the effects

of Amdahl's law and (4) providing coarse-grained prioritization for service differentiation.

The results of our experiments show that we achieved our goals and validated our method.

Asymmetry-aware guest operating systems performed better under the AASH scheduler (as

much as 16% speedup). Parallel applications with large sequential phases show as much as

31% speedup on the AASH scheduler in comparison with the default Xen scheduler. Our

results show the fair behavior of the AASH scheduler. We also demonstrate the behavior

of guests in different priority classes. Some applications with high sensitivity to their cache

states or with small sequential phases experienced negligible performance degradation (up

to 3%) due to the inevitable migration in the AASH scheduler. However, by increasing the

length of the accounting periods, this overhead could be completely eliminated.

We do not consider user-level policies in using fast and slow cores in this study. This

functionality, however, is available through existing features in our scheduler and the Xen

hypervisor.
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