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Abstract

PTM forms an alternative method for apprehending surface properties that extends a simple

model of image formation from the Lambertian variant of PST to more general reflectances.

Here we consider solving such a model in a robust version using either LMS or LTS, which is

useful in the identification of matte, shadow and specularity automatically. Identifying the

matte contribution, we can then estimate chromaticity and surface properties accurately.

We can model specular and non-specular contributions using two sets of RBF regression

over specular and non-specular pixels. Then for a new lighting direction, we can interpolate

both specularity and shadows. Finally, to generate the full color output we can either

utilize the estimated chromaticity along with specular chromaticity, or model specularity

and shadow for each color channel separately. The latter is found to generate qualitatively

and quantitatively better results. Overall, the proposed approach generates convincing

interpolations of both specularities and shadows.
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Chapter 1

Introduction

Texture mapping adds realism details to raster images with relatively small increase in

computation and has long been used in computer graphics. Texture can be defined in the

usual sense (such as cloth, wood, brick and so on), more specifically a detailed pattern or a

multidimensional image that is mapped into a multidimensional space. In the latter form,

a photograph is used to map onto a planar surface, which avoids modeling complex surface

details. However this method fails when the lighting conditions of the synthetic environment

are different from those of the texture image and the results will look unrealistic and flat [17].

Due to these problems, the field of image based modeling and rendering (IBMR) has

attracted people's attention in recent decades. IBMR methods rely on a set of two dimen

sional images as inputs. In order to obtain photorealistic rendering, one should be able to

characterize surface reflectance properties such as surface normal and albedo.

Photometric Stereo (PST) [31] is an image based modeling technique which solves the

problem of surface normal recovery. PST uses at least three images from the same view

point but with different illumination directions as input. It then produces surface normals

and albedos for each pixel by performing linear regression on illumination directions. How

ever this method will fail in the presence of highlights and shadows or for non-Lambertian

surfaces.

Polynomial Texture Maps (PTM) [17] form an alternative method for apprehending sur

face colour and albedo that extends a simple model of image formation from the Lambertian

variant of Photometric Stereo (PST) to more general reflectance. PTM performs a nonlinear

polynomial regression on lighting directions which can better model real radiance, and thus

apprehend intricate dependencies due to self-shadowing and interreflections. The regression

1



CHAPTER 1. INTRODUCTION 2

produces six coefficients at each pixel. Subsequently, re-rendering can take place, e.g. by

relighting images using a new lighting direction, by calculating surface normals and thence

generating artificial specular highlights, by re-mapping color, by increasing directional sen

sitivity to lighting direction in order to enhance contrast, by light source extrapolation, or

by artificially varying focus.

In this thesis, we are interested in using PTM as a vehicle to carry out interpolation of

specularities and shadows. To the best of our knowledge robust methods have not to date

been applied to PTM, and we use these to be able to accomplish interpolation. As well as

using robust regression, this work moreover shows how outliers can be classified as belonging

either to specular highlights or self- or cast-shadows. Knowledge of inlier pixel values means

that recovered surface albedo and chromaticity is robust, in the sense of ignoring outlier

contributions and thus more accurately mapping surface reflectance and color.

1.1 Approach

Our approach to solve the problem of shadow and specularity interpolation is based on robust

regression applied to PTM. Robust regression helps in identification of outlier pixels(both

shadow and specularity pixels) automatically without the need of any thresholds. It provides

a tripartite set of weights for each pixel which are labeled as matte, shadow or specularity.

The next step is generating surface normals, albedo and chromaticity in order to recover

the matte surface. The matte surface does not contain any shadow or specularity. PST and

PTM is used to recover the desired quantities. However with inliers in hand, more accurate

values for chromaticity, surface normals and albedo are generated.

With specular pixel values over the lights known, we can then model specularity using

a radial basis function (RBF) regression. A second RBF regression is performed on non

specular pixel values to model shadow. It is then easy for a new lighting direction to

interpolate both specular contents as well as shadows.

Finally the recovered chromaticity along with shadow and specularity is used to generate

full color output results.

1.1.1 Highlights and Shadow Detection

The original version of PTM assumes that least squares regression will effectively be ad

equate for modeling a smooth dependence of images, with a fixed viewpoint, on lighting
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direction. However least squares is very susceptible to outliers and its breakdown point is

equal to zero. In other words if the dependency of the image on lighting direction is not

smooth, which means there are shadows or highlights in the image, the PTM results will be

affected. So it would be of great benefit if one can detect outliers, which are shadow and

specularity in our problem.

To detect outliers and solve the PTM model we suggest using robust regression, which

to the best of our knowledge has not to date been attempted for PTM. The main up

shot of utilizing robust regression is in the identification of both shadows and specularities

automatically, without the need for any thresholds.

In this thesis we applied two robust regression techniques to PTM and compare them

according to some quantitative metrics as well as timing. We used Least Median of Squares

(LMS) and Least Trimmed Squares (LTS) [25], each having a breakdown point of 50%,

which means regression results will be unaffected even if half of the data points minus one

are outliers.

1.1.2 Normal, Albedo and Color

Our method to solve the shadow and specularity interpolation problem can be considered

as a three step method, where the first step is identification of shadows and specularities,

the second step is modeling matte contribution and the last step is modeling shadow and

highlight contribution.

In order to model matte pixels we first need to find surface normals and albedo. In this

thesis three different methods (robust modified PTM, PST and robust PST) are used to

recover surface normals and albedo. Although the result of robust PTM itself can be an

alternative for generating matte surfaces, experimental results showed that matte surface

recovery using surface normals is more accurate.

Also we propose two methods called Lum-PTM and RGB-PTM for dealing with color.

The first method regresses the luminance at each pixel position; thus in order to add back

color we need to recover chromaticity. The second methods regresses each color channel at

each pixel position separately.
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1.1.3 Shadow and Specularity Interpolation

4

PTM and robust PTM only captures the smooth dependence of image on lighting direction.

In order to model the dependence of highlights and shadows on lighting direction, we make

use of Radial Basis Function (RBF) regression.

Using the weights from robust regression, we then perform two separate sets of RBF

regressions. The first RBF models the dependence of highlights on lighting direction, while

the second one models the remaining non-matte contributions on the lighting direction.

After modelling matte, highlights and shadow contributions to lighting direction, we can

interpolate both specular contents and shadow for a new lighting direction, and visualize

how the image would look under that lighting.

1.2 Contribution

The main contributions in this thesis are:

1. application of robust regression to PTM.

2. separate modelling and thus better capturing of shadows and specularities.

3. specular and shadow interpolation.

Applying robust regression to PTM, provides us with a tripartite set of weights that

labeles each pixel as matte, shadow or specularity. We then use the weights to separately

model each contribution to the lighting direction. Finally with the models in hand we can

interpolate shadow and specularity for a new lighting direction.

In this thesis we also modify PTM such that it can correctly generate surface normals

and albedo if the surface is indeed Lambertian. The original PTM moves a linear regression

involving lighting directions into a nonlinear, polynomial model of lighting dependence to

clliminate the assumption of Lambertian model. However here we go back to a regression

including a linear part corresponding to all three components of light direction, since if the

surface is indeed Lambertian plus outliers due to highlighting and shadows, then a robust

version of nonlinear regression will still pick up the correct, linear, Lambertian dependence

exactly. Note that we do not make any assumption that the surface should be Lambertian

and it can still work for any general surface.
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1.3 Outline

5

The rest of this thesis is organized as follows: we will explain the previous work in the area

of robust photometric stereo and polynomial texture mapping in Chapter 2. In Chapter 3

different robust regression techniques will be discussed and we will show how they can help

us in shadows and specularities identification. Chapter 4 will discuss surface normal and

surface albedo recovery as well as dealing with color images. In Chapter 5 we will explain

shadow and highlight modeling on lighting direction and interpolation of these contributions

for a new lighting direction. Chapter 6 presents experimental results and finally we will

conclude the thesis and discuss future work in Chapter 7.



Chapter 2

Background and Related Work

Several powerful texture mapping methods have been proposed in the literature which avoid

modeling of the complex surface details. Usually a photograph is used as a texture map

on a planar surface. However this method fails if the lighting conditions of the synthetic

environment are different from the lighting conditions of the texture image. To solve this

problem, people have used image based modeling and rendering techniques. In these meth

ods several images of the same object are taken under varying lighting directions and fixed

viewpoint. These methods construct a surface reflectance model which characterizes surface

appearance under different lighting directions. Polynomial Texture Mapping is an image

based modeling method for a general surface. For a Lambertian surface people usually use

a simple approach called Photometric Stereo to obtain surface normal and surface albedo.

However Photometric Stereo is very prone to outliers (shadows and highlights), so some

robust techniques have been proposed.

In this section some of the previous work in the fields of Robust Photometric Stereo and

Polynomial Texture Mapping is presented.

2.1 Robust Photometric Stereo

Photometric Stereo (PST) was first introduced by Woodham [31]. This method provides

an estimation for surface orientation (surface normal) and surface reflectance (albedo) at

each pixel, using at least three images captured from a fixed viewpoint but under different

illumination directions. In its most common variant, standard PST assumes the surface is

Lambertian with no shadow or highlight present.

6



CHAPTER 2. BACKGROUND AND RELATED WORK 7

Suppose a Lambertian surface is illuminated in tum by three light sources with directions

h, 12 and 13 , where each light direction has the orientation I (lx, ly, lzf. Thus the

luminance intensity at each pixel can be expressed as:

ei = an ·li (i = 1,2,3)

where a is the albedo and n is the surface normal with orientation n

pixel. We can rewrite Eq. 2.1 in matrix form as:

E = n·L

(2.1)

(2.2)

where L is lighting matrix (L = (h, 12 , 13 )), E is a vector of measured per-pixel luminance

for each lighting direction (E = (el' e2, e3)) and ii, is the unit normal scaled by albedo.

Then the surface orientation for this pixel can be solved by:

(2.3)

where L+ is the Moore-Penrose pseudoinverse of L. Albedo is the norm of n and normalized

n is the surface orientation.

Surface recovery of PST will be affected in the presence of specularities and shadows. In

this case the normal will be bent more toward the light direction which produces a highlight

or away from the light direction which produces shadowing.

One of the earliest ideas for robust photometric stereo was increasing the number of

captured images to more than three. Coleman and Jain [7], and Solomon and Ikeuchi [27],

proposed a method to detect specularity using a series of four captured images.

Coleman and Jain [7] compared the recovered albedos from all four possible triplets of

each pixel. If there is a highlight at that pixel then the recovered albedos would differ

significantly. So the smallest albedo, containing only the Lambertian component, is used

for recovery. However not all the surface pixels are illuminated by all four lights.

Solomon and Ikeuchi [27] solved this problem. They stated that the set of surface

orientations that a light source can illuminate can be represented on the Gaussian sphere.

If the surface is illuminated by four light sources, three illumination regions will be produced.

Regions illuminated by all four light sources, by three light sources and by two light sources

are shown in Figure 2.1. Region 1 is illuminated by all four light sources. Regions 2, 3, 4 and

5 are illuminated by three light sources and regions 6, 7, 8 and 9 are illuminated by two light

sources respectively. Different strategies were suggested for detecting highlights and local
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surface recovery for each of the regions. For regions illuminated by all four light sources, they

used the method proposed in [7] to detect specular pixels and recover surface properties. To

recover surface normal and surface albedo in the area illuminated by three light sources, they

exclude the light source which may cause highlights and use the information of neighboring

pixels and available light sources. For instance area 3 in Figure 2.1 is illuminated by light

sources 2, 3 and 4 and is in the shadow region of light 1. Light 3 may cause highlight in

this area, so they excluded this light and used Eq. 2.4 to get surface normals:

Ilnll = 1 (2.4)

Luminance (e) and light direction (l) are known at each pixel. The albedo (0') can be

calculated from the albedo of the Lambertian neighbor pixels. They later compared the

luminance of light 3 (e3) to the Lambertian luminance just calculated to find out whether

light 3 causes highlight or not. For regions illuminated by two light sources, they assumed

that no specularity would be present and used Eq. 2.4 to recover surface normals and surface

albedo. However this method has several limitations. First of all they assumed that the

albedo is spatially uniform. They also assumed that shadows are perfectly black and used

a simple threshold to find shadow areas, while in real images there is always a range of

shadow values.

The method proposed by Yuille and Snow [32] is another four source photometric stereo

method which gives a solution for surface reconstruction in the presence of shadow. They

explicitly include ambient illumination and surface integrability. They used robust regression
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in an iterative fashion to eliminate shadows. Their paper didn't deal with specularities.

Another four source photometric stereo was proposed by Barsky and Petrou [4]. They

stated that in a Lambertian model, a linear combination of intensities for any non-shadowed

pixels should approximate to zero as shown in Eq. 2.5.

(2.5)

If Eq. 2.5 is not satisfied, there would be shadow or specularity at that pixel. Then they

used a threshold to find out whether shadow or specularity existed. They recovered the

surface normals using three darkest pixels in the case of specularity or three brightest pixels

in the case of shadow.

Recently Argyriou et al. [1], and Argyriou and Petrou [2] generalized the method pro

posed by [4] into a multiple light sources technique. Their proposed method is a recursive

algorithm which eliminates intensities affected by shadows or highlights, based on a least

squares error scheme.

Miyazaki et al. [18] proposed a five light source photometric stereo which is suitable for

images taken from a virtual museum, where objects are kept beyond glasses. It is aimed to

detect specularities and exclude them from normal and albedo reconstruction. The main

idea behind this algorithm is the same as [7]. Their method is robust to outliers under the

condition that only a small number of images are supplied.

Rushmeier et al. [26] proposed a five light source photometric stereo system where the

highest and lowest values in five components are discarded to avoid highlight and shadow.

They used the three middle intensities to reconstruct surface normals.

Sun et al. [28] showed that the minimum number of lights that photometric stereo needs

to illuminate the complete visible surface of any convex object is six. They argued that

simply discarding highest or lowest intensity pixels may lead to some important information

loss. So unlike [26], they only discard pixels with doubtful intensities. They argued that

in their system there is at most one highlight among the six pixel intensities, but there is

a possibility of two shadows occurring. So the highest and the two lowest intensities can

be problematic. However they discarded these values if they were to be problematic. They

used a threshold to determine if a pixel is problematic or not.

It is obvious that extra lights can eliminate the effects of shadows and specularity and

make the system more robust. Wenger et al. [30] make use of a spherical device to capture

156 images. Since their system is very overdetermined, they simply discard the lowest 50%
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and the highest 5% as possible shadow and specularity respectively to perform a robust

photometric stereo. However the thresholding or arbitrary discarding depends strongly on

surface shape and surface material, and these percentages cannot be the same for all objects.

Julia et al. [14] defined two thresholds to simply discard shadow and highlight pixels.

The lower threshold, which corresponds to shadows, depends on the intensity values in each

set of images, while they set the upper threshold, which is related to highlight, to 255. It is

obvious that the second thresholding is not realistic.

Chandarker et al. [6] used a fast graph-cut based method for performing Lambertian

PST in the prescnce of shadows. Thcy labeled each pixel as shadow or non-shadow. So the

problem is finding a labeling vector wp for each pixel with length equal to the number of

light sources with elements either 1 for non-shadow pixels or 0 for shadow pixels, such that

the given energy function E is minimized:

E(W) = L Dp(wp ) + L (Vp,q(wp , W q))

pEP (p,q)EN

(2.6)

where P is the set of pixels and N is a neighborhood. The first term in the above expression

measures the disagreement between a given labeling and the observed data and is called the

data term. Thc second term imposes a penalty on variation of labcling within a ncighbor

hood and is called the smoothness term. They used the fast graph-cut based algorithm of

Boykov et al. [5] to minimize the above equation.

The data term is defined as Eq. 2.7

(2.7)

and the smoothness term is the Hamming distance between wp and wq , shown in Eq. 2.8

(2.8)

Verbiest and Van Gool [29] introduces a probabilistic imaging model which can detect

outliers. They used a dense system which captures 169 images of an object. They formu

late the problem as a Maximum Likelihood estimation problem and used an Expectation

Maximization technique to solve it. However their proposed method needs some prior in

formation to speed up convergence and lead to a more likely solution, so for each pixel they

considered the 50% brightest intensity asinliers and then run the algorithm iteratively until

it converges.
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Figure 2.2: Hemispherical dome with multiple, identical lights
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Hernandez et al. [13] proposed a method to detect shadows in three-source photometric

stereo. They used a simple Markov Random Field op imization scheme to identify and

segment shadow regions in an image. Since one constraint has been lost due to shadow, they

showed that integrability over two remaining constraints can still lead to surface geometry

reconstruction in the shadow region.

2.2 Polynomial Texture Mapping

PTM, proposed by Malzbender et al. [17] is formulated as a generalization of the simplest

variant of PST [31]. It moves a linear regression involving lighting directions into a nonlinear,

polynomial model of lighting dependence. The polynomial regression from lighting directions

to observed image values can better model real radiance, and thus apprehend intricate

dependencies due to self-shadowing and interrefiections. In a typical setup as shown in

Figure 2.2, a camera is mounted at the apex of a hemisphere of lights, and each light is then

fired in turn, thus generating a sequence of images. Usually, some 40 to 50 images are used,

with the larger the number of images the better.

Thus PTM is a pixel-based method for modeling dependency of luminance (or RGB in

a different embodiment) on lighting with the objective being relightable images. At each

pixel, a 6-vector of coefficients is calculated using nonlinear least squares over the 2-vector

of lighting directions u, v- which are projected components of normalized light vector into

the local texture coordinate system. Figure 2.3 and Eq. 2.9 shows the calculation of the

projected components.
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lu = sm 0' cos T lv = sin 0' sin T cosO' (2.9)

where i is normalized light vector 0' is slant angle and T is tilt angle.

Suppose we have acquired n images of a scene, taken from i = l..n different lighting

directions ii. They determined that chromaticity of a particular pixel is fairly constant

under varying lighting directions and it is luminance that varies. Since the reduced dimen

sional problem is faster, Malzbender et al. [17] preferred working on luminance PTM rather

than RGB PTM, operating on R, G, B separately, although both of them are applicable.

Malzbender et al. defined luminance at each pixel as a sum of three different channels R, G

and B at that pixel, which is shown in Eq. 2.10:

(2.10)

Then a PTM model consists of a nonlinear regression from lighting to luminance via a

vector of polynomial terms p, with p a function of lighting direction i, as follows:

C , or PC E (2.11)
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where C is a vector of regression coefficients. Each pixel has its own C, and the E vector is

the collection of all luminances at that pixel over the n images, for polynomials P for the

known lighting directions.

They defined function of lighting direction, P, as a 6-component set Po of polynomial

terms in {u, v} space as shown in Eq. 2.12

(2.12)

and the coefficient vector c is a 6-vector and can be obtained simply by least squares. Thus

we can rewrite Eq. 2.11 in the form:

1~1 1;1 lUl lvl luI lvl 1 Cl el

1~2 1;2 lu2 lv2 IU2 Iv2 1 C2 e2
(2.13)

l~n l;n lunlvn lun lvn 1 C6 en

The use of a polynomial model is purely heuristic and other functions may be better;

however a low-order polynomial guarantees a basically smooth model for matte reflectance

and this is what we desire.

PTM has been used in several applications. Padfield et al. [21] employed PTM to monitor

surface changes of paintings. They examined several paintings and showed that PTM can

record surface features such as craquelure, planner distortion, wood grain, canvas wave and

so on. They applied PTM to paintings before and after physical changes which enabled

them to monitor surface changes. Hammer et al. [12] used PTM to visualize fossils. Many

fossils cannot be fully illustrated using conventional photographic approaches. Thus PTM

is used to resolve this problem.

Dong and Chantler [8] presented and compared five methods including PST, a gradient

method, PTM, and eigenvector basis images for synthesizing 3D textures. They defined

a gradient method as an over-constrained PST, where the number of images is more than

three. This system may be solved using a least squares technique. In Eigen3 and Eigen6

methods, they used 3 or 6 base images in an eigenspace for surface texture synthesizing.

They performed Singular Value Decomposition (SVD) on n sample images to get basis

images. Suppose M is the sample space matrix where row i represents the pixels of image

i. Thus M is an m x n matrix, where m is the number of images and n is number of pixels

per image. By performing SVD on M they will end up with:

(2.14)
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In Eq. 2.14, ~ is a diagonal matrix with elements being the singular value of matrix M,

~ = diag(CTl, CT2, ... , CTm ), and CTi > CTi+l. Each row of matrix ~VT is a base image. They

used the first 3 or first 6 base images in Eigen3 or Eigen6 respectively. To relight the surface

they simply generate linear combination of the base images. Their results showed that PST

and gradient methods failed in the presence of highlights and shadows as they are based on

Lambertian assumption. The non-linear polynomial regression in PTM helps it to capture

more complicated dependencies due to self-shadowing and interrefiection, however it still

cannot deal with specularities and cast-shadowing. The eigen-based methods also failed to

model complex surfaces and they need more base images to represent these surfaces.

Finally Dong et al. [9] introduced a mathematical framework which is used to express

three commonly used surface texture relighting representations: surface gradients (Gradi

ent), Polynomial Texture Maps (PTM) and eigen base images (Eigen). The framework

explicitly reveals the relations between the three methods, and a set of conversion methods.



Chapter 3

Highlight and Shadow Detection

The first step to perform interpolation on shadows and highlights is detecting them. In this

thesis we used robust regression on a modified version of polynomial texture maps in order

to find outliers. This altered version will be explained in details in Chapter 4.

Robust regression can find outliers automatically and propose the best fit for inliers. Our

model can work on any arbitrary surface and the outliers are shadows and specularities. The

input to the regression technique is a set of n intensities for each pixel, where n is the number

of imagcs. In this thesis we tried two different robust tcchniques (Least Median of Squares

and Least Trimmed Squares), which are explained in this chapter.

Then we will show how robust regression can automatically detect shadows and specu

larities separately without the need of any threshold.

3.1 Synthetic Data

In this chapter and following chapters we used a synthetic sphere to illustrate different steps

of our algorithm. Hence this section explains the sphere data set in more details.

A synthctic sphere with radius 1 and equation z = Jl - x 2 - y2 is illuminated under

50 different lighting directions. Figure 3.1 shows the positions of these lights on the hemi

spherical dome. We assumed that the surface is Lambertian; thus the shading factor for a

pixel i under light j is:

(3.1)

where n (x, y, z) IS the surface normal and I = (lu, lv, Iw)T IS the lighting direction.

15
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Figure 3.1: Lighting positions on a hemispherical dome, used for lighting the synthetic
sphere; these directions are not arbitrarily chosen but in fact correspond to those experi
mentally measured for Figure 6.2 below.

Shading for all the pixels under light j will then looks like Eq. 3.2, where N is the surface

normal matrix.

S = N ·lj (3.2)

The part of the sphere that cannot see the light is considered as shadow. In other words

shadow is the part for which shading is equal to zero.

We can add color to the shading matrix and get a matte sphere. In order to add some

highlights to the matte sphere, we used Phong illumination [22], with surface roughness

power 20.

Figure 3.2 shows a synthetic sphere with Phong illumination, the matte image, surface

normal, luminance and matte luminance. The lighting direction in these images is l =

(0.6396, -0.0046, 0.7687f. In 3.2(c), the surface normal is shown in pseudocolor, with the

x-component of the surface normal represented as red, the y-component as green, and the

z-component as blue.
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Figure 3.2: (a): Synthetic sphere with Phong illumination. (b): Matte version of the sphere.
(c): Surface normals: x, y, and z components represented as R,G,B respectively. (d):
Luminance of synthetic sphere with highlight. (e): Luminance of matte synthetic sphere.
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3.2 Why Robust Regression
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Regression analysis is used to fit an equation to n observed data values. Suppose a linear

model as in Eq. 3.3:

(3.3)

Y is the dependent variable vector and X is the independent variable matrix. The goal of

regression analysis is estimating the unknown parameter vector C. The estimated parameter

vector shown as C called the regression coefficient vector. Thus the estimated or predicted

value of Y, denoted by Y, would be:

(3.4)

In the problem ofPTM the dependent variable is either luminance as defined in Eq. 2.10,

or each of the RGB channels separately. The independent vector is a function of lighting

direction such as p(l) = (lu, lv, lw, l~, lulv, 1), where lu, lv and lw is the projection of lighting

direction into the local texture coordinate system. Eq. 2.9 described the light projection

step. Our function p(l) is different from that of original PTM po(l), which has been described

in section 2.2. The modified PTM will be explained in more detail in Chapter 4.

So in the problem of modified PTM with 50 different illumination directions, we should

find the parameter vector C of the polynomial model for each pixel as shown in Eq. 3.5:

luI lvl lWI l~1 lUIlvI 1 CI el

lU2 lV2 lw2 l~2 lu2 lv2 1 C2 e2
(3.5)

lu50 lv50 lw50 l~50 lu50 lv50 1 C6 e50

The most popular and traditional regression technique is least sum of squares (LS) , in

which the sum of squared residuals is minimized as shown in Eq. 3.6:

(3.6)

The residual ri of the ith observed variable is the difference between the actual observed

value and the estimated value. Then solving Eq. 3.4, a LS estimation of the regression

coefficient vector is given by:

C=X+y (3.7)
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where X+ is the Moore-Penrose pseudoinverse of X.

Despite the popularity of least square regression, it is well known that it can be greatly

affected by outliers, since its breakdown point is 0%. The breakdown point of an estimator

is the proportion of outliers to the whole data that an estimator can handle before being

affected. However [25] introduced regression techniques which are robust against outliers,

with breakdown points of 50% such as, least median of squares (LMS) or least trimmed

squares (LTS).

Figure 3.3 shows the result of applying robust and non-robust regression estimators on

50 data points. The robust regression technique is LMS. It can be seen that a non-robust

regression estimator is affected by outliers, while robust regression produces a much better

estimation of the underlying matte data and is less affected by shadows and specularities. In

Figure 3.3, in fact, we reconstruct the correct underlying matte component of the Luminance

essentially exactly. Note that in Figure 3.3 what is shown is regression results, both non

robust and robust, for data at a single pixel, indexed by 50 lighting positions. Here, we sort

the data according to the overall Luminance observed.

For the input data itself (e.g., 50 different input images themselves), we shall indeed

do very well at recovering the matte contribution; and for a new, non-measured lighting

direction we expect to do well agaim although of course not as well as for the input data

iteslf.

Any structure observed in the pattern of dots in Figure 3.3 is simply due to the arrange

ment of lights as in Figure 3.1.

The result of using LMS based modified PTM and LS based modified PTM on the

synthetic sphere is shown in Figure 3.4. For visualization purposes we show the luminance

and RGB version separately. The regeneration step of matte RGB will be explained in

Section 4.3.1. There is a bright pink area in the recovered matte sphere using LS (Figure

3.4.b), and this shows that it was affected by outlier pixIe values (highlights, in this case).

As this figure depicts, it is obvious that using robust regression rather than non-robust

regression will improve the recovered matte surface and recovered normal, where the latter

is shown in pseudocolor with x, y, z mapped into R, G, B.
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Figure 3.4: (a b): Recovered luminance and RGB matte sphere using least squares. (c):
Recovered surface normals using least squares: x, y, z are mapped into R G B. (d,e): Re
covered luminance and RGB matte sphere using least median of squares. (f): Recovered
surface normals using least median of squares. (g,h): Recovered luminance and RGB matte
sphere using least trimmed squares. (i): Recovered surface normals using least trimmed
squares.
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3.3 Robust Regression Estimators
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As it was mentioned earlier, robust regression estimators are those with breakdown point

greater than 0%. The best possible breakdown point is 50%, since for larger amount of

contamination the bad part will be considered as the good part [23].

The very first attempt toward a more robust regression estimator was proposed in 1887

by Edgeworth [11]. He used an L1 criterion or least absolute value instead of L2 or least

square value. While in one dimensional space the L 2 criterion leads to the arithmetic mean

of observations, the L 1 criterion leads to the median. Although the breakdown point of the

sample median is 50%, it can be shown that in fact the breakdown point of L1 regression is

the same as LS and is 0%.

Rousseeuw [25] proposed LMS and LTS, with high breakdown point (50%). The fol

lowing subsections explain each of these estimators and compare them.

3.3.1 Least Median of Squares

LMS, as the name suggests, finds an estimation for regression coefficients by minimizing the

median of squared residuals as shown in Eq. 3.8

mjn mediani r;
C

(3.8)

The exact LMS searches all the possible combinations of p points out of the n points,

calculates least square coefficients and residuals for each possible non-singular combination

and finds the median of the residuals. The smallest median of residuals of all possible

combinations and the corresponding coefficients are the final answer. However this method is

very inefficient and time consuming, since the number of all possible combinations increases

so fast, even with a small increase in number of parameters (p) or number of observed data

(n). For exmnplc in onr rase n ~ 50 and p ~ G which will resnlt in ( ~~ ) ~ 15890700

different combinations.

In order to implement the LMS algorithm, researchers usually considered only m sub

samples. The number of sub-samples should be such that the probability of at least one

good sub-sample will be one. A good sub-sample consists of p good observations of the

sample. Rousseeuw and Leroy [25] provide possible m values for different scenarios. In our

problem m = 3000 is used.
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A good point about LMS is its outlier detection. According to [25] a point is an inlier

with weight one (w = 1) if it satisfies Eq. 3.9, otherwise it is an outlier and w = 0:

rI-I <= 2.5
So

where So is the initial scale estimate which is given by:

So = 1.4826 x (1 + ( 5 )) x v(min of med of r;)
n-p

(3.9)

(3.10)

Finally, a reweighted Least Squares regression is carried out to get a final scale and final

weights, using only the accepted points with weights 1 as demonstrated in Eq. 3.11.

scale = 2::i=l n(r;wi)
(2::i=l nWi) - P

(3.11)

The final weights are obtained by replacing So by scale in Eq. 3.9.

3.3.2 Least Trimmed Squares

The least trimmed squares estimator (LTS) is another robust regression estimator which

was proposed by [23]. The objective of the LTS is:

(3.12)

where (r 2h:n :S (r 2 )2:n :S ... :S (r 2 )n:n are the ordered squared residuals. Eq. 3.12 is

equivalent to finding an h-subset with smallest least sum of squares [24], where h is the

coverage value and may be set between ~ and n. Note that the calculation of LTS requires

sorting the squared residuals which takes at least O(n log n) operations, compared to O(n)

operations for median in LMS. Therefore the overall LTS regression algorithm is more

expensive than LMS. Ref. [25] showed that the best robustness properties are achieved

when h is approximately ~.

Since the exhaustive search for finding the h-subset with smallest least sum of squares

is very time consuming, [24] proposed an approximation algorithm for LTS. It randomly

draws 500 h-subsets Hold and carries out a "two C-step". The "two C-step" is as follow:

• compute Cold based on Hold using LS regression estimator

• compute r~:n for all n observations
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• sort the absolute value of the residuals

• take the permutation for h smallest residuals and call it Hnew

• compute Cnew based on H new using LS regression estimator

• compute ri:n for i E H new

24

For the 10 lowest Q carry out C-steps until convergence, when Qnew = Qold. The lowest

corresponding Q will give us coefficients (c). Once the final coefficients have been calculated,

weights are obtained by the equations in the previous sub-section.

3.3.3 Comparison

We tried both LMS-based modified PTM and LTS-based modified PTM on the synthetic

sphere. The qualitative results, are shown by Figure 3.4. However we preferred to use LMS,

since LTS was much more time consuming due to sorting the residuals.

Table 3.1 presents the two estimators based on three quantitative metrics. It can be

seen that both LMS and LTS are more or less the same. However LMS is more accurate in

predicting surface normals and surface albedo. Section 4 describes the method for recovering

surface normals and albedo.

In this thesis we used three quantitative metrics: peak signal to noise ratio (PSNR),

median normal angle error (MNAE) and median albedo percentage error (MAE). Each of

them is described as follows.

If image I is a monochrome m x n image, assumed to be the original image, and image

J is the reconstructed one, then the PSNR of image J is:

max (I)
PSNR = 20log10 1 m n .. . . 2

mn Li=l Lj=l(I(Z,)) - J(z,)))
(3.13)

Another metric is MNAE, which is the deviation of the reconstructed surface normal

angle from the actual surface normal angle. It computes the angle for each pixel position

and the median of these angles is our MNAE metric.
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MAE finds the albedo error at each pixel position as shown in Eq. 3.14:

MAE = 100 X (actual albedo - recovered albedo)
actual albedo

LTS-based modified PTM LMS-based modified PTM
PSNR 22.23 22.14
MNAE 1.21 x 10 -6 8.54 X 10 7

MAE 1.36 x 10-5 6 X 10-7

25

(3.14)

Table 3.1: PSNR, MNAE and MAE metrics for LMS-based modified PTM and LTS-based
modified PTM

Note that the PSNR in this table is between original and approximated luminance sphere.

3.4 Highlights and Shadows

As explained in Section 3.3.1, outliers detected by LMS are the points with weights equal

to zero. However in our problem domain, an outlier can be either shadows or highlights.

However, we know that shadows are darker than matte, and specularities are brighter than

matte. Thus if a pixel has been detected as an outlier and its residual is positive, which

means that actual luminance is greater than approximated luminance, then it is labeled as

specularity. Similarly an outlier pixel with negative residual is labeled as shadow. The inlier

pixels with weights equal to one are labeled as matte.

Thus we modified the weights into a tripartite set with labels {w-, wO, w+}, where w

indicates shadow pixel, wO indicate matte pixel and w+ indicate specularity.

Figure 3.5 shows one particular pixel position of a synthetic sphere under 50 different

lighting directions. Even though we are interested in exactly the same pixel under all the 50

lights, we nevertheless indicate the pixel using a small yellow circle for ease of understanding.

For visualization purposes, we show the color sphere as synthesized, but the parts that are

in shadow have been shown in white rather then the black actually calculated.

The idea in this Figure is to display how the robust regression categorizes the single

pixel we are interested in, as the light changes: is it identified as being matte, specular, or

shadow? As it can be seen, the robust PTM model correctly found shadows and specularity

in most of the cases. However in some cases, sphere 32 for instance, the pixel has been

marked as specularity while it is not a specularity, but is bright enough to be considered
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as specularity. It is important to note that the residual of this pixel (0.83) is much smaller

than the residual of pixel marked as specularity in sphere 15 which is 205.48.
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(l)spec. (2)spec. (3)spec. (4)spec. (5)spec.

(6)spec. (7)matte (8)matte (9)spec. (lO)spec.

(ll)spec. (12)matte (13)spec. (14)spec. (15)spec.

(16)spec. (17)matte (18)matte (19)matte (20)spec.

(21)spec. (22)spec. (23)matte (24)matte (25)matte
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(26)matte (27)spec. (28)matte (29)matte (30)matte

(31)matte (32)spec. (33)matte (34)matte (35)matte

(36)matte (37)matte (38)spec. (39)matte (40)matte

(41)matte (42)matte (43)matte (44)matte (45)matte

(46)shadow (47)shadow (48)matte (49)matte (50)shadow

Figure 3.5: Pixel position (53,53) of synthetic sphere under different 50 lighting directions.
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Normal, Albedo and Color

In this chapter we explain the altered version of PTM, which can automatically generate

regression coefficients that are exactly correct in the case where inliers are indeed Lamber

tian.

We then demonstrate two different methods for surface normal and albedo recovery

based on the robust regression which was explained in chapter 3. The first method uses

only the PTM coefficients while the second method performs PST on inliers found by the

regression technique.

Next we discuss how to recover chromaticity. Adding back chromaticity to luminance,

we will end up with colored images. It is also possible to apply PTM to each channel of an

image, red, green and blue, separately, rather than applying it on luminance. We explained

and compared both methods in this chapter.

4.1 Modified PTM

Polynomial Texture Mapping is formulated as a generalization of the simplest variant of

PST [31], wherein no calibration object is used but instead a basic Lambertian model is

assumed. PTM moves a linear regression involving lighting directions into a nonlinear,

polynomial model of lighting dependence as shown in Eq. 2.12. In this thesis we altered the

polynomial used in PTM and replacing it with Eq. 4.1 [10].

where [ = J1 - [2 - [2w u v (4.1 )

The rationale is as follows: Suppose we indeed have a Lambertian surface; since we

29
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Figure 4.1: (a,b): Recovered luminance and matte sphere using original PTM. (c): Recovered
Surface normals using original PTM. (d,e): Recovered luminance and matte sphere using
modified PTM. (f): Recovered Surface normals using modified PTM.

mean to use a robust regression to solve for the regression coefficients c, then regardless

of specularities or shadows, the regression will just generate the correct surface normal

vector, multiplied by a surface albedo times a lighting strength factor. The regression will

place zeros in c for the higher order terms. Nevertheless, it is useful to keep a polynomial

description, to suit surfaces which are not Lambertian. Note that if we were to use instead

p(l) = (lu, lv, lw) the method would simply reduce to PST. Here we regress making no

assumption about a Lambertian character of the surface, and can reconstruct pixel values

without making any such assumption. The reason for 6-D in Eq. (4.1) is simply to retain

the same low dimensionality, rather than the 10-D possible for quadratic combinations of

{lu, lv, lw, I}. (Also, 7-D, with a l~ term in (4.1), performed about the same.)

Figure 4.1 depicts the difference between original PTM and modified PTM on the syn

thetic sphere - the new PTM polynomial performs much better.

Thus the regression involving Eq. 4.1 automatically generates an estimate of surface

normal n and albedo a, by considering the contribution to the first three terms of p(l):

(4.2)
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Figure 4.2: (a): Mesh of actual surface normal. (b): Mesh of recovered surface normal using
modified PTM. (c): Mesh of recovered surface normal using original PTM.

Figure 4.2 shows the mesh of actual surface normal, modified PTM and original PTM.

The surface normal recovery of original PTM has been explained in [17J. For a diffuse

surface, being photographed under varying lighting directions, the surface normal per pixel

can be estimated by maximum luminance of 4.3.

Setting ae = ae = 0 we arrive at [1 7J:au av '

r _ C3 C5 - 2C2C4
u - 4CIC2 - c~

r _ C3C4 - 2CIC5
v - 4CIC2 - c~

(4.3)

(4.4)

(4.5)

and the surface normal will be n = (t:, Z:, J1 - Z: 2
- Z: 2

) .

It can be seen that using our modification of the standard PTM improves the qualitative

results as well as the quantitative results. Table 4.1 compares a robust version of the original

PTM and our modified robust PTM comparing PS Rand MNAE.

Robust Original PTM Robust Modified PTM
PSNR 20.86 22.14
MNAE 10.64 8.54 x 10 7

Table 4.1: Comparison table between original PTM and modified PTM

From now on by the term PTM, we mean our modified PTM unless stated otherwise.
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4.2 Robust Photometric Stereo
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As discussed in the previous section, modified PTM can generate surface normal and sur

face albedo using 4.2. An alternative approach for surface normal and albedo recovery is

photometric stereo. However PST is very susceptible to shadows and highlights. Thus

we propose using robust photometric stereo, where we use robust PTM regression weights.

Hence robust PST finds surface normal and albedo, for each pixel position, based on inliers

only. It is summarized in Eq. 4.6 where wO identify inlier pixels.

(4.6)

Figure 4.3 shows surface normal and albedo for robust PTM, robust PST and standard

PST over increasing percent Gaussian noise, for the synthetic sphere plus noise. Here

the solid lines show the results for error in normal vector direction (blue) and albedo (red).

Unsurprisingly, if there is indeed no noise, and the base reflectance is Lambertian, the robust

regression on robust PTM ignores the polynomial terms in the regression model and returns

regression coefficients proportional to the surface normal since the shading model is normal

dotted into light direction, and specularities and shadows do not distract the regression. The

lowest-error estimations for surface normal and albedo in Figure 4.3 belongs to robust PST,

which is shown as dot-dashed lines. This is because the extra polynomial terms in PTM

will tend to over-fit the correct underlying noise-free values, whereas robust PST assumes

a Lambertian model, correctly in this synthetic case. In comparison, standard PST, based

on straightforward least squares including all pixel values, has poorer estimates - dashed

lines in Figure 4.3 - because the effect of noise is swamped by the main problem, inclusion

of shadow and specular values.

For real images, we therefore apply the robust PST, with matte weights generated by

PTM, as our estimator of albedo and normal.

4.3 Color

The robust regression and normal recovery techniques we have discussed so far worked on

luminance. We call this method Lum-PTM. In this thesis we have defined the luminance at

each pixel position is simply the sum of red, green and blue channel at that pixel. In order to

add back color to the results we need to somehow recover chromaticity (the color information
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Figure 4.3: Solid lines: Joise sensitivity for robust PTM estimate of surface normal and
albedo. Dot-dashed lines: robust PST - using weights wO generated by robust PTM. Dashed
lines: standard PST.

not including magnitude). However we could take a different approach to deal with color.

We can perform robust regression and normal recovery techniques on each colored channel

separately. This method is called RGB-PTM.

Lum-PTM is less time consuming and needs less memory than RGB-PTM, and they

each generate almost the same qualitative and quantitative results. In the next section

these two methods are discussed.

4.3.1 Lum-PTM

This method, as its name suggests, regresses on luminance. At this point, we already have

an advantage of applying a robust method to the problem at hand, viz. a more reliable

calculation of coefficient c. But in fact we also have produced a better grasp of color as

well. Let us factor each RGB triple p into luminance L = R + G + B times chromaticity

X (p = LX)· Luminance will be composed of a scalar albedo a times lighting strength

times shading factor Sj since we have no way of disentangling lighting intensity from surface
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Figure 4.4: (a): Recovered chromaticity of synthetic sphere. (b): Intrinsic image of synthetic
sphere.

reflectance, we shall simply lump both scalars into a. Thus,

P = sax, X={R,G,B}j(R+G+B), L = sa (4.7)

An intrinsic image [3] (for this lighting strength) - by intrinsic image we mean surface

independent of shading - would then be

Pintrinsic = a X (4.8)

I.e., this is what the surface would look like under this light, with shading removed.

Since we have weights wO identifying pixels indeed corresponding to the PTM model,

the robust regression delivers a reliable estimate of chromaticity. For suppose that a set of

all chromaticities X is given by Xk(i) = Pk(i)jL(i), k = 1..3, for the ith light, i = 1..n (with,

say n = 50 lights), then we can identify a good estimate for the chromaticity independent

of light direction via

(4.9)

Figure 4.4 shows the chromaticity and intrinsic image of the synthetic sphere. ote that

the estimated chromaticity we defined here is independent of illumination direction and does

not contain any shading information - the color without magnitude X shows correctly as

a constant disk - and also the intrinsic image is correctly a constant disk.

4.3.2 RGB-PTM

The basic idea behind this method is performing robust regression on each color channel

separately. Thus we will have three sets of results for red green and blue. The results
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contain: approximated red, green and blue, weights and PTM coefficients. Since there

are surface normals for each channel, we take the overall surface normal to be the average

of normals over three channels. The quantitative and qualitative results show the same

accuracy as for Lum-PTM. However RGB-PTM is more time and space consuming (almost

three times that of Lum-PTM).

Lum-PTM stores only 6 PTM coefficients at each pixel position plus any pair of the chro

maticities, for instance red and blue chromaticity, since the other value, green chromaticity

here, can be achieved by:

(4.10)

while RGB-PTM stores 6 PTM-coefficients for each color channel at each pixel position,

which is 18 coefficients in total.

In fact we found that Lum-PTM and RGB-PTM showed nearly the same performance;

since Lum-PTM is more efficient, we use Lum-PTM throughout this thesis.



Chapter 5

Shadow and Specularity

The model we have introduced so far will not account completely for the luminance in

cluding highlights and shadows, but only a basic matte reflectance, the result of the robust

regression. Since we have in hand labels for specular w+ and shadow w- pixels (over lights

i = l..n at each each x, y location), we can model these extra contributions, with a view to

being able to interpolate them later, for new, unmeasured, lighting conditions.

In this section we will explain how to model shadow and specular contribution using

radial basis functions and then utilize the model parameters for interpolating new lighting

directions.

5.1 Radial Basis Function

Radial Basis Functions (RBF) are a nonparametric regression method used to interpolate

scattered data, and does not require that data lie on any regular grid. RBF is based on

linear combinations of a radial function, such as a Gaussian or Thin Plate Spline, centered

at the origin so that ¢(x) = ¢(llxll) or on the distance from some center point e so that

¢(x, e) = ¢(llx - ell). Suppose we would like to interpolate a function with n observed

points. Then we can use n radial basis functions centered at these points and the resulting

interpolated function becomes:

n

f(x) = L "'(i¢(llx - xiii)
i=l

36

(5.1)
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where Xi is the position of ith known point and "Ii is the weight of the radial basis function

positioned at that point. In some cases a first-degree polynomial P(x) is added to account

for the linear and constant portions of f and ensure positive definiteness of the solution [19].

Suppose x is a three dimensional data point; then P(x) = a + f3 1x1 + f32 x2 + f33 x3 where f3
are the polynomial coefficients:

n

f(x) = a + f3 1x 1+ f32 x2 + f33 x3 +L "Ii<P(!!X - xiii)
i=l

(5.2)

Since the system defined by Eq. 5.2 is under-determined, one scalar and one vector are

usually introduced into the system.

n

L "Ii = 0,
i=l

n

L "Ii x7= 0,
i=l

k=I,2,3 (5.3)

5.2 Modeling Shadow and Specularity

We utilize RBF to model specularity and shadow, separately, since we may wish to inter

polate these quantities plus a matte contribution separately. In principle we could also use

RBF on the luminance directly, but each component that makes up the luminance - i.e.

matte, specularity, and shadow - is of interest in its own right, for such tasks as matte

relighting [17] or shape-from-specularity [20]. Moreover, since we are aware that the matte

component is smooth, whereas the specular and shadow contributions are much more high

frequency, we risk over-fitting if we apply RBF as part of generating the matte luminance,

whereas RBF can indeed handle the abrupt changes of the other two components.

In order to model specularity at each pixel, we first consider the extra value, over and

above the approximated luminance vector E at each pixel, due to specularity. Let us call

this highlight-driven value the "sheen", (, , defined as

(5.4)

where approximated luminance E is the result of robust regression and contains only the

matte contribution.

Then we can model the dependence of specularity on lighting direction using a set of

(RBF) coefficients. I.e., supposing that the sheen is given in terms of 3-vector light direction
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I as [16]
n

((I) = a + f3llu + f321v + f331w + L 'Yd)(111 -lill) (5.5)
i=l

In the case of our synthetic sphere n is 50 lights, at each pixel. Then Eq. 5.5 can be rewritten

in matrix form as:

¢u ¢12 ¢In lUI IVl lwl 1 1'1 <;1

¢2l ¢22 ¢2n IU2 Iv2 Iw2 1 1'2 <;2

¢nl ¢n2 ¢nn lun lvn lwn 1 'Yn <;n

luI lu2 lun 0 0 0 0 f3l 0
(5.6)

IVl IV2 lvn 0 0 0 0 f32 0

IWl Iw2 lwn 0 0 0 0 f33 0

1 1 1 0 0 0 0 a 0

with nodes Ii and Gaussian radial base functions ¢, where ¢ij = ¢(Illi -ljll). We solve for

the (n + 4) coefficient values {scalar a, 3-vector f3, n-vector 'Y}. For the Gaussian width s

we take the approximate average distance between interpolation nodes [16]:

s = {~II~=l [i~f~(lf) - i~\i~~(lf)]} 1/3 (5.7)

where Z; is lui, I; is IVi and q is lwi. I.e., s is (1/n)1/3 times the geometric mean of the

bounding-box widths enclosing the lights.

Interpolation nodes are mapped exactly, but the interpolated function might model the

underlying dependency well or not, depending on the amount of smoothing applied. Here

we use no smoothing, but this may be re-considered in future.

To model shadowing and any other contribution, all the remaining non-matte contribu

tion the "shade", denoted a:

(5.8)

Again, we model this contribution using a different set of RBF coefficients, separately. The

reason for including all non-sheen pixels in the shade a, and not just w-, is that then the

two RBF interpolations, plus matte, combine to exactly equal the input luminance images.

The model that describes luminance E' for any new lighting direction I, at each pixel

position is then shown in Eq. 5.9.

E'(l) E(l) + ((l) - a(l) (5.9)
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Figure 5.1: (a): Actual luminance image. (b): Actual highlight. (c): Regenerated luminance
image. (d): Regenerated highlight.

Again, note that the input luminance images themselves are essentially exactly regener

ated, using this model. Figure 5.1 shows the original. and regenerated input luminance and

specularity images of a synthetic sphere for light direction l = (0.6396, -0.0046, 0.7687)T.

The PSNR of the regenerated luminance sphere compared to the actual luminance sphere

is 47.82dB for this lighting direction.

5.3 Interpolating Shadow and Specularity

With shade and sheen RBF model parameters in hand, i.e. scalar a, 3-vector {3, n-vector

"I, we can interpolate shadow and specularity for any new light L. We simply put the new

lighting direction into Eq. 5.5 for shade and sheen separately.

We can use either PTM coefficients (e = p(l) . c) or robust PST (e = n . IT) as the

base contribution. ote that PTM approximated luminance e may include some measure

of shadow or specular contribution, since in fact we have used a polynomial approximation,

not simply a Lambertian one.

Figure 5.2 shows the interpolation result of a synthetic sphere under a new, unmeasured
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(a) (0.73,0.27,0.64) (b) ~ Interpolated an- (c) (0.76,-0.46,0.45)
gle f-

(d)
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Figure 5.2: (a,c): Two inputs. (b): Interpolated for a light between (a) and (c). (d): Actual
appearance of the synthetic sphere under the interpolated lighting direction.

lighting direction. The new lighting direction is the average of two measured lighting direc

tions. Figure 5.2(d) shows how the sphere should look like under the new lighting direction.

The PSNR of the interpolated sphere is 41.26dB which shows that our method works very

well indeed.

5.4 Adding Back Color

Since we have performed regression on the luminance only, the output generated so far is

the regressed luminance. However we would like to render full color RGB output and the

naive approach to do so is using RGB-PTM and then performing RBF on each color channel

separately. This approach is relatively time and space consuming which is not desirable. In

this section we will discuss two simpler approaches to add back color. The first one is based

on chromaticity information, and the second method models shade and sheen in each color

channel separately.

5.4.1 Chromaticity based Method

We already have a good estimation of chromaticity, using Eq. 4.9 and the regressed lumi

nance, using Eq. 5.9, at each pixel position. Thus one can simply say color value at each

pixel position is chromaticity time luminance. However we know that the chromaticity in

a highlight area is different than the estimated chromaticity, and the result of the above

approach would not be accurate. Figure 5.3(b) demonstrates how such a result will look.
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The highlight area displays as pink, which is not desirable, since for dielectric materials we

expect the highlight color to approximate that for the illuminant [15].

This problem can be solved if we can add back color in the sheen area separately, and

since we have broken out the sheen" separately, we can in fact do that. Thus if we can

estimate the interpolated basic luminance e, and also the shade contribution a to luminance,

which we assume has the same color, we can generate RGB color for these contributions to

luminance by simply multiplying luminance by the chromaticity 3-vector X. Note that we

already know the luminance for matte and shade.

For the sheen contribution, so far we have the scalar luminance ". We can also obtain

the specular chromaticity Xspec by identifying it with the chromaticity of the maximum

luminance input value over all pixels - here we are using the neutral-interface model of

dielectrics, which states that specular color equals light color [15]. Then we generate an

x, y-dependent difference of chromaticity, ~X, equal to the chromaticity for a pixel from

Eq. (4.9) subtracted from Xspec' At pixels with specular contribution, we expect the matte

chromaticity to be replaced by that for a highlight, so we add the sheen" times ~X to the

interpolated color. The following equation summarizes this method at each pixel position:

p~(l) = (E(l) + C:(l) - a-(l)) x Xk + C:(l) x (Xspec - Xk) (5.10)

where k = 1,2,3 corresponds to three color channels and I is the new, interpolated, lighting

direction.

As Figure 5.3 depicts, this method works quite well. The PSNR value between the input

(Figure 5.3(a)) and regenerated RGB image (Figure 5.3(c)) is 42.37dB for this synthetic

example.

5.4.2 Three-Shade and -Sheen Method

Although the chromaticity based method works well enough, it may produce some artefacts

where robust regression generates near-zero slopes. Note that this will happen in locations

where a majority of the pixel values are very dark, and thus LMS regression returns slopes

that are almost zero and hence the matte contribution is very dark. In such a case the

interpolated color would be basically that of the sheen, and is therefore greyish.

However we determined that modeling shade and sheen for each color channel and then

applying RBF to each of them can solve the problem. The reason is that now we are
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actually regressing color and not only luminance and therefore we can achieve a better fit.

The following equations demonstrate this method, where k = 1,2,3 corresponds to the

three color channels, Pk is the value of the kth color channel and E and X are approximated

luminance for matte contribution and chromaticity respectively. Note that in this method,

as in the previous method, we model sheen in the highlight area and shade everywhere

except highlight area:

(5.11)

(5.12)

We then model each of shade and sheen using a different set of RBF coefficients, and finally

color is the combination of matte contribution, shade and sheen for each color channel as

shown in Eq. 5.13:

(5.13)

Note that the matte contribution for each color channel is chromaticity X times approxi

mated luminance E.
In other words we performed Lum-PTM to get luminance in the matte area (E) as well

as chromaticity (X). We then applied RBF to each of the three (~ and a~ to model sheen

and shade for each color channel and finally we used Eq. 5.13 to get full color output.

Experimental results show an improvement in qualitative results (compare Figure 5.3(c)

and (d)) as well as the quantitative results. The PSNR is 48.67 between the input (Fig

ure 5.3(a)) and regenerated RGB image (Figure 5.3(d)), a large improvement.
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Figure 5.3: (a): Actual colored sphere. (b): Regenerated colored sphere using chromaticity
times luminance. (c): Regenerated colored sphere using specular chromaticity. (d): Regen
erating colored sphere, regressing three different channels.
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Experimental Results

In this chapter we will present experimental results for seven different datasets, captured

using a hemispherical dome as shown in Figure 2.2, in two main steps. First we will apply

Modified Robust PTM to the data and recover the matte component, chromaticity and

surface normal. In the next step we will apply RBF to PTM results to interpolate shadows

and specularities. We will then show how the chromaticity based and three-shade and -sheen

methods will perform on real data.

6.1 Robust-PTM

The first dataset that we explore consists of 50 images captured under 50 different lighting

directions and contains both shadows and highlights. Figure 6.1 shows some of these im

ages. We solve the modified Lum-PTM equation as per Eq. 3.5, using the LMS regression

technique to identify matte, shadow and highlight contributions automatically. Having this

information, we can then estimate chromaticity, and the matte contribution for any existing

and new lighting directions. Suppose the illumination direction we are interested in is the

one for the input image shown in Figure 6.1(d) with l = (0.48, -0.61, 0.64)T.

Figure 6.2 presents the result of performing Robust-PTM on the input data. Fig

ure 6.2(b) is actual luminance of the input image. Figure 6.2(a) is the shadow and specularity

map solved by Robust-PTM. This figure shows weights corresponding to the input image

where wO is shown as white, w+ as green, and w- as red. The approximated luminance

for the matte contribution is shown in Figure 6.2(c). This is the polynomial PTM-based

image. Figure 6.2(d) presents the recovered chromaticity which is intrinsic color without

44
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Figure 6.1: Some images from Barbara dataset

45
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Figure 6.2: (a): Shadow and specularity map for u = 0.48, v = -0.61, W = 0.64 obtained by
Robust-PTM. (b): Actual luminance for u = 0.48, v = -0.61, W = 0.64. (c): Approximated
luminance for matte component using Robust-PTM. (d): Recovered chromaticity. (e):
Approximated colored version for matte contribution.

magnitude, as in Eq. 4.9. Finally the colored version of the matte is depicted in Figure 6.2(e)

which is obtained by simply multiplying chromaticity and approximated luminance. This

is what PTM matte relighting generates. Note that using robust slopes can generate black

output, from slopes that are near zero, since dark values may form a majority at some pixels

- the area around the nose in this case - as shown in Figure 6.2(c). Least-squares based

PTM might return brighter matte values for these cases. Also this image shows that the

base luminance value does include some specular content which is due to the non-linear

regression of PTM and the fact that PTM can model the reflectance of any general surface

and not only Lambertian surface.

At this point we can generate surface normals and albedos either by the mean of the

modified Robust-PTM coefficients we already have, Eq. 4.2, or by performing Robust-PST
/

using inlier illumination directions and luminances, Eq. 4.6. However we showed earlier that
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Figure 6.3: (a): Recovered surface normal: pseudocolor with x, y, z mapped into R, G, B.
(b): Recovered surface albedo. (c): Intrinsic image.

Robust-PST generates more accurate results. Figure 6.3 shows how surface normal, surface

albedo and Lambertian-based matte intrinsic image, Eq. 4.8, look. In Figure 6.2(a), the

surface normal is shown in pseudocolor, with x, y, z mapped into R, G, B. Note that since

Figure 6.2(e) includes shading, its appearance is more realistic comparing to Figure 6.3(c).

6.2 RBF

Now we are ready to interpolate shadow and specularity using different sets of Radial Basis

Functions as explained in Chapter 5. Figure 6.4 shows the result of the chromaticity based

method discussed in section 5.4.1.

Figure 6.4(d) shows the reconstructed luminance of Figure 6.1(d). Comparing the recon

structed and original luminance shown in Figure 6.2(b) demonstrates that the chromaticity

based method works very well for luminance images. However the colored image version

contains some gray pixels around the nose and in the forehead, which is due to the near-zero

slopes generated by robust regression - the interpolated color in these areas is basically

that of the sheen and therefore is greyish. This artefact is removed using three-shade and

-sheen model, described in section 5.4.2, as shown in Figure 6.5(d).

We showed that our method can regenerate the input data accurately and with high

PSNR. PSNR values between the input and the thusly regenerated RGB images range from

27.54 to 50.43 with median value 35.61, justifying the suitability of this approach. Figure 6.6

shows how the method will work for new lighting directions. We chose the average between



CHAPTER 6. EXPERIMENTAL RESULTS 48

Figure 6.4: Chromaticity-based method.(a): Approximated matte contribution. (b): Mod
eled sheen contribution. (c): Modeled shade contribution. (d): Reconstructed luminance
image of the input data. (e): Reconstructed colored image of the input data.

Figure 6.5: Three-shade and -sheen method.(a): Approximated colored matte contribution.
(b): Modeled colored sheen contribution. (c): Modeled colored shade contribution. (d):
Reconstructed colored image of the input data.
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Figure 6.6: (a,d): Input images. (b): Interpolated result of the chromaticity-based method
for light between (a) and (b). (c): Interpolated result of three-shade and -sheen method for
light between (a) and (b).

two available lighting directions as the direction of interest.

6.3 Further Results

In this section we will present more interpolated results using the three-shade and -sheen

model, displayed in Figure 6.7. The left and right images shown are two of the inputs under

two known lighting direction , say a and b. The middle images are the interpolated results

for the averaged lighting direction (a + b)/2.

Overall, results for interpolating specularities and shadows are seen to be excellent,

producing a new kind of results in this field. However in situations where shadows are com

pletely black, as in Figure 6.7(n) - a synthetic example -, the method can produce streaks

resulting from hard shadow regions. Nevertheless even for cases where pixels are saturated,

as in Figure 6.7(g,i), the sheen model simply sees these as extra, bright information and

successfully models them in interpolants. Overall the new method is indeed seen to be a

promising new approach.
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Figure 6.7: Left, right: two of inputs. Center: Interpolant for mean ofleft and right lighting
directions.
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Conclusion and Future Work

7.1 Conclusion

In this thesis we have presented a method to interpolate both specularities and shadows,

within the modified PTM framework, by applying robust methods to separately model

highlights, matte, and remaining luminance information, and shown how to recover surface

properties as well as to produce an accurate RGB rendition under a new lighting direction.

We applied two robust regression techniques, LMS and LTS, to a modified version of

PTM and found that LMS has smaller time complexity. LMS-based PTM provided us with

weights corresponding to matte, shadow and specularity, as well as the approximated lumi

nance for matte contribution and a good approximation for surface normal, surface albedo

and chromaticity. We also solved PST only for the inliers that PTM found, to get surface

normal and albedo. The experimental results showed an improvement in quantitative and

qualitative results using Robust-PST to get surface properties. The nonparametric regres

sion we use for modelling the sheen and the departure from matte is the RBF framework

(but this may not be the best or the most efficient approach).

In order to render the full color image, we proposed two methods. The first method used

the chromaticity information along with approximated luminance which contains matte,

shade and sheen contribution. Although this method generated quite good results, it some

times produces artefacts when PTM slopes are near zero. The second method proposed

for rendering the full color image solved this problem. This method regressed shade and

sheen for each color channel separately and not only luminance shade and luminance sheen.

Overall, results for interpolating specularities and shadows are seen to be quite promising,
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especially by the mean of three-shade and -sheen model, i.e., the second method described

in Chapter 5.

7.2 Future Work

The RBF framework used for interpolating shadow and specularity may not be the best

available approach, and in future one could consider both the smoothing of RBF as well

as other methods. For RBF, the Gaussian base functions may not necessarily be the best

choice, and several other common functions could be used, such as a thin-plate model.

In future, we will examine mechanisms for reducing the space and time complexity of the

RBF modeling used. In particular, one straightforward strategy would be to examine the

possibility of using a Principal Components Analysis for a linear dimensionality-reduction

scheme.

We intend to apply the developed method to artworks, with a view to determining their

3D structure and surface properties so that they can be measured before and after they are

moved, e.g. by lending to other institutions. There is much interest in determining whether

any damage has occurred in such circumstances. As well appearance changes for famous

artworks under re-lighting are also of interest.



Bibliography

[1] V. Argyriou, S. Barsky, and M. Petrou. Generalisation of photometric stereo technique
to q-illuminants. In Proceedings of 19 th British Machine Vision Conference, 2008.

[2] V. Argyriou and M. Petrou. Recursive photometric stereo when multiple shadows and
highlights are present. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 1-6, 2008.

[3] H. G. Barrow and J. M. Tenenbaum. Recovering intrinsic scene characteristics from
images. In Computer Vision Systems, pages 3-26, 1978.

[4] S. Barsky and M. Petrou. The 4-source photometric stereo technique for three
dimensional surfaces in the presence of highlights and shadows. IEEE Transaction
on Pattern Analalysis and Machine Intelligence, 25(10):1239-1252, 2003.

[5] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222
1239, 2001.

[6] M. Chandraker, S. Agarwal, and D. Kriegman. Shadowcuts: Photometric stereo with
shadows. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1-8, 2007.

[7] E.N. Coleman and R. Jain. Obtaining 3-dimensional shape of textured and specular
surfaces using four-source photometry. pages 180-199, 1992.

[8] J. Dong and M. Chantler. Capture and synthesis of 3d surface texture. International
Journal of Computer Vision, 62(1-2):177-194, 2005.

[9] J. Dong, G. Sun, and G. Chen. Conversions between three methods for representing
3d surface textures under arbitrary illumination directions. Image Vision Computing,
26(12):1561-1573, 2008.

[10] M. S. Drew, N. Hajari, Y. Hel-Or, and T. Malzbender. Specularity and shadow inter
polation via robust polynomial texture maps. In Proceedings of British Machine Vision
2009,2009.

[11] F. Y. Edgeworth. On observations relating to several quantities, 1887. Hermathena.

53



BIBLIOGRAPHY 54

[12] Y. Hammer, S. Bengtson, T. Malzbender, and D. Gelb. Imaging fossils using reflectance
transformation and interactive manipulation of virtual light sources. In Manipulation
of Virtual Light Sources, Palaeontologia Electronica, 2002.

[13] C. Hernandez, G. Vogiatzis, and R. Cipolla. Shadows in three-source photometric
stereo. In Proceedings of the 10th European Conference on Computer Vision, pages
290-303, 2008.

[14] C. Julia, A.D. Sappa, F. Lumbreras, J. Serrat, and A.M. Lopez. Photometric stereo
through an adapted alternation approach. In Proceedings of IEEE Conference on Image
Processing, pages 1500-1503, 2008.

[15] H.-C. Lee, E. J. Breneman, and C. P. Schulte. Modeling light reflection for com
puter color vision. IEEE Transaction on Pattern Analysis and Machine Intelligence,
12(4):402-409, 1990.

[16] G. R. Liu. Mesh Free Methods: Moving Beyond the Finite Element Method. CRC
Press, 2002.

[17] T. Malzbender, D. Gelb, and H. Wolters. Polynomial texture maps. In In Computer
Graphics, SIGGRAPH 2001 Proceedings, pages 519-528, 2001.

[18] D. Miyazaki, K. Hara, and K. Ikeuchi. Photometric stereo beyond glass: Active sep
aration of transparent layer and five-light photometric stereo with m-estimator using
laplace distribution for a virtual museum. In International Workshop on Photometric
Analysis for Computer Vision, pages 325-329, 2007.

[19] B. S. Morse, T. S. Yoo, P. Rheingans, D. T. Chen, and K. R. Subramanian. Interpolat
ing implicit surfaces from scattered surface data using compactly supported radial basis
functions. In SMI'OI: Proceedings of the International Conference on Shape Modeling
& Applications, page 89, 2001.

[20] S. Nayar, K. Ikeuchi, and T. Kanade. Determining shape and reflectance of hybrid
surfaces by photometric sampling. IEEE Trans. on Robotics and Automation, 6(1):418
431, August 1990.

[21] J. Padfield, D. Saunders, and T. Malzbender. Polynomial texture mapping: A new
tool for examining the surface of paintings. In ICOM Committee for Conservation,
volume 1, pages 504-510, 2005.

[22] B. Phong. Illumination for computer generated pictures. Communications of the ACM,
18(6):311-317, 1975.

[23] P. J. Rousseeuw. Least median of squares regression. Journal of the American Statistical
Association, 79:871-880, 1984.



BIBLIOGRAPHY 55

[24] P. J. Rousseeuw and K. Driessen. Computing Its regression for large data sets. Data
Mining Knowledge Discovery, 12(1):29-45, 2006.

[25] P. J. Rousseeuw and A. M. Leroy. Robust regression and outlier detection. John Wiley
& Sons, Inc., 1987.

[26] H. Rushmeier, G. Taubin, and A. Gueziec. Applying shape from lighting variation to
bump map capturing. In Proceedings of Eurographics Rendering Workshop 1997, pages
35-44, 1997.

[27] F. Solomon and K. Ikeuchi. Extracting the shape and roughness of specular lobe objects
using four light photometric stereo. IEEE Transaction Pattern Analysis and Machine
Intelligence, 18(4):449-454, 1996.

[28] J. Sun, M. Smith, L. Smith, S. Midha, and J. Bamber. Object surface recovery using a
multi-light photometric stereo technique for non-Iambertian surfaces subject to shadows
and specularities. Image Vision Comput., 25(7):1050-1057, 2007.

[29] F. Verbiest and L. VanGoo!. Photometric stereo with coherent outlier handling and
confidence estimation. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 1-8, 2008.

[30] A. Wenger, A. Gardner, C. Tchou, J. Unger, T. Hawkins, and P. Debevec. Performance
relighting and reflectance transformation with time-multiplexed illumination. ACM
Transaction on Graphics, 24(3): 756-764, 2005.

[31] R.J. Woodham. Photometric method for determining surface orientation from multiple
images. Optical Engineering, 19(1):139-144, 1980.

[32] A. Yuille and D. Snow. Shape and albedo from multiple images using integrability.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
page 158, 1997.


	Hajari_0001
	Hajari_0002
	Hajari_0003
	Hajari_0004
	Hajari_0005
	Hajari_0006
	Hajari_0007
	Hajari_0008
	Hajari_0009
	Hajari_0010
	Hajari_0011
	Hajari_0012
	Hajari_0013
	Hajari_0014
	Hajari_0015
	Hajari_0016
	Hajari_0017
	Hajari_0018
	Hajari_0019
	Hajari_0020
	Hajari_0021
	Hajari_0022
	Hajari_0023
	Hajari_0024
	Hajari_0025
	Hajari_0026
	Hajari_0027
	Hajari_0028
	Hajari_0029
	Hajari_0030
	Hajari_0031
	Hajari_0032
	Hajari_0033
	Hajari_0034
	Hajari_0035
	Hajari_0036
	Hajari_0037
	Hajari_0038
	Hajari_0039
	Hajari_0040
	Hajari_0041
	Hajari_0042
	Hajari_0043
	Hajari_0044
	Hajari_0045
	Hajari_0046
	Hajari_0047
	Hajari_0048
	Hajari_0049
	Hajari_0050
	Hajari_0051
	Hajari_0052
	Hajari_0053
	Hajari_0054
	Hajari_0055
	Hajari_0056
	Hajari_0057
	Hajari_0058
	Hajari_0059
	Hajari_0060
	Hajari_0061
	Hajari_0062
	Hajari_0063
	Hajari_0064
	Hajari_0065
	Hajari_0066
	Hajari_0067
	Hajari_0068
	Hajari_0069



