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Abstract

Uncertain data is inherent in many important applications, such as environmental surveil­

lance, market analysis, and quantitative economics research. Due to the importance of those

applications and rapidly increasing amounts of uncertain data collected and accumulated,

analyzing large collections of uncertain data has become an important task. Ranking queries

(also known as top-k queries) are often natural and useful in analyzing uncertain data.

In this thesis, we study the problem of ranking queries on uncertain data. Specifically, we

extend the basic uncertain data model in three directions, including uncertain data streams,

probabilistic linkages, and probabilistic graphs, to meet various application needs. Moreover,

we develop a series of novel ranking queries on uncertain data at different granularity levels,

including selecting the most typical instances within an uncertain object, ranking instances

and objects among a set of uncertain objects, and ranking the aggregate sets of uncertain

objects.

To tackle the challenges on efficiency and scalability, we develop efficient and scalable

query evaluation algorithms for the proposed ranking queries. First, we integrate statistical

principles and scalable computational techniques to compute exact query results. Second,

we develop efficient randomized algorithms to approximate the answers to ranking queries.

Third, we propose efficient approximation methods based on the distribution characteristics

of query results. A comprehensive empirical study using real and synthetic data sets verifies

the effectiveness of the proposed ranking queries and the efficiency of our query evaluation

methods.

Keywords: uncertain data; probabilistic data; ranking queries; query processing
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To my parents



"Maturity of mind is the capacity to endure uncertainty."

- John Finley (1935 - 2006)

"Information is the resolution of uncertainty."

- Claude Elwood Shannon (1916 - 2001)

"For my part I know nothing with any certainty, but the sight of the stars makes me

dream."

- Vincent van Gogh (1853 - 1890)
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Chapter 1

Introduction

Uncertain data is inherent in several important applications such as sensor network man­

agement [160] and data integration [172], due to factors such as data randomness and

incompleteness, limitations of measuring equipment and delayed data updates. Because of

the importance of those applications and the rapidly increasing amount of uncertain data,

analyzing large collections of uncertain data has become an important task.

Ranking queries (also known as top-k queries) [57, 70, 148, 150] are a class of important

queries in data analysis. Although ranking queries have been studied extensively in the

database research community, uncertainty in data poses unique challenges on the semantics

and processing of ranking queries. Traditional queries and evaluation methods on certain

data cannot be directly adopted to uncertain data processing. Therefore, practically mean­

ingful ranking queries as well as efficient and scalable query evaluation methods are highly

desirable for effective uncertain data analysis.

1.1 Motivation

Recently, there have been an increasing number of studies on uncertain data management

and processing [171, 18,63,4,54,53,62, 13, 34, 86]. For example, the probabilistic database

model [171, 182, 18] and the uncertain object model [40, 41, 185, 155] are developed to

describe the uncertainty in data. More details about those models can be found in Chapter 3.

In some important application scenarios, various ranking queries can provide intersecting

insights into uncertain data.

1



CHAPTER 1. INTRODUCTION 2

Example 1.1 (Ranking queries in traffic monitoring applications). Roadside sen­

sors are often used to measure traffic volumes, measure vehicle speeds, or classify vehicles.

However, data collected from sensors as such cannot be accurate all the time due to the

limitations of equipment and delay or loss in data transfer. Therefore, confidence values are

often assigned to such data, based on the specific sensor characteristics, the predicted value,

and the physical limitations of the system [81]. Consequently, the sensor readings are inher­

ently uncertain and probabilistic. In this example, we consider three different application

scenarios in traffic monitoring.

Scenario 1: Finding the top-k speeding records at a certain time. Table 1.1 lists

a set of synthesized records of vehicle speeds recorded by sensors. Each sensor reports the

location, time, and speed of vehicles passing the sensor. In some locations where the traffic

is heavy, multiple sensors are deployed to improve the detection quality. Two sensors in the

same location (e.g., 8206 and 8231, as well as 8063 and 8732 in Table 1.1) may detect the

vehicle speed at the same time, such as records R2 and R3, as well as R5 and R6. In such

a case, if the speeds reported by multiple sensors are inconsistent, at most one sensor can

be correct.

The uncertain data in Table 1.1(a) carries the possible worlds semantics [1, 53, 109, 171]

as follows. The data can be viewed as the summary of a set of possible worlds, where a

possible world contains a set of tuples governed by some underlying generation rules which

constrain the presence of tuples. In Table 1.1, the fact that R2 and R3 cannot be true at

the same time can be captured by a generation rule R2 E9 R3. Another generation rule is

R5 E9 R6. Table 1.1(b) shows all possible worlds and their existence probability values.

Ranking queries can be used to analyze uncertain traffic records. For example, it is

interesting to find out the top-2 speeding records so that actions can be taken to improve

the situation. However, in different possible worlds the answers to this question may be

different. What a ranking query means on uncertain data in such an application scenario

and how to answer a ranking query efficiently are studied in Chapter 5 in this thesis.

Scenario 2: Monitoring top-k speeding spots in real time. Table 1.1 contains a

set of uncertain records at a certain time. In some applications, a speed sensor will keep

sending traffic records to a central server continuously. Therefore, the speeds recorded by

each sensor can be modeled as a data stream.

For example, the ARTIMIS center in Cincinnati, Ohio/Kentucky reports the speed,



CHAPTER 1. INTRODUCTION 3

volume and occupancy of road segments every 30 seconds [78]. Table 1.2 is a piece of

sample data from ARTIMIS Data Archives l .

Consider a simple continuous query - continuously reporting a list of top-2 monitoring

points in the road network of the fastest vehicle speeds in the last 5 minutes. One interesting

and subtle issue is how we should measure the vehicle speed at a monitoring point. Can

we use some simple statistics like the averagejmedianjmaximumjminimum speed in the

last 5 minutes? Each of such simple statistics may not capture the distribution of the data

well. Therefore, new ranking criteria for such uncertain data streams are highly desirable.

Moreover, it is important to develop efficient query monitoring algorithms that suit the

application need.

In Chapter 6, we develop an uncertain data stream model and a continuous probabilistic

threshold top-k query to address this application scenario. Efficient stream specific query

evaluation methods are developed.

Scenario 3: Finding optimal paths in road networks with uncertain travel time.

The speed information recorded by sensors, together with the geographic information, can

be used to estimate the travel time along each road segment. However, the estimated

travel time derived from sensor readings is inherently uncertain and probabilistic, due to

the uncertain nature of the collected sensor data. Thus, a road network can be modeled as

a simple graph with probabilistic weights.

Suppose in an uncertain traffic network, from point A to point B there are two paths,

Pl and Pz. The set of travel time samples (in minutes) of Pl is {35, 35, 38, 40} and the set

of samples of Pz is {25, 25, 48, 50}. Should each sample take a membership probability of

25%, the average travel time on both P l and Pz is 37 minutes. Which path is better?

On the one hand, if a user wants to make sure that the travel time is no more than 40

minutes, path P l is better since according to the samples, it has a probability of 100% to

meet the travel time constraint, while path Pz has a probability of only 50% to meet the

constraint. On the other hand, if a user wants to go from A to B in 30 minutes, path Pz

should be recommended since the path has a probability of 50% to make it while Pl has no

chance to make it.

In Chapter 8, we will discuss the problem of path queries in probabilistic road networks

in detail. _

Ihttp://www.its.dot.gov/JPODOCS/REPTS_TE/13767.html
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I Record-id I Location I Time I Sensor-id I Speed I Confidence I
R1 A 07/15/2001 00:01:51 8101 60 0.3
R2 B 07/15/2001 00:01:51 8206 55 0.4
R3 B 07/15/2001 00:01:51 8231 47 0.5
R4 A 07/15/2001 00:01:51 8101 45 1.0
R5 E 07/15/2001 00:01:51 8063 52 0.8
R6 E 07/15/2001 00:01:51 8732 43 0.2

Generation rules: R2 E& R3, R5 E& R6

(a) Roadside sensor records.
--P-o-ss----:ib,....,.l-e-w-or--=-'ld':-'--I Probability I Top-2 speeding records I
WI = {R1, R2, R4, R5} 0.096 R1,R2
W2 = {R1, R2, R4, R6} 0.024 R1,R2
W3 = {R1, R3, R4, R5} 0.12 R1,R5
W4 = {R1,R3,R4,R6} 0.03 R1,R3

W5 = {R1,R4,R5} 0.024 R1,R5
W6 = {R1, R4, R6} 0.006 R1,R4
W7 = {R2,R4,R5} 0.224 R2,R5
W8 = {R2, R4, R6} 0.056 R2,R4
W9 = {R3,R4,R5} 0.28 R5,R3
W10 = {R3, R4, R6} 0.07 R3,R4

Wll = {R4, R5} 0.056 R5,R4
W12 = {R4, R6} 0.014 R4,R6

(b) The possible worlds of Table 1.1(a).

Table 1.1: Speed records reported by sensors.

00: 01 : 51 30 47 575 6
00: 16: 51 30 48 503 5
00: 31 : 51 30 48 503 5
00: 46 : 51 30 49 421 4
01 : 01 : 52 30 48 274 5
01 : 16 : 52 30 42 275 14
...

I # Time Samp Speed Volume Occupancy I

Table 1.2: Data for segment 8EGK715001 for 07/15/2001 in ARTIMIS Data Archives
(Number of Lanes: 4).
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Example 1.1 demonstrates the great need for ranking queries in uncertain data analysis.

In traditional data analysis for deterministic data, ranking queries play an important role

by selecting the subset of records of interest according to user specified criteria. With the

rapidly increasing amount of uncertain data, ranking queries have become even more impor­

tant, since the uncertainty in data not only increases the scale of data but also introduces

more difficulties in understanding and analyzing the data.

1.2 Challenges

While being useful in many important applications, ranking queries on uncertain data pose

grand challenges to query semantics and processing.

Challenge 1. What are the uncertain data models that we need to adopt?

Example 1.1 illustrates three different application scenarios in ranking the information ob­

tained from traffic sensors. This not only shows the great use of ranking queries on uncertain

data, but also raises a fundamental question: how can we develop uncertain data models

that capture the characteristics of data and suit application needs?

In particular, we need to consider the following three aspects. First, is the uncertain

data static or dynamic? Second, how to describe the dependencies among uncertain data

objects? Third, how can we handle complex uncertain data like a graph?

Challenge 2. How to formulate probabilistic ranking queries?

As shown in Example 1.1, different ranking queries on uncertain data can be asked according

to different application needs. In Scenario 1, we want to select the records ranked in top-k

with high confidence, while in Scenario 2, the objective is to find the sensors whose records

are ranked in top-k with probabilities no smaller than a threshold in a time window. Last,

in Scenario 3, we are interested in finding paths such that the sums of the (uncertain) travel

time along the path are ranked at the top.

Therefore, it is important to develop meaningful ranking queries according to different

application interests. Moreover, the probability associated with each data record introduces

a new dimension in ranking queries. How to leverage the probabilities in ranking queries

remains challenging in uncertain data analysis.

Challenge 3. How to develop efficient and scalable query processing methods?

Evaluating ranking queries on uncertain data is challenging. On the one hand, traditional
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ranking query processing methods cannot be directly applied since they do not consider how

to handle probabilities. On the other hand, although some standard statistical methods such

as Bayesian Statistics [131] can be applied to analyzing uncertain data in some applications,

efficiency and scalability issues are usually not well addressed.

Meanwhile, as shown in Example 1.1, uncertain data is a summary of all possible worlds.

Therefore, a naIve way to answer a ranking query on uncertain data is to apply the query

to all possible worlds and summarize the answers to the query. However, it is often compu­

tationally prohibitive to enumerate all possible worlds. Thus, we need to develop efficient

and scalable query evaluation methods for ranking queries on uncertain data.

1.3 Contributions

In this thesis, we study probabilistic ranking queries on uncertain data and address the

three challenges in Section 1.2. We make the following contributions.

Contribution 1. We propose three extended uncertain data models.

To address Challenge 1, we first study two basic uncertain data models, the probabilistic

database model and the uncertain object model, and show that the two models are equivalent.

Then, we develop three extended uncertain object model, to address three important

application scenarios. The first extension, the uncertain data stream model, describes un­

certain objects whose distributions evolve over time. The second extension, the probabilistic

linkage model, introduces inter-object dependencies into uncertain objects. The third ex­

tension, the uncertain road network model, models the weight of each edge in road networks

as an uncertain object.

Contribution 2. We propose five novel problems of ranking uncertain data.

To address Challenge 2, we formulate five novel ranking problems on uncertain data models

from multiple aspects and levels.

First, from the data granularity point of view, we study the problems of ranking instances

within a single uncertain object, ranking instances among multiple uncertain objects, rank­

ing uncertain objects and ranking the aggregates of a set of uncertain objects. Second,

from the ranking scope point of view, we study ranking queries within an uncertain object

and among multiple uncertain objects. Third, from the query type point of view, we dis­

cuss two categories of ranking queries considering both ranking criteria and the probability

constraint.
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Contribution 3. We develop three categories of query processing methods.

To address Challenge 3, we develop three categories of efficient query answering methods

for each of the proposed ranking queries on uncertain data.

First, we integrate statistical principles and scalable computational techniques to com­

pute the exact answers to queries. Second, we develop efficient randomized algorithms to

estimate the answers to ranking queries. Third, we devise efficient approximation methods

based on the distribution characteristics of answers to ranking queries.

Related Publications and Software

Some results in this thesis have been published or submitted for possible publication.

• The major results in Chapter 4 were published in the 33rd International Conference

on Very Large Data Bases (VLDB'07) [105] and the International Journal on Very

Large Data Bases [104].

• The problem of probabilistic ranking query evaluation in Chapter 5 was published

in the 2008 ACM SIGMOD International Conference on Management of Data (SIG­

MOD'08) [107] and the 24th IEEE International Conference on Data Engineering

(ICDE'08) [106]. The rest of the results in Chapter 5 has been submitted as a re­

search paper.

• The main results in Chapter 6 was published in Distributed and Parallel Databases

Journal [103].

• Chapters 7 and 8 have been submitted as two research papers.

In addition, a software package2 including the implementation of our algorithms and the

probabilistic data generator was released to public in March, 2008. We have received a good

number of inquiries and downloads of the software package.

1.4 Organization of the Thesis

The remainder of the thesis is organized as follows.

2Software package available at http://www.cs.sfu.ca/-jpei/Software/PTKLib . rar
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• In Chapter 2, we formulate the uncertain data models and probabilistic ranking queries

that will be studied in this thesis.

• Chapter 3 reviews the related literature on uncertain data processing and principles

of statistics and probability theory that will be used.

• In Chapter 4, we study the top-k typicality queries on uncertain data, which find the

top-k most typical instances for an uncertain object. We answer two fundamental

questions. First, given an uncertain object with a large number of instances, how can

we model the typicality of each instance? Second, how to efficiently and effectively

select the most representative instances for the object? This is essentially the problem

of ranking instances within an uncertain object.

• In Chapter 5, we study probabilistic ranking queries on probabilistic databases, which

select the instances in different uncertain objects whose probabilities of being ranked

top-k are high. Although it is an extension of the problem in Chapter 4, the query

evaluation techniques are significantly different.

• We extend probabilistic ranking queries from static data to dynamic data in Chapter 6.

The objective is to continuously report the answers to a probabilistic ranking query

on a set of uncertain data streams, as illustrated in the second application scenario

in Example 1.1. We develop stream-specific query evaluation methods that are highly

space efficient.

• In Chapter 7, we introduce inter-object dependencies among uncertain data object

and study probabilistic ranking queries on a set of dependent uncertain objects, which

can find important applications in data integration. We show that the model is a

special case of Markov Random Fields. Moreover, we develop efficient methods to

evaluate ranking queries on the proposed uncertain data model.

• In Chapter 8, we extend the probabilistic ranking queries to uncertain road networks,

where the weights of each edge in the network is an uncertain object. We want to

select the paths having high confidences of being ranked top-k in terms of shortest

travel time. We introduce several interesting path queries and discuss the efficient

query evaluation.
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• Chapter 9 concludes the thesis. We discuss several interesting extensions and appli­

cations of probabilistic ranking queries on uncertain data, and present some future

research directions.



--

Chapter 2

Probabilistic Ranking Queries on

Uncertain Data

In this chapter, we formulate the probabilistic ranking queries on uncertain data. We first

introduce two basic uncertain data models and basic probabilistic ranking queries. Then,

we discuss three extended uncertain data models that suit different application scenarios.

Ranking queries on the extended uncertain data models are also developed.

Frequently used definitions and notations are listed in Table 2.1.

2.1 Basic Uncertain Data Models

We consider uncertain data in the possible worlds semantics model [1, 53, 109, 171], which

has been extensively adopted by the recent studies on uncertain data processing, such

as [182, 18, 155]. Technically, uncertain data can be represented in two ways.

2.1.1 Uncertain Object Model

An uncertain object 0 [40,41, 185, 155] is conceptually governed by an underlying random

variable X. Theoretically, if X is a continuous random variable, the distribution of X can

be captured by a probability density function (PDF for short); if X is a discrete random

variable, its distribution can be described by a probability mass function (PMF for short).

In practice, the PDF or PMF of a random variable is often unavailable. Instead, a sample set

of instances Xl, ... ,Xm are used to approximate the distribution of X, where each instance

10
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Notation Description

o = {01, . . . , Om} an uncertain object contains m instances
0 a set of uncertain objects

T = {t1, . . . , tn } a table with n tuples
R : tTl EB ... EB tTm a generation rule specifying the exclusiveness among tTl' ... , tTm

R a set of generation rules
W a possible world
W a set of possible worlds

0= 01,02,'" an uncertain data stream

W~(O) a set of uncertain data streams in sliding window W~

L:(tA, tB) a probabilistic linkage between tuples tA and tB
G(V,E, W) a simple graph with probabilistic weights W

Table 2.1: Summary of definitions and frequently used notations.

takes a membership probability. For an instance Xi E X (1 ~ i ~ m), the membership

probability of Xi measures the likelihood that Xi will occur. Due to the unavailability of X's

PDF or PMF, in this thesis, we represent an uncertain object 0 using the set of samples

Xl, ... , X m generated by the underlying random variable.

Definition 2.1 (Uncertain object). An uncertain object is a set of instances 0 =

{ 01, ... , Om} such that each instance 0i (1 ~ i ~ m) takes a membership probability

Pr(oi) > 0, and L~l Pr(oi) = 1. •

The cardinality of an uncertain object 0 = {01,'" , om}, denoted by 101, is the number

of instances contained in O. We denote the set of all uncertain objects as O.

Possible worlds semantics. In the basic uncertain object model, we assume that the

distributions of uncertain objects are independent from each other. Correlations among

uncertain objects are discussed in Section 2.3.2. The uncertain objects carry the possible

worlds semantics.

Definition 2.2 (Possible worlds of uncertain objects). Let 0 = {01,'" ,On} be a

set of uncertain objects. A possible world W = {O1,'" , on} (Oi E Oi) is a set of instances

such that one instance is taken from each uncertain object. The existence probability of
n

W is Pr(W) = II Pr(oi)'
i=l

•
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Let W denote the set of all possible worlds, we have the following property.

Corollary 2.1 (Number of possible worlds). For a set of uncertain objects 0 =

{Ol, ... ,On}, let IOil be the cardinality of object Oi (1:::; i:::; n), the number of all possible

worlds is
n

IWI = II IOil·
i=l

Moreover,

Pr(W) = L Pr(w) = 1
wEW

•
Example 2.1 (Uncertain objects). Table 1.2 is an example of a uncertain object with 6

instances. Each instance takes an equal membership probability i. •

2.1.2 Probabilistic Database Model

In some other studies, the probabilistic database model is used to represent uncertain data.

A probabilistic database [182] is a finite set of probabilistic tables defined as follows.

Definition 2.3 (Probabilistic table). A probabilistic table contains a set of uncertain

tuples T and a set of generation rules R. Each uncertain tuple t E T is associated with

a membership probability Pr(t) > O. Each generation rule (or rule for short) R E R

specifies a set of exclusive tuples in the form of R : trl EB· .. EB t rm where tri E T (1 :::; i :::; m),

Pr(tri 1\ trj ) = 0 (1 :::; i,j :::; m, i i- j) and l:~1 Pr(trJ :::; 1. •

The probabilistic database model also follows the possible worlds semantics. The gen­

eration rule R constrains that, among all tuples tTj, ... ,trm involved in the rule, at most

one tuple can appear in a possible world. R is a singleton rule if there is only one tuple

involved in the rule, otherwise, R is a multi-tuple rule. The cardinality of a generation

rule R, denoted by IRI, is the number of tuples involved in R.

Definition 2.4 (Possible worlds of a probabilistic table). Given a probabilistic table T,

a possible world W is a subset ofT such that for each generation rule R E RT, IRn WI = 1

if Pr(R) = 1, and IR n WI :::; 1 if Pr(R) < 1. The existence probability of W is

Pr(W) = II Pr(R n W) II (1 - Pr(R))
RE'RT,IRnwl=l RE'RT,RnW=0

•
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Corollary 2.2 (Number of possible worlds). For an uncertain table T with a set of

generation rules nT, the number of all possible worlds is

IWI = II IRI II (IRI + 1)
RERT,Pr(R)=l RERT,Pr(R)<l

•
Example 2.2 (Probabilistic tables). Table 1.1 (a) is an example of a probabilistic table

with 6 uncertain tuples and 2 multi-tuple generation rules R2 EB R3 and R5 EB R6. The

corresponding possible worlds are shown in Table 1.1 (b). •

2.1.3 Converting Between the Uncertain Object Model and the Proba­

bilistic Database Model

Interestingly, the uncertain object model and the probabilistic database model are equiva­

lent.

Converting from the uncertain object model to the probabilistic database model.

A set of uncertain objects can be represented by a probabilistic table as follows. For each

instance a of an uncertain object 0, we create a tuple to, whose membership probability

is f(o). For each uncertain object 0 = {Ol,'" ,am}, we create one generation rule Ro =

tOl EB ... EB tOm'

Converting from the probabilistic database model to the uncertain object model.

A probabilistic table can be represented by a set of uncertain objects with discrete instances.

For each tuple t in a probabilistic table, we create an instance at, whose probability mass

function is f (at) = Pr (t). For a generation rule R : trl EB ... EB t rm , we create an uncertain

object OR, which includes instances Otol "" , atom corresponding to tq ,··· , t rm , respec­

tively. Moreover, if I::'l Pr(trJ < 1, we create another instance 00 whose probability mass

function is f(00) = 1 - I::'l Pr(trJ, and add u0 to the uncertain object OR·

Example 2.3 (Converting between two models). R1 in Table 1.1(a) can be con­

verted to an uncertain object 0 1 = {R1, -,R1} where Pr(R1) = 0.3 and Pr(-,R1) = 0.7.

Moreover, generation rule R2 EB R3 in Table 1.1 (a) can be converted to uncertain object

0 1,2 = {R2, R3, -,R23} where Pr(R2) = 0.4, Pr(R3) = 0.5 and Pr(-,R23) = 0.1. •
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2.2 Basic Ranking Queries on Uncertain Data

In this section, we discuss various types of ranking queries on the uncertain object model.

Since the uncertain object model and the probabilistic database model are equivalent, the

queries discussed in this section can also be applied to the probabilistic database model.

Depending on different application scenarios, probabilistic ranking queries can be applied

at one of the three granularity levels.

• The instance probabilistic ranking queries return the instances satisfying query con­

ditions. We develop two classes of instance probabilistic ranking queries. The first

are top-k typicality queries, which rank instances in an uncertain object according

to how typical each instance is. The second are probabilistic ranking queries, which

rank instances in multiple objects according to the probability that each instance is

ranked top-k. The two classes of queries will be discussed in Sections 2.2.1 and 2.2.2,

respectively.

• The object probabilistic ranking queries find the object satisfying query conditions,

which will be discussed in Section 2.2.3.

• The object set probabilistic ranking queries apply the query condition to each object

set and return the object set that satisfy the query. We defer the discussion on ranking

uncertain object sets to Section 2.3.3 in the context of uncertain road networks.

2.2.1 Ranking Instances in An Uncertain Object

Given an uncertain object with a large number of instances that are samples taken from an

underlying random variable, how can we understand and analyze this object? An effective

way is to find the most typical instances among all instances of the uncertain object. We

develop a class of top-k typicality queries which can serve for this purpose.

Example 2.4 (Top-k typicality queries). Jeff is a junior basketball player who dreams

to play in the NBA. As the NBA has more than 400 active players, they are quite diverse.

Jeff may want to know some representative examples of NBA players. Top-k typicality

queries can help.

We can model the group of NBA players as an uncertain object in the space of technical

statistics, which can be described by a likelihood function. Each player is an instance of the

uncertain object.
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Top-k simple typicality queries. Jeff asks, "Who are the top-3 most typical NBA

players?" The player who has the maximum likelihood of being NBA players is the most

typical. This leads to our first typicality measure - the simple typicality. A top-k simple

typicality query finds the k most typical instances in an uncertain object.

Top-k discriminative typicality queries. Jeff is particularly interested in becoming

a guard. "Who are the top-3 most typical guards distinguishing guards from other players?"

Simple typicality on the set of guards is insufficient to answer the question, since it is

possible that a typical guard may also be typical among other players. Instead, players that

are typical among all guards but are not typical among all non-guard players should be

found.

In order to address this demand, we can model the group of guards as a target uncertain

object Og and the set of other players as the other uncertain object O. The notion of

discriminative typicality measures how an instance is typical in one object but not typical

in the other object. Given two uncertain objects a and 5, let a be the target object, a

top-k discriminative typicality query finds the k instances with the highest discriminative

typicality values in O.

Top-k representative typicality queries. NBA guards may still have some sub­

groups. For example, the fresh guards and the experienced guards, as well as the shooting

guards and the point guards. Jeff wants to learn different types of guards, without a clear

idea about what types there are. So he asks," Who are the top-3 typical guards in whole

representing different types of guards?"

Simple typicality does not provide the correct answer to this question, since the 3 players

with the greatest simple typicality may be quite similar to each other, while some other

popular players different from those three may be missed. Discriminative typicality does

not help either, because the exact types of guards and their members are unknown.

To solve this problem, we develop the notion of representative typicality that measures

how an instance is typical in an uncertain object different from the already reported typical

instances. Given an uncertain object 0, a top-k representative typicality query finds a set

of k instances of a with the highest representative typicality scores. _

By default, we consider an uncertain object a on attributes AI, ... , An. Let Ail' ... ,Ail

be the attributes on which the typicality queries are applied (1 :::; ij :::; n for 1 :::; j :::; l) and
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dAil ,'" ,Ail (X, y) be the distance between two instances x and y in S on attributes Ail' ... ,Ail'

When Ail" .. ,Ail are clear from context, dAil ,. .. ,Ail (x, y) is abbreviated to d(x, y).

We address the top-k typicality problem in a generic metric space. Therefore, the dis­

tance metric d should satisfy the triangle inequality.

Simple Typicality

By intuition and as also suggested by the previous research in psychology and cognitive

science (as will be reviewed in Section 3.3.1), an instance 0 in 0 is more typical than the

others if 0 is more likely to appear in O. As discussed in Section 2.1.1, the set of instances in

o on attributes AI, ... , An can be viewed as a set of independent and identically distributed

samples of an n-dimensional random vector X that takes values in the Cartesian product

space D = DA I X ... X DAn' where DAi is the domain of attribute Ai (1 :::; i :::; n). The

likelihood of 0 EO, given that 0 is a sample of X, can be used to measure the typicality of

o.

Definition 2.5 (Simple typicality). Given an uncertain object 0 on attributes AI, ... ,An

and a subset of attributes Ail' ... , Ail (1 :::; ij :::; n for 1 :::; f :::; l) of interest, let X be the

n-dimensional random vector generating the instances in 0, the simple typicality of an

instance 0 E 0 with respect to X on attributes Ail' ... , Ail is defined as TAil"" ,Ail (0, X) =

LAil ,. .. ,Ail (oIX) where LAil ,. .. ,Ail (oIX) is the likelihood [66} of 0 on attributes Ail'" . , Ail'

given that 0 is a sample of S. •

In practice, since the distribution of random vector X is often unknown, we use

TA ... A (0,0) = LA ... A (010) as an estimator ofTA ... A (0, X), where LAi ... Ai (010)'q , I ~l 1.1' I t[ 1.1' I tIl' , I

is the posterior probability of an object 0 on attributes Ail' ... , Ail given 0 [66].

LA ... A (010) can be computed using density estimation methods. We adopt the com-
1,1' , t[

monly used kernel density estimation method, which does not require any distribution as-

sumption on O. The general idea is to use a kernel function to approximate the probability

density around each observed sample. More details will be discussed in Chapter 4.

Hereafter, unless specified otherwise, the simple typicality measure refers to the esti­

mator TAil"" ,Ail (0, 0). Moreover, for the sake of simplicity, when Ail'''' , Ail are clear

from context, TAil,. .. ,Ail(O,O) and LAil,. .. ,Ail(oIO) are abbreviated to T(o,O) and L(oIO),

respectively.
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Figure 2.1: The simple typicality and discriminative typicality curves of a set of points.

Given an uncertain object 0 on attributes Ail" .. ,Ail of interest, a predicate P and

a positive integer k, a top-k simple typicality query returns, from the set of instances

in 0 satisfying predicate P, the k instances having the largest simple typicality values that

are computed on attributes Ail' ... , Ail'

Example 2.5 (Top-k simple typicality queries). Consider the set of points belong to

an uncertain object in Figure 2.1(a). A top-3 simple typicality query on attribute X with

predicate COLOR = white returns the 3 white points having the largest simple typicality

values computed on attribute X.

Figure 2.1(b) projects the points in T to attribute X. The likelihood function of the

white points and that of the black points on attribute X are labeled as L(olwhite) and

L(olblack) in the figure, respectively, while we will discuss how to compute the likelihood

values in Chapter 4. Points a, band c have the highest likelihood values among all white

points, and thus should be returned as the answer to the query. _

Discriminative Typicality

Given two uncertain objects 0 and S, which instance is the most typical in 0 but not in S?

We use the discriminative typicality to answer such a question. By intuition, an instance

o E 0 is typical and discriminative in 0 if the difference between its typicality in 0 and

that in S is large.
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Definition 2.6 (Discriminative typicality). Given two uncertain objects 0 and S on

attributes AI,'" , An (0 is the target object), let U and V be the n-dimensional random

vectors generating the instances in 0 and S, respectively, the discriminative typicality

of an instance 0 E 0 on attributes Ail' ... ,Ail (1 :::; ij :::; n for 1 :::; j :::; l) is DT(o, U, V) =

T(0, U) - T(0, V), where T(0, U) and T(0, V) are the simple typicality values of instance 0

with respect to U and V, respectively. _

In the definition, the discriminative typicality of an instance is defined as the difference

of its simple typicality in the target object and that in the rest of the data set. One may

wonder whether using the ratio ~1~:~1 may also be meaningful. Unfortunately, such a ratio­

based definition may not choose a typical instance that has a large simple typicality value

with respect to U. Consider an extreme example. Let 0 be an instance that is very atypical

with respect to U and has a typicality value of nearly 0 with respect to V. Then, 0 still has

an infinite ratio ~1~:~I. Although 0 is discriminative between U and V, it is not typical with

respect to U at all.

Due to the unknown distribution of random vectors U and V, we use DT(o, 0, S) =

T(o, 0) - T(o, S) to estimate DT(o,U, V), where T(o, 0) and T(o, S) are the estimators of

T(o,U) and T(o, V), respectively.

Given a set of uncertain instances on attributes AI' ... , Ail of interest, a predicate P and

a positive integer k, a top-k discriminative typicality query treats the set of instances

satisfying P as the target object, and returns the k instances in the target object having

the largest discriminative typicality values computed on attributes Ail' ... , Ail'

Example 2.6 (Top-k discriminative typicality queries). Consider the set of points in

Figure 2.1(a) again and a top-3 discriminative typicality query on attribute X with predicate

COLOR = white.

The discriminative typicality DT(0, white, black) for each instance 0 E white is plotted

in the figure, where white and black denote the two uncertain objects, the one with white

points as instances and the one with black points as instances, respectively. To see the

difference between discriminative typicality and simple typicality, consider instance a, band

c, which have large simple typicality values among all white points. However, they also have

relatively high simple typicality values as a member in the subset of black points comparing

to other white points. Therefore, they are not discriminative. Points {d, e, j} are the answer

to the query, since they are discriminative. _
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Representative Typicality

The answer to a top-k simple typicality query may contain some similar instances, since the

instances with similar attribute values may have similar simple typicality scores. However,

in some situations, it is redundant to report many similar instances. Instead, a user may

want to explore the uncertain object by viewing typical instances that are different from

each other but jointly represent the uncertain object well.

Suppose a subset of instances A c 0 is chosen to represent O. Each instances in (0 - A)

is best represented by the closest instance in A. For each 0 E A, we define the representing

region of o.

Definition 2.7 (Representing region). Given an uncertain object 0 on attributes

A l ,'" ,An and a subset of instances A c 0, let D = DAl X .•• X DAn where DAi is

the domain of attribute Ai (1 ::; i ::; n), the representing region of an instance 0 E A is

D(o, A) = {xix E D, d(x, 0) = minYEA d(x, Yn, where d(x, y) is the distance between objects

x and y. •

To make A representative as a whole, the representing region of each instance 0 in A

should be fairly large and 0 should be typical in its own representing region.

Definition 2.8 (Group typicality). Given an uncertain object 0 on attributes A l ,'" ,An

and a subset of instances A c 0, let X be the n-dimensional random vector generating

the instances in 0, the group typicality of A on attributes Ail" " ,Ail (1 ::; i j ::; n,

1 ::; j ::; l) is GT(A, X) = Z=oEA T(o, XD(o,A) . Pr(D(o, A», where T(o, XD(o,A) is the

simple typicality ofo with respect to X in o's representing region D(o,A) and Pr(D(o,A»

is the probability of D(o, A). •

Since the distribution of X is unknown, we can estimate the group typicality GT(A, X)

as follows. For any instance 0 E A, let N(o, A, 0) = {xix EOn D(o, An be the set of

instances in 0 that lie in D(o,A), Pr(D(o,A» can be estimated using 1N(1~,o)I. The group

typicality GT(A, X) is estimated by GT(A,O) = Z=oEA T(o, N(o, A, 0» . IN(I~,O)I, where

T(o, N(o, A, 0» is the estimator of simple typicality T(o, XD(o,A), since N(o, A, 0) can be

viewed as a set of independent and identically distributed samples of X that lie in D(o, A).

The group typicality score measures how representative a group of instances is. The

size-k most typical group problem is to find k instances as a group such that the group has
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Figure 2.2: Non-monotonicity of size-k
most typical group.

Figure 2.3: Medians, means and typical
objects.

the maximum group typicality. Unfortunately, the problem is NP-hard, since it has the

discrete k-median problem as a special case, which was shown to be NP-hard [37].

Moreover, top-k queries are generally expected to have the monotonicity in answer sets.

That is, the result of a top-k query is contained in the result of a top-k' query where k < k'.

However, an instance in the most typical group of size k may not be in the most typical group

of size k' (k < k'). For example, in the data set illustrated in Figure 2.2, the size-l most

typical group is {A} and the size-2 most typical group is {B, C}, which does not contain

the size-l most typical group. Therefore, the size-k most typical group is not suitable to

define the top-k representative typicality.

To enforce monotonicity, we adopt a greedy approach.

Definition 2.9 (Representative typicality). Given an uncertain object 0 and a re­

ported answer set A cO, let X be the random vector with respect to instances

in 0, the representative typicality of an instance a E (0 - A) is RT(a, A, X) =

GT(A u {a}, X) - GT(A, X), where GT(A U {a}, X) and GT(A, X) are the group typicality

values of subsets Au {a} and A, respectively. _

In practice, we use RT(a,A,O) = GT(AU {a},O) - GT(A,O) to estimate RT(a,A,X),

where GT(A, 0) and GT(A U {a}, 0) are the estimators of GT(A, X) and GT(A U {a}, X),

respectively.

Given an uncertain object 0 on attributes Ail' ... ,Ail of interest, a predicate P and a

positive integer k, a top-k representative typicality query returns k instances 01, ... , ak

from the set of instances in 0 satisfying predicate P, such that a1 is the instance having
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the largest simple typicality, and, for i > 1,

Oi=arg max RT(o,{Ol, ... ,Oi-d,O).
OEO-{Ol,... ,Oi-d

The representative typicality values are computed on attributes Ail' ... , Ail'

Example 2.7 (Top-k representative typicality queries). Consider the set of points

in Figure 2.4(a) and a top-2 representative typicality query on attribute X with predicate

COLOR = white.

We project the white points to attribute X and plot the simple typicality scores of the

white points, as shown in Figure 2.4(b). Points a and c have the highest simple typicality

scores. However, if we only report a and c, then the dense region around a is reported twice,

but the dense region around b is missed. A top-2 representative typicality query will return

a and b as the answer. •

2.2.2 Ranking Uncertain Instances in Multiple Uncertain Objects

Given multiple uncertain objects, how can we select a small subset of instances meeting

users' interests? Ranking queries (also known as top-k queries) [57, 70, 148, 150] are a

class of important queries in data analysis that allows us to select the instances ranked top

according to certain user specified scoring functions. We consider the top-k selection query

model [108].

Definition 2.10 (Top-k selection queries). For a set of instances S, each instance

°E S is associated with a set of attributes A. Given a predicate P on A, a ranking function
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f : S -t R and a integer k > 0, a top-k selection query QIp,j returns a set of instances

QIp,j(S) ~ Sp, where Sp is the set of instances satisfying P, IQIp,j(S) I = min{k, ISpl} and

f(o) > f(o') for any instances 0 E QIp,j(S) and 0' ESp - QIp,j(S). •

To keep our presentation simple, we assume that the top-k selection queries in our

discussion select all instances in question. That is Sp = S. Those selection predicates can

be implemented efficiently as filters before our ranking algorithms are applied. Moreover,

we assume that the ranking function f in a top-k selection query can be efficiently applied

to an instance 0 to generate a score f(o). When it is clear from context, we also write QIp,j

as Qk for the sake of simplicity.

Ranking Probabilities

How can we apply a top-k selection query to a set of uncertain objects? Since each object

appears as a set of instances, we have to rank the instances in the possible worlds semantics.

A top-k selection query can be directly applied to a possible world that consists of a set

of instances. In a possible word, a top-k selection query returns k instances. We define the

rank-k probability and top-k probability for instances and objects as follows.

Given a set of uncertain objects and a ranking function f, all instances of the uncertain

objects can be ranked according to the ranking function. For instances 01 and 02, 01 "jf 02

if 01 is ranked higher than or equal to 02 according to f. The ranking order "jf is a total

order on all instances.

Definition 2.11 (rank-k Probability and top-k probability). For an instance 0, the

rank-k probability Pr(o, k) is the probability that 0 is ranked at the k-th position in possible

worlds according to f, that is

Pr(o, k) = L Pr(W)
WEW s.t. o=Wf(k)

(2.1)

where Wf(k) denotes the instance ranked at the k-th position in W.

The top-k probability Prk(0) is the probability that 0 is ranked top-k in possible worlds

according to f, that is,
k

Prk(o) = LPr(o,j).
j=1

(2.2)

•
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Ranking Criteria

Given a rank parameter k > 0 and a probability threshold p E (0, 1], a probability threshold

top-k query (PT-k query for short) [106, 107] finds the instances whose top-k probabilities

are no less than p.

Definition 2.12 (PT-k query and top-(k, l) query). Given a rank parameter k > 0

and a probability threshold p E (0,1], a probabilistic threshold top-k query (PT-k query

for short) [106, 107) finds the instances whose top-k probabilities are no less than p.

Alternatively, a user can use an answer set size constraint l > 0 to replace the probability

threshold p and issue a top-(k, l) query [177, 203), which finds the top-l tuples with the

highest top-k probabilities. _

Now, let us consider the reverse queries of PT-k queries and top-(k, l) queries.

For an instance 0, given a probability threshold p E (0,1], the p-rank of 0 is the minimum

k such that Prk(o) ~ p, denoted by MRp(o) = min{kIPrk(o) ~ p}.

Definition 2.13 (RT-k query and top-(p, l) query). Given a probability threshold

p E (0,1] and a rank threshold k > 0, a rank threshold query (RT-k query for short)

to retrieve the instances whose p-ranks are at most k. RT-k queries are reverse queries of

PT-k queries.

Alternatively, a user can replace the rank threshold by an answer set size constraint l > 0

and issue a top-(p, l) query, which returns the top-l instances with the smallest p-ranks.

Clearly, top-(p, l) queries are reverse queries of top-(k, l) queries. _

Interestingly, it is easy to show the following.

Corollary 2.3 (Answers to PT-k and RT-k queries). Given a set of uncertain objects

S, an integer k > 0 and a real value p E (0,1], the answer to a PT-k query with rank

parameter k and probability threshold p and that to a RT-k query with rank threshold k and

probability threshold p are identical.

Proof. An instance satisfying the PT-k query must have the p-rank at most k, and thus

satisfies the RT-k query. Similarly, an instance satisfying the RT-k query must have the

top-k probability at least p, and thus satisfies the PT-k query. _

PT-k queries and RT-k queries share the same set of parameters: a rank parameter k

and a probability threshold. Thus, as shown in Corollary 2.3, when the parameters are the
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TID Rank Prob. Top-k probabilities
k=1 k=2 k=3 k=4

01 1 0.5 0.5 0.5 0.5 0.5
02 2 0.3 0.15 0.3 0.3 0.3
03 3 0.7 0.245 0.595 0.7 0.7
04 4 0.9 0.0945 0.45 0.8055 0.9

Table 2.2: Top-k probabilities of a set of tuples.

same, the results are identical. For top-(k, I) queries and top-(p, I) queries, even they share

the same value on the answer set size constraint I, the answers generally may not be the

same since the rank parameter and the probability threshold select different instances.

Example 2.8 (PT-k query and Top-(k, I) query). Consider a set of uncertain instances

in Table 2.2. Suppose each instance belongs to one uncertain object and all objects are

independent. In Figure 2.5, we plot the top-k probabilities of all instances with respect to

different values of k.

A PT-3 query with probability threshold p = 0.45 returns instances {01,03,04} whose

top-3 probabilities are at least 0.45. Interestingly, the PT-3 query with probability threshold

p = 0.45 can be represented as a point Ql(3, 0.45) in Figure 2.5. As the answers to the

query, the top-k probability curves of 01, 03 and 04 lie northeast to Ql.

Alternatively, a top-(k, I) query with k = 3 and I = 2 returns 2 instances {04, 03},

which have the highest top-3 probabilities. The query can be represented as a vertical line

Q2(k = 3) in Figure 2.5. The answer set includes the 2 curves which have the highest

intersection points with Q2. _

Example 2.9 (RT-k query and Top-(p, I) query). Consider the uncertain instances in

Table 2.2 again. An RT-3 query with probability threshold p = 0.45 returns {O1, 03, 04}.

The answer is the same as the answer to the PT-3 query with the sameprobability threshold

as shown in Example 2.8.

A top-(p, I) query with p = 0.5 and I = 2 returns {01, 03} whose 0.5-ranks are the small­

est. The query can be represented as a horizontal line Q3(probability = 0.5) in Figure 2.5.

The 2 curves having the leftmost intersections with Q3 are the answers. _

2.2.3 Ranking Uncertain Objects

At the object level, the rank-k probability and top-k probability are defined as follows.
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Definition 2.14 (Object rank-k probability and top-k probability). For an uncertain

object 0, the object rank-k probability Pr(0, k) is the probability that any instance ° E 0

is ranked at the k-th position in possible worlds according to j, that is

Pr(O, k) = L Pr(o, k).
oED

(2.3)

The object top-k probability Prk(0) is the probability that any instance in 0 is ranked

top-k in possible worlds, that is

k

Prk(O) = L Prk(O) = L L Pr(o,j).
oED oED j=l

(2.4)

•
The probabilistic ranking queries discussed in Section 2.2.2 can be applied at the object

level straightforwardly. Therefore, we skip the definitions of those queries.

2.3 Extended Uncertain Data Models and Ranking Queries

In this section, we develop three extended uncertain data models and ranking queries on

those models, to address different application interest.
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2.3.1 Uncertain Data Stream Model

As illustrated in Scenario 2 of Example 1.1, the instances of an uncertain object may keep

arriving in fast pace and thus can be modeled as a data stream. The instances are generated

by an underlying temporal random variable whose distribution evolves over time. To keep our

discussion simple, we assume a synchronous model. That is, each time instant is a positive

integer, and at each time instant t (t > 0), an instance is collected for an uncertain data

stream. To approximate the current distribution of a temporal random variable, practically

we often use the observations of the variable in a recent time window as the sample instances.

Definition 2.15 (Uncertain data stream, sliding window). An uncertain data

stream is a (potentially infinite) series of instances 0 = 01,02, .. '. Given a time instants

t (t> 0), O[t] is the instance of stream O.

A sliding window W~ is a selection operator defined as W~(O) = {O[i]l(t-w) < i ~ t},

where w > 0 is called the width of the window.

For a set of uncertain data streams 0 = {01,'" ,On}, sliding window W~(0)

{W~(Oi)11 ~ i ~ n}. _

Connections with the uncertain object model. The distribution of an uncertain data

stream 0 in a given sliding window W~ is static. Thus, the set of instances W~(O) can

be considered as an uncertain object. The membership probabilities for instances depend

on how the instances are generated from the underlying random variable of W~(O). For

example, if the instances are drawn using simple random sampling [117], then all instances

take the same probability t. On the other hand, using other techniques like particle fil­

tering [64] can generate instances with different membership probabilities. In this thesis,

we assume that the membership probabilities of all instances are identical. Some of our

developed methods can also handle the case of different membership probabilities, which

will be discussed in Section 6.5.

Definition 2.16 (Uncertain object in a sliding window). Let 0 be an uncertain data

stream. At time instant t > 0, the set of instances of 0 in a sliding window W~ is an

uncertain object denoted by W~(O) (1 ~ i ~ n), where each instant 0 E W~(O) has the

membership probability Pr(o) = t. -
In this thesis, we assume that the distributions of uncertain data streams are independent

from each other. Handling correlations among uncertain data streams is an important
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direction that we plan to investigate as future study that will be discussed in Section 6.5.

The uncertain data in a sliding window carries the possible worlds semantics.

Definition 2.17 (Possible worlds of uncertain data streams). Let 0 = {Ob"" On}

be a set of uncertain data streams. A possible world w = {VI, ... , vn } in a sliding window

W~ is a set of instances such that one instance is taken from the uncertain object of each

stream in W~, i.e., Vi E W~(Oi) (1 :S i :S n). The existence probability of w is Pr(w) =
n n 1
II Pr(vi) = II: = w-n

.

i=l i=l
The complete set of possible worlds of sliding window W~(O) is denoted by W(W~(O)) .

•
Corollary 2.4 (Number of possible worlds). For a set of uncertain data streams

o = {Ol,'" ,On} and a sliding window W~(O), the total number of possible worlds is

IW(Ww(t))1 = wn. •

When it is clear from the context, we write W(W~(O)) as W and W~(O) as W or wt
for the sake of simplicity.

Example 2.10 (Uncertain streams). As discussed in Example 1.1, speed sensors are

deployed to monitor traffic in a road network. The vehicle speed at each monitoring point

can be modeled as a temporal random variable. To capture the distribution of such

a temporal random variable, a speed sensor at the monitoring point reports the speed

readings every 30 seconds. Therefore, the speed readings reported by each speed sensor is

an uncertain stream. Each reading is an instance of the stream. A sliding window of

length 3 at time t contains the last 3 readings (that is, the readings in the last 90 seconds)

of each speed sensor.

Suppose there are four monitoring points A, B, C and D with speed readings shown

in Table 2.3. At time t, sliding window wj contains the records of speeds at time t - 2,

t - 1 and t. Wj(A) = {aI, a2, a3} can be modeled as an uncertain object. So are Wj(B),

WHC) and Wj(D). Each instance in wj takes membership probability 1. There are

34 = 81 possible worlds. Each possible world takes one instance from each object. For

example, {aI, b3 , C2, d l } is a possible world. The existence probability of each possible world

is (1)4 = 8\' •
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Time instant # Time Speeds at A Speeds at B Speeds at C Speeds at D
t-2 00 : 01 : 51 al = 15 bl = 6 Cl = 14 d1 = 4
t - 1 00: 16 : 51 a2 = 16 b2 = 5 C2 = 8 d2 = 7

t 00: 31 : 51 a3 = 13 b3 = 1 C3 = 2 d3 = 10
t+l 00: 46 : 51 a4 = 11 b4 = 6 C4 = 9 d4 = 3
...

Table 2.3: An uncertain data stream. (Sliding window width w = 3. Wj contains time
instant t - 2, t - 1 and t. Wj+l contains time instant t - 1, t and t + 1.)

Continuous Probabilistic Threshold Top-k Queries

Probabilistic threshold top-k queries can be applied on a sliding window of multiple un­

certain data streams. We treat the instances of an uncertain'data stream falling into the

current sliding window as an uncertain object, and rank the streams according to their

current sliding window.

Definition 2.18 (Continuous probabilistic threshold top-k query). Given a proba­

bilistic threshold top-k query Q~, a set of uncertain data streams 0, and a sliding window

width w, the continuous probabilistic threshold top-k query is to, for each time instant

t, report the set of uncertain data streams whose top-k probabilities in the sliding window

W~(O) are at least p. •

Example 2.11 (Continuous Probabilistic Threshold Top-k Queries). Consider the

uncertain streams in Table 2.3 with sliding window size w = 3 and continuous probabilistic

threshold top-2 query with threshold p = 0.5.

At time instant t, the sliding window contains uncertain objects Wj(A) , Wj(B),

Wj(C) and Wj(D). The top-k probabilities of those uncertain objects are:

Pr2(Wj(A)) = 1, Pr2(Wj(B)) = i7' Pr2(Wj(C)) = ~ and Pr2(Wj(D)) = ~~. There­

fore, the probabilistic threshold top-k query returns {A, C} at time instant t.

At time instant t + 1, the top-k probabilities of the uncertain objects are:

Pr2(Wj+l(A)) = 1, Pr2(Wj+1(B)) = 227 , Pr2(Wj+l(C)) = ~ and Pr2(Wj+l(D)) = ~~.

The probabilistic threshold top-k query returns {A} at time instant t + 1.

The methods of answering probabilistic threshold top-k queries will be discussed in

Chapter 6.
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2.3.2 Probabilistic Linkage Model

In the basic uncertain object model, we assume that each instance belongs to a unique

object, though an object may have multiple instances. It is interesting to ask what if an

instance may belong to different objects in different possible worlds. Such a model is useful

in probabilistic linkage analysis, as shown in the following example.

Example 2.12 (Probabilistic linkages). Survival-after-hospitalization is an important

measure used in public medical service analysis. For example, to obtain the statistics

about the death population after hospitalization, Svartbo et al. [183] study survival-after­

hospitalization by linking two real data sets, the hospitalization registers and the national

causes-of-death registers in some counties in Sweden. Such technique is called record link­

age [127], which finds the linkages among data entries referring to the same real-world

entities from different data sources. However, in real applications, data is often incomplete

or ambiguous. Consequently, record linkages are often uncertain.

Probabilistic record linkages are often used to model the uncertainty. For two records,

a state-of-the-art probabilistic record linkage method [127, 88] can estimate the probabil­

ity that the two records refer to the same real-world entity. To illustrate, consider some

synthesized records in the two data sets as shown in Table 2.4..The column probability is

calculated by a probability record linkage method.

Two thresholds OM and Ou are often used (0::; Ou < OM ::; 1): when the linkage proba­

bility is less than ou, the records are considered not-matched; when the linkage probability

is between Ou and OM, the records are considered possibly matched; and when the linkage

probability is over OM, the records are considered matched. Many previous studies focus on

building probabilistic record linkages effectively and efficiently.

If a medical doctor wants to know, between John H. Smith and Johnson R. Smith,

which patient died at a younger age. The doctor can set the two thresholds OM = 0.4 and

Ou = 0.35 and compare the matched pairs ofrecords. Suppose OM = 0.4 and Ou = 0.35, then

John H. Smith is matched to J. Smith, whose age is 61, and Johnson R. Smith is matched

to J. R. Smith, whose age is 45. Therefore, the medical doctor concludes that Johnson R.

Smith died at a younger age than John H. Smith. Is the answer correct?

If we consider all possible worlds corresponding to the set of linkages shown in Table 2.4

(the concept of possible world on probabilistic linkages will be defined in Definition 2.20),

then the probability that Johnson R. Smith is younger than John H. Smith is 0.4, while that
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LID hospitalization registers causes-of-death registers Probability
Id Name Disease Id Name Age

h al John H. Smith Leukemia b1 Johnny Smith 32 0.3
l2 al John H. Smith Leukemia b2 John Smith 35 0.3
l3 al John H. Smith Leukemia b3 J. Smith 61 0.4
l4 a2 Johnson R. Smith Lung cancer b3 J. Smith 61 0.2
l5 a2 Johnson R. Smith Lung cancer b4 J. R. Smith 45 0.8

Table 2.4: Record linkages between the hospitalization registers and the causes-of-death
registers.

probability that John H. Smith is younger than Johnson R. Smith is 0.6. Clearly, between

the two patient, John H. Smith died at a younger age than Johnson R. Smith with higher

probability. How to compute this probability will be discussed in Chapter 7.

In this example, we can consider each linked pair of records as an uncertain instance

and each record as an uncertain object. Two uncertain objects from different data sets may

share zero or one instance. Therefore, the uncertain objects may not be independent. We

develop the probabilistic linkage model to describe such uncertain data. _

Let E be a set of real-world entities. We consider two tables A and B which describe

subsets EA, EB ~ E of entities in E. Each entity is described by at most one tuple in each

table. In general, EA and EB may not be identical. Tables A and B may have different

schemas as well.

Definition 2.19 (Probabilistic linkage). Consider two tables A and B, each describing

a subset of entities in E, a linkage function £ : A x B -> [0,1] gives a score £(tA, tB) for

a pair of tuples tA E A and tB E B to measure the likelihood that tA and tB describe the

same entity in E. A pair of tuples 1= (tA, tB) is called a probabilistic record linkage (or

linkage for short) if £(l) > O. Pr(l) = £(tA, tB) is the membership probability of l. -

Given a linkage 1 = (tA, tB), the larger the membership probability Pr(l), the more

likely the two tuples tA and tB describe the same entity. A tuple tA E A may participate in

zero, one or multiple linkages. The number of linkages that tA participates in is called the

degree of tA, denoted by d(tA). Symmetrically, we can define the degree of a tuple tB E B.

For a tuple tA E A, let II = (tA, tBI)"" ,ld(tA) = (tA, tBd(tA) be the linkages that

tA participates in. For each tuple tA E A, we can write a mutual exclusion rule R tA =
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it EB· . ·EBld(tA) which indicates that at most one linkage can hold based on the assumption that

each entity can be described by at most one tuple in each table. Pr(tA) = '£f~:) Pr(li)

is the probability that tA is matched by some tuples in E. Since the linkage function is

normalized, Pr(tA) :S 1. We denote by RA = {RtA ItA E A} the set of mutual exclusion

rules for tuples in A. R tB for tB E E and RB are defined symmetrically.

(L, A, E) specifies a bipartite graph, where the tuples in A and those in E are two

independent sets of nodes, respectively, and the edges are the linkages between the tuples

in the two tables.

Connections with the uncertain object model. Given a set of probabilistic linkage

L between tuple sets A and E, we can consider each tuple tA E A as an uncertain object.

For any tuple tB E E, if there is a linkage l = (tA, tB) E L such that Pr(l) > 0, then tB

can be considered as an instance of object tA whose membership probability is Pr(l). In

contrast to the basic uncertain object model where each instance only belongs to one object,

in the probabilistic linkage model, a tuple tB E E may be the instance of multiple objects

{tAl"" ,tAd}' where tAi is a tuple in A with linkage (tAi,tB) E L (1:S i:S d). A mutual

exclusion rule R tB = (tAp tB) EB ... EB (tAd' tB) specifies that tB should only belong to one

object in a possible world. Alternatively, we can consider each tuple tB E E as an uncertain

object and a tuple tA E A is an instance of tB if there is a linkage (tA, tB) E L.

A linkage function can be regarded as the summarization of a set of possible worlds.

Definition 2.20 (Possible worlds). For a linkage function L and tables A and E, let

LA,B be the set of linkages between tuples in A and B. A possible world of LA,B, denoted

by W ~ L A,B, is a set of pairs l = (tA, tB) such that (1) for any mutual exclusive rule

R tA , if Pr(tA) = 1, then there exists one pair (tA, tB) E W, symmetrically, for any mutual

exclusive rule R t B' if Pr (tB) = 1, then there exists one pair (tA, tB) E W; and (2) each

tuple tA E A participates in at most one pair in W, so does each tuple tBEE.

W.c,A,B denotes the set of all possible worlds of LA,B. •

We study the ranking query answering on probabilistic linkage model in Chapter 7.

2.3.3 Uncertain Road Network

As illustrated in Scenario 3 of Example 1.1, the weight of each edge in a graph may be an

uncertain object. An uncertain road network is a probabilistic graph defined as follows.
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Definition 2.21 (Probabilistic graph). A probabilistic graph G(V, E, W) is a simple

graph containing a set of vertices V, a set of edges E ~ V x V, and a set of weights W

defined on edges in E. For each edge e E E, We E W is a real-valued random variable in

(0, +(0), denoting the travel time along edge e. _

As discussed in Section 2.1.1, the distribution of We is often unavailable and can be

estimated by a set of samples {x!,··· , xm}, where each sample Xi > a (1 :::; i :::; m) takes a

membership probability Pr(xi) E (0,1] to appear. Moreover, 2::1 Pr(Xi) = 1.

Paths and Weight Distribution

A simple path P is a sequence of non-repeated vertices (VI, ... , Vn+l/, where ei = (Vi, Vi+I)

is an edge in E (1 :::; i :::; n). VI and Vn+l are called the start vertex and the end vertex

of P, respectively. For the sake of simplicity, we call a simple path a path in the rest of the

paper. Given two vertices u and V, the complete set of paths between u and V is denoted

by Pu,v.

For paths P = (Vl, ... ,Vn+l/ and pi = (Vio,Vio+l"",Vio+k/ such that 1:::; io:::; n+

1 - k, P is called a super path of pi and pi is called a subpath of P. Moreover, P =

(Pl ,P2, ... ,Pm/ if PI = (Vl, ... ,Vil/' P2 = (Vil+l, ... ,Vi2/' ... , Pm = (vim_l+l, ... ,Vn+l/,

1 < il < i2 < ... < im-l :::; n. Pj (1 :::; j :::; m) is called a segment of P.

The weight of path P = (VI, ... ,Vn+l/ is the sum of the weights of all edges in P,

that is Wp = 2:r=l wei' where wei is the weight of edge ei = (Vi, Vi+l) with probability

mass function fei (x). Since each wei is a discrete random variable, wp is also a discrete

random variable. A sample of P is xp = 2:~1 Xi, where Xi (1 :::; i :::; n) is a sample

of edge ei = (Vi, Vi+l). We also write Xp = (Xl"", xn/ where Xl, ... , Xn are called the

components of xp.

The probability mass function of Wp is

fp(x) = Pr[wp = x] = L Pr[we1 = Xl,··· ,Wen = Xn]
Xl+ ...+Xn=x

(2.5)

In road networks, the travel time on a road segment e may be affected by the travel time

on other roads connecting with e. Therefore, the weights of adjacent edges in E may be

correlated. Among all edges in path P, the correlation between the weights wei and W eH1

of two adjacent edges ei and ei+l (1 :::; i :::; n) can be represented using different methods,

depending on the types of correlations. To keep our discussion general, in this paper we
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represent the correlations between wei and Wei+1 using the joint distribution over the sample

pairs (Xi, Xi+l) E Wei X WeH1 · The joint probability mass function1 of wei and WeHl

is f ei,eHl(Xi,Xi+l) = f ei+l,ei(Xi+l,Xi) = Pr[wei = Xi,WeHl = Xi+l]. Correspondingly, the

d 't' I b b'l't f' . f (I ) lei,eHl (xi,xHilcon IlOna pro a I I yo Wei gIven Wei+1 IS Je'[e'+l Xi Xi+l = I (.) .
t 'l. ei+l X",+l

Theorem 2.1 (Path weight mass function). The probability mass function of a simple

path P = (VI, ... ,Vn +l) (ei = (Vi,Vi+l) for 1 ~ i ~ n) is

fp(x) = L
Xl+ ...+Xn=X

TI~:/ fei,eHl (Xi, Xi+l)

TI.j:-i fej(Xj)
(2.6)

Proof. Since P is a simple path, each edge ei E P (1 ~ i ~) is only adjacent with ei-l

(if i > 1) and ei+l (if i < n) in P. Therefore, given wei' the weights we!,'" ,Wei_1 are

conditionally independent on WeH1 ' ... ,wen' Equation 2.6 follows with basic probability
theory. _

In sequel, the cumulative distribution function of Wp is

Fp(x) = Pr[wp ~ x] = L fp(xi)
O<Xi:SX

We call Fp(x) the x-weight probability of path P.

(2.7)

Example 2.13 (Probabilistic graph and paths). A probabilistic graph is shown in

Figure 2.6, where the weight of each edge is represented by a set of samples and their

membership probabilities.

Path P = (A,B,D,E) consists of edges AB, BD and DE. The joint probabilities of

(WAB, WBD) and (WBD, WDE) are shown in Figures 2.6(c) and 2.6(d), respectively. The

probability that Wp = 45 is

Pr[wp = 45] = Pr[wq = 15, we3 = 20, we6 = 10] + Pr[wq = 10, we3 = 25, we6 = 10]
Ie] ,e3 (15,20) X/e3 ,e6 (20,10) + Ie] ,e3 (10,25) x/e3 ,e6 (25,10)

le3 (20) le3 (25)
0.075 _

IThe joint travel time distribution among connected roads can be obtained from roadside sensors. The
sensors report the speeds of vehicles passing the sensors. The speeds can be transformed into travel time. A
set of travel time values reported by sensors at the same time is a sample of the joint travel time distribution.
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(b) ProbabIlIstlc weIghts of edges.

Edge Weight: value(probability)
ei XiI Xi2 Xi3

el: AB 10(0.3) 15(0.3) 20(0.4)
e2: AC 5(0.2) 10(0.3) 15(0.5)
e3: BD 20(0.4) 25(0.4) 30(0.2)
e4: BE 5(0.2) 25(0.6) 40(0.2)
e5: CE 10(0.5) 20(0.1) 45(0.4)
e6: DE 10(0.3) 20(0.6) 50(0.1)

. .

20 25 30
10 0.15 0.15 0
15 0.15 0.15 0
20 0.1 0.1 0.2

10 20 50
20 0.1 0.2 0.1
25 0.1 0.3 0
30 0.1 0.1 0

Figure 2.6: A probabilistic graph.

Path Queries

We formulate the probabilistic path queries on uncertain road networks.

Definition 2.22 (Probabilistic path queries). Given probabilistic graph G(V, E, W),

two vertices u, v E V, a weight threshold l > 0, and a probability threshold T E (0,1], a

probabilistic path query Q[(u, v) finds all paths P E Pu,v such that Fp(l) ~ T. •

There can be many paths between two vertices in a large graph. Often, a user is in­

terested in only the "best" paths and wants a ranked list. Thus, we define weight- and

probability-threshold top-k path queries.

Definition 2.23 (Top-k probabilistic path queries). Given probabilistic graph

G(V, E, W), two vertices u, v E V, an integer k > 0, and a weight threshold l > 0, a

weight-threshold top-k path query WTQ7(u,v) finds the k paths P E Pu,v with the

largest Fp(l) values.

For a path P, given probability threshold T E (0,1], we can find the smallest weight X

such that Fp(x) ~ T, which is called the T-confident weight, denoted by

(2.8)
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A probability-threshold top-k path query PTQ~(u, v) finds the k paths P E Pu,v with

the smallest Fpl(T) values. •

Example 2.14 (Path Queries). In the probabilistic graph in Figure 2.6, there are 4 paths

between A and D, namely PI = (A,B,D), P2 = (A,B,E,D), P3 = (A,C,E,B,D), and

P4 = (A, C, E, D). Suppose the weights of all edges are independent in this example.

Given a weight threshold l = 48 and a probability threshold T = 0.8, a probabilistic

path query QT finds the paths whose weights are at most 48 of probability at least 0.8.

According to the cumulative distribution functions of the paths, we have Fpl (48) = 0.92,

Fp2 (48) = 0.14, Fp3(48) = 0.028, and Fp4(48) = 0.492. Thus, the answer is {PI}.

The weight-threshold top-3 path query WTQt(A, D) finds the top-3 paths P having the

largest 48-weight probability values Fp(48). The answer to WTQr(A, D) is {PI,P4,P2}.

The probability-threshold top-3 path query PTQ~(A,D) finds the top-3 paths P having

the smallest 0.8-confidence weights Fpl (0.8). Since FPl (40) = 0.7 and FPl (45) = 0.92, the

smallest weight that satisfies Fp(x) 2: 0.8 is 45. Thus, F}\I(0.8) = 45. Similarly, we have

Fp;I(0.8) = 75, F~I(0.8) = 105, and F~I(0.8) = 75. Therefore, the answer to PTQ;(A,D)

is {PI, P2,P4}. •

To keep our presentation simple, in the rest of the thesis, we call probabilistic path

queries, weight- and probability-threshold top-k queries as path queries, WT top-k

queries, and PT top-k queries, respectively.

Connections with the uncertain object model. In the uncertain road network model,

the weight of each edge can be considered as an uncertain object with a set of instances.

The weight of a path is an aggregate sum of the uncertain objects corresponding to the

edges in the path. Therefore, a probabilistic query essentially ranks a set of aggregate sums

of uncertain objects.

2.4 Summary

In this chapter, we reviewed two basic uncertain data models, the uncertain object model

and the probabilistic database model, as well as the possible worlds semantics that have

been extensively adopted in other research on uncertain data.

Moreover, we proposed three extended uncertain data models that extend the uncertain

object model from different aspects.
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Basic uncertain data models

Probabilistic database model

Elements
Uncertain obiect model

A set of uncertain tuples Elements

A set of generation rules A set of uncertain objects

Equivalent Each object contains a set of instances
Properties

Data type: static Properties

Dependency: independency among tuples in Data type: static

different generation rules
Dependency: independency among objects

1----------------------------------------------------- -------------~

I I
I I
I I
I I

: I

I
I
I
I

------------------------------- ---------------------------------

Uncertain data stream model Probabilistic linka e model Uncertain road network model

Elements
A set of uncertain data streams
Each stream contains a series of instances

Elements

Two sets of tuples (objects)
A set oflinkages (instances) between tuples

Elements
A simple graph
Each edge weight isan uncertain object

Properties
Data type: dynamic

Dependency: independency among object

Properties

Data type: static
Dependency: 2 tulpes share 0 or I linkage

Properties

Data type: static

Dependency: correlations among weights
Complex structure: a simple graph

Extended uncertain data models

Figure 2.7: The basic and extended uncertain data models adopted in this thesis.

• The uncertain data stream model captures the dynamic nature of uncertain data. Each

uncertain data stream is a series of (potentially) unlimited instances. Given a sliding

window that selects the time span of interest, the instances of each uncertain data

stream in the sliding window can be considered as an uncertain object. The uncertain

data stream model suits the needs of applications that involve uncertain data with

evolving distributions, such as traffic monitoring and environmental surveillance.

• The probabilistic linkage model introduces dependencies among different uncertain

objects. It contains two object sets OA and OB and a set of linkages £. Each linkage

matches one object in 0 A with another object in 0 B with a confidence value indicating

the how likely the two objects refer to the same real-life entity. Two objects from

different object sets may share one instance. The probabilistic linkage model finds

important applications in data integration.



CHAPTER 2. PROBABILISTIC RANKING QUERIES ON UNCERTAIN DATA 37

I Data type I Structure of data I Data dependency IUncertain data model

Probabilistic database model Static No structure Independent
Uncertain object model Static No Structure Independent
Uncertain stream model Dynamic No structure Independent

Probabilistic linkage model Static Tree structure Dependent
Uncertain road network model Static Graph structure Dependent

(a) Uncertain data models adopted in this thesis.

Problem Ranking query types Model
Granularity Ranking scope Ranking criteria

Typicality Instance Single Probability Uncertain
queries object data model

Probabilistic Instance/ Multiple Score & Probabilistic
ranking queries object objects probability database model
Top-k stream Object Multiple Score & Uncertain

monitoring objects probability stream model
Linkage Instance/ Multiple Score & Probabilistic

ranking queries object objects probability linkage model
Probabilistic Object set Multiple Score & Uncertain road
path queries objects probability network model

(b) Ranking queries addressed in this thesis.

Table 2.5: Uncertain data models and ranking queries discussed in this thesis.

• The uncertain road network model considers a set of uncertain objects in a simple

graph. The weight of each edge in a simple graph is an uncertain object represented

by a set of instances. The weights of adjacent edges may involve dependencies. A

probabilistic path query finds the optimal paths between two end vertices that have

small weights with high confidence. The uncertain road network model is important

in applications like real-time trip planning.

Figure 2.7 and Table 2.5(a) summarize the five uncertain data models and their rela­

tionship.

Last, we formulated five ranking problems on uncertain data (listed in Table 2.5(b)) and

discussed the semantics as well as the potential challenges in query evaluation. Chapters 4

to 8 will discuss the query answering techniques for the proposed ranking problems.



Chapter 3

Related Work

In this chapter, we review the existing studies related to ranking queries on uncertain data.

First, we introduce the state-of-the-art studies on uncertain data modeling and processing as

well as database ranking queries. Then, we discuss the related work on each of the proposed

problems in this thesis.

3.1 Uncertain Data Processing

Modeling and querying uncertain data has been a fast growing research direction [9, 62,

132, 171] and receives increasing attention. In this section, we review the studies realted to

uncertain data modeling and query processing.

3.1.1 Uncertain Data Models and Systems

Various models for uncertain and probabilistic data have been developed in literature. The

working model for uncertain data proposed in [171] describes the existence probability of

a tuple in an uncertain data set and the constraints (i.e., exclusiveness) on the uncertain

tuples. One extensively used model described in [171] is the probabilistic database model

discussed in Section 2.1.2. A probabilistic database comprises of multiple probabilistic

tables. A probabilistic table contains a set of tuples, where each tuple is associated with a

membership probability. A probabilistic table may also come with some generation rules to

capture the dependencies among tuples, where a generation rule specifies a set of exclusive

tuples, and each tuple is involved in at most one generation rule.

38
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Another popularly used model is the uncertain object model [40,41, 185, 155] discussed

in Section 2.1. An uncertain object is conceptually described by a probability density func­

tion in the data space. In a scenario where the probability density function of an uncertain

object is unavailable, a set of samples (called instances) are collected to approximate the

probability distribution.

In [174, 58, 118, 119], probabilistic graphical models are used to represent correlations

among probabilistic tuples. Moreover, Sen et al. [175, 176] studied the problem of compact

representation of correlations in probabilistic databases by exploiting the shared correlation

structures. Probabilistic graphical models are reviewed in Section 3.6.2.

In addition, uncertainty in data integration is studied in [63, 172], where probabilistic

schema mapping is modeled as a distribution over a set of possible mappings between two

schemas.

On the system level, Orion [180, 181] is an uncertain database management system

that supports the attribute and tuple level uncertainty with arbitrary correlations. Three

basic operations are defined to perform selection and to compute marginal distributions

and joint distributions. Other relational operations can be defined based on the three basic

operations. Both continuous and discrete uncertainty is handled in Orion [180, 181].

3.1.2 Probabilistic Queries on Uncertain Data

Cheng et al. [40] provided a general classification of probabilistic queries and evaluation

algorithms over uncertain data sets. Different from the query answering in traditional

data sets, a probabilistic quality estimate was proposed to evaluate the quality of results

in probabilistic query answering. Dalvi and Suciu [54] proposed an efficient algorithm to

evaluate arbitrary SQL queries on probabilistic databases and rank the results by their

probability. Later, they showed in [55] that the complexity of evaluating conjunctive queries

on a probabilistic database is either PTIME or #P-complete.

Chen et al. [39] studied aggregate queries on data whose attributes may take "partial

values", where a "partial value" is a set of possible values with only one being true. The

answer to an aggregate query involving such attributes is also in the form of a "partial

value". In [159], the efficient evaluation of sum, count, min and max queries on probabilistic

data is studied based on Monte Carlo simulation. Only the top-k answers to the query

with the highest probabilities are returned. Burdick et al. [27, 29, 28] extended the OLAP

model on imprecise data. Different semantics of aggregation queries are considered over such
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data. Following with the possible worlds semantics model [1, 109, 171, 53], the answer to

an aggregation query is represented as an answer random variable with certain probability

distribution over a set of possible values. In [114], several one pass streaming algorithms are

proposed to estimate statistical aggregates of a probabilistic data stream, which contains a

(potentially infinite) sequence of uncertain objects.

Cheng et at. [42] explored the join queries over data sets with attribute level uncertainty,

where the values of a tuple in the join attributes are probability distributions in a set of

value intervals. In [3], join queries are studied on data sets with tuple level uncertainty,

where each tuple in a table is associated with a membership probability. Kimelfeld and

Sagiv [125] studied the maximal join queries on probabilistic data, where only the answers

whose probabilities are greater than a threshold and are not contained by any other output

answers are returned.

3.1.3 Indexing Uncertain Data

There are two categories of indexes on uncertain data. The first category is for uncertain

numeric data, such as sensor values or locations of moving objects. Tao et at. [185, 187]

proposed a U-tree index to facilitate probabilistic range queries on uncertain objects repre­

sented by multi-dimensional probability density functions. Ljosa et at. [140] developed an

APLA-tree index for uncertain objects with arbitrary probability distributions. An APLA

for each object is an adaptive piecewise linear approximation and can be regarded as a

time series. All those time series are organized by an APLA-tree in a hierarchical manner.

Besides, Cheng et at. [41] developed PTI, probability thresholding index, to index uncertain

objects with one dimensional uncertain values. Bohm et at. [21] developed an index for

uncertain objects whose probability density functions are Gaussian functions N(/-1' a), by

treating each object as a two dimensional points (/-1, a) and indexing the points in an R-tree.

The second category is for uncertain categorical data, such as RFID data or text labels.

For example, Singh et at. [179] extended the inverted index and signature tree to index

uncertain categorical data.

3.2 Ranking (Top-k) Queries

There are numerous existing methods for answering top-k queries on static data. The

threshold algorithm (TA) [150] is one of the fundamental algorithms. TA first sorts the
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values in each attribute and then scans the sorted lists in parallel. A "stopping value" is

maintained, which acts as a threshold to prune the tuples in the rest of the lists if they

cannot have better scores than the threshold. Several variants of TA have been proposed,

such as [70]. [108] provides a comprehensive survey about the ranking queries and evaluation

algorithms. The recent developments and extensions of top-k query answering include using

views to answer top-k queries efficiently [57], removing redundancy in top-k patterns [196],

applying multidimensional analysis in top-k queries [198], continuous monitoring of top-k

queries over a sliding window [148], and so forth.

3.2.1 Distributed Top-k Query Processing

Distributed top-k query processing focuses on reducing communication cost while providing

high quality answers. [12] studies top-k monitoring queries which continuously report the k

largest values from data streams produced at physically distributed locations. In [12]' there

are multiple logical data objects and each object is associated with an overall logical data

value. Updates to overall logical data values arrive incrementally over time from distributed

locations. Efficient techniques are proposed to compute and maintain the top-k logical data

objects over time with low communication cost among distributed locations and a bounded

error tolerance. In [145], an algorithmic framework is proposed to process distributed top-k

queries, where the index lists of attribute values are distributed across a number of data

peers. The framework provides high quality approximation answers and reduces network

communication cost, local peer load, and query response time.

3.3 Related Work: Top-k Typicality Queries

Aside from the studies reviewed in Sections 3.1 and 3.2, the top-k typicality queries that

will be discussed in Chapter 4 is also related to the previous work in the following aspects:

typicality in psychology and cognitive science, the k-median problem, typicality probability

and spatially-decaying aggregation.

3.3.1 Typicality in Psychology and Cognitive Science

Typicality of objects has been widely discussed in psychology and cognitive science [65, 184].

People judge some objects to be "better examples" of a concept than others. This is known



CHAPTER 3. RELATED WORK 42

as the graded structure [165] of a category. Generally, the graded structure is a continuum

of category representativeness, beginning with the most typical members of a category and

continuing through less typical members to its atypical members.

There are several determinants of graded structure. One determinant is the central

tendency [14] of a category. Central tendency is either one or several very representative

exemplar(s), either existing in the category or not. An exemplar's similarities to the central

tendency determine its typicality in this category. Another determinant of typicality is the

stimulus similarity [154]. Generally, the more similar an instance is to the other members

of its category, and the less similar it is to members of the contrast categories, the higher

the typicality rating it has.

The prototype view [164] suggests that a concept be represented by a prototype, such

that objects "closer to" or "more similar to" the prototype are considered to be better

examples of the associated concept. The exemplar view [26] is an alternative to the prototype

view that proposes using real objects as exemplars instead of abstract prototypes that might

not exist in real life. Finally, the schema view [45] improves the prototype view by modeling

concepts in schema theory and artificial intelligence knowledge representation.

Feature-frequency model defines typicality from a different scope [161]. A typical mem­

ber of a category will share many attributes with other members of the category and few

attributes with members of other categories. An attribute can be scored based on how many

members possess that attribute. A family resemblance score for each member sums up the

numerical scores of all attributes possessed by that member. A category member with a

higher family resemblance score is considered more typical.

Although typicality has not been used before in query answering on large databases, the

idea of typicality was recently introduced into ontology design and conceptual modeling [11]'

which are generally related to database design.

How is our study related? Our typicality measures are in the general spirit of typicality

measures used in psychology and cognitive science. As suggested by the previous studies

in psychology and cognitive science, typicality measures may vary in different applications.

In our study, we propose simple typicality, discriminative typicality, and representative

typicality for different application requirements.

Studies on typicality in psychology and cognitive science often do not address the con­

cerns about efficient query answering from large databases. Complementary to those studies,



CHAPTER 3. RELATED WORK

we focus on efficient query answering.

3.3.2 The (Discrete) k-Median Problem

43

Finding typical objects is broadly related to the k-median problem in computational geome­

try. Given a set S of n points, the k-median problem is to find a set M of k points minimizing

the sum of distances from all points in S to M. Points in M are called the medians of S.

Under the constraint that points in M belong to S, it is known as the discrete k-median

problem. When k = 1, we can find the exact median in O(n2 ) time. When k is an arbitrary

input parameter, the discrete k median problem on any distance metric is N P-hard [37].

Several approximation algorithms have been proposed to compute the approximate 1­

median efficiently. [22] proposes a quad-tree based data structure to support finding the

approximate median with a constant approximation ratio in O(n log n) time. A random­

ized algorithm is proposed in [32]' which computes the approximate median in linear time.

Although the approximation ratio cannot be bounded, it performs well in practice. [111]

provides a (1 + t5)-approximation algorithm with runtime O(n/155 ) based on sufficiently large

sampling. [19] proposes an algorithm to solve the median problem in L1 metric in O(n log n)

time.

How is our study related? The top-k simple typicality query and the discrete k-median

problem both want to find the instances in a set of instances optimizing the scores with

respect to their relationship to other instances. However, as will be clear in Chapter 4, the

functions to optimize are different. The methods of the discrete k-median problem cannot

be applied directly to answer top-k typicality queries.

Moreover, in discrete k-median problem, there is no ranking among the k median objects.

The top-k representative typicality queries as defined will return k objects in an order.

3.3.3 Clustering Analysis

Clustering analysis partitions a set of data objects into smaller sets of similar objects. [199]

is a nice survey of various clustering methods.

The clustering methods can be divided into the following categories. The partition­

ing methods partition the objects into k clusters and optimize some selected partition­

ing criterion, where k is a user specified parameter. K-means [95], K-medoids [122] and

CLARANS [151] are examples of this category. The hierarchical methods perform a series
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of partitions and group data objects into a tree of clusters. BIRCH [202], CURE [89] and

Chameleon [121] are examples of hierarchical methods. The density-based methods use a

local cluster criterion and find the regions in the data space that are dense and separated

from other data objects by regions with lower density as clusters. The examples of density­

based methods include DBSCAN [68], OPTICS [8] and DENCLUE [99]. The grid-based

methods use multi-resolution grid data structures and form clusters by finding dense grid

cells. STING [191] and CLIQUE [5] are examples of grid-based methods.

How is our study related? Typicality analysis and clustering analysis both consider

similarity among objects. However, the two problems have different objectives. Clustering

analysis focuses on partitioning data objects, while typicality analysis aims to find repre­

sentative instances.

In some studies, cluster centroids are used to represent the whole clusters. However, in

general the centroid of a cluster may not be a representative point. For example, medians

are often considered as cluster centroids in partitioning clustering methods, but they are

not the most typical objects as shown in Chapter 4.

In the density-based clustering method DBSCAN [68], the concept of "core point" is

used to represent the point with high density. For a core point 0, there are at least MinPts

points lying within a radius Eps from 0, where MinPts and Eps are user input parameters.

However, "core points" are significantly different from "typical points" in the following two

aspects.

First, a "core point" may not be typical. Consider an extreme case where there are two

groups of points: the first group of points lie close to each other with a size much larger

than MinPts, while the second group only contain MinPts points lying within a radius

Eps from a point 0 that are far away from the points in the first group. then, 0 is a core

point but it is not typical at all. Second, a typical point may not be a "core point" , either.

It is possible that a typical point does not have M inPts points lying within a distance

Eps from it, but it still has a high typicality score. A comparison between clustering and

typicality analysis on real data sets is given in Chapter 4.

It is possible to extend the existing clustering methods to answer typicality queries, by

defining the most typical object in a cluster as the centroid and using the maximal group

typicality of clusters as the clustering criteria, which is in the same spirit as our typicality

query evaluation algorithms.
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Typicality probability [31, 75] in statistical discriminant analysis is defined as the Maha­

lanobis distance between an object and the centroid of a specified group, which provides an

absolute measure of the degree of membership to the specified group.

Spatially-decaying aggregation [46, 47] is defined as the aggregation values influenced

by the distance between data items. Generally, the contribution of a data item to the

aggregation value at certain location decays as its distance to that location increases. Nearly

linear time algorithms are proposed to compute the t-approximate aggregation values when

the metric space is defined on a graph or on the Euclidean plane.

How is our study related? Discriminant analysis mainly focuses on how to correctly

classify the objects. It does not consider the typicality of group members. Our definition of

discriminative typicality combines both the discriminability and the typicality of the group

members, which is more powerful in capturing the "important" instances in multi-class data

sets. Moreover, [31, 75] do not discuss how to answer those queries efficiently on large data

sets.

Spatially-decaying sum with exponential decay function [46,47] is similar to our definition

of simple typicality. However, in [46, 47], the spatially-decaying aggregation problem is

defined on graphs or Euclidean planes, while we assume only a generic metric space. The

efficiency in [46, 47] may not be carried forward to the more general metric space. The

techniques developed developed in Chapter 4 may be useful to compute spatially-decaying

aggregation on a general metric space. When typicality queries are computed on graphs or

Euclidean planes, some ideas in [46, 47] may be borrowed.

3.4 Related Work: Probabilistic Ranking Queries

In this section, we first review the recent proposals of ranking queries and evaluation al­

gorithms on uncertain data. Then, we link the problem of ranking uncertain data to the

counting principle in probability and statistics, which provides more insights into the ranking

uncertain data problem.



CHAPTER 3. RELATED WORK

3.4.1 Top-k Queries on Uncertain Data

46

Generally, ranking queries on uncertain data can be classified into the following two cate­

gories.

Category I: Extensions of traditional ranking queries. The first category is exten­

sions to traditional ranking queries on certain data. That is, given a traditional ranking

query with an objective function, all tuples are ranked based on the objective function.

Since the results to the query may be different in different possible worlds, various queries

capture and summarize the results using different criteria.

Soliman et al. [182] proposed two types of ranking queries: U-Topk queries and U­

KRanks queries. The answer to a U-Topk query is always a top-k tuple list in some valid

possible worlds, and the exact positions of the tuples in the list are preserved. A U-KRanks

query finds the tuple of the highest probability at each ranking position. The tuples in

the results of a U-KRanks query may not form a valid top-k tuple list in a possible world,

though a U-KRanks query always returns k tuples. A tuple may appear more than once in

the answer set if it has the highest probability values to appear in multiple ranking positions,

respectively. Lian and Chen developed the spatial and probabilistic pruning techniques for

U-KRanks queries [137]. Simultaneously with our study, Yi et al. [200] proposed efficient

algorithms to answer U-Topk queries and U-KRanks queries. Silberstein et al. [177] model

each sensor in a sensor network as an uncertain object whose values follow some unknown

distribution. Then, a top-k query in the sensor network returns the top-k sensors such that

the probability of each sensor whose values are ranked top-k in any timestep is the greatest.

A sampling-based method collects all values in the network as a sample at randomly chosen

timesteps, and the answer to a top-k query is estimated using the samples.

More recently, Cormode et al. [52] proposed to rank probabilistic tuples by expected

ranks. The expected rank of a tuple t is the expectation of t's ranks in all possible worlds.

The rank of t in a possible world W is defined as the number of tuples ranked higher than t

in W. If t does not appear in W, then its rank in W is defined as IWI. Ranking by expected

ranks cannot capture the semantics of the probabilistic ranking queries discussed 'in this

thesis. For example, consider a probabilistic table containing three tuples tl, t2 and t3, with

membership probabilities 0.6, 1 and 1, respectively. Suppose the ranking order on the three

tuples based on their scores is tl -< t2 -< t3. There are two possible worlds WI = {tl, t2, t3}

and W2 = {t2, t3}, with probabilities 0.6 and 0.4, respectively. The expected rank of tl is
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Ox 0.6 +2 x 0.4 = 0.8. The expected ranks of t2 and t3 can be computed similarly, which are

0.6 and 1.6, respectively. A top-1 query based on expected ranks returns t2 as the result,

since t2 has the smallest expected rank. However, is t2 the most likely tuple to be ranked

top-I? The top-1 probabilities of tl, t2 and t3 are 0.6, 0.4 and 0, respectively. Clearly, tl

has the highest probability to be ranked top-I. A top-(k, i) query with k = 1 and i = 1

returns tl as the result.

Li et ai. [135] discussed the problem of ranking distributed probabilistic data. The

goal is to minimize the communication cost while retrieve the top-k tuples with expected

ranks from distributed probabilistic data sets. In [136], ranking in probabilistic databases

is modeled as a multi-criteria optimization problem. A general ranking function of a tuple

t is defined as the weighted sum of the position probabilities of t. This allows users to

explore the possible ranking functions space. Moreover, how to learn the weight parameters

of different position probabilities from user preference data was discussed.

Category II: Extensions of general traditional queries. The second category is

to use probability to rank answers to a query on uncertain data. That is, given a query

on uncertain data, results to the query are ranked according to their probabilities. Such

probability is called output probabilities. In [159], Re et ai. considered arbitrary SQL

queries and the ranking is on the probability that a tuple satisfies the query instead of using

a ranking function. [159] and our study address essentially different queries and applications.

Meanwhile, Zhang and Chomicki developed the global top-k semantics on uncertain data

which returns k tuples having the largest probability in the top-k list, and gave a dynamic

programming algorithm [203].

How is our study related? In this thesis, we study a class of ranking queries belong to

Category I, probabilistic ranking queries (including PT-k queries and top-(k, i) queries) and

reverse probabilistic ranking queries (including RT-k queries and top-(r, i) queries). Those

queries have been defined in Chapter 2. Among them, reverse probabilistic ranking queries

have not been considered by any previous studies.

We proposed [106, 107] probability threshold top-k queries that find the tuples whose

probabilities of being ranked top-k are at least p, where p is a user specified probabil­

ity threshold. Probabilistic threshold top-k queries bear different semantics from U-Topk

queries and U-KRanks queries. Consider the following example. If there are three sensors

A, Band C deployed at different locations. At time 9AM, three records rA, rB, and ro are
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reported from those sensors with associated confidences: rA = 1l0km/h with Pr(rA) = 0.1,

rB = 100km/h with Pr(rB) = 0.4, and re = 90km/h with Pr(re) = 0.8. What are the

top-2 speeding locations?

• A U-Top2 query reports C as the answer, since (reI is the most probably top-2 list in

all possible worlds, whose probability is 0.432.

• A U-2Ranks query reports C as the most probably I-st speeding location with con­

fidence 0.432. For the 2-nd speeding location, C is reported again with confidence

0.288.

• A probabilistic threshold top-2 query with probability threshold P = 0.3 returns B

and C as the 2 locations whose top-2 probabilities are no smaller than p. Their top-2

probabilities are Pr2 (rB) = 0.4 and Pr2 (rc) = 0.72.

Therefore, location B has a probability of 0.4 of being ranked in the top-2 speeding locations.

But it cannot be reported by U-Topk queries or U-kRanks queries. In the speed monitoring

application, users are more interested in the individual locations with a high probability

of being ranked top-k. The co-occurrence of speeding locations in the top-k list or the

speeding location at certain ranking position may not be important. Therefore, probabilistic

threshold top-k queries are more appropriate than U-Topk queries and U-kRanks queries in

this application scenario.

Moreover, we develop efficient query answering algorithms and effective index structures

for the proposed queries. Our unique prefix sharing technique and three pruning techniques

can greatly improve the efficiency in query answering. It is worth noting that our algorithm

can be used to answer U-KRanks query straightforwardly, while their algorithm may not

be used to handle PT-k query directly.

3.4.2 Poisson Approximation

The problem of answering probability ranking queries is also related to Poisson trials and

the Poisson binomial distribution in probability and statistics.

A Poisson trial is an experiment whose outcome is randomly selected from two possible

outcomes, "success" or "failure". Let Xl, .. " X n be n independent Bernoulli random trials.

For each trial Xi, the success probability is Pi (1 :::; i :::; n). The experiment is called
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Bernoulli trials if the trials are identical and thus the success probability of all the trials are

the same. Otherwise, the experiment is called Poisson trials [192].

The sum X = L:r=l Xi is the total number of successes in n independent Bernoulli

trials. X follows a binomial distribution for identical Bernoulli trials, and a Poisson-binomial

distribution for Poisson trials [130]. The exact distribution of Pr(X = i) can be calculated

recursively using the Poisson binomial recurrence [130].

Given an uncertain table, a generation rule can be viewed as a Bernoulli trial, if we

consider the appearance of a tuple as a "success". The probability of a rule is the success

probability of the corresponding trial. The probability of a tuple t to be ranked top-k is the

probability that t appears and there are fewer than k successes appear before t.

How is our study related? Some results of Poisson trials can be used in answering prob­

ability threshold top-k queries. However, the study of Poisson trials in probability theory

does not address the concerns on efficient query answering for large databases. Moreover,

multi-tuple generation rules pose new challenges.

In our study, we develop several techniques to process generation rules efficiently. Prun­

ing rules are also proposed to achieve early stop without scanning the whole table, which

significantly improves the efficiency in query answering.

3.5 Related Work: Uncertain Streams

In this section, we review the existing work highly related to ranking query monitoring on

uncertain data streams and point out the differences.

3.5.1 Continuous Queries on Probabilistic Streams

To the best of our knowledge, [50, 112, 113, 118] are the only existing studies on continuous

queries on probabilistic data streams, which are highly related to our study.

In [50], a probabilistic data stream is a (potentially infinite) sequence of uncertain tuples,

where each tuple is associated with a membership probability p (0 < p ~ 1), meaning that

the tuple takes a probability p to appear in an instance (i.e., a possible world) of the prob­

abilistic stream. It is assumed that tuples are independent from each other. Conventional

stream sketching methods are extended to such probabilistic data streams to approximate

answers to complex aggregate queries.
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Jayram et al. [112, 113] adopted a different probabilistic data stream model. A prob­

abilistic data stream contains a (potentially infinite) sequence of uncertain objects, where

each uncertain object is represented by a set of instances and each instance carries a mem­

bership probability. An uncertain object arrives in whole at a time and does not change

after the arrival. In other words, uncertain objects do not evolve over time. New uncertain

objects keep arriving. Several one pass streaming algorithms are proposed to estimate the

statistical aggregates of the probabilistic data.

Most recently, Kanagal and Deshpande [118] proposed a probabilistic sequence model

that considers the temporal and spatial correlations among data. Given a set of uncertain

attributes (AI,'" ,Am), each uncertain attribute Ai (1 ~ i ~ m) is a discrete random vari­

able in domain dom(Ai ) whose distribution is evolving over time. A probabilistic sequence

contains, for each time instant t, an instance (vf, . .. ,v~) for (A I, . .. ,Am), where each vf
(1 ~ i ~ m) is a random variable in domain dom(Ai ) with certain probability distribution.

It is a Markov sequence since the random variables at t only depends on the random vari­

ables at t - 1. Graphical models are used to describe the correlations among the random

variables in two consecutive instants. Query answering is considered as inferences over the

graphical models.

How is our study related? Our study is different from [50, 112, 113, 118] in following

two important aspects. First, the uncertain stream model proposed in this thesis is the

substantially different from the ones proposed before. In the probabilistic sequence model

proposed in [118], each element in the stream is a random variable (distribution). While we

model an uncertain stream as a series of sample instances generated by a temporal random

variable. The set of random variables (i.e., uncertain objects) are fixed. The distributions

of those random variables evolve over time. Our model handles some application scenarios

that are not covered by the models in [50, 112, 113, 118].

Second, we focus on continuous probabilistic threshold top-k queries on sliding windows,

a novel type of queries on uncertain data streams that have not been addressed before. [50,

112, 113] deal with aggregates on a whole stream. The operators discussed in [118] cannot

be directly used to answer continuous probabilistic threshold top-k queries.
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A rank or quantile query is to find a data entry with a given rank against a monotonic order

specified on the data. Rank queries have several equivalent variations [51,91, 204] and play

important roles in many data stream applications.

It has been shown in [112] that an exact computation of rank queries requires memory

size linear to the size of a data set by anyone-scan technique, which may be impractical

in on-line data stream computation where streams are massive in size and fast in arrival

speed. Approximately computing rank queries over data streams has been investigated in

the form of quantile computation.

A <j>-quantile (0 < ¢ ~ 1) of a collection of N data elements is the element with rank

r¢Nl against a monotonic order specified on the data set. The main paradigm is to con­

tinuously and efficiently maintain a small data structure (sketch/summary) in space over

data elements for online queries. It has been shown in [la, 80, 87, 144] that a space-efficient

¢-approximation quantile sketch can be maintained so that, for a quantile ¢, it is always pos­

sible to find an element at rank r' with the uniform precision guarantee Ilr' - r¢Nlil ~ EN.

Due to the observation that many real data sets often exhibit skew towards heads (or tails

depending on a given monotonic order), relative rank error (or biased) quantile computa­

tion techniques have been recently developed [49, 51, 204]' which give better rank error

guarantees towards heads.

Top-k queries have been extended to data streams. In [148], Mouratidis el al. study the

problem of continuous monitoring top-k queries over sliding windows. Very recently, [56]

improves the performance of the algorithms.

How is our study related? All the existing studies on continuous ranking or quantile

queries on data streams do not consider uncertain data. Those methods cannot be extended

to probabilistic threshold top-k queries on uncertain data directly due to the complexity of

possible worlds semantics. In this thesis, we investigate native methods for uncertain data

streams.

3.5.3 Continuous Sensor Stream Monitoring

Sensor stream monitoring focuses on maintaining the answers to deterministic queries in

sensor networks, while reducing the energy consumption as much as possible. Deshpande et

al. [59] built a correlation-aware probabilistic model from the stored and current data in a
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sensor network, and use the probabilistic model to answer SQL queries. Only approximate

answers with certain confidence bounds are provided, but the cost of data maintenance and

query answering is significantly reduced. More specifically, Liu et at. [139] studied Min/Max

query monitoring over distributed sensors. In their scenario, queries are submitted to a

central server, and the major cost in query answering is the communication cost between

the central server and distributed sensors. The authors model the reading of each sensor

as a random variable, whose probability distribution can be obtained from historical data.

Those distributions are used to estimate the answer to any Min/Max query. The server

also contacts a small number of sensors for their exact readings, in order to satisfy the user

specified error tolerance. [93] considers the applications where multiple sensors are deployed

to monitor the same region. A sampling method is used to answer continuous probabilistic

queries. The values of sensors that have little effect on the query results are sampled at a

lower rate.

How is our study related? There are three differences between our study and [59, 93,

139]. First, the uncertain data models adopted in the above work are different from the

uncertain stream model discussed in this thesis, due to different application requirements.

Second, the monitored queries are different: [59, 93, 139] deal with general SQL queries,

Min/Max queries, and probabilistic queries, respectively, but our study focuses on top-k

queries on uncertain streams specifically. Last, while the above work only provides approx­

imate answers, our study can provide a spectrum of methods including an exact algorithm,

a random method and their space efficient versions.

3.6 Related Work: Probabilistic Linkage Queries

The problem of ranking queries on probabilistic linkages that will be discussed in Chapter 7

is mainly related to the existing work on record linkages and probabilistic graphical models.

3.6.1 Record Linkage

Computing record linkages has been studied extensively. Please refer to [127] as a nice tuto­

rial. Generally, linkage methods can be partitioned into two categories. The deterministic

record linkage methods [163] link two records if their values in certain matching attributes
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such as "name", "address" and "social insurance number" are exactly identical. The deter­

ministic record linkage methods are not very effective in real-life applications due to data

incompleteness and inconsistency.

Probabilistic record linkage methods [88] estimate the likelihood of two records being

a match based on some similarity measures in the matching attributes. The similarity

measures used in probabilistic record linkage methods fall into three classes [127].

• The first class is based on the Fellegi-Sunter theory [73]. The general idea is to model

the values of the records in matching attributes as comparison vectors, and estimate

the probability of two records being matched or unmatched given their comparison

vectors [98, 193, 194].

• The second class is "edit based" measures such as the Levenshtein distance [133] and

the edit distance [92].

• The third class is "term based" measures, where terms can be defined as words in

matching attributes or Q-grams [85]. Such similarity measures include the fuzzy

matching similarity [38] and the hybrids similarity measure developed in [48].

More recent work on record linkages in different scenarios includes [110, 44, 146, 134].

How is our study related? In this thesis, we do not propose any record linkage meth­

ods. Instead, we focus on how to use probabilistic linkages produced by the existing prob­

abilistic record linkage methods to answer aggregate queries in a meaningful and efficient

way. As illustrated in Example 2.12, traditional post-processing methods that transform

the probabilistic linkages into deterministic matches using thresholds may generate mislead­

ing results. Moreover, all existing record linkage methods only return linkage probabilities

independently. There are no existing methods that output joint distributions. Therefore,

deriving possible probabilities is far from trivial as will be shown in Chapter 7.

3.6.2 Probabilistic Graphical Models

Probabilistic graphical models refer to graphs describing dependencies among random vari­

ables. Generally, there are two types of probabilistic graphical models: directed graphical

models [115] (also known as Bayesian networks or belief networks) and undirected graphical

models [126] (also known as Markov networks or Markov random fields).
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In directed graphical models, a vertex represents a random variable. A directed edge

from vertex X a to vertex X b represents that the probability distribution of Xb is conditional

on that of Xa'

In undirected graphical models, an edge between two random variables represents the

dependency between the variables without particular directions. A random variable X a is

independent to all variables that are not adjacent to X a conditional on all variables adjacent

to Xa.

In an undirected graphical model, the joint probability distribution of the random vari­

ables can be factorized by the marginal distributions of the cliques in the graph, if the graph

does not contain a loop of more than 3 vertices that is not contained in a clique [33].

How is our study related? In this thesis, we develop PME-graphs as a specific type of

undirected graphical models. We exploit the special properties of PME-graphs beyond the

general undirected graphical models, and study the factorization of the joint probabilities

in PME-graphs. Moreover, we develop efficient methods to evaluate aggregate queries on

linkages using PME-graphs.

3.7 Related Work: Probabilistic Path Queries

Last, we review the previous studies related to the probabilistic path queries that will be

discussed in Chapter 8. The existing related work include path queries on probabilistic

graphs and on traffic networks. Both problems have been studied extensively. However,

there is no work on extending probabilistic graphs to traffic networks.

3.7.1 Path Queries on Probabilistic Graphs

Frank [76] studied the shortest path queries on probabilistic graphs, where the weight of

each edge is a random variable following certain probability distribution. The probability

distribution of the shortest path is defined. Moreover, a Monte Carlo simulation method

is proposed to approximate the probability distribution of the shortest path. Loui [141]

extended [76] by defining a utility function which specifies the preference among paths.

Loui [141] also gave the computationally tractable formulations of the problem.

The shortest path problem on probabilistic graphs has been studied under different

constraints. Hassin and Zemel [96] considered computing shortest paths when the edge
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weight distributions have a Taylor's series near zero. Wu et at. [190] studied the shortest

path problem with edge weights uniformly and independently distributed in [0, 1]. Moreover,

Blei and Kaelbling [20] studied the problem of finding the shortest paths in stochastic graphs

with partially unknown topologies. The problem is reduced to a Markov decision problem.

Approximation algorithms are proposed. In [158], the problem of optimal paths in directed

random networks is studied, where the cost of each arc is a real random variable following

Gaussian distribution, and the optimal path is a path that maximizes the expected value

of a utility function. In particular, linear, quadratic, and exponential utility functions are

considered.

Stochastic shortest path search [71, 152, 72] is to find a path between two end nodes

and maximize the probability that the path length does not exceed a given threshold. It is

also referred to as the "stochastic on-time arrival problem (SOTA)". SOTA has the same

semantics as the WT top-l queries (a special case of WT top-k queries discussed in this

thesis). However, Nikolova et at. [152] only consider some particular parametric weight dis­

tribution (such as the Normal distribution and the Poisson distribution) and transform the

SOTA problem to a quasi-convex maximization problem. In addition, there have been other

formulations of the optimal routing problem with probabilistic graphs. Ghosh et at. [79]

developed an optimal routing algorithm that generates an optimal delivery subgraph so that

the connectivity between two end nodes is maximized. Chang and Amir [36] computed the

most reliable path between two end nodes when each edge has a failure probability.

Another related problem is traversing probabilistic graphs. Kahng [116] provided a nice

overview and insights of this problem. Povan and Ball [157] showed that even approximating

the probability that two vertices in a random graph are connected is NP-hard.

How is our study related? Our work is different from the above studies in the following

three aspects.

First, the probabilistic graph models are different. Many existing studies focus on simple

probabilistic graphs, where probabilistic weights are independent from each other, such

as [76, 72]. Moreover, some methods only work for certain probability distributions, such as

uniform distribution [190] and the Normal distribution [152]. Last, some studies do consider

correlations among edge weights. However, only certain types of correlations are considered,

like the dependence with a global hidden variable [36]. Our model considers arbitrary weight

distributions and correlations between the weights of adjacent edges. It is more capable and
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flexible for real road networks.

Second, the path queries are different. Most of the above studies focus on the optimal

path query, where a utility function is adopted to evaluate the optimality of paths. However,

using a single simple aggregate as the utility score may not capture traffic uncertainty

sufficiently, since the probability of optimality is often very small. To tackle the problem,

we propose probabilistic path queries and two top-k path queries.

Last, the query answering techniques are different. We propose a novel best-first search

algorithm for probabilistic path queries. Moreover, we develop a hierarchical partition tree to

index the road network structure and weight distribution information. Our query answering

methods are efficient and scalable thanks to the two techniques.

3.7.2 Path Queries on Certain Traffic Networks

The shortest path queries on traffic networks have been studied extensively before. Please

see [77] for a nice survey. The optimal algorithms often adopt dynamic programming and

are not scalable for large scale traffic networks. As a result, heuristic algorithms that provide

high quality approximate answers with short response time are developed.

The well known A* algorithm [94, 153] uses a heuristic evaluation function f(x) =

g(x) + h(x) to measure the optimality of the current explored path, where g(x) is the cost

from the start vertex to the current vertex, and h(x) is the heuristic estimation of the

distance to the goal. The paths with smaller f(x) score are explored earlier.

Sanders and Schultes [169, 170] proposed a "highway hierarchy" for large scale traffic

networks, which captures the key edges that are on the shortest paths between two far away

vertices. Then, the shortest path search is restricted to those key edges.

Ertl [67] considered the geographical location of each edge in a traffic network and

associated with each edge a radius, indicating how important the edge is in path search. An

edge is only considered for a path if either the start vertex or the end vertex is inside the

radius of the edge.

In [74], a hierarchical traffic network is proposed based on graph partitioning. When the

shortest path search is far away from the start or end vertices, the algorithm only looks at

the paths at higher levels of the hierarchical network.

In [15, 16], a concept of "transit" node is introduced to preprocess traffic networks. A

transit node is on a set of non-local shortest paths. The distance from every vertex in the

network to its closest transit node is computed to help the shortest path search.
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In [82], important driving and speed patterns are mined from historical data, and are

used to help to compute the fastest paths on traffic networks. A road hierarchy is built

based on different classes of roads. Frequently traversed road segments are preferred in the

path search.

In addition, Kurzhanski and Varaiya [128] considered a model that allows correlations

between links for the reachability problem. More studies on the hierarchical approach for

searching shortest path include [17, 195,35, 168].

How is our study related? The above studies tackle the path queries in large scale

certain traffic networks. Therefore, both the graph models and the query types are different

from our work. Thus, those techniques cannot be extended to probabilistic path queries on

uncertain road networks.

Moreover, although hierarchical indices have been extensively used in path queries on

certain traffic networks, the existing index techniques only work for certain path queries.

Thus, we develop a hierarchical partition tree to index the weight probability distributions

on graphs.



Chapter 4

Top-k Typicality Queries on

Uncertain Data

An uncertain object 0 can be modeled as a set of instances generated by an underlying

random variable X. If there are a large number of instances in an uncertain object, how

can we understand and analyze this object? An effective way is to find the most typical

instances among all instances of the uncertain object. In Section 2.2.1, we applied the idea

of typicality analysis from psychology and cognitive science to ranking uncertain data, and

modeled typicality for instances in uncertain objects systematically. Three types of top-k

typicality queries are formulated.

• To answer questions such as "Who are the top-k most typical NBA players?", the

measure of simple typicality is developed.

• To answer questions like "Who are the top-k most typical guards distinguishing guards

from other players?", the notion of discriminative typicality is proposed.

• To answer questions like "Who are the best k typical guards in whole representing

different types of guards?" , the notion of representative typicality is used.

Computing the exact answer to a top-k typicality query requires quadratic time which

is often too costly for online query answering on uncertain objects with large number of

instances. In this chapter, we develop a series of approximation methods for various situa­

tions.

58
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• The randomized tournament algorithm has linear complexity though it does not pro­

vide a theoretical guarantee on the quality of the answers.

• The direct local typicality approximation using VP-trees provides an approximation

quality guarantee.

• A Local Typicality Tree data structure can be exploited to index a large set of in­

stances. Then, typicality queries can be answered efficiently with quality guarantees

by a tournament method based on a Local Typicality Tree.

An extensive performance study using two real data sets and a series of synthetic data

sets clearly shows that top-k typicality queries are meaningful and our methods are practical.

4.1 Answering Simple Typicality Queries

Consider an uncertain object 0, the simple typicality value of an instance 0 E 0 is the

likelihood of 0 given that 0 is a sample of X, the underlying random variable generating the

samples in 0 (Definition 2.5).

In this section, we first discuss how to compute likelihood values, then, we show that the

complexity of answering top-k typicality queries is quadratic. Last, we present a randomized

tournament approximation algorithm (RT). The approximation algorithm developed for

simple typicality computation in this section can be extended to answer top-k discriminative

typicality queries and top-k representative typicality queries, as will be discussed later in

Sections 4.3 and 4.4, respectively.

4.1.1 Likelihood Computation

For an instance 0 in an uncertain object 0, likelihood L(oIO) is the posterior probability of 0

given instances in 0, which can be computed using probability density estimation methods.

There are several model estimation techniques in the literature [61], including parametric

and non-parametric density estimation. Parametric density estimation requires a certain

distribution assumption, while non-parametric estimation does not. Among the various

techniques proposed for non-parametric density estimation [60], histogram estimation [120],

kernel estimation [2, 25] and nearest neighbor estimation [142] are the most popular. In
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this work, we use kernel estimation, because it can estimate unknown data distributions

effectively [90].

Kernel estimation is a generalization of sampling. In random sampling, each sample

point carries a unit weight. However, an observation of the sample point increases the

chance of observing other points nearby. Therefore, kernel estimator distributes the weight

of each point in the nearby space around according to a kernel function K. The commonly

used kernel functions are listed in Table 4.1, where I(lul ::; 1) in the kernel functions denotes

the value 1 when lui::; 1 holds, and a when lui::; 1 does not hold.

A bandwidth parameter (also known as the smoothing parameter) h is used to control

the distribution among the neighborhood of the sample. As shown in [178], the quality of

the kernel estimation depends mostly on the bandwidth h and lightly on the choice of the

kernel K. Too small bandwidth values cause very spiky curves, and too large bandwidth

values smooth out details. A class of effective methods are data-driven least-squares cross­

validation algorithms [166, 23, 167, 173], which select the bandwidth value that minimizes

integrated square error.

In this work, we choose the commonly used Gaussian kernels. Our approach can also

be adapted to using other kernel functions. We set the bandwidth of the Gaussian kernel

estimator h = l~S as suggested in [173], where n is the cardinality of the uncertain object

o and s is the standard deviation of the instances in 0 which can be estimated by sampling.

In Section 4.5.3, we evaluate the sensitivity of the answers to top-k typicality queries with

respect to the choice of kernel functions and bandwidth values. The results show that the

answers computed using different kernel functions listed in Table 4.1 are mostly consistent.

Moreover, using different bandwidth values around h = 1~ also provide consistent answers.

Outliers in instances may increase the standard deviation of the instances in 0, and

thus lead to larger bandwidth values, which may impair the quality of the answers to

typicality queries. Therefore, for better performance, we can remove outliers in the set

of instances as preprocessing. There are extensive studies on effective and efficient outlier

detection [100, 189, 188], which can be used as a screening step in our methods. Moreover,

it is shown from the experimental results in Section 4.5.3 that, even on an uncertain object

containing a non-trivial amount of noise, the results returned by top-k typicality queries are

often consistent with the results found when outliers are removed.

Since we address the top-k typicality problem in a generic metric space, the only pa­

rameter we use in density estimation is the distance (or similarity) between two instances.
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Name I Kernel function

Uniform K(u) = ~I(lul ~ 1)
Triangle K(u) = (1 - lul)I(lul ~ 1)

Epanechnikov K(u) = HI - u~)I(lul ~ 1)
Quartic K(u) = +Ml - u~)2I(lul ~ 1)

Triweight K(u) = ~(1 - u~);j I(lul ~ 1)

Gaussian K() 1 -4-u·U =~e 2
271"

Cosine K(u) = i cos(~u)I(lul ~ 1)

Table 4.1: The commonly used kernel functions.

Formally, given an uncertain object ° = (01,02, ... ,On) in a generic metric space, the

underlying likelihood function is approximated as

(4.1)

where d(X,Oi) is the distance between x and 0i in the metric space, and Gh(X,Oi) =
d(x,o·)2

he-~ is a Gaussian kernel.
y271"

Hereafter, by default, we assume that outliers are removed using the techniques discussed

in Section 4.1.1.

4.1.2 An Exact Algorithm and Complexity

Theoretically, given an uncertain object 0, if the likelihood of an instance 0 E ° satisfies

£(010) ex 2: 1d ( '), then the discrete I-median problem can be reduced to a special case
o'EO 0,0

of the top-l simple typicality query problem. As so far no better than quadratic algorithm

has been found for exact solutions to the general discrete I-median problem (except in £1

metric space), it is challenging to find a better than quadratic algorithm for computing

exact answers to general top-k typicality queries.

We now present Algorithm 4.1, a straightforward method that computes the exact answer

to a tbp-k simple typicality query. It computes the exact simple typicality for each instance

using two nested loops, and then selects the top-k instance. The complexity of Algorithm 4.1

is 0(101 2), where 101 is the number of instances in 0. Quadratic algorithms are often too

costly for online queries on large databases, while good approximations of exact answers
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Algorithm 4.1 ExactTyp(OS,k)

Input: an uncertain object 0 = {01, ... ,On} and positive integer k
Output: the k instances with the highest simple typicality values
Method:

1: for all instance 0 E 0 do
2: set T(o, 0) = 0
3: end for
4: for i = 1 to n do
5: for j = i + 1 to n do

d(Oi,O:p2
6: w=~e- 2h

nhy2n:
7: T(oi,O) = T(Oi, 0) + w
8: T(Oj, 0) = T(Oj, 0) + w
9: end for

10: end for
11: return the top-k instances according to T(o, 0)
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are good enough for typicality analysis. This motivates our development of approximation

algorithms.

4.1.3 A Randomized Tournament Algorithm

Inspired by the randomized tournament method [32] for the discrete I-median problem, we

propose a randomized tournament algorithm for answering top-k simple typicality queries

as follows.

Let t be a small integer, called the tournament group size. To find the most typical

instances in object 0 of n instances, we partition the instances into IT1groups randomly

such that each group has t instances. For each group, we use the exact algorithm to find the

instance that has the largest simple typicality value in the group. Only the winner instances

in the groups are sent to the next round.

The winners of the previous round are again partitioned randomly into groups such that

each group contains t instances. The most typical instance in each group is selected and

sent to the next round. The tournament continues until only one instance is selected as the

winner. The final winner is an approximation of the most typical instance.

To approximate the second most typical instance, we run the randomized tournament

again with the following constraint: the most typical instance already chosen in the previous

tournament cannot be selected as the winner in this tournament. The final winner in the
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Algorithm 4.2 RandomTyp(O,k,t,v)
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Input: an uncertain object 0, positive integer k, tournament size t and number of valida­
tions v

Output: approximation to the answer to a top-k simple typicality query A
Method:

1: A= 0
2: for i = 1 to k do
3: 0' =O-A
4: candidate = 0
5: for j = 1 to v do
6: repeat

7: G = {gil (1 ~ i ~ II1, Igil = t, U9iECgi = 8')
8: for all group 9 E G do
9: winnerg = ExactTyp(g, 1)

10: 0' = 0' - 9 U winnerg

11: end for
12: until 10'1 = 1
13: candidate = candidate U 0'
14: end for
15: A= Au {argmaxoEcandidate{T(o,O)}}
16: end for

second tournament is the approximation of the second most typical instance. Continuing in

this manner, we can find an approximation to the set of top-k typical instances by running

a total of k tournaments.

In order to achieve a higher accuracy, we can run this randomized tournament several

times for selecting the approximation of the i-th most typical instance (1 ~ i ~ k), and pick

the instance with the largest simple typicality among all the final winners. The procedure

is given in Algorithm 4.2.

The typicality computation within one group has the time complexity of 0(t2 ). There

are Ilogt n1tournament rounds in total. Without loss of generality, let us assume n = t m .
n

Then, the first round has I groups, the second round has t = ~ groups, and so forth. The

total number of groups is Ll:'O:i:'O:logt nit = t~l (1- t;") = O(I)' The complexity of selecting

the final winner is 0(t2 . I) = O(tn). If we run each tournament v times for better accuracy,

and run tournaments to choose top-k typical instances, the overall complexity is O(kvtn).

The randomized algorithm runs in linear time with respect to the number of instances.

However, the accuracy of the approximation to the answer is not guaranteed in theory,
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though in practice it often has reasonable performance.

4.2 Local Typicality Approximation

64

While the randomized tournament method is efficient, it does not have formally provable

accuracy. Can we provide some quality guarantee and at the same time largely retain

the efficiency? In this section, we develop several heuristic local typicality approximation

methods. Our discussion in this section is for simple typicality. The methods will be

extended to other typicality measures later in this chapter.

4.2.1 Locality of Typicality Approximation

In Gaussian kernel estimation, given two instances a and p in an uncertain object 0, the
d(a,~)2

contribution from p to T(a, S), the simple typicality score of a, is hI;n::e- 2h ,where n
n v21r

is the cardinality of the uncertain object 0. The contribution of p decays exponentially as

the distance between a and p increases. Therefore, if p is remote from a, p contributes very

little to the simple typicality score of a.

Moreover, in a metric space, given three instances a, band p, the triangle inequality

Id(a,p) - d(b,p)1 < d(a, b) holds. If d(a,p) » d(a, b), then d(a,p) ~ d(b,p). Therefore, the

instances far away from a and b will have similar contributions to the probability density

values T(a,O) and T(b, 0).

Based on the above observations, given an uncertain object °and a subset C <;::; 0, can

we use the locality to approximate the instance having the largest simple typicality value in

C?

Definition 4.1 (Neighborhood region). Given an uncertain object 0, a neighborhood

threshold (J, and a subset C <;::; 0, let D = DAl X ... x DAn where DAi is the domain of

attribute Ai (l:S i:S n), the (J-neighborhood region ofC is defined as D(C,(J) = {ala E

D, mino'Ec{d(o, o')} :S (J}. •

Definition 4.2 (Local simple typicality). Given an uncertain object 0, a neighborhood

threshold (J, and a subset C <;::; 0, let X be the random vector that generates samples 0, the

local simple typicality of an object 0 E C is defined as LT(o,C,X,(J) = L(oIXD(C,a))

where L(oIXD(C,a)) is the likelihood of 0 given that it is a sample of X in region D(C, (J) .•
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Figure 4.1: Decomposing a set of instances in a VP-tree.
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Final winner: r
I

Center(N6)=e
: Radius(N6)=dist(e,f)
: Neighborhood(N6)={N6,N7,c}:
~ _,!,i!1~e!c.~62~e :

e N3 h---- .... "

Figure 4.2: Computing the approximate most typical instance.

In practice, for each instance a E 0, we use the set of instances in ° that lie in a's

IT-neighborhood region to estimate the simple typicality of o.

Definition 4.3 (Local neighborhood). Given an uncertain object 0, a neighborhood

threshold IT, and a subset C ~ 0, The IT-neighborhood of C is defined as LN(C, 0, IT) =

{ala E OnD(C,IT)}, where D(C,IT) is the IT-neighborhood region ofC. •

LN (C, 0, IT) is the set of instances in °whose distance to at least one instance in C is

at most IT. Then, LT(o, C, X, IT) can be estimated using LT(o, C, 0, IT) = L(oILN(o, C, IT»,

where L(oILN(o,C,IT) is the likelihood of a given objects LN(o, C, IT).

The following result uses local simple typicality to approximate the simple typicality

with a quality guarantee.
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Final winner: !
I

Figure 4.3: Computing the approximate second most typical instance.
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Theorem 4.1 (Local typicality approximation). Given an uncertain object 0, neigh­

borhood threshold CY, and a subset C ~ 0, let 0= arg max01 EC{ LT(01, C, 0, CY)} be the in­

stance in C having the largest local simple typicality value, and 0 = arg max02 Ec{T(oz, o)}

be the instance in C having the largest simple typicality value. Then,

Moreover, for any object x E C,

Proof. For any instance x E C,

T(x, 0) = 1;lh ( L Gh(X, y) + L Gh(x, z))
yELN(C,S,a) zE(S-LN(C,o,a))

Since LT(x, C, 0, CY) = hILN(~,O,a)1 L.YELN(C,o,a) Gh(X, y),

(4.2)

(4.3)

T(x,O) = hl~1 (ILN(C, 0, cy)!. LT(x, C, 0, CY) + L Gh(X, z)) (4.4)
zE(O-LN(C,O,a))

B LN(C ° ) °
ILN(C,O,a)1 < 1 Thecause "CY ~, 101 _. us,

1
T(x,O):::; LT(x,C,O,CY) + hlOI L Gh(X,Z)

zE(O-LN(C,O,a))
(4.5)
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According to the definition of local neighborhood, d(x, z) > a for any z E (O-LN(C, 0, a».

Thus,
1 1 a 2

o L Gh(X, y) < -e-2h2" (4.6)
I IYE(O-LN(C,O,a)) /2ii

Inequality 4.3 follows from Inequalities 4.5 and 4.6 immediately. Applying Equation 4.4 to

° and 0, respectively, we have

T(o, 0) - T(o, 0) - ILN(C,O,a)1 (LT(o °° ) LT(o °° »- 101 ' , ,a - '" a

+hlbl L.ZE(O-LN(C,o,a)) (Gh(o, z) - Gh(o, z»

Using Inequality 4.6, we have

1 1 a 2

101 L (Gh(O, z) - Gh(O, z» ~ /2iie-2h2"
zE(O-LN(C,O,a))

Since LT(o, 0, 0, a) ~ LT(o, 0, 0, a), LT(o, 0, 0, a) - LT(o, 0, 0, a) ~ O. Thus,

1 a 2

T(o, 0) - T(o, 0) ~ h/2iie-2h2"

Inequality 4.2 is shown. •
From Theorem 4.1, we can also derive the minimum neighborhood threshold value a to

satisfy certain approximation quality.

•
Therefore,

Corollary 4.1 (Choosing neighborhood threshold). Given an uncertain object 0, an

instance XES, and a quality requirement e, if a ~ vi-21n /2iieh . h, then T(x,O) ­

LT(x,O,O,a) < e for any subset ° (x EO).

Proof. From Theorem 4.1, for any instance ° E 0, subset ° ~ ° and neighborhood

threshold a, we have
1 a 2

T(x,O) - LT(x,O,O,a) < ,r;ce-2h2"
hy 27r

a 2

In order to meet the quality requirement e, it should hold that h~e-2h2" ~ e.

a ~ vi-21n /2iieh . h.

4.2.2 DLTA: Direct Local Typicality Approximation Using VP-trees

Inequality 4.3 in Theorem 4.1 can be used immediately to approximate simple typical­

ity computation with quality guarantee. Given a neighborhood threshold a, for each in­

stance xES, the direct local typicality approximation (DLTA) algorithm computes the
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(4.7)

O"-neighborhood of {x}, i.e., LN({x}, 0, 0") and the local simple typicality LT(x, {x}, 0, 0").

Then, it returns the k instances with the highest local simple typicality values as the ap­

proximation to the answer of the top-k simple typicality query.

The quality of the approximation answer is guaranteed by the following theorem.

Theorem 4.2 (Approximation quality). Given an uncertain object 0, neighborhood

threshold 0" and integer k, let A be the k instances with the highest simple typicality values,

and A be the k instances with the highest local simple typicality values. Then,

L:OEAT(a, O) - L:oEXT(O, 0) 1 _.,.2
--=:...-----....::..=:..:----<--e2"h2"

k hVZIT

Proof. If A n A -# 0, then let A = A - A n A and A = A - A n A. So in the rest of the

proof, we assume A n A= 0.
We sort the instances in A in the descending order of their typicality values, and sort

the instances in A in the descending order of their local typicality values. Let a be the i-th

instance in A, and °be the i-th instance in A (1 ~ i ~ k). From Inequality 4.3, we have

and

o~ T(o, 0) - LT(o, {O},O,O") < h~e-~

Moreover, since a rf- A, it holds that LT(a, {a}, 0,0") < LT(o, {O}, 0,0"). Thus,

T(a, 0) - T(o, S) = (T(a, O) - LT(o, {a}, 0, 0"»

-(T(o, O) - LT(o, {O}, 0, 0"» + (LT(a, {a}, 0, 0")
.,.2

-LT(o, {O}, 0, 0"» < h$e-2"h2"

Inequality 4.7 follows by summing up the above difference at each rank i (1 ~ i ~ k) .•

Searching the O"-neighborhood for each instance can be very costly. To implement the di­

rect local typicality approximation efficiently, we can use the VP-tree index [201] to support

O"-neighborhood searches effectively.

A VP-tree [201] is a binary space partitioning (BSP) tree. Given a set of instances 0,

a VP-tree T indexes the instances in 0. Each node in a VP-tree represents a subset of 0.

Roughly speaking, for each non-leaf node N and the set of nodes ON at N, a vantage point

is selected to divide the set ON into two exclusive subsets °Nl and °N2 (ON = °Nl U°N2)
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such that, to search the instances within distance cr to an instance PEN, likely we only

need to search either ONI or ON2 but not both. ONI and ON2 are used to construct the two

children of N. For example, the VP-tree in Figure 4.2 indexes the instances in Figure 4.1.

A VP-tree can be constructed top-down starting from the root which represents the

whole set of instances. A sampling method is given in [201] to select vantage points for

internal nodes. Then, the first half subset of instances that are close to the vantage point

form the left child of the root, and the other instances form the right child. The left and

the right children are further divided recursively until a node contains only one instance (a

leaf node). A VP-tree can be constructed in cost O(jOllog 101).

Searching a VP-tree for the cr-neighborhood of a query point is straightforward using

the recursive tree search. Once an internal node in the tree can be determined in the cr­

neighborhood of the query point, all descendant instances of the internal node are in the

neighborhood and no subtrees need to be searched. For example, the cr-neighborhood of

node N6 = {e, f} in Figure 4.1 is represented by the dashed circle. To find all points in

the cr-neighborhood of N 6 , we search the VP-tree in Figure 4.2 from the root node N I , and

recursively examine each internal node. During the search, node N4 can be pruned since all

points in N4 lie out of the cr-neighborhood of N6 .

The cost of computing the local simple typicality of an instance x is

O(ILN({x},O,cr)I). Then, computing the local simple typicality of all instances in 0 takes

O(l:xEO ILN({x},O,cr)l) time. Although the search can be sped up using a VP-tree, the

complexity of the DLTA algorithm is still 0(1012 ). The reason is, in the worst case where

cr is larger than the diameter (i.e., the largest pairwise distance) of the data set, the cr­

neighborhood of each instance contains all other instances in O.

4.2.3 LT3: Local Typicality Approximation Using Tournaments

To reduce the cost of computing local simple typicality further, we incorporate the tourna­

ment mechanism, and propose a local typicality approximation algorithm using tournaments

(the LT3 algorithm). The basic idea is to group the instances locally, and conduct a tourna­

ment in each local group of instances. The instances with the largest local simple typicality

is selected as the winner. The winners are sent to the next round of tournament. The

tournaments terminate when only one instance is left as the winner. A sampling method is

employed to reduce the computational cost.
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Local Typicality Trees (LT-trees)
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A local typicality tree (LT-tree) is an MVP-tree [24] with auxiliary information that supports

local typicality calculation and tournaments. Given an uncertain object 0, an LT-tree can

be constructed as follows.

First, we construct an MVP-tree [24] on 0, which is at-nary VP-tree that uses more

than one vantage point to partition the space. Without loss of generality, let us assume

t = 21 and the data set contains tm instances. We assign a layer number to each node in the

MVP-tree. The root node has layer number 0, and a node is assigned layer number (i + 1)

if its parent has layer number i. We remove all those nodes in the MVP-tree whose layer

number is not a multiple of t. For a node N of layer number jt (j ;:::: 1), we connect N to

its ancestor in the MVP-tree of layer (j - l)t.

Second, we compute three pieces of information, the approximate center, the radius, and

the a-neighborhood, for each node in the LT-tree.

Approximate center. For a node N in the LT-tree, let ON be the set of instances at

N. To compute the approximate center at a node N in the LT-tree, we draw a sample R of

y![O;I instances from ON, and compute the pairwise distance between every two instances

in R. Then, for each instance x E R, the center-score of x is the maximum distance from

x to another point in R. The instance in R of the minimum center-score is chosen as the

center. This center approximation procedure is popularly used in computational geometry.

It takes O(ION!) time for each node N, and O(IOllogt 101) time for all nodes in the LT-tree.

Radius. Once the center c of a node N is chosen, the radius is given by the maximum

distance between c and the other instances at N. This can be computed in time O(IONI)

for each node N, and O(l0llogt 101) for all nodes in the LT-tree.

a-neighborhood. We use a range query in the LT-tree to compute a superset of the a­

neighborhood of ON for every node N in the LT-tree, which always achieves a typicality

approximation no worse than using the a-neighborhood. To compute the superset, we start

from the root and iteratively search for the nodes that completely lie in the a-neighborhood

of N, using the approximate center and radius of N. Once all objects at a node N' are in

the a-neighborhood of N, we use N' to represent them and do not search any subtrees of

N'.



CHAPTER 4. TOP-K TYPICALITY QUERIES ON UNCERTAIN DATA

Query Answering
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To answer a top-k simple typicality query, we run tournaments on the LT-tree in a bottom­

up fashion. First, a tournament is run for each leaf node in the LT-tree. The winner enters

the tournament at the parent node of the leaf node. The winner 01 at the root node is

the approximation of the most typical instance. Figure 4.2 illustrates the procedure of

computing the approximate most typical point in the set of points in Figure 4.1 using an

LT-tree. During the tournaments in the leaf nodes, {b, c, e, h} are selected as local winners

and sent to the parent nodes. Then, {c, e} are selected in the tournaments in nodes N2 and

N3. Finally, e is selected as the winner, which approximates the most typical point in the

data set.

To find the approximation of the second most typical instance, we do not need to com­

pletely run the tournaments again. Instead, we can reuse most of the results in the tourna­

ments of finding the most typical instance WI. The only tournaments we need to rerun are

on the nodes containing WI. First, we run a new tournament at the leaf node N containing

WI, but do not include WI in the new tournament. Then, the winner w~ is sent to Np , the

parent of N, and a new tournament is run there by replacing WI by w~. A series of m tour­

naments are needed to find a new winner W2 in the root node, which is the approximation

of the second most typical instance. At each level of the LT-tree, only one node needs to

run a tournament. For example, in the LT-tree in Figure 4.3, after e is selected as the first

final winner, it is removed from node N6 . Then, only the tournaments in nodes N6 , N3 and

Nl need to be re-conducted. Finally, c is selected as the final winner to approximate the

second most typical point. The complete procedure is shown in Algorithm 4.3.

The quality of the answers returned by the LT3 algorithm can be guaranteed by the

following theorem.

Theorem 4.3. In an uncertain object 0, let 0 be the instance with the largest simple typi­

cality and 0 be an instance computed by the LT3 method using local typicality approximation

and the tournament group size t. Then,

Proof. In the worst case, instance 0 is not selected as the winner in the first level of

tournaments.
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Algorithm 4.3 LT3Typ(0,k,T)
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Input: an uncertain object °= {Ol, ... , on} and positive integer k and an LT-tree T (with
m levels) built on °whose root node is NR

Output: approximation to the answer to a top-k simple typicality query 11
Method:

1: 11 = 0
2: for j = m to 0 do
3: for all node N at level Lj do
4: winnerN = argmaxoEN{LT(o, N, 0, tT)}
5: Np = N p U {winnerN}

{*Np is the parent node of N}
6: end for
7: end for
8: 11= 11U {winnerNR}
9: WI = winnerNR

10: for i = 2 to k do
11: find N such that Wi-l EN

{*Wi-l is the last output winner}
12: while N =1= N R do
13: winnerN = argmaxoEN,o;;fwi_l{LT(o,N,O,tT)}
14: Np = Np U {winnerN}
15: N f- Np

16: end while
17: 11 = 11 U{winnerNR}
18: Wi = winnerNR
19: end for

Let 01 be the winner of the group containing ° in the first level of tournaments, then we

have
1 a 2

T(0,0) - T(01,0) < ,t;'Le-2h2"
hy21r

as indicated by Inequality 4.2 in Theorem 4.1.

If Oi fails the (i+1)-th level of tournaments, let 0i+l be the winner of the group containing

0i in this tournament, then again we have

For a set of instances in 0, there are [logt lOll levels of tournaments. The final winner 0 is
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the winner in the f!ogt 1011-th level of tournaments. That is, 0 = 0fJogt l0ll' Then,
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T(o, 0) - T(o, 0) = T(o, 0) - T(Ol' 0) + T(Ol' 0) - T(02' 0) + ...
(72

+T(ofJogtI0Il-1,0)-T(ofJogtI01l,0) < h$e-2h'J. f!ogtlOll

The inequality in the theorem holds. •

The LT3 algorithm combines the merits of both local typicality approximation and

the tournament mechanism. It achieves better accuracy than the randomized tournament

algorithm, thanks to the local grouping. It is more efficient than the DLTA algorithm

because of the tournament mechanism. As shown in our experiments, the approximations

of the most typical instances computed by the LT3 algorithm are very close to the exact

ones. LT3 is very efficient and scalable.

A Sampling Method for Bounding Runtime

To make the analysis complete, here we provide a sampling method which provides an upper

bound on the cost of local typicality computation with quality guarantee.

Suppose we want to compute the local simple typicality LT(p, C, 0, a). We consider the

contribution of an object a E LN(C, 0, a) to LT(p, C, 0, a), denoted by

d(P"it1 e- ~

1](0) = hILN(C, 0, a)1 Gh(p, 0) = hILN(C, 0, a)lV21r

We can draw a sample of LN(C, 0, a) to estimate the expectation of 1](0). Please note that

LT(p, C, 0, a) = ILN(C, 0, a)l· E[1](o)]

where E[1](o)] is the expectation of 1](0) for a E LN(C, 0, a).

Using the Chernoff-Hoeffding bound [6], we derive the minimum sample size to achieve

the required accuracy.

Theorem 4.4. For any 8 (0 < 8 < 1) and I': (I': > 0) and a sample R of LN(C, 0, a), if
(72

IRI 3hJ21r·e 2h'J ·In F th> f2 ,en

ILN(C,O,a)l"
Pr{1 IRI ~ 1](0) - LT(p, C, 0, a)1 > 1':' LT(p, C, 0, an < 8

oER

Proof. The theorem can be proved directly using a special form of the Chernoff-Hoeffding

bound due to Angluin and Valiant [6]. •
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Theorem 4.4 provides an upper bound of the sample size, which is independent of the

size of data sets. The larger € and 8, the smaller the sample size. The larger 0", the larger

the sample size.

Using the sampling method suggested by Theorem 4.4, we can have a tournament algo­

rithm using an LT-tree of cost 0(101 log 101). The algorithm provides a theoretical bound

on the runtime.

However, the sampling method cannot be practically gainful unless on extremely large

data sets. The LT-tree already exploits the locality of instances nicely. When the data set

is not extremely large, the number of instances in the O"-neighborhood of a node is usually

(substantially) smaller than the number of samples required for high approximation quality.

In our experiments, the above case is always true. Thus, we do not include the experimental

results on this sampling method.

4.3 Answering Discriminative Typicality Queries

According to Definition 2.6, discriminative typicality can be calculated as follows. Given

two uncertain objects 0 and S, where 0 is the target uncertain object, for each instance

o E 0, Algorithm 4.1 can be used to compute the simple typicality scores of 0 in 0 and S,

respectively. The difference between the two is the discriminative typicality of o.

Suppose there are m instances in the target object 0 and n instances in S. To compute

the discriminative typicality score of an instance 0 E 0, we have to compute the simple

typicality scores of 0 in both 0 and S, which takes O(n + m) time. Therefore, answering

top-k discriminative typicality queries using the exact algorithm takes time 0 (m(m + n)).

The approximation methods developed for top-k simple typicality queries can also be

adopted to answer top-k discriminative typicality queries.

4.3.1 A Randomized Tournament Algorithm

Generally, the randomized tournament algorithm can be used to answer top-k discrimina­

tive typicality queries if the discriminative typicality measure is applied. In contrast to the

randomized tournament algorithm for top-k simple typicality queries, only the instances

in the target object 0 are involved in the tournament in order to answer top-k discrimi­

native typicality queries. The other instances are only used to compute the approximate

discriminative typicality scores of the instances in O.
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The cost of discriminative typicality computation within one group is O(mr::-nt2). Since

there are °(mtn) groups in total, the complexity of selecting the final winner is O(mt). Ifwe

run each tournament v times for better accuracy, then the overall complexity of answering

a top-k discriminative typicality query is O(kvtm).

4.3.2 Local Typicality Approximation

Similar to the local simple typicality approximation discussed in Section 4.2.1, we can define

the local discriminative typicality as follows.

Definition 4.4 (Local discriminative typicality). Given two uncertain objects objects

° and S on attributes AI,'" , An and a neighborhood threshold (j, let U and V be the

random vectors generating ° and S, respectively, the local discriminative typicality of an

instance a EO on attributes Ail"" , Ail is defined as LDT(o,U, V, (j) = LT(o, {o},U, (j)­

LT(o,{o},V,(j), where LT(o,{o},U,(j) and LT(o,{o},V,(j) are the local simple typicality

values of a in U and V, respectively.

LDT(o,U,V, (j) can be estimated using LDT(o,O,S,(j) LT(o,{o},O,(j) -

LT(o, {a}, S, (j), where LT(o, {a}, 0, (j) and LT(0, {a}, S, (j) are the estimators oflocal sim­

ple typicality values of a in °and S, respectively.

Similar to Theorem 4.1, we have the following quality guarantee of local discriminative

typicality approximation.

(4.8)
2 ,,2

DT(o,O,S) - DT(o,O,S) < r.ce-2h1
hy27r

Theorem 4.5 (Local discriminative typicality approximation). Given two uncertain

objects ° and S and a neighborhood threshold (j, let 0= argmax01Eo{LDT(01,O,S,(j)}

be the instance in ° having the largest local discriminative typicality value, and a =
arg max02 Eo{DT(0, 0, S)} be the instance in ° having the largest discriminative typical­

ity value. Then,

Moreover, for any x EO,

1 ,,2

IDT(x, 0, S) - LDT(x, 0, S, (j)1 < r.ce-2h1
hy27r

(4.9)

Proof. For any instance x EO,

1 1
DT(x, 0, S) = hlOI L Gh(X, y) - hlSI L Gh(X, z)

yEO zE(S)

(4.10)
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For simplicity, let us denote LN({x}, S, 0") by N. We have

L Gh(x, y) = L Gh(X, Yl) + L Gh(X, Y2)
yEO Y1EOnN Y2E(O-N)

and

L Gh(X, z) = L Gh(X, Zl) + L Gh(X, Z2)
zES zlESnN z2ES-N)

Because

Equation 4.10 can be rewritten as

DT(x, 0, S) - LDT(x, 0, S)

- hlbr L Gh(x, Y2) - htSI L Gh(x, Z2)
Y2E(O-N) z2E(S-N)

76

(4.11)

According to the definition of local neighborhood, d(x, Y2) > 0" holds for any Y2 E (0 - N),

and 101 > 10 - NI· Thus,

Similarly, d(x, Z2) > 0" holds for any Z2 E (S - N), and lSI> IS - NI. Thus,

Therefore,

Inequality 4.9 follows from Inequality 4.11 and 4.12 immediately.

Applying Inequality 4.9 to ° and 0, we have

1 ,,2

IDT(o, 0, S) - LDT(o, 0, S)I < r.ce-2h7
hy27r

and

IDT(o, 0, S) - LDT(o, 0, S)I < ~e-:';
hy27r
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Since LDT(o, 0, S - 0) 2 LDT(o, 0, S - 0), we have

DT(o, 0, S) - DT(o, 0, S) = (DT(o, 0, S) - LDT(o, 0, S))

-(DT(o, 0, S) - LDT(o, 0, S)) + (LDT(o, 0, S) - LDT(o, 0, S))
,,2< _2_e-2h,'I

h"f2i

Inequality 4.8 is proved.

DLTA: Direct Local Typicality Approximation

77

•

Theorem 4.5 can be directly used to approximate discriminative typicality. Given a neigh­

borhood threshold a, for each instance x E 0, we compute the a-neighborhood of {x}

in ° and S, respectively, and thus its local discriminative typicality. Searching the a­

neighborhood can also be done using a VP-tree, as described in Section 4.2.2.

The cost of computing the local discriminative typicality of an instance x E ° is

O(ILN({x},O + S,a)I). The overall cost of computing the local discriminative typical­

ity of all instances in the target object ° is O(I:xEO ILN({x},O + S,a)I). As analyzed

in Section 4.2.2, the a-neighborhood of an instance may contain the whole data set in the

worst case. Thus, the time complexity of the direct local typicality approximation method

for discriminative typicality is O(m(m+n)), where m is the cardinality of the target object

0, and n is the number of instances in S. However, data is often distributed as clusters in

practice, and the number of instances contained in the a-neighborhood of each instance is

often small.

LT3: Local Typicality Approximation Using Tournaments

The local typicality approximation method using tournaments (LT3) method can be ex­

tended to answer top-k discriminative typicality queries, which follows the same framework

as answering top-k simple typicality queries. The only difference is that, in the tournament

in each node, local discriminative typicality is computed, instead of local simple typicality.

Similar to Theorem 4.3, we have the following guarantee of the quality of answering

top-k discriminative typicality queries using the LT3 method.

Theorem 4.6. Given two uncertain objects ° and S, let ° be the instance in ° of the

largest discriminative typicality and °be an instance computed by the LT3 method using
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local discriminative typicality approximation with the tournament group size t. Then,

DT(o,O,S) -DT(o,O,S) < ~e-~ ·lIogtIS+Oll
hy27r

Proof. As indicated by Inequality 4.8 in Theorem 4.5, at each level of the tournament,
,,2

an error up to hke-2hJ in terms of discriminative typicality is introduced. For objects 0

and S, there are lIogt IS + 011 levels of tournaments. Thus, we have the inequality in the

theorem. _

Sampling method introduced in Section 4.2.3 can also be used to bound the runtime of

the LT3 algorithm for discriminative typicality approximation.

4.4 Answering Representative Typicality Queries

The representative typicality for an instance ° in an uncertain object 0 with respect to

an reported answer set A was defined in Definition 2.9. In this section, we first propose a

straightforward approach to find the exact answer of a top-k representative typicality query.

Then, we will discuss how to extend the approximation techniques proposed for simple

typicality queries to efficiently answer top-k representative typicality queries.

4.4.1 An Exact Algorithm and Complexity

When the answer set A is empty, the most representatively typical instance is simply the

most typical instance 01, which can be computed using Algorithm 4.1. After 01 is added to

A, the group typicality GT(A, 0) is the simple typicality score T(ol, 0), since all members

in uncertain object 0 are represented by 01.

Then, in order to compute the next instance with the maximal representative typicality

score, according to Definition 2.9, we have to compute the group typicality score G(A U

{0},0) for each instance 0 E (0 - A) and select the instance with the maximal score.

To compute GT(A U {o}, 0), we first construct N(o, A, 0) for instance ° as follows. We

scan all instances in (O-A). For each instance x E (O-A), suppose x E N(o',A,O) for an

instance 0' E A, which means that 0' is the instance closest to x in A. If d(o, x) < d(o', x),

then x is removed from N(o',A,O) and is added to N(o,A,O). To make the computation

efficient, we maintain the minimum distance from an instance x E (0 - A) to the instances

in A by a I-dimensional array. The minimum distances are updated every time after a new

object is added into A.
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Then, T(o,N(o,A,O)), the simple typicality of ° in N(o,A,O), is computed using

Algorithm 4.1. Probability Pr(N(o, A, 0)) is IN(I~,O)I. For other instances 0' E A,

since N(o', A, 0) may be changed, the simple typicality scores T(o', N(o', A, 0)) and

Pr(N(o', A, 0)) are updated accordingly. Last, GT(AU {o}, 0) can be calculated according

to Definition 2.8.

The above procedure is repeated to find the next most representatively typical instance,

until k instances are found.

The complexity of the exact algorithm is 0(kn2 ) because each time after an instance

is added to A, the representative typicality scores of all instances in (S - A) need to be

recomputed to find the next instance with the largest representative typicality score.

4.4.2 A Randomized Tournament Method

A top-k representative typicality query can be answered using the randomized tournament

method.

At the beginning, the answer set A is empty, so the randomized tournament method

works exactly the same as finding the most typical instance using the randomized tourna­

ment method as described in Section 4.1.3. The winner instance of the tournament is added

to A.

To compute the i-th (i > 1) instance with the highest approximate representative typi­

cality score, a randomized tournament is conducted from bottom up, similar to finding the

first answer in A. The only difference is that the representative typicality score of each

instance in each group is computed, instead of the simple typicality score. The instance

with the maximal representative typicality score in each group is the winner and is sent

to the next round of tournament. The final winner is an approximation of the i-th most

representatively typical instance, and is added to A.

A top-k representative typicality query can be answered by k randomized tournaments.

To ensure a higher accuracy, we can run each tournament several times, and pick the winner

instance with the highest representative typicality score on the whole data set.

The complexity of the randomized tournament to find the i-th instance (i :S k) with

the highest representative typicality score is O(vtn), where v is the number of times the

tournament is run, t is the group size, and n is the size of the data set. This is because,

finding the instance with the highest representative typicality score in each group takes

0(t2 ) time, and there are O(!n groups in total. To answer a top-k representative typicality
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query, k randomized tournaments need to be conducted. Therefore, the overall complexity

is O(kvtn).

4.4.3 Local Typicality Approximation Methods

The locality property in simple typicality approximation can be extended to address the

representative typicality approximation.

Let A be the current reported answer set. The local group typicality of A is computed

by only considering the instances in the (j-neighborhood of 0 E A. The intuition is, if an

instance is not in the (j-neighborhood of 0, then the contribution from 0 to this instance is

small and can be ignored.

Definition 4.5 (Local group typicality). Given an uncertain object 0, a neighborhood

threshold (j and a subset of instances A cO, let X be the random vector that generates the

samples 0, the local group typicality of A is

LGT(A, X, (j) = L LT(o, {o}, XD(o,A), (j). Pr(N)
oEA

where LT(o,{o},XD(o,A),(j) is the local simple typicality of 0 in its representing region

D(o,A) and N = D(o,A) n D({o},(j) is the (j-neighborhood region of 0 in its represent­

ing region D(o, A). •

Definition 4.6 (Local representative typicality). Given an uncertain object 0, a neigh­

borhood threshold (j and a reported answer set A cO, let X be the random vector gen­

erating the samples 0, the local representative typicality of an object 0 E (0 - A) is

LRT(o, A, X, (j) = LGT(A U {o}, X, (j) - LGT(A, X, (j). •

For any instance 0 E A, let N(o,A,O) = {xix EOn D(o,A)} be the set of

instances in 0 that lie in D(o,A), then LN({o},N(o,A,O),(j) is the (j-neighborhood

of 0 in N(o, A, 0). The local group typicality LGT(A, X, (j) can be estimated using

LGT(A 0 ) - '" LT( {} N( A 0) ) ILN({o},N(o,A,o),o-)1 H h I I, ,(j - uoEA 0, 0, 0, , , (j . 101 . ence, t e oca repre-

sentative typicality is estimated by LRT(o, A, 0, (j) = LGT(A U {o}, 0, (j) - LGT(A, 0, (j).

Local representative typicality can approximate representative typicality with good qual­

ity, as shown below.

Theorem 4.7 (Local representative typicality approximation). Given an un­

certain object 0, a neighborhood threshold (j, and an answer set A cO, let 0 =
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argmax01E(O_A){LRT(al,A,0,a)} be the instance in (O-A) having the largest local repre­

sentative typicality value, and a = arg maxo2 E(O-A) {RT(a, A, O)} be the instance in (O-A)

having the largest representative typicality value. Then,
2 ,,2

RT(a, A, 0) - RT(o, A, 0) < rc;::e-2hZ (4.13)
hy 27r

Moreover, for any x E (0 - A),

1 ,,2

IRT(x, A, 0) - LRT(x,A,O,a)1 < . rc;::e- 2hZ (4.14)
hy 27r

Proof. To prove Theorem 4.7, we need the following lemma.

Lemma 4.1 (Local group typicality score approximation). Given an uncertain object

0, a neighbarhood threshald a and a reported answer set A cO.

1 ,,2

GT(A,O) - LGT(A, 0, a) < rc;::e-2hZ (4.15)
hy27r

Proof. For each instance a E A, let N(a, A, 0) be the set of instances in 0 that lie in

D(a, A), according to Equation 4.1, we have

T(a, N(a, 0, A» . Pr(N(a, 0, A» = hIN(o~O,A)1 I:xEN(o,O,A) Gh(X, a) x IN(i6l,A)1

= hlbl I:xEN(o,O,A) Gh(X, a)

Let N = LN({a},N(a,A,O),a) be the a-neighborhood of a in N(a,A,O), then

1 '" INI 1 '"LT(a, {a}, N(a, 0, A), a) . Pr(N) = INT ~ Gh(X, a) x TOT = 101~ Gh(X, a)
xEN xEN

Thus,

T(a, N(a, 0, A»Pr(N(a, 0, A» - LT(a, {a}, N(a, 0, A), a)Pr(N)

= hlbl (I:xEN(o,O,A) Gh(X, a) - I:XEN Gh(X, a») = hlbl I:xEN(o,O,A)-N Gh(X, a)

For instance x E N(a,O,A) - N, x is not in the a-neighborhood of a, so d(x,a) > a.

Therefore

Thus, we have

GT(A, 0) - LGT(A, 0, a)

= I:oEA (T(a, N(a, 0, A»Pr(N(a, 0, A» - LT(a, {a}, N(a, 0, A), a)Pr(N»
,,2

= I:oEA hlbl I:xEN(o,O,A)-N Gh(x, a) < hlbl I:oEA I:xEN(o,O,A)-N vk e - 2hZ
,,2

< -l-e-2hZ
h..J21i
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Equation 4.15 holds.

Proof of Theorem 4.1. For any instance x E 0,

RT(a,A,O) = GT(AU {a},O) - GT(A,O)

LRT(a, A, 0, (J) = LGT(A U {a}, 0, (J) - LGT(A, 0, (J)

Therefore,

RT(a, A, 0) - LRT(a, A, 0, (J)

(GT(AU {a},O) - LGT(AU {a},O,(J)) - (GT(A,O) - LGT(A, 0, (J))

Using Lemma 4.1, we have

1 ,,2

o~ GT(A U {a}, 0) - LGT(A U {a}, 0, (J) < tn=e- w
hy21r

and

1 ,,2 1 ,,2

- tn=e- w < RT(a,A,O) - LRT(a, A, 0, (J) < tn=e- w
hy21r hy21r

Inequality 4.14 follows from the above inequality immediately.

Applying Inequality 4.14 to a and 0, we have

1 ,,2

!RT(a,A,O) - LRT(a,A,O,(J)1 < tn=e- w
hy21r

and

IRT(o,A,O) - LRT(o,A,O,(J)1 < ~e-~
hy21r

Since LRT(o, A, 0, (J) ~ LRT(a, A, 0, (J)

RT(a, A, 0) - RT(o, A, 0)

= (RT(a,A,O) - LRT(a, A, 0, (J)) - (RT(o,A,O) - LRT(o,A,O,(J))
,,2

+(LRT(a, A, 0, (J) - LRT(o, A, 0, (J)) ~ h~e-w

Inequality 4.13 is shown.

82

•
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DLTA: Direct Local Typicality Approximation

83

Direct local representative typicality approximation (DLTA) follows the similar framework

of the exact algorithm described in Section 4.4.1. The only difference is that the local

representative typicality score instead of the representative typicality score is computed.

To compute the local representative typicality score of an instance a given answer set

A, one critical step is to compute the local group typicality score LGT(A U {a}, 0, oJ The

computation is similar to the exact algorithm elaborated in Section 4.4.1, except that the

local simple typicality instead of the simple typicality of a in N(a, A, 0) is used to compute

LGT(A U {a}, 0, oJ

Suppose the current reported answer Ai (0 :S i < k, Ao = 0) contains the first i

answers to a top-k representative typicality query, computing the local simple typicality of

an instance a E (0 - Ai) takes O(!LN({a},N(a,A,O),u)l), where LN({a},N(a,A,O),u)

is the u-neighborhood of a in the set of its represented members N(a, A, 0). Thus, the

complexity of computing the (i + 1)-th answer is O(LOE(O-Ai) ILN( {a}, N(a, A, 0), u)I).

The overall complexity of answering a top-k representative typicality query is

0(L7~~ LOE(O-Ai) ILN({a},N(a,A,O),u)I)· In the worst case, the local neighborhood

of any instance a may contain the whole data set. Moreover, Ai contains i objects,

so 10 - Ail = n - i. Therefore, the overall complexity of the DLTA algorithm is

0(L7~~ ((n - i) . n)) = O(n· (2n-;-1)k) = 0(kn2).

LT3: Local Typicality Approximation Using Tournaments

The LT3 algorithm for simple typicality approximation can be used to answer top-k repre­

sentative typicality queries. To find the instance with the largest representative typicality

score. After the first answer instance is added into A, to find the approximation of the

next most representatively typical instance, a tournament is conducted from bottom up. In

each node of the LT-tree, we compute the local representative typicality of each instance,

and select the instance with the greatest local representative typicality score as the winner,

and let it go to the tournament in the parent node. The computation of local represen­

tative typicality is similar to the local representative typicality computation in the DLTA

algorithm.

There is one critical difference between the LT3 algorithm for simple typicality compu­

tation and the LT3 algorithm for representative typicality computation. In simple typicality
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computation, once the first winner instance is computed, we only need to re-conduct part

of the tournament to find the next winner instance. However, the representative typicality

score of each instance changes once the reported answer set is updated. Thus, no results can

be reused. A new tournament among the rest of the instances should be conducted from

bottom up completely. Therefore, the LT3 method for representative typicality computa­

tion is not as efficient as the LT3 method for simple typicality or discriminative typicality

computation.

Similar to Theorem 4.3, the quality of answering top-k representative typicality queries

using the LT3 method is guaranteed.

Theorem 4.8. In an uncertain object 0, let 0 be the instance of the largest representa­

tive typicality and 0 be an instance computed by the LT3 method using local representative

typicality approximation and the tournament group size t. Then,

2 ,,2

RT(o, A, 0) - RT(o, A, 0) < rn=e-2h'J· lIogt ISll
hy27r

Proof. As indicated by Inequality 4.13 in Theorem 4.7, at each level of tournament, an
,,2

error up to ~e-2h'J in terms of the difference of representative typicality is introduced.
hy2rr

For an uncertain object 0, there are lIogt l0ll levels of tournaments. _

4.5 Empirical Evaluation

In this section, we report a systematic empirical study using real data sets and synthetic

data sets. All experiments were conducted on a PC computer with a 3.0 GHz Pentium

4 CPU, 1.0 GB main memory, and a 160 GB hard disk, running the Microsoft Windows

XP Professional Edition operating system. Our algorithms were implemented in Microsoft

Visual C++ V6.0.

4.5.1 Typicality Queries on Real Data Sets

In this section, we use two real data sets to illustrate the effectiveness of typicality queries

on real applications.
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I Most discriminative typical I Most atypical IMost typicalCategory ~
Mammal 40 Boar, Cheetah, Leopard, Boar, Cheetah, Leopard, Platypus

Lion, Lynx, Mongoose, Lion, Lynx, Mongoose, (T = 0.01)
Polecat, Puma, Raccoon, Polecat, Puma, Raccoon,

Wolf (T = 0.16) Wolf (DT = 0.08)
Bird 20 Lark, Pheasant, Sparrow, Lark, Pheasant, Sparrow, Penguin

Wren (T = 0.15) Wren (DT = 0.04) (T = 0.04)
Fish 14 Bass, Catfish, Chub, Herring, Bass, Catfish, Carp

Piranha (T = 0.15) Herring, Chub, (T = 0.03)
Piranha (DT = 0.03)

Invertebrate 10 Crayfish, Lobster (T = 0.16) Crayfish, Lobster Scorpion
(DT = 0.01) (T = 0.08)

Insect 8 Moth, Housefly (T = 0.13) Gnat Honeybee
(DT = 0.02) (T = 0.06)

Reptile 5 Slowworm (T = 0.17) Pitviper Seasnake
(DT = 0.007) (T = 0.08)

Amphibian 3 Frog (T = 0.2) Frog Newt, Toad
(DT = 0.008) (T = 0.16)

Table 4.2: The most typical, the most discriminatively typical, and the most atypical animals
(T =simple typicality value, DT =discriminative typicality value).

Typicality Queries on the Zoo Data Set

We use the Zoo Database from the DCI Machine Learning Database Repositoryl , which con­

tains 100 tuples on 15 Boolean attributes and 2 numerical attributes, such as hair (Boolean),

feathers (Boolean) and number of legs (numeric). All tuples are classified into 7 categories

(mammals, birds, reptiles, fish, amphibians, insects and invertebrates).

We can consider each category as an uncertain object and each tuple as an instance.

The Euclidean distances are computed between instances by treating Boolean values as

binary values. We apply the simple typicality, discriminative typicality and representative

typicality queries on the Zoo Database. The results of the three queries all match the

common sense of typicality.

We compute the simple typicality for each animal in the data set. Table 4.2 shows the

most typical and the most atypical animals of each category. Since some tuples, such as

those 10 most typical animals in category mammals, have the same values on all attributes,

they have the same typicality value. The most typical animals returned in each category

Ihttp://www.ics.uci.edu/-mlearn/MLRepository.html.
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Top-10 most representatively typical animals Top-10 most typical animals
Rank Animal Representative Category Rank Animal Simple Category

typicality score typicality score

1 Boar 0.0874661 Mammal 1 Boar 0.0855363 Mammal
2 Lark 0.135712 Bird 1 Cheetah 0.0855363 Mammal
3 Bass 0.176546 Fish 1 Leopard 0.0855363 Mammal
4 Gnat 0.198142 Insect 1 Lion 0.0855363 Mammal
5 Aardvark 0.213342 Mammal 1 Lynx 0.0855363 Mammal
6 wallaby 0.225642 Mammal 1 Mongoose 0.0855363 Mammal
7 starfish 0.236235 Invertebrate 1 Polecat 0.0855363 Mammal
8 Slug 0.246638 Invertebrate 1 Puma 0.0855363 Mammal
9 Dolphin 0.236347 Mammal 1 Raccoon 0.0855363 Mammal
10 frog 0.265012 Amphibian 1 Wolf 0.0855363 Mammal

Table 4.3: The most representatively typical and the most typical animals.

can serve as good exemplars of the category. For example, in category mammals, the most

typical animals are more likely to be referred to as a mammal than the most atypical one,

platypuses, which are one of the very few mammal species that lay eggs instead of giving

birth to live young.

We apply discriminative typicality analysis on the Zoo Database to find the discrimina­

tive typical animals for each category. The results are listed in Table 4.2 as well. In some

categories, the instances having the largest simple typicality value also have the highest

discriminative typicality value, such as categories mammals, birds, fish, invertebrates, and

amphibians. In some categories such as insects and reptiles, the most typical animals are

not the most discriminatively typical. For example, in category reptiles, the most discrimi­

natively typical animal is pitvipers in stead of slowworm, because slowworm is also similar

to some animals in other categories besides reptiles, such as newts in category amphibians.

On the other hand, pitvipers are venomous. Very few animals in the other categories are

venomous. The result matches the above analysis.

In some situations, the results from the simple typicality queries may have a bias on

the most popular categories. Table 4.3 lists the top-10 most typical animals in the Zoo

Database. The 10 animals are all mammals, since mammals are the largest category in the

Zoo Database. As a result, the top-10 most typical animals as a whole is not representative.

The animals in other categories cannot be represented well.

Representative typicality queries avoid this problem. The top-10 most representatively

typical animals are also listed in Table 4.3, which cover 6 out of the 7 categories in the
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Zoo Database. The only missed category is Reptile, which only contains 5 animals. Boar

is the first animal in the answer set of both queries, since it is the most typical animal in

the whole data set. Note that the representative typicality score and the simple typicality

score of boar are slightly different, because the bandwidth parameter h is computed via

sampling, and thus may have a small difference in each computation. The second most

representatively typical animal is Lark, which is the most typical animal in the second most

popular category Bird. Dolphin is in the answer to the top-10 representative typicality

query, since it represents a set of aquatic mammal in the Zoo database, such as porpoise

and mink. They are not typical mammals, but they are an important category if we would

like to explore different kinds of mammals

To show the difference between typicality analysis and clustering analysis, we apply the

k-medoids clustering algorithm [122] to the Zoo data set. We first compute the 10 clusters

of the Zoo data set. The median animals of the clusters are {Starfish, Boar, Lark, Tuatara,

Dolphin, Flea, Bass, Mink, Scorpion, Hare}. The group typicality score of the set of median

animals is 0.182. At the same time, the group typicality score of the answer set of the top­

10 most representatively typical animals shown in Table 4.3 is 0.216. Therefore, the set of

animals found by the clustering analysis is only 84% as representative as the set of animals

found by the top-k representative typicality queries.

Typicality Queries on the NBA Data Set

We apply typicality queries on the NBA 2005-2006 Season Statistics2 . The data set contains

the technical statistics of 458 NBA players, including 221 guards, 182 forwards and 55

centers, on 16 numerical attributes.

As discussed in Section 2.2.1, we can model the set of NBA players as an uncertain

object and each player as an instance of the object. Table 4.4 shows the top-3 most typical

players, and some of the attribute values. The results answer Jeff's question in Section 2.2.1.

To answer Jeff's question in Section 2.2.1, we model the set of guards as the target

uncertain object, and the set of forwards and centers as the other two uncertain objects in

the data set. We conduct a top-10 discriminative typicality query on guards. The results are

shown in Table 4.5. For comparison, in the same table we also list the answer to the top-10

simple typicality query on guards. To explain the results, we list some selected attributes as

2http://sports.yahoo.com/nba/stats/.



Name T Position Minuts Points per game 3 point throw Rebounds Assists Blocks

Danny Granger 0.0383 Forwards 22.6 7.5 1.6 4.9 1.2 0.8

Devean George 0.0382 Forwards 21.7 6.3 3 3.9 1.0 0.5

Michael Finley 0.0378 Guards 26.5 10.1 5 3.2 1.5 0.1

Table 4.4: The most typical NBA players in 2005-2006 Season (T for simple typicality values).

Top-10 simple typicality query Top-10 discriminative typicality query Top-10 representative typicality query

Name T 3PT AST Name DT 3PT AST Name RT 3PT AST

Ronald Murray 0.076 2.4 2.6 Delonte West 0.0095 4.3 4.6 Ronald Murray 0.076 2.4 2.6

Marko Jaric 0.075 2.3 3.9 David Wesley 0.0092 5.2 2.9 Andre Owens 0.06 0.8 0.4

Keith Bogans 0.074 3.7 1.8 Speedy Claxton 0.0092 1.1 4.8 Charlie Bell 0.037 4.1 2.2

Kevin Martin 0.074 3.4 1.4 Eddie Jones 0.0085 6.8 2.4 Mike James 0.023 6.9 5.8

Anthony Johnson 0.072 2.8 4.3 Chris Duhon 0.0083 5.2 5 Brent Barry 0.017 3.8 1.7

Jalen Rose 0.072 3.2 2.5 T.J. Ford 0.0082 1.9 6.6 Calbert Cheaney 0.017 0.2 0.5

Michael Finley 0.071 5 1.5 Jalen Rose 0.0082 3.2 2.5 Alex Acker 0.014 1.2 0.8

Chucky Atkins 0.071 5.3 2.8 Kirk Hinrich 0.0079 5.8 6.4 Leandro Barbosa 0.009 4.9 2.8

Chris Duhon 0.071 5.2 5 Jason Terry 0.0078 7.3 3.8 Zoran Planinic 0.007 1.2 1

Eddie Jones 0.07 6.8 2.4 Mike Miller 0.0077 6.5 2.7 Keyon Dooling 0.007 1.2 2.2

Table 4.5: The answers to top-10 simple typicality/discriminative typicality/representative typicality queries on the NBA

guards (T for simple typicality values, DT for discriminative typicality values, RT representative typicality values, and

3PT for 3 point throw).



Category (position) Median/mean/most typical Name Simple typicality # games Avg. min. per game

median Ryan Gomes 0.0271 61 22.6

All players mean N/A 0.0307 54.4 20.51

most typical Danny Granger 0.3830 78 22.6

median Jake Voskuhl 0.0903 51 16

Centers mean N/A 0.0679 52.42 17.36

most typical Francisco Elson 0.1041 72 21.9

median Al Jefferson 0.0747 59 18

Forwards mean N/A 0.0509 54.83 19.97

most typical Maurice Taylor 0.0910 67 18.1

median Charlie Bell 0.0488 59 21.7

Guards mean N/A 0.0230 54.54 21.73

most typical Ronald Murray 0.0756 76 27.8

Table 4.6: Comparison among medians, means, and typical players in the NBA data set.
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Figure 4.4: Approximation quality of answering top-k simple typicality queries.

well. The most discriminatively typical guards have better performance than those of the

highest simple typicality in 3 point throws or assists, which are the skills popular in guards,

but may not be common in other players.

In Table 4.5, we list the answers to the top-10 representative typicality query on guards.

Comparing to the answers to a top-10 simple typicality query listed in Table 4.5, the top-10

representatively typical guards are quite different from each other in 3 point throws and

assists. For example, Ronald Murray, the most typical guard, represents the NBA guards

who are experienced and perform well, while Andre Owens, the second most representatively

typical guard, represents a group of NBA guards whose performances are relatively poorer.

We use the NBA data set to examine the differences among medians, means, and typical

instances. The results are shown in Table 4.6. The simple typicality scores of the medians

and the means are often substantially lower than the most typical players, which justifies

that the geometric centers may not reflect the probability density distribution. A typical

player can be very different from the median player and the mean. For example, Ronald
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Figure 4.5: Approximation quality of answering top-k discriminative typicality queries.

Murray is identified as the most typical guard, but Charlie Bell is the median guard. The

technical statistics show that Murray makes fewer rebounds than Bell, but contributes more

assists. To this extent, Murray is more typical than Bell as a guard. Moreover, Ronald

Murray played 76 games in the season, while Charlie Bell only played 59 games. If we take

the range 76 ± 6 = [70,82], then there are 92 guards whose numbers of games played are in

the range; while there are only 31 guards whose numbers of games played are in the range

59 ± 6 = [53,65]. That is, much more guards played a similar number of games as Murray.

To compare the difference between typicality analysis and clustering analysis, we com­

pute 2 clusters of all guards using the k-medoids clustering algorithm [122]. The median

players of clusters are {Ronald Murray, Stephan Marbury}, whose group typicality score

is 0.105. The group typicality score of the top-2 most representatively typical guards in

Table 4.5 (Le.,{Ronald Murray, Andre Owens}) is 0.161. The set of players found by the

clustering analysis is only 65% as representative as the set of players found by the top-k

representative typicality queries.
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Figure 4.6: Approximation quality of answering top-k representative typicality queries.

4.5.2 Approximation Quality

To evaluate the query answering quality on uncertain data with large number of instances, we

use the Quadraped Animal Data Generator also from the DCI Machine Learning Database

Repository to generate synthetic data sets with up to 25 numeric attributes. We test

the approximation quality of the RT (randomized tournament) method, the DLTA (direct

local typicality approximation) method, and the LT3 (local typicality approximation using

tournaments) method on top-k simple typicality queries, top-k discriminative typicality

queries, and top-k representative typicality queries, respectively. The results are reported

in the rest of this section.

First of all, we test RT, DLTA, and LT3 for top-k simple typicality queries. To measure

the error made by an approximation algorithm, we use the following error rate measure. For

a top-k typicality query Q, let A be the set of k instances returned by the exact algorithm,

and A be the set of k instances returned by an approximation algorithm. Then, the error
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Figure 4.7: The error rates of using different kernel functions with respect to k.

(4.16)

rate e is
I:oEA T(o, 0) - I:oEXT(o, 0)

e = I: T( 0) x 100%
oEA 0,

The error rate of the exact algorithm is always O.

We compare three approximation techniques: the randomized tournament method (RT,

Algorithm 4.2), the direct local typicality approximation method (DLTA, Section 4.2.2),

and the LT-tree tournament method (LT3, Section 4.2.3). By default, we set the number of

instances to 10,000, the dimensionality to 5 attributes, and conduct top-10 simple typicality

queries. When local typicality is computed, by default we set the neighborhood threshold

to 2h, where h is the bandwidth of the Gaussian kernel. In such a case, according to The­

orem 4.1, the difference between the simple typicality value and the local simple typicality

value of any instance is always less than 0.05. In the randomized tournament method, by

default the tournament group size is 10 and 4 times validation are conducted. We observe

that although with more rounds of validations, the quality of randomized tournament may

increase, but after 3 rounds, the quality improvement is very small.
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Figure 4.8: The error rates of using different bandwidth values with respect to k.

Figure 4.4(a) shows the change of approximation quality with respect to the neighbor­

hood threshold. In the figure, the error bounds given by Theorems 4.1 and 4.3 are also

plotted, which are labeled as UB(DLTA) and UB(LT3), respectively. To make the curves

legible, the error rates are in the logarithmic scale. Clearly, the larger the neighborhood

threshold, the more accurate the local typicality approximation. Our methods perform

much better than the error bounds, which shows that they are effective in practice.

In Figure 4.4(b), we vary the value of k in the top-k queries. The approximation quality

of RT is not sensitive to k, since it runs k times to select the top-k answers. Both DLTA

and LT3 see a larger error rate with a larger value of k, this is because the distant neighbors

may get a better chance to playa role in typicality when more instances are returned.

Figure 4.4(c) shows the impact of dimensionality on the error rate. DLTA achieves the

best approximation quality, the error rate is up to 0.066%. LT3 has an accuracy close to

DLTA, and is much better than RT. The error rate decreases as the dimensionality increases,

since the average pairwise distance among the instances in the object also increases and the

local typicality approximation becomes more effective.
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Figure 4.4(d) tests the approximation quality versus the number of instances. When the

cardinality increases, the instances becomes denser, and the local typicality approximation is

more accurate. That is why LT3 and DLTA perform better with larger number of instances.

However, the approximation quality of RT decreases in large number of instances, since with

a fixed tournament group size, the larger the number of instances, the more likely the most

typical instance in a random group is biased.

In summary, DLTA and LT3 both achieve better accuracy than RT, which strongly

justifies the effectiveness of our local typicality approximation technique. The accuracy of

LT3 is slightly lower than DLTA, but as we will show in Section 4.5.4, LT3 is much more

efficient than DLTA.

We also report the approximation quality of top-k discriminative typicality query an­

swering algorithms. By default, the data contains 10,000 instances with 5 attributes. We

randomly assign 20% of the instances into the target object 0, and conduct top-10 discrim­

inative typicality queries. The neighborhood threshold a of DLTA and LT3 is set to 2h,

where h is the bandwidth of Gaussian kernels. The group size of randomized tournament is
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Figure 4.10: Efficiency and scalability of answering top-k simple typicality queries.

set to 50, and 4 validations are conducted. Here we increase the tournament size to 50, since

only 20% instances are actually involved in the tournament, as we explained in Section 4.3.1.

The error rate measure is defined as follows. We normalize DT(0, 0, S - 0) as

DT'(o, C, S - C) = DT(o, 0, S - 0) - minxEc DT(x, 0, S - 0), in order to make the

DT(o, 0, S - 0) value always non-negative. For a top-k discriminative typicality query

Q, let A be the set of k instances returned by the exact algorithm, and A be the set of k

instances returned by an approximation algorithm. Then, the error rate e is

e = L,oEA DTI(o,O,S-O)~L,oEADTI(O,O,S-O) .100%
I:oEA DT (o,o,s-o) (4.17)

The approximation quality of the three methods are shown in Figure 4.5. In general,

the comparison among RT, DLTA and LT3 is similar to the situation of the top-k simple

typicality query evaluation listed in Figure 4.4.

To test the approximation quality for representative typicality, we conducted various

experiments. By default, the data set contains 5,000 instances with 5 attributes, and

conduct top-10 representative typicality queries. The neighborhood threshold (]' of DLTA
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Figure 4.11: Efficiency and scalability of answering top-k discriminative typicality queries.

and LT3 is set to 2h, where h is the bandwidth of Gaussian kernels. The group size of

randomized tournament is set to 10, and 4 validations are conducted.

We adopt the following error rate measure. For a top-k representative typicality query

Q, let A be the set of k instances returned by the exact algorithm, and A be the set of k

instances returned by an approximation algorithm. GT(A, O) and GT(A, O) are the group

typicality scores of A and A, respectively. Then, the error rate e is

= IGT(A, O) - GT(A, 0)1 10001

e GT(A, O) x 10
(4.18)

The error rate measure computes the difference between the group typicality of the exact

answer and the group typicality of the approximate answer. If the error rate is small, even

the instances in the two answer sets are different, the approximation to the answer still

represents the whole data set well. The approximation quality of representative typicality

approximation is shown in Figure 4.6. The explanations are similar to the situations of

simple typicality queries.

In summary, for all three types of typicality queries, DLTA has the best approximation
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Figure 4.12: Efficiency and scalability of answering top-k representative typicality queries.

quality, while RT gives the largest error rates. LT3 has comparable approximation quality

to DLTA.

4.5.3 Sensitivity to Parameters and Noise

To test the sensitivity of the answers of top-k typicality queries with respect to the kernel

function and the bandwidth value, we use the Quadraped Animal Data Generator from the

VCI Machine Learning Database Repository. to generate synthetic data sets with 10, 000

instances and 5 attributes.

We first fix the bandwidth value h = l~S as discussed in Section 4.1.1, and use the kernel

functions listed in Table 4.1 to answer top-k simple typicality/discriminative typicality/

representative typicality queries. We compare the results computed using the Gaussian

kernel function and the results computed using some other kernel functions as follows.

Let the results returned by using the Gaussian kernel be A and the results returned by

using other kernel functions be ii, the error rates of the answers to the three typicality queries

are computed using Equations 4.16, 4.17 and 4.18, respectively. The curves are shown in
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Figure 4.7. The results match the discussion in Section 4.1.1: the answers computed using

some other kernel functions are similar to the answers computed using the Gaussian kernel,

since the error rates are very low.

We then use the Gaussian kernel function and vary the bandwidth value from 0.5h to

2h, where h = l~S is the default bandwidth value used in other experiments. Let A be the

answer set computed using the default bandwidth value h and Abe the answer set computed

using other bandwidth values, the error rates are computed using Equations 4.16, 4.17

and 4.18, respectively. From the results shown in Figure 4.8, we can see that the answers

computed using different bandwidth values are similar in their typicality/discriminative

typicality/ group typicality score. Moreover, using smaller bandwidth values causes less

difference than using larger bandwidth values. Larger bandwidth values smooth out the

peaks of the density curves, which are the most typical points.

In summary, the answers to top-k simple typicality queries, top-k discriminative typical­

ity queries and top-k representative typicality queries are insensitive to the choice of kernel

functions and the bandwidth values.

Moreover, we evaluate the sensitivity of top-k typicality queries with respect to noise

in data sets. We use the Quadraped Animal Data Generator to generate synthetic data

sets with 10, 000 instances and 5 attributes. In addition, we add 5% to 15% noise instances

whose attribute values are uniformly distributed in the domain of each attribute. Gaussian

kernel function and bandwidth h = l~S are used. The answers returned are denoted by

A, and the answers computed when removing the noises are denoted by A. The error rates

in Figure 4.9(a), 4.9(b), and 4.9(c) are computed using Equations 4.16, 4.17 and 4.18,

respectively. Clearly, the results of top-k typicality queries are not sensitive to noise and

outliers in data sets.

4.5.4 Efficiency and Scalability

To test the efficiency and the scalability of our methods, we report in Figures 6.4, 4.11,

and 4.12 the runtime in the experiments conducted in Figures 4.4, 4.5, and 4.6, respectively.

As shown in Figure 6.4(a), the runtime of DLTA increases substantially when the neigh­

borhood threshold increases, but the increase of runtime for the LT3 method is mild, thanks

to the tournament mechanism.

Figure 6.4(b) shows that the runtime of DLTA and LT3 is insensitive to the increase of

k. LT3 incrementally computes other top-k answers after the top-1 answer is computed.
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Thus, computing more answers only takes minor cost. The RT method has to run the

tournaments k rounds, and thus the cost is linear to k.

As shown in Figure 6.4(c), among the four methods, RT is the fastest and the exact

algorithm is the slowest. LT3 and DLTA are in between, and LT3 is faster than DLTA. All

methods are linearly scalable with respect to dimensionality.

Figure 6.4(d) shows the scalability of the four algorithms with respect to database size.

RT has a linear scalability. LT3 clearly has the better performance and scalability than

DLTA on large data sets.

The trends for discriminative typicality queries and representative typicality queries are

similar, as shown in Figure 4.11 and Figure 4.12, respectively.

In summary, as RT has linear complexity, when runtime is the only concern, RT should

be used. While DLTA and LT3 are much more scalable than the exact algorithm and are

more accurate than RT, they are good when both accuracy and efficiency matter. LT3 has

the better efficiency and scalability than DLTA, while achieving comparable accuracy to

DLTA.

4.6 Summary

In this chapter, we discussed how to compute the answers to top-k typicality queries defined

in Section 2.2.1.

• We applied kernel density estimation to compute the likelihood of instances in an

uncertain object and presented an exact query answering algorithm. We showed that

the complexity of answering top-k typicality queries is quadratic.

• We developed a linear-time randomized algorithm which adopts a tournament mech­

anism and computes the approximation answers to top-k typicality queries.

• The randomized algorithm does not provide a quality guarantee in the approximated

answers, therefore, we further explored the locality nature of kernel density estimation

and proposed two approximation algorithms that can provide good quality guarantees.

By a systematic empirical evaluation using both real data sets and synthetic data sets,

we illustrated the effectiveness of top-k typicality queries, and verified the accuracy and the

efficiency of our methods.



Chapter 5

Probabilistic Ranking Queries on

Uncertain Data

In this chapter, we discuss how to answer probabilistic ranking queries defined in Sec­

tion 2.2.2 on the probabilistic database model. The techniques developed in this chapter

will also be used in Chapter 6.

Given a probabilistic table T with a set of generation rules n and a top-k selection query

Qi,f' where P is a predicate, f is a scoring function, and k is a positive integer, the rank-k

probability of a tuple t E T is the probability that t is ranked at the k-th position in possible

worlds according to Qi,f' that is

Pr(t, k) = L Pr(W)
WEW s.t. t=Wf(k)

where Wf(k) denotes the tuple ranked at the k-th position in W.

Moreover, the top-k probability of t is the probability that t is ranked top-k in possible

worlds according to f, that is,
k

Prk(t) = LPr(t,j)
j=l

Last, the p-rank of t is the minimum k such that Prk(t) 2: p, denoted by

Four types of probabilistic ranking queries are developed.

101
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• A probabilistic threshold top-k query(PT-k query for short) [106, 107] finds the

tuples whose top-k probabilities are at least a probability threshold p (0 < p ~ 1).

• A rank threshold query (RT-k query for short) retrieves the tuples whose p-ranks

are at most k. RT-k queries are reverse queries of PT-k queries.

• A top-(k, l) query [177,203] finds the top-l tuples with the highest top-k probabilities

(l > 0).

• A top-(p, l) query returns the top-l tuples with the smallest p-ranks. Top-(p, l)

queries are reverse queries of top-(k, l) queries.

A na'ive method of answering probabilistic ranking queries is to enumerate all possible

worlds and apply the query to each possible world. Then, we can compute the top-k prob­

ability and p-rank of each tuple and select the tuples satisfying the queries. Unfortunately,

the na'ive method is inefficient since, as discussed before, there can be a huge number of

possible worlds on an uncertain table. In [55], Dalvi and Suciu showed that even the prob­

lem of counting all possible worlds with distinct top-k lists is #P-Complete. Therefore,

enumerating all possible worlds is too costly on large uncertain data sets. That motivates

our development of efficient algorithms which avoid searching all possible worlds.

In this chapter, we first discuss the efficient top-k probability computation in Section 5.1

and present an efficient exact algorithm in Section 5.2. Then, we develop a fast sampling

algorithm and a Poisson approximation based algorithm in Sections 5.3 and 5.4, respectively.

Last, to support efficient online query answering, we propose PRist+, a compact index, in

Section 5.5. An efficient index construction algorithm and efficient query answering methods

are developed for PRist+. An empirical study in Section 5.6 using real and synthetic

data sets verifies the effectiveness of probabilistic ranking queries and the efficiency of our

methods.

5.1 Top-k Probability Computation

In this section, we first introduce how to compute the exact rank-k probability values. Top-k

probabilities and p-ranks can be directly derived from rank-k probabilities.



CHAPTER 5. PROBABILISTIC RANKING QUERIES ON UNCERTAIN DATA 103

5.1.1 The Dominant Set Property

Hereafter, by default we consider a top-k selection query Q~,J on an uncertain table T.

peT) = {tit E T 1\ pet) = true} is the set of tuples satisfying the query predicate. peT) is

also an uncertain table where each tuple in peT) carries the same membership probability

as in T. Moreover, a generation rule R in T is projected to peT) by removing all tuples

from R that are not in peT).

peT) contains all tuples satisfying the query, as well as the membership probabilities and

the generation rules. Removing tuples not in peT) does not affect the rank-k probabilities

of the tuples in P(T). Therefore, we only need to consider peT) in computing rank-k

probabilities. To keep our discuss simple, we use T to denote the set of tuples satisfying

query predicate P.

For a tuple t E T and a possible world W such that t E W, whether t E Wf(k) depends

only on how many other tuples in T ranked higher than t appear in W.

Definition 5.1 (Dominant set). Given a scoring function f on a probabilistic table T,

for a tuple t E T, the dominant set of t is the subset of tuples in T that are ranked higher

than t, i.e., St = {t'lt' E T 1\ t' -<f t}. -

Theorem 5.1 (The dominant set property). For a tuple t E T, Pr~,T(t) = Pr~,St (t),

where Pr~,T(t) and Pr~,St(t) are the top-k probabilities oft computed using tuples in T and

in St, respectively.

Proof. The theorem follows with the definition of top-k probability directly. _

Using the dominant set property, we scan the tuples in T in the ranking order and

derive the rank-k probabilities for each tuple t E T based on the tuples preceding t. Gen­

eration rules involving multiple tuples are handled by the rule-tuple compression technique

developed later in this section.

5.1.2 The Basic Case: Independent Thples

We start with the basic case where all tuples are independent. Let L = tl ... t n be the list

of all tuples in table T in the ranking order. Then, in a possible world W, a tuple ti E W

(1 ~ i ~ n) is ranked at the j-th (j > 0) position if and only if exactly (j - 1) tuples in the

dominant set Sti = {tl, ... , ti-I} also appear in W. The subset probability Pr(Sti,j) is the

probability that j tuples in Sti appear in possible worlds.
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Trivially, we have Pr(0,0) = 1 and Pr(0, j)

probability can be computed as

o for 0 < j < n. Then, the rank-k

Moreover, the top-k probability of ti is given by

k k

Prk(ti) = LPr(ti,j) = Pr(ti) LPr(Sti,j -1)
j=l j=l

Particularly, when i :S k, we have Prk(ti) = Pr(ti)'

The following theorem can be used to compute the subset probability values efficiently.

Theorem 5.2 (Poisson binomial recurrence). In the basic case, for 1 :S i,j :S ITI,

1. Pr(Sti'O) = Pr(Sti_l>0)(l- Pr(ti)) = I1~=1(1- Pr(ti));

2. Pr(Stpj) = Pr(Sti_l,j -l)Pr(ti) + Pr(Sti_l>j)(l- Pr(ti))'

Proof. In the basic case, all tuples are independent. The theorem follows with the basic

probability principles. This theorem is also called the Poisson binomial recurrence in [130] .•

5.1.3 Handling Generation Rules

In general, a probabilistic table may contain some multi-tuple generation rules. For a tuple

t E T, two situations due to the presence of multi-tuple generation rules complicate the

computation.

First, there may be a rule R such that some tuples involved in R are ranked higher than

t. Second, t itself may be involved in a generation rule R. In both cases, some tuples in St

are dependent and thus Theorem 5.2 cannot be applied directly. Can dependent tuples in

St be transformed to independent ones so that Theorem 5.2 can still be used?

Let T = t1 ... tn be in the ranking order, i.e., ti -:5.f tj for i < j. We compute Prk(ti) for

a tuple ti E T. A multi-tuple generation rule R : tTl'" . ,tTm (1 :S r1 < ... < rm :S n) can

be handled in one of the following cases.

Case 1: ti -:5.f tTl> i.e., ti is ranked higher than or equal to all tuples in R. According to

Theorem 5.1, R can be ignored.
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~ rule-tuple comp:",!on~

generation rule R generation rule-tuple, Pr(tR)=Pr(R)

Case 2: ti is ranked lower than all tuples in R

generation rule R

rule-tuple compression

~
generation rule R

Case 3 (Subcase I): ti is ranked between tuples in Rand ti is not in R

Figure 5.1: Computing Prk(ti) for one tuple k

Case 2: trm -<f ti, i.e., ti is ranked lower than all tuples in R. We call R completed with

respect to ti.

Case 3: trl -<f ti -:5.f t rm , i.e., ti is ranked in between tuples in R. R is called open with

respect to ti. Among the tuples in R ranked better than ti, let trmo E R be the lowest

ranked tuple i.e., rmo = maxb,l {rl < i}. The tuples involved in R can be divided into

two parts: Rleft = {trl' ... ,trmo } and Rright = {trmo+l, ... ,trm}' Prk(ti) is affected

by tuples in Rleft only and not by those in Rright. Two subcases may arise, according

to whether t belongs in R or not: in subcase 1, ti tj. R; in subcase 2, ti E R, i.e.,

ti = trmo+l.

Since in Case 1, generation rule R can be ignored, in the rest of this section, we mainly

discuss how to handle generation rules in Case 2 and Case 3.

We first consider computing Prk(ti) when an generation rule R : tTl EB ... EB trm (1 ~

rl < ... < rm ~ n) is involved.

In Case 2, ti is ranked lower than all tuples in R. At most one tuple in R can appear

in a possible world. According to Theorem 5.1, we can combine all tuples in R into an

generation rule-tuple tR with membership probability Pr(R).

Corollary 5.1 (Generation rule-tuple compression). For a tuple t E T and a multi­

tuple generation rule R, if "It' E R, t' -<f t, then Pr~,T(t) = Pr~,T(R)(t) where T(R) =

(T - {tit E R}) U {tR}, tuple tR takes any value such that tR -<f t, Pr(tR) = Pr(R), and

other generation rules in T remain the same in T(R). •
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In Case 3, ti is ranked between the tuples in R, which can be further divided into two

subcases. First, if ti rf- R, similar to Case 2, we can compress all tuples in Rlejt into an

generation rule-tuple tq, ... ,rmo where membership probability Pr(tr1, ... ,Tmo) = L,j;;1 Pr(trJ,

and compute Prk(ti) using Corollary 5.1.

Second, if ti E R, in a possible world where ti appears, any tuples in R cannot appear.

Thus, to determine Prk(ti), according to Theorem 5.1, we only need to consider the tuples

ranked higher than ti and not in R, i.e., St; - {t'lt' E R}.

Corollary 5.2 (Tuple in generation rule). For a tuple t E R such that IRI > 1,

Pr~,T(t) = Pr~,TI(t) where uncertain table T' = (St; - {t'lt' E R}) U it}.

Proof. Since the tuples in R are mutually exclusive, the probability that one tuple in

R appears is the sum of the membership probability of each tuple in R. Therefore, the

corollary holds. •

For a tuple t and its dominant set St, we can check t against the multi-tuple generation

rules one by one. Each multi-tuple generation rule can be handled by one of the above two

cases as illustrated in Figure 5.1, and the dependent tuples in St can be either compressed

into some generation rule-tuples or removed due to the involvement in the same genera­

tion rule as t. After the generation rule-tuple compression, the resulting set is called the

compressed dominant set of t, denoted by T(t). Based on the above discussion, for a tuple

t E T, all tuples in T(t) U it} are independent, Pr~,T(t) = Pr~,T(t)U{t} (t). We can apply

Theorem 5.2 to calculate Prk(t) by scanning T(t) once.

Example 5.1 (Generation rule-tuple compression). Consider a list of tuples tl,' .. ,tu

in the ranking order. Suppose we have two multi-tuple generation rules: RI = t2 EEl t4 EEl tg

and R2 = t5 EEl t7. Let us consider how to compute Pr3(t6) and Pr3(t7).

Tuple t6 is ranked between tuples in RI, but t6 rf- RI. The first subcase of Case 3 should

be applied. Thus, we compress R llejt = {t2, t4} into an generation rule-tuple t2,4 with

membership probability Pr(t2,4) = Pr(t2) + Pr(t4)' Similarly, t6 is also ranked between

tuples in R2 and t6 rf- R2, but R2lejt = {t5}' The compression does not remove any

tuple. After the compression, T(t6) = {tl,t2,4,t3,t5}' Since the tuples in T(t6) U {t6} are

independent, we can apply Theorem 5.2 to compute Pr3(t6) using T(t6)'

Since t7 E R2' the tuples in R2 except for t7 itself should be removed. Thus, we have

•
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We can sort all tuples in T into a sorted list L in the ranking order. For each tuple ti, by

one scan of the tuples in L before ti, we obtain the compressed dominant set T(ti) where all

tuples are independent. Then, we can compute Prk(ti) on T(ti) U {til using Theorem 5.2.

5.2 Exact Query Answering Methods

In this section, we first discuss how to answer probabilistic ranking queries based on the

rank-k probability computation method in Section 5.1. Then, we propose two techniques

to speed up the query answering methods.

5.2.1 Query Answering Framework

Straightforwardly, to answer a PT-k query with probability threshold p, we simply scan

all tuples in T in the ranking order and compute the top-k probability of each tuple. The

tuples whose top-k probabilities passing the threshold p are returned as the answers.

It is shown in Corollary 2.3 that, for a PT-k query and an RT-k query with the same

rank parameter k and probability threshold p values, the answers are identical. Therefore,

the above method can be directly used to answer an RT-k query.

The method can be extended to answer top-(k, l) queries as following. Again, we scan

the tuples in the ranking order. A buffer B that contains at most l tuples is maintained

during the scan. At the beginning, the first l tuples tI,' .. ,tl are added into the buffer.

The probability threshold p is set to the minimal probability value of tI,'" ,tl' That is,

p = minI~i~I{Prk(ti)}. Then, for each tuple ti (l + 1 ~ i ~ ITI), if Prk(ti) ~ p, then the

tuple in B with the minimal top-k probability is replaced by ti. The probability threshold

p is again set to the minimal top-k probability mintEB{Prk(t)} of the tuples in the buffer.

At the end of the scan, all tuples in the buffer are returned.

To answer a top-(p, l) query, we can use the similar procedure. The only difference

is that a buffer B that contains the tuples with the smallest p-ranks during the scan is

maintained. The rank threshold k is set to the largest p-rank of all tuples in the buffer.

That is, k = maxtEB{MRp(t)}.

From the above discussion, it is clear that all four types of queries discussed in this work

can be answered based on top-k probability calculation. However, can we further improve

the efficiency of the query answering methods? In Section 5.2.2, we discuss how to reuse
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subset probability calculation during computing the top-k probability values for all tuples.

In Section 7.5.3, we develop several effective pruning techniques to improve the efficiency.

5.2.2 Scan Reduction by Prefix Sharing

We scan the dominant set Sti of each tuple ti E T once and computes the subset probabilities

Pr(Sti'j). Can we reduce the number of scans of the sorted tuples to improve the efficiency

of query evaluation?

To compute Prk(ti) using subset probability Pr(Sti'j), the order of tuples in Sti does

not matter. This gives us the flexibility to order tuples in compressed dominant sets of

different tuples so that the prefixes and the corresponding subset probability values can be

shared as much as possible. In this section, we introduce two reordering methods to achieve

good sharing.

Aggressive Reordering

Consider the list L = tl ... t n of all tuples in T and a tuple ti in L. Two observations help

the reordering.

First, for a tuple t that is independent or is a rule-tuple of a completed rule with respect

to ti (Case 2 in Section 5.1.3), t is in T(t') for any tuple t' ';- f ti. Thus, t should be ordered

before any rule-tuple of a rule open with respect to ti (Case 3 in Section 5.1.3).

Second, there can be multiple rules open with respect to k Each such a rule R j has

a rule-tuple tR ,which will be combined with the next tuple t' E RJo to update the
Jleft

rule-tuple. Thus, if t' is close to ti, tRo should be ordered close to the rear so that the
J left

rule-tuple compression affects the shared prefix as little as possible. In other words, those

rule-tuples of rules open with respect to ti should be ordered in their next tuple indices

descending order.

An aggressive reordering method to reorder the tuples is to always put all independent

tuples and rule-tuples of completed rules before rule-tuples of open rules, and order rule­

tuples of open rules according to their next tuples in the rules.

We scan all tuples in T in the ranking order. Two buffer lists, Lcamplete and L open , are

used to help aggressive reordering. Lcamplete contains all independent tuples or completed

rule-tuples, while L open contains all open rule-tuples during the scan. Both Lcamplete and

Lapen are initialized to 0 before the scan.



CHAPTER 5. PROBABILISTIC RANKING QUERIES ON UNCERTAIN DATA 109

When scanning tuple ti, we compute the compressed dominant set of ti, and update

Lcomplete and Lopen according the following two cases.

Case 1: If ti is an independent tuple, then the compressed dominant set of ti contains all

tuples in Lcomplete and Lopen . Moreover, we put ti into Lcomplete, meaning that ti will

appear in the compressed dominant set of all tuples ranked lower than ti.

Case 2: If ti is involved in a multi-tuple generation rule R : trl , ..• , trm , then the com­

pressed dominant set of ti contains all tuples in Lcomplete and Lopen, except for the

rule-tuple tRleft in Lopen, where tRleft is the rule-tuple compressed from all tuples in

R that are ranked higher than ti.

In order to update Lcomplete and Lopen , the following two subcases arise. First, if ti

is not the last tuple in R (i.e., ti=trmo where 1 :::; mo < m), then we update rule-tuple

tRleft by compressing ti into tRleft' using the methods discussed in Section 5.1.3. If

tRleft is not in Lopen , then we add tRleft into Lopeno Moreover, we sort the rule-tuples

in Lopen in their next tuple indices descending order. Second, if ti is the last tuple

in R, which means that the rule-tuple tR will never be updated later. Therefore, we

remove tRleft from Lopen , and add tR into Lcomplete.

The subset probabilities of the tuples in Lcomplete only need to be calculated once and

can be reused by all tuples ranked lower than them. In contrast, the rule-tuples in Lopen

may be updated when other tuples in the same rule are scanned. Therefore, only part of

the subset probabilities can be reused.

For two consecutive tuples ti and tHI in the sorted list L of all tuples in T, let L(ti)

and L(ti+l) be the sorted lists of the tuples in T(ti) and T(ti+d, respectively, given by

the aggressive reordering method. Let Prefix(L(ti), L(tHd) be the longest common prefix

between L(ti) and L(tHd. The total number of subset probability values needed to be

calculated is Cost = I:~/(IL(ti+l)I-IPrefix(L(ti), L(tHI»I).

Example 5.2 (Aggressive reordering). Consider a list of ranked tuples tl,'" ,tll with

two multi-tuple rules RI : tl EB tz EB ts EB tll and Rz : t4 EB t5 EB tIo. The compressed dominant

sets of tuples in the orders made by the aggressive reordering method is listed in Table 5.1.

For example, before scanning t6, Lcomplete contains independent tuple t3 and Lopen con­

tains rule-tuples t4,5 and tl,Z. t4,5 is ranked before tl,Z, since the next tuple in Rz, tlO, is

ranked lower than RI'S next tuple ts. Since t6 is independent, the compressed dominant set
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tuple Aggressive reordering Lazy reordering
Prefix Cost Prefix Cost

tl 0 0 0 0
t2 0 0 0 0
t3 tl,2 1 tl,2 1
t4 t3 t l,2 2 tl,2 t 3 1
t5 t3 t l,2 0 tl,2 t 3 0
t6 t3 t 4,5 t l,2 2 tl,2 t 3t 4,5 1
t7 t3t 6t 4,5 t l,2 3 tl,2 t 3t 4,5 t6 1
t8 t3 t 6t 7t 4,5 2 t3 t6t 7t 4,5 4
tg t3 t6t 7t l,2,8 t 4,5 2 t3 t 6t 7t 4,5 t l,2,8 1
tlO t3 t 6t 7t 9t l,2,8 2 t3 t 6t 7t9t l,2,8 2
tll t3 t 6t 7t9t 4,5,lO 1 t3 t 6t 7t 9t 4,5,10 1

Total cost: 15 Total cost: 12

Table 5.1: Results of reordering techniques.

of t6 includes all 3 tuples in Lcomplete and L open . T(t6) and T(t5) only share the common

prefix t3, therefore, the cost of calculating the subset probabilities for T(t6) is 3 - 1 = 2.

After scanning t6, t6 is added into Lcomplete'

The total cost by using the aggressive reordering method is Costaggressive = 15. As a

comparison, without reordering, the total number of subset probability values needed to be

calculated is the sum of lengths of all compressed dominant sets, which is 31. •

The aggressive reordering algorithm is given in Algorithm 5.1. The complexity of the

aggressive reordering algorithm lies in the sorting of Lopen. When scanning a tuple, the

rule-tuples in Lopen are already sorted and at most one rule-tuple in Lopen is updated.

Therefore, the complexity is O(log ILopenJ) for processing one tuple. The overall complexity

is O(nlogn) where n is the number of tuples in T.

Lazy Reordering

On the other hand, a lazy method always reuses the longest common prefix in the compressed

dominant set of the last tuple scanned, and reorders only the tuples not in the common prefix

using the two observations discussed in Section 5.2.2.
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Algorithm 5.1 The aggressive reordering algorithm

Input: an uncertain table T, a set of generation rules n, and a top-k query QJ
Output: Reordered compressed dominant set T(ti) of each tuple ti E T
Method:

1: set Lcamplete = 0, L open = 0
2: retrieve tuples in T in the ranking order one by one
3: for all ti E T do
4: if ti is independent then
5: T(ti+l) = Lcomplete + L open

6: add ti to the rear of Lcomplete

7: else
8: T(ti+l) = Lcomplete + (Lopen - tRlelt)

{*ti is involved in rule R}
9: if ti is the last tuple in a rule R then

10: remove tRlelt from Lapen

11: form rule-tuple tR and add tR to Lcomplete

12: else
13: update rule-tuple tRlelt in L open by compressing ti E R
14: sort all rule-tuples in L open in their next tuple indices descending order.
15: end if
16: end if
17: end for

We scan the tuples in T in the ranking order. During the scan, we maintain the com­

pressed dominant set of the last scanned tuple. When processing tuple ti, one of the following

two cases may apply.

Case 1: If ti is an independent tuple, or ti is the first tuple scanned in a multi-tuple

generation rule R, then the compressed dominant set of ti can be computed by one of

the following two subcases.

First, if ti-l is independent, then T(ti) can be obtained by adding ti-l to the rear

of T(ti-l)'

Second, if ti-l is involved in a multi-tuple generation rule R', then T(ti) is computed

by adding tR, to the rear of T(ti-l).
Ie It

Case 2: If ti is involved in a multi-tuple generation rule R but not the first tuple scanned

in R, then there are three subcases.

First, if ti-l is involved in the same rule with ti, then T(ti) = T(ti-l).
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Second, ifti- l is an independent tuple, then T(ti-l) must contain a rule-tuple tRleft

corresponding to rule R, which should not be included in T(ti)' Moreover, ti-l should

be added at the rear of T (ti-l). In that case, the longest common prefix of T (ti- I) and

T(ti) includes the tuples ranked before tRleft in T(ti-I). The subset probabilities for

the tuples in the longest common prefix can be reused. For those tuples or rule-tuples

not in the longest common prefix, we reorder them so that the independent tuples are

always sorted before the rule-tuples and the rule-tuples are sorted in their next tuple

indices descending order.

Third, if ti-l is involved in another rule R' =I- R, then there are two differences

between T(ti-I) and T(ti): 1) T(ti-I) contains tRleft but T(ti) does not; 2) T(ti)

includes tR, but T(ti-I) does not. Therefore, we first add tR, to the rear of tR, .left left left
Then, as discussed in the second subcase, we can reuse the longest common prefix of

T(ti-I) and T(ti), and reorder the tuples not in the longest common prefix.

Example 5.3 (Lazy reordering). Consider a list of ranked tuples tll ... ,tll with multi­

tuple rules R I : tl EB t2 EB ts EB tll and R2 : t4 EB ts EB tlO again. The compressed dominant sets

of tuples in the orders made by the lazy reordering method is listed in Table 5.l.

The lazy reordering method orders the compressed dominant sets in the same way as

the aggressive reordering method for tl, t2 and t3.

For t4, the aggressive method orders t3, an independent tuple, before tl,2, the rule-tuple

for rule RI which is open with respect to t4. The subset probability values computed in

T(t3) cannot be reused. The lazy method reuses the prefix tl,2 from T(t3), and appends t3

after tl,2. All subset probability values computed in T(t3) can be reused. The total cost of

the lazy reordering method is 12. •

The algorithm of the lazy reordering method is given in Algorithm 5.2. The complexity

is O(nlogn), as analyzed in the aggressive reordering method.

We can show that the lazy method is never worse than the aggressive method.

Theorem 5.3 (Effectiveness of lazy reordering). Given a ranked list of tuples in T,

let Cost(agg) and Cost(lazy) be the total number of subset probability values needed to be

calculated by the aggressive reordering method and the lazy reordering method, respectively.

Then, Cost(agg) ?: Cost(lazy).

Proof. For two consecutive tuples ti and ti+l in T (1 ::; i ::; IT! - 1), we consider the

following three cases.
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Algorithm 5.2 The lazy reordering algorithm

Input: an uncertain table T, a set of generation rules R, and a top-k query Q~

Output: Reordered compressed dominant set T(ti) of each tuple ti E T
Method:

1: retrieve tuples in T in the ranking order one by one
2: set T(tl) == 0
3: for all ti E T (i 2: 2) do
4: if ti is independent or ti is the first tuple in R then
5: if ti-l is independent then
6: T(ti) == T(ti-l) + ti-l

7: else
8: T(ti) == T(ti-l) + tR,leJt

{*ti-l E R'}
9: end if

10: else
11: if ti-l is involved in R then
12: T(i) == T(i - 1)
13: else
14: if ti-l is involved in rule R' then
15: T(ti) == T(ti-l) - tRI Jt + tR,

e leJt
16: else
17: T(ti) == T(ti-d - tRleJt + ti-l

18: end if
19: reorder all tuples in T(ti) that are ranked lower than tRleJt in their next tuple

indices descending order.
20: end if
21: end if
22: end for

First, if ti and ti+l are involved in the same generation rule, then the cost of computing

T(ti+d is 0 using either aggressive reordering or lazy reordering, since T(ti+d contains the

same set of tuples in T(ti)'

Second, if ti+l is an independent tuple or the first tuple in a generation rule R, then the

cost of computing T(ti+d using lazy reordering is 1, since a tuple ti (if ti is independent)

or rule-tuple tR, (if ti is involved in R') should be added into T(ti) to form T(ti+l)' TheleJt
cost of computing T(ti+d using aggressive reordering is at least 1.

Third, if ti+l is involved in rule R but is not the first tuple in R, then tRleJt must be

removed from T(ti)' Moreover, ti or tR, should be added into T(ti), as discussed in theleJt
second case. Let Lrearder be the set of tuples or rule-tuples in T(ti) that are ranked lower



CHAPTER 5. PROBABILISTIC RANKING QUERIES ON UNCERTAIN DATA 114

than tRleft' then the cost of computing T(ti+d is ILreorder I+ 1. Now let us show that, using

aggressive reordering, the same amount of cost is also needed before scanning ti+1. For each

tuple t E Lreorder> one of the following two subcases may arise: 1) t is an independent tuple

or a completed rule-tuple, then t must be put into Lcomplete using aggressive reordering.

The subset probability of tR need to be recomputed once Lcomplete is updated. Thus, 1

cost is required. 2) t is an open-rule tuple, then it must be put into Lopen using aggressive

reordering. The subset probability of t needs to be recomputed after removing L R , which

requires a cost of 1.

Therefore, in any of the three cases, the cost of lazy reordering is not more than the cost

of aggressive reordering. The conclusion folows. •

5.2.3 Pruning Techniques

So far, we implicitly have a requirement: all tuples in T are scanned in the ranking order.

However, a probabilistic ranking query or reverse query is interested in only those tuples

passing the query requirement. Can we avoid retrieving or checking all tuples satisfying the

query predicates?

Some existing methods such as the well known TA algorithm [70] can retrieve in batch

tuples satisfying the predicate in the ranking order. Using such a method, we can retrieve

tuples in T progressively in the ranking order. Now, the problem becomes how we can use

the tuples seen so far to prune some tuples ranked lower in the ranking order.

Consider rank parameter k and probability threshold p. We give four pruning rules:

Theorems 5.4 and 5.5 can avoid checking some tuples that cannot satisfy the probability

threshold, and Theorems 5.6 and 5.7 specify stopping conditions. The tuple retrieval method

( e.g., an adaption of the TA algorithm [70]) uses the pruning rules in the retrieval. Once

it can determine all remaining tuples in T fail the probability threshold, the retrieval can

stop.

Please note that we still have. to retrieve a tuple t failing the probability threshold if

some tuples ranked lower than t may satisfy the threshold, since t may be in the compressed

dominant sets of those promising tuples.

Theorem 5.4 (Pruning by membership probability). For a tuple t E T, Prk(t) <
Pr(t). Moreover, ift is an independent tuple and Prk(t) < p, then

1. for any independent tuple t' such that t jf t' and Pr(t') ::s Pr(t), Prk(t') < p; and
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2. for any multi-tuple rule R such that t is ranked higher than all tuples in Rand Pr(R) ~

Pr(t), Prk(t") < p for any t" E R. •

To use Theorem 5.4, we maintain the largest membership probability Pmember of all

independent tuples and rule-tuples for completed rules checked so far whose top-k probability

values fail the probability threshold. All tuples identified by the above pruning rule should

be marked failed.

A tuple involved in a multi-tuple rule may be pruned using the other tuples in the same

rule.

Theorem 5.5 (Pruning by tuples in the same rule). For tuples t and t' in the same

multi-tuple rule R, ift:Sf t', Pr(t) ~ Pr(t'), and Prk(t) < p, then Prk(t') < p. •

Based on the above pruning rule, for each rule R open with respect to the current tuple,

we maintain the largest membership probability of the tuples seen so far in R whose top-k

probability values fail the threshold. Any tuples in R that have not been seen should be

tested against this largest membership probability.

Our last pruning rule is based on the observation that the sum of the top-k probability

values of all tuples is exactly k. That is L.tET Prk(t) = k.

Theorem 5.6 (Pruning by total top-k probability). Let A be a set of tuples whose

top-k probability values have been computed. If L.tEA Prk(t) > k - p, then for every tuple

t' rf- A, Prk(t') < p. •

Moreover, we have a tight stopping condition as follows.

Theorem 5.7 (A tight stopping condition). Let tl,' .. ,tm, ... ,tn be the tuples in the

ranking order. Assume L = tl, ... ,tm are read. Let LR be the set of open rules with respect

to tm+l. For any tuple ti (i > m),

k-l
1. ifti is not in any rule in LR, the top-k probability ofti Prk(ti) ~ L-Pr(L,j);

j=O

2. if ti is in a rule in LR, the top-k probability of ti Prk(ti)

k-l

Pr(tRle!t))L- Pr(L - tRle!t' j).
j=O

< max (1 ­
RELR



CHAPTER 5. PROBABILISTIC RANKING QUERIES ON UNCERTAIN DATA 116

Proof. For item (1), consider the compressed dominant set T(ti) ofti. L ~ T(td. Therefore,

k-I k-l

Prk(ti) = Pr(ti) L Pr(T(ti),j) ::; L Pr(L,j).
j=O j=O

The equality holds if tuple tm+1 is independent with membership probability l.

For item (2), suppose ti is involved in an open rule R E LR. Pr(ti) ::; 1 - Pr(tRle!t)'

Moreover, for the compressed dominant set T(ti) of ti, (L - tRle!t) ~ T(ti)' Therefore,

k-I k-I

Prk(ti) = Pr(ti) L Pr(T(ti),j) ::; (1 - Pr(tRle!t)) L Pr(L - tRle!oj)
j=O j=O

The equality holds when tuple tm+1 is involved in rule R' with membership probability

1 - Pr(tR'le!t)' where

k-I

R' = arg m~/l - Pr(tRle!t)) L Pr(L - tRle!t,j)·
j=O

•
Theorem 5.7 provides two upper bounds for tuples that have not been seen yet. If the

upper bounds are both lower than the probability threshold p, then the unseen tuples do

not need to be checked. The two bounds are both tight: Conclusion 1 can be achieved if

Pr(tI) = 1, while Conclusion 2 can be achieved if ti E argminRELR Pr(tRle!t) and Pr(ti) =

maxRELR{1- Pr(tRle!t)}'

In summary, the exact algorithm for PT-k query answering is shown in Algorithm 5.3.

We analyze the complexity of the algorithm as follows.

For a multi-tuple rule R : tq ,'" ,tTm where tTl" .. , tTm are in the ranking order, let

span(R) = rm - rl. When tuple tTl (1 < I ::; m) is processed, we need to remove rule:tuple

tTl, ... ,T/_J' and compute the subset probability values of the updated compressed dominant

sets. When the next tuple not involved in R is processed, tTl, ... ,TI_l and tTl are combined.

Thus, in the worst case, each multi-tuple rule causes the computation of O(2k . span(R))

subset probability values. Moreover, in the worst case where each tuple T passes the prob­

ability threshold, all tuples in T have to be read at least once. The time complexity of the

whole algorithm is O(kn + k l:RE'R span(R)).

As indicated by our experimental results, in practice the four pruning rules are effective.

Often, only a very small portion of the tuples in T are retrieved and checked before the

exact answer to a PT-k query is obtained.
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Algorithm 5.3 The exact algorithm with reordering and pruning techniques

Input: an uncertain table T, a set of generation rules n, a top-k query QJ, and a probability
threshold p

Output: Answer(Q,p, T)
Method:

1: retrieve tuples in T in the ranking order one by one
2: for all ti E T do
3: compute T(ti) by rule-tuple compression and reordering
4: compute subset probability values and Prk(td
5: if Prk(ti) ~ p then
6: output ti
7: end if
8: check whether ti can be used to prune future tuples
9: if all remaining tuples in T fail the probability threshold then

10: exit
11: end if
12: end for

Interestingly, since PT-k query answering methods can be extended to evaluate top­

(k, I) queries and top-(p, I) queries (as discussed in Section 5.2.1), the pruning techniques

introduced in this section can be applied to answering top-(k, I) queries and top-(p, I) queries

as well.

5.3 A Sampling Method

One may trade off the accuracy of answers against the efficiency. In this section, we present

a simple yet effective sampling method for estimating top-k probabilities of tuples.

For a tuple t, let X t be a random variable as an indicator to the event that t is ranked

top-k in possible worlds. X t = 1 if t is ranked in the top-k list, and X t = 0 otherwise.

Apparently, the top-k probability of t is the expectation of X t , i.e., Prk(t) = E[Xt ]. Our

objective is to draw a set of samples 5 of possible worlds, and compute the mean of X t in

5, namely Es[Xt ], as the approximation of E[Xt ].

We use uniform sampling with replacement. For table T = {tl,"" tn} and the set of

generation rules n, a sample unit (i.e., an observation) is a possible world. We generate

the sample units under the distribution of T: to pick a sample unit s, we scan T once. An

independent tuple ti is included in s with probability Pr(ti)' For a multi-tuple generation
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rule R : tTl EB ... EB tTm , S takes a probability of Pr(R) to include one tuple involved in R.

If s takes a tuple in R, then tuple tTl (1 :::; l :::; m) is chosen with probability ;T~dr scan

contain at most 1 tuple from any generation rule.

Once a sample unit s is generated, we compute the top-k tuples in s. For each tuple t

in the top-k list, X t = 1. The indicators for other tuples are set to O.

The above sample generation process can be repeated so that a sample 8 is obtained.

Then, Es[Xt ] can be used to approximate E[Xt ]. When the sample size is large enough, the

approximation quality can be guaranteed following from the well known Chernoff-Hoeffding

bound [7].

Theorem 5.8 (Sample size). For any J E (0,1), E> 0, and a sample 8 of possible worlds,
31n ~

if 181 ~ ~, then for any tuple t, Pr{IEs[Xt] - E[Xt ]I> EE[Xt ]} :::; J. •

We can implement the sampling method efficiently using the following two techniques,

as verified by our experiments.

First, we can sort all tuples in T in the ranking order into a sorted list L. The first k

tuples in a sample unit are the top-k answers in the unit. Thus, when generating a sample

unit, instead of scanning the whole table T, we only need to scan L from the beginning and

generate the tuples in the sample as described before. However, once the sample unit has

k tuples, the generation of this unit can stop. In this way, we reduce the cost of generating

sample units without losing the quality of the sample. For example, when all tuples are

independent, if the average membership probability is J-l, the expected number of tuples we

need to scan to generate a sample unit is r~l, which can be much smaller than ITI when

k« ITI.
Second, in practice, the actual approximation quality may converge well before the

sample size reaches the bound given in Theorem 8.3. Thus, progressive sampling can be

adopted: we generate sample units one by one and compute the estimated top-k probability

of tuples after each unit is drawn. For given parameters d > 0 and ¢ > 0, the sampling

process stops if in the last d sample units the change of the estimated X t for any tuple t is

smaller than ¢.

To answer a PT-k query with probability threshold p, we first run the above sampling

algorithm. Then, we scan the tuples in L and output the tuples whose estimated top-k

probabilities are at least p.

After obtaining estimated top-k probabilities of tuples using the above sampling method,
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top-(k, l) queries and top-(p, l) queries can be answered similarly as discussed in Sec­

tion 5.2.1.

5.4 A Poisson Approximation Based Method

In this section, we further analyze the properties of top-k probability from the statistics

aspect, and derive a general stopping condition for query answering algorithms which de­

pends on parameter k and threshold P only and is independent from data set size. We also

devise an approximation method based on the Poisson approximation. Since the PT-k query

answering methods can be extended to evaluate top-(k, l) queries and top-(p, l) queries as

discussed in Section 5.2.1, the Poisson approximation based method can be used to answer

top-(k, l) queries and top-(p, l) queries too. We omit the details to avoid redundance.

5.4.1 Distribution of Top-k Probabilities

Let Xl, ... ,Xn be a set of independent random variables, such that Pr(Xi = 1) = Pi and

Pr(Xi = 0) = 1 - Pi (1 ::; i ::; n). Let X = 2:r=l Xi· Then, E[X] = 2:r=l Pi. If all

Pi'S are identical, Xl, ,Xn are called Bernoulli trials, and X follows a binomial distri-

bution; otherwise, Xl, ,Xn are called Poisson trials, and X follows a Poisson binomial

distribution.

For a tuple t E T, the top-k probability of t is Prk(t) = Pr(t) 2:]=1 Pr(T(t),j - 1),

where Pr(t) is the membership probability of t, T(t) is the compressed dominant set of t.

Moreover, the probability that fewer than k tuples appear in T(t) is 2:]=1 Pr(T(t),j - 1).

If there is any tuple or generation rule-tuple in T(t) with probability 1, we can remove

the tuple from T(t), and compute the top-(k - 1) probability of t. Thus, we can assume

that the membership probability of any tuple or rule-tuple in T(t) is smaller than 1.

To compute Prk(t), we construct a set of Poisson trials corresponding to T(t) as fol­

lows. For each independent tuple t' E T(t), we construct a random trial X t, whose

success probability Pr(Xt' = 1) = Pr(t'). For each multi-tuple generation rule RfB

(RfB n T(t) =I- 0), we combine the tuples in RfB n T(t) into a rule-tuple tRfJ) such that

Pr(tRfJ)) = 2:t'ERfJ)nT(t) Pr(t'), and construct a random trial XtRfJ) whose success probabil­

ity Pr(XtRfJ) = 1) = Pr(tRfJ))'

Let Xl, ... ,Xn be the resulting trials. Since the independent tuples and rule-tuples in

T(t) are independent and their membership probabilities vary in general, Xl, ... ,X n are
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independent and have unequal success probability values. They are Poisson trials. Let X =

I:~=l Xi· Then, Pr(T(t), j) = Pr(X = j) (0::; j ::; n) where Pr(X = j) is the probability of

j successes. Thus, the probability that t is ranked the k-th is Pr(t, k) = Pr(t)Pr(X = k-l).

Moreover, the top-k probability of t is given by Prk(t) = Pr(t)Pr(X < k).

X follows the Poisson binomial distribution. Therefore, Pr(t, k) also follows the Poisson

binomial distribution, and Prk(t) follows the cumulative distribution function of Pr(t,k).

In a Poisson binomial distribution X, the probability density of X is unimodal (i.e., first

increasing then decreasing), and attains its maximum at /1 = E[X] [102]. Therefore, when

the query parameter k varies from 1 to IT(t)1 + 1, Pr(t, k) follows the similar trend.

Corollary 5.3 (Distribution of rank-k probability). For a tuple t E T,

{

- 0 if k > IT(t)1 + 1;

1. Pr(t, k) : ;r(t, k + 1), if k ::; /1- 1;

>Pr(t,k+l), ifk2/1'

2. argmax~:~:g)I+I Pr(t,j) = /1 + 1, where /1 = I:t'ET(t) Pr(t').

5.4.2 A General Stopping Condition

Corollary 5.3 shows that, given a tuple t and its compressed dominant set T(t), the most

possible ranks of t are around /1 + 1. In other words, if k « /1 +1, then the top-k probability

of t is small. Now, let us use this property to derive a general stopping condition for query

answering algorithms progressively reading tuples in the ranking order. That is, once the

stopping condition holds, all unread tuples that cannot satisfy the query can be pruned. The

stopping condition is independent from the number of tuples in the data set, and dependent

on only the query parameter k and the probability threshold p.

Theorem 5.9 (A General Stopping Condition). Given a top-k query Qk(f) and

probability threshold p, for a tuple t E T, let /1 = I:t'ET(t) Pr(t'). Then, Prk(t) < p if

II > k + In 1 + .hn2 1 + 2k In 1.
t"'_ P V P P

Proof. To prove Theorem 5.9, we need Theor'em 4.2 in [147].

Lemma 5.1 (Chernoff Bound of Poisson Trials [147]). Let Xl, .. " X n be independent

Poisson trials such that, for 1 ::; i ::; n, Pr[Xi = 1] = Pi, where 0 < Pi < 1. Then, for

X = I:~=l Xi, /1 = E[X] = I:~=l Pi, and 0 < E::; 1, we have

i±CPr[X < (1 - E)/1] < e- 2 .
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As discussed in Section 5.4.1, we can construct a set of Poisson trials corresponding to

the tuples in T(t) such that, for each tuple or rule-tuple t' E T(t), there is a corresponding

trial whose success probability is the same as Pr(t'). Moreover,

k-l

L.,Pr(T(t),j) = Pr[X < k]
j=O

For a< I: ::; 1, inequality Pr[X < k] ::; Pr[X < (1 - 1:)/1] holds when

k ::; (1 - 1:)/1

Using Lemma 5.1, we have

i!£..Pr[X < k] ::; Pr[X < (1 - 1:)/1] < e- 2

(5.1)

Pr[X < k] < p holds if

(5.2)

Combining Inequality 5.1 and 5.2, we get 2ln ~ ::; /1(1 - ~)2. The inequality in Theo-

rem 5.9 is the solution to the above inequality. _

Since /1 = 2:t'ET(t) Pr(t'), the /1 value is monotonically increasing if tuples are sorted in

the ranking order. Using Theorem 5.9 an algorithm can stop and avoid retrieving further

tuples in the rear of the sorted list if the /1 value of the current tuple satisfies the condition

in Theorem 5.9.

The value of parameter k is typically set to much smaller than the number of tuples in

the whole data set. Moreover, since a user is interested in the tuples with a high probability

to be ranked in top-k, the probability threshold p is often not too small. Consequently, /1

is often a small value. For example, if k = 100, P = 0.3, then the stopping condition is

/12: 117.

In the experiments, we show in Figure 5.4 that the exact algorithm and the sampling

algorithm stop close to the general stopping condition. The results verify the tightness of

the stopping condition.

5.4.3 A Poisson Approximation Based Method

When the success probability is small and the number of Poisson trials is large, Poisson

binomial distribution can be approximated well by Poisson distribution [101].
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For a set of Poisson trials Xl, ... , X n such that Pr(Xi = 1) = Pi, let X = I:~l Xi.

X follows a Poisson binomial distribution. Let f.l, = E[X] = I:~=o Pi. The probability
k

of X = k can be approximated by Pr(X = k) ~ f(k; f.l,) = 7ife-J.L, where f(k; f.l,) is the

Poisson probability mass function. Thus, the probability of X < k can be approximated

by Pr(X < k) ~ F(k; f.l,) = r(lLkN'J.L), where F(k; f.l,) is the cumulative distribution func­

tion corresponding to f(k; f.l,), and r(x, y) = fy
OO tX-Ie-tdt is the upper incomplete gamma

function. Theoretically, Le Cam [30] showed that the quality of the approximation has the

upper bound
1 1

sup LPr(X = k) - Lf(kjf.l,) ~ 9max{pi}'
O:Sl:Sn k=O k=O t

The above upper bound depends on only the maximum success probability in the Poisson

trials. In the worst case where maxi{pil = 1, the error bound is very loose. However, our

experimental results (Figure 5.6) show that the Poisson approximation method achieves

very good approximation quality in practice.

To use Poisson approximation to evaluate a top-k query Qk(J), we scan the tuples in

T in the ranking order. The sum of membership probabilities of the scanned tuples is

maintained in f.l,. Moreover, for each generation rule R, let Rlejt be the set of tuples in R

that are already scanned. Correspondingly, let f.l,R be the sum of membership probabilities

of the tuples in Rlejt.

When a tuple t is scanned, if t is an independent tuple, then the top-k probability of t

can be estimated using Pr(t)F(k - 1; f.l,) = Pr(t) f:~'i)~. If t belongs to a generation rule R,

then the top-k probability of t can be estimated by Pr(t)F(k -1; f.l,') = Pr(t)(k~i')l, where

f.l,' = f.l, - f.l,R· t is output if the estimated probability Prk (t) passes the probability threshold

p. The scan stops when the general stopping condition in Theorem 5.9 is satisfied.

In the Poisson approximation based met):1od, we need to maintain the running f.l, and

f.l,R for each open rule R. Thus, the space requirement of the Poisson approximation based

method is O(IRI + 1), where R is the set of generation rules. The time complexity is O(n'),

where n' is the number of tuples read before the general stopping condition is satisfied,

which depends on parameter k, probability threshold P and the probability distribution of

the tuples and is independent from the size of the uncertain table.
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5.5 Online Query Answering

Since probabilistic ranking queries involve several parameters, a user may be interested in

how query results change as parameters vary. To support the interactive analysis, online

query answering is highly desirable.

In this section, we develop PRist+ (for Erobabilistic r.anking lists), an index for online

answering probabilistic ranking queries on uncertain data, which is compact in space and

efficient in construction.

We first describe the index data structure PRist and present a simple construction

algorithm. Then, we develop PRist+, an advanced version of PRist that can be constructed

more efficiently and achieve almost as good performance as PRist in query answering.

5.5.1 The PRist Index

To answer probabilistic ranking queries, for a tuple t E T, a rank parameter k and a proba­

bility threshold p, we often need to conduct the following two types of checking operations.

• Top-k probability checking: is the top-k probability of t at least p?

• p-rank checking: is the p-rank of t at most k?

To support online query answering, we need to index the top-k probabilities and the

p-ranks of tuples so that the checking operations can be conducted efficiently. Instead of

building two different indexes for top-k probabilities and p-ranks separately, can we kill two

birds with one stone?

One critical observation is that, for a tuple, the top-k probabilities and the p-ranks can

be derived from each other. We propose PRist, a list of probability intervals, to store the

rank information for tuples.

Example 5.4 (Indexing top-k probabilities). Let us consider how to index the uncertain

tuples in Table 2.2.

Figure 5.2(a) shows the top-k probabilities of tuple t4 with respect to different values of

k. Interestingly, it can also be used to retrieve the p-rank of t4: for a given probability p, we

can draw a horizontal line for top-k probability = p, and then check where the horizontal

line cut the curve in Figure 5.2(a). The point right below the horizontal line gives the

answer k.
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(a) Top-k probabilities of tuple t4.
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Figure 5.2: The index entries in PRist for tuple t4.

Storing the top-k probabilities for all possible k can be very costly, since k is in range

[1, m] where m is the number of rules in the data set. To save space, we can divide the

domain of top-k probabilities (0,1] into h prob-intervals.

In Figure 5.2(a), we partition the probability range (0,1] to 5 prob-intervals: (0,0.2],

(0.2,0.4], (0.4,0.6], (0.6,0.8], and (0.8,1.0]. For each interval, we record for each tuple a

lower bound and an upper bound of the ranks whose corresponding top-k probabilities lie

in the prob-interval.

For example, the top-1 and top-2 probabilities of t4 are 0.0945 and 0.45, respectively.

Therefore, a lower bound and an upper bound of ranks of t4 in interval (0,0.2] are 0 and 2,

respectively. Specifically, we define the top-O probability of any tuples as O. Moreover, we

choose rank k = 2 as the upper bound of the 0.2-rank of t4, since the top-2 probability of t4

is greater than 0.2 and all top-i probabilities of t4 for i < 2 are smaller than 0.2. The lower

bound of the O-rank probability of t4 is chosen similarly.

To store the bounds in interval (0,0.2]' we maintain two lists associated with the interval.

The L-list stores a lower bound for each tuple, and the U-list stores an upper bound for

each tuple. Therefore, for t4, lower bound 0 is inserted into the L-list of (0,0.2], and upper

bound 2 is inserted into the U-list of (0,0.2].

The lower and upper bounds of ranks for other prob-intervals can be computed in the

same way. Finally, the entry of t4 in a PRist is shown in Figure 5.2(b). •
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(a) The PRist index. (b) The compressed PRist index.

Figure 5.3: A PRist index for the uncertain tuples in Table 2.2.

Formally, given a set of uncertain tuples T and a granularity parameter h > 0, a PRist

index for T contains a set of prob-intervals {bl , ... ,bh}, where bi = eh
l , *J (1:S i:S h).

Each prob-interval bi (2 :S i :S h - 1) is associated with two lists: a U-list and an L-list.

An entry in the U-list of bi corresponds to a tuple t and consists of two items: tuple id

t and an upper rank of t in bi , denoted by t,Ui, such that one of the following holds: (1)

prt.Ui(t) > *and Prt,Ui-1 :S *when Prm(t) > *; or (2) t,Ui = m when Prm(t) :S *. Each

tuple t E T has an entry in the U-list. All entries in the U-list are sorted in ascending order

of the upper ranks.

An entry in the L-list of bi corresponds to a tuple t and consists of two items: tuple

id t and a lower rank of t in bi, denoted by t.Li, such that one of the following holds:

(1) Prt.Li(t) :S ihl and Prt.Li+l(t) > ihl when Prm(t) > ihl; or (2) t.Li = m when

Prm(t) :S ihl. Each tuple t E T has an entry in the L-list. All entries in the L-list are

sorted in ascending order of the lower ranks.

Prob-interval bl is associated with only a U-list but no L-list. Prob-interval bh is asso­

ciated with only an L-list but no U-list. For any tuple t E T, t.L I = 0 and t,Uh = m. The

reason is that the lower ranks for entries in bl are always 0 and the upper ranks for entries

in bh are always m. Those two lists can be omitted.

Example 5.5 (PRist). For tuples tl,'" ,t4 in Table 2.2, whose top-k probabilities are

plotted in Figure 2.5, the PRist index is shown in Figure 5.3(a). _
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The space cost of a PRist is O(2hn), where n is the number of tuples and h is the number

of prob-intervals.

To reduce the space cost of PRist, if an entry (0, rank) appears in the U-list of prob­

interval bi and the L-list of prob-interval bi+1 (1 :s: i < h), we can let the two lists share

the entry. Moreover, if multiple entries in a list have the same rank, we can compress those

entries into one which carries one rank and multiple tuple ids. A compressed PRist index is

shown in Figure 5.3(b).

One reason that compressed PRist can achieve non-trivial saving is that, for a tuple t

with membership probability Pr(t), if Pr(t) falls in prob-interval bi , the upper and lower

ranks of t in prob-intervals bi+1 , ... ,bh are identical and thus can be shared.

In addition, PRist can be tailored according to different application requirements. For

example, in some scenarios, users may be only interested in the probabilistic ranking queries

with a small rank parameter k and a large probability threshold p. In such a case, given a

maximum rank parameter value k max and a minimum probability threshold value Pmin in

users' queries, only the prob-intervals e"h1
, kJ with k > Pmin need to be stored. For each

prob-interval, the U-list and L-list only contain the tuples whose upper ranks are at most

kmax .

We can build a PRist index in two steps. In the first step, we compute the top-k prob­

abilities of all tuples using the methods in Section 5.2. The time complexity of computing

the top-i probabilities of all tuples for alII :s: i :s: m is O(m2n), where m is the number of

rules in T and n is the number of tuples in T.

In the second step, we construct a set of prob-intervals and compute the U-lists and

L-lists. For each tuple t, we scan its top-i (1 :s: i :s: m) probabilities and fill up the upper

rank t.Uj and lower rank t.Lj for each prob-interval bj (1 :s: j :s: h). Since there are n tuples

and m ranks, the time cost is O(mn). We sort the entries in the U-lists and the L-lists.

Since there are 2h lists, each of n entries, the total time cost of sorting is O(2hn log n).

The overall time complexity of the basic construction algorithm is O(m2n + mn +
2hn logn) = O(m2n + 2hnlogn).

5.5.2 Query Evaluation based on PRist

The query evaluation based on the PRist index follows three steps.

1. Bounding: for each tuple in question, we derive an upper bound and a lower bound
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of the measure of interest;

2. Pruning and validating: The upper and lower bound derived in the bounding phase

are used to prune or validate tuples.

3. Evaluating: for those tuples that cannot be pruned or validated, the exact top-k

probabilities are calculated. Then, the tuples are evaluated with respect to the query.

Answering PT-k Queries

The following example illustrates how to evaluate PT-k queries.

Example 5.6 (Answering PT-k queries). Consider the uncertain tuples indexed in

Figure 5.3 again, and a PT-k query with k = 3 and p = 0.45.

To find the tuples satisfying the query, we only need to look at the prob-interval con­

taining p = 0.45, which is b3 = (0.4,0.6]. In the U-list of b3, we find that t3.U3 = 3 and

t4.U3 = 3, which means that Pr3(t3) > 0.6 and Pr3(t4) > 0.6. Therefore, t3 and t4 can be

added into the answer set without calculating their exact top-k probabilities. In the L-list

of b3, we find that t2.L3 = 4, which means Pr4(t2) ::; 0.4. Therefore, t2 can be pruned.

Thus, only the top-3 probability of tl needs to be calculated in order to further verify if

tl is an answer to the query. Since Pr3 (td = 0.5, it can be added into the answer set. The

final answer is {tl, t3, t4}' •

The three steps for PT-k query evaluation are as follows.

Step 1: Bounding We use Corollary 5.4 to determine whether the top-k probability of t

lies in bi .

Corollary 5.4 (Bounding top-k probabilities). Let T be a set of uncertain tuples in­

dexed by PRist with granularity parameter h. For a tuple t E T and a positive integer k, if

bi (1 ::; i ::; h) is the prob-interval such that t.Li < k < t.Ui , then ihl < Prk(t) ::; t.
Proof. According to the definition of PRist, we have Prt.Li(t) ::; ihl and Prt.Li+l(t) >
ihl. Since k > t.Li, Prk(t) 2 Prt.Li+l(t) > ihl. On the other hand, Prt,Ui(t) > *and

Prt,Ui-l(t) ::; t. Since k < t.Ui , we have Prk(t) ::; Prt,Ui-l(t) ::; t· •

Step2: Pruning and Validating A tuple may be pruned or validated by checking its

lower rank L i or upper rank Ui in the prob-interval containing the probability threshold, as

stated in Theorem 5.10.
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Theorem 5.10 (Answering PT-k queries). Let T be a set of uncertain tuples indexed by

PRist with granularity parameter h. For a tuple t E T and a PT-k query Q~ with probability

threshold p E bi = eh
1, *]:

1. Pruning: ift.Li > k, then Prk(t) < p;

2. Validating: ift,Ui :S k, then Prk(t) > p.

Proof. According to the definition of PRist, we have Prt.Li(t) :S ihl and Prt.Li+1(t) > ihl.

Therefore, if t.Li > k, Prk(t) :S Prt.Li(t) :S ihl < p. Moreover, according to the definition

of PRist Prt,Ui(t) > i and prt.Ui-1(t) < i. Thus if t.U· < k then Prk(t) > Prt.ui(t) >, h -h' ~-, -
i
Ii> p. •

Step 3: Evaluating We only need to evaluate the exact top-k probabilities for those tuples

whose top-k probabilities falling into the prob-interval containing the probability threshold

p, and which cannot be validated or pruned by Theorem 5.10.

In the U-list of the prob-interval containing the probability threshold, finding the tuples

whose upper ranks are less than or equal to k requires O(logn) time, where n is the number

of tuples in T. Similarly, in the L-list, finding the tuples whose lower ranks are larger than k

also takes O(logn) time. Let d be the number of tuples that cannot be pruned or validated.

Computing the top-k probabilities of those tuples requires O(kmd) time, where m is the

number of rules in T.

Answering Top-(k, l) Queries

Example 5.7 (Answering Top-(k, l) queries). Consider the uncertain tuples in Table 2.2

which are indexed in the PRist in Figure 5.3. To answer a top-(k, l) with k = 3 and l = 2,

we scan each prob-interval in Figure 5.3(a) from top down.

In prob-interval b5 = (0.8,1.0]' we find t4.L5 = 2, which means Pr2(t4) :S 0.8 and

Pr3 (t4) > 0.8. At the same time, tj.L5 = 4 for 1 :S j :S 3, which means Pr4(tj) :S 0.8 for

1 :S j :S 3. Since for any tuple t, we have Pr3 (t) :S Pr4(t), it is clear that Pr3 (t4) < Pr3 (tj)

(1 :S j :S 3). Thus, t4 is one of the answers to the query.

Using the similar procedure, we scan prob-interval b4 and find that t3 is another answer.

Since the query asks for the top-2 results, the query answering procedure stops. •

To answer a top-(k, l) query Q, we want to scan the tuples in the descending order

of their top-k probabilities. However, PRist does not store any exact top-k probabilities.
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We scan the prob-intervals in the top-down manner instead. For each prob-interval, we

retrieve the tuples whose top-k probabilities lie in the prob-interval. Obviously, for two

prob-intervals bi and bj (i > j), the top-k probabilities falling in bi is always greater than

the top-k probabilities in bj .

The query answering algorithm proceeds in three steps.

Step 1: Bounding For a prob-interval bi and a tuple t, we use Corollary 5.4 to determine

if the top-k probability of t lies in bi .

Step 2: Pruning and Validating We scan the prob-intervals from top down, and use a

buffer B to store the tuples whose top-k probabilities lie in the scanned prob-intervals. The

tuples not in B have smaller top-k probabilities than those in B. A tuple may be pruned

or validated according to whether it is in B and the number of tuples in B.

Theorem 5.11 (Answering top-(k, l) queries). Let T be a set of uncertain tuples in­

dexed by PRist with granularity parameter h. Let bh, bh-l ... ,bi (1 ::; i ::; h) be the prob­

intervals that have been scanned and B contain all tuples whose top-k probabilities lying in

bh, bh- 1 ••. ,bi , then

1. Pruning: if IBI ~ land t tt B, then t is not an answer to the top-(k,l) query;

2. Validating: if IBI ::; land t E B, then t is an answer to the top-(k, l) query.

Proof. We only need to prove that for any tuple t x E Band t y tt B, Prk(tx ) < Prk(ty ).

Since t x E B, we have Prk(tx ) > ihl. Moreover, Prk(tx ) ::; ihl because t y tt B. Therefore,

we have Prk(tx ) < Prk(ty ). _

Step 3: Evaluating If, before prob-interval bi is scanned, B has l' tuples such that l' < l,

but after bi is scanned, B has l or more tuples, we enter the evaluating step. If B has exactly

l tuples, we do not need to do anything. However, if B has more than l tuples, we need to

evaluate the exact top-k probabilities of those tuples added to B from bi , and include into

B only the top-(l - l') tuples of the largest top-k probabilities.

When a tuple can be added into the answer set without the evaluating step, the time to

retrieve the tuple is constant. There are at most l such tuples. Only the top-k probabilities

of the tuples in the last prob-interval need to be evaluated. Let d be the number of such

tuples. Then, the time complexity of evaluating those tuples is O(kmd), as computing the

top-k probabilities of those tuples requires O(kmd) time. The overall time complexity of

query answering is O(l + kmd).
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Answering Top-(p, l) Queries

Example 5.8 (Answering top-(p, l) queries). Consider the uncertain tuples in Figure 5.3

again. How can we answer the top-(p, l) query with p = 0.5 and l = 27

We only need to check prob-interval b3 = (0.4,0.6] that contains p. First, the top-2

highest ranks in b3.U3 are 3 for tuples t3 and t4, which means M RO.5(t3) :S 3 and M RO.5(t4) :S

3. Therefore, we can set 3 as the upper bound of the 0.5-ranks, and any tuple t with

M Ro.5 > 3 cannot be the answer to the query.

Second, we scan list b3.L3 from the beginning. tl is added into a buffer B, since tl.L3 < 3

and M Ro.5 might be smaller than or equal to 3. t3 and t4 are added into B due to the same

reason. Then, when scanning t2, we find t2.L3 = 4, which means M RO.5(t2) 2 M R0.4(t2) 2
4. Thus, t2 and any tuples following t2 in the list (in this example, no other tuples) can be

pruned.

Last, the 0.5-ranks of the tuples in B (Le., tl, t3, and t4) are calculated, and the tuples

with the top-2 highest 0.5-ranks are returned as the answer to the query, which are tl and

t3· •

To answer a top-(p, l) query, the three steps work as follows.

Step 1: Bounding The p-rank of a tuple can be bounded using the following rule.

Theorem 5.12 (Bounding p-ranks). Let T be a set of uncertain tuples indexed by PRist

with granularity parameter h. For a tuple t E Sand p E (0,1], let bi (1 :S i :S h) be the

prob-interval such that p E bi, i.e., i'h l < p :S *. Then, t.Li :S M Rp(t) :S t,Ui.

Proof. To prove Theorem 5.12, we need the following two lemmas.

Lemma 5.2 (Monotonicity). Let t be an uncertain tuple, and PI and P2 be two real values

in (0,1]. If PI :S P2, then M RP1 (t) :S M Rp2 (t).

Proof. Let MRp1(t) = k l . Then, Prk1(t) 2 Pl. Moreover, for any k < k l , Prk(t) < Pl.

Since PI :S P2, for any k < kl, Prk(t) < P2· Therefore, M RP2 (t) 2 kl = M RP1 (t).

Lemma 5.3. Let t be an uncertain tuple, k be a positive integer, and p be a real values in

(0,1]. If Prk(t) :S p, then MRp(t) 2 k.

Proof. Since Prk(t) :S p, for any x :S k, PrX(t) :S p. Thus, MRp(t) 2 k.

To proof Theorem 5.12, We first prove t.Li < MRp(t). Following the definition of

PRist, we have Prt.Li(t):S i'h l . Thus, MRi-l(t) 2 t.Li, which follows from Lemma 5.3.
h
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Moreover, since ihl < p, we have MRi-l (t) ~ MRp(t) , which follows from Lemma 5.2.
h

Thus, t.Li < M Rp(t).

Similarly, MRp(t) ~ t,Ui can be proved. _

Step 2: Pruning and Validating Given a top-(p, l) query, let bi be the prob-interval

containing p. We use the l-th rank k in list bi'U as a pruning condition. Any tuple t' whose

lower rank in bi is at least k can be pruned. Moreover, for any tuple t, if the upper rank of

t in bi is not greater than l lower ranks of other tuples in bi , then t can be validated.

Theorem 5.13 (Answering Top-(p, l) queries). Let T be a set of uncertain tuples indexed

by PRist with granularity pammeter h. For a tuple t E S, a top-(p, l) query, and prob­

interval bi such that p E bi :

1. Pruning: Let TI = {txltx,Ui ~ t.Ui 1\ t x E T}. If ITII ~ l, then any tuple t' such that

t'.Li ~ t,Ui is not an answer to the query;

2. Validating: Let T2 = {tylty.Li ~ t.Ui 1\ t y E T}. If IT21 ~ l, then t is an answer to the

query.

Proof. To prove the first item, we only need to show that there are at least l tuples whose

p-ranks are smaller than MRp(t'). For any tuple t x E TI, we have MRp(tx) ~ tx,Ui ~ t.Ui ,

which is guaranteed by Theorem 5.12. Similarly, for any tuple t' such that t'.Li ~ t.Ui, we

have MRp(t') ~ t,Ui' Therefore, MRp(tx ) ~ MRp(t'). Since ITII ~ l, there are at least l

tuples like t x . So the first item holds.

To prove the second item, we only need to show that there are fewer than l tuples whose p­

ranks are smaller than MRp(t). For any tuple t' rt- T2, since t'.Li > t.Ui, MRp(t') > MRp(t).

Therefore, only the tuples in T2 may have smaller p-ranks than MRp(t). Since IT21 ~ l, the

second item holds. _

Step 3: Evaluating For any tuple that can neither be validated nor be pruned, we need

to calculate their exact p-ranks. To calculate the p-rank of tuple t, we calculate the top­

1, top-2, .,. , top-i probabilities for each rank i until we find the first rank k such that

Prk(t) ~ p.

The complexity is analyzed as follows. Let d l be number of tuples that cannot be pruned

in the pruning and validation phase. In the evaluating phase, the p-ranks of the tuples that

cannot be pruned or validated are calculated. For each such tuple, its p-rank can be m in
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the worst case, where m is the number of rules in T. Then, calculating the p-rank for each

tuple takes O(m2 ) time. Let d2 be the number of tuples that cannot be pruned or validated.

The evaluating step takes O(m2d2 ) time. The overall complexity is Oed! + m 2d2 ).

5.5.3 PRist+ and a Fast Construction Algorithm

We can reduce the construction time of PRist by bounding top-k probabilities using the

binomial distribution.

Consider a tuple t E T and its compressed dominant set T(t). If there is any tuple or

generation rule-tuple with probability 1, we can remove the tuple from T(t), and compute

the top-(k - 1) probability of t. Thus, we can assume that the membership probability of

any tuple or rule-tuple in T(t) is smaller than 1.

Theorem 5.14 (Bounding the probability). For a tuple t E T, let T(t) be the com­

pressed dominant set of t. Then,

F(k;N,Pmax):::; L Pr(T(t),j):::; F(k;N,Pmin)
O'Sj'Sk

(5.3)

where Pmax and Pmin are the greatest and the smallest probabilities of the tuples/rule-tuples

in T(t) (0 < Pmin :::; Pmax < 1), N is the number of tuples/rule-tuples in T(t), and F is the

cumulative distribution function of the binomial distribution.

Proof. We first prove the left side of Inequality 5.3. For a tuple set S, let Pr(S,:::; k)

denoteI:o'Sj'Sk Pr(S,j). For any tuple t' E T(t), Pr(t') :::; Pmax.

Consider tuple set S = T(t) - {t'} and T'(t) = S + tmax where Pr(tmax ) = Pmax' From

Theorem 5.2,

Pr(T(t),:::; k) = Pr(t')Pr(S,:::; k - 1) + (1 - Pr(t'))Pr(S,:::; k);

and

Pr(T'(t),:::; k) = Pr(tmax)Pr(S,:::; k - 1) + (1 - Pr(tmax))Pr(S,:::; k).

Then,

Pr(T(t),:::; k) - Pr(T'(t),:::; k) = [Pr(t') - Pr(tmax )] x [Pr(S,:::; k - 1) - Pr(S,:::; k)].

Since Pr(t') :::; Pr(tmax ) and Pr(S,:::; k - 1) :::; Pr(S,:::; k), we have Pr(T(t),:::; k) 2':

Pr(T'(t),:::; k).
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By replacing each tuple/rule-tuple in T(t) with tmax , we obtain a set of tuples with

the same probability Pmax, whose subset probabilities follows the binomial distribution

F(k; N,Pmax). Thus, the left side of Inequality 5.3 is proved.

The right side of Inequality 5.3 can be proved similarly. _

Moreover, Hoeffding [102] gave the following bound.

Theorem 5.15 (Extrema [102]). For a tuple t E T and its compressed dominant set T(t),

let J..t = 2:t/ET(t) Pr(t' -<f t). Then,

1. 2:7=0 Pr(T(t), j) :S F(k; N, ~) when 0 :S k :S J..t - 1; and

2. 2:7=0 Pr(T(t),j) ~ F(k; N, ~) when J..t:S k:S N,

where N is the number of tuples and rule-tuples in T(t), and F is the cumulative distribution

function of the binomial distribution. _

Based on Theorems 5.14 and 5.15, we derive the following bound for the top-k probability

of tuple t E T.

Theorem 5.16 (Bounds of top-k probabilities). For a tuple t E T, the top-k probability

of t satisfies

1. Pr(t)F(k - 1; N,Pmax) :S Prk(t) :S Pr(t)F(k - 1; N, ~) for 1 :S k :S J..t;

2. Pr(t)F(k - 1; N, ~) :S Prk(t) :S Pr(t)F(k - 1; N,Pmin) for J..t + 1 :S k :S N + 1.

Proof. The theorem holds following from Theorems 5.14 and 5.15. -
Example 5.9 (Bounding the probability). Consider the uncertain tuples in Table 2.2

again. T(t3) = {tl, t2}' The expected number of tuples in T(t3) is J..t = Pr(tl)+Pr(t2) = 0.8.

The number of rules in T(t3) is 2.

Consider the top-2 probability of t3. Since 2 > J..t, Pr2(t3) ~ Pr(t3)F(1; 2, 0.4) = 0.7 x

0.84 = 0.588. Since min{Pr(tI), Pr(t2)} = 0.3, Pr2(t3) :S Pr(t3)F(1; 2, 0.3) = 0.7 x 0.91 =
0.637. Therefore, Pr2 (t3) is bounded in range [0.588,0.637]. _

Since the cumulative probability distribution of the binomial distribution is easier to

calculate than top-k probabilities, we propose PRist+, a variant of PRist using the binomial

distribution bounding technique.
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The only difference between PRist+ and PRist is the upper and lower ranks in the U-lists

and L-lists. In PRist+, we compute the upper and lower bounds of the top-k probabilities

of tuples using the binomial distributions. Then, the upper and lower ranks are derived

from the upper and lower bounds of the top-k probabilities.

Take the U-list in prob-interval bi as an example. In PRist, an entry in the U-list consists

of the tuple id t and the upper rank t.Ui , such that Prt .Ui (t) > *(if Prm(t) > *). Once

the top-i probabilities of all ranks 1 ::; i ::; m for t are computed, t,Ui can be obtained by

one scan.

In PRist+, we store the upper rank t.Ui as the smallest rank x such that the lower

bound of PrX(t) is greater than *. Following with Theorem 5.16, the upper rank can be

calculated by x = F-l(h.pir(t),N,~) + 1 or x = F-1(h)r(t),N,Pmax) + 1, where F-1 is

the binomial inverse cumulative distribution function. The lower rank of t can be obtained

similarly using Theorem 5.16.

Computing the upper and lower ranks for t in bi requires 0(1) time. Thus, the overall

complexity of computing the upper and lower ranks of all tuples in all prob-intervals is

0(2hn), where n is the total number of tuples. The complexity of sorting the bound lists

is 0(2hnlogn). The overall time complexity of constructing a PRist+ index is 0(2hn +
2hnlogn) = O(hnlogn).

Clearly, the construction time of PRist+ is much lower than PRist. The tradeoff is that

the rank bounds in PRist+ is looser than PRist. As will be shown in the next section, all

query answering methods on PRist can be applied on PRist+. The looser rank bounds in

PRist+ does not affect the accuracy of the answers. They only make a very minor difference

in query answering time in our experiments.

5.6 Experimental Results

We conduct a systematic empirical study using a real data set and some synthetic data sets

on a PC with a 3.0 GHz Pentium 4 CPU, 1.0 GB main memory, and a 160 GB hard disk,

running the Microsoft Windows XP Professional Edition operating system. Our algorithms

were implemented in Microsoft Visual C++ V6.0.



Tuple Rl R2 R3 R4 R5 R6 R7 R8 R9 RIO Rll R14 R18

Drifted days 435.8 341.7 335.7 323.9 284.7 266.8 259.5 240.4 233.6 233.3 232.6 230.9 229.3

11ell1bership prob. 0.8 0.8 0.8 0.6 0.8 0.8 0.4 0.15 0.8 0.7 0.8 0.6 0.8

Top-10 prob. 0.8 0.8 0.8 0.6 0.8 0.8 0.4 0.15 0.8 0.7 0.79 0.52 0.359

Table 5.2: SOll1e tuples in the lIP Iceberg Sightings Database 2006.

Rank 1 2 3 4 5 6 7 8 9 10

Tuple Rl R2 R3 R5 R6 R9 R9 Rll Rll R18

Pr(t,j) 0.8 0.64 0.512 0.348 0.328 0.258 0.224 0.234 0.158 0.163

Table 5.3: The answers to the U-K Ranks query.
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k=5 k = 20
RID Top-5 prob. # of Days Drifted RID Top-20 Prob. # of Days Drifted
Rl 0.8 435.8 Rl 0.8 435.8
R2 0.8 341.7 R2 0.8 341.7
R3 0.8 335.7 R3 0.8 335.7
R5 0.8 284.7 R5 0.8 284.7
R6 0.61 266.8 R6 0.8 266.8
R4 0.6 323.9 R9 0.8 233.6
R9 0.22 233.6 Rll 0.8 232.6
R7 0.17 259.5 R18 0.8 229.3
RIO 0.09 233.3 R23 0.79 227.2
R8 0.05 240.4 R33 0.75 222.2

Table 5.4: Results of top-(k, l) queries on the IIP Iceberg Sighting Database (l=10).

5.6.1 Results on lIP Iceberg Database

We use the International Ice Patrol (IIP) Iceberg Sightings Database l to examine the effec­

tiveness of top-k queries on uncertain data in real applications. The International Ice Patrol

(IIP) Iceberg Sightings Database collects information on iceberg activities in the North At­

lantic. The mission is to monitor iceberg danger near the Grand Banks of Newfoundland by

sighting icebergs (primarily through airborne Coast Guard reconnaissance missions and in­

formation from radar and satellites), plotting and predicting iceberg drift, and broadcasting

all known ice to prevent icebergs threatening.

In the database, each sighting record contains the sighting date, sighting location (lati­

tude and longitude), number of days drifted, etc. Among them, the number of days drifted

is derived from the computational model of the IIP, which is crucial in determining the

status of icebergs. It is interesting to find the icebergs drifting for a long period.

However, each sighting record in the database is associated with a confidence level ac­

cording to the source of sighting, including: R/V (radar and visual), VIS (visual only),

RAD(radar only), SAT-L(low earth orbit satellite), SAT-M (medium earth orbit satellite)

and SAT-H (high earth orbit satellite). In order to quantify the confidence, we assign con­

fidence values 0.8, 0.7, 0.6, 0.5, 0.4 and 0.3 to the above six confidence levels, respectively.

Moreover, generation rules are defined in the following way. For the sightings with

Ihttp://nsidc.org/data/g00807.html
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p= 0.5 p = 0.7
RID 0.5-rank # of Days RID 0.7-rank # of Days
R1 2 435.8 R1 2 435.8
R2 2 341.7 R2 2 341.7
R3 3 335.7 R3 3 335.7
R4 4 323.9 R5 5 284.7
R5 4 284.7 R6 6 266.8
R6 5 266.8 R9 7 233.6
R9 7 233.6 Rll 9 232.6
RIO 8 233.3 RIO 10 233.3
Rll 8 232.6 R18 13 229.3
R14 10 231.1 R23 15 227.2

Table 5.5: Results of Top-(p, l) queries on the lIP Iceberg Sighting Database (l=10).

the same time stamp, if the sighting locations are very close - differences in latitude and

longitude are both smaller than 0.01 (Le.,0.02 miles), they are considered referring to the

same iceberg, and only one of the sightings is correct. All tuples involved in such a sighting

form a multi-tuple rule. For a rule R : tq EEl· . 'EEltrm , Pr(R) is set to the maximum confidence

among the membership probability values of tuples in the rule. Then, the membership

probability of a tuple is adjusted to Pr(trl ) = L: con!(tr1j(t )Pr(R) (1:S 1 :S m), where
l~i~m con ri

conf(tT[) is the confidence oftrl . After the above preprocessing, the database contains 4, 231

tuples and 825 multi-tuple rules. The number of tuples involved in a rule varies from 2 to

10. We name the tuples in the number of drifted days descending order. For example, tuple

R1 has the largest value and R2 has the second largest value on the attribute.

Comparing PT-k queries, U-Topk queries and U-KRanks Queries

We apply a PT-k query, a U-TopK query and a U-K Ranks query on the database by setting

k = 10 and p = 0.5. The ranking order is the number of drifted days descending order. The

PT-k query returns a set of 10 records {R1,R2,R3,R4,R5,R6,R9,R10,Rll,R14}. The

U-Topk query returns a vector (R1, R2, R3, R4, R5, R6, R7, R9, RIO, Rll) with probability

0.0299. The U-KRanks query returns 10 tuples shown in Table 5.3. The probability values of

the tuples at the corresponding ranks are also shown in the table. To understand the answers,

in Table 5.2 we also list the membership probability values and the top-10 probability values

of some tuples including the ones returned by the PT-k, U-Topk, and U-KRanks queries.



CHAPTER 5. PROBABILISTIC RANKING QUERIES ON UNCERTAIN DATA 138

All tuples with a top-10 probability of at least 0.5 are returned by the PT-k query. The

top-10 probability of R14 is higher than R7, but R7 is included in the answer of the U-Topk

query and R14 is missing. Moreover, the presence probability of the top-10 list returned by

the U-Topk query is quite low. Although it is the most probable top-10 tuple list, the low

presence probability limits its usefulness and interestingness.

RIO and R14, whose top-10 probability values are high, are missing in the results of the

U-KRanks query, since none of them is the most probable at any rank. Nevertheless, R18

is returned by the U-KRanks query at the 10-th position, though its top-10 probability is

much lower than RIO and R14. Moreover, R9 and Rll each occupies two positions in the

answer of the U-KRanks query.

The results clearly show that the PT-k query captures some important tuples missed by

the U-TopK query and the U-KRanks query.

Answering Top-(k, l) Queries, PT-k Queries and TOp-(p, l) Queries

Moreover, We conduct top-(k, l) queries, PT-k queries and top-(p, l) queries on the database.

Table 5.4 shows the results of a top-(5, 10) query and a top-(20, 10) query. To understand

the answer, the top-5 probabilities, the top-20 probabilities, and the number of days drifted

are also included in the table. Some records returned by the top-(5, 10) are not in the results

of the top-(20, 10) query, such as R4, R7, RIO and R8. Moreover, Rll, R18, R23 and R33

are returned by the top-(20, 10) query but are not in the results of the top-(5, 10) query.

When k becomes larger, the records ranked relatively lower but with larger membership

probabilities may become the answers. It is interesting to vary value k and compare the

difference among the query results.

The results to a top-(0.5, 10) query and a top-(0.7, 10) query are listed in Table 5.5.

The 0.5-ranks, 0.7-ranks and the number of days drifted are also included. By varying pin

a top-(p, l) query, we can see the tradeoff between the confidence and the highest ranks a

tuple can get with the confidence.

If k = 10 and p = 0.4, then a PT-k query returns {Rl, R2, R3, R4, R5, R6, R9,

RI0,Rll,RI4,RI5}. If p is increased to 0.7, then the answer set is {Rl,R2,R3,R5,

R6, R9, RIO, Rll}.
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Figure 5.4: Scan depth (each test data set contains 20, 000 tuples and 2, 000 generation
rules).

5.6.2 Results on Synthetic Data Sets

To evaluate the query answering quality and the scalability of our algorithms, we generate

various synthetic data sets. The membership probability values of independent tuples and

multi-tuple generation rules follow the normal distribution N(/LPt,apt) and N(/LPR,apR)'

respectively. The rule complexity, Le., the number of tuples involved in a rule, follows the

normal distribution N (/LIRI, aIRI)2.

By default, a synthetic data set contains 20, 000 tuples and 2, 000 multi-tuple generation

rules: 2, 000 generation rules. The number of tuples involved in each multi-tuple generation

rule follows the normal distribution N(5, 2). The probability values of independent tuples

and multi-tuple generation rules follow the normal distribution N(0.5, 0.2) and N(0.7, 0.2),

respectively. We test the probability threshold top-k queries with k = 200 and p = 0.3.

2The data generator is available at http://www.cs.sfu.ca/- jpei/Software/PTKLib .rar
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Figure 5.5: Efficiency (same settings as in Figure 5.4).

Since ranking queries are extensively supported by modern database management sys­

tems, we treat the generation of a ranked list of tuples as a black box, and test our algorithms

on top of the ranked list.

First, to evaluate the efficient top-k probability computation techniques, we compare

the exact algorithm, the sampling method, and the Poisson approximation based method

for evaluating PT-k queries. The experimental results for top-(k, l) queries and top-(p, l)

queries are similar to the results for PT-k queries. Therefore, we omit the details. For

the exact algorithm, we compare three versions: Exact (using rule-tuple compression and

pruning techniques only), Exact+AR (using aggressive reordering), and Exact+LR (using

lazy reordering). The sampling method uses the two improvements described in Section 5.3.

Then, we evaluate the online query answering techniques for PT-k queries, top-(k, l) queries

and top-(p, l) queries.
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Figure 5.6: The approximation quality of the sampling method and the Poisson
approximation-based method.

Scan Depth

We test the number of tuples scanned by the methods (Figure 5.4). We count the number

of distinct tuples read by the exact algorithm and the sample length as the average number

of tuples read by the sampling algorithm to generate a sample unit. For reference, we also

plot the number of tuples in the answer set, Le., the tuples satisfying the probability thresh­

old top-k queries, and the number of tuples computed by the general stopping condition

discussed in Section 5.4.

In Figure 5.4(a), when the expected membership probability is high, the tuples at the

beginning of the ranked list likely appear, which reduce the probabilities of the lower ranked

tuples to be ranked in the top-k lists in possible worlds. If the membership probability of

each tuple is very close to 1, then very likely we can prune all the tuples after the first k

tuples are scanned. In contrary, if the expectation of the membership probability is low, then

more tuples have a chance to be in the top-k lists of some possible worlds. Consequently,
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Figure 5.8: Scalability.

the methods have to check more tuples.

In Figure 5.4(b), when the rule complexity increases, more tuples are involved in a rule.

The average membership probability of those tuples decreases, and thus more tuples need

to be scanned to answer the query. In Figure 5.4(c), both the scan depth and the answer set

size increase linearly when k increases, which is intuitive. In Figure 5.4(d), the size of the

answer set decreases linearly as the probability threshold p increases. However, the number

of tuples scanned decreases much slower. As discussed in Section 7.5.3, a tuple t failing the

probability threshold still has to be retrieved if some tuples ranked lower than t may satisfy

the threshold.

Figure 5.4 verifies the effectiveness of the pruning techniques discussed in Section 7.5.3.

With the pruning techniques, the exact algorithm only accesses a small portion of the tuples
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in the data set. Interestingly, the average sample length is close to the number of tuples

scanned in the exact algorithm, which verifies the effectiveness of our sampling techniques.

Moreover, the exact algorithm and the sampling algorithm access fewer tuples than the

number computed by the general stopping condition, while the number computed by the

stopping condition is close to the real stopping point, which shows the effectiveness of the

stopping condition.

Efficiency and Approximation Quality

Figure 5.5 compares the runtime of the three versions of the exact algorithm and the sam­

pling algorithm with respect to the four aspects tested in Figure 5.4. The runtime of the

Poisson approximation based method is always less than one second, so we omit it in Fig­

ure 5.5 for the sake of the readability of the figures. We also count the number of times in

the three versions of the exact algorithm that subset probability values are computed. The

trends are exactly the same as their runtime, therefore, we omit the figures here. The results

confirm that the rule-tuple compression technique and the reordering techniques speed up

the exact algorithm substantially. Lazy reordering always outperforms aggressive reordering

substantially.

Compared to the exact algorithm, the sampling method is generally more stable in

runtime. Interestingly, the exact algorithm (Exact+LR) and the sampling algorithm each

has its edge. For example, when k is small, the exact algorithm is faster. The sampling

method is the winner when k is large. As k increases, more tuples need to be scanned in

the exact algorithm, and those tuples may be revisited in subset probability computation.

But the only overhead in the sampling method is to scan more tuples when generating a

sample unit, which is linear in k. This justifies the need for both the exact algorithm and

the sampling algorithm.

Figure 5.6 compares the precision and the recall of the sampling method and the Poisson

approximation based method. The sampling method achieves better results in general.

However, the precision and the recall of the Poisson approximation based method is always

higher than 85% with the runtime less than one second. Thus, it is a good choice when the

efficiency is a concern.

The recall of the Poisson approximation based method increases significantly when the

query parameter k increases. As indicated in [101], the Poisson distribution approximates

the Poisson binomial distribution well when the number of Poisson trials is large. When
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the parameter k increases, more tuples are read before the stopping condition is satisfied.

Thus, the Poisson approximation based method provides better approximation for the top-k

probability values.

Figure 5.7(a) tests the average error rate of the top-k probability approximation using

the sampling method. Suppose the top-k probability of tuple t is Prk(t), and the top-k

probability estimated by the sampling method is Prk(t), the average error rate is defined
Lprk(t»p jPrk(t)-Prk(t)I/Prk(t)

as l{tIPrk(t»p}1 . For reference, we also plot the error bound calculated from

the Chernoff-Hoeffding bound [7] given the sample size. We can clearly see that the error

rate of the sampling method in practice is much better than the theoretical upper bound.

Moreover, Figure 5.7(b) shows the precision and recall of the sampling method. The

precision is the percentage of tuples returned by the sampling method that are in the actual

top-k list returned by the exact algorithm. The recall is the percentage of tuples returned

by the exact method that are also returned by the sampling method. The results show

that the sampling method only needs to draw a small number of samples to achieve good

precision and recall. With a larger k value, more samples have to be drawn to achieve the

same quality

Scalability

Last, Figure 8.12 shows the scalability of the exact algorithm and the sampling algorithm.

In Figure 8.12(a), we vary the number of tuples from 20, 000 to 100, 000, and set the number

of multi-tuple rules to 10% of the number of tuples. We set k = 200 and p = 0.3. The

runtime increases mildly when the database size increases. Due to the pruning rules and the

improvement on extracting sample units, the scan depth (i.e., the number of tuples read) in

the exact algorithm and the sampling algorithm mainly depends on k and is insensible to

the total number of tuples in the data set.

In Figure 8.12(b), we fix the number of tuples to 20, 000, and vary the number of rules

from 500 to 2,500. The runtime of the algorithms increases since more rules lead to smaller

tuple probabilities and more scans tuples back and forth in the span of rules. However,

the reordering techniques can handle the rule complexity nicely, and make Exact+AR and

Exact+LR scalable.

In all the above situations, the runtime of the Poisson approximation based method is

insensitive to those factors, and remains within 1 second.
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Figure 5.9: The time and memory usage of PRist and PRist+.

Online Query Answering

We evaluate the performance of the PRist and PRist+ indices in answering PT-k queries,

top-(k, l) queries, and top-(p, l) queries.

Figures 5.9(a)-(c) compare the construction time and average query answering time of

PRist and PRist+. Clearly, PRist+ can be constructed much more efficiently than PRist

without sacrificing much efficiency in query answering.

The memory usage of the PRist+ and compressed PRist+ is shown in Figure 5.9(d).

P Rist+ uses the compression techniques illustrated in Figure 5.3(b). The space to fully

materialize the top-k probability for each tuple at each rank k is 8.3 MB. It shows that

PRist+ and PRist are much more space efficient than the full materialization method.

We test the efficiency of the query evaluation methods. Since the query answering time

based on PRist and PRist+ is similar, here we only compare the efficiency of the query

evaluation without index, and the efficiency of the query evaluation methods based on

PRist+. PT-k queries, top-(k, l) queries and top-(p, l) queries are tested in Figures 5.10, 5.11
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Figure 5.11: Runtime of top-(k, l) queries.

and 5.12, respectively. The construction time of PRist+ is also plotted in those figures.

There are 10,000 tuples and 1000 generation rules. The number of tuples in a rule follows the

normal distribution N(5, 2). Clearly, the query evaluation methods based on PRist+ have

a dramatic advantage over the query answering methods without the index. Interestingly,

even we construct a PRist+ index on-the-fiy to answer a query, in most cases it is still

substantially faster than the query evaluation methods without indices.

Last, we test the scalability of the PRist+ construction method and the query evaluation

methods with respect to the number of tuples and the number of tuples in rules, respec­

tively. Figure 5.13 shows that the methods are scalable and much more efficient than query

answering without index.
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5.7 Summary

In this chapter, we developed three methods, as shown in Figure 5.14, for answering prob­

abilistic ranking queries defined in Section 2.2.2 .

• We adopted the Poisson binomial recurrence [130] to compute the rank-k probabilities

for independent tuples. Since the Poisson binomial recurrence cannot handle the

tuples involved in generation rules, we developed a rule-tuple compression technique

to tra,nsform the tuples in generation rules into a set of independent rule-tuples, so that

the Poisson binomial recurrence can be applied. Moreover, to improve the efficiency,

we devised two reordering techniques that reuse the computation. Last, we proposed

several effective pruning techniques that reduce the number of tuples that we need to
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IEvaluating probabilistic ranking queries I

~ Problem transformation

IComputing the number of successes in Poisson Trialsl

Exactstatistica~ ~te statistical solution

Poisson binomial recurrence A sampling algorithm
I) cannot handle generation rules A Poisson approximation based algorithm
2) inefficient

Handling rules: rule-tuple compression

Improve efficiency: reordering andpruning techniques

IAn efficient and scalable exact algorithmI

Figure 5.14: The query evaluation algorithms for probabilistic ranking queries.

consider.

• We developed a sampling method to approximate the rank-k probabilities of tuples

and compute the approximate answers to probabilistic ranking queries .

• We showed that the rank-k probability of a tuples t follows the Poisson binomial

distribution. Then, a Poisson approximation based method was proposed to answer

probabilistic ranking queries.

In order to support online evaluation of probabilistic ranking queries, a compact index

structure was developed. All query evaluation methods were examined empirically. The

experimental results show the effectiveness of probabilistic ranking queries and the efficiency

and scalability of our query evaluation methods.



Chapter 6

Continuous Ranking Queries on

Uncertain Streams

The uncertain data stream model developed in Section 2.3.1 characterizes the dynamic

nature of uncertain data. Conceptually, an uncertain data stream contains a set of (poten­

tially) infinite instances. To keep our discussion simple, we assume a synchronous model in

this chapter. That is, at each time instant t (t > 0), an instance is collected for an uncer­

tain data stream. A sliding window W~ selects the set of instances collected between time

instants t - wand t. The instances of each uncertain data stream in the sliding window can

be considered as an uncertain object. We assume that the membership probabilities of all

instances are identical. Some of our developed methods can also handle the case of different

membership probabilities, which will be discussed in Section 6.5. A continuous probabilistic

threshold top-k query reports, for each time instant t, the set of uncertain data streams

whose top-k probabilities in the sliding window W~ (0) are at least p.

In this chapter, we develop four algorithms systematically to answer a probabilistic

threshold top-k query continuously: a deterministic exact algorithm, a randomized method,

and their space-efficient versions using quantile summaries. An extensive empirical study

using real data sets and synthetic data sets is reported to verify the effectiveness and the

efficiency of our methods. Although we focus on monitoring probabilistic threshold top­

k queries, the developed techniques can be easily extended to monitor other probabilistic

ranking queries defined in Section 2.2.2 using the similar methods discussed in Chapter 5.

149
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6.1 Exact Algorithms

In this section, we discuss deterministic algorithms to give exact answers to probabilistic

threshold top-k queries. First, we extend the exact algorithm discussed in Section 5.2 in

answering a probabilistic threshold top-k query in one sliding window. Then, we discuss

how to share computation among overlapping sliding windows.

6.1.1 Top-k Probabilities in a Sliding Window

Consider a set of uncertain data streams 0 = {01,"" On} and sliding window W~ (0).

W~(Oi) = {Odt - w + 1], ... , 0dtn is the set of instances of Oi (1 ::; i ::; n) in the sliding

window. In this subsection, we consider how to rank the data streams according to their

instances in sliding window W~(O). When it is clear from context, we write W~(O) and

W~(Oi) simply as W(O) and W(Oi), respectively.

We reduce computing the top-k probability of a stream 0 into computing the top-k

probabilities of instances of O.

Definition 6.1 (Top-k probability of instance). For an instance 0 and a top-k query

Qk, the top-k probability of 0, denoted by Prk(0), is the probability that 0 is ranked in the

top-k lists in possible worlds. That is, Prk(o) = II{WEWI\~~k(w)}ll. _

Following with Definitions 2.11 and 2.14, we have the following.

Corollary 6.1 (Top-k probability). For an uncertain data stream 0, a sliding window

W~(O) and a top-k query Qk, Prk(O) = L::oEW~(O) Prk(o)Pr(o) = ~ L::oEW~(O) Prk(o). _

We sort all instances according to their scores. Let R denote the ranking order of

instances. For two instances 01,02, we write 01 -< 02 if 01 is ranked before (i.e., better than)

02 in R. Clearly, the rank of an instance 0 of stream 0 in the possible worlds depends

on only the instances of other streams that are ranked better than o. We capture those

instances as the dominant set of o.

Definition 6.2 (Dominant set). Given a set of streams 0, a sliding window W, and a

top-k query Qk, for an instance 0 of stream 0 E 0, the dominant set of 0 is the set of

instances of streams in 0 - {O} that are ranked better than 0, denoted by DS(o) = {a' E

W(O - 0)10' -< o}. -
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In a possible world w, an instance 0 is ranked the i-th place if and only if there are (i -1)

instances in D5(0) appearing in w, and each of those instances is from a unique stream.

Based on this observation, for instance 0 and stream 0' such that 0 'I- 0', we denote by

0' -< 0 in a possible world W if there exists 0' E W(O'), 0' -< 0, and 0' and 0 appear in w.

Apparently, we have
1

Pr(O' -< 0) = L Pr(o')Pr(o) = 2"IIDS(o) n W(O')II·
w

o'EDS(o),o'EO'

Let Pr(D5(0),i) be the probability that i instances in DS(o) from unique streams

appear in a possible world. Then, the top-k probability of 0 can be written as
k-1 1 k-1

Prk(o) = Pr(o) L Pr(D5(0), i) =::; LPr(D5(0),i).
i=O i=O

For an instance 0, since the events 0' -< 0 for 0' E 0 - {O} are independent, we can view

D5(0) as a set of independent random binary trials, where each trial X o' is corresponding to

an uncertain object 0', Pr(Xo' = 1) = Pr(O' -< 0), and Pr(Xo' = 1) = 1 - Pr(Xo' = 1).

The event that a trial takes value 1 is called a success. Since the probability that each trial

takes value 1 is not identical, the total number of successes in D5(0) follows the Poisson

binomial distribution [130]. Thus, Pr(D5(0), i) can be computed using the Poisson binomial

recurrence given in Theorem 5.2.

The cost of sorting all instances in a sliding window is 0 (nw log (nw) ). To compute

the top-k probability of each instance, the Poisson binomial recurrence is run and takes

cost O(kn) in time. Since there are nw instances in the sliding window, the overall time

complexity is 0(kn2w + nw log(nw».

Example 6.1 (Poisson binomial recurrence). Table 2.3 shows 4 uncertain streams A,

B, C, and D. For each instance, a ranking score is given. The ranking order is the ranking

score descending order: the larger the ranking score, the better the instance is ranked.

Let us consider the sliding window wj (Le., the first three columns of instances in the fig­

ure), and compute the top-2 probability of C2. The dominant set is D5(C2) = {a1' a2, a3, d3}.

Thus, P1 = Pr(A -< C2) = Pr(aI) + Pr(a2) + Pr(a3) = 1, P2 = Pr(B -< C2) = 0, and

P3 = Pr(D -< C2) = Pr(d3) = ~.

Using Theorem 5.2, let Sl = {A}, 52 = {A, B} and 53 = {A, B, D}. For 51, we have

Pr(51,0) = 1 - P1 = 0 and Pr(51, 1) = P1 = 1.

For S2, we have Pr(S2, 0) = (1 - P2)Pr(51,0) = 0 and Pr(S2' 1) = P2Pr(Sl, 0) + (1 ­

P2)Pr(Sl, 1) = 1.
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For S3, we have Pr(S3, 0) = (1 - P3)Pr(SZ, 0) = 0 and Pr(S3, 1) = P3Pr(SZ, 0) + (1 ­

P3)Pr(SZ, 1) = ~.

Thus, PrZ(cz) = Pr(cz)(Pr(S3, 0) + Pr(S3, 1)) = ~. •

If we sort all the instances in sliding window W(O) in the ranking order, then by one

scan of the sliding window we can calculate the top-k probabilities for all instance. For

each stream 0, we only need to keep the following two pieces of information during the

scan. First, we keep the number of instances in 0 that have been scanned. Suppose there

are l such instances, then the probability of 0 in the Poisson recurrence is 6. Second, we

maintain the sum of the top-k probabilities of those scanned instances of O.

In practice, when a top-k query is raised, k « n often holds where n is the total number

of streams. In such a case, some streams can be pruned in the computation.

Theorem 6.1 (Pruning instances in a stream). For an uncertain stream 0, a top-k

query Q~ with probability threshold P, and all instances in W (0) sorted in the ranking order

01 -< ... -< Ow, if there exists i (1 :::; i :::; w) such that

_ ",i.-l Prk(o.)
P k() P L."J=1 Jr 0i < .

w -z+ 1
(6.1)

then Prk(O) <po

Moreover, Prk(O) ~ P if there exists i (1 :::; i :::; w) such that L;~i Prk(oj) ~ p.
. . p_~i=l Prk(o)

Proof. The first part: If there eXIsts z such that Prk(oi) < W-=-li+l J, then

(w - i + l)Prk(oi) < P - L;~i Prk(oj).

Apparently, Prk(01) ~ ... ~ Prk(Ow). Thus, we have

(w - i + l)Prk(oi) ~ LJ=i Prk(oj).

Combining the above two inequalities, we have

LJ=i Prk(oj) < P - L;~i Prk(oj).

Thus, Prk(O) = L;~i Prk(oj) + LJ=i Prk(oj) < p.

To prove the second part, we only need to notice Prk(O) 2::J=1 Prk(oj) >
i kLj=1 Pr (OJ) ~ p. •

To use Theorem 6.1, for each stream 0, if the last scanned instance in 0 satisfies one

of the conditions in the theorem, the top-k probabilities of the remaining instances of 0 do

not need to be computed.
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For an object uncertain stream 0 whose top-k probability in sliding window W is smaller

than the threshold p, we can derive the maximum number of instances scanned according

to Theorem 6.1 as follows.

Corollary 6.2 (Maximum number of scanned instances). For an uncertain stream 0,

a top-k query Q~ with probability threshold p, and all instances in W (0) sorted in the ranking

order 01 ~ ... -< Ow, the maximum number of instances scanned according to Theorem 6.1

is rPrk(O)wl + l.
p

Proof. Let 0t (t > 1) be the first instance in W(O) that satisfy Inequality 6.1. Then, 0i

(1 ~ i < t) does not satisfy Inequality 6.1. That is,

PdP k( ) > p - Lj~~ Prk(oj)
Prk(od 2: -, an r 0i for 1 < i < t

w - w-i+1

By induction, it is easy to show that for 1 ~ i < t

t-l w

L Prk(oj) = Prk(O) - L Prk(om) 2: (t - 1) x ~
j=1 m=t

Prk(O)
Therefore, t ~ r-p-w1+ 1.

Our second pruning rule is based on the following observation.

•

Lemma 6.1 (Sum of top-k probabilities). For a set of uncertain data streams 0, a

top-k query Qk, and a sliding window W~(O), LOEOPrk(O) = k.

Proof. Using the definition of top-k probability, we have

L Prk(O) = L Pr(w)
OEO wEW,oEQk(w)

In a possible world w, LoEQk(w) Pr(w) = k· Pr(w). Using Corollary 2.4, we have

LOEO Prk(O) = k LWEW Pr(w) = k. •

Theorem 6.2 (Pruning by top-k probability sum). Consider a set of uncertain data

streams 0, a top-k query Q~ with probability threshold p, and a sliding window W~(O).
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Assume all instances in W~(O) are scanned in the ranking order, and S c W~(O) is the

set of instances that are scanned. For a stream 0 E 0, Prk(O) < p if

L Prk(o) < p - (k - L Prk(o')).
oEOnS o'ES

Proof. Following with Lemma 6.1, we have

L Prk(o) = k - L Prk(o').
oEW':'(O)-S o'ES

If l:oEons Prk(o) < p - (k -l:o'ES Prk(o')), then

Prk(O) = l:oEO Prk(o)

= l:oEons Prk(o) + l:oEOn(w.:,(o)-S) Prk(o)

< k -l:o'ES Prk(o') + p - (k -l:o'ES Prk(o'))

=p

•
In summary, by sorting the instances in a sliding window in the ranking order and

scanning the sorted list once, we can compute the top-k probability for each stream, and

thus the exact answer to the top-k query on the window can be derived. The two pruning

rules can be used to prune the instances and the streams.

6.1.2 Sharing between Sliding Windows

Using the method described in Section 6.1.1, we can compute the exact answer to a top-k

query Qk in one sliding window W t . In the next time instant (t + 1), can we reuse some of

the results in window W t to compute the answer to Qk in window Wt+l?

In this subsection, we first observe the compatible dominant set property, and then we

explore sharing in computing answers to a top-k query on two consecutive sliding windows.

Compatible Dominant Sets

For an instance 0 E 0 that is in a window W t , the top-k probability of 0 depends on only

the number of instances from streams other than 0 that precede 0 in the ranking order.

The ordering among those instances does not matter. Therefore, for an instance 0 E Wt+l,

if we can identify an instance 0' in either W t or W t+1 such that 0 and 0' are compatible in
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terms of number of other preceding instances, then we can derive the top-k probability of

o using that of 0' directly. Technically, we introduce the concept of compatible dominant

sets.

Definition 6.3 (Compatible dominant sets). Let 0 E 0 be an instance that is in window

Wt+1 and DSt+1(0) be the dominant set of 0 in Wt+1. For an instance 01 E 0 and dominant

set DS(oI), if for any stream 0' ::J 0, the number of instances from 0' in DSt+1(0) and

that in DS(o) are the same, DSt+1(0) and DS(Ol) are called compatible dominant sets.

Please note that 0 may be the same instance as 01, and DS(oI) can be in W t or Wt+1. We

consider DSt+1(0) and itself trivial compatible dominant sets. _

Following with the Poisson binomial recurrence (Theorem 5.2), we immediately have the

following result.

Theorem 6.3 (Compatible dominant sets). If DSt+1(0) and DS(oI) are compatible

dominant sets, for any j ~ 0, Pr(DSt+1(0),j) = Pr(DS(oI),j) and Prk(o) = Prk(ol)'

Proof. If DSt+1(0) and DS(oI) are compatible dominant sets, then for any stream 0'

(0,01 rt 0'), Pr[O' E DSt+1(0)] = Pr[O' E DS(Ol)]' Thus, following with Theorem 5.2, we

have 2:7~~ Pr(DSt+1(0),i) = 2:;~6 Pr(DS(ol),j). Therefore, Prk(o) = Prk(oI). _

Compatible dominant sets can be employed directly to reduce the computation in window

W t+1 using the results in window W t and those already computed in window Wt+1. For

any instance 0, if the dominant set of 0 in W t+1 is compatible to some dominant set of 01,

then the top-k probability of 0 in Wt+1 is the same as 01. No recurrence computation is

needed for 0 in Wt+ 1.

When the data streams evolve slowly, the instances from a stream may have a good

chance to be ranked in the compatible places. Using compatible dominant sets can capture

such instances and save computation.

Now, the problem becomes how to find compatible dominant sets quickly. Here, we give

a fast algorithm which can be integrated to the top-k probability computation.

For each sliding window Wt(O), we maintain the sorted list of instances in the window.

When the window slides, we update the sorted list in two steps. First, we insert the new

instances into the sorted list, but still keep the expired instances. We call the sorted list

after the insertions the expanded sorted list.
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We use an n-digit bitmap counter e[I]' .. . ,ern], where n is the number of streams. At

the beginning, eli] = 0 for 1 ~ i ~ n. We scan the expanded sorted list in the ranking order.

If an expired instance or a new instance 0 E Oi is met, we set eli] = eli] EB 1.

For an instance 0 E Oi in the expanded list such that 0 is in both W t and Wt+l, if all

the bitmap counters, except for e[i], are 0 right before 0 is read, then, for every instance

0' E OJ (i i- j), 0' -< 0 in the expanded sorted list, one of the following three cases may

happen: (1) 0' appears in both W t and Wt+l; (2) 0' = OJ[t - w + 1] (i.e., 0' appears in W t

only) and the new instance OJ[t + 1] -< 0; or (3) 0' = OJ[t + 1] (i.e., appears in W t+l only)

and the expired instance OJ[t - w + 1] -< o. In all the three cases, DSt(o) and DSt+l(o) are

compatible if 0 does not arrive at time t + 1.

If 0 arrives at time t + 1, then we check the left and the right neighbors of 0 in the

expanded sorted list. If one of them 0' is from the same stream as 0, then DS(o) and

DS(o') are compatible.

We conduct Poisson recurrence for only instances which are in Wt+l(O) and do not have

a compatible dominance set. Otherwise, they are expired instances or their top-k probabili­

ties can be obtained from the compatible dominant sets immediately. After one scan of the

expanded sorted list, we identify all compatible dominant sets and also compute the top-k

probabilities. Then, we remove from the expanded sorted list those expired instances. The

current sliding window is processed. We are ready to slide the window to the next time

instant (t + 2).

Example 6.2 (Compatible dominant set). Figure 6.1(a) shows the expanded sorted

list of instances in sliding windows wj and WJ+l in Table 2.3. At time t + 1, the instances

al, bl , el, d l expire, and new instances a4, b4 , e4, d4 arrive.

In Figure 6.1(b), we show the values of the bitmap counters during the scan of the

expanded sorted list. Each instance in WJ+l, except for d3 , can find a compatible dominant

set. We only need to conduct the Poisson recurrence computation of d3 in WJ+l. •

Pruning Using the Highest Possible Rank

Consider an instance 0 in a sliding window W t . As the window slides towards future, new

instances arrive and old instances expire. As a result, the rank of 0 in the sliding windows

may go up or down.

However, the instances arriving later than 0 or at the same time as 0 would never expire
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Ranked list of the instances at time t and t + 1
az, aI, CI, a3, a4, d3, q, Cz, dz, bl , b4, bz, dl , d4, C3, b3

(a) The expanded sorted list.

I Instance I Counter=[A,B,C,D] I
az [0,0,0,0]
al [1,0,0,0]
CI [1, 0, 1, 0]
a3 [1,0, 1,0]
a4 [0,0,1,0]
d3 [0,0,1,0]
C4 [0,0,0,0]
Cz [0, 0, 0, 0]
dz [0, 0, 0, 0]
bl [0,1,0,0]
b4 [0,0,0,0]
bz [0,0,0,0]
dl [0,0,0,1]
d4 [0,0,0,0]
C3 [0, 0, 0, 0]
b3 [0,0,0,0]
(b) The bItmap counters.

Figure 6.1: The sorted lists of instances in SW(t - 1) and SW(t).

before o. In other words, the possible rank of 0 in the future sliding windows is bounded by

those instances "no older" than o.

Lemma 6.2 (Highest possible rank). For an instance O[i] arriving at time i, in a sliding

window W~(O) such that t - w + 1 < i::; t, let ROli ] = {O'[j]IO' E 0,0' -=J. O,j 2: i}. In

any sliding window W~ such that t' > t, the rank of O[i] cannot be less than IIROli] II + 1. •

Example 6.3 (Highest possible rank). Consider again the uncertain streams in Ta­

ble 2.3. In window wj, the rank of Cz is 6. Among the 8 instances with time-stamp t - 1

and t, there are 3 instances ranked better than cz. The highest possible rank of Cz in the

future windows is 4. In window W t+l , there are 5 instances arriving no earlier than Cz and

ranked better than Cz. The highest possible rank of Cz in the future windows is 6. •

The highest possible rank of 0 can be used to derive an upper bound of the top-k
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probability of 0 in the future sliding windows.

Theorem 6.4 (Highest possible top-k probability). For an instance 0 in sliding win­

dow w~ with the highest possible rank r 2': kw, let p = w(n-ll) , where n is the number of

streams, in any window w~' (t' 2': t),

Proof. Given 0 with the highest possible rank r, there are r -1 instances from other objects

ranked better than o. The sum of membership probabilities of those instances is r:l. The

theorem follows with Lemma 5.15 directly. _

Corollary 6.3 (Pruning using highest possible rank). For any instance 0 E 0, if

'L,oEOPo < P and there exists Po such that Prk(o) ::::; Po, then Prk(O) < p. _

We need 0(1) space to maintain the highest possible rank for an instance. The overall

space consumption is O(nw) for a sliding window. Each time when new instances arrive,

the highest possible ranks of all old instances are updated. The highest possible top-k

probability of each stream is updated accordingly. This can be integrated into the top­

k probability computation. For a stream 0, once the upper bound of Prk(O) fails the

threshold, all instances in 0 do not need to be checked in the current window.

Algorithm 6.1 shows the complete exact algorithm. Compatible dominant sets can help

to reduce the computation cost, however, although it works well in practice, in the worst

case, the new instances may be ranked far away from the expired instances of the same

stream, and thus no compatible dominant sets can be found. Thus, the time complexity

of processing a sliding window, except for the first one, is 0(kn2w + nlog(nw», where

O(nlog(nw» is the cost to insert the n new instances into the sorted list.

6.2 A Sampling Method

In this section, we propose a sampling method to estimate the top-k probability of each

stream with a probabilistic quality guarantee.

For a stream 0 in a sliding window Wt(O), we are interested in the event that 0 is

ranked top-k. Let Zo be the indicator to the event: Zo = 1 if 0 is ranked top-k in Wt(O);

Zo = 0 otherwise. Then, Pr(Zo = 1) = Prk(O).
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Algorithm 6.1 The exact algorithm.

Input: a set of uncertain streams 0, a sliding window width w, a time instant t+ 1, a top-k
query Q~, and a probability threshold p

Output: Answer to top-k query in window W~+1

Method:
1: insert the new instances arriving at time t + 1 into the sorted list in window w~;

2: initialize Prk (Oi) = 0 for each stream Oi E 0;
3: compute the highest possible top-k probability for each stream Oi EO, remove Oi from

consideration if it fails the probability threshold;
4: set counter C[i] = 0 for each stream Oi E 0;
5: for all 0 in the expanded sorted list do
6: update the corresponding counter if 0 is expired or new;
7: compute DS(o);
8: if DS(o) has a compatible dominant set then
9: obtain Prk(0) directly;

10: else
11: compute the probabilities Pr(DS(I),j) (0:::; j < k);
12: end if
13: Prk(O) = Prk(O) + Prk(o);
14: if Prk(O) ~ p then
15: output 0;
16: end if
17: check whether 0 can be used to prune some unread instances;
18: if all objects either are output or fail the probability threshold then
19: exit;
20: end if
21: end for

To approximate the probability Pr(Zo = 1), we design a statistic experiment as follows.

We draw samples of possible worlds and compute the top-k lists on the samples. That is,

in a sample, for each stream 0 we select an instance 0 in window Wt(O). A sample is a

possible world. Then, we sort all instances in the sample in the ranking order and find the

top-k list.

We repeat the experiment m times independently. Let ZO,i be the value of Zo at the

i-th run. Then, E[Zo] = -A 2:::1 ZO,i is an estimation of E[Zo] = Pr(Zo = 1).

By using a sufficiently large number of samples, we can obtain a good approximation

of Pr k (Zo) with high probability. The methods follows the idea of unrestricted random

sampling (also known as simple random sampling with replacement) [117]. The following

minimum sample size can be derived from the well known Chernoff-Hoffding bound [7].
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Theorem 6.5 (Minimum sample size). For any stream 0, let ZO,l, ... ,ZO,m be the

values of Zo in m independent experiments, and E[Zol = ;k L~l ZO,i' For any 6 (0 <
31n l -

6 < 1), ~ (~> 0), ifm ~ ~, then Pr{IE[Zol - E[Zoll > 0::::: 6. •

For efficient implementation, we maintain an indicator variable for each stream. To

avoid sorting instances repeatedly, we first sort all instances in a sliding window W t (0).

When drawing a sample, we scan the sorted list from the beginning, and select an instance

o E 0 in probability ~ if stream 0 has no instance in a sample yet. If an instance is chosen,

the corresponding stream indicator is set. When the sample already contains k instances,

the scan stops since the instances sampled later cannot be in the top-k list. The sample can

then be discarded since it will not be used later.

The space complexity of the sampling method is O(nw), because all instances in the

sliding window have to be stored. The time complexity is O(mnw + nwlog(nw)) for the

first window and O(mnw+nlog(nw)) for other windows where m is the number of samples

drawn, since the n new instances can be inserted into the sorted list in Wt(O) to form the

sorted list in W H 1( 0) .

6.3 Space Efficient Methods

In the exact algorithm and the sampling algorithm, we need to store the sliding window

in main memory. In some applications, there can be a large number of streams and the

window width is non-trivial. In this section, we develop the space efficient methods using

approximate quantile summaries. The central idea is to use quantiles to summarize instances

in streams. Since computing exact quantiles in data streams is costly, we seek for high quality

approximation.

Both the exact algorithm in Section 6.1 and the sampling method in Section 6.2 can be

applied on the approximate quantile summaries of uncertain data streams. Using quantiles is

a trade-off between space requirement and query answering accuracy. The distribution of an

object is represented in a higher granularity level using quantiles, and thus the query results

are approximate. However, we show that using approximate quantiles can save substantial

space in answering top-k queries on uncertain streams with high quality guarantees.
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Figure 6.2: The quantile summaries of three streams.

6.3.1 Top-k Probabilities and Quantiles

Definition 6.4 (Quantile). Let 01 -< ... -< Ow be the sorted list of instances in the ranking

order in a sliding window W~(O). The ¢-quantile (0 < ¢ :S 1) ofW~(O) is instance 0rc/>wl'

A ¢-quantile summary ofW~(O) is 01 and a list of instances 0iret>wl (1:S i:S ril).
The ¢-quantile summary ofW~(O) partitions the instances ofW~(O) into ril intervals

(in the values of the ranking function), with r¢wl instances in each interval. The first

interval t1 = [ol,orc/>wl]' Generally, the i-th (1 < i :s ri l) interval ti = (Or(i-1)et>wl, 0riet>wl]'

Since the membership probability of each instance is ~, the membership probability of

each interval ti is Pr(ti) = ~¢w = ¢. •

Example 6.4 (A quantile summary). Consider a window W~(O) where the sorted list of

instance scores is (21, 20,12,10,9,5,4,3,2). Then, 12, 5 and 2 are the 1, ~, and 1-quantiles

of W~(O), respectively. The 1-quantile summary of 0 is (21,12,5,2) which partitions the

instances into three intervals: t1 = [21,12]' t2 = (12,5], and t3 = (5,2]. The membership

probability of each interval is 1. •

We can use quantiles to approximate the top-k probabilities of streams.

Example 6.5 (Approximating top-k probability). Consider three streams A, B, and

C and their quantile summaries in window W ({A, B, C} ), as shown in Figure 6.2, where

ai, bi and Ci (1 :s i :s 3) are the intervals of W(A), W(B) and W(C), respectively. The

membership probability of each interval is 1.

To compute the upper bound of the top-2 probability of instances falling into b1 , we

let all instances in b1 take the maximum value b1.MAX. Moreover, since intervals a2 and

C2 cover b1.MAX, we let all instances in a2 and C2 take the minimum value a2.MIN and

c2.MIN, respectively. Thus, the probability that A is ranked better than b1 is at least
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Pr(al) = i, and the probability that C is ranked better than b1 is at least Pr(cI) = i. The

upper bound of the top-2 probability of b1 is Pr(b1) x (1 - i x i) = 2
8
7'

Using the similar idea, we can verify that! is the lower bound of the top-2 probability

of b1 . •

Using the idea illustrated in Example 6.5 and the Poisson binomial recurrence, we can

have the general upper and lower bounds of the top-k probabilities of intervals.

Theorem 6.6 (Upper and lower bounds). To answer a top-k query on sliding window

W(O), for an interval t in a ¢-quantile summary of W(O) (0 EO),

k-l
Prk(t) ~ Pr(t) L Pr(UDS(t), i)

i=O

and
k-l

Prk(t) ~ Pr(t) L Pr(LDS(t), i)
i=O

where Prk(t) = I:oEW(O),oEtPrk(O), UDS(t) = {did E t',t' is an interval in a ¢-quantile

summary ofW(O'),O' #- O,t'.MIN ~ t.MAX}, and LDS(t) = {did E t',t' is an interval

in a ¢-quantile summary of W(O'), 0' #- O,t'.MAX ~ t.MIN}.

Proof. Since UDS(t) ~ DS(t), I:7~} Pr(UDS(t), i) ~ I:j~i Pr(DS(t), j). Similarly,

DS(t) ~ LDS(t), so we have I:j:::i Pr(DS(t),j) ~ I:7==-11 Pr(LDS(t), i). Moreover, since

Prk(t) = Pr(t) I:j:::i Pr(DS(t),j), the conclusions hold. •

Using Theorem 6.6, we can easily derive the upper bound and the lower bound of a

stream by summing up the upperflower bounds of all intervals of the quantile summary of

the stream. Importantly and interestingly, the difference between the upper bound and the

lower bound of the top-k probability is up to 2¢, which provides a strong quality guarantee

in approximation.

Theorem 6.7 (Approximation quality). For a stream 0, let U(Prk(O» and £(Prk(O))

be the upper bound and the lower bound of Prk(O) derived from Theorem 6.6, respectively.

U(Prk(O)) - £(Prk(O)) ~ 2¢.

Proof. To prove Theorem 6.7, we need the following lemma.

Lemma 6.3 (Monotonicity). Let ti, ti+l and ti+2 be three consecutive intervals in the

¢-quantile summary of W(O). Let £(Prk(ti)) and U(Prk(ti+2») be the lower bound of
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Figure 6.3: Two cases in the proof of Theorem 6.7.

Prk(ti) and the upper bounds of Prk(ti+2), respectively, derived from Theorem 6.6. If for

any interval t' in the ¢-quantile summary of 0' (0' I- 0), t'.MAX > ti.MIN, t'.MIN >

ti+2.MAX, then £(Prk(ti)) :::: U(Prk(ti+2))'

Proof. For intervals ti and ti+2, we have LDS(ti) = {t'lt' E O',t'.MAX > ti.MIN}, and

UDS(ti+2) = {t'lt' E O',t'.MIN:::: ti+2.MAX}. Using the assumption in the lemma, we

have LDS(ti) C UDS(ti+2)' Thus, £(Prk(ti)) :::: U(Prk(ti+2)).

We consider the following two cases:

Case 1. For any interval t E W(O) and t' E W(O') (0' I- 0), if t'.MAX > t.MAX, then

t'.MIN> t.MIN, as illustrated in Figure 7.3(a). Lemma 6.3 holds in this case.

According to the definitions of U(Prk(O)) and £(Prk(O)), U(Prk(O))
1 1

L:Ll U(Prk(ti)) and £(Prk(O)) = L:Ll £(Prk(ti))' Thus,

U(Prk(O)) - £(Prk(O))

i-2 .

L (U(Prk(ti+2)) - £(Prk(ti))) +U(Prk(tI)) (6.2)
i=l
+U(Prk(t2)) - £(Prk(t1._1)) - £(Prk(t1.))

~ ~

Using Lemma 6.3, we have

i-2(k k)L:i=i U(Pr (ti+2)) - £(Pr (ti)) < O.

Thus, we have

Also, for 1 ::; i ::; i, Pr(ti) = ¢ and

0::; U(Prk(ti)) ::; Pr(ti) and 0 ::; £(Prk(ti)) ::; Pr(ti)'

Thus, we have
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Plugging Inequalities 6.3 and 6.4 into Equation 6.2, we get U(Prk(O» - £(Prk(O» ~ 2¢.

Case 2. If case 1 does not hold, i.e., there is an interval tEO and an interval t' E

W(O) - 0 such that, t'.MAX > t.MAX and t'.MIN ~ t.MIN. That is, interval t f covers

t completely, as illustrated in Figure 7.3(b). In that case, U(Pr(O' --< ti+1» - £(Pr(O' --<

ti+1» = Pr(tj) = ¢. Comparing to Case 1 where U(Pr(O' --< ti+1» - £(Pr(O' --< ti+d) =
Pr(tj) + ... + Pr(tj+x) = (x - 1)¢, the difference between the upper bound and the lower

bound is smaller. Therefore, in Case 2, U(Prk(O» - £(Prk(O» is even smaller than that

in Case 1. The theorem holds. •

For any object 0, since U(Prk(O» - £(Prk(O» < 2¢, we can simply use
U(prk(O));L.(prk(O)) to approximate Prk(O).

-k
Corollary 6.4 (Approximation Quality). For a stream 0 E W(O), let Pr (0)

u(Prk(O));L.(Prk(O)) , then IIP/(O) - Prk(O)11 ~ ¢.

6.3.2 Approximate Quantile Summaries

•

Although using quantiles we can approximate top-k probabilities well, computing exact
1

quantiles of streams by a constant number of scans still needs r!(Np) space [149]. To reduce

the cost in space, we use f-approximate quantile summary which can still achieve good

approximation quality.

Definition 6.5 (f-approximate quantile). Let 01 --< ... --< Ow be the sorted list of instances

in a sliding window W(O). An f-approximate ¢-quantile (0 < ¢ ~ 1) of W(O) is an

instance 01 where l E [I(¢ - f)W1, 1(¢ + f)W1] .
An f-approximate ¢-quantile summary of W(O) is 01 and a list of instances

0lll ... ,0IpIW li E [I(i¢ - f)W1, 1(i¢ + f)W1] (1 ~ i ::; Ii1)·
The f-approximate ¢-quantile summary of W(O) partitions the instances of W(O) into

1i1intervals. The first interval t1 = [01,011], and generally the i-th (1 < i ::; Ii1) interval

ti = (qi-1, qi]' •

The number of instances in each interval is in [(¢-2f)W, (¢+ 2E)W]. Since the membership

probability of each instance is ~, the membership probability of each interval is within

[¢ - 2E, ¢ + 24

Computing f-Approximate quantiles in data streams is well studied [80, 87, 138, 143].

Both deterministic and randomized methods are proposed. In our implementation, we adopt
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the method of computing approximate quantile summaries in a sliding window proposed

in [138], which is based on the GK-algorithm [87] that finds the approximate quantile over a

data steam. The algorithm can continuously output the f-approximate quantiles in a sliding

window with space cost of OeO~22fW).

Then, how can we compute the upper bound and the lower bound of the top-k probability

of a stream in a sliding window using its f-approximate 4>-quantile summaries?

Consider an interval ti = (Oi-l, oil in an f-approximate ¢>-quantile summary. Suppose

R(Oi-d and R(Oi) are the actual rank of Oi-l and 0i, respectively. Then, the actual num­

ber of instances in ti is R(Oi) - R(Oi-l)' The membership probability of ti is Pr(ti) =

R(oiJ-:;(oi-Il. However, since 0i-l and 0i are approximations of the (i-l)4>- and i¢>-quantiles,

respectively, their actual ranks are not calculated. Instead, we use Pr(t) = 4> to approxi­

mate the membership probability of ti. Since ((i - 1)4> - f)W ::::: R(Oi-d ::::: ((i - 1)4> + f)W,

and (i4> - f)W ::::: R(od ::::: (i4> + f)W, we have IIPr(t) - Pr(t)11 ::::: 2f.

Then, we compute the upper bound and the lower bound of Prk(t), denoted by U(Prk(t))

and £(Prk(t)), respectively, using the approximate membership probability Pr(t), following

with Theorem 6.6. In sequel, we can further derive the upper bound and the lower bound of

a stream by summing up the upper bound and the lower bound of all intervals, respectively.

The above approximation method has the following quality guarantee.

Theorem 6.8 (Approximation quality). Given a stream 0 in a sliding window W, let

U(Prk(O)) and £(Prk(O)) be the upper and lower bounds of Prk(O) computed using the

f-approximate 4>-quantile summary of W(O), then,

(6.5)

and

(6.6)

Proof. Consider an f-approximate i4>-quantile 0i EO. To analyze the approximation error

introduced by 0i, we first assume that other quantiles OJ (1 ::::: j ::::: i, j i=- i) are exact.

Suppose the real rank of 0i is R(Oi), according to the definition of f-approximate quantile,

we have (i4> - f)W ::::: R(Oi) ::::: (i4> + f)W.

ti = (Oi-I, oil and ti+l = (Oi, Oi+l] are two intervals partitioned by 0i· The approximate

numbers of instances in ti and ti+1 are both 4>w.

If R(Oi) < 4>, then the actual number of instances in ti is R(Oi) - (4) -1)w < 4>w, and the

actual number of instances in ti+l is (4)+I)w-R(oi) > 4>w. That is, there are 4>w-R(Oi) ::::: fW
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instances that are actually in ti+l, but are counted into ti due to the E-approximate quantile

0i. Thus, the error introduced by 0i is at most 11~(U(Prk(ti)) - U(Prk(ti+l)))II. Similarly,

if R(oi) < <P, the error introduced by 0i is at most 11~(U(Prk(ti+r)) - U(Prk(ti)))II.

Generally, the maximum overall approximation error introduced by E-approximate quan­

tiles 01, ... , °1-1 is
<P

IIU(Prk(O)) - U(Prk(O))11 = 2:~~1 11~(U(Prk(ti)) - U(Prk(ti+imll

< ~(U(Prk(tl)) - U(Prk(ti))) ::::: E

Inequality 6.6 can be shown similarly. •
- k - k

For a sliding window W(O) of a stream, we use U(Pr (O));L(Pr (0)) as an approximation

of Prk(O).

Theorem 6.9 (Approximation Quality). For a stream 0 and sliding window W(O), let

P/(O) = u(prk(O));l(Prk(O)), then IIP/(O) - Prk(O)11 ::::: <P + E.

Proof. Following with Theorems 6.8 and 6.7, we have

Theorem 6.9 follows with the above inequality directly.

6.3.3 Space Efficient Algorithms using Quantiles

•

The deterministic algorithm discussed in Section 6.1 and the sampling algorithm proposed

in Section 6.2 can both be extended using approximate quantile summaries. Due to the

loss of information in approximate quantile summaries, the extension of the deterministic

algorithm only provides approximate answers.

Using approximate quantile summaries, each stream in a sliding window is represented

by ri l intervals. The upper bound and the lower bound of the top-k probability of each

interval can be computed using either the deterministic method or the sampling method.

To compute the upper bound and the lower bound using the deterministic method, we

first sort the maximum values and the minimum values of all intervals in the ranking order.

Then, by scanning the sorted list once, we can compute the approximate upper bound and

the approximate lower bound of the top-k probability of each interval. For each stream 0,

we maintain the upper bound and the lower bound of the number of instances in W(0) that

have been scanned, and the upper bound and the lower bound of Prk(O) so far.
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The time complexity of query evaluation in a sliding window using the above extended

algorithm is O( k1l + ~ log(ni)). The upper bound of approximation error is 1> + Eo

To compute the upper bound and the lower bound using the sampling method, we draw

m sample units uniformly at random as described in Section 6.2. The difference is, each

sample unit contains an interval from each stream. For each interval t of stream 0, we

define an indicator Xtu to the event that II {t' It' is an interval of 0',0' i- 0, t'.MIN>

t.MAX}11 < k, and an indicator Xtc to the event that II{t'lt' is an interval of 0',0' i­
0, t'.MAX > t.MIN}11 < k. The indicator is set to 1 if the event happens; otherwise,

the indicator is set to O. Then, U(Prk(t)) = E[XtuJ, and £(Prk(t)) = E[Xtc ]' Suppose in

sample unit s, the value of Xtu is Xtu' then the expectation E [Xtu ] can be estimated by

~ 2:~l X:~. Similarly, E[XtcJ can be estimated by ~ 2:~l X:~.

The time complexity of query evaluation in a sliding window using the above sampling

method is O(mni), where m is the number of samples. If m 2: 3~~~, (0 < 8 < 1, ~ > 0),

then, the upper bound of approximation error is 1> + E + ~ with a probability at least 1 - 8.

In the above two extended algorithms using approximate quantile summaries, the space

complexity of the algorithms is reduced from O(nw) to 0(n!Og€22€W), which is the space

complexity of computing E approximate quantiles.

6.4 Experimental Results

In this section, we report a systematic empirical study. All the experiments were conducted

on a PC computer with a 3.0 GHz Pentium 4 CPU, 1.0 GB main memory, and a 160 GB

hard disk, running the Microsoft Windows XP Professional Edition operating system. Our

algorithms were implemented in Microsoft Visual Studio 2005.

6.4.1 Results on Real Data Sets

To illustrate the effectiveness of probabilistic threshold top-k queries over sliding windows

in real applications, we use the seismic data collected from the wireless sensor network

monitoring volcanic eruptions l . 16 sensors were deployed at Reventador, an active volcano

in Ecuador. Each of the 16 sensors continuously sampled seismic data, and the last 60

seconds of data from each node was examined at the base station. To detect the eruption, it

Ihttp://fiji.eecs.harvard.edu/Volcano
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I Window ID I PTK query (k = 5, p = 0.4) I Top-5 query on average data I
WI O2,06,016 02,04,06,014,016
W2 O2,06,016 02,04,06,014,016
W3 02,06,016 O2,04,06,014,016
W4 02,04,06,016 02,04,06,014,016
W5 02,06,016 O2,04,06,014,016
W6 O2,016 O2,04,06,014,016
W7 02,016 O2,04,06,014,016
Wg O2,016 O2,04,06,014,016
Wg O2,016 O2,04,06,014,016
WID 02,016 O2,04,06,014,016

Table 6.1: The answers to a probabilistic threshold top-k query in 10 consecutive sliding
windows (w = 60) and the answers to a traditional top-k query on average values.

is interesting to continuously report the top-k monitoring locations with the highest seismic

values in the last 60 seconds.

The seismic data reported by each sensor is treated as an uncertain stream, and each

data record is an instance. We test probabilistic threshold top-k queries with different

parameter values on the data set. Since the results demonstrate the similar patterns, we

only report the answers to a probabilistic threshold top-k query with k = 5 and p = 0.4 in

this thesis. We consider a sliding window width of 60 instances per stream. The answers to

the query in 10 consecutive sliding windows are reported in Table 6.1. As comparison, we

also compute the average value of each stream in each sliding window and report the top-5

streams with the highest average seismic values.

The answers to the probabilistic threshold top-k query listed in Table 6.1 reveal the

following interesting patterns. First, the seismic values reported by sensors 02 and 0 16 are

consistently among the top-5 with high confidence in the 10 sliding windows. The rankings

of seismic values in those locations are stable. Second, the seismic values reported by sensor

0 6 is among the top-5 with high confidence in the first 5 sliding windows. The rankings

of seismic values reported by sensor 0 6 drop after sliding window W5 . Third, the seismic

values reported by sensor 04 is ranked among top-5 with high confidence only in sliding

window W4.

A traditional top-5 query on the average seismic values in each sliding window reports
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Figure 6.4: Efficiency.

{02, 04, 06, 014, 016} consistently in the 10 sliding windows. They do not reflect the above

interesting patterns.

Simple example shows that continuous probabilistic threshold top-k queries on uncertain

streams provide meaningful information which cannot be captured by the traditional top-k

queries on aggregate data.

6.4.2 Synthetic Data Sets

In this performance study, we use various synthetic data sets to evaluate the efficiency of the

algorithms and the query evaluation quality. By default, a data set contains 100 uncertain

streams, and the sliding window width is set to w = 200. Thus, there are 20,000 instances

in each sliding window. The data in a sliding window is already held in main memory. The

scores of instances from one stream follow a normal distribution. The mean J.L is randomly

picked from a domain [0,1000], and the variance a is randomly picked from [0,10]. We add

10% noise by using lOa as the variance. Moreover, the query parameter k = 20, and the
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Figure 6.5: Approximation quality.

probability threshold p = 0.4. The number of samples drawn in the sampling algorithm is

1,000. In quantile summaries, ¢ = 0.1, and f = 0.02. The reported results are the average

values in 5 sliding windows.

We test the following four algorithms: the deterministic exact method (Det) in Sec­

tion 6.1.2; the sampling method (Sam) in Section 6.2; the extended deterministic method

using quantile summaries (Det- Q) and the sampling method using quantile summaries (Sam­

Q) in Section 6.3.3.

6.4.3 Efficiency and Approximation Quality

Figure 6.4 shows the runtime of the four algorithms. To show the effectiveness of the com­

patible dominant set technique and the pruning techniques discussed in Section 6.1.2, we also

plot the runtime of the method (Naive) discussed in Section 6.1.1, which does not explore

the sharing between sliding windows. We evaluate the probabilistic top-k queries in 5 con­

secutive sliding windows. In the first sliding window, the runtime of the "Naive" algorithm
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Figure 6.6: Efficiency and approximation quality on data sets under the Gamma distribu­
tion.

and the "Det" algorithm is the same. But in the next 4 sliding windows, the "Naive" algo­

rithm recomputes the top-k probabilities without using the results in the previous sliding

windows. But the "Det" algorithm adopts the incremental window maintenance techniques,

and thus requires very little computation. Therefore, by average, the runtime of the "Naive"

algorithm is approximately 5 times greater than the runtime of the "Det" algorithm. Among

all methods, the sampling method and the algorithm using quantiles have much less runtime

than the deterministic methods.

Figure 6.4(a) shows that when parameter k increases, the runtime of the naive method

and the deterministic method also increases. With a larger k, more instances are likely to

be ranked top-k, and thus more instances have to be read before pruning techniques take

effects. Moreover, the Poisson binomial recurrence used by those two methods has a linear

complexity with respect to k. However, the deterministic method has a clear advantage over

the naive method, which shows the effectiveness of the compatible dominant set technique,

and the pruning using highest possible rank. The runtime in the sampling methods and

the Det-Q method is more sensitive to k, since those techniques have very small overhead

increase as k increases.

In Figure 6.4(b), as the probability threshold increases, the runtime of the naive method

and the deterministic method first increase, and then drop when p is greater than 0.8. As

indicated by Theorem 6.1, if p is small, we can determine that many streams can pass the

threshold after checking only a small number of their instances; if p is very large, we can also

determine that many streams fail the threshold after checking a small number of instances.
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Figure 6.7: Scalability.

In the synthetic data set, the instances of each stream follow a normal distribution. If

the variance of the distribution is larger, then the ranks of instances are more diverse. Thus,

we may have to scan more instances in order to determine whether the top-k probability of

a stream can pass the probability threshold. Figure 6.4(c) verifies our analysis.

We test how the two parameters <p and E affect the efficiency of the methods using

quantiles. Ii1is the number of instances kept in a quantile summary. In Figure 6.4(d), we

set the value of <p to 0.1,0.05,0.033,0.025,0.02, and the corresponding number of instances

in a quantile summary is 10,20,30,40,50, respectively. Only the runtime of Det-Q increases

when more instances are kept. Since E is typically very small and does not affect the runtime

remarkably, we omit the details here.

Figure 8.11 compares the precision and the recall of the three approximation algorithms

using the same settings as in Figure 6.4. In general, all three methods have good approxi­

mation quality, and the sampling method achieves a higher precision and recall. We notice

that, in Figure 8.11(b), the recall of the deterministic methods using quantiles decreases
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when the probability threshold increases. This is because a larger probability threshold

reduces the size of answer sets. Moreover, in Figure 8.11 (c), the precision and recall of all

methods decreases slightly as the variance increases. When the variance gets larger, the

instances of a stream distribute more sparsely. Thus, we may need more samples to capture

the distribution.

We also test our methods on the uncertain data streams generated using the Gamma

distribution r(k, B). The mean f..L is randomly picked from a domain [0,1000]. We change

the vari:nce (J from 10 to 50. The scale parameter B is set to ~ and the shape parameter k is

set to ~' The efficiency and the approximation quality are shown in Figure 6.6. The results

are very similar to Figure 6.4(c) and Figure 8.11(c). This shows that the performance of

our algorithms is not sensitive to the types of score distributions of the data sets.

6.4.4 Scalability

To test the scalability of the algorithms, we first fix the sliding window width to 200, and

change the number of uncertain streams from 100 to 500. The maximum number of instances

in a window is 100, 000. As the number of streams increases, the Poisson binomial recurrence

takes more time in the deterministic method. Thus, the runtime increases. However, all

methods are linearly scalable. The results are shown in Figure 8.12(a).

Then, we fix the number of streams to 100, and vary the sliding window width from 200

to 1, 000. The runtime in the deterministic method increases substantially faster than the

other methods. The sampling method is more stable, because its runtime is related to only

the sample size and the number of streams. For the methods using quantile summaries,

after compressing the instances in to a quantile summary, the increase of sliding window

width does not affect the runtime noticeably. The results are shown in Figure 8.12(b).

In terms of memory usage, Figures 8.12(c) and 8.12(d) show the scalability of each

algorithm with respect to the number of uncertain streams and the sliding window width,

respectively. The memory used by the deterministic exact algorithm and the sampling

algorithm increases linearly, since it is proportional to the number of instances in a sliding

window. The memory used by the extended deterministic method using quantiles and

the sampling method using quantiles does not change dramatically, because the number of

instances for each object in the sliding window only depends on parameter ¢.
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6.5 Summary

In this chapter, we proposed a novel uncertain data stream model and continuous proba­

bilistic threshold top-k queries on uncertain streams, which are different from the existing

probabilistic stream models and queries. A deterministic method and a sampling method, as

well as their space efficient versions using quantiles were developed to answer those queries.

Experimental results on real data sets and synthetic data sets were reported, which show

the effectiveness and efficiency of the methods.



Chapter 7

Ranking Queries on Probabilistic

Linkages

In Chapters 4, 5 and 6, we adopt an independent uncertain object model. That is, we

assume that any two uncertain objects in a data set are independent. In many applications,

various types of dependencies may exist among real world uncertain objects, such as the

case shown in Example 2.12. In this chapter, we study how to answer probabilistic ranking

queries on the probabilistic linkage model.

7.1 Review: the Probabilistic Linkage Model

A probabilistic linkage model contains two sets of tuples A and B and a set of linkages 1:.

Each linkage l in I: matches one tuple in A and one tuple in B. For a linkage l = (tA, tB),

we say l is associated with tA and tB. We write lEtA and l E tB.

We can consider each tuple tA E A as an uncertain object. An tuple tB E B can

be considered as an instance of tA if there is a linkage l = (tA, tB) E 1:. The membership

probability of instance tB with respect to object tA is Pr(l). Object tA may contain multiple

instances {tBI"" ,tBk} where (tA,tBJ E I: (1:S i:S k). At the same time, an instance tB

may belong to multiple objects {tAl"" ,tAd} where (tAi' tB) E I: (1 :S j :S d). A mutual

exclusion rule RtB = (tAl' tB) (f) ... (f) (tAd' tB) specifies that tB can only belong to one object

in a possible world.

Since different objects may share the same instance in the probabilistic linkage model,

175
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(c) Incompatible.

I"'--="'----">\b

(b) Compatible.

Figure 7.1: Linkage compatibility.

we develop a probabilistic mutual exclusion graph (PME-graph for short) to describe such

dependencies. Moreover, the evaluation methods for probabilistic ranking queries developed

for independent uncertain objects cannot be directly applied on the probabilistic linkage

model. We develop efficient evaluation algorithms in this chapter.

7.2 Linkage Compatibility

In this section, we study the compatibility of a set of linkages and the effect on the possible

world probabilities.

7.2.1 Dependencies among Linkages

The linkage functions defined in Section 2.3.2 give only the probabilities of individual link­

ages. This is the situation in all state-of-the-art probabilistic linkage methods. In other

words, existing linkage methods do not estimate the joint probabilities of multiple linkages.

Linkages are not independent - at most one linkage can appear in a possible world among

those associated with the same tuple. Then, what roles do dependencies play in defining

probabilities of possible worlds?

Example 7.1 (Compatible linkages). Consider the linkages shown in Figure 7.1(a) be­

tween tuples in tables A = {aI, a2} and B = {b1,b2,b3}. The probabilities of the linkages

are labeled in the figure. For a linkage l, let land -,l denote the events that l appears

and l is absent, respectively. Since linkages hand b are mutually exclusive, the marginal

distribution of (l1,l2), denoted by f(ll,l2)' is Pr(-,h,-,l2) = 1 - Pr(ld - Pr(l2) = 0.6,

Pr(-'h, l2) = Pr(l2) = 0.2, Pr(h, -,l2) = Pr(h) = 0.2, and Pr(ll, l2) = O. Similarly, the
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marginal distributions f(l2, l3) and f(is, l4) can be calculated from the linkage probabilities

and the mutual exclusion rules.

Does there exist a set of possible worlds (i.e., the joint distribution f(h, l2, l3, l4)) that

satisfy the marginal distributions f(h, l2), f(l2, l3) and f(l3' l4)? If so, can we further de­

termine the existence probability of each possible world? The answer is yes in this example.

Based on Bayes' theorem, we can compute the joint distribution

f( l l l l) = f(l l )f(l Il )f(l Il ) = f(h, l2)f(l2' l3)f(is, l4)
1, 2, 3, 4 1, 2 3 2 4 3 f(l2)f(l3)

As another example of compatible linkages, consider Figure 7.1(b). The joint probabili­

ties are Pr(h,-,l2,-'is,l4) = 0.6 and Pr(-'h,l2,l3,-,l4) = 0.4.

Figure 7.1(c) gives an example of incompatible linkages. Linkages in Figure 7.1(c) have

the same mutual exclusion rules as the ones in Figure 7.1 (b), but the probabilities are

different. From the probability of each linkage and the mutual exclusion rules, we can

compute the marginal distributions f(h,l2), f(l3,l4), f(h,l3) and f(l2,l4), respectively.

The three marginal distributions f(h, l2), f(l3' l4) and f(l2' l4) can uniquely determine a

joint distribution f(h,l2,is,l4)' Due to the mutual exclusion rule h EB is, the probability

that hand l3 both appear should be O. However, from this joint distribution, we can derive

1
Pr(h, l3) = Pr(h, -,l2, l3, -,l4) = Pr(h, -,l2)Pr(-,l41-,l2)Pr(l31-,l4) = 15'

Thus, the joint probability f(h, l2, l3,l4) computed from the marginal distributions f(h, l2),

f(l3,l4) and f(h, is) is inconsistent with the marginal distribution f(h, l3)' Therefore, the

linkages in Figure 7.1(c) are not compatible. _

Definition 7.1 (Compatible linkages). A set of linkages are compatible if there is at

least a joint distribution on the linkages that satisfies the marginal distributions specified by

the linkages. _

Example 7.1 indicates that some linkages may lead to a situation where the possible

worlds cannot be decided (i.e., the linkages are not compatible). In the rest of this section,

we will discuss three problems.

1. In what situations are the linkages compatible?

2. How to fix incompatible linkages to compatible ones with small information loss?

3. How to compute the probabilities of possible worlds for compatible linkages?
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Figure 7.2: A set of linkages and the corresponding PME-graph and clique graph.

7.2.2 Probabilistic Mutual Exclusion Graphs

Dependencies among linkages are important in deriving possible world probabilities. We

develop a probabilistic graphic model to capture such dependencies.

Definition 7.2 (PME-graph). Given a set of probabilistic linkages LA,B, a probabilistic

mutual exclusion gmph (PME-gmph) GC,A,B = (V, E) is an undirected graph such that

(1) a vertex VI E V (l E LA,B) is a binary random variable corresponding to a probabilistic

linkage, Pr(vl = 1) = Pr(l) and Pr(vl = 0) = 1 - Pr(l); (2) an edge e = (VI,VII) E E

(VI, VII E V) if linkages land l' share a common tuple, i. e., they are involved in a mutual

exclusion rule R t (t E A or t E B). •

A PME-graph may contain multiple connected components. The vertices in one con­

nected component are correlated. The vertices in a PME-graph GC,A,B = (V, E) have several

basic properties.

Corollary 7.1 (Vertices in a PME-graph). For a PME-graph G = (V, E), two vertices

Vi, Vj E V has the following properties:

1. Vi, Vj E V are independent if Vi and Vj belong to different connected components.

2. Vi and Vj are mutually exclusive if there is an edge e = (Vi, Vj) E E.

3. Vi and Vj are conditionally independent given another vertex V if there is a path between

Vi and Vj passing v.
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-
Theorem 7.1. A PME-graph G£,A,B is a Markov random field.

Proof. We need to show that G£,A,B satisfies the Markov property, which states that,

in a set of random variables, the probability of any given random variable X being in a

state x only depends on a subset of random variables in the system [126]. In a PME-graph

G£,A,B, a vertex v is mutually exclusive with its adjacent vertices Nv . For any other vertex

Vi E V - {v} - N v , v and Vi are independent conditional on Nv . The Markov property is

satisfied. _

A PME-graph has two interesting and useful properties.

Lemma 7.1 (Property of PME-graphs). For a PME-graph G corresponding to linkages

I: between tuple sets A and B:

1. For a tuple tEA or t E B, the edges corresponding to the linkages in the mutual

exclusion rule Rt form a maximal clique in G.

2. Any two cliques in G can share at most one common vertex.

Proof. Since a maximal clique in a PME-graph G captures a mutual exclusion rule in the

linkages I:A,B, the first item holds.

To prove the second item, since a vertex v in G£,A,B is a linkage and can involve only

one tuple in A and another tuple in B, v can participate in at most 2 maximal cliques in

the PME-graph. -
For example, two maximal cliques C1 = {VI, v2, V3} and C2 = {V3' V4, vs} in Figure 7.2(b)

only share one common vertex V3.

A PME-graph captures two types of dependencies among linkages: first, two linkages

associated with the same tuple are mutually exclusive; second, two linkages are conditionally

independent given the linkages connecting the two linkages. PME-graphs are useful in

deriving possible worlds of linkages and ranking query evaluation methods, which will be

discussed in Sections 7.2.5, 7.3 and 7.4.

Besides PME-graphs, we create a maximal clique graph to represent the dependencies

between maximal cliques. Hereafter, only maximal cliques in the PME-graphs are of interest.

For the sake of simplicity, we refer to maximal cliques as cliques.



CHAPTER 7. RANKING QUERIES ON PROBABILISTIC LINKAGES 180

Definition 7.3 (Clique graph). Given a PME-graph G£,A,B, the corresponding clique

gmph is a graph Gclique (V, E), where a vertex vc E V corresponds to a maximal clique C

in G£,A,B and an edge ecc, = (vc, vc') E E if cliques C and C' in the PME-graph share a

common vertex.

Let C be a maximal clique in G£,A,B and Vc be the set of vertices in C. The probability

of the corresponding vertex vc E V in the clique graph is Pr(vc) = I:xEVc Pr(x). _

Hereafter, in order to distinguish between the vertices in a PME-graph and the vertices

in a clique graph, we refer to a vertex in a clique graph as a clique.

Figures 7.2(a), (b) and (c) show a set of linkages, the PME-graph and the clique graph,

respectively. Each node Vi in Figure 7.2(b) corresponds to a linkage li in Figure 7.2(a). Each

maximal clique in Figure 7.2(b) corresponds to a vertex in Figure 7.2(c).

7.2.3 Compatibility of Linkages

To check wether a set of linkages .c are compatible, a straightforward approach is to check,

for each clique C E Gclique, whether the joint probability on Gclique - C can lead to a

marginal distribution on C that is consistent with the given marginal distribution f (C).

However, this approach is very costly since we have to compute the joint probability on

cliques Gclique - C for every C.

Fortunately, we can derive a sufficient and necessary condition for compatible linkages

as stated in the following theorem.

Theorem 7.2 (Compatibility). Given a set of linkages .c and the corresponding clique

graph Gc, then linkages in .c are compatible if and only if, for each connected component

G' E Gc, one of the following two conditions holds:

1. G' is acyclic;

2. G' is a cycle such that each vertex vc in the cycle is connected to two edges el and e2,

whose corresponding vertices VI and V2 in the PME-graph satisfy Pr(vI) +Pr(V2) = 1.

Proof. We first prove the sufficiency, that is, if the clique graph of a set of linkages satisfies

one of the two conditions in the theorem, then the linkages are compatible.

Condition 1. If the clique graph Gc is acyclic, then the joint distribution of the linkages

can be derived using the methods discussed in Section 7.2.5.
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Figure 7.3: A cycle of k cliques.
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Condition 2. If the second condition holds, then the joint distribution of the linkages

involved in G' can be uniquely determined. Suppose G' contains vertices {vc l , ..• ,VCk} as

shown in Figure 7.3(a), whose corresponding cliques are {Cl,'" ,Cd in the PME-graph

(k must be an even number since the linkages between tuple sets A and B form a bipartite

graph). In the clique graph, since each vertex VCi has degree 2, which means, the cor­

responding clique in the PME-graph shares 2 vertices with 2 other cliques. There are k

edges eVl ' ••• ,eVk involved in the cycle, whose corresponding vertices in the PME-graph are

VI,'" ,vk. Each vertex Vi belongs to two cliques Ci-l and Ci (2 :S i :S k). VI belongs to

cliques Cl and Ck. Since the probability sum of each two connected edges is 1, we have

Pr(vd = Pr(v2i+d (1 :S i :S ~ - 1) and 1 - Pr(vl) = Pr(v2j) (1 :S j :S ~). Thus, the joint

distribution of all vertices in the PME-graph is given by

Pr((/\OS.iS.~-l V2i+l) /\(/\lS.jS.~ -'V2j)) = Pr(vd

Pr((/\OS-iS.~-l-'V2i+d /\(/\lS.jS.~ V2j)) = 1 - Pr(vd·

The joint distribution is consistent with the marginal distribution specified by each linkage.

Thus, the linkages are compatible.

Then, we prove the necessity. That is, if a set of linkages are compatible, then the

corresponding clique graph must satisfy one of the two conditions in the theorem. Consider

a set of compatible linkages whose clique graph is Gc.

Suppose G' contains a cycle, then we need to show that G' can only form a cycle satisfying

condition 2 in the theorem. We prove this in two cases: the cycle contains 4 vertices and

the cycle contains more than 4 cases.

Case 1: The cycle in G' contains 4 vertices VCl' VC2' VC3' VC4' whose corresponding cliques
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in the PME-graph are {Cl, C2,C3,C4}, as illustrated in Figure 7.3(b). Let Vi be the vertex

contained by Ci - 1 and Ci (2 :S i :S 4) and VI be contained by C1 and C4. The joint

probability of VI and V4 can be expressed as

Since VI and V4 are contained in clique C4, Pr(v1v4) = 0 holds. Moreover, Pr(v1!,v2) > 0

and Pr(v4I,v3) > o. Thus, Pr(,v2,v3) = O. Since V2 and V3 are contained in the same

clique C2, we have Pr(,v2,v3) = 1 - Pr(v2) - Pr(v3). Therefore, Pr(v2) + Pr(v3) = 1,

which means that C2 only contains two vertices {V2' V3} and Pr(C2) = 1. Similarly, we can

show that other clique Ci (1 :S i :S 4) only contains 2 vertices and the probability sum of

the two vertices is 1.

Case 2: The cycle in G' contains k vertices VCl'··· ,VCk (k > 4), as illustrated in

Figure 7.3(c). The corresponding cliques in the PME-graph are C1,··· ,Ck, respectively.

Let Vi be the vertex contained by Ci- 1 and Ci (2 :S i :S k) and VI be contained by C1 and

Ck. We show that, for any clique Ci, Pr(Vi) + Pr(vi+d = 1.

The joint distribution of Vi+2 and Vi+3 can be expressed as

Since Vi+2 and Vi+3 belong to the same clique Ci+2, we have Pr(Vi+2Vi+3) = O. Moreover,

Pr(vi+2I'Vi+I) > 0 and Pr(Vi+3!,ViH) > O. Therefore, Pr(,vi+1,ViH) = O. We can

express Pr( ,Vi+I,ViH) as

Pr( ,Vi+1,Vi+4) = Pr( ,Vi+1,Vi+4ViVi+5) + Pr('Vi+1'ViHVi'Vi+5)

+Pr ('Vi+ 1'Vi+4'ViVi+5) + Pr ('Vi+ I 'Vi+4'Vi ,Vi+5) = 0
(7.1)

Since all probability values are non-negative, each component in Equation 7.1 has to be o.
Therefore, we have

and

Pr('Vi+1'Vi+4 ,ViVi+5) = Pr(,ViVi+5)Pr(,vi+1I,vi)Pr(,ViHIVi+5) = 0 (7.3)

In Equation 7.2, since Pr(,vi+1Ivi) = Pr(,viHlvi+5) = 1, we have Pr(vivi+5) = o. There­

fore, in Equation 7.3, Pr(,viVi+5) = Pr(vi+5) - Pr(vivi+5) > o. Thus, Pr(,vi+II'Vi) = O.

Since Pr( ,vi+1I'Vi) = I-Pr~~+~~~Pr Vi) , we have Pr(Vi+1) +Pr(Vi) = 1. Therefore, Ci only

has 2 vertices {Vi, Vi+ r} and Pr(Vi+d + Pr (Vi) = 1. •
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For example, Figures 7.1(a) and (b) satisfy the first and the second conditions in The­

orem 7.2, respectively. The links there are compatible. Figure 7.1(c) does not satisfy

Theorem 7.2, thus, the linkages there are not compatible.

7.2.4 Resolving Incompatibility

Given a set of incompatible linkages .c, intuitively, we want to find a subset of .c such that

the loss of information is minimized.

How can we measure the amount of information that is retained in a subset of linkages?

Different definitions can be adopted in different applications. For instance, in Example 2.12,

if medical experts are more interested in the patients in the hospitalization registers, then

we may want to select a subset of compatible linkages such that the expected number of

patients who are linked to another record in the causes-of-death registers is maximized.

If we do not have any specific application requirement, then it is intuitive to maximize the

expected number of linkages in the subset, since it is the information available for analysis.

The problem of finding the maximized compatible linkage set is defined as follows.

Definition 7.4 (Maximum compatible linkage set). Given a set of incompatible link­

ages .c, the maximum compatible linkage set is a subset of linkages .c' c .c such that:

1. All linkages in .c' are compatible, and

2. The expected number of linkages in .c' is maximum over all compatible linkage subsets

of .c. That is, we define a binary random variable Xl for each linkage l E .c such

that Pr(XI = 1) = Pr(l) and Pr(XI = 0) = 1 - Pr(l) . .c' = argmaXLcL: E[LIEL Xl],

where E[LIEL Xz] is the expected number of linkages in L.

•
In order to find the maximum compatible linkage set in .c, a naIve approach is to enu­

merate all compatible linkage subsets of .c and compute the expected number of linkages in

each subset. The subset with the maximum expected number of linkages is returned. We

conject that this problem is NP-hard.

We can apply an approximation approach as follows. Let Gc be the clique graph of .c,
each vertex vc in Gc is corresponding to a clique C in the PME-graph G. Each edge ev in

between two vertices VCl and VC2 Gc is corresponding to the common vertex v of the two
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cliques CI and C2 in G. Let the weight of edge ev be the probability of the corresponding

vertex v. Then, we can find the maximum spanning forest [69] of the graph Gc. A maximum

spanning tree of a connected component in Gc is a spanning tree that has the maximum sum

of edge weights. Intuitively, the maximum spanning tree excludes the edges in the clique

graph with small weights (that is, the probability values of the corresponding vertices).

Therefore, the corresponding linkages may have a large expected number of linkages.

Since the main focus of our study is ranking queries on probabilistic linkages, we assume

that the linkages are compatible hereafter.

7.2.5 Deriving All Possible Worlds

To enumerate all possible worlds of a set of linkages LA,B, a naIve approach is to check

each subset of the linkages against Definition 2.20. The naIve method takes O(21£A,BI) time.

However, the actual number of valid possible worlds may be much smaller than 21£A,BI. For

example, in Figure 7.2(a), there are 7 linkages but there are only 11 possible worlds.

In this section, we use the PME-graph to generate all possible worlds in O(IWI) time,

where IWI is the number of possible worlds.

A possible world W of linkages LA,B can be regarded as an assignment of values 0 and 1

to the vertices in the PME-graph G£,A,B, where a vertex VI = 1 if the corresponding linkage

lEW, otherwise VI = O. For a clique C in G£,A,B, if I:VEC Pr(v = 1) < 1, then at most one

vertex in C can be assigned to 1; if I:VEC Pr(v = 1) = 1, then there is exactly one vertex

in C taking value 1. The probability of a possible world W is the joint distribution

Pr(W) = Pr((I\IEwvl = 1) 1\ (1\1'jtWVI' = 0)). (7.4)

Since vertices in different connected components in G£,A,B are independent (Sec­

tion 7.2.2), if G£,A,B = (V, E) contains k connected components V = VI U V2 U ... Vk,

Equation 7.4 can be rewritten as

k

Pr(W) = IIpr(( /\ VI = 1) /\( /\ VI' = 0))
i=1 IEwnv; l'jtW,I'EV;

(7.5)

The remaining question is how to generate the possible worlds in one connected compo­

nent.
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Figure 7.4: Computing the probability for possible world W = {VI, V4, V7}. Black and grey
vertices are assigned values 1 and 0, respectively. White vertices have not been assigned
any value yet.

Example 7.2 (Factoring joint probability). Consider the set of linkages in Figure 7.2(a)

and the corresponding PME-graph in Figure 7.2(b). Figure 7.4 shows how we generate a

possible world using the PME-graph.

We consider cliques C1 , C2 , C3 in the PME-graph one by one. In the first step, since no

value has been assigned in clique C1 , all three vertices in C1 may have a chance to be set to

1. The probability of VI taking value 1 is Pr(vl = 1) = 0.6. Suppose we set VI = 1. Then,

V2 and V3 can only take value 0 (Figure 7.4(a)).

After clique C1 is set, we consider clique C2. Since V3 = 0, only V4 and Vs can take value

1. Moreover, given condition V3 = 0, the probabilities of V4 = 1 and Vs = 1, respectively, are

Pr(v4 = I1v3 = 0) = ;~(~::~ = 0.5 and Pr(vs = I1v3 = 0) = 0.5. Suppose we set V4 = 1.

Then, Vs = 0 (Figure 7.4(b)).

For clique C3 (Figure 7.4(c)), similarly, the probabilities of V6 = 1 and V7 = 1 when

Vs = 0 are Pr(v6 = Ilvs = 0) = ~ and Pr(v7 = Ilvs = 0) = 0.5, respectively. Suppose we

set Vs = 1. Then, V6 = O.

The probability of possible world W 1 = {h, l4, l7} is Pr(vl = 1, V2 = 0, V3 = 0, V4 =

1, Vs = 0, V6 = 0, V7 = 1) = Pr(vl = I)Pr(v4 = I1v3 = 0)Pr(v7 = Ilvs = 0) = 0.6 x 0.5 x

0.5 = 0.15.

Interestingly, the joint probability in this example is factored into a set of conditional

probabilities on a subset of vertices that can be directly derived from the given linkages.



CHAPTER 7. RANKING QUERIES ON PROBABILISTIC LINKAGES 186

Moreover, the other possible worlds can be enumerated recursively in the same way. _

7.3 Ranking Queries on Probabilistic Linkages

We formulate the probabilistic ranking queries introduced in Section 2.2.2 on probabilistic

linkages as follows.

Given a set of linkages LA,B between tables A and B, let Q~,J be a top-k selection query,

where P is a predicate and f is a scoring function which may involve attributes in A, B, or

both. For a linkage l E LA,B' f(l) is a real value score.

Definition 7.5 (Top-k probability of linkages and tuples). For a linkage l E LA,B'

the rank-k probability of l, denoted by Pr(l, k), is the probability that l is ranked at the

k-th position in possible worlds. That is

Pr(l, k) = I:: Pr(W)
WEW.c,A,B,Wj(k)=1

where Wj(k) is the k-th linkage in possible world W. Moreover, the top-k probability of l

is
k

Prk(l) = I::Pr(l,i)
i=l

Consequently, the rank-k probability of a tuple tEA u B is

Pr(t, k) = I:: Pr(l, k)
lEt

The top-k probability of t is

Prk(t) = I:: Prk(l)
lEt

-
Given a positive integer k and probability threshold p E (0,1], a probabilistic thresh­

old top-k query (Definition 2.12) on linkages finds the probabilistic linkages whose

top-k probabilities are at least p. Similarly, a probabilistic threshold top-k query on

tuples finds the tuples whose top-k probabilities are at least p.

Due to the dependencies among tuples, the query answering techniques developed in

Chapter 5 cannot be directly applied to answering probabilistic threshold top-k queries

on the probabilistic linkage model. There are four major differences, as discussed in Sec­

tions 7.3.1 to 7.3.4, respectively.
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Figure 7.5: A chain of cliques.

7.3.1 Predicate Processing

To answer a top-k selection query Q'P,J' the first step is to deal with the query predicate

P. The predicate processing technique used for probabilistic linkages is different from the

technique used for independent uncertain objects.

As discussed in Section 5.1, given an uncertain table T and a top-k selection query Q'P,J'

we can apply the query predicate P as preprocessing. That is, we select all tuples satisfying

the query predicate as peT) = {tit E T I\P(t) = true}. The problem of answering the PT-k

query on T can be transformed into finding the tuples in peT) whose top-k probability

values pass the probability threshold.

The same preprocessing does not work on the probabilistic linkage model due to depen­

dencies, as illustrated in the following example.

Example 7.3 (Processing query predicates). Consider the linkages in Figure 7.2. Sup­

pose a predicate P selects linkages {h, l3, l4, l6, l7}. l2 and l5 do not satisfy the predicate P.

We use a PME-graph to represent the linkages and use the shaded nodes to represent the

linkages satisfying predicate P, as shown in Figure 7.5(a). If we adopt the same preprocess­

ing method described in Section 5.1, then, we should remove vertices V2 and V5 that do not

satisfy P.

However, by removing vertex V5, the vertices in C3 and those in C2 become disconnected,

which means that they are independent. Then, the dependencies among vertices are not

preserved.

At the same time, removing V2 does not change the dependencies among vertices, and
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thus, does not affect the answers to the query.
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•
In a PME-graph G = (V, E) representing linkages .c, a vertex v is corresponding to a

linkage l and a clique C is corresponding to a tuple t. The top-k probability of a vertex v

is Prk(v) = Prk(l) and the top-k probability of clique C is Prk(C) = Prk(t).

There are two categories of vertices in a PME-graph G. A private vertex belongs to

only one clique, such as {VI,V2,V4,V6,V7} in Figure 7.2(b). A joint vertex belongs to two

cliques, such as V3 and Vs in Figure 7.2(b). We use Vp and VJ to denote the set of private

vertices and joint vertices, respectively.

Let Vs denote the set of vertices satisfying the predicate P and Vs = V - Vs be the set

of vertices not satisfying P. Two questions arise.

Question 1: Which vertices in Vs can be removed? We can partition the vertices

in Vs into two subsets.

• The first subset contains the joint vertices in Vs that lie in at least one path between

two vertices in Vs. That is,

The vertices in VI cannot be removed in preprocessing, since removing them may not

preserve the dependencies among the vertices satisfying P.

• The second subset is V2 = Vs - VI. Removing the vertices in V2 does not change the

top-k probabilities of the vertices satisfying P.

Hereafter, let us assume that V2 has been removed from G as preprocessing. Therefore,

two sets of vertices remain in G: Vs contains all vertices satisfying predicate P; VI contains

all vertices not satisfying P but connecting to vertices in Vs.

Question 2: Should we treat the remaining vertices equally? Consider two vertices

VI E VI and V2 E Vs· Given another vertex v E Vs, let VI -:5.j v and V2 -:5.j v. In a possible

world W, whether VI appears or not does not affect the rank of v. However, whether V2

appears or not does change the rank of v.

In order to distinguish between the vertices in Vs and VI, we associate a flag attribute

F with each vertex v E G. If P(v) = true, then v.F = 1, otherwise v.F = O.
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7.3.2 Dominant Subgraphs
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The dominant set property (Theorem 5.1) indicates that, to compute the top-k probability

of a tuple t in a probabilistic table, we only need to consider the tuples ranked higher than

t.

However, to compute the top-k probability of a vertex v in a PME-graph G, only con­

sidering the vertices ranked higher than v may lead to incorrect results. This is because, a

vertex v/ ranked lower than v may connect the two vertices VI and V2 that are ranked higher

than v, therefore, not considering v/ may not preserve the dependency between VI and V2.

We define a dominant graph of v as follows.

Definition 7.6 (Dominant 8ubgraph of a linkage). For a PME-gmph G = (V, E) and

a vertex v E V, the dominant 8ubgraph of v, denoted by G(v), is the minimum subgraph

in G that contains the vertices v/ E V satisfying:

1. v/ :'cf v, or

2. v/ E VJ and v/ is in a path P = (VI,'" ,v/,'" ,V2) in G, where vI:'cf v and V2:'cf v .

•
Theorem 7.3 (The dominant graph property). For a PME-graph G = (V, E) and

a vertex v E V, Pr~,G(v) = Pr~,G(v)(v), where Pr~,G(v) and Pr~,G(v)(v) are the top-k

probabilities ofv computed on G and in the dominant subgraph G(v) of v, respectively.

Proof. If a vertex v/ is not in G(v), then v/ does not appear in any path between the two

vertices ranked higher than v. Therefore, the joint probability distribution of the vertices

ranked higher than v does not depend on v/, which means whether v/ appears or not does

not affect the top-k probability of v. •

Similar to the discussion in Section 7.3.1, although all vertices in G(v) need to be con­

sidered when computing the top-k probability of v, only the vertices in G(v) that are ranked

higher than v affect the actual rank of v. Therefore, we change the assignment of the flag

attribute value of each vertex in G(v) as follows. For a vertex v/ E G(v), if P(Vi) = true

and v/ :'cf v, we set its flag v'.F = 1, otherwise, we set v'.F = O.

Given a vertex v, how can we obtain its dominant subgraph G(v)? Since a PME-graph

G may contain multiple connected components, we can construct, in each component Gj ,

the dominant subgraph Gj(v) as follows.
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We traverse the clique graph of G j in the depth first order. For each clique C, we visit

its vertices one by one. If a vertex v' E C satisfies the condition v' ~f v, then we include v'

into Gj(v). Moreover, we find the path from C to the last visited clique C' whose vertices

are included in Gj(v). All vertices joining the cliques along the path are included in Gj(v)

too. Since each vertex is at most visited twice during the construction, the complexity of

constructing Gj(v) is O([Vcjl) where [Vcjl is the number of vertices in Gj .

7.3.3 Vertex Compression

For a set of private vertices Vp = {VCl"" , V Crn } in G (v) belonging to the same clique

C, if for any v' E Vp , v' ~f v, then we can replace them with a single vertex vp where

Pr(vp ) = Ll5,i5,mPr(vcJ. Moreover, for all other vertices v E Vc- {VCl"" ,VCrn }, an edge

(v, vp ) is added to E. This technique is called vertex compression.

Vertex compression does not change the top-k probability of v. The reason is that

{vCl , ... , V Crn } only belongs to C and assigning 1 to different vertices in {vCl , ... ,VCrn } does

not affect the value assignment of other vertices not in C. After vertex compression, each

clique in G (v) contains at most one private vertex.

For example, for a dominant graph G(v) shown in Figure 7.5(a), let the grey vertices be

the ones ranked higher than v. After the vertex compression, G(v) is changed to the graph

in Figure 7.5(b).

7.3.4 Subgraph Probabilities

Given a dominant subgraph G(v), v is ranked at the j-th position if and only if v appears

and there are j - 1 vertices in G (v) appear.

We define subgraph probability Pr(G(v),j) as the probability that j vertices in G(v)

appear in possible worlds. Since v and the vertices in G(v) may not be independent, the

probability that j vertices in G(v) appear may depend on v. Therefore, we further define

the conditional subgraph probability of G (v) given v.

Definition 7.7 (Conditional subgraph probability). Given a top-k selection query

Q~,f' a dominant graph G(v) of a vertex v, the 8ubgmph probability Pr(G(v),i) is the

probability that i vertices satisfying predicate P appear in G(v), that is,

Pr(G(v),i) = L Pr(W).
WEW,I{v'lv'EWnG(v),v'.F=l}l=i
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Moreover, the conditional 8ubgraph probability Pr(G(v), ilv) is the probability that

i vertices satisfying predicate P appear in G(v) given the condition that v appears, that is,

Pr(G ilv) = LWEW,!{v'lv'EWnG,v'.F=I}I=i,VEW Pr(W)
, LWEW,VEW Pr(W)

•
The top-k probability of v can be computed as

k-I
Prk(v) = Pr(v) . L Pr(G(v), ilv).

i=O

(7.6)

Given a dominant graph G(v), the Poisson binomial recurrence (Theorem 5.2) cannot be

used to compute the subgraph probabilities, since it only works for independent uncertain

objects. In Section 7.4, we will discuss how to compute subgraph probabilities of G(v).

7.4 Tree Recurrence: Subgraph Probability Calculation

The dominant subgraph G(v) of a vertex v may contain multiple connected components. The

vertices in different components are independent. Therefore, we first focus on computing the

subgraph probabilities of each components Gi (v). Then, the overall subgraph probabilities

can be computed from the convolution of the subgraph probabilities of all components.

The cliques in each component Gi(v) form a tree (as discussed in Section 7.2.5). We

scan the cliques in G i (v) in the depth first order. During the scan, we compute subgraph

probability of the scanned subtree based on an important property below.

Corollary 7.2 (Conditional independency). Given a PME-gmph G and its clique tree

T, for any clique C in Gc, C partition Gc into multiple subtrees TI ,'" ,Tm and any two

vertices in different subtrees are conditionally independent given C. •

To compute the conditional subgraph probability Pr(G(v)lv), there are two cases, de­

pending on whether v is in Gi(v) or not. We first discuss the case where v is not in Gi(V),

then Pr(Gi(v),jlv) = Pr(Gi(v),j). The second case where v is in Gi(V) will be discussed

at the end of Section 7.4.2, since it is a straightforward extension of the first case.



CHAPTER 7. RANKING QUERIES ON PROBABILISTIC LINKAGES 192

Ci-l Ci Ci+l
(a) A chain of cliques.

,
I

I
I
\
\

\ ,

Scan order

, ,
\

\

I
I

I,
, ,

~--" ,
\

C3 \
I
I

I,

(b) A tree of cliques.

Figure 7.6: Difference cases in subgraph recurrence.

7.4.1 A Chain of Cliques

First, let us consider the simple case where all cliques C I ,··· , Cm in Gi(v) form a chain.

Example 7.4 (A chain of cliques). Consider Gi(v) in Figure 7.5(b). Let the dark­

ened vertices be the vertices satisfying the query predicate and ranked higher than v. We

want to compute the subgraph probabilities for subgraphs CI , CI U C2 , and CI U C2 U C3.

The subgraph probabilities for CI is simply Pr(CI,0) = 1 - Pr(vI) - Pr(v3) = 0.2 and

Pr(CI, 1) = 0.8.

We consider computing the probability Pr(CI U C2 , 2). All vertices in CI and C2 are

conditionally independent given V3. We consider two cases as illustrated in Figures 7.5(c)

and (d), respectively.

Case 1: V3 does not appear. The probability for this case is Pr(-,v3) = 0.8. Under

this condition, VI and V4 are independent. The probabilities that VI are V4 appear in this

case are Pr(vll-,v3) = g:~ = 0.75 and Pr(v41-,v3) = g:~ = 0.5, respectively. The probability

that VI and V4 both appear is Pr(vI,v41-'V3) = Pr(vII-,v3)Pr(v41-,v3) = 0.375. Therefore,

Pr(CI U C2 , 21-'V3), the conditional probability that 2 vertices appear in CI U C2 when V3

does not appear, is 0.375.

Case 2: V3 appears, with probability Pr(v3) = 0.2. Then, the probability that Pr(CI U

C2 ,2) is 0 since no other vertices in CI and C2 can appear. _

Generally, let CI ,··· , Cm be a chain of cliques. The two consecutive cliques Ci - I and

Ci share a common vertex Vi-I (2 :::; i :::; m). Each clique Ci contains at most three vertices,

as illustrated in Figure 7.6(a).
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• A private vertex v~ only belongs to Ci .

• A head vertex Vi-1 belongs to Ci and Ci-1.

• A tail vertex Vi belongs to Ci and CH1 .
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Trivially, C1 has no head vertex and Cm has no tail vertex.

Let Gi-1 = U1:Sj:Si-1 Cj and Gi = Si-1 UCi. To compute Pr(Gi, Xl-'Vi), two cases may

arise, since Ci - {Vi- I} and Gi- 1 - {Vi- I} are conditionally independent given Vi-1.

1. Vi-1 appears. Then no other vertices in Ci can appear.

2. Vi-1 does not appear. In order to have x selected vertices appear in Gi, we consider

two subcases.

(a) no selected vertex in Ci appears. Then there must be x selected vertices in Gi- 1

appear.

(b) 1 vertex in Ci appears. Then there must selected x-I vertices in Gi - 1 appear.

Summarizing the above cases, we have the following theorem.

Theorem 7.4 (Conditional subgraph probabilities). Given a chain of cliques

C1,' .. ,Cm , let Gi = U1:Sj:Si Cj, {Vi-I} = Ci- 1 n Ci , and v~ be the private vertex of C - i.

The conditional subgraph probability of G1 given -'V1 is

x = 0;

x = 1;

x>1.

The conditional subgraph probability of G1 given V1 is

For 1 < i < m, the conditional subgraph probability of Gi given -'Vi is

Pr(Gi,xl-'Vi) = Pr(-,vi-11-'Vi)' Pr(Gi- 1,xl-'Vi-l)' Pr(-,v~I-'Vi-1-'Vi)

+Pr(-,vi-11-'Vi)' Pr(Gi- 1,x - v~.FI-,vi-1) . Pr(v~l-,vi-1-'Vi)

+Pr(vi-11-'Vi) . Pr(Gi- 1, xlvi-I)
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The conditional subgraph probability of Gi given Vi is
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-
To compute subgrph probabilities, we scan cliques C l ,··· ,Cm and calculate Pr(Gi , xlvi)

and Pr(Gi , Xl-'Vi) for 0 ~ x ~ i. Then, we compute Pr(Gm , x) for Gm = Ul:Sj:Sm Cj using

Pr(Gm, x) = Pr(vm-l)Pr(Gm- l , XIVm-l)

+Pr(-,vm-l)Pr(Gm- l , xl-,vm-dPr(-,v;l-,vm-d (7.7)

+Pr(-,vm-dPr(Gm- l , x - v;.FI-,vm-l)Pr(v;l-,vm-l)

The overall complexity is O(m2).

7.4.2 A Tree of Cliques

Now let us consider the general case where the clique graph of Gi(v) is a tree.

Example 7.5 (Connecting multiple cliques). Figure 7.6(b) shows three cliques C l , C2

and C3 connected by clique C. Cl , C2 and C3 are the end vertices of three clique chains.

Let VI, V2 and V3 be the three common vertices between C and Cl , C2 and C3, respectively.

Then, there are five possible value assignments of C: vp = 1, VI = 1, V2 = 1, V2 = 1 or no

vertices taking value 1 (if LVEVc Pr(v) < 1). In any of the five cases, the joint probability

distribution of Cl , C2 and C3 are conditionally independent. The subgraph probability of

the three cliques is simply the product of their conditional subgraph probabilities. _

We scan the cliques in a clique tree in the depth first order. When we reach a leaf clique

Cf, its subgraph probability is calculated and sent to its parent clique Cpo If Cp only contains

one child, then the subgraph probability of the subtree containing Cf and Cp is computed at

Cp , using Theorem 7.4. If Cp contains more than one child, then the subgraph probability

of all cliques in the subtree with root Cp is computed at Cp as described in Example 7.5.

The complete procedure is shown in Algorithm 7.1.

Generally, if there are d chains of cliques connecting to a clique C, calculating the

subgraph probability for each chain takes O(n;) where ni is the number of cliques contained

in the i-th chain. Calculating the subgraph probability for all cliques takes O(dn2), where

n = Ll:Si:Sd ni is the number of cliques in all d chains.
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Algorithm 7.1 Computing subgraph probabilities.

Input: A dominant subgraph G(v)
Output: Subgraph probabilities f(x) = Pr(G(v), x)
Method:

1: for all connected component Gi in G(v) (1 :::; i :::; m) do
2: fi(X) = RecursiveSubgraph(Gi, Gi.root);
3: end for
4: f(x) = fi(X) * ... * fm(x) {*Symbol * denotes the convolution operation}

RecursiveSubgraph(G ,C)
Input: Component G and clique C
Output: Subgraph probabilities fcc (x) of Gc (the subtree with root C)
Method:

1: for all children Ci of C (1 :::; i :::; m) do
2: fcc (x) = RecursiveSubgraph(Gi,Ci);
3: end f~r
4: compute fo(x) = Pr(Gc, xl-,vl ... -,vm);
5: for i = 1 to m do
6: compute fi(X) = Pr(Gc, xlvi);
7: end for
8: return fcc (x) by integrating fo(x),' .. ,fm(x);
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Computing subgraph probabilities when v is in G(v) Let C be the clique containing

v. When v appears, the other vertices in C cannot appear. By plugging in this constraint,

the conditional subgraph probability Pr(G(v), xlv) can be computed using the same method

discussed in this section.

7.4.3 Integrating Multiple Components

Once the subgraph probability distribution of each connected component is obtained, we

can calculate the convolution of those subgraph probabilities as the subgraph probability

distribution over all connected component.

Theorem 7.5 (Integrating multiple components). Given a dominant subgraph G(v),

let G1, ... ,Gm be a set of connected components of G (v). Let ni be the number of cliques

in Gi, then,

•
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The complexity of computing the distribution Pr(G(v),x) is O(n2 ), where n is the

number of cliques in G(v).

7.5 Exact Query Answering Algorithms

In this section, we first develop an exact query evaluation algorithm based on the subgraph

probability calculation technique discussed in Section 7.3. Then, we discuss how to improve

the efficiency of the algorithm.

7.5.1 An Exact Algorithm

With the subgraph probability computation technique discussed in Section 7.3, we can

answer a probabilistic threshold top-k query on a set of probabilistic linkages as follows.

First, we build the corresponding PME-graph G and sort all vertices satisfying the query

predicate P in the ranking order according to the scoring function f. Let S = VI, . . . ,Vn be

the list of vertices in the ranking order. We then scan the vertices one by one.

For each vertex Vi, we derive the dominant subgraph G(Vi) of Vi. The subgraph prob­

ability of G(Vi) can be computed using the method discussed in Section 7.4. The top-k

probability of Vi can be calculated using Equation 7.6.

7.5.2 Reusing Intermediate Results

Can we reuse the intermediate results to reduce the computational cost? Once the subgraph

probability of a vertex is calculated, the intermediate results can be reused to compute the

subgraph probability of the next vertex in the ranked list.

Example 7.6 (Reusing intermediate results). Consider the PME-graph G in Fig­

ure 7.7(a) that contains three connected components GI , G2 and G3 . Suppose the list of

vertices VI, . .. ,VlO are sorted in the ranking order.

To compute the top-k probability of V5, we first construct the dominant subgraph G (V5),

which contains the grey vertices in Figure 7.7(a).

To compute the top-k probability of V6, we construct the dominant subgraph G(V6) as

shown in Figure 7. 7(b).

Interestingly, by comparing G (V5) and G (V6), we can find the following.
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Gl Ch en
(a) Compute Pr(G(V5), x).
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(b) Compute Pr(G(v6), x).

Figure 7.7: Reuse the intermediate results.

First, in component G l , the dominant graph of V5 and V6 are the same. Therefore,

Pr(Gl (v6),X) = Pr(Gl (v5),X).

Moreover, in component G2, the subgraph probability of G2(V5) is Pr(G2(v5), x) =

Pr({v2},X). Since V6 E G2, we have to compute the conditional subgraph probability of

G2(V6), Pr(G2(v6),xlv6) = Pr({v2},xlv6)' Since Pr({v2},X) has been computed when

scanning V5, we can compute Pre{V2}, XIV6) based on Pre{V2}, x) using Theorem 7.4.

Last, in component G3 , suppose we have computed the conditional subgraph proba­

bility Pr(G3 (v5), XIV5) = Pre{V4}, XIV5)' Then, we can compute the subgraph probability

Pr(G3 (v6), x) = Pre{V4, V5}, x) based on Pr(G3(v5), XIV5) using Equation 7.7. •

Generally, let S = {Vl,'" , vn} be the set of vertices satisfying P and sorted in the

ranking order. Let G(Vi) be the dominant graph of Vi. After obtaining the subgraph

probability of G(Vi), we scan Vi+l and compute the subgraph probability for G(Vi+l)' For

each component G j , one of the following four cases happens.

Case 1: neither Vi nor Vi+l is in Gj . Then, Gj(vi+d = Gj(Vi)' Gl in Figure 7.7

illustrates this case.

Case 2: only Vi is in Gj • G3 in Figure 7.7 is an example of this case. After the

conditional subgraph probability Pr(Gj(vi), xlVi) has been computed, when scanning Vi+l,

we want to compute the subgraph probability' PreGj (Vi+l), x). The following corollary

shows that Gj(Vi) is a subgraph of Gj(vi+d.

Corollary 7.3 (Property of dominant subgraphs). Given a PME-graph G = (V, E)

and two vertices Vi and Vj, let G(Vi) and G(Vj) be the dominant subgraphs of Vi and Vj,

respectively. If Vi ~f Vj, then G(Vi) is a subgraph of G(Vj).
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Proof. There are two categories of vertices in G(Vi)' Let v be a vertex in G(Vi)' We only

need to show that v is also in G(vj).

If v -:5.1 Vi, then v -:5.1 Vj (since Vi -:5. Vj). Thus, v is also in G(Vj).

If v is not ranked higher than Vi, then v must be a joint vertex lying in a path

(VI,'" ,V,'" ,V2) where VI -:5.1 Vi and V2 -:5.1 Vi· Since Vi -:5.1 Vj, we have VI -:5.1 Vj and

V2 -:5.1 Vj' Thus, V is also in G(Vj). •

Therefore, we can compute the subgraph probability Pr(Gj(vi+I), x) based on

Pr(Gj(Vi), xlVi) using Equation 7.7.

Case 3: only Vi+1 is in Gj . G2 in Figure 7.7 illustrates this case. When scanning Vi, we

computed the subgraph probability for Pr(Gj(vi), x). Then, when processing Vi+l, we have

to compute Pr(Gj(vi+I),xlvi+I). Again, according to Corollary 7.3, Gj(Vi) is a subgraph

of Gj(Vi+I)' Thus, Pr(Gj (Vi+I) , XIVi+I) can be computed based on Pr(Gj(vi), x) using

Theorem 7.4.

Case 4: both Vi and Vi+1 are in Gj• The situation is similar to Case 3. Subgraph prob­

ability Pr(Gj(Vi+I) ,xlvi+I) can be computed based on Pr(Gj(Vi), xlVi) using Theorem 7.4.

Generally, we scan each vertex Vi in the ranked list and compute the subgraph proba­

bilities of G(Vi) in each component Gj. If a component does not contain Vi or Vi-I, then

the subgraph probabilities of Vi and Vi-I are the same. Otherwise, we apply Equation 7.7

or Theorem 7.4 to compute the subgraph probabilities, which avoids computing subgraph

probabilities from scratch. Algorithm 7.2 shows the complete routine.

7.5.3 Pruning Techniques

From Corollary 7.3, for any two vertices Vi -:5.1 Vj, the dominant subgraph G(Vi) is a subgraph

of G(Vj). Therefore, we have

L Pr(G(vi),a):S; L Pr(G(vj),b)
I~a~x I~b~x

(7.8)

Theorem 7.6 (Pruning rule). Given a PME-graph G and a probabilistic threshold top-k

query Q~,j with probability threshold p E (0,1], if for vertex v, L:I~a~k-1 Pr(G(vi), a) < p,

then for any vertex v' (v -:5.1 v'), Prk(v' ) < p. •

Theorem 7.6 states that, once the subgraph probability for the dominant subgraph of a

vertex V fails the probability threshold, all vertices ranked lower than V can be pruned.
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Algorithm 7.2 Answering PT-k queries on probabilistic linkages.

Input: A PME-graph G containing components G l ,'" ,Gm and a PT-k query Q
Output: Answer to Q
Method:

1: sort all vertices satisfying the query predicate in the ranking order;
{*let S = Vi, . . . ,Vn be the vertices in the ranking order}

2: for i = 2 to n do
3: for j = 1 to m do
4: if G j does not contain vi-lor Vi then
5: fj(x) = Pr(Gj(vi-d, x);
6: else if G j contains Vi-l then
7: apply Equation 7.6 to compute h(x) = Pr(Gj(Vi-l),X);
8: else
9: apply Theorem 7.4 to compute fj(x) = Pr(Gj(vi-d, xlVi);

10: end if
11: Pr(G(v), xlVi) = f(x) = !l (x) * ... * fm(x);
12: Prk(vi) = Pr(vi) L7~~ Pr(G(v), XlVi);
13: end for
14: end for

7.6 Extensions to Aggregate Queries
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Interestingly, the above techniques for ranking queries on uncertain data can be used to

answer aggregate queries. In this section, we discuss the aggregate query answering on

probabilistic linkages.

7.6.1 Aggregate Queries on Probabilistic Linkages

Example 7.7 (Aggregate queries). Consider Example 2.12 again. If a medical expert

is interested in counting the number of linkages between the hospitalization registers and

the causes-of-death registers. The answer to Q directly corresponds to the death population

after hospitalization.

Suppose 8M = 0.9 and 8u = 0.45. No records in Table 2.4 are considered matched, since

the linkage probabilities are all lower than 8u . Is the answer to Q simply O?

Record al in the hospitalization register data set is linked to three records in the causes­

of-death register data set, namely bl , b2 and b3 , with linkage probability 0.3, 0.3 and 0.4,

respectively. Therefore, the probability that "John H. Smith" is linked to some records in

the causes-of-death register data set and thus reported dead is 0.3 + 0.3 +0.4 = 1. Similarly,
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the probability that "Johnson R. Smith" is reported dead is 1.
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•
In a possible world, the answer to an aggregate query is certain. Therefore, the answer

to an aggregate query is a multiset of the answers in the possible worlds. Incorporating

the probabilities, the answer to an aggregate query is a probability distribution on possible

answers.

Definition 7.8 (Aggregate query on linkages). Given a set £A,B of linkages between

tables A and B, let Q~ be an aggregate query, where P is a predicate which may in­

volve attributes in A, B, or both and F is an aggregate function on attribute A. The

answer to Q~ on linkages is the probability distribution f(v) = Pr(Q~(£A,B) = v) =

~WEW.c,A,B,Q~(W)=v Pr(W), where W is a possible world, Q~(W) is the answer to Q~ on

the linkages in W, and Pr(W) is the probability of W. •

On a large set of linkages, there may be a huge number of possible worlds. Computing a

probability distribution completely may be very costly. Moreover, if there are many possible

answers in the possible worlds, enumerating all those values is hard to be manipulated

by users. Since histograms are popularly adopted in data analytics and aggregate query

answering, here we advocate answering aggregate queries on linkages using histograms. We

consider both equi-width histograms and equi-depth histograms.

Definition 7.9 (Histogram answer). Consider an aggregate query Q on linkages £, let

Vmin and Vmax are the minimum and the maximum values of Q on all possible worlds.

Given a bucket width parameter 7], and a minimum probability threshold T, the equi­

width histogram answer to Q is a set of interval tuples (¢i, Pi) (1 ~ i ~ IVmax~Vmin l)
where ¢j = [Vmin + (j -l)7],vmin + fry) (1 ~ j < IVmgx~Vminl) and ¢rvmax-vminl = [Vmin +

1/

( rVmax-Vmin l-l)'l1 v ] are rVmax-Vmin l equi-width intervals between v ' and v whereI '7 ./' max I '7 mm max
Pi = Pr(Q(£) E ¢). An interval pair (¢i,Pi) is output only if Pi ?: T.

Given an integer k > 0, the equi-depth histogram answer to Q is a set of in­

terval tuples (¢i,Pi) (1 ::; i ::; k) where ¢j = [Vj-l,Vj) (1 ::; j < k, Va = Vmin, and

Vj = argminx{xIPr(Q(£) ::; x) ?: i-}) and ¢k = [Vk-l,Vmax]. •

7.6.2 Count, Sum and Average Queries

To answer a count query on a set of linkages, we can apply the same technique discussed in

Sections 7.3 and 7.4. Once the count probability distribution is calculated, we can compute
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the answer to the aggregate histogram query by partition the count values into TJ equi-width

intervals or k equi-depth intervals.

The bottleneck of answering count queries are integrating multiple chains in a connected

component and integration multiple components. We introduce two approximation tech­

niques that accelerate the computation for equi-width histogram answer and equi-depth

histogram answer, respectively.

Equi-width Histogram Answer Approximation

When computing the count probability for G using Theorem 7.5, intuitively, we can ignore

the values whose probabilities are very small.

Let Xl, ... ,Xm be the list of values in fi-l (x) in the probability ascending order. Let

x/-l = maxl::;j::;m{Xjl L:l::;h::;j Pr(xh) < E}, then we adjust the probabilities as

1 :s; i :s; /-1;

/-1<x:S;m.
(7.9)

The computed answer is called the E-approximation of the histogram answer. The quality

of the approximation answer is guaranteed by the following theorem.

Theorem 7.7 (Approximation Quality). Given a query Q on linkages with z compo­

nents, a bucket width parameter TJ, and a minimum probability threshold T, let (¢i,Pi) be

the equi-width histogram answer to Q, and (¢i,Pi) be the E-approximation of (¢,Pi), then

IPi - Pi I< ZE for 1 :s; i :s; rVmgX~VmiV l·
Proof. We only need to show that each time when we integrate one connected component

G t (2 :s; t :s; m), we introduce an approximation error of E. Let Xl,'" ,Xm be the list of

values in it-I (x) in the probability ascending order, VI = Vmin + (i - l)TJ and V2 = Vmin + iTJ.

Let P~ = L:v <X<v ft(x) be the probability of bucket [VI, V2). According to Theorem 7.5,1 __ 2

m m

P~ = L L ft-l(xb)Pr(Q(Gt ) = X - Xb) = L ft-l(Xb) L Pr(Q(Gt ) = X),
V1::;X::;V2 b=l b=l V1-Xb::;X::;V2-Xb

where ft-l (Xb) is the exact count distribution in components {G l ,'" ,Gt-d. Let P~ =

L:v <x<v f~(x) be the approximate probability computed based on the E-approximation1 __ 2

fLl (X), then

m m

P~ = L L f:-l (Xb)Pr(Q(Gt ) = X - Xb) = L f:-l (Xb) L Pr(Q(Gt ) = x).
V1::;X::;V2 b=l b=l V1-Xb::;X::;V2-Xb
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P~ - P~ = 2:~I it-I (Xb)g( VI - Xb, V2 - Xb) - 2:~I f;-l (Xb)g(V1 - Xb, V2 - Xb)

= 2:~=1 ft-1 (Xd)g(V1 - Xd, V2 - Xd) + 2:~j.l+1 (ft-1 (Xb) - f;-l (Xb)) . g(V1 - Xb, V2 - Xb)
(7.10)

m

L ft-1 (Xb)g( VI - Xb, V2 - Xb) = P~ - A.
b=j.l+1

According to Equation 7.9, Equation 7.10 can be rewritten as

On the one hand, since 2:W::;h~m ft-1(Xh) ~ 1 and P~ > A, we have P~ - P~ ~ A.

Moreover, A = 2:~=I ft-1(Xd)g(V1 - Xd,V2 - Xd) ~ 2:~=1 ft-1(Xd) ~ E. Thus, P~ - P~ ~ E.

On the other hand, 2:1I<h<m ft-1 (Xh) ~ 1 - E, and thus 1 - 2: 1f ( ) ~ l-=-E.
r_ _ /-'$h$m t-l Xh E

t

Moreover, P~ - A ~ P~ - Eo Therefore, P~ - P~ ~ -E X ~i~EE ~ -E.

Therefore, after integrating m components, we have IPi - Pi I ~ E. •

After the probability adjustment, fI-1 (x) > E holds for each value x with non-zero

probability. Thus, the number of values with non-zero probability is at most ~. Therefore,

the overall complexity of computing the E-approximation of fi(X) is O(~). The overall

complexity is 0(2)' where m is the number of components in G.

Equi-depth Histogram Answer Approximation

To accelerate probability calculation for equi-depth histogram answers, we introduce an

approximation method that keeps a constant number of values in the intermediate results.

In theorem 7.5, if fi-1(X) contains values Xl,'" ,Xni _ 1 (ni-1 > k) in the value ascending

order, then we compute the p-quantiles x~ = argminx{Pr(Q(G) ~ x) ~ *} (0 ~ i ~ p).

From the p + 1 values, we construct an approximation of fi-1 (x) as:

{

! = x;_I+x; (1 < . < ).
f ' () - P' X 2 - Z - P ,
i-1 X -

0, otherwise.
(7.11)

Then, the convolution of fI-1(x) and Q(Gi ) are used to estimate fi(X), The approxima­

tion quality is guaranteed by the following theorem.
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Theorem 7.8 (Approximation quality). Given a query Q on a PME-graph G with m

components, an integer k > 0, let (/Ji,Pi), where <Pi = [Vi-1, Vi) (1 :S i :S k), be the equi-depth

histogram answer computed using the p-quantile approximation, then

IPr(Q(G) :S Vi) - Pr/(Q(G) :S Vi)1 < m
p

where Pr/(Q(G) :S Vi) is the probability computed using Equation 7.11.

Proof. We only need to show that each time when we integrate one connected component

Gt (2 :S t :S m), we introduce an approximation error of ~.

Let gt(Vi) = Pr(Q(G) :S Vi) = Lx<v ft(x) and gt-1(Xb) = Lx<x ft-1(X). Then,_ • _ b

according to Theorem 7.5,

xn

gt(Vi) = L Pr(Gt,xd)' gt-1(Vi - Xd)
Xd=O

where X n is the number of cliques in Gt .

Let g~-l (Xb) = Pr/(Q(G) :S Vi) = LX:SXb f;-l (x) where f;-l (x) is the approximation of

ft-1(X) using Equation 7.11, then

Xn

9~(Vi) = L Pr(Gt , Xd) . g~-l (Vi - Xd)
Xd=O

Therefore,

Xn

19t(Vi) - 9~(Vi) I = I L Pr(Gt , Xd) . (9t-1 (Vi - Xd) - 9~-1 (Vi - Xd)) I
Xd=O

Let x~ (1 :S c:S p) be the p-quantiles of ft-1 (x). Suppose x~_l :S Vi-Xd :S x~ (1 :S c :S p),

there are two cases:
.. x~_l+x~ / c-1 c-1 cFIrSt, If Vi - Xd :S 2 ' then 9t-1 (Vi - Xd) = p and p :S 9t-1 (Vi - Xd) :S p' Thus,

O:S 9t-1(Vi - Xd) - g~_l(Vi - Xd):S~'
I + I

Second, ifvi-Xd > xc_~ xc, theng~_l(vi-Xd)= ~ and C;l:s gt-1(Vi-Xd):S~' Thus,

-~ :S 9t-1(Vi -Xd) - 9~_1(Vi - Xd) :S O.

In both cases, 19t-1(Vi - Xd) - g~_l(Vi - xd)1 :S ~. Therefore,

•
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Using the above approximation method, the overall complexity of computing the ap­

proximate k equi-depth histogram answer is O(mp2), where m is the number of connected

components.

Sum/A verage Queries

The query answering algorithm for count queries can be extended to evaluate sum and

average queries with minor changes.

To answer a sum query Q;unp we apply the same preprocessing techniques discussed in

Sections 7.3 and 7.4. The only difference is that the private vertices in the same clique with

the same value in attribute A are compressed as one vertex. When scanning each clique,

the sum distribution of its subtree are computed and passed to its parent clique. The overall

complexity is O(n2), where n is the number of values in Vmin, the smallest value of any

linkage in attribute A, and Vmax , the sum of the values of all linkages in attribute A. The

average query can be evaluated similarly.

7.6.3 Min and Max Queries

A min query Q~in is a special top-k query with k = 1. For a vertex Vi whose value in

attribute A is Xi. The min probability of Xi is the probability that Vi is ranked at the first

place in possible worlds. Therefore, the query answering techniques discussed in Sections 7.3

and 7.4 can be directly applied to answering min queries. The only difference is that we

want to derive the histogram answers to a min query.

The min probability of Xi = vi.A can be bounded as

(7.12)

•

where Gj ~ G and Gj n Si-l ¥- 0.
Let 7r(Xi) = ITGj<;G,viItGj Pr(l\vEGinSi_l'v), we can derive the following pruning rule.

Theorem 7.9 (Pruning rule). Given a PME-graph G, a min query Q on attribute A, a

bucket width parameter TJ, and a minimum probability threshold 7, let S be the ranked list of

linkages on attribute A and Xi = viA be the value of the i-th vertex in S, if 7r(Xi) < ~, then

for any interval tuple (¢j,Pj) where ¢j = [vmin+(j-1)'TJ, Vmin+j'TJ] and vmin+(j-1)'TJ :S Xi,

Pj < 7-

Proof. The theorem follows with Equation 7.12 directly.
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Name

Larry Stonebraker 35
Richard Ramos 45

Catherine Spicer 46
Bruce Mourer 47
Jason Haddad 51
Angelina Amin 53

Jo Avery 53
Nicola Stewart 54

Alvin Wood 54
Gerald McMullen 55

Table 7.1: The top-10 youngest patients in the cancer registry.
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Name ~ Top-10 probability I
Larry Stonebraker 35 0.8375
Catherine Spicer 46 0.775

Bruce Mourer 47 0.87875
Jason Haddad 51 0.85625
Angelina Amin 53 0.885

Jo Avery 53 0.7975
Nicola Stewart 54 0.8575

Tiffany Marshall 57 0.86
Bridget Hiser 58 0.778

Table 7.2: The patients in the cancer registry whose top-10 probabilities are at least 0.3.

Theorem 7.9 states that, for a tuple interval cPj, once the smallest value in the interval

cPj is smaller or equal to Xi, its min probability is smaller than ~. Thus, the interval tuple

is not output.

To compute the answer distribution of a maximum query Qf:ax, we can apply the same

methods as for processing the minimum query. The only difference is, the linkages are

ranked in the descending order of their values in attribute A. The details are omitted for

the interest of space.

The complexity of computing the probability of Xi being the minimal value is O(n2 )

where n is the number of cliques in the PME-graph.
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Figure 7.8: Answer to query: the number of patients appearing in both data sets.
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Figure 7.9: Answer to query: the average age of the patients appearing in both data sets.

7.7 Empirical Evaluation

In this section, we report a systematic empirical study. All experiments were conducted

on a PC computer with a 3.0 GHz Pentium 4 CPU, 1.0 GB main memory, and a 160 GB

hard disk, running the Microsoft Windows XP Professional Edition operating system, Our

algorithms were implemented in Microsoft Visual Studio 2005.

7.7.1 Results on Real Data Sets

First, we apply the ranking queries and aggregate queries on the Cancer Registry data set

and the Social Security Death Index provided in Link Plus 2.01
.

lhttp://www.cdc.gov/cancer/npcr/tools/registryplus/lp.htm
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Figure 7.10: Answer to query: the minimal age of the patients appearing in both data sets.

The Cancer Registry data set contains 50,000 records and each record describes the

personal information of a patient, such as name and SSN. The Social Security Death Index

data set contains 10,000 records and each record contains the personal information of an

individual, such as name,SSN and Death Date. Since the information of some records are

incomplete or ambiguous, we cannot find the exact match for records in the two data sets.

Link Plus is a popularly used tool that computes the probability that two records re­

ferring to the same individual. It matches the records on the two data sets based on name,

SSN and Date of Birth and returns 4,658 pairs of records whose linkage probabilities are

greater than O. The system suggests that a user should set a matching linkage probability

threshold. The pairs of records passing the threshold are considered matching. If we set

the threshold as the default value 0.25 suggested by the system, only 99 pairs of records are

returned.

First, we want to find the top-10 youngest patients in the cancer registry and reported

death. Therefore, we ask a probabilistic top-k query with k = 10 and p = 0.3. For each

linked pair, we use the average ages in the Cancer Registry and the Social Security Death

Index. If we only consider the linked pairs whose probability pass the matching threshold

0.25, then the top-10 youngest patients with their edges are shown in Table 7.1. However, we

consider all linked pairs whose matching probabilities are greater than 0 and find the patients

whose top-10 probability is greater than 0.3, we can the results as shown in Table 7.2.

Then, we ask the following count query on the data sets: what is the number of patients

appearing in both data sets? The histogram answers are shown in Figure 7.8 It is far from

the 99 returned on the linked pairs passing the matching threshold.
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Figure 7.11: Efficiency and scalability of PTK query evaluation.

Moreover, an average query finds out the average age of the patients appearing in both

data sets. If only the 99 records whose matching probabilities are above 0.25 are considered,

the average age is 71.7. However, if we compute the probability distribution of the average

age over all linked pairs, the answer is very different. The histogram answers are shown in

Figure 7.9.

Last, it is also interesting to know the smallest age of the patients who are in the cancer

registry and reported death. Therefore, we ask a min query: what is the minimal age of

the patients appearing in both data sets? For each linked pair, we use the average ages in

the Cancer Registry and the Social Security Death Index. If we only consider the linked

pairs whose probability pass the matching threshold 0.25, then the minimum age is 35.

However, by considering all linked pairs whose matching probabilities are greater than 0,

we can obtain the histogram answers as shown in Figure 7.10.

The above three queries illustrate the difference between the answers to aggregate queries

on probabilistic linkages and the answers computed only on the linked pairs with high con­

fidence, which clearly shows the effectiveness of aggregate queries on probabilistic linkages.
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Figure 7.12: Efficiency and scalability of count query evaluation.

7.7.2 Results on Synthetic Data Sets

We evaluate the efficiency and the effectiveness of the query answering techniques in syn­

thetic data sets with different parameter settings.

A data set contains Nl linkages in tables A and B containing Nt tuples each. In the cor­

responding PME-graph, the degree of a tuple denotes the number of other tuples (maximal

cliques) it connects to. The degree of each tuple follows the Normal distribution N(J-Lt, at).

A data set contains N c connected components. We generate the linkages as follows. First,

for each tuple tA E A, a set of linkages are generated associating with tAo Then, for each

tuple tB E B, we randomly pair the tuples in A to tB. In order to avoid loops, once a linkage

£(tA, tB) is created, all tuple tAE A that are in the same connected component with tA

cannot be assigned to tB. The membership probability of each linkage is randomly assigned

and normalized so that the probability of each tuple is between (0,1].

By default, a synthetic data set contains 20, 000 linkages between tables A and B with

5, 000 tuples each. The degree of a tuple follows the Normal distribution N (4, 1). The
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Figure 7.13: Efficiency and scalability of sum query evaluation.

bucket width TJ = 1000 and the minimum probability threshold T = 0.1. The parameter k

for equi-depth histogram answer is set to 10. We set parameter k = 1000 and p = 0.4.

First, we evaluate the efficiency and scalability of the query answering methods. All

algorithm developed are scalable when the number of linkages is as large as 100, 000.

Figures 7.11(a) to (d) show the runtime of the query answering methods for proba­

bilistic threshold top-k queries in various parameter settings. Exact-topk is described in

Algorithm 7.1. Reuse denotes the algorithm with the reusing technique and Reuse+pruning

denotes the algorithm with both the reusing technique and the pruning technique.

Figures 7.12(a) to (d) show the runtime of the query answering methods for count queries

in various parameter settings. Exact-count is the exact algorithm. Equi-width and Equi­

depth denotes the algorithms using the approximation techniques discussed in Sections 7.6.2

and 7.6.2, respectively. By default, E = 10-4 and p = 30.

In Figure 7.12(a), we fix the number of tuples to 5, 000 and the expected degree of each

tuple is 4. The runtime of all three algorithms increase mildly as the number of linkage

increases from 20, 000 to 100, 000, thanks to the vertex compression technique discussed in
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Figure 7.14: Efficiency and scalability of min query evaluation.

Section 7.3.3.

In Figure 7.12(b), we fix the expected degree of each tuple to 4 and increase the number

of tuples in the data set. The runtime of the exact-count algorithm increases quadratically.

The runtime of the two approximation algorithms increases very slightly.

Figure 7.12(c) shows the increase of runtime with respect to the degrees of tuples. The

larger the degree, the more times of convolution are performed in the query evaluation.

Therefore, the runtime of all three algorithms increases linearly with respect to the expected

degree.

Last, Figure 7.12(d) illustrates the change of runtime when the number of connected

components increases.

Figures 7.13(a) to (d) show the runtime of the sum query evaluation in the same setting

as in Figure 7.12. The results on the sum query evaluation demonstrate the similar patterns

as in the count query evaluation. But the overall cost for the sum query evaluation is higher

than that of the count query evaluation, since it depends on the number of values appearing

in the result distribution.
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Figures 7.14(a) to (d) show the efficiency of the min query evaluation. Exact-min denotes

the algorithm that transforms the min query to a set of count queries. Reuse denotes the al­

gorithm that explores the sharing of computation among different linkages. Reuse+Pruning

denotes the algorithm that applies the pruning technique discussed in Section7.5.3 in ad­

dition to the reuse method. It is shown that the two techniques improve the efficiency

significantly.

Last, we evaluate the quality of the two approximation algorithms discussed in Sec­

tions 7.6.2 and 7.6.2, respectively.

The quality of E-approximate euqi-width histogram answers are computed as

1 '\' 1 11(4))-!(4>)1 h f("')' h b b'l' f . t I '" d f~("') .1{4>JJ(4))>T}1 LJ!(4))>T - !(4)) , were 'I' IS t e pro a Ilty 0 III erva 'I' an 'I' IS

the probability of x E ¢ estimated by the approximation method. The results are shown in

Figure 8.11(a), with respect to different E values lO-x (x = 3,4,5,6,7). The precision and

recall are also plotted.

Figure 8.11 (b) illustrates the approximation quality of the answers to both count and

sum queries using the p quantiles. The quality is measured using -k I:7=1 1 - Ij(V'i(~gvi)l,

where Vi is the value output as the approximation of the i-th k-quantile, j(Vi) is probability

computed using the approximation method and f(Vi) is the real probability of Vi.

7.8 Summary

In this chapter, we investigate ranking queries evaluation on probabilistic linkages. In con­

trast to the traditional methods that use simple probability thresholds to obtain a set of



CHAPTER 7. RANKING QUERIES ON PROBABILISTIC LINKAGES 213

deterministic linkages, we fully utilize the probabilities produced by the record linkage meth­

ods and consider the linked records as a distribution over possible worlds. By preserving

the distribution information, we can provide more meaningful answers to aggregate queries,

as illustrated in Section 7.7.1.

Moreover, we extend the ranking query evaluation method to answer aggregate queries.

Efficient approximation and pruning techniques are developed.



Chapter 8

Probabilistic Path Queries on Road

Networks

Path queries such as "find the shortest path in travel time from my hotel to the airport" are

heavily used in many applications of road networks. Currently, simple statistic aggregates

such as the average travel time between two vertices are often used to answer path queries.

However, such simple aggregates often cannot capture the uncertainty inherent in traffic.

To capture the uncertainty in traffic such as the travel time between two vertices, in

Section 2.3.3, we modeled the weight of an edge as an uncertain object that contains a set

of samples. Moreover, we proposed three novel types of probabilistic path queries.

• A probabilistic path query asks a question such as "what are the paths from my hotel

to the airport whose travel time is at most 30 minutes with a probability of at least

90%?"

• A weight-threshold top-k path query asks a question like "what are the top-3 paths from

my hotel to the airport with the highest probabilities to take at most 30 minutes?"

• A probability-threshold top-k path query asks a question like "in terms of the travel

time of a path guaranteed by a probability of at least 90%, what are the top-3 shortest

paths from my hotel to the airport?"

To evaluate probabilistic path queries efficiently, in this chapter, we first develop three

efficient probability calculation methods: an exact algorithm, a constant factor approxi­

mation method and a sampling based approach. Moreover, we devise the P* algorithm, a

214
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Figure 8.1: The weight constrained region of PI = (A, B, D, E) when WBD takes sample
20.

best-first search method based on a novel hierarchical partition tree index and three effec­

tive heuristic estimate functions. An extensive empirical study using real road networks and

synthetic data sets shows the effectiveness of the proposed path queries and the efficiency

of the query evaluation methods.

8.1 Probability Calculation

There are two orthogonal issues in answering a path query Q[(u, v): the l-weight probability

calculation and the path search. In this section, we first discuss how to compute the exact

l-weight probabilities for paths. Then, two approximate algorithms are presented. We also

present a straightforward depth-first path search method. An efficient best-first path search

algorithm will be introduced in Section 8.2.

8.1.1 Exact [-Weight Probability Calculation

How can we calculate the l-weight probability of a path P when the edge weights are

correlated? We can partition Pinto subpaths such that they are conditionally independent,

as illustrated in the following example.

Example 8.1 (l-weight constrained region). Let l = 55 and T = 0.5. Consider path

query QT(A, E) and path P = (A, B, D, E) in the probabilistic graph in Figure 2.6.

P contains three edges el = (A, B), e3 = (B, D) and e6 = (D, E). The joint probabil­

ities !Q,e3 and !e3,e6 are given in Figures 2.6(c) and 2.6(d), respectively, which specify the

correlation between edges. Weights we! and w e6 are conditionally independent given w e3 .
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The conditional probability of wq given we3 = 20 is

j, (I) Ie e (x 20) {0.375, X = 10 or x = 15;x 20 - 1,3' -
qle3 - 1e3(20) - 0.25, x = 20.

The conditional probability of we6 given we3 = 20 is

j, (I) Ie e (x 20) {0.25, x = 10 or x = 50;x 20 - 6'3' -
e61 e

3 - 1e3(20) - 0.5, x = 20.

The probability that Wp is at most i when we3 = 20 is

Pr[wp ::::; 551we3 = 20]

L Pr[wq = XI,We6 = x31we3 = 20]
Xl +x3~35

L f q le3 (xI120) . fe61e3 (x3120)
Xl +x3~35

The sets of samples and their membership probabilities of f e lle3 (xI120) and f e61 e3 (x3120)

are {10(0.375), 15(0.375), 20(0.25)} and {20(0.25), 20(0.5), 50(0.25)}, respectively. We sort

the samples in the weight ascending order.

There are in total 3 x 3 = 9 samples on w q X we6 when we3 = 20. To enumerate all

samples, we can build a 3 x 3 sample array M as shown in Figure 8.1. Cell M[i,j] stores

two pieces of information: (1) M[i,j].ws is the sum of the i-th sample of WeI and the j­

th sample of we6 ; and (2) M[i,j].pr is the membership probability of sample M[i,j].ws

which equals the product of the corresponding membership probabilities. For example, the

lowest left-most cell M[l, 1] corresponds to a sample where WeI is 10 and we6 is 10. Thus,

M[l, l].ws = 10 + 10 = 20 and M[l, l].pr = 0.375 x 0.25 = 0.09375.

When we3 takes sample 20, in order to satisfy W PI ::::; 55, the samples of wq +W e6 should

take values of at most 35. Those samples are at the lower-left part of the array. We call

the region of those cells the i-weight constrained region when we3 = 20. The sum of the

membership probabilities of the cells in the region is 0.625.

The i-weight constrained region when we3 takes other samples can be calculated similarly.

When we3 = 25 and W e3 = 30, the sum of the membership probabilities of the cells in the

i-weight constraint regions are 0.53125 and 0, respectively. FPl (55) = f e3 (20) x 0.625 +
f e3(25) x 0.53125 + f e3(30) x 0 = 0.4625 < T. PI is not an answer to Qr •

The idea in Example 8.1 can be generalized to paths of arbitrary length.
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Figure 8.2: A path Pm.

Theorem 8.1 (Path weight distribution). Let Pm = (VI, ... ,Vm+l), Pm - l =
(VI, ... ,vm) and em = (Vm,Vm+l) (m> 2), the conditional probability of WPm given wem is

fPmlem (xly) = L fem-llem (zly) x fPm-llem- 1(x - ylz)
Z~X-Y

Moreover, the probability mass function of WPm is

(8.1)

(8.2)

Proof. Pm contains subpath Pm-2 and edges em-l and em, as illustrated in Figure 8.2.

Therefore,

fPmlem (xly) = Pr[wPm_1 = x - ylwem = y]

= L::zl+Z2=X-y Pr[wPm-2 = ZI,Wem_1 = z21wem = y]

Using the basic probability theory,

Pr[wPm_2 = ZI,Wem_1 = z21wem = y]

= Pr[wem_l = z21wem = y]Pr[wPm_2 = zllwem _ l = Z2]

Since Zl + Z2 = X - y, we have

Thus, Equation 8.1 holds. Equation 8.2 follows with the basic principles of probability

theory. _

For a path Pm = (VI, ... ,Vm+l), the probability function of wPm can be calculated from

WPm_1 and wem using Theorem 8.1. Calculating the probability mass function of Pm requires

O(IWPm_11 . IWem I) = O(TIeEPm lWei) time.

Interestingly, if only FPm (l) is required, we do not need to use all samples in an edge

weight. The largest sample we can take from wei (1 ::; i ::; m) is bounded by the following

rule.



CHAPTER 8. PROBABILISTIC PATH QUERIES ON ROAD NETWORKS 218

Lemma 8.1 (Sample components). For weight threshold l and path P = (VI, ... ,Vm+l),

a sample Xij of edge ei = (Vi, Vi+d (1 ~ i ~ m) can be a component of a sample of P in the

l-weight constrained region only if Xij ~ l - Lil7'"i Xi~, where Xi~ is the smallest sample of

edge ei' = (Vii, vi'+d.

Proof. Since one and only one sample should be taken from each edge in a possible world,

the sum of the minimal sample from each edge in P is the smallest weight of P. Thus, the

conclusion holds. _

8.1.2 Approximating I-Weight Probabilities

The probability mass function of FPm+l (l) can be calculated from the distributions on fPmlem

and fem Ifem+l according to Theorem 8.1. To accelerate probability calculation, we introduce

an approximation method that keeps a constant number of samples in the weight distribution

of any subpath during the search.

If WPm contains n > 2t samples Xl, ... ,Xn (t is a user defined parameter), then we divide

those values into b exclusive buckets <Pi = [X Zil xzd, where,

Zl = 1, Zk = z~_l + 1, for 1 < k ~ b;

z~ = max{jlFpmlem (Xj Iy) - FPml em (X Zi Iy) ~ ~t}' for 1 ~ i ~ b
J?Zi

The number of buckets is at most 2t, as shown in the following lemma.

(8.3)

Lemma 8.2 (Number of buckets). Given wPm with n samples (n > 2t > 0), let <Pi =

[XZil xzd (1 ~ i ~ b) be b exclusive buckets satisfying Equation 8.3, then b ~ 2t.,
Proof. In the worst case, each bucket only contains one value in wPm' which means that

the probability sum of any two consecutive values in wPm is greater than t. Then, if the

number of values in wPm is greater than 2t, the probability sum of all values in wPm will be

greater than 1, which conflicts with the fact that WPm is a discrete random variable. _

Constructing the buckets only requires one scan of all values in wPm' The minimal value

in bucket <Pi = [XZilXZI] is min(<Pi) = XZi ' and the maximal value in <Pi is max(<Pi) = XZI., ,
When computing the probability distribution of WPm+l using wPm' we only select one value

in each bucket <Pi C WPm as a representative, and assign Pr(<Pi) to the representative.

If min(<Pi) is selected as a representative, then the so computed Fp' (l) is greater than
m+l

Fpm+l (l); if max(<Pi) is used as a representative, then the so computed FJ,m+l (l) is smaller

than FPm+1 (l).
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Figure 8.3: The upperflower bound of Fpm+l (l).

Example 8.2 (Bucket Approximation). Consider path Pm and edge em' Let

fPmlem (xjly) = 0.2 for 1 :S j :S 5. If t = 2, then all values in wPm are divided into

three buckets: [Xl, X2], [X3, X4], [X5, X5], with probability 004,004 and 0.2, respectively.

If the minimal value of each bucket is used as a representative, then Xl, x3 and X5 are

selected. As a result, the l-weight constrained region of Pm+l is increased such that the

shaded area is included. So the calculated F~m+l (l) is greater than the actual Fpm+l (l).

If the maximal value of each bucket is used as a representative, then X2, X4 and X5 are

selected. The l-weight constrained region of Pm +l is decreased such that the shaded area is

excluded. So the calculated F~m+l (l) is smaller than the actual Fpm+l (l). •

Therefore, the average value of Fp' (l) and Fp" (l) can be used to approximate them+l m+l

actual Fpm +l (l). The approximation quality is guaranteed by the following lemma.

Lemma 8.3 (Approximation quality). Given a real value l > 0 and an integer t > 0,

let {¢i = [XZi' x z']} be a set of buckets of wp . Let Fp' (l) and Fp" (l) be the l-weight
i m m+l m+l

probabilities computed using {min(¢i)} and {max(¢i)}, respectively, then,

F' (l) F" (l) < 1Pm+l - Pm+l - t (804)

Moreover,
~ 1

IFpm+l (l) - Fpm+l (l) I :S 2t

F' (1)+F" (I)
h F~ (l) - Pm+l Pm+lwere Pm +l - 2 .

(8.5)
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Proof. Fp' (l) - Fp" (l) is the sum of the probability of the shaded area in Figures 8.3(a)
m+l m+l

and 8.3(b). In each bucket bi , the width of the shaded area is Pr(bi ) < t. The length sum

of all pieces of shaded are is at most 1. Thus, the probability of the shaded area is at most

t x 1 = t. Inequality 8.4 is proved.

Conclusion 8.5 is derived from Inequalities 8.4 directly. _

After obtaining the approximate probability distribution of WPm+I' we can further divide

the approximate WPm+1 into buckets, and compute the approximate probability distribution

of WPm +2. By applying the bucket approximation iteratively, we finally obtain an approx­

imate l-weight probability of path P, and the approximation quality is guaranteed by the

following theorem.

Theorem 8.2 (Overall approximation quality). Given a real value l > 0, an integer

t > 0, and a path P = (VI, ... ,Vm+l) containing m edges, let Fp(l) be the exact l-weight

probability and Fp(l) be the approximate l-weight probability computed using iterative bucket

approximation, then IFp(l) - Fp(l)1 :S m2t l.

Proof. P contains m edges, so m -1 steps of bucket approximation are needed to compute

the probability distribution of P. We prove the theorem using Mathematical Induction.

In the first step (computing the probability of P3 = (VI,V2,V3), we have IFp3(l) ­

Fp3(l)1 :S ft, which is shown in Lemma 8.3.

Suppose the conclusion holds for the (j -l)-th step (computing the probability of PHd.

That is,

(8.6)

for any real value l > O.

To compute the probability distribution of WPj+2' the approximate weight of WPj+l is

divided into buckets, such that the probability of each bucket bi = [Xi, x~] is at most t. Since

the buckets are constructed based on the approximation probability distribution of PHI,
- ......... ......... 1 .-

we have Pr(bi ) = Fpj+l (x~) - Fpj+l (X~_I) :S I· From Inequality 8.6, we have IFpj+1 (x~) -

Fpj+l (xDI :S iiJ and IFpj+l (X~_I) - Fpj+l (x~_I)1 :S iiJ, the actual probability of bi is

Pr(bi ) = Fpj+l (x~) - Fpj+l (x~_I) = t + iiJ x 2 = f. Using the similar proof of Lemma 8.3,

the approximation quality of PH2 (the j-th step) can be derived as IFpj+2 (x) - Fpj+2(X) I :S
J...
2t"

To compute the distribution of P, there are overall m - 1 steps. Thus, the conclusion

holds. -
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The complexity is analyzed as follows. Lemma 8.2 shows that there are at most 2t

buckets constructed in the approximation. Therefore, calculating the approximate fPHI (x)

from fPi and fei(X) (i ~ 2) takes O(t x IweJ) time. The overall complexity of computing

fm+I(X) is 0(tL2:Si:Sm lWei!)·

8.1.3 Estimating [-Weight Probabilities

The i-weight probability of a path can also be estimated using sampling. For a path P =

(VI, ... , Vm +I), let X P be a random variable as an indicator to the event that w P ~ i.

Xp = 1 if Wp ~ l; Xp = 0 otherwise. Then, the expectation of Xp is E[Xp] = Fp(l).

To estimate E[Xp], we draw a set of samples uniformly with replacement. Each sample

unit s is an observation of the path weight, which is generated as follows. At first, s is set to

O. Then, for edge el E P, we choose a value Xl in weI following the probability distribution

fq (x). Then, for each edge ei E P (2 ~ i ~ m), we choose a value Xi in wei following the

probability distribution of feilei-I (XIXi-I). The chosen value is added to s. Once the weight

values of all edges have been chosen, we compare s with i. If s ~ l, then the indicator Xp

for s is set to 1, otherwise, it is set to O.

We repeat the above procedure until a set of samples 8 are obtained. The mean of X p

in 8 is Es[Xp], which can be used to estimate E[Xp]. If the sample size is sufficiently large,

the approximation quality is guaranteed following with the well known Chernoff-Hoeffding

bound [7].

Theorem 8.3 (Sample size). Given a path P, for any 0 (0 < 0 < 1), t (t > 0), and a set
31n .:!

of samples 8 of P, if lSI ~ ~ then Pr{IEs[Xp] - E[Xp]I > t} ~ 0.

Proof. The theorem is an immediate application of the well known Chernoff-Hoeffding

bound [7]. •

The complexity of estimating E[Xp] is 0(181 . IP!), where 181 is the number of samples

drawn and IFI is the number of edges in P.

8.1.4 A Depth First Search Method

Straightforwardly, the depth-first path search method can be used to answer a path

query Q[(u, v). The search starts at u. Each time when a new vertex Vi is visited, the

weight probability mass function of the path P = (u, ... ,Vi) is calculated, using one of the
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three methods discussed in this section. If Vi = V and Fp(l) ~ T, then P is added to the

answer set.

Since weights are positive, as more edges are added into a path, the i-weight probability

of the path decreases. Therefore, during the search, if the current path does not satisfy the

query, then all its super paths should not be searched, as they cannot be in the answer set.

Lemma 8.4 (Monotonicity). Given a path P and its subpath pi, and a weight threshold

l > 0, Fp(l) ~ Fp,(l). •

The overall complexity of the depth-first path search algorithm is O(L,pEP C(P)), where

P is the set of visited paths and C(P) is the cost of the i-weight probability calculation. If

the exact method is used, then C(P) = fleEP lWei. If the bucket approximation method is

used, then C(P) = 4t x L,eEP lWei, where t is the bucket parameter. If the sampling method

is used, then C(P) = lSI x IPI, where lSI is the number of samples and IPI is the number

of edges in P.

The method can be extended to answer top-k path queries as following. To answer a

WT top-k path query, the probability threshold T is set to 0 at the beginning. Once a

path between u and V is found, we compute its i-weight probability, and add the path to

a buffer. If the buffer contains k paths, we set T to the smallest i-weight probability of

the paths in the buffer. During the search, when a new path is found between u and V

and satisfying the threshold T, it is added into the buffer. At the same time, the path in

the buffer with the smallest i-weight probability is removed from the buffer. T is updated

accordingly. Therefore, during the search, the buffer always contains at most k paths. At

the end of the search, the k paths in the buffer are returned.

A PT top-k path query can be answered following the similar procedure. We set the

weight threshold l = +00 at the beginning. During the search, a buffer always stores at

most k found paths between u and v with the smallest T-confident weights. l is set to the

value of the smallest T-confident weight of the paths in the buffer. The k paths in the buffer

at the end of the search are returned as the answers.

Limited by space, hereafter, we focus on answering probabilistic path queries and omit

the details for top-k path query evaluation.
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8.2 P*: A Best First Search Method

Although the approximation algorithms presented in Section 8.1 to accelerate the proba­

bility calculation, it is still computationally challenging to search for all paths in real road

networks. In this section, we present the p* algorithm, a best first search algorithm for

efficient probabilistic path query evaluation

p* carries the similar spirit as the A* algorithm [94, 153]. It visits the vertex that is

most likely to be an answer path using a heuristic evaluation function, and stops when the

rest unexplored paths have no potential to satisfy the query. However, the two algorithms

are critically different due to the different types of graphs and queries.

A* is used to find the shortest path between two vertices u and v in a certain graph.

Therefore, the heuristic evaluation function for each vertex Vi is simply the sum of the actual

distance between u and Vi and the estimated distance between Vi and v.

P* aims to find the paths that satisfy the weight threshold l and probability threshold

p between two vertices u and V in a probabilistic graph with complex correlations among

edge weights. Therefore, the heuristic evaluation function for each vertex Vi is the complex

joint distribution on a set of correlated random variables. This posts serious challenges in

designing heuristic evaluation functions and calculation.

In this section, we first introduce the intuition of the P* algorithm. Then, we design

three heuristic evaluation functions that can be used in the P* algorithm. In Section 8.3, a

hierarchical index is developed to support efficient query answering using the p* algorithm.

8.2.1 The P* Algorithm

To answer a probabilistic path query QT (u, v), we search the paths from vertex u. The

situation during the search is illustrated in Figure 8.4. Generally, before we decide to visit a

vertex Vi, we want to evaluate how likely Vi would be included in an answer path. Suppose

PI is the explored path from u to Vi, and P2 is an unexplored path from Vi to V, then the

probability distribution of the path P from u to V that contains PI and P2 is given by the

following theorem.

Theorem 8.4 (Super path probability). Let PI = (u, ... ,Vi), P2 = (Vi' ... ' V) such

that (PI n P2 = {Vi}) and e = (Vi-I, Vi), the l-weight probability of super path P =
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Figure 8.4: p* search process.

(u, ... ,Vi, ... , V) is

Fp(l) = L !?I,e(XI,Y) x !P2Ie(X2Iy)
Xl +y+x2:":1

Proof. The weight of P is WP = WPI + WP2' Therefore,

Fp(l) = Pr[wp :S I] = Pr[wPI + WP2 :S I]

L:xI+X2:":1 Pr[wPI = XI,WP2 = X2]

L:x +x <I Pr[wPI = xdPr[wP2 = X21WPI = Xl]I 2_

Since WPI and WP2 are conditionally independent given We, we have

Equation 8.7 follows directly.

(8.7)

•
In Equation 8.7, !?I,e(XI,Y) can be easily calculated according to Theorem 8.1. It also

can be computed using the approximation methods discussed in Section 8.1. However,

!P2Ie(X2Iy), the probability distribution of P2 given edge e, is unknown.

The objective of p* is to find a good heuristic estimate hp2Ie (X2Iy) for !P2Ie(X2Iy), such

that Fp(l) can be estimated before visiting Vi. Then, the vertex with the higher estimated

Fp(l) is visited earlier. The estimated Fp(l) is used as a heuristic evaluation function

of vertex Vi:

i::J.(vi,l) = Fp(l) = L !?I,e(XI,Y) x hP2 Ie(X2Iy)
Xl +y+x2:":1

(8.8)

In order to answer a query QT(u, v), p* starts from u. For any vertex Vi adjacent to u,

p* calculates i::J.(Vi, I) and puts Vi into a priority queue. Each time, P* removes the vertex

Vi with the highest i::J. (Vi, I) from the priority queue. After Vi is visited, the i::J. scores of other

vertices are updated accordingly. A path P is output if V is reached and Fp(l) ~ T. The
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algorithm stops if the priority queue is empty, or the ~ scores of the vertices in the priority

queue are all smaller than T.

In order to guarantee that p* finds all answer paths, the heuristic evaluation function

should satisfy the following requirement.

Theorem 8.5 (Heuristic evaluation function). p* outputs all answer paths if and only

if for any path P = (u, ... ,Vi,· .. ,V), ~(Vi, l) 2 Fp(l).

Proof. If there is a path P such that ~(Vi, l) < T :S Fp(l). Then, P will not be returned

by P* but it is actually an answer path. _

~(Vi, l) is called a valid heuristic evaluation function if ~(Vi, l) 2 Fp(l).

8.2.2 Heuristic Estimates

It is important to find a good heuristic estimate hp2Ie (x2Iy) so that the evaluation function

~ (Vi, l) is valid and close to the real Fp (l). In this subsection, we first present two simple

heuristic estimates that satisfy Theorem 8.5. Then, we derive a sufficient condition for valid

heuristic estimates, and present a more sophisticated heuristic estimate.

Constant Estimates

Trivially, we can set

X2 2 0;

otherwise.

Then, the evaluation function becomes

~(Vi, l) = L fPI,e(XI, y) = Fpl (l)
Xl +y:S1

In this case, at each step, p* always visits the vertices Vi that maximize the l-weight

probability of PI = (u, ... ,Vi). The subpaths (u, ... ,Vj) whose current l-weight probability

is smaller than T are pruned.

Example 8.3 (Constant estimates). Consider the probabilistic graph in Figure 2.6. To

answer a query Q~l(A,E). The search starts from A. Using the constant estimates, the

evaluation functions for Band Care:

~(B, 15) = L fAB(XI) = 0.6, and ~(C, 15) = L fAc(xI) = 1.0.
xl:S15 xl:S15
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Since ~(C, 15) is larger, C should be explored first. •

The constant value estimates are easy to construct. But clearly, the constant value

estimates do not consider the relationship between the current vertex to the unvisited end

vertex v.

Min-Value Estimates

To incorporate more information about the unexplored paths into decision making, we

consider the minimal possible weights from the current vertex Vi to the end vertex v. We

construct a certain graph G' with the same set of vertices and edges as the uncertain graph

G. For each edge e, the weight of e is the minimal value in We of G. Let lrin be the weight of

the shortest path between Vi and V, excluding the visited edges. Let the estimation function

be
X _lmin.

2 - i ,

otherwise.

The evaluation function becomes

~(Vi, l) = LXl+y+liin:S:1 !Pl,e(Xl, y) x hP2 Ie(lr
in ly)

= LXl +y:S:I-liin !he(Xl, y)

= Fpl (l -lrin )

The search algorithm always visits the vertex Vi that maximizes the (l - lrin)-weight

probability of Pl = (u, ... ,Vi). The subpaths (u, ... , Vj) whose (l_l.lin )-weight probabilities

are smaller than T are pruned.

Example 8.4 (Min-value estimates). Consider the probabilistic graph in Figure 2.6

and query Q~53(A, E) again. Using the min-value estimates, we construct a certain graph

G' with weights WAB = 5, WAC = 5, WBD = 20, WBE = 5, WCE = 10, and WDE = 10.

The shortest distance from B to E through the unvisited edges in G' is 5. The evaluation

function for B is ~(B, 15) = LXl95-5 !AB(Xl) = 0.3. The shortest distance from C to E

in G' is 10. The evaluation function for C is ~(C, 15) = LXl95-1O!Ac(Xt) = 0.2. Since

~(B, 15) is larger, B should be explored first. Moreover, there is no need to visit C further

because ~(C, 15) < T. •

Compared to the constant estimates, the min-value estimates consider more information

about the unexplored paths, and give priority to the vertices that are closer to the end
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Figure 8.5: CDFs of "virtual optimal" edges and paths.

vertex v and are more likely to satisfy the query. The drawback of the min-value estimates

is that they do not consider the probabilistic distribution of unexplored paths.

Stochastic Estimates

How can we incorporate the probability distribution information of the unexplored paths in

heuristic estimates? Let Pz = {Pz I , ... , Pzm } be all paths from Vi to v that do not contain

any visited vertices except for Vi. We can construct a "virtual path" Popt = (Vi, .. . ,V) such

that for any real number x and PZi E Pz, Fpopt(x) ~ Fp2i (x).

Definition 8.1 (Stochastic order [162]). For two random variables rl and rz with dis­

tribution functions Fri (x) and Fr2 (x), respectively, rl is smaller than rz in stochastic order

if for any real number x, Fri (x) ~ Fr2 (x). •

Definition 8.2 (Stochastic dominance). For two paths PI and Pz, PI stochastically

dominates Pz, if WPI' the weight or PI, is smaller than WP2' the weight of Pz, in stochastic

o~e~ •

Popt stochastically dominates all paths in Pz, if wPopt is smaller than any WPi (1 ::; i ::;

m) in stochastic order. An example is shown in Figure 8.5(b). P opt stochastically dominates

(B, D, E). The following theorem shows that Popt can be used to define a valid heuristic

evaluation function.
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Theorem 8.6 (Sufficient condition). Let P2 = {P21l'" ,P2m } be all paths between Vi

and v in graph G. For a path Popt = (Vi, ... ,V), if Popt stochastically dominates all paths in

P2, then

fl(Vi,l) = L f?I,e(xI,y) x fPopt (x2)
Xl+Y+X2:'O:l

is a valid heuristic evaluation function for P*.

Proof. Compare two paths P = PI + Popt and pi = PI + P2i (P2i E P2).

Pr[wp :S l] = L Pr[wPl = x] x Pr[wPopt :S l - x]
x:'O:l

Pr[w~ :S l] = L Pr[wPl = x] x Pr[wP2i :S l- x]
x:'O:l

Since Pr[wPopt :S l - x] ~ Pr[wP2i :S l - x], we have Pr[wp :S l] ~ Pr[w~ :S l]. •
More than one Popt can be constructed. Here we present a simple three-step construction

method that ensures the resulting path is a stochastically dominating path for P2.

Step 1: Constructing the path We find the path P2i in P2 with the least number of

edges. Let n be the number of edges in P2i . We construct n - 1 virtual vertices VI, ... ,Vn-l.

Let Popt = (Vi, VI, ... ,Vn-l ,V). Thus, Popt has the least number of edges among all edges in

P2·

For example, in the probabilistic graph in Figure 2.6, there are two paths between B

and E: PI = (B, E) and P2 = (B, D, E). Since PI only contains one edge, the path Popt

should also contain only one edge.

Step 2: Assigning edge weights Let [, be the set of edges in P2. We want to construct

the weight of an edge eopt in Popt such that eopt stochastically dominates all edges in [,.

We construct weopt as follows. At the beginning, we set weopt = 0. Then, we represent

each sample x E We (e E [,) as a pair (x, Fe(x)). We sort all samples in the value ascending

order. If there are two samples with the same value, we only keep the sample with the

larger cumulative probability. In the next step, we scan the samples in the sorted list. If

weopt = 0, then we add the current sample (x, Fe(x)) into Weopt . Otherwise, let (x', Feopt (x'))

be the sample with the largest value x' in weopt ' We add the current sample (x, Fe(x)) into

weopt if x > x' and Fe(x) > Feopt(x'). Last, we assign weight Weopt to each edge ei E Popt

(l:Si:Sn).
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Example 8.5 (Assigning edge weights). Consider the probabilistic graph in Fig­

ure 2.6. There are two paths between Band E: PI = (B, E) and P2 = (B, D, E).

E = {BD,DE,BE}. The probability mass function of the constructed weight weopt is

{5(0.2), 10(0.1),20(0.6), 30(0.4)}. We opt is smaller than WED, WDE and WEE in stochastic or­

der. The weight cumulative distribution functions of those edges are shown in Figure 8.5(a).

-
Step 3: Assigning the path weight wPopt = LI~i~n wei' The distribution of wPopt

depends on the marginal distribution of wei and the correlations among wei's. If the cor­

relations among edges are explicitly represented, then we just construct wPopt according to

the correlation function.

In most cases, the correlation functions among weights are not available. Therefore, we

want to construct a path weight WPopt that stochastically dominates all possible weights

given the same Wq , ... ,Wen' as defined in the following rule.

Lemma 8.5 (Upper bound). For path Popt containing edges el,.'" en, let xiin be the

smallest sample of weight wei' and lmin = LI~i~n xiin . Then, FPopt (l) :S minl~i~n {Fei (l­

lmin + xiin )}.

Proof. The lemma follows with Lemma 8.1 directly. _

Therefore, for any value l, we assign

The heuristic evaluation function is

b.(vi,l) = L fPl,e(XI,y) X fPopt(x2).
Xl+Y+X2~1

Example 8.6 (Assigning path weights). Continuing Example 8.5, since Popt only con­

tains one edge, the probability distribution of Popt is the same as that of eopt.

As another example, suppose Popt contains two edges el and e2 with the same weight

weopt ' How can we calculate the probability distribution of Popt? The sum of minimal

samples of wq and we2 is 10. Then, FPopt (20) is min{Fq (20 - 10) = 0.3, Fe2 (20 - 10) =

0.3} = 0.3. The cumulative distribution function of Popt is shown in Figure 8.5(b). -

Using the stochastic estimates, in each step, the search algorithm visits the vertex Vi

whose heuristic evaluation function using optimal virtual path Popt is the largest. However,
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Figure 8.6: A partition of a graph.

constructing Popt requires enumerating all possible paths from Vi to V, which is computa­

tionally challenging. Therefore, in the next section, we discuss how to approximate Popt

using a hierarchical partition tree index in real road networks.

8.3 A Hierarchical Index for p*

In this section, we introduce a hierarchical partition tree to index the vertices of a graph

and maintain the information of weight probability distribution for efficient query answering

using the p* algorithm.

8.3.1 HP-Tree Index

A graph partitioning divides the vertices of a graph into subsets of about equal size, such

that there are few edges between subsets [123]. Figure 8.6(a) illustrates a 2-partitioning on

a graph, where all vertices are divided into two subsets, separated by h. Among the vertices

on the left of h, only A and B are connected to the vertices on the right subset. Therefore,

they are called border vertices. Similarly, C, D and E are the border vertices in the right

subset.

The 2-partitioning can be applied recursively on each subset. As shown in Figure 8.6(a),

the left subset is further partitioned into two smaller subsets by line l2' and the right subset

is further partitioned into two smaller subsets by l3. By recursive partitioning, we can obtain

a hierarchical partition tree of the graph, as illustrated in Figure 8.7.
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Given a graph G and an m-partitioning P on G, a hierarchical partition tree (HP­

tree for short) is an m-nary tree that indexes the vertices in G according to P. Each leaf node

in an HP-tree represents a vertex, and each non-leaf node represents a set of vertices. An

HP-tree can be constructed top-down starting from the root which represents the complete

set of vertices in graph G. Then, the graph is partitioned recursively. For a non-leaf node N

and the set of vertices VN associated with N, an m-partitioning is applied to VN and results

in m exclusive subsets of VN, namely VNl''''' VNm . Thus, m corresponding child nodes

of N are constructed for N. The partition continues until each subset contains at most d

vertices (d is a user specified number). Figure 8.7(b) shows a 2-nary HP-tree corresponding

to the partition in Figure 8.7(a). If we apply a linear time heuristic graph partitioning

method [83], then constructing an HP-tree using m-partitioning requires O(nlogm~) time.

8.3.2 Approximating Min-Value Estimates

To approximate a min-value estimate, we store auxiliary information for each node in an

HP-tree as follows. For each leaf node NL representing a vertex v and its parent node N

associated with a set of vertices VN, we compute the weight of the shortest path between v

and each border vertex of VN. The smallest weight is stored in NL. Then, for node Nand

each of its ancestor nodes NA, let VA be the set of vertices associated with NA. We compute

the shortest paths between each border vertex of VN and each border vertex of VA. The

smallest weight is stored in N.

For example, in the HP-tree shown in Figure 8.7(b), F is a leaf node, and we store

the smallest weight of shortest paths from F to the border vertices of N7, which is WI in

Figure 8.7(a). Then, for node N7, we compute the smallest weight of the shortest paths

between any border vertex in N7 and any border vertex in N3. Since N7 and N3 share

a common border vertex (I), the smallest weight is O. The smallest weight of the shortest

paths between N7 and N1 is W2 in Figure 8.7(a).

The min-value estimate for a vertex u can be approximated as follows. Let N u and Nv

be the parent node of u and v, respectively. Let N be the lowest common ancestor node of

N u and N v . Then, the weight of any path between u and v is at least w(u, Nu ) +w(Nu , N)+

w(v, N v ) +w(Nv , N), where w(u, N u ) and w(v, N v ) are the smallest weight from u and v to

N u and N v , respectively, and w(Nu , N) and w(Nv , N) are the smallest weight from N u and

N v to N, respectively. Searching the lowest common ancestor node of two vertices takes

O(logm J) time.
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Figure 8.7: A hierarchical partition of a graph.

For example, in Figure 8.7, the lowest common ancestor node of F and G is the root

node, which is partitioned by h. Thus, the weight of the shortest path between F and G is

at least WI + W2 + W3 + W4. It can be used as the min-value estimate of F with respect to

the end vertex G.

8.3.3 Approximating Stochastic Estimates

To approximate a stochastic estimate, we store two pieces of information for each node in

the HP-tree.

For each leaf node NL representing a vertex v and its parent node N with associated set

of vertices VN, we first compute the shortest edge path between v and each border vertex

of VN. The number of edges is stored in leaf node NL. Then, we compute a weight that

stochastically dominates all weights in VN, and store it as the "optimal weight" of the node.

For an intermediate node N and each of its ancestor nodes NA, let VA be the set of

vertices associated with NA. We first compute the shortest edge paths between each border

vertex of VN and each border vertex of VA. The number of edges in the path is stored in N.

Second, we compute a weight that stochastically dominates all weights of the edges between

the border vertices in VN and VA. It is stored as the "optimal weight" of the node.

Therefore, the stochastic estimates can be approximated by slightly changing the three

steps in Section 8.2.2 as follows. In the first step, in order to find the smallest number of

edges from a vertex Vi to v, we compute the lower bound of the least number of edges,

as illustrated in Figure 8.7. Second, instead of finding an edge weight that stochastically
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Figure 8.8: Efficiency of weight probability calculation methods.

dominates all edges in P2, we use the optimal weights stored in nodes. The third step

remains the same. In this way, we can compute a path that has a smaller number of edges

and weights that dominate all weights in Papt.

8.4 Experimental Results

In this section, we report a systematic empirical study. All experiments were conducted

on a PC computer with a 3.0 GHz Pentium 4 CPU, 1.0 GB main memory, and a 160

GB hard disk, running the Microsoft Windows XP Professional Edition operating system,

Our algorithms were implemented in Microsoft Visual Studio 2005. The graph partition

algorithm in METIS 4.0.1 1 and Dijkstra's Shortest Path Algorithm in the Boost C++
Libraries2 were used in the implementation of HP-trees.

Ihttp://glaros.dtc.umn.edu/gkhome/views/metis

2http://www.boost.org/
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8.4.1 Simulation Setup

We test the efficiency, the memory usage, the approximation quality, and the scalability of

the algorithms on the following five real road network data sets3 : City of Oldenburg Road

Network (OL) (6,104 nodes and 7, 034 edges), City of San Joaquin County Road Network

(TG) (18,262 nodes and 23,873 edges), California Road Network (CAL) (21, 047 nodes and

21,692 edges), San Francisco Road Network (SF) (174,955 nodes and 223, 000 edges), and

North America Road Network (NA) (175,812 nodes and 179,178 edges).

The available weight of each edge in the above real road networks is certain. To simulate

an uncertain road network, we generate a set of uncertain samples for each edge following

the Normal distribution and the Gamma distribution.

In the Normal distribution N(/-l, 0"), /-l is the original edge weight in the certain graphs

and 0" is the variance. 0" is generated for different edges following the Normal distribution

3http://www.cs.fsu.edu/-lifeifei/SpatialDataset.htm
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N(/-lcr, (Tcr), where /-lcr = xR (x = 1% to 5%) and R is the range of weights in the data sets.

By default, /-lcr is set to 1% . R. This simulation method follows the findings in the existing

studies on traffic simulations [97], which indicates that the travel time on paths in road

networks follows the Normal distribution in short time intervals.

To simulate the travel time in real road networks using the Gamma distribution f(k, e),
as suggested in [156], we can set e = 0.16 and k = ~, where /-l is the original edge weight

in the certain graphs. Since the experimental results on the weights under the Gamma

distribution and the Normal distribution are highly similar, limited by space, we only report

the results on the data sets with the Normal distribution.

After generating the edge weights wq = {Xl,'''' xm } and W e2 = {YI,"., Yn}, the

joint distribution jq,e2(Xi,Yj) is randomly generated from the interval [O,Pij), where Pij =
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min{fel (Xi), !e2(Yj)} (i = O,j = 0), andpij = min{fel (Xi)- Z=l~s~j-l !Q,e2(Xi, Ys),!e2(Yj)­

Z=19~i-l !Q,e2(Xt,Yj)}, (i > 0 or j > 0).

The path queries are generated as follows. The weight threshold is set to x% of the

diameter d of the network, where d is the maximal weight of the shortest paths among pairs

of nodes. The probability threshold varies from 0.1 to 0.9. The start and the end vertices

are randomly selected.

By default, the number of samples of each edge is set to 5, the weight threshold l is set

to 10%· d, and the probability threshold T is set to 0.5. 500 samples are used in the sampling

algorithm to estimate the weight probability distribution of each path. In the hierarchical

approximation algorithm, the bucket parameter t is set to 50, and 2-partitionings are used

to construct HP-trees. For each different parameter setting, we run 20 path queries and

report the average results.

8.4.2 Efficiency and Memory Usage

Using data set OL, we evaluate the efficiency of the three probability calculation methods,

the exact method (Exact), the bucket approximation method (Approximation), and the

sampling based method (Sampling). The depth first path search is used. The results are

shown in Figure 8.8. Clearly, the bucket approximation method and the sampling based

method are more efficient than the exact algorithm.

Particularly, the runtime increases as the weight threshold increases (Figure 8.8(a)), since

a larger weight threshold qualifies more paths in the answer set. The runtime of all three

algorithms decreases when the probability threshold increases (Figure 8.8(b)), because fewer

paths can pass the threshold when the probability threshold is high. The runtime of the

algorithms decreases slightly as the variance of the weight samples increases (Figure 8.8(c)).

The runtime of the exact algorithm increases significantly when the number of samples of

each edge increases, but the runtime of the sampling algorithm and the bucket approximation

algorithm remains stable (Figure 8.8(d)) thanks to the efficient approximation probability

computation.

We also test the efficiency of the p* search algorithm against the depth first search

(DFS) (Figure 8.9). Three heuristic estimates are used: constant estimates (P*+constant) ,

min-value estimates (P*+min-value), and stochastic estimates (P*+stochastic). The bucket

approximation method is used to compute the path probability distribution. To show the

difference in efficiency of the different methods more clearly, we increase the weight threshold
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Figure 8.12: Scalability.

to 30%· d.

Clearly, the p* search is more efficient than the depth first search method thanks to

the heuristic path evaluation during the search. Among the three types of heuristic esti­

mates, stochastic estimates are the most effective, because they use the weight probability

distribution of the unexplored paths to guide the search. The HP-tree construction takes

25 seconds on this data set.

The memory usage for different algorithms is shown in Figure 8.10. The memory re­

quirement in the exact probability calculation method with DFS increases rapidly when the

weight threshold increases, since longer paths are explored with a larger weight threshold.

However, the memory usage in p* search with the bucket approximation probability cal­

culation is stable, because the space used for an HP-tree does not depend on the weight

threshold.

8.4.3 Approximation Quality and Scalability

Using data set OL, we test the approximation quality of the sampling algorithm and the

bucket approximation algorithm. In the same parameter setting as in Figure 8.8, the preci­

sion and the recall of all queries are computed. Since they are all 100%, we omit the figures

here.

The average approximation error of the l-weight probability computed in the two al­

gorithms is shown in Figure 8.11. For any path P, the approximation error is defined as

frp~;?(I)I, where Fp(l) and Fp(l) are the approximate and exact l-weight probabilities of

P, respectively.
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The error rate of the sampling method is always lower than 3%, and is very close to 0

when a set of 500 samples are used (Figure 8.11(a)). The average error rate of the bucket

approximation method decreases from 4.31 % to 0.1% when the bucket parameter t increases

from 10 to 50 (Figure 8.11 (b)).

Figure 8.12 shows the scalability of the three algorithms on the five real road network

data sets. Figure 8.12(a) shows the results for weights following the Normal distribution.

Figure 8.12(b) is the results on the data with the Normal distribution and 10% noise. That

is, 10% of the edges have a sample drawn from the uniform distribution in [Xmin, xmax ],

where Xmin and Xmax are the minimal and maximal weights in the original road network.

The results in Figures 8.12(a) and (b) are similar. All three algorithms are scalable, and

the hierarchical approximation algorithms has a very short runtime (20 seconds on the

largest data set, the North America Road Network (NA) with 175,812 nodes). Although

constructing the HP-tree takes around 2,000 seconds in this case, it is constructed only once

offline.

8.5 Summary

In this chapter, we studied the problem of answering probabilistic path queries defined in

Section 2.3.3. There are two major challenges for efficient query evaluation. First, given

a path P and a weight threshold i, how can we compute the i-weight probability of P

efficiently? Second, given an uncertain road network and a probabilistic path query, how

can we search for the paths satisfying the query efficiently?

To solve the first challenge, we developed three methods for efficient i-weight probability

calculation: an exact algorithm, a constant factor approximation method and a sampling

based approach.

To address the second challenge, we proposed two path search methods.

• A depth-first search algorithm enhanced by effective pruning techniques was developed .

• P* algorithm, a best first search method, was devised to search for all paths satisfying

the query. It uses a heuristic method to estimate the i-weight probabilities of the

unexplored paths and prune the paths whose estimated i-weight probabilities fail the

threshold. Although being an heuristic method, it guarantees to find all paths in the

exact solution, since the estimated i-weight probabilities are always no smaller than
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the actuall-weight probabilities.

An extensive empirical evaluation verified the effectiveness and efficiency of the proba­

bilistic path queries and our methods.



Chapter 9

Conclusions

Uncertain data becomes important and prevalent in many critical applications, such as

sensor networks, location-based services, and health-informatics. Due to the importance of

those applications and increasing amounts of uncertain data, effective and efficient uncertain

data analysis has received more and more attentions from the research community. In this

thesis, we study ranking queries on uncertain data. Particularly, we develop three extended

uncertain data models based on the state-of-the-art uncertain data models and propose five

novel ranking problems on uncertain data.

In this chapter, we first summarize the thesis, and then discuss some interesting future

directions.

9.1 Summary of the Thesis

In this thesis, we study ranking queries on uncertain data and make the following contribu­

tions .

• We develop three extended uncertain data models to fit different application interests:

the uncertain data stream model, the probabilistic linkage model, and the probabilistic

road network model.

• We propose a series of novel top-k typicality queries to find the most representative

instances within an uncertain object.

- A top-k simple typicality query returns the top-k most typical instances within

240
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an uncertain object. The notion of typicality is defined as the likelihood of an

instance in the object, which is computed using the kernel density estimation

methods.

Given two uncertain objects 0 and S, a top-k discriminative typicality query

finds the top-k instances in 0 that are typical in 0 but atypical in S.

- A top-k representative typicality query finds k instances in an uncertain object

that can best represent the distribution of O.

Computing the exact answers to top-k typicality queries is quadratic in nature. We

develop three efficient approximation algorithms, a randomized tournament method,

a local typicality approximation algorithm that approximates the typicality score of

an instance 0 using a small subset of instances close to 0, and a hybrid method that

combines the tournament mechanism and the local typicality approximation.

• We develop probabilistic ranking queries and reverse probabilistic ranking queries on

uncertain data by considering the two dimensions: the ranks of uncertain instances or

objects and their probabilities of achieving certain ranks.

Given a rank parameter k, we can rank instances or objects according to their top­

k probabilities (that is, the probabilities of being ranked top-k). A probabilistic

ranking query finds the uncertain instances or objects whose top-k probabilities

are the largest.

Given a probability threshold p, the p-rank of an instance 0 is the minimum k

such that Prk(o) 2: p. Similarly, the p-rank of an object 0 is the minimum k

such that Prk (0) 2: p. A reverse probabilistic ranking query finds the uncertain

instances or objects whose p-ranks are the smallest.

Probabilistic ranking queries and reverse probabilistic ranking queries provide com­

plement views of the ranking characterizes of uncertain data. Moreover, we develop

three efficient query evaluation methods, an exact algorithm, a sampling method, and

a Poisson approximation based method. Last, we devise an effective and compact in­

dex for probabilistic ranking queries and reverse probabilistic ranking queries, which

helps efficient online query answering.
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• We study the problem of continuous probabilistic top-k query (continuous PT-k query

for short) on uncertain streams, which reports, for each time instant t, the set of

uncertain streams satisfying the query in the sliding window. This problem extends

the ranking queries on static data to dynamic data. To tackle this problem, we develop

an exact algorithm that involves several important stream specific techniques and

a sampling method. Moreover, we devise the space efficient versions of the exact

algorithm and the sampling method that utilize approximate quantiles to maintain

the summary of the data streams.

• We study ranking queries on the probabilistic linkage model, which is an extension

of the basic uncertain object model by considering the dependencies among objects.

Given two sets of tuples A and B, a linkage matches a tuple in A to a tuple in B,

meaning that the two tuples refer to the same real world entity. A probability is

associated with each linkage, representing the confidence of the match. Each tuple

can be associated with multiple linkages, but only one linkage can be true due to the

constraint that one tuple can only match at most one tuple in another data set in the

ground truth.

We can consider each tuple tA E A as an uncertain object. A tuple tB E B can be

considered as an instance of tA if there is a probabilistic linkage I = (tA, tB) E I: such

that Pr(l) > O. The membership probability of instance tB with respect to object tA

is Pr(l). Different from the basic uncertain object model where each instance only

belongs to one object, in the probabilistic linkage model, a tuple tB E B may be

the instance of multiple objects {tAl"" ,tAd}' where tAi is a tuple in A with linkage

(tAp tB) E I: (1 :S i :S d). A mutual exclusion rule RtB = (tAi' tB) E& ... E& (tAd' tB)

specifies that tB should only belong to one object in a possible world. Alternatively,

we can consider each tuple tB E B as an uncertain object and a tuple tA E A is an

instance of tB if there is a linkage (tA, tB) E 1:.

We develop a probabilistic mutual exclusion graph (PME-graph) to describe the de­

pendencies among objects in the probabilistic linkage model. The PME-graph is shown

to be a special form of Markov random fields. Answering ranking queries on proba­

bilistic linkages is significantly different from that on independent uncertain objects.

We propose efficient query evaluation methods that are verified to be efficient and

scalable by experimental results.
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• Last, we extend the ranking uncertain data problem to more complicated data types:

uncertain road networks. An uncertain road network is a simple graph, for each edge,

the weight is an uncertain object containing a set of instances. As a result, the weight

of any path in an uncertain network is also an uncertain object. We propose three

types of probabilistic path queries.

- A probabilistic path query with a weight threshold wand a probability threshold

p finds the paths between two end vertices whose weights are at most l with a

probability of at least p.

Given a path P and a weight constraint l, the l-weight probability is the proba­

bility that P's weight is at most l. A weight-threshold top-k path query returns

the paths between two end vertices whose l-weight probabilities are the highest.

- Given a certain probability threshold p, we can find, for each path, the smallest

weight achievable with a probability of at least p. This is called the p-confidence

weight of the path. A probability-threshold top-k path query finds the paths whose

p-confidence weights are the smallest.

Each type of path queries finds its edge in real applications. To answer those queries

efficiently, we address two major challenges. First, we propose three efficient methods

to compute l-weight probabilities and p-confidence weights. Then, we develop two

path search methods that find the paths satisfying the query efficiently.

9.2 Future Study: Extending the Thesis Directly

It is interesting to extend the ranking queries and their evaluation methods developed in

this thesis to other related uncertain data models and queries. Some of them are listed

below.

• Top-k typicality queries for uncertain object. In this thesis, we study three types of

top-k typicality queries on static uncertain objects. As future study, it is interesting

to extend this study in two directions. First, how can we answer top-k typicality

queries on different types of uncertain data, such as uncertain data streams, that is,

uncertain objects with evolving distributions? Second, how can we develop alterna­

tive of typicality notions that fit different application needs? For example, when the
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dimensionality of uncertain objects is high, finding the most typical instances in the

full space may not be informative. Instead, it is interesting to find in which subspace

an instance is typical.

• Top-k queries on probabilistic databases. Chapter 5 discusses the problem of top­

k query evaluation on probabilistic databases. It is interesting to investigate the

following two extensions.

First, the probabilistic database model we adopted in Chapter 5 only considers the

generation rules that specify the mutual exclusiveness among tuples. More complex

generation rules can be considered. For example, mutual inclusion rules that specify

the coexistence of the tuples involved in the same rule are discussed in [171]. A

mutual inclusive rule R=. : tTl == ... == tTm restricts that, among all tuples tTl' ... , tTm
involved in the same rule, either no tuple appears or all tuples appear in a possible

world. All tuples in R=. have the same membership probability value, which is also

the probability of rule R=.. How to answer top-k queries on probabilistic databases

with various generations rules is an interesting extension.

Second, how to incrementally update top-k query results when changes happen to

probabilistic databases? For example, the membership probability of an uncertain

tuple may be updated when more knowledge about the data is obtained. Instead

of recomputing the results based on the updated probabilistic database, it is more

efficient to reuse the results computed before updates happen.

• Probabilistic ranking queries. In this thesis, we study probabilistic ranking queries on

probabilistic databases, uncertain streams, and probabilistic linkages. It is interesting

to extend our methods to other probabilistic data models and other ranking queries.

Particularly, there are four important directions.

Uncertain data streams with non-uniformly distributed instances. In Chap­

ter 6, we assume that the membership probabilities of all instances in a sliding window

are identical. This is suitable for the applications where instances are generated using

simple random sampling. However, in other applications, instances with non-identical

membership probabilities may be generated. Therefore, it is important to investi­

gate how to adapt the methods developed in Chapter 6 for the case of non-identical

membership probabilities.
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In the exact algorithm, all techniques can be used except for the "compatible dominant

set" technique. The "compatible dominant set" technique reuse the dominant set of an

instance in the previous sliding window, as long as the number of instances from each

object in the dominant set does not change. This only holds when the membership

probabilities of instances are identical. Therefore, new techniques that can reuse the

dominant set of instances in the case of non-identical membership probabilities need

to be developed.

Second, the sampling method can be used without any change. We simply draw

samples according to the distribution of instances for each object in the sliding window.

Last, in order to use the space efficient algorithms developed in Chapter 6, the ¢­

quantile summary needs to be redefined. The major idea is to partition the instances

ranked in the value ascending order into intervals, so that the sum of membership

probabilities of instances in each interval is at most ¢. For an uncertain object W~(O)

containing a set of instances 01, ... , Ow, where each instance 0i is associated with a

membership probability Pr(oi) (1 ~ i ~ w). The instances are ranked in the value

ascending order. We partition 01, ... ,ow into b exclusive intervals ti = [OZi' oztJ, where
•

zi=1, i=1;

Zi = z~_l + 1, 1 < i ~ b;

z~ = max {j t Pr(ox) ~ ¢}, 1 ~ i ~ b.
J?Zi

X=Zi

Therefore, the probability of each interval is at most ¢. Moreover, there are at most

21i l intervals. This is because, in the worst case, each interval only contains one

instance, which means that the sum of membership probabilities of any two consecutive

instances is greater than ¢. Then, if the number of instances is greater than 21i l, the

sum of membership probabilities of all instances will be greater than 1, which conflicts

with the fact that the sum of membership probabilities of all instances of one object

is 1.

Though the approximate top-k probabilities can be computed similarly as discussed

in Chapter 6, details need to be worked out as future work.
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Uncertain data streams with correlations. Correlations may exist among un­

certain data streams. For example, in the speed monitoring application, if two speed

sensors are deployed at the same location, then the readings of the two sensors are mu­

tually exclusive. That is, only the reading of one sensor can exist in a possible world.

More generally, complex correlation among two or more uncertain data streams can be

represented by the joint distribution of their readings. How to continuously monitor

the top-k uncertain data streams in such cases is highly interesting.

Continuously monitoring probabilistic threshold top-k queries with differ­

ent parameter values. There are two parameters in probabilistic threshold top-k

queries, the query parameter k and the probability threshold p. In some applications,

we may be interested in how query results change as parameters vary. To support

the interactive analysis, it is highly desirable to monitor probabilistic threshold top-k

queries on uncertain data streams with different parameters. To achieve this goal, it

is interesting to study if we can extend the PRist+ index developed in Section 5.5 to

uncertain data streams.

Continuously monitoring probabilistic threshold top-k aggregate queries.

In this chapter, we focus on probabilistic threshold top-k selection queries, where the

ranking function is applied on a single instance. Another category of top-k queries

is top-k aggregate queries [108], where the ranking function is applied on a group of

instances. The top-k groups with highest scores are returned as results. It is interesting

to investigate how to extend the techniques discussed in this chapter to handle top-k

aggregate queries on uncertain data streams.

• Probabilistic path queries on road networks. An important future direction of proba­

bilistic path queries on uncertain road networks is to explore the temporal uncertainty

and correlations of travel time along road segments.

The HP-tree can be maintained incrementally as edge weights change. For each node

in an HP-tree that contains a set of edges, an optimal weight stochastically dominating

all edge weights is stored. The optimal weight can be constructed using a set of (value,

probability) pairs that are the skyline points among the (value, probability) pairs of

all edges. Therefore, the optimal weight in a sliding window can be maintained using

any efficient skyline maintenance algorithms for streams, such as [186].



CHAPTER 9. CONCLUSIONS 247

9.3 Future Research Directions: Enriching Data Types and

Queries

It is highly interesting to study more general types of ranking queries on complex uncertain

data.

• Handling complex uncertain data and data correlations. In some applications, data

tends to be heterogeneous, semi-structured or unstructured. For example, in medi­

cal applications, information collected about patients may involve tabular data, text,

images, and so on. Uncertainty may widely exist in those applications due to fac­

tors like equipment limitations and ambiguity in natural language presentation. Such

uncertain data types pose grand challenges in data analytics.

First, it is difficult to model uncertainty in complex data types. For example, docu­

ments extracted by hand-writing recognition may be prone to mistakes. How can we

represent the uncertainty in each word or prase in documents? Neither the probabilis­

tic database model nor the uncertain object model can be directly adopted.

Second, ranking queries on complex uncertain data may have different forms from the

ranking queries on simple uncertain data. In this thesis, we extend top-k selection

queries on uncertain data, where a score is computed for each data record on a set of

the attributes. In many applications, complex uncertain data objects may be ranked

using different methods. For example, a set of documents or images are often ranked

according to their relevance scores to a set of key words. Answering such complicated

ranking queries on complex uncertain data is non-trivial.

Last, complex data correlations may exist among uncertain data objects. It is difficult

to model the correlations, not to mention answering queries on uncertain data with

complex correlations.

• Answering more types of ranking and preference queries on uncertain data. In this

thesis, we focus on top-k selection queries on uncertain data, where a total order on

all objects or instances is available. More generally, given a set of partial orders on

tuples as user preferences, a preference query [129] finds the tuples that best match the

preferences. For example, when searching for used cars, a user may specifies his/her

preferences as "I like Toyota better than Ford" and "I prefer low mileage". Then we
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should return all used cars that best match the user's preference. Although there are

many studies on preference queries on deterministic data [197, 124, 84, 43, 129], to

the best of our knowledge, there are very limited related studies on preference queries

on uncertain data.

Let us take skyline queries, an important category of preference queries, as an example.

In a deterministic data set, given two tuples tl and tz in attributes AI,' .. ,Am, tl

dominates tz if tl.Ai -< tz.Ai (1 ~ i ~ m), where -< denotes the preference order in

attribute ai. A skyline query returns the tuples that are not dominated by any other

tuple in the data set. Pei et at. [155] extend skyline queries from deterministic data

to the basic uncertain object model. Given a set of independent uncertain objects,

the skyline probability of an object 0 is the probability that 0 is a skyline object

in possible worlds. Given a probability threshold p, a probabilistic threshold skyline

query finds the objects whose skyline probabilities are at least p.

As future study, it is interesting to examine how to answer probabilistic threshold

skyline queries on the three extended uncertain data models proposed in this work.

First, a continuous probabilistic threshold skyline query on a set of uncertain data

streams returns, for each time instant, the objects whose skyline probabilities in the

sliding window are at least p. This is useful for applications where data is dynamic

and uncertain in nature.

Moreover, the probabilistic linkage model proposed in our study is an extension of

the basic uncertain object model by considering inter-object dependencies. Skyline

queries are useful in some applications of the probabilistic linkage model. For instance,

in Example 2.12, a medical expert may be interested in finding the skyline patients

in two attributes age of hospitalization and age of death. It is non-trivial to compute

object skyline probabilities in the probabilistic linkage model due to the inter-object

dependencies.

Last, in the uncertain road network model, there are multiple paths between two end

vertices specified by users. Sometimes, we may want to find the skyline paths that

have short travel time and short geographic distances. Therefore, probabilistic skyline

queries are highly useful in such applications.
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