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Abstract

In this thesis, we present a primal-dual algorithm for a generalization of the Maximum

Matching Problem, a well known problem in graph theory. Although the proposed problem,

called the unconstrained fractional matching problem, can be solved in polynomial time

using established algorithms for linear programming, we provide a combinatorial algorithm

with a running time complexity of O(1V12IEI).

Keywords

factional matching, matching, charge problem, graph theory, primal-dual, linear pro

gramming, combinatorial algorithm
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"Where is the wise man? Where is the scholar? Where is the philosopher of this age? Has

God not made foolish the wisdom of the world? For since in the wisdom of God the world

through its wisdom did not know Him, God was pleased through the foolishness of what

was preached to save those who believe."

~ 1 Corinthians 1:20-21, Nrv

v



Acknowledgements

I must begin by thanking my senior supervisor Dr. Ramesh Krishnamurti for his endless help

and support both personally and professionally. I am very grateful for his patience through

all the problems I burdened him with along the way and for doing such a thorough job of

reviewing this thesis and pointing out details which otherwise I would have overlooked.

One of the toughest tasks in grad school, I've been told, is to find a supervisory committee

who is compatible with you on a personal level. I feel privileged to have worked with

Dr. Daya Gaur, Dr. Binay Bhattacharya, and Dr. Ramesh Krishnamurti who are not only

extremely knowledgeable but are among the nicest people I have ever met.

Professionally, the past three years have been the most enjoyable period of my life. I have

discovered a love for teaching thanks to the encouragement of mentors such as Dr. Diana

Cukierman and Dr. Tony Dixon whose confidence in me allowed me to grow as an instructor.

Finally, and most importantly, I would like to thank those closest to me. My mom, my

dad, and my grandma, whose unconditional love, patience, and support has made it easy

for me to succeed. My soon to be wife Rachel, whose faith stabilized me through the ups

and downs of this academic venture. My saviour and redeemer Jesus Christ, without whom

all the work done in this thesis would be meaningless.

VI



Contents

Approval

Abstract

Dedication

Quotation

Acknowledgements

Contents

List of Figures

1 Introduction

2 Matching

2.1 Introduction.

2.2 0-1 Matching

2.2.1 Bipartite 0-1 Matching.

2.2.2 General 0-1 Matching .

2.3 Maximum Fractional Matching

2.4 Maximum Charge Problem

3 Linear Programming

3.1 Introduction.

3.2 Duality ...

vii

ii

iii

iv

v

vi

vii

ix

1

3

3

3

5

5

6

7

8

8

10



3.3 Primal-Dual Algorithm ...

3.3.1 Primal-Dual Example

4 Unconstrained Fractional Matching

4.1 Problem Formulation.

4.2 Definitions ...

4.3 Main Theorem

4.3.1 NaIve Algorithm Analysis

4.4 The Phased Algorithm . . . . . .

4.4.1 Bipartite Graph Reduction

4.4.2 Algorithm..........

4.4.3 Phased Algorithm Analysis

5 Conclusion

A Matching Examples

A.l Fractional Matching Formulation

A.2 Shortest Path Primal-Dual Example

A.3 Optimal Solutions .

Bibliography

Vlll

11

14

17

17

18

20

23

27

27

29

36

38

41

41

42

44

45



List of Figures

2.1 A blossom and a false positive augmenting path. . . . . . . . . . . 6

4.1 three cases in which augmenting lassos can share a plus edge (u,v) 24

4.2 An example of an augmentation process . . . . . . . . . . . 35

A.l A sample graph and the corresponding incidence matrix A . 41

A.2 Shortest path problem with edge weights indicated in the circles 42

A.3 Iteration 1, (1fopt)s - (1fopt)t = 1 . 43

A.4 Iteration 2, (1fopt)s - (1fopt}t = 1 . 43

A.5 Iteration 3, (1fopt}s - (1fopt)t = 1 . 43

A.6 Iteration 4, (1fopt)s - (1fopt)t = 0 . 43

A.7 0-1 matching, Jre = {O, I} 44

A.S fraction matching, Jre 2: 0 44

A.9 unconstrained fractional matching (vertex capacities c(u) = 1), Jre Z 0 44

IX



Chapter 1

Introduction

In mathematics and computing science, a graph G(V, E) is a set of vertices V, and a set of

edges E comprised of pairs of vertices (u,v) E V. Given an edge e = (u,v) E E, vertices

u and v are said to be adjacent. A matching in a graph is a subset of edges which have a

disjoint set of adjacent vertices. Given a matching ]1,;1 in a graph, the size of the matching,

denoted 1]1,;11, is the number of edges in ]1,;1. The problem of finding the maximum matching

for a given graph is well-known in graph theory. The challenge becomes significantly more

difficult when weights and/or capacities assigned to the edges and vertices in G are not equal

to 1. The basic matching problem, which has been well studied throughout the years, is one

in which weights and capacities of both edges and vertices are equal to 1. In this thesis, we

will present a literature survey on the work that has been done in maximum matching for

general and bipartite graphs [HK73, Vaz94] where edge values can be both integers as well

as fractions [EK72, Edm65b, BP89]. However, our motivation is to extend the work here

and apply it to the maximum charge problem [KGGS06], a generalization of the maximum

matching problem in which both edges and vertices can have capacities other than 1.

The maximum matching problem (as well as many other problems in graph theory) can

be formulated as a mathematical program, called a linear program, with a linear objective

function which is to be maximized and a set of Ih1ear inequalities to be satisfied. Such a

linear program can be solved in polynomial time by interior point methods, as well as by

the simplex algorithm. Even though the simplex algorithm does not necessarily terminate

in polynomial time, it works well in practice. While simplex is able to solve all linear

programming problems, it is much slower than most combinatorial algorithms for graph

theory problems. Fortunately, for some linear programs, the primal dual algorithm [DLF56]

1



CHAPTER 1. INTRODUCTION 2

provides a structure that allows us to design more efficient combinatorial methods.

The work presented here is submitted as part of the requirements of the Master's thesis

and is organized into five chapters. We will begin with a short discussion of the maximum

matching problem including representative variations, history, as well as running times.

Next, the primal dual algorithm will be formally introduced. We will then use a primal-dual

schema for a generalization of the maximum matching problem and provide a combinatorial

algorithm with running time O(1V12IEI) for the same. Finally, we evaluate the difficulties

of this approach for the maximum charge problem as well as suggest possible research goals

for the future.



Chapter 2

Matching

2.1 Introduction

Given a graph G(V, E), a matching M is a subset of edges in G such that no two edges

share a common vertex. The Maximum Matching Problem, a well known problem in graph

theory, attempts to find a matching that contains as many edges as possible.

The Maximum Matching Problem comes in many variations and has various applications

in networking and artificial intelligence. Variations in the problem include adding weights

to edges [Kuh55], limiting the structure of the graph G [BP89], as well as adding capacities

to both edges and vertices [KGGS06]. Because of its augmentative nature, algorithms to

solve this problem are very closely related to solutions of the Maximum Network Flow

Problem [AM093].

2.2 0-1 Matching

Given a matching !vI in graph G(V, E), a vertex u E V is said to be saturated with respect

to M if there exists an edge incident to U in M; otherwise u is unsaturated. A path P =

{Ul' el, U2, e2, ... , Uk, ek, Uk+l} is a sequence of vertices and edges such that each vertex Ui is

connected to Ui+l through an edge ei E E (for i = O...k). A path P is alternating with respect

to !vI if the edges el, e2, ... , ek in P belong alternately to E - M and fYI. An alternating path

P is augmenting with respect to M if P begins and ends at unsaturated vertices and contains

an odd number of edges. These definitions will be formalized in subsequent sections.

One of the most important theorems in matching theory is due to Berge in 1957 [Ber57].

3



CHAPTER 2. MATCHING 4

Theorem 2.2.1. (Berge's Theorem) Given a graph G, a matching M is maximum in G if

and only if there exists no augmenting path with respect to 111.

Proof. Assume there is an augmenting path P with respect to !vI. It is trivial to see

that a new matching M* = M D. P will increase the size of the matching IMI by 1, where

D. denotes the symmetric difference of two sets. It is left to show that if a matching M

is maximum, there will exist no augmenting path with respect to M. We will make the

following assumptions:

(i) M is a matching in G that is not maximum.

(ii) M* is a maximum matching.

(iii) Among all maximum matchings, M* minimizes IM* - MI. That is, M* has the most

edges in common with M.

Consider the set S = M* D. M. There cannot exist paths of even length because of assump

tion (iii). So there are only odd length paths in S. Now, from all odd length paths in S,

there must be at least one which has more edges in M* than !vI since 1111*1 > IMI. Hence,

we have found an augmenting path with respect to AI. 0

The maximum matching problem can be formulated as an integer program. More specifically,

in the maximum matching problem, the variables corresponding to the edges can only take

values 0 or 1. Such a formulation is called a 0-1 integer program. The general version of the

0-1 integer program is an NP-complete decision problem [Kar72]. Given a graph G(V, E),

the integer program for the maximum integer matching problem is as follows:

maximize

subject to

eEE

2: 1fe ::; 1
eEE(u)

1fe = {O, I}

\lu E V

\Ie E E

(IMP)

1fe is a variable corresponding to edge e for each edge e E E. Whenever 1fe equals 1, the

corresponding edge e is in the matching. Because of its structure, the integer matching

problem is not NP-complete even though it is a 0-1 integer program. \Ve will see in subse

quent chapters that relaxing the edge value constraints will allow 11S the fkxibility to apply

some interesting techniques to solve this problem.
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2.2.1 Bipartite 0-1 Matching

5

A given graph G(V, E) is bipartite if its vertices can be divided into two disjoint sets U1 and

U2 (U1U U2 = V) such that both U1 and U2 are independent sets. In other words, each edge

e E E connects a vertex in U1 with one in U2. Maximum bipartite 0-1 matching is perhaps

the least complicated form of matching because of its simple structure. One method to solve

this is to first add a super source s, and a super sink t to the graph G, with infinite capacity

edges connecting s (t) to all vertices in U1 (U2) while the capacities on all other edges are

set to 1. Next, we apply a maximum flow algorithm to the modified graph. It may be shown

that all the edges with flow equalling 1 are the edges in the matching. This algorithm runs in

O(fVI 3 ) time [KM74,MPKM78]. In 1973, using another approach, Hopcroft and Karp were
1

able to improve the running time to O( lEI fV12) by finding the maximal set of vertex disjoint

minimum length augmenting paths using a modified breadth first search in a series of JTVT
phases [HK73]. This is still widely regarded as the fastest maximum bipartite matching

algorithm although it has recently been shown that the running time can theoretically be

improved to O(fVI 2.38 ) [MS04].

It is also worth noting that in 1931. Konig and Egervary [Ege31, K31] showed that any

regular bipartite graph1 has a perfect matching2 . In addition, Konig's matching theorem

states that given a bipartite graph, the size of the maximum matching is equivalent to the

size of the minimum vertex cove-? [RizOO].

2.2.2 General 0-1 Matching

While Berge's theorem was a breakthrough in maximum matching, it was still difficult to

apply it directly to general graphs. The Hopcroft and Karp algorithm mentioned in the

previous section depends on the fact that we will never encounter an odd length cycle while

traversing a bipartite graph using alternating breadth first search. The existence of an odd

length cycle within an augmenting path, also called a blossom4 , results in the modified

breadth first search giving false positive as well as false negative results while searching

lone in which all vertices have the same degree

2Given a graph G(V, E), a matching 1\1 is perfect if each vertex v E V is adjacent to an edge in M

3Given a graph G(V, E), a vertex cover C is a subset of vertices in G that is adjacent to at least one edge
in G. A vertex cover is minimum if no other covers have fewer vertices.

4Given a matching Al of G, a blossom B is an alternating path with respect to 1\1 that forms a cycle.
The vertex adjacent to two unsaturated vertices in B is called the base of the blossom (see figure 2.1)
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for augmenting paths. In figure 2.1, we see the path represented by the arrows will be

found by the modified BFS as an augmenting path even though one does not exist. In

1965, Edmonds devised a method to effectively "shrink" these blossoms if there exist no

augmenting paths which use an edge within these blossoms. In the same paper, Edmonds

suggested a polynomial time algorithm which runs in O(1V1 4 ) time [Edm65b]. This result
5

was eventually improved to O(IVI"2) by Vazirani in 1980 by once again finding the shortest

augmenting path in a series of VTVT phases [Vaz94].

Blossom B

unsaturated
vertex v base~

Figure 2.1: A blossom and a false positive augmenting path

2.3 Maximum Fractional Matching

As stated in section 2.2, the regular 0-1 matching problem can be represented using an

integer program. A relaxed version of an integer program, called a linear program allows

variables to be assigned fractional values between 0 and 1. For this reason, the relaxed

version of the 0-1 matching problem is referred to as the fractional matching problem and

can be formulated as follows (examples of LP formulations as well as optimal solutions are

illustrated in appendix A):

maximize L 1Te (FMP)
eEE

subject to L 1Te :S 1 Vu E V
eEE(u)

1Te :S 1 Ve E E

1Te 2: 0 Ve E E

We will note that a given edge value 1Te can "fractionally" belong to a matching M. It is

easy to see that, given an instance of the matching problem, the optimal solution to the
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LP is greater than or equal to the optimal solution to the IP. In this paper, we will focus

primarily on the fractional version of the matching problem.

Given a bipartite graph G an optimal solution to the fractional matching problem is

equivalent to the optimal solution to the 0-1 matching problem. This is due to the fact that

there are no odd length cycles in a bipartite graph and that the associated incidence matrix

is unimodular [SU97].

In 1989, Bourjolly and Pulleyblank proved that given a general graph, the optimal

solution to the fractional matching problem is half-integral. In other words, an optimal

solution can be constructed such that 1re E {O, ~, I} for every edge e [BP89] and can be

constructed in O(IEIIVI) time.

2.4 Maximum Charge Problem

The maximum charge problem is a generalization of the maximum fractional matching prob

lem in which capacity constraints are assigned to both the edges and vertices [KGGS06].

Given a graph G(V, E), for each vertex u E V, a capacity function c(u) is defined. Similarly,

a capacity function c(e) is given for each edge e E E. The maximum charge problem is the

main focus in this thesis and can be formulated as follows:

maxzmzze L 1re (MCP)
eEE

subject to L 1re ::; c(u) Vu E V
eEE(u)

1re ::; c(e) Ve E E

1re 2: 0 Ve E E

We will revisit the maximum charge problem in the conclusion of this thesis.



Chapter 3

Linear Programming

3.1 Introduction

A linear program (LP) has a linear objective function which must be either maximized or

minimized while obeying a system of linear equalities and inequalities, called constraints. A

typical linear program has the form:

minimize

subject to

cx

Ax 2 b

x20

(3.1 )

where c, x, b E jRn represent the co-efficient, the variable, and the right-hand-side vectors

respectively. Meanwhile, A E jRm x jRn represents the constraint matrix of the problem

(henceforth, we will use ai to denote a row, and Aj to denote a column in matrix A). Visually,

the equations in Ax 2 b specifies a multi-dimensional polyhedron in which all possible

feasible solutions to the LP reside; the optimal solution to the LP is located graphically on

one of the corners, along one of the edges, or on one of the faces of this polyhedron [Edm65a].

Equation (3.1) is a minimization LP problem. A maximization LP problem, on the other

hand, has the following form:

maximize

subject to

8

cx (3.2)
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In this case, Ax ::; b also forms a polyhedron of high dimension in which all feasible solutions

to the minimization LP exist. Linear programs found in the form of (3.1) and (3.2) are said

to be expressed in canonical form. Meanwhile, linear programs in the form

max(min)imize

subject to

cx

Ax = b

(3.3)

are said to be in standard form. In fact, canonical and standard forms are equivalent,

meaning that an instance of LP in canonical form can be transformed into standard form

(and vice versa) using a series of surplus and slack variables [PS82].

A given linear program can be solved using an iterative method called the simplex

algorithm. The simplex was first devised by Dantzig in 1947 and uses a series of column

manipulations, or pivots, to visit each corner of the multi-dimensional polyhedron in an

attempt to discover the optimal solution. The main idea behind the algorithm is that a

given LP is first represented in standard form; this means that if the original problem

is in canonical form, slack variables (xn+1 .. .x n+m ) will be added to (or subtracted from)

each row ai of the constraint matrix. Each slack variable will also appear in the objective

function with co-efficients Cn +1, ... , Cn + m = o. These variables make up the initial basic

vectors or basis: columns A j corresponding to variables Xj that can be non-zero while still

maintaining the equality in the constraints Ax = b. Essentially, the simplex repeatedly

checks all columns corresponding to "non-basic" variables to see if a more advantageous

solution can be obtained by moving it into the basis. While the simplex algorithm is

very general and runs in polynomial time in most cases, it has been shown to perform

exponentially poorly in certain extreme cases [KM72].

In 1979, Khachiyan [Kha79] proved that linear programming problems can indeed be

solved in polynomial time using what's called an ellipsoid method. In this paper however,

we will be using a method called the primal dual algorithm [DLF56] which is an adaptation

of the simplex algorithm. We will first introduce the notion of duality which exists for all

linear programming formulations.
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3.2 Duality

10

In this section, we introduce the idea of duality which is closely related to many other

concepts in linear programming. The duality principle states that a given LP problem can

be solved from two different points of view: the primal and the dual. Every LP, denoted

the primal problem, has an equivalent dual. Consider the following minimization LP:

minimize

subject to

The corresponding dual is written as:

maximize

subject to

cx

Ax 2: b

(3.4)

(3.5)

The dual representation provides a bound for the primal problem; for instance, the objective

function in (3.5) is a lower bound for the objective function in (3.4). In general:

(3.6)

This is known as the weak duality theorem.

Theorem 3.2.1 (Weak duality thoerem). Given feasible solutions x = [Xl, X2, ... , X n ] to the

primal in (3.4) and 7T = [7TI' 7T2, ... 7Tm ] to the dual in (3.5), the following holds:
n m

~c'X' > ~7Tb·LJ7]-LJ 72

j=l i=l

Proof. From equation (3.6), we can obtain the expanded form

which proves the theorem. 0

The primal (dual) objective function values are upper (lower) bounds for the dual (pri

mal) and the strong duality theorem states that their optimal objective function values are

equal.
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Theorem 3.2.2 (Strong duality thoerem [PS82]). Given a primal representation P and a

dual representation D of an LP problem, if an optimal solution x* = [xi, x2, ... , x~] exists

for P, then a corresponding optimal1f* = [1fi, 1f2, ... ,1f;;'] exists for D. Furthermore,

n m

L cixj = L 1f;bi D
j=1 i=1

From the strong and weak duality theorems, we see that a delicate balance exists between

the primal and dual solutions. Given primal-dual pairs x and 1f, the conditions needed to

be satisfied for both to be at optimal is stated in the complementary slackness theorem.

Theorem 3.2.3 (Complementary slackness thoerem). A feasible primal-dual pair x, 1f zs

optimal if and only if

(3.7)

(3.8)

To be more specific, each term in the summation of the complementary slackness theorem

must be equal to O. Therefore, the necessary and sufficient conditions for x and 1f can also

be written as

(1fAj - Cj) Xj = 0

(bi - aix) 1fi = 0

j = 1, ... ,n

i = 1, ... ,m

This is a crucial theorem in the discussion of the primal-dual algorithm.

3.3 Primal-Dual Algorithm

This section introduces the concepts behind the primal-dual algorithm, which is a general

method for ::;olving LP'::;. The method wa::; first conceived by Kuhn in 1%5 [Kuh55] in an

attempt to solve the assignment problem. Coincidentally, the assignment problem is nothing

more than the weighted bipartite matching problem. The algorithm was later generalized

by Ford and Fulkerson in 1958 [FF58].
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The primal-dual algorithm, starts off with a feasible solution to the dual 7r. Then,

through gradual improvements to ?T, it tries to obtain a feasible solution to the primal

problem in standard form. The following is a detailed description of the algorithm. Our

presentation is based on Papadimitriou and Steiglitz [PS82].

Consider a linear programming primal problem in standard form

mznzmzze

subject to

CX

Ax= b

x2':O

(P)

where bi 2': 0 for all i = 1, ... , n. This can be ensured by simply multiplying by -1 all

equalities in which bi < 0 in the original form. Next, we will construct the dual

maxzmzze

subject to

?Tb (D)

The unconstrained variable ?T in the dual is due to the equality that we started with in

the primal. We must now revisit the complementary slackness theorem from the previous

section

(?TAj - Cj) Xj = 0

(bi - aix)?Ti = 0

j = 1, ... ,n

i = 1, ... ,m

(3.9)

(3.10)

Since P is in standard form, any feasible solution x in P will satisfy all conditions in equation

(3.10). So, we must now turn our attention to the conditions in (3.9).

The main idea behind the primal-dual algorithm is that we begin with a feasible solution

?T to the dual and attempt to work towards feasibility in the primal. Given a feasible ?T, we

will define the set J of "tight relations" in the dual constraints as follows:

Relations of this kind will allow us the flexibility to set the corresponding primal variable Xj

to any arbitrary positive value while satisfying equation (3.9). On the other hand, relations

not found in J will force us to set the corresponding primal variables to Xj = o. Next, in an

attempt to satisfy the constraints in (D) which are not in J, we must revisit the primal in
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an attempt to gain feasibility. This is done by constructing a new LP called the restricted

primal or RP:

m

m2n2m2ze LSi (RP)
i=l

subject to L aijXj + Si = bi i = 1, ... ,m
jEJ

x > 0 jEJJ -

Xj = 0 j~J

s > 0 i = 1, ... ,mz _

In other words, for each constraint in (P), a slack variable Si is added in an attempt to gain

feasibility in the primal. Notice that when Si = 0 for all i = 1, ... , n, then we are indeed at

a feasible and optimal solution in P. However, if we are unable to find such a solution we

consider the dual of the restricted primal or DRP:

maX2m2ze

subject to

Jrb

jEJ

i = 1, ... ,m

(DRP)

The DRP is a simplified version of the dual and can sometimes be solved by simpler com

binatorial algorithm. Henceforth, we will denote a feasible solution to the DRP as Jr and

an optimal solution to the DRP as Jropt. The dual of the restricted primal suggests that an

augmentation of the present dual solution Jr is possible by a linear combination of Jr and

(3.11)

where Jr* represents the new dual solution. We will first notice that given an optimal solution

Jropt to DRP, it is always the case that Jroptb > 0 since this coincides with the optimal solution

to the RP. Therefore, Jr*b > Jrb for any value of B > O. The question now becomes what is

the upper bound on B?

To examine this question, we must figure out how much we can increase B such that Jr*

is still feasible by discovering the column which becomes "tight" in the dual constraints. In
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doing this, A j is multiplied to both sides of equation (3.11).

Now, consider the DRP constraints for the set J:

14

(3.12)

Vj E J (3.13)

It is obvious that these columns do not limit e since

(3.14)

for any e> o. Our attention must now focus on the columns not in the set J. Once again,

any column j tf. J such that 1fA j ::; 0 will not figure in the limitation of e. In fact, if 1fA j ::; 0

for all j tf. J then the dual problem D is unbounded because there will be no limit on e.
Finally, we conclude that if there is some j tf. J such that 1fAj > 0 then we can solve for

e according to equation (3.14):

(3.15)

Notice that the equation for eensures that at least one column corresponding to the primal

variable Xi enters the set of tight relations J at the beginning of the next iteration. We

can now improve our dual solution as in equation (3.11). This process is repeated until an

RP-DRP pair whose optimal objective values are 0 is found.

3.3.1 Primal-Dual Example

In this section, we will observe the primal-dual algorithm in action by applying it to the

shortest path problem; this is based on an example given in Papadimitriou and Steiglitz

[PS82]. Given a weighted directed graph G(V, E), the shortest path between two vertices s

and t in V is a path from s to t in G such that the sum of the edge weights is minimized.
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The shortest path problem itself will be formulated as the primal problem:

15

mzmmize cx (Psp )

+1

0

subject to Ax=

0

-1
m

x2:0

where A is the m x n incidence matrix of G (assuming G has n edges and m vertices). The

value Aij = +1 (Aij = -1) if a directed edge ei leads into (away from) vertex Uj; otherwise

Aij = O. The vector x E JRn represents the edge variables while the vector c E JRn represents

the weights for each edge. The +1 and -1 values in the constraints represent the vertices s

and t respectively. The dual of the shortest path problem is written as follows:

maximize

subject to Ve=(u,v)EE

Vu E V

Note that the objective function is simplified to Jrs - Jrt since sand t are the only non-zero

coefficients in (Psp). Given a feasible solution Jr to (Dsp ), we will define the set J of tight

relations in D as:

J = {e = (u, v) : Jru - Jrv = ce } .

From the set J we can now construct the restricted primal as

minimize LSu (RPsp )

uEV

Sl +1

S2 0

subject to AJxJ +
Sm-1 0

Sm -1
m m

X e 2: 0 Ve E J

Su. 2: 0 Vu E V
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where AJ is a m x IJI matrix corresponding to the columns in J from A and x J is the

variable vector x containing only variables corresponding to J. Finally, we can look at the

DRP for this problem:

maximize

8ubject to \/e = (11., v) E J

\/11. E V

\/11. E V

The definition of (DRPsp) states that all "tight edges" in the set J will appear in the first

constraint. This suggests that in order to maximize this objective function vlaue, we should

give a DRP value 7rs = 1 and all vertices that are reachable from s through edges in J:

(
_ ) _ { 1 11. = S or is reachable from s through edges in J }
7ropt u - o otherwise

(3.16)

The final step of the primal-dual algorithm is to find () given an optimal solution 7ropt to

(DRPsp ). For the shortest path problem, () is expressed as:

(3.17)

Notice that the denominator from equation (3.15) will always be 1 since any e = (11., v) tj:. J

such that 7ru. - 7rv > 0 will have the property that 7ru -7rv = 1 according to equation (3.16).

The new feasible dual solution 7r* will now be

7r* = 7r + ()7r

The process of improving the dual feasible solution 7r and finding the corresponding 7ropt in

the DRP will be repeated until we come across an instance of DRPsp that has the optimal

objective function

At this point, we are at an optimal and feasible solution to P. For a detailed example of

this problem, please see appendix A.2
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Chapter 4

Unconstrained Fractional Matching

In this chapter, we will investigate a modification of the maximum charge problem using the

primal dual algorithm. This new problem, which we have named Maximum Unconstrained

Fractional Matching, does not put any constraint on edge values He for all e E E; in other

words, the final two constraints in (MCP) are replaced by He = [-00,+00]. Appendix A.3

shows that allowing negative edge values, at times, can give larger objective function values.

4.1 Problem Formulation

As stated in the primal dual algorithm (section 3.3), we will first impose equality on the

first set of constraints in the primal problem. Given a graph G(V, E), the primal is defined

as

minimize

subject to Xu + Xv = 1 V(u,V)EE

Vu E V

(Pufm)

For each vertex u, Cu is the weight of u and Xu is the value assigned to u. It is worth noting

that in this case, the matrix A in the general definition of the primal-dual formulation

is once again the vertex-edge incidence matrix of the graph G. The dual problem is the

17
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unconstrained fractional matching problem:

maximize L1fe

eEE

subject to
L

1fe ::; Cu \lu E V
eEE(u)

1fe ~ 0 \Ie E E

18

where 1fe is the value assigned to edge e and E(u) is the set of adjacent edges of vertex u

(these definitions will be formalized in the following section). Given a feasible solution 1f to

the dual representation (Dufm), the set J can be defined as

J = {u: L 1fe= cu}
eEE(u)

From this. we will define our restricted primal using a slack variable Se for each edge:

m~mmize LSe (RPufm)
eEE

subject to Xu + Xv + Se = 1 \I(u, v) E E

Se 2: 0 \Ie E E

Xu 2: 0 \lu E J

Xu = 0 \lu rf. J

From the restricted primal, we derive the dual of the restricted primal

maximize
eEE

(DRPufm)

4.2 Definitions

subject to L 1fe ::; 0
eEE(u)

1fe ~ 0

\lu E J

\Ie E E

\Ie E E

We will use the following notation for our definitions:
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• 7f denotes a feasible solution to a current instance of (DRPufm)

• Jr denotes a feasible solution to the current instance of the dual problem (Dufm)

• E(u) denotes the set of all edges adjacent to the vertex u

• Given a feasible DRP solution 7f and a vertex u, the adjacency function 7f(u) is defined

as L 7fe

eEE(u)

Saturated and unsaturated vertices:

Given a feasible solution Jr to the dual problem, a vertex U is unsaturated with respect to Jr

if

L Jre < CU'

eEE(u)

On the other hand, a saturated vertex u with respect to Jr has the property that

L Jre = CU'

eEE(u)

Saturated and unsaturated edges:

Given a feasible solution 7f to the DRP, an edge e is unsaturated with respect to 7f if 7fe < 1.

If 7fe = 1, edge e is saturated with respect to 7f.

Alternating walk (path and lasso):

An alternating walk P (UI' el, U2, e2, ... , Ut, et, Ut+l) of length t with respect to a feasible

solution 7f is a sequence of vertices and edges such that each vertex Ui is connected to Ui+l

through edge ei in the graph G (for i = O...t). An alternating walk P has the following

properties:

1. P begins and ends at unsaturated vertices UI and Ut+l with respect to Jr.

2. All intermediate vertices U2, ... , Ut are saturated with respect to Jr.

3. All odd edges in P (el' e3, e5''') are unsaturated with respect to 7f. In other words,

- 1 ('-0 t+l)Jre2i _ 1 < 2 - "'-2-'

An alternating walk P is an alternating path if vertices in P are pairwise distinct; otherwise,

it is an alternating lasso.

Augmenting path and lasso:

An alternating walk P = (UI' el, U2, e2, ... , Ut, et, Ut+ I) is augmenting if it is of odd length.
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Furthermore, if {Ul' U2, ... , Ut+d are distinct, then P is an augmenting path; otherwise it is

an augmenting lasso.

Given a feasible 7T, we will define "augmenting a path or lasso P by E" as the process of

adding E to all the odd edges 7Te2i _ 1 of P while subtracting E from all the even edges 7Te2i

of P. In an augmenting path, odd edges are referred to as plus edges and even edges as

minus edges. Given an augmenting path P, augmenting P by E will increase the overall

DRP solution 7T by E. Also note that augmenting a path or lasso P does not change the

value of the adjacency function for each intermediate vertex U in P (this will be formalized

in lemma 4.3.2).

4.3 Main Theorem

In this section, we will prove that we can derive an optimal solution 7T to an instance of

(DRPufm ) by searching for augmenting paths/lassos and augmenting them until all such

paths/lassos have been exhausted. We will begin by showing that a feasible solution 7T to

(DRPufm) is not optimal if there exists an augmenting path/lasso with respect to 7T.

Lemma 4.3.1. Given a feasible solution 7T to an instance of (DRPufm), if there exists

an augmenting path/lasso P (Ul' el, U2, e2, ... , e2k-l, U2k) with respect to 7T, then 7T is not

optimal.

Proof. Assume that in traversing P, edge ei is visited no more than t ei times. Furthermore,

let:

(4.1 )

that is, d is the odd edge e such that l~:e is minimized. Notice that d must be posi

tive since all 7Te must be strictly less than 1 (by the definition of augmenting path/lasso).

Now, augment the path/lasso P by adding d * t e2i _ 1 to all odd edges e2i-l and subtract

ing d * t e2i from all even edges e2i. Clearly, the new 7T is still feasible since d ensures that

no 7Te goes above 1. After the augmentation, we have increased 7T by the amount d*te1 • 0

We should first note that augmenting a path/lasso P by the amount d does not change

L 7Te , the sum of the edge values adjacent on any vertex U E J. This will ensure that
eEE(u)
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the cardinality of set J does not decrease after each iteration of the primal-dual algorithm

(see section 4.3.1). In other words, the saturated vertices at the end of one iteration will

also be saturated at the beginning of the next iteration. This is formalized in the following

lemma.

Lemma 4.3.2. Given a feasible solution 7f to (DRPufm) and an augmenting path/lasso

p = ('11,1, e1, '11,2, e2, ... , Ut, et, Ut+1), assume that the augmentation process described in lemma

4.3.1 was applied to P, resulting in a new feasible solution 7ft . Then

7ft (u) -7f(u) = 0

for all of the intermediate vertices '11, = '11,2, ... , Ut.

Proof. Given an intermediate vertex '11" the augmenting amount d found by lemma 4.3.1 is

added to and subtracted from edges on either side of u. Hence the net total 7ft ('11,) - 7f( '11,) is

O. 0

Before continuing further, we will show that the absence of augmenting paths/lassos with

respect to 7f is a necessary and sufficient condition for optimality.

Theorem 4.3.3. (structural theorem) Let 7f be a feasible solution to an instance of (DRPufm)

found by 'repeatedly .finding augmenting paths/'assos and o:ugmenting them starting at an

initial solution of 7f = O. Then, 7f is not optimal if and only if there exists an augmenting

path/lasso with respect to 7f in the graph G.

Proof. We will begin by noting that the converse statement has already been proved by

lemma 4.3.1: if there exists an augmenting path with respect to 7f then 7f is not optimal.

Thus, it is left to show that if the solution 7f is not optimal, then there exists an a'ugmenting

path with respect to 7f.

To prove this, we will use a technique similar to [KGGS06jl. First, make the following

assumptions:

(i) 7f is a feasible solution to the DRP instance which is not optimal.

(ii) 7f* is an optimal solution to the DRP instance.

lThe proof's framework is attributed to Horst Sachs, and was used to prove the structure theorem of the
maximum charge problem.
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(iii) Among all maximum solutions, H* minimizes L IH; - Hel

eEE

22

Now, we can use H* to find an augmenting path with respect to H. Since H* satisfies

assumption (ii), it must be true that

L He = ~ L L He < ~ L L H; = L H:
eEE uEVeEE(u) UEVeEE(u) eEE

Thus, there must exist a vertex Ul such that

L He < L H:
eEE(ul) eEE(ul)

Furthermore, this implies that there must be an edge el from Ul to U2 such that

Now, we can recursively define a general process to find an augmenting path depending on

whether we are presently at an odd or even edge.

1. Odd edge step. Currently, we have found an odd edge el from Ul to U2 (in general, an

odd edge e2i-l from U2i-l to U2i); if the new adjacent vertex has already been visited

(i.e. U2i E {Ul' U2, ... , U2i-d), then stop. Otherwise, if U2 (U2i) also has the property

that

L He < L 1f:

eEE(u2) eEE(u2)

( L lfe < L H:)
eEE(u2i) eEE(u2i)

then U2 (U2i) is unsaturated with respect to If because if U2 (U2i) was a saturated

vertex (intermediate vertex in an augmentation), there would not be an inequality

(see lemma 4.3.2); we can stop. Otherwise, U2 (U2i) has the property that

L 1fe > L H;
eEE(u2) eEE(u2)

( L lfe > L H:).
eEE(u2;) eEE(u2')

This implies that there must be an edge e2 from U2 to U3 (in general an edge e2i from

U2i to U2i+d such that



r

CHAPTER 4. UNCONSTRAINED FRACTIONAL MATCHING 23

-

2. Even edge step. We are now at an even edge e2 from U2 to U3 (in general, e2i

from U2i to U2i+d; if the new adjacent vertex has already been visited (i.e. U2i+l E

{Ul' U2, ... , u2d), then stop. Furthermore, if U3 (U2i+1) has the property that

I: 7fe > I: 7f~
eEE(u3) eEE(u3)

I: Jre > I: 7f~ )

eEE(u2i+l) eEE(u2i+l)

then U3 (U2i+l) is unsaturated with respect to Jr; we can stop. Otherwise, U3 (U2i+d

will have the property that

I: 7fe < I: 7f~
eEE(u3) eEE(u3)

I: 7fe < I: 1f~).
eEE(u2i+d eEE(u2i+l)

Once again this suggests that there is an odd edge e3 (in general e2i+l) such that

and can never happen.

Case 2: P is a path or lasso of odd length. If this is the case, we have found an augmenting

path or lasso. D

We are now back at an odd edge, iterate back to step 1 above until the procedure

terminates.

When this procedure stops, we have found a path or lasso P from one unsaturated vertex

(with respect to Jr) to another. There are two cases for P:

Case 1: P is a path or lasso of even length. If this is the case, we can decrease (increase) 7f;

for odd (even) edges e, thereby decreasing I: 17f~ - 7fe I. This contradicts assumption (iii)

eEE

4.3.1 NaIve Algorithm Analysis

Given an instance of (DRPufm ) and its corresponding set of saturated vertices J (with

respect to Jr, theorem 4.3 suggests a naIve algorithm to solve (DRPufm) by repeatedly

looking for augmenting paths/lassos and augmenting them. This method is outlined in

algorithm 4.1.

Essentially, for a given instance of (DRPufm), the naIve algorithm finds all the unsat

urated vertices with respect to Jr. III the first stage, it uses a depth first search to filld

and augment all augmenting paths leading away from each unsaturated vertex U (we call
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this method DFS_paths(s,1f, J) in algorithm 4.1). In the second stage, the algorithm will

deploy another depth first search, this time looking for any augmenting lassos that remain

and augmenting them (in algorithm 4.1, we call this method DFS_lassos(s,1f, J)).

Theorem 4.3.4. All augmenting lassos found in the second stage of the nai·ve algorithm

are plus edge disjoint.

Proof. We prove this by contradiction. After the first stage of the naIve algorithm, all

augmenting paths will be found and augmented, resulting in a feasible solution 1f for the

DRP. Now, assume that there are two augmenting lassos which share a plus edge. Figure

4.1 shows three situations in which this could happen (the highlighted vertices represent un

saturated vertices with respect to Jr). In the leftmost figure, since blossoms are odd length

cycles, there must exist an odd length augmenting path between a and b through either

(u,v) or (u,v'). This contradicts the assumption that all augmenting paths have been found

by the first stage of the algorithm. In the center figure, we see that two augmenting lassos

share a common plus edge within their respective blossoms. Once again, since blossoms are

odd length cycles, there must exist an augmenting path from vertex c to vertex d through

either (u,v) or (u,v'); contradicting the original assumption. Finally, in the rightmost figure,

we see that two lassos share a plus edge in the path leading to the blossom. In this case,

only one of the two lassos (from vertex e or vertex 1) can be augmented because one lasso

augmentation will saturate the edge (u,v). 0

(\ (\ (\
:

y b ~ Y
: ~ '.

:C:J/ X• v

4 4 : ..

4 , \c d
a e f

Figure 4.1: three cases in which augmenting lassos can share a plus edge (u,v)
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=

Theorem 4.3.4 suggests that the DRP solution H will increase by 1 (!) with each augmenting

path (lasso) found by the depth first search and since there must be a finite solution to

(DRPufm), we conclude that this naive algorithm will terminate in finite time.

Algorithm 4.1: Na·ive DRP algorithm
Define:
J is the set of saturated vertices w.r.t 1r for the current instance of (DRPufm)
extract(U) randomly extracts and removes a vertex in the set U; returns 0 if U is empty.
DFS_paths(s, 'if, J) will find and augment an augmenting path from unsaturated vertex s to another
unsaturated vertex u tt J, returning true. If one cannot be found, then it will simply return false.
DFSJassos(s, 'if, J) will find and augment an augmenting lasso from unsaturated vertex s, returning
true. If one cannot be found, then it will simply return false.

DRPopt(J):

1 K = 0
2 Ul = V[G] - J
3 U2 = U1

4 while Ul i= 0 do
5 s = extract(U1 )

6 repeat
7 found_path = DFS_paths(s, K, J)
8 until found_path = false;

9 while U2 i= 0 do
10 s = extract(U2 )

11 repeat
12 found_lasso = DFSJassos(s, 'if, J)
13 until found_lasso = false;

Theorem 4.3.5. Given an instance of (DRPufm), algoTit!nf!, 4.1 .finds the opt'im,al solution

Hopt in O(IEI 2
) time.

Proof. We will first note that since DRP edge values He cannot exceed 1, the maximum

value of the objective function to (DRPufm) is at most lEI. Since the objective function

increases by 1 (!) for each augmenting path (lasso), we see that the number of augmenting

paths/lassos will be O(IEI).

Finally, DFS_paths(s, H, J) (DFS_lassos(s, H, J)), which searches for an augmenting

path (lasso), will take at most O([EI) and the theorem follows. D

After the optimal solution H to the DRP is calculated, we must find a multiplying factor e
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with which to improve the dual solution 7f. In this case, we have

(4.2)

eu - L 7fe

eEE(u)
() = min

v.'iJ,7i'(v.»O L 1fe
eEE(u)

According to equation 4.2, () is determined by the unsaturated vertex with respect to 7f that

is closest to being saturated. We see that the vertex u that gives () its value will be in the

set J at the beginning of the next iteration.

We are now ready to define the algorithm for finding the optimal solution to an instance

of the unconstrained fractional matching problem: we begin with an initial dual solution

7f = 0. Then, using algorithm 4.1, we obtain 1fopt , an optimal solution to the corresponding

DRP instance; this 1fopt is used to improve the dual solution 7f and a new instance of

(DRPufm ) is obtained. This process is repeated until the objective function in the DRP

instance equals 0, meaning an optimal solution 7f has been obtained. The detailed method

is outlined in algorithm 4.2.

Algorithm 4.2: primal-dual interpretation of UFM
Given: an undirected graph G(V, E),

Define:
constTuctDRP(7f) finds the set J given a feasible dual solution 7f.

calculateB(1f, 7f, J) calculates B according to equation (4.2)
DRPopt(J) runs algorithm 4.1, obtains 1fopt to the current DRP instance J.

UFM(G):

1 7f = a
2 1f = a
3 repeat
4 J = constTuctDRP(7f)

5 1f = DRPopt(J)

if L 1fe = a then
6 eEE

7 return 7f

8 else
9 B = calculateB(1f, 7f 1 J)

10 7f = 7f + B1f

until L1fe = 0;
11 eEE

We will first bound the number of iterations of algorithm 4.2. By lemma 4.3.2 we see that
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(4.3)

during a given iteration of the algorithm, an optimal solution 7ropt to the current instance of

(DRPufm ) will be found. According to lemma 4.3.2, the summation of the values assigned

to edges incident on any intermediate vertex U (u E J) will be O. In other words, vertices

entering the set J in step 4 of the algorithm will never come out of J until an optimal

solution Jr is found. Furthermore, the calculation of f} in equation (4.2) guarantees that at

least one unsaturated vertex (with respect to Jr) will be saturated at the beginning of the

next iteration. Thus this algorithm will repeat O(/VI) times.

This, combined with the results of theorem 4.3.1 allows us to conclude that the overall

running time of the na'ive algorithm for the unconstrained fractional matching is O(IVIIEI 2
).

4.4 The Phased Algorithm

We can do better than the naIve algorithm described in the previous section. In this section,

we present a "phased" technique for solving an instance of (DRPufm) similar to the Hopcroft

and Karp algorithm for bipartite matching [HK73]. We will begin by reducing a general

graph to a bipartite graph.

4.4.1 Bipartite Graph Reduction

Given a general graph G(V,E), we construct a bipartite graph GE(VI,V2,EE). We will

define Vi = {VI: V E V} and V2 = {V2 : V E V}. Furthermore, for every edge (u,v) E E,

there are two edges (UI, V2) and (U2, VI) in EE. Next, we define c(UI) = c(U2) = c(u) for all

UI(U2) E Vi(V2)· Given a general graph G, and its corresponding bipartite reduction GE,

the set of feasible assignments of edge values JrE to GE has a one-to-one mapping onto the

set of feasible assignments of edge values Jr to G. Given a feasible solution JrE in GE, for

edges (UI' V2), (U2, vd E EE, the corresponding edge (u, v) EGis assigned the value:

1 1
Jr - _JrE + _JrE

(u,v) - 2 (111,V2) 2 (V1,112)

Furthermore, since JrE is a feasible solution, for each pair of corresponding vertices UI and

U2 in GE, we have

L Jr~:S: C(UI) and L Jr~:S: C(U2)
eEE(ul) eEE(u2)

Now, adding the two equations in (4.4), we obtain

L Jr~ + L Jr~:S: c(ud + C(U2)
eEE(vl) eEE(v2)

(4.4)

(4.5)
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Since C(Ul) = C(U2) = c(u), equation (4.5) can be expanded to

28

_ ~( B B B B B B) < ( )- 2 1r(U.l,(Vlh) + 1r(u.I,(v2h) + ... + 1r(u.I,(vkh) + 1r(U.2,(Vlh) + 1r(U.2,(V2h) + ... + 1r(U.2,(Vkh) _ c u

According to equation (4.3), the edges (Ul' (Vi)2) and (U2, (vih) in GB contribute! to the

edge (u, Vi) in G. Thus, we have

L 1re ::; c(u)
eEE(u.)

This shows that the conversion from 1r B to 1r maintains feasibility.

Similarly, given a feasible solution 1r in G, for each edge (u, v) E E, the corresponding

edges (Ul,V2), (U2' vI) E E B are assigned values:

(4.6)

Furthermore, since 1r is a feasible solution and c(Ul) = c(U2) = c(u), we have that

L 1r~::; c(Ul) and L 1r~::; c(U2)

eEE(u.l) eEE(u.2)

Once again, we see that the conversion from 1r to 1rB maintains feasibility.

Lemma 4.4.1. Given an optimal solution 1r to (Dufm ) in graph G, with objective function

there must exist an optimal solution 1rB to (Dufm) in the corresponding bipartite graph GB

with objective function

Proof. Assume for the sake of contradiction, that an optimal solution 1r*B for (Dufm) exists

for GB such that

Then by equation 4.3, there must a solution 1r for graph G such that

L 1r; > L 1re ·

eEE eEE
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The lemma follows by contradiction. 0

29

The reduction of a general graph G into a bipartite graph GB does not change the complexity

of the running times since it has only increased the number of edges and vertices by a

constant factor of 2.

4.4.2 Algorithm

Given a bipartite graph GB (VI, V2 , E B ) and a set of saturated vertices JB, the phased algo

rithm to solve (DRPufm) works as follows: we divide our search for augmenting paths into

phases. In each phase, we will search for the maximal set of plus edge disjoint augmenting

paths of the shortest length from unsaturated vertices in VI to unsaturated vertices in V2

and augment them simultaneously. If no augmenting paths can be found, then by theorem

4.3.3, we are at an optimal solution to (DRPufm ).

To do this, we deploy a breadth first search with all unsaturated vertices in Vi at level O.

From vertices at an even level 2i, we obtain saturated vertices (with respect to 1f) at level

2i + 1 by following only edges e with 7fe < 1 that have not yet been visited (plus edges).

From an odd level 2i + 1, we obtain saturated vertices (with respect to 1f) in 2i + 2 through

all adjacent edges that have not yet been visited. This process continues until we find an

unsaturated vertex in V2 at an odd level 2t+ 1. At this point, a "found.Jlag" signifies that an

augmenting path has been found. The search continues until all unsaturated vertices in V2

at level 2t + 1 have been visited. If an unsaturated vertex cannot be found on any odd level

then we are at an optimal solution to the DRP. This process is outlined in BFS(7f,JB ,UI ,U2)

of algorithm 4.3.

At this point, we perform an augmentation and topological plus edge delete. We begin

at an unsaturated vertex at the last level 2t + 1 and trace back through the breadth first

search tree to obtain an augmenting path P. Path P is augmented in the current solution

7f by the amount described in equation (4.1). Each plus edge e = (u, v) in P is deleted by

removing u from the parents of v while putting v into a deletion queue Q. The topological

delete process then systematically decrements the indegree of all vertices affected by the

deletion of edge e; when the indegree of vertex u E U2 becomes 0, u is deleted from the

list of vertices found by the BFS. This process is repeated until there are no more paths to

trace back from the last level 2t + 1. The augmentation and topological plus edge delete,

which we call BFS_visit(7f, JB, UI , U2 ) is outlined in algorithm 4.4.
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Algorithm 4.3: BFS search for alternating paths

Given: a bipartite undirected graph C B(VI, V2, E B),

Define:
JB is the set of saturated vertices w.r.t 1r for the graph C B

UI <;;; VI, U2 <;;; V2: set of unsaturated vertices with respect to 1r from VI and V2 respectively
parent[u] is a private attribute of vertex u representing a list of parents of vertex u in the BFS
children[u] is an attribute of vertex u representing a list of children of vertex u in the BFS
level[u] is a private attribute of vertex u representing the level of u in the BFS tree.
status[u] = {unvisited, finalized} represents the status of vertex u in the BFS process
found_vertices_list is a list of vertices in U2 that have been found by the BFS.

BFS(1f,JB ,UI ,U2 ):

1 for u E VI U V2 do
2 status[u] = unvisited
3 level[u] = 00

4 parent[u] = NULL

5 Q=0
6 for u E UI do
7 status[u] = visited
8 level[u] = 0
9 parent[u] = NULL

10 Enqueue(Q, u)

11 currenLlevel = 0
12 found_flag = false
13 u = Dequeue(Q)
14 repeat
15 while currenLlevel = level[u] and Q =J 0 do
16 for v E E(u) do
17 if status[v] =J finalized then
18 if is_even(level[uJ) and 1f(u.v) < 1 then
19 level[v] = level[u] + 1

20 parent[v] = parent[v] + {u}
21 children[u] = children[u] + {v}
22 if v E U2 then
23 found_flag = true
24 found_vertices_list = found_verticesJist U {v}

25 else
26 Enqueue(Q,v)
27 else if is_odd(level[uJ) then
28 level[v] = level[u] + 1
29 parent[v] = parent [v] + {u}
30 children[u] = children[u] + {v}
31 Enqueue(Q, v)

32 status[u] = finalized
33 u = Dequeue(Q)

34 currenLlevel = currenLlevel + 1
35 until u = NULL or found_flag = true;

36 return found_flag
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Algorithm 4.4: Augmentation and Topological Plus Edge Delete

Given: a bipartite undirected graph GB(V1 , V2 , E B),

Define:
JB is the set of saturated vertices w.r.t Jr for the graph GB

augment("'if, P) augments path P in the current solution "'if by the amount in equation (4.1)
found_vertices_list is a list of vertices in U2 that have been found by the current BFS tree.
parent[u] is an attribute of vertex u representing a list of parents of vertex u in the BFS
children[u] is an attribute of vertex u representing a list of children of vertex u in the BFS

BFS_visit("'if, JB, U1 , U2 )

lQ=0

2 repeat
3 P = traceback(U1 , U2 )

4 if P -I- 0 then
5 augment("'if, P)
6 for plus edge e = (u, v) E P do
7 parent[v] = parent[v] - {u}
8 children[u] = children[u] - {v}
9 Enqueue(Q, v)

10 while Q -I- 0 do
11 U = Dequeue(Q)
12 if Iparent[u] I = a then
13 if u E U2 then
14 f ound_verticesJist = f ound_verticesJist - {u}
15 else
16 for v E children[u] do
17 parent[v] = parent[v] - {u}
18 children[u] = children[u] - {v}
19 Enqueue(Q, v)

20 until P = 0 ;
21 return "'if

traceback(U1 ,U2)

IP=0

2 while found_vertices Jist -I- 0 do
3 v = found_verticesJist[o]
4 repeat
5 P=P+{v}
6 u = (parent [v]) [0]
7 P=P+{u,(u.v)}
8 V=U

until u E U1 :

9 return P
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A general graph G is first reduced to a bipartite graph GB using the reduction in section

4.4.1. The algorithm finds unsaturated vertices UI ~ VI and U2 ~ V2 with respect to a

solution Jr. It then uses BFS(Jr, JB, UI , U2) to find the shortest augmenting paths from UI to

U2 before augmenting the maximal set of plus edge disjoint augmenting paths. This process

is repeated until there are no more augmenting paths found by the breadth first search.

The phased algorithm for (DRPufm) is presented in algorithm 4.5 and the corresponding

primal-dual interpretation is shown in algorithm 4.6.

Algorithm 4.5: Phased DRP Algorithm

Define:
JB is the set of saturated vertices w.r.t Jr for the graph C B

BFS(Jr, JB, UI , U2 ) is the alternating path BFS method discussed in algorithm 4.3; returns
true if an augmenting path is found, false otherwise.
BFS_visit(Jr, JB, UI , U2) is the augmentation and topological plus edge delete method
discussed in algorithm 4.4

DRPopt2(JB ):

1 Jr = 0
2 UI = VI - (JB n Vd
3 U2 = V2 - (JB n V2 )

4 repeat
5 aug_path=BFS(Jr,JB,UI,U2 )

6 if aug_path then
7 Jr = BFS_visit(Jr, JB, UI , U2)
8 until aug_path = false:
9 return Jr

For the purposes of analyzing the running time, we must show that augmenting paths

found by each successive phase is strictly increasing, this will allow us to bound the number

of phases for this algorithm. Furthermore, we will argue that for a given phase, we can safely

delete plus edges without fear of them being used as minus edges for other augmenting paths

in the same phase. These ideas are discussed in the following lemmas:

Lemma 4.4.2. Augmenting paths found in each successive phase of algorithm 4.5 is strictly

increasing.

Proof. Assume during the first R phases of algorithm 4.5, that the minimum length aug

menting paths of successive phases were strictly of increasing order. Furthermore, assume
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Algorithm 4.6: primal-dual interpretation of UFM for the phased algorithm

Given: an undirected graph G(V, E),

Define:
constructDRP(JrB) finds the set JB given a feasible dual solution JrB.
calculate{)(7fB ,JrB,JB) calculates () according to equation (4.2)
DRPopt2(JB ) runs algorithm 4.5, obtains 7f~Pt to the current DRP instance JB.
makeBipartite(G) returns the bipartite reduction of graph G as described in section 4.4.1.
convert(7fB) converts the DRP solution for the bipartite graph into a DRP solution for the
general graph as described in equation 4.3.

UFM(G):

1 JrB = 0
2 7fB = 0

3 GB = makeBipartite(G)
4 repeat
5 JB = constructDRp(JrB)
6 7fB = DRPopt2(JB)

if L 7f~ = 0 then
7 eEE

8 7f = convert(7fB)
9 else

10 () = calculate{)(7fB, JrB, JB)
11 JrB = JrB + {)7fB

unt il L 7f~ = 0 ;
12 eEE

13 return Jr

33
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that in the Rth phase of the algorithm, a maximal set of plus edge disjoint augmenting paths

of length i were augmented. In particular, an augmenting path from the unsaturated vertex

a E UI to the unsaturated b E U2 was augmented causing a particular edge e = (u, v) to

become saturated. This situation is illustrated in figure 4.2. Assume also that later in the

Sth phase, an augmenting path pc•d of length k > i from c E UI through {x,v,u,y} E JB

to d E U2 was found. In this case, the augmentation process will cause edge e to become

unsaturated. Finally assume in the S + 1st phase, an augmenting path Pf,g of length j < k

from f E UI through {x', u, v, y'} E JB to 9 E U2 was found. Note that this is the only

situation where augmenting path lengths in successive phases can decrease in length.

In the augmentations described above, the edges (x,v) and (u,y) are used as plus edges

while the edges (x', u) and (v, y') are minus edges. Also note that j > i since the lengths of

the augmenting paths in phases 1 to R were assumed to be strictly increasing. Let p(*),(**)

denote the path from vertex (*) to vertex (**) in figure 4.2, then we have:

k = IPc,vl + IPu,dl + 1

j = IPf,ul + IPv,gl + 1

Thus,

Now, consider the minimum of the two augmenting paths Pf,d from f through {x', u, y} to

d and Pc,g from c through {X,v,y'} to g. Then we have:

We see that at the Sth phase, there was an augmenting path of length less than k which

should have been found by the breadth first search. This proves the lemma by contradiction.

o

Lemma 4.4.3. In a given phase, let edge e = (u, v) be any plus edge of an augmenting path

P. After augmenting P, e cannot take part as a minus edge of another augmenting path pi

in the same phase.

Proof. Assume that in a given phase, there exists an edge e = (u, v) that can be used both

as a plus edge for the augmenting path P = {PI + {(u, v)} + P2 } and a minus edge for the
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a

i

l
b

c f

J/
.'

'.

\~
d g

Figure 4.2: An example of an augmentation process

augmenting path pI = {P{ + {(v,u)} + pn, both of length k. Note that the two paths P

and pI may also have other edges in common. Then

Furthermore, there must exist two augmenting paths IPI + P~I and IP{ +P2 !, the shorter of

which has length

Such a path cannot exist as the shortest augmenting path in this phase is of length k. The

lemma follows by contradiction. 0

Lemma 4.4.3 is extremely important to the running time of algorithm 4.5 as it allows us to

safely delete plus edges in an augmenting path during a particular phase without fear of it

returning later as a minus edge.

Lemma 4.4.4. Given a non-optimal feasible solution IfB fOT an instance of (DRPufm) in

GB obtained by Tepeatedly finding augmenting paths and augmenting them from an initial
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DRP value of1fB = 0, the largest set of augmenting paths 5 = {PI, P2 , ... , Pd with respect

to 1fB have the properties that:

1. H, P2 , ... , Pk are plus edge disjoint.

2. after augmenting along these paths, we will arrive at the optimal solution 1fopt for the

instance of (DRPufm )'

Proof. We will first note that any given augmenting path P in a bipartite graph will never

contain odd length cycles. Hence, after augmentation, all odd edges in P will increase its
I

value by 1 whereas all even edges in P will decrease its value by 1.

Let 5 = {PI, P2, ... , Pk } be the largest set of augmenting paths with respect to the current

solution 1fB. Now, assume for the sake of contradiction that there are two augmenting paths

Pi and Pj in 5 which share a plus edge e. According to (DRPufm ), 1f~ :::; 1, meaning that

edge e can have value at most 1 and can only take part in one augmenting path. Hence, Pi

and Pj cannot both exist in the set 5. This shows that the set 5 must be plus edge disjoint.

Next, assume for the sake of contradiction that after augmenting along the paths in 5

that we have arrived at a new solution 1fB* which is not an optimal solution. By theorem

4.3, there must exist an augmenting path PHI with respect to 1fB*. We have already shown

that in order to increase the objective function, PHI must be plus edge disjoint from the

set 5, which contradicts the claim that 5 = {PI, P2, ... ,Pd is the largest set of augmenting

paths with respect to the original solution 1fB. Thus, the solution 1fB* must be optimal. 0

Lemma 4.4.4 tells us that given a feasible solution 1f, there exists a set of plus edge disjoint

augmenting paths that, when augmented, will result in an optimal solution 1fopt. This fact

will become important as we analyze the running time of the phased algorithm.

4.4.3 Phased Algorithm Analysis

Theorem 4.4.5. The phased algorithm in the previous section finds the optimal solution

1fopt in O(IVIIEI) time.

Proof. For each phase of the algorithm, a breadth first search tree is built by simultaneously

spanning out from each of the unsaturated vertices in VI (with respect to 7l"). The phase

ends when an odd level containing unsaturated vertices in V2 is found. The breadth first

search tree can clearly be built in time O(IEI) since no edge will be visited more than once.
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The second part of the phase is the augmentation and topological plus edge delete.

Notice that at the end of each iteration of the topological plus edge delete, if there are

vertices in the set U2 (unsaturated vertices in V2) that have not been deleted, then there

must be an augmenting path left in the BFS tree. Since the process of topological delete

is proportional to the number of edges deleted. We conclude that this process can also be

done in O([EI).

It is left to show that this algorithm will run O(IVI) phases. From lemma 4.4.2, we have

shown that the length of augmenting paths increase in each successive phase. The length

of an augmenting path can be at most IVI. Therefore, we conclude the number of phases is

bounded by O(IVI). The theorem follows. D

Using the phased algorithm to solve (DRPufm) in place of DRPopt(J) in algorithm 4.2

therefore will result in a running time of O(1V1 2 IEI).
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Conclusion

In this thesis, we presented two combinatorial algorithms to solve the unconstrained frac

tional matching problem. The naIve algorithm runs in O(IVIIEI 2) time. The "phased

algorithm" runs in O(1V12IEI), a significant improvement over the naIve algorithm. The

unconstrained fractional matching problem is the first step in our attempt to design a com

binatorial algorithm for the maximum charge problem. Our representation of the problem

allows vertex capacities but not edge capacities as edge values 1f are unconstrained. We now

consider the maximum charge problem.

Given a graph G(V, E) the primal variable vector is made up of variables representing

vertices v E V, edges e E E, as well as slack varaibles Ee for each edge e E E. The coefficients

Cu. (ce ) are capacities given to the vertices (edges) of G. The primal problem is represented

by

minimize L CuXu + L CeXe (Pmc )

uEV eEE

subject to Xu + Xv + X e - Ee = 1 V(u,V)EE

Xu 2:: 0 Vu E V

X e 2:: 0 Ve E E

Ee 2:: 0 Ve E E

38
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The maximum charge problem, which is represented by the dual representation, is as follows:

maximize L 7Te
eEE

subject to
L

7Te :s; Cu \lu E V
eEE(u)

7Te :s; Ce \Ie E E

7Te 2 0 \Ie E E

7Te ~ 0 \Ie E E

We now define the sets J1 , J2 , and h as

J1 = {u: L 7Te= cu}
eEE(u)

J3 = {e : 7Te = O}

From here, we derive the RP and DRP for the maximum charge problem.

(5.1 )

(5.2)

(5.3)

minimize LSe (RPmc)

eEE

subject to Xu + Xv + X e - Ee + Se = 1 \I(u,V)EE

Se 20 \Ie E E

Xu 20 \lu E J1

XU = 0 \lu rj:. J1

X e 2 0 \Ie E J2

X e = 0 \Ie rj:. J2

X e 2 0 \Ie E J3

X e = 0 \Ie rj:. J3



CHAPTER 5. CONCL USION 40

maximize LJre (DRPmc )

eEE

subject to
L

Jre ::; 0 \lu E J1
eEE(u)

Jre ::; 0 \Ie E J2

Jre 2: 0 \Ie E J3

Jre ~ 0 \Ie E E

Jre ::; 1 \Ie E E

It is immediately clear that a similar combinatorial algorithm for the DRP of the maximum

charge problem can be devised by repeatedly finding augmenting paths (with respect to sets

Jl, h, and h) corresponding to equation DRPmc and augmenting them. However, it is not

clear how many times this DRP algorithm will run. After each iteration, an optimal solution

Ifopt to (DRPme) will be found. This solution will either cause an unsaturated vertex (or

edge) value to be saturated, or an edge value to go to O. It is not immediately evident

whether edges entering the sets J2 and J3 will come out of the set at a later time. Thus,

this is an interesting topic for future research.

Another possible topic is given an optimal solution to the unconstrained fractional

matching problem, obtain an optimal solution to the maximum charge problem. This may

be done through a series of de-augmentations of negative edge values. As a simple exam

ple, the graph on the right hand side of figure A.9 in appendix A.3 has two de-augmenting

paths represented by the paths {(c,d),(d,e),(e,f)} and {(g,d),(d,e),(e,h)}. After the de

augmentation, which involves subtracting 1 from the plus edges and adding 1 to the minus

edges, the new solution will resemble those of figure A.7 and A.8.
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Matching Examples

A.I Fractional Matching Formulation

The following is a fractional matching LP representation of the graph in figure A.l:

maximize

subject to

1ra + 1rb + 1rc + 1rd + 1re + 1rf

1ra + 1rb <;; 1

1ra + 1rc + 1rd <;; 1

1rb + 1rc + 1r f <;; 1

1rd + 1re <;; 1

1re + 1rf <;; 1

1ra,1rb,1rc,1rd,1re,1rf 20

The optimal solution for this graph is shown in figure A.8 in section A.3.

I 2 3 4 5

d
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e

b

f [

16~
o I I
010
000
001

o 0]o 0
o 0
I 0
I I
o I

I

1

Figure A.I: A sample graph and the corresponding incidence matrix A
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A.2 Shortest Path Primal-Dual Example

42

In this section, we will walk through the primal-dual interpretation of the shortest path

problem as described in section 3.3.1. Figure A.2 shows a typical problem of this type.

a

e, e2

s G) 0 t

CD ev
e~

b

Figure A.2: Shortest path problem with edge weights indicated in the circles

The corresponding 4 x 5 edge-vertex incidence matrix A is as follows:

e, ez e3 e4 es

s

[ 11
0 0 +1 0

1
a -1 +1 +1 0 0A=
b 0 0 -1 -1 +1

0 -1 0 0 -1

Unlike the previous example, the columns of A represent the edges and rows of A represent

the vertices. This is because fractional matching is a maximization problem modeled from

the dual's point of view whereas the shortest path is a minimization problem seen from the

primal's point of view.

Figures A.3 to A.6 show the progression offour iterations of the shortest path primal-dual

algorithm. The algorithm begins with an initial dual solution of 7r = [0,0,0,0] and through

successive improvements, arrives at the optimal solution 7r = [6,5,3,0]. The algorithm

terminates in the state shown in figure A.6; the corresponding shortest path is the set

J = [eI,e3,e5]'



APPENDIX A. MATCHING EXAMPLES 43

•o

o•
0=1

el becomes tight

Figure A.3: Iteration 1, (1fopt) s - (1fopt)t = 1

o•
0=2

e3 becomes tight

Figure A.4: Iteration 2, (1fopt )s - (1fopt )t = 1

es becomes tight

Figure A.6: Iteration 4, (1fopt )s - (1fopt )t = 0
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A.3 Optimal Solutions

Examples illustrated in figures A.7 to A.9 show the differences between optimal solutions

to the 0-1, fractional, and unconstrained fractional matching problems. Note that some

optimal solutions shown here are not unique. The left is a general graph while the right is

bipartite.

0 I I ba

LITe = 2 0 0 0 LITe = 2
eEE C 0 d e 0 f eEE

0 0

g h

Figure A.7: 0-1 matching, 7re = {O, I}

1/2 1/2 a I

L 7re = 5/2 0 0 LITe = 2
eEE C 0 d f eEE

1/2 1/2
1/2

g h

Figure A.8: fraction matching, 7re 2:: 0

o

a I b

L 7re - 5/2 -2 I L IT" = 4
eEE c d e f eEE

g h

Figure A.9: unconstrained fractional matching (vertex capacities c(n) = 1), 7re ~ 0
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