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ABSTRACT

Falls are the number one cause of injury in older adults. Wearable sensor I

arrays (e.g. accelerometers) represent a promising technique for determining the

cause and circumstances of falls in high-risk individuals. Previous studies have

shown that the occurrence of a fall can be sensed reliably from the high

acceleration generated at impact. This thesis extends this research, by

developing and evaluating a sensor array system for determining the cause of a

fall. Sixteen young adults participated in trials involving falls due to slips, trips,

and "other" causes. 3D acceleration data acquired during the falling trials were

input to a linear discriminant analysis (LOA) technique. This routine achieved

96% sensitivity in detecting the cause of a fall using acceleration data from three

markers (left foot, right foot and sternum). These results indicate the utility of a

three node accelerometer array for distinguishing the cause of falls.

Keywords: Accelerometers; Falls; Injury; Linear Discriminant Analysis.
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1: CHAPTER 1
BACKGROUND AND OBJECTIVES

1.1 Falls in the elderly

Falls are the number one cause of injury in older adults. Approximately

35% of all adults over the age of 65 (Blake et al,. 1988; Prudham and Evans,

1981; Cambell et aI., 1981) and up to 50% of older adults in long-term care

institutions fall each year (Tinetti et aI., 1987). Approximately 15-20% of falls

result in a serious injury (Alexander et aI., 1990). As discussed in the next

section, hip fractures are the most common serious injury related to falls.

However, head, wrist, shoulder and spine injuries are also a frequent serious

consequence of falls among older adults. Furthermore, even when no injury

occurs, falls can have deleterious physiological effects on the individual including

"fear of falling", which can result not only in restricted activity but increased

dependency on others and decreased social interaction (Howland et aI., 1998;

Howland et aI., 1993).

1.1.1 Fall-related injuries

For Canadian seniors, falls are the most frequent cause of injury-related

hospitalization, and account for 78 percent of injury-related deaths (Raina et aI.,
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1997). This is a growing problem, as the number of falls and fall-related injuries

will increase as the proportion of those aged 80 years and over in Canada is

expected to double over the next 20 years (Statistics Canada, 1997).

Fall related injuries bring not only suffering to patients, but also represent

a huge cost to society. In Canada, there were over 2 million injuries in 1995,

accounting for more than $4.2 billion in direct health care cost. The most costly

injuries were falls, totalling approximately $2.4 billion or 57% of total direct cost

(Papadimitropoulos et aI., 1997). Furthermore, over $980 million of the 2.4 billion

in direct costs spent on falls was devoted to treating falls among the elderly. It is

estimated that about 40% of falls leading to hospitalization are the result of hip

fracture, and that the number of hip fractures in Canada will increase dramatically

from 23,375 in 1993 to over 88,000 cases by the year 2041 as the Canadian

population ages (The Hygeia Group, 1998).

1.1.2 Hip fracture

Of all injuries from falls, hip fractures cause the greatest health problems

and the greatest number of deaths. About 27,000 hip fractures occur each year in

Canada (Papadimitropoulos et aI., 1997). Half of all older adults hospitalized for

hip fracture cannot return home or live independently after the fracture (Scott,

1990). People older than 85 years are 10 to 15 times more likely to experience a

hip fracture than are people aged 60 to 65 years. Also, the risk of sustaining a hip

2
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fractures is 10.5 times higher for women residing in long - term care (LTC)

facilities than if they were living in the community, and less than 15 percent of

LTC residents who sustain a hip fracture regain pre-injury ambulation status

(Folman et aL, 1994).

1.2 Cause and circumstances of falls in older adults

Given the high incidence and cost of fall injuries in older adults, it is

important to understand and target the mechanisms that cause these events.

Falls are complex events that can be defined as a sudden, unintentional change

in position causing an individual to land at a lower level onto the ground or onto

an object (Wolf et aL, 1996). In biomechanical terms, most falls can be defined as

loss of stable upright posture due to body movements (and lack of appropriate

corrective actions) which displace the body's centre of gravity beyond its base of

support. Falls occur relatively commonly among persons of all ages (Talbot et aL,

2005). However, most falls in young and middle-aged adults occur during sports

or vigorous activities while falls in older adults often occur while performing daily

activities such as walking, turning, reaching and transferring (Talbot et aL, 2005).

Slips and trips, along with "Ioss-of-balance", "leg gave away" or "don't know" are

common self-reported causes for falls (Blake et aL, 1988; Brocklehurst et aL,

1978; Cumming and Klineberg 1994). Also, studies show that many fall events in

older adults occur from the interaction between identifiable environmental

hazards and increased susceptibility to hazards from the accumulated effects of

age and disease. Postural control, body orientation reflexes, muscle strength and
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tone, and height of stepping all decline with aging, and impair the older

individual's ability to avoid a fall after an unexpected event of loss of balance.

Age-associated impairments of vision, hearing and memory loss also are

responsible for an increase in the number of falls due to slips, trips and stumbles.

In older adults, other specific causes of falls include disorder of the central

nervous system, cognitive deficits, poor vision, drug side-effects, alcohol intake,

anaemia, hypothyroidism, unstable joints, foot problems and acute illnesses.

However, there are few objective measures of real-life falls in older adults, from

which to directly assess the cause and circumstances of these events, and how

they are affected by physiological and environmental variables.

1.2.1 Inaccuracy of self reported fall characteristics

Falls among older adults often go un-witnessed. Reports on falls in such

circumstances are generated by directly asking questions to the older adult

(Cumming et aI., 1990), thus relying on the ability of the individual to remember

and recall the fall event. Self-reporting and retrospective surveys are likely to

misreport fall events due to inaccuracies in responses led by forgetting or

denying falls, especially those not resulting in injury (Cummings et aI., 1988).

Such techniques may provide inaccurate estimates of the true incidence of falling

(Peel. 2000). Furthermore, recent laboratory falling studies indicate that even

young healthy adults have difficulty in accurately recalling the mechanics of falls,

when interviewed immediately after the event (Feldman, 2009). In order to

determine the true cause of falls among older adults, and develop and evaluate

4



prevention strategies, improved techniques are required to measure and analyse

movement strategies during real-life falls.

1.2.2 Fall mechanics

The way in which a person falls, or the "mechanics" of the fall, are known

to influence the type of injury sustained. For example, slips are initiated just after

heel strike, and involve forward sliding of the foot along the ground, resulting

typically in backward fall. Indeed most falls due to slips result in a backward fall

and backward falls onto the buttocks have much lower rates of fractures

(Rubenstein, 2006). On the other hand, trips are caused by obstruction of forward

movement of the foot during walking, usually due to the contact with an obstacle,

and subsequent anterior rotation of the torso leading to a forward fall. Wrist

fractures usually result from forward or backward falls onto an outstretched hand,

while, hip fractures typically result from falls to the side.

1.3 Systems for monitoring mobility and detecting falls in older
adults

1.3.1 Surveillance cameras

Recent work by Robinovitch et aI., (2009) studies the types and

circumstances of falls in older adults living in long term care facilities. In this

study, fall videos captured through surveillance cameras were studied and

analysed by a panel of experts. While providing valuable data, a drawback of this
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approach is the fixed number and locations of surveillance cameras and

associated risk of falls going unrecorded. As an interesting side note, these

investigators compared videos to incident reports filled by care attendants who

witnessed the fall or asked the faller a set of questions regarding the fall. These

incident reports were found to differ considerably from the video recording in

describing the cause of the fall. This suggested inaccuracy may limit the

effectiveness of fall prevention strategies based solely on incident reports.

1.3.2 Wearable sensors for detecting falls

Recently, the use of wearable instrumentation to record human

movement, in areas such as gesture recognition and fall detection has gained

much attention. This is due in part to the success in sensor miniaturization, low

power consumption and performance. Inertial sensors have the potential to be

used for assessing a wide range of human movements, inclUding activities of

daily living (ADL), balance and postural sway and falls in various environments.

Table 1 describes previous studies using wearable sensors to distinguish fall

event from activities of daily living. These studies have utilized accelerometers

(Lindemann et aI., 2005; Bourke et aI., 2006; Chen et aI., 2005; Quagliarella et

aI., 2008; Noury et aI., 2003), gyroscopes (Bourkeet aI., 2008; Nyan et aI., 2006),

or a combination of both accelerometers and gyroscopes (Wu et aI., 2008;

Hwang et aI., 2004; Noury et aI., 2008). Ongoing barriers to the adoption of this

technology in daily geriatric practices is limited by several factors, including

inadequate ergonomics, concern among older adults of stigmatization of fragility
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and a lack of software (data analysis) algorithms to meaningfully interpret sensor

data.

The ability to detect falls is especially valuable for alerting care personnel

and delivering assistance to the faller. Thus, research on the development of

wearable sensor systems to accurately detect falls is a rapidly growing area of

investigation. Human falls are generally characterized by an impact on the floor

followed by a near horizontal orientation of the legs or torso. Most wearable fall

detectors are designed to detect one or both of these effects. Accelerometers are

employed in the design to detect an impact, whereas tilt sensors or gyroscopes

are used to determine the orientation of the faller after the impact and tilt

transitions during descent. A variety of sensor locations have been employed,

depending on the information desired and ease of mounting. Common locations

for wearing fall detectors include the chest (Hwang et aI., 2004), hips or waist

(Wu et aI., 2008), wrist or forearm (Degan et aI., 2003), knee or thigh (Nyan et aI.,

2008) and head (Lindemann et aI., 2005).

1.3.2.1 Post - impact fall detection

As described above, researchers have used different anatomical locations

to mount sensors and have employed different techniques to detect falls. Such

efforts can be divided into two main categories based upon whether the detection

occurs prior to or after impact of the body with the ground (Table 1). The most
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common and simple methodology for fall detection is by using a tri-axial

accelerometer with simple threshold-based algorithms on acceleration magnitude

to detect impact. Such algorithms can be used to automatically alert a nearby call

centre of a fall event when the threshold value of acceleration is exceeded.

Bourke et aI., (2007) introduced a threshold algorithm to distinguish

between normal activities and falls. A set of prescribed daily activities were

performed by 10 community dwelling older adults (3 women, 7 men) which

included sitting down and standing up from chairs of various heights, getting in

and out of a car seat, lying down and standing up from a bed and walking

normally for 10 meters. Ten young adults simulated falls in forward, backward

and lateral directions. Subjects were instructed to fall freely without breaking the

falls. The ability to discriminate falls from normal activities was examined using

two tri-axial accelerometers mounted on the thigh and sternum. The authors

constructed a threshold algorithm based on investigation of peaks in

accelerations from the thigh and sternum. Under the test conditions, this system

proved 100% successful in fall detection after the body impact with the ground.

1.3.2.2 Pre - impact fall detection

Unlike post - impact fall detection systems, those that employ early

detection of falls before the body impacts the ground offer the potential to prevent

fractures (for example through an "inflatable" hip protector). During a fall, there is
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typically a period of "free fall" during which the vertical speed of the body

segments increases with time due to gravitational acceleration. Based on this

notion, Wu, (2000) compared features of the velocity profile of the trunk that

separated daily activities from fall events, with the goal of developing a technique

for automatic detection of falls during the descending phase prior to impact.

Normal activities included walking, rising from a chair and sitting down,

descending stairs, picking up an object from the floor, transferring in and out of a

tub and lying down to a bed. In addition to normal activities, three young healthy

adults recruited for the experiment performed falls in the forward and backward

direction. The authors reported that all normal activities (n =116) were identified

whereas from 46 fall trials, 45 were identified accurately. Also, the system

identified the falls with an average lead-time of 420 milliseconds prior to the

pelvis impacting the ground. Brief descriptions of additional studies that address

pre and post fall detection are listed in Table 1.

1.4 Goals and objective

To date, we have a lack of understanding of the cause or precipitating

circumstances for falls in older adults, and how these are associated with intrinsic

(dizziness, weakness etc.) and extrinsic factors (environmental hazards causing

slipping, tripping etc.). Improved technology in this area should allow us to

develop more specific and alternative measures for the prevention of falls in the

elderly population.
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The main aim of this thesis is therefore to develop a wearable sensor

system that can accurately determine the cause of a fall, between categories

such as slip, trip, faint, or incorrect transfer while sitting, standing, reaching, or

turning. I address this goal by examining how the location and number of

acceleration sensors influence the accuracy of a data analysis classification

scheme in distinguishing the above-mentioned types of falls. In particular, I used

a motion capture analysis system to acquire kinematic measures of falls with

young adults in a laboratory setting. My experiments simulated three general

types of fall causation: a) slips, b) trips and c) others causes. "Other causes"

included five sub-categories: i) fainting, ii) incorrect transfer while sitting on a

chair, iii) incorrect transfer while standing up from a chair, iv) reaching and v)

turning. I then developed a linear discriminant analysis technique using Fisher's

criterion to classify fall types as based on acceleration from various body

mounted sensors, and finally examined how system's accuracy depends on

sensor number and location.

In summary, my thesis research addressed the following objectives;

a) To design an experiment protocol to simulate various common

causes of falls among older adults;

b) To conduct laboratory experiments using this protocol with young

adults to acquire body segment motions during these falls;

c) To develop a scheme to analyse experimental acceleration data

based on Linear Discriminant Analysis to classify falls into the

various categories (slip, trip or other causes); and

10



d) To conduct analysis to examine how the location and number of

sensors influences the system's accuracy in distinguishing the

causes of falls.

11



1.5 Tables

Table 1-1: An overview of fall detection research studies.

STUDY SENSOR ARRAY TESTING CONDITIONS SYSTEM ACCURACY TIME OF FAll
,. --- -- - - _.

Type of Location of Nature of falls (types and
Activities of dally living (types and sUbjects %

Relative to
sensor(s) sensors subjects) Impact (ms)- -

Wu, (2000). I Reflective C3 3 Young Adults 3 Young Adults Out of 116 ADls and 46 falls Falls detected 420
Markers (Motion T2 Tripping, Backward falls, Walking, rising from a chair and sitting down, Descending msec before end
Capture l5 Forward falls stairs, Picking up an object from the floor, Transferring in of fall.
System) and out of a tub, lying down to a bed

Sensitivity =98%

Specificity =100%

Wu and Xeu, I Accelerometer I Waist 110 Young Adults 114 older Adults Sensitivity =100 Falls were
(2008). and Gyroscope. Forward fall, Backward fall, Walking normally and sway walking, Sitting down and Specificity =100 detected in 70 -

Sideways fall, Down fall rising, Picking up an object from the floor, Transferring in 375 msec prior to

and out of a tub, lying down and getting up from a bed, impact.

Tripping, Being pushed, Drive a car, Use escalator

Tamura, et aI., I Photo sensor I left lumbar 11 Young Adult 11 Young Adult and False alarm occurred during: I Falls were
(2000). region Dummy falls 14 Hemiplegic patients during their rehabilitation training, Person changed clothes, identified after the

Walking straight Rode bicycle, Went to bed body impact

Ascending and descending stairs

Hwang, et aI., I Accelerometer, I Sternum I 3 Young Adults 3 Young Adult Out of 30 falls 4 were not Falls were
(2004). Gyroscope and Forward fall, Backward fall, Sitting and standing, Normal daily activities identified. identified after the

tilt sensor Sideways fall Total system accuracy was body impact.

96.7%

lindemann, et I Accelerometer I Head 11 Young Adult 11 Young Adult I False alarm triggered when Falls were
aI., (2005). Forward fall, Backward fall, Sitting on a chair. lying down, Walking. Running, Stair the device was hit by the identified after the

Sideways fall, Collapse, Fall climbing hand. body Impact

while picking an object from
floor

Bourke, et aI., I Gyroscope I Sternum I 10 Young Adults 10 Older Adults Falls and ADls were detected Falls were
(2008). Forward fall, Backward fall, Walking, Sitting and standing up from a chair, Getting in accurately. identified after the

Sideways fall and out of a car seat, lying down and standing up from a Sensitivity =100% body impact.

12



bed Specificity =100%

Bourke, et aI., I Accelerometer I Sternum 110 Young Adults 110 Older Adults Separate threshold values I Falls were
(2006). and thigh. Forward fall, , Backward fall, Walking, Sitting and standing up from a chair, Getting in were defined for thigh and identified after the

Sideways fall and out of a car seat, Lying down and standing up from a sternum. body impact.

bed Sensitivity =100%

Specificity =100%

Srinivasan, et Accelerometer I Accelerome 15 Young Adults 15 Young Adults I There was no false alarm and I Falls were
aI., (2007). and a motion ter on waist, Forward fall, Backward fall, Sitting, Standing, Walking, Walking fast, Hopping, out of 96 falls 91 were identified after the

detector motion Sideways fall Climbing up, Climbing down, Climbing down, Rotating in a detected accurately. body impact.
detector on chair
wall

Chen, et aI., I Accelerometer I Waist 2 Young Adults 2 Young Adults SensitiVity =100% Falls were
(2005). Forward,Backward and Walking, Sitting Specificity =100% identified after the

sideways fall body impact.

Nyan, et aI., I Two I Thigh and 121 Young Adults 21 Young Adults Out of 216 ADLs and 42 falls Falls were
(2008) accelerometers waist Fainting Walking, Sitting down and standing up from a chair, system showed: detected (prior to

and a gyroscope Lying, Ascending and descending stairs Sensitivity =94.5% impact) with an

Specificity =100% average lead time
of 700 msec.

Quagliarella, I Accelerometer Not 110 Young Adults 110 Older Adults Out of 200 ADLs and 200 falls Falls were
et aI., (2008). mentioned Forward fall, Backward fall, i. Walking forward, Walking and going down one step, system showed: detected after the

Sideways fall Walking and then sitting on a chair, Walking then Sensitivity =100% impact.

sitting down and finally lying down on a bed, Walking Specificity =100%
and then picking up an object from the floor

Noury, et aI., I Accelerometer Under the 110 Young Adults 10 Young Adults Out of 200 ADLs and 550 falls I Not mentioned
(2003). left armpit Backward fall ending in sitting, Normal walking then bending down and kneeling, Normal system showed:

lying and lateral lying, walking and then hitting the wall laterally, Sitting down Sensitivity =79%
Forward fall ending in alying and then lying on bed, Standing up and then sitting on a Specificity =83%
and with rotating motion, chair.
Syncope ending with sitting,
lying and lateral lying
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2: CHAPTER 2
AN ANALYSIS OF THE ACCURACY OF WEARABLE

SENSORS FOR DETECTING FALLS CAUSED BY SLIPS
AND TRIPS

2.1 Introduction

Wearable kinematic sensors, typically consisting of accelerometers and/or

gyroscopes, represent a promising technique for determining how and why falls

occur in older adults. This information is essential for the development of

improved strategies for reducing the risk for falls and fall-related injuries (Tinetti

et aI., 1997; Nevitt and Cummings, 1993; Schwartz et aI., 1998), and for

understanding how physiological and environmental variables contribute to falls.

Currently, our understanding of the cause and circumstances of falls occur is

based on self-reports of fall events, which may be unreliable (Nevitt and

Cummings, 1993; Cummings et aI., 1988), or witness accounts, which are often

unavailable (Hayes et aI., 1993; Nurmi et aI., 1996; Wagner et aI., 2005).

Wearable sensors represent a promising technique for providing objective

information on the fall mechanism. However, to date, fall-related research

on wearable sensor systems has been restricted to a single outcome - detecting

the occurrence of a fall (Lindemann et aI., 2005; Bourke et aI., 2006; Chen et aI.,

2005; Quagliarella et aI., 2008; Noury et aI., 2003;Bourke et aI., 2008; Nyan et
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aI., 2006; Wu et aI., 2008; Hwang et aI., 2004; Noury et aI., 2008). An important

application of such data is the automatic alerting of caregivers that a fall has

occurred. However, the potential utility of wearable sensor systems extends

beyond detecting a fall, to applications such as prompting balance

recovery responses, triggering the deployment of protective clothing (such as

inflatable hip and head protectors (Fukaya and Uchida, 2008)), or providing

information on fall severity and related injuries. Furthermore, wearable sensor

systems have the capacity to provide insight on the cause and activity at the time

of a fall. However, a major challenge to engineers in designing these systems is

to establish the sensor hardware, and related data analysis routines, necessary

to provide accurate information on the outcome of interest.

In this study, my goal was to develop a wearable sensor system, and a

related data classification scheme, for accurately characterizing the cause of falls

due to slips, trips and other types of loss-of-balance. I addressed this goal by

conducting laboratory "falling experiments" with young adults, acquiring whole

body kinematic data for a wide range of fall causes. I then systematically input

acceleration data, from the time interval immediately preceding the fall, into a

linear discriminant analysis classification routine, to determine how system

accuracy in predicting the cause of fall depended on the number and location of

the accelerometer sensors. My results indicate that high system accuracy for

detecting the cause of fall can be achieved with as few as three sensors. My
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methods serve as a template for the development of additional applications of

wearable sensors systems in falls research and prevention.

2.2 Material and methods

2.2.1 Participants

Sixteen young healthy individuals (12 men and 4 women) participated in

this study with ages ranging from 20 to 35 years (mean =25.6 yrs, SO =3.8). All

participants were either "under graduate" or "graduate" students at Simon Fraser

University and were recruited through advertisements and flyers on university

notice boards. The experiment protocol was approved by the Research Ethics

Committee at Simon Fraser University and all participants provided informed

written consent.

2.2.2 Experimental Protocol

The experiment protocol for my laboratory falling experiment was based

on recent efforts by our laboratory to examine the causes of real-life falls in older

adults residing in long-term care, as captured on video by a large network of

digital video cameras (Robinovitch et aI., 2009). Based on these observations, I

simulated these specific classes of fall causation: slips, trips, and "other" causes

(Figure 2-1). Prior to the start of the experiment, each subject was shown specific

videos (Figure 2-2) from our records of falls in older adults due to slips, trips, and

five other causes (fainting or syncope, reaching for an object, turning, incorrect
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weight shifting while sitting down on a chair and while rising from sitting).

Subjects were instructed to imitate these falls as accurately as possible during

the experimental trials, as described below.

In slipping trials, subjects were instructed to walk over a low friction plastic

sheet, and either acted out a slip (n =6), or were made to slip by rapidly

translating the plastic sheet (n = 6) under their feet (Figure 2-2). I acquired 12

trials in each condition, in half of which, I instructed the subject to try to recover

balance, and in the other six I instructed him/her to fall. Tripping trials were

simulated either by having a rope tether attached to the subject's ankle to

suddenly become taut or by instructing the subject to act out tripping over an

obstacle (a wooden block of approximately 10 cm width and 15 cm height). The

length of the tether rope was adjusted to become taut during the middle of the

swing phase of the third step. Again, 12 trials were acquired, half of which

involved balance recovery, and the other half falls. In "other fall" trials, the subject

was instructed to act out falls due to five different causes (n =3 per cause):

fainting (or syncope), reaching for an object, turning, incorrect weight shifting

while sitting down on a chair and while rising from sitting. I also acquired trials

with each participant involving normal walking (n =3).

In the current analysis, I only considered trials that resulted in a fall.

Therefore, over the 16 subjects, a total of 96 slips, 96 trips and 288 "other cause"

trials were analyzed.
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2.2.3 Data collection

During each trial, I used an eight camera motion analysis system (Eagle

system, Motion Analysis Corp.) recording at 120Hz to acquire the three

dimensional positions of 22 reflective skin markers. The markers were located

bilaterally on the lateral malleolus, lateral epicondyle of the femur, greater

trochanter, anterior superior iliac spine, acromion, lateral epicondyle of the

humerus, dorsal surface of the hand, scapula and at the sternum, C7 vertebrae,

sacrum and the front, top and back of the head.

Position data were low pass filtered using a recursive Butterworth filter (4th

order, cut-off frequency 20 Hz) and double differentiated to estimate

accelerations.

2.3 Data Analysis

Data analysis focused on determining whether the cause of falls could be

accurately predicted from 3D acceleration data from five key anatomical locations

(left foot, right foot, waist, sternum and head), selected based on their feasibility

for sensor placement on the human body. For each trial, I inspected motion data

to determine the approximate instant (To) when the pelvis first impacted the

ground. Acceleration data for the 1500 milliseconds preceding pelvis impact were

input to my fall classification algorithm (as described below). Previous studies

(Hsiao and Robinovitch, 1998 and, Feldman and Robinovitch, 2007) have shown
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that the time interval between the loss of balance and the fall impact range from

450 milliseconds to 750 milliseconds with a mean value of about 700

milliseconds. Thus, I regarded acceleration trajectories over a time window of

1500 milliseconds prior to the pelvis impact as sufficient to capture the initiation

and descent phase of each fall, and this was indeed shown to be the case for all

falls analysed (Figure 2-3).

From each of the five markers' X, Y and Z acceleration traces, I calculated

the mean and variance over the 1500 ms preceding pelvis impact. These

outcomes resulted in a 30 dimensional "feature vector". Based on the assumption

that the feature vectors from the three fall types were linearly separable, I used

Linear Discriminant Analysis (LOA) using Fisher's criterion to classify the causes

of falls. In the procedure I split the feature vector into training and testing sets of

equal size by choosing data from the first eight subjects for training and the

following eight for testing. The procedure transforms a classification problem

from a higher to lower dimensional feature space through a set of projection

operations, which results in optimal separability among different classes (Baudat

and Anouar, 2000; Muller et aI., 2001). Classifying two or more sets of data, can

be achieved by maximizing the ratio of between-class scatter as divided by

within-class scatter:
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where "w" is a linear transform, "Sb" is the between class variance, "Sw" is

the within class variance, and "argmaxw " refers to maximizing the above

equation. The generalization of the within-class "Sw" and the between-class

scatter "Sb" for "K" classes are given by the following expression:

K

Sw = I I (x - mk) (x - mk)T ,
k=l nECk

and

K

Sb = I Nk(mk - 11) (mk - Il)T.
k=l

Here mk is the sample mean for the k th class, Nk is the number of

patterns in class Ck! INkl indicates the number of vectors in the k th class and

N = Lk Nk in the total number of data points (Bishop, 2006).

I conducted linear discriminant analysis using acceleration data from each

marker, and for each possible combination of 2, 3,4 and 5 markers. In each
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case, I then constructed confusion matrices (Tables 2-1 to 2-15) and used these

to calculate sensitivity, specificity, precision and accuracy (Figure 2-4 B) as

follows:

True Positive
Sensitivity = x 100 ,

True Positive + False Negative

True Negative
Specificity = x 100 ,

True Negative + False Positive

True Positive
Precision = x 100 ,

True Positive + Flase Positive

and

Accuracy

True Positive + True Negative
= x 100.

True Positive + True Negative + False Positive + False Negative

where true positive, false positive, true negative and false negative are

explained graphically in Figure 2-5 and defined specifically for each fall cause in

Figure 2-4 B. However, results will primarily focus on system's sensitivity and

marker location or combination of markers will be ranked based upon the Highest

Minimum Sensitivity across the three conditions.
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2.4 Results

The accuracy of the linear discriminant classification algorithm in

classifying the cause of falls depended strongly on the location and number of

markers, and varied considerably between the different types of falls (Table 2

16). With a single marker, the best sensitivity was achieved by the "head" and

"waist" markers, which provided at least 52% sensitivity. In contrast the sternum

marker provided only a minimum of 31 % sensitivity. The single markers, head,

sternum and waist, were most effective at classifying other causes of falls with

sensitivities 85%, 92% and 96% respectively, and least effective at classifying

trips (52%, 31 % and 52% respectively). With a single waist marker, system was

able to detect both slips and other causes of falls with 96% sensitivities whereas,

head and sternum markers showed 79% sensitivities in identifying slips. With the

single markers results showed that both slips and other causes could be detected

with at least 79% sensitivities but trips were more difficult to classify with a single

marker (52% sensitivity for waist or head marker).

With two markers the best sensitivity was observed with the combination

of left foot + right foot, which provided at least 79% sensitivity. In comparison,

markers combinations of waist + sternum, and waist + head, provided at least

54% and 56% sensitivities respectively. The combination of left foot + right foot

provided accurate detection of trips and other falls with 92% and 90%

sensitivities respectively, but was less successful in classifying slips (79%

sensitivity). On the other hand, the waist + sternum combination, and the waist +
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head combination, were accurate in determining slips (with 100% and 96%

sensitivities, respectively) and other causes (with 98% and 97% sensitivities) but

less accurate for trips (with 54% and 56% sensitivities). Similarly, the sternum +

head combination was effective for detecting slips (89%) and other causes

(92%), but not for trips (71 %).

The best sensitivity was observed with three markers, left foot + right foot

+ sternum, which provided at least 96% sensitivity in all three fall types. The

second, and the third best three-marker combinations were left foot + right foot +

waist and, left foot + right foot + head, with at least 89% and 87% sensitivities

respectively. Also, results showed that even though upper extremity markers

(waist, sternum and head) provided high sensitivities in identifying falls due to

slips and other causes, the markers at feet were found critical to accurately

classify falls due to trips. This observation was also supported by three markers

combination of waist + sternum + head, which successfully detected slips and

other causes with 94% and 97% sensitivities respectively but provided only 58%

sensitivity for trips.

The minimum sensitivity was no better with four and five markers than with

three. With four markers, the best sensitivity was observed with the combination

of left foot + right foot + waist + sternum, which provided at least 94% sensitivity.

The other two four-marker combinations each provided at least 89% sensitivity.

Moreover, with four and five markers combinations, system did not show a
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noticeable difference between sensitivities in detecting slips and other causes

(reference: Table2-16).

In addition to sensitivity, other measures such as specificity, precision and

accuracy were also taken into account in evaluating the performance of the

wearable sensor system. Specificity (risks for fall positives) was generally high

throughout the results. However, it was found decreasing below 80% in only one

case when a single sternum marker was used in classifying falls due to "other

causes". Precision (proportion of true positives against all positive results) was

found to be lower for slips than for trips and "other causes". The three-marker

combination of left foot + right foot + sternum provided the highest precision (of

94%, 87% and 100% in evaluating falls due to slips, trips and "other causes"

respectively). Accuracy (proportion of true results in the population) was also

found high with the three-marker combination of left foot + right foot + sternum

providing al least 87% accuracy.

2.5 Discussion

This study examined the utility of a wearable sensor array for detecting the

causes of falls acquired in a laboratory setting. My results indicate that three

dimensional acceleration data from three markers (mounted at left foot, right foot

and sternum) entered into a linear discriminant model provide at least 96%

sensitivity in distinguishing falls due to slips, trips and other causes. In contrast,
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the best two marker combinations (left foot + right foot) provided a minimum

sensitivity of only79%. This work contributes to the development of

comprehensive fall monitoring systems based on wearable sensors, which might

also provide information on characteristics such as the activity at the time of the

fall, impact severity, ability to rise after falling and physiological variables (EMG,

ECG) that may provide further insight on the cause of falls.

The need for sensors at three anatomic sites (left foot + right foot +

sternum) reflected the observation that no two-sensor combination was able to

capture body kinematics unique to each fall type, and achieve high accuracy in

classifying all three types of falls. Slips are initiated just after heel strike, and

involve forward sliding of the foot along the ground, resulting typically in

backward fall. I found that such falls could be accurately detected with a single

marker c;lt the waist (96% sensitivity) and with combinations of waist + sternum or

waist + head. On the other hand, trips are caused by obstruction of forward

movement of the foot during walking, usually due to contact with an obstacle, and

subsequent anterior rotation of the torso leading to a forward fall. A single marker

had poor sensitivity (52%) for detecting such falls, which require sensors on both

right and left foot. In contrast, any of the two marker combinations I examined

was accurate in distinguishing falls due to "other causes" from those due to slips

and trips. Collectively, these observations for two-marker combinations explains

why three markers are required for comprehensive "cause of fall" detection.
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Table 2-16 also illustrates specificity, precision and accuracy as measures

of sy~tem performance. Specificity was often higher than sensitivity, which

suggests that the system was better at classifying "negatives" than "positives"

(Figure 2-6). However, one exception was noted for the sternum marker, which

often misclassified falls due to slips and/or trips as due to "other causes". In

general, precision was lower than sensitivity, suggesting a higher number of false

positives than false negatives. In terms of accuracy, the three-marker

combination of left foot + right foot + sternum provided 98%, 96% and 97%

accuracy in classifying falls due to slips, trips and "other causes" respectively.

There are important limitations to this study. Due to safety concerns, all

falls were performed by healthy individuals between the ages 20 and 35 years.

There are inevitable discrepancies between the falls of these young individuals

and older adults. Also, all falls were performed under controlled laboratory

conditions. Furthermore, acceleration data analysed to classify three fall causes,

were calculated by double differentiating position data obtained from the Motion

Analysis System. It can be argued that the proposed wearable sensors

(accelerometers) may have different X, Y and Z-axis acceleration profiles (due

to the non-static frame of reference as opposed to camera based Motion Capture

System). However, the strength of my study is the application of a Machine

Learning algorithm (Linear Discriminant Analysis) that allows the system to

change behaviour based on available data. Therefore, it is expected that my

system would behave in a similar manner with accelerometer data as was
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observed in this study. Another strength of my study is the utilization of video

segments of real life falls by older adults in our training session. During the

course of this experiment, I also included two types of slips and trips (self

induced and perturbation based), and five types of "other falls" to enhance

external validity.

In conclusion, I developed a cause of fall detection strategy based on

wearable sensors, and found this provided 96% sensitivity in distinguishing slips,

trips and other causes of falls based on 3D acceleration data from the right foot,

left and sternum input to a linear discriminant model. Placing sensors at different

body locations (such as head and sternum) presents an issue in itself when

considering the size of sensor units found in market today. However, one may

expect that, within a years' time, sensors may become available the size of

"band-aids", which would enhance both compliance and sensor placement.

Furthermore, the potential utility of the proposed wearable sensor system

extends beyond detecting the causes of fall, to applications such as prompting

balance recovery responses, triggering the deployment of protective clothing

(such as inflatable hip and head protectors), or providing information on fall and

injury severity. The method employed here provide. a useful templte for the

development and evaluation of such efforts.
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Figure 2-1: Flow chart representing experiment protocol.The extended branches show the various types of falls that subjects were
instructed to imitate. Sixteen subjects (12 males and 4 females) performed each trial three times, resulting in 96 falls due to
slips, 96 due to trips and 288 due to "other causes"
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A Slip and fall

B Trip and fall

Figure 2-2: Simulation of falls due to slips and trips in laboratory. The figues show
comparison between real-life falls captured on surveillance cameras in long
term care (LTC) facility and fall simulated through young adults in laboratory.
(A) Comparison between a simulated slip and real-life slip. (8) Comparison
between a simulated trip and real-life trip.

30



Slips Trips Others
Head Head Head

N-;; 80· N-;; 80· .
80-

X-Axis X-Axis N-;; X-Axis
:Jl 60 V-Axis " 60 V-Axis " 60

I
~ ~ V-Axis

40 Z-Axis S 40 Z-Axis S 40 Z-Axis
c

20
c 20 c 20.Q .Q g

1" 0 1" 0 - ~ 0" " ~

~ -20
Qj -20
8 l'l -20

« -40 « -40
0« -40

0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5

Time (sec.) Time (sec.) Time (sec.)

Sternum Sternum Sternum
80- 80· 80-

60 60 60

40 40 40

20 20 20

0 0 0--

-20 -20 -20

-40 -40 -40
0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5

Waist Waist Waist
80· 80 80- -
60 60 60

40 40 40

20 20 20

0 0 0

-20 -20 -20

-40 -40 -40

0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5

Right Foot Right Foot Right Foot
80- - 80·
60 100 60

40 40

20 50 20

0 O· -
-20 0 -20

-40 -40

0 0.5 1 1.5
-500 0.5 1 1.5 O~ 0.5 1 1.5

Left Foot Left Foot Left Foot
80 -- 80-

60 100 60

40
SO

40

20 20

a a a
-20 -20

-40 -SO -40

a 0.5 1 1.5 a 0.5 1 15 a 0.5 1 1.5

31



Figure 2-3: Sample 3-dimensional acceleration traces from a typical participant in slip, trip
and faint/collapse falling trial. Along the x-axis 1.5 seconds time reflects an
approximate instance for pelvis impact.
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A Sensor location: Left Foot + Riaht Foot + Sternum

Classified as Q
Slips (n = 48) Trips (n = 48) Other (n = 144)

Slips 46 2 0

Trips I 2 46 0

Other I 1 5 138

8

I For
I I I For Trips

I I I For
IShn~ Othp.n:;

ClassifiedY Slips Trips Others Slips Trips Others I Slips Trips Others

Slips TP FN FN Slips TN FP TN Slips TN TN FP

Trips FP TN TN Trips FN TP FN Trips I TN TN FP

Others I FP TN TN Others I TN FP TN Others I FN FN TP
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Figure 2-4: (A) Confusion matrix, representing results from the best marker combination. (8) Defining true positive (TP), true negative
(TN), false positive (FP) and false negative (FN) for three types of falls.

Algorithm Classification

actual positives

positive

TP

negative

TN

actual negatives

Figure 2-5: Graphical representation of various measures of performance in terms of true positive, true negative, false positive and false
negative.
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Figure 2-6: Sensitivity comparison for sensor combinations

35



2.7 Tables

Table 2-1: Confusion matrix, Head marker

Ma~erPosWon:Head

Classified asy
Slips

Trips

Other causes

Slips

38

18

11

Trips

25

11

Other causes

9

5

122

Table 2-2: Confusion matrix, Sternum marker

Marker Position: Sternum

Classified asy
Slips

Trips

Other causes

Slips

38

13

11

36

Trips

o

15

Other causes

10

20

132



Table 2-3: Confusion matrix, Waist marker

Marker Position: Waist

Classified asy
Slips

Trips

Other causes

Slips

46

15

2

Trips

23

3

Other causes

6

139

Table 2-4: Confusion matrix, Left Foot + Right Foot

Marker Position: Left Foot + Right Foot

Classified asy
Slips

Trips

Other causes

Slips

38

4

11

37

Trips

5

44

3

Other causes

5

o

130



Table 2-5: Confusion matrix, Waist + Sternum

Marker Position: Waist + Sternum

Classified asy
Slips

Trips

Other causes

Slips

48

12

o

Trips

o

26

3

Other causes

o

10

141

Table 2-6: Confusion matrix, Head + Waist

Marker Position: Head + Waist

Classified asy
Slips

Trips

Other causes

Slips

46

16

38

Trips

27

3

Other causes

5

140



Table 2-7: Confusion matrix, Sternum + Head

Marker Position: Sternum + Head

Classified asy
Slips

Trips

Other causes

Slips

43

7

2

Trips

1

34

10

Other causes

4

7

132

Table 2-8: Confusion matrix, Left Foot + Right Foot + Waist

Marker Position: Left Foot + Right Foot + Waist

Classified asy
Slips

Trips

Other causes

Slips

46

4

2

39

Trips

2

43

Other causes

o

141



Table 2-9: Confusion matrix, Left Foot + Right Foot + Sternum

Marker Position: Left Foot + Right Foot + Sternum

Classified asy
Slips

Trips

Other causes

Slips

46

2

1

Trips

2

46

5

Other causes

o

o

138

Table 2-10: Confusion matrix, Left Foot + Right Foot + Head

Marker Position: Left Foot + Right Foot + Head

Classified asy
Slips

Trips

Other causes

Slips

46

6

3

40

Trips

2

42

2

Other causes

o

o

139



Table 2-11: Confusion matrix, Sternum + Waist + Head

Marker Position: Sternum + Waist + Head

Classified as y
Slips

Trips

Other causes

Slips

45

17

Trips

28

3

Other causes

2

3

140

Table 2-12: Confusion matrix, Left Foot + Right Foot + Sternum + Waist

Marker Position: Left Foot + Right Foot + Sternum + Waist

Classified asy
Slips

Trips

Other causes

Slips

45

3

41

Trips

2

45

2

Other causes

o

141



Table 2-13: Confusion matrix, left Foot + Right Foot + Waist + Head

Marker Position: Left Foot + Right Foot + Waist + Head

Classified as y
Slips

Trips

Other causes

Slips

45

5

2

Trips

2

43

Other causes

o

141

Table 2-14: Confusion matrix, left Foot + Right Foot + Sternum + Head

I

Marker Position: Left Foot +, Right Foot + Sternum + Heap

Classified asy Slips Trips Other causes

Slips

Trips

Other causes

46

5

42

2

43

3

o

o

140



Other causesTripsSlips

Table 2-15: Confusion matrix, Left Foot + Right Foot + Waist + Sternum + Head

Marker Position: Left Foot + Right Foot + Sternum + Waist + Head

Classified as c=)
Slips 45 2

Trips 4 44 o

Other causes 2 2 140
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Table 2-16: Sensitivity, specificity, precision and accuracy of marker array in detecting the cause of falls

Slips (n = 48) Trips (n = 48) Others (n = 144)
Marker Combination Sens Spec Prec Accu Sens Spec Prec Accu Sens Spec Prec Accu

Head 79 85 57 84 52 93 67 85 85 85 90 85
Sternum 79 87 61 86 31 99 94 86 92 69 81 82
Waist 96 91 73 92 52 98 85 89 96 92 95 95

Left Foot + Right Foot 79 92 72 89 92 96 85 95 90 95 96 92
Waist + Sternum 100 94 80 95 54 98 90 89 98 89 93 94
Waist + Head 96 91 73 92 56 98 87 89 97 94 96 96
Sternum + Head 89 95 83 94 71 94 75 89 92 88 92 90

Left Foot + Right Foot + Waist 96 97 88 97 89 98 93 97 98 99 99 98
Left Foot + Right Foot + Sternum 96 98 94 98 96 96 87 96 96 100 100 97
Left Foot + Right Foot + Head 96 95 84 95 87 98 91 96 96 100 100 98
Waist + Sternum + Head 94 91 71 91 58 98 87 90 97 95 96 96

Left Foot + Right Foot + Waist + Sternum 94 98 92 97 94 98 92 97 98 99 99 98
Left Foot + Right Foot + Waist+ Head 94 96 86 96 89 98 93 97 98 99 99 98
Left Foot + Right Foot + Sternum + Head 96 97 88 97 89 97 89 96 97 100 100 98

Right Foot + Left Foot + Waist + Sternum + Head 94 97 88 96 92 98 92 97 97 99 99 98

Legend:-
TN. TP

Sens (Sensitivity (%)) = TP + FN x 100 Spec (Specificity (%)) = F x 100
TN+ P

TP TP +TN

Prec (Precision (%)) = TP + FP x 100
Accu (Accuracy (%)) = x 100

TP + TN + FP + FN
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3: CHAPTER 3
ACCURACY OF WEARABLE SENSORS FOR

DISTINGUISHING FALLS CAUSED BY DIFFERENT
WEIGHT SHIFTING ACTIVITIES

3.1 Introduction

Falls are the number one cause of injury in older adults. An accurate

understanding of the cause and circumstances of falls is essential to guiding

interventions at the level of the patient or population. Incident reports represent

the primary mechanism for collecting information of fall mechanisms in long term

care facilities (LTC). Such reports are completed by nursing staff who either

interview the faller or witness, or perhaps witness the fall themselves. Current

available statistics derived from incident reports and retrospective surveys

suggest that approximately 50% of falls in the older adults are due to slips and

trips (Berg et aL, 1997; Cavanillas et aL, 2000; Troy et aL, 2006). However, the

accuracy of these methods has been questioned (Cummings et aL, 1988; Wei et

aL, 2001; Feldman, 2009). Recalling the mechanics of a fall event is challenging

even for young adults (Feldman, 2009), and may be especially difficult for older

adults with cognitive impairment, which is common in LTC residents.

Furthermore, most falls, even in LTC, are un-witnessed (Hayes et aL, 1993;

Nurmi et aL, 1996; Wagner et aL, 2005). Therefore, to understand the causes of
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falls and formulate effective fall prevention strategies, researchers, clinicians and

policy makers cannot rely solely on conventional methods and new techniques

are required to reliably detect and provide information on the cause of falls in

older adults.

Wearable inertial sensors have received increasing attention by

researchers interested in developing accurate methods for monitoring mobility

and falls. Due to rapid progress in miniaturization and decreasing costs, the

range of applications for such systems has expanded to fields including

automobile and avionics, animation and photography, computers and

telecommunications and health and safety. In recent years, as the public health

importance of falls in older adults has received increased recognition, numerous

studies have examined the potential of wearable inertial sensors (accelerometer,

gyroscopes, tilt sensors etc.) to detect falls (Lindemann et aI., 2005; Bourke et

aI., 2006; Chen et aI., 2005; Quagliarella et aI., 2008; Noury et aI., 2003; Bourke,

et aI., 2008; Nyan et aI., 2006; Wu et aI., 2008; Hwang et aI., 2004; Noury et aI.,

2008). However, in addition to detecting falls (which is important for alerting

health providers or family members about the event), wearable sensor systems

offer the potential to provide information on the cause of the fall and the

physiological mechanisms contributing to the event.

In chapter 2, I showed that a wearable sensor system consisting of 3D

acceleration of three sensors (at the feet and sternum) was able to distinguish
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with 96% sensitivity the causes of falls due to slips, trips and "other causes". In

the current study,· I extend this line of inquiry to examine the utility of such

systems for distinguishing between the five individual sub-cases of "other falls":

i) fainting, ii) incorrect transfer of weight while sitting down on a chair (IT-sitting),

iii) incorrect transfer of weight while standing up from sitting (IT-rising), iv)

reaching, and v) turning. I addressed this goal by conducting "falling experiments"

with young adults and acquiring whole-body kinematic data from a 3D motion

analysis system. I then input acceleration data into a linear discriminant analysis

classification routine to examine how the location and number of acceleration

sensors influence the accuracy of the system in distinguishing the above

mentioned five types of falls. This study contributes to the development of an

automatic, wearable system to complement conventional methods to gather

information on the cause and circumstances of falls in older adults.

3.2 Material and methods

3.2.1 Participants

Sixteen young healthy subjects (12 male; 4 female) participated in the

experiment, ranging in age from 20 to 35 years (mean =25.6 yrs, SO =3.8).

Safety precautions prevented us from including older adults in our falling trials. All

subjects were undergraduate or graduate students at Simon Fraser University,

recruited through advertisements posted on university notice boards. All
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participants provided informed written consent, and the experiment protocol was

approved by the Research Ethics Committee at Simon Fraser University.

3.2.2 Experiment Protocol

During the experiment, five different types of falls were simulated (Figure

3-1), all of which resulted in impact on a 30 cm thick gymnasium mat: i) fainting

or syncope; ii) incorrect transfer while sitting on a chair (IT-sitting); iii) incorrect

transfer while rising from an initial sitting position (IT-rising), iv); reaching for an

object below knee height; and v) turning 180°. Prior to the start of the experiment,

each subject was shown specific videos from our records of real life falls in older

adults due to the aforementioned five other causes. In addition, trials with

subjects walking normally for approximately 5 meters, were also conducted. The

sequence of presentation of the various fall types was randomized across

subjects to minimize the effect of fatigue or learning on fall behaviour.

In fainting trials, subjects were instructed to stand on the gym mat and

then suddenly relax (or collapse) the legs to act out a faint as naturally as

possible. No instruction was given about the direction of the fall. In falls due to

incorrect transfer while sitting, I instructed participants to begin in a standing

position, and then lower the body in a controlled manner to simulate sitting down

on a fictitious chair, and at the expected contact position, to lose their balance

and fall backward. In falls due to incorrect transfer while rising, subjects initially
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sat on a chair and were instructed to lose their balance while attempting to stand

up. No instruction was provided on the fall direction. In falls caused by reaching,

subjects were instructed to reach and pick up an object placed on the ground in

front of them, primarily by bending at the waist and, after retrieving the object, to

lose balance upon rising and fall backward. In falls due to turning, subjects were I

instructed to turn 180 degrees from standing, lose balance and fall. Again, no

instruction was provided on the desired fall direction.

Each subject underwent three trials in each of the five conditions.

Therefore, from sixteen subjects I collected a total of 48 trials for each category.

3.2.3 Data collection

During the trials, I used an eight camera motion analysis system (Eagle

system, Motion Analysis Corp.) to acquire three-dimensional position data at 120

Hz from 22 reflective skin markers. Markers were located bilaterally on the lateral

malleolus, lateral epicondyle of the femur, greater trochanter, anterior superior

iliac spine, acromion, lateral epicondyle of the humerus, dorsal surface of the

hand and scapula, and at the sternum, C7 vertebrae, sacrum and at the front,

back and top of the head. Position data were then low pass filtered using a

recursive butterworth filter (4th order, cutoff frequency =20Hz) and double

differentiated to estimate accelerations.
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3.3 Data Analysis

Data analysis focused on determining whether the cause of falls could be

accurately predicted from 3D acceleration data from five key anatomical locations

(left foot, right foot, waist, sternum and head), selected based on their feasibility

for sensor placement on the human body. For each trial, I inspected motion data

to determine the approximate instant when the pelvis first impacted the ground.

Acceleration data, for the 1500 milliseconds preceding pelvis impact (Figure 3-2)

were input to my fall classification algorithm, showed subtle changes in

acceleration profiles across various fall types. For example - peak accelerations

observed from the waist marker in the z-axis reflected the occurrence and instant

of falls (pelvis impact). Similarly, in this particular trial, the sternum marker

showed similar traces of acceleration while simulating falls due to reaching and

turning. However, waist marker provided distinct acceleration profiles in falls due

to IT-rising as opposed to the other four fall types.

Therefore, for the classification of the above-mentioned five types of falls, I

calculated the mean and variance of the five markers' X, Y and Z acceleration

traces over the 1500 ms preceding pelvis impact. These outcomes resulted in a

30 dimensional "feature vector". Based on the assumption that the feature

vectors from the three fall types were linearly separable, I used Linear

Discriminant Analysis (LOA) using Fisher's criterion to classify the causes of falls.

In the procedure, I split the feature vector into training and testing sets of equal

size by choosing data from the first eight subjects for training and the following
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eight for testing. The procedure LOA transforms a classification problem from a

higher to lower dimensional feature space through a set of projection operations,

which results in optimal separability among different classes (Baudat and Anouar,

2000; Muller et aI., 2001). To classify two or more sets of data, this can be

achieved by maximizing the following ratio of between-class scatter divided by

within-class scatter:

where "w" is a linear transform, "5b " is the between class variance, "5w " is

the within class variance, and "argmaxw " refers to maximizing the above

equation. The generalization of the within-class scatter "5w " and the between-

class scatter "5b " for "K" classes are given by the following expression:

K

Sw = L L (x - mk)(x - mk)T ,
k=l nECk

and

K

Sb = LNk(mk - ~) (mk - ~)T.
k=l
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Here mk is the sample mean for the k th class, Nk is the number of

patterns in class Ck, INkl indicates the number of vectors in the k th class and

N = Lk Nk in the total number of data points (Bishop, 2006).

I conducted linear discriminant analysis using acceleration data from each

marker, and for each possible combination of 2, 3,4 and 5 markers. In each

case, I then constructed confusion matrices (Tables 3-1 to 3-15) and used these

to calculate sensitivity and specificity as follows:

TP
sensitivity = TP + FN x 100 and

TN
specificity = TN + FP x 100.

Where TP =true positive, FN =false negative, FP =false positive, and TN

=true negative.

For each number of markers (ranging from one to five), I ranked the

performance of a given marker location, or combination of markers, based on the

number of fall categories for which it provided the highest sensitivity. Note that

this is a departure from the performance ratings used in Chapter 2, which were

based on minimal sensitivity across conditions and was deemed more suitable

for the larger number of conditions examined here.
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3.4 Results

With a single marker, the best classification was achieved by the head

marker (Table 3-1) which provided maximum sensitivities in identifying four out of

six conditions, followed by the waist marker, which provided the best sensitivity

for classifying three of the six conditions. The head marker successfully identified i

walking trials from other fall causes with 100% sensitivity. Similarly, the head

marker was found to be the most sensitive in detecting falls due to IT-sitting (42%

sensitive), reaching (62% sensitive) and turning (67% sensitive). However, the

head marker, was least effective in identifying IT-rising (46% sensitive), which

were better classified by the sternum and waist markers. The waist marker was

most effective in classifying falls due to fainting (33% sensitive), IT-rising (83%

sensitive), and turning (67% sensitive), but showed 92% sensitivity in identifying

walking from other fall causes. The sternum marker was least effective in

identifying falls due to faints (17% sensitive), IT-sitting (17% sensitive), reaching

(33% sensitive) and turning (58% sensitive).

With two markers, the best combination was that of head + waist, which

also provided maximum sensitivities in four conditions. The marker combination

of head + waist was most effective in classifying walking (100% sensitive), IT

rising (83% sensitive), reaching (67% sensitive) and turning (75% sensitive), but

was least effective in identifying falls due to faints (33% sensitive). Among the

two markers combinations, the combination of left foot + right foot provided the

highest sensitivities in detecting faints (62% sensitive) and IT-rising (83%
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sensitive). However, it was less successful than other combinations in detecting

walking, IT-sitting and reaching (with 83%, 29% and 50% sensitivities,

respectively). Similarly, the sternum + head markers combination was most

effective in identifying walking (100% sensitive) and IT-sitting (50% sensitive),

and least effective in detecting IT-rising (75% sensitive) and turning (67%

sensitive). In the group of two-marker combinations, the waist + sternum

combination was the least accurate and provided the lowest sensitivities in

detecting all five causes of falls.

With three markers, the best combination was achieved by placing

markers on left foot, right foot and head, which provided maximum sensitivities in

four conditions: walking (100%) and falls due to fainting (67%), IT-sitting (59%)

and reaching (67%). Similarly, the three-marker combination of left foot + right

foot + waist was most effective in detecting falls due to faints (67% sensitive), IT

rising (87% sensitive) and turning (79% sensitive). On the other hand, it was least

successful in identifying falls due to IT-sitting and reaching, with sensitivities of

37% and 54%, respectively. The waist + sternum + head combination

successfully detected walking and IT-rising with 100% and 83% sensitivities,

respectively, it was least effective in classifying falls due to faints (29% sensitive),

IT-sitting (50% sensitive) and turning (62% sensitive).

With four markers, the best marker combination was that of left foot + right

foot + waist + head, which provided the highest sensitivity in classifying walking
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and all other five causes of falls. Apart from IT-sitting (where the combination

provided 54% sensitivity), all other conditions were detected with at least 71 %

sensitivity.

The five-marker combination of left foot + right foot + waist + sternum +

head was found superior to all other marker combinations. This particular

combination provided 100% sensitivity in walking trials, 71 % and 62%

sensitivities in detecting falls due to faints and IT-sitting and, 92%, 71 % and 79%

sensitivities in classifying IT-rising, reaching and turning.

3.5 Discussion

In the current study, I conducted laboratory based falling experiment to

examine the utility of a wearable sensor array for distinguishing the causes of

falls due to fainting or syncope, incorrect weight transfer while sitting down on a

chair and rising from sitting, reaching for an object and turning. Three

dimensional acceleration data from the 1.5 seconds preceding pelvis impact from

five markers (mounted at left foot, right foot, waist, sternum and head) were

entered into a linear discriminant model to identify the accuracy of single markers

as well as combinations of 2, 3, 4 and 5 markers in distinguishing falls due to the

aforementioned five causes.
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In the study described in Chapter 2, I used a slightly different criterion

based on the minimum observed sensitivity, to rank marker combinations. I found

that three dimensional acceleration data from the three marker combination left

foot + right foot + sternum when put into a linear discriminant analysis, provided

at least 96% sensitivity in distinguishing falls due to slips and trips from the five

types of "other falls", examined in greater detail in the current study. In this study,

I had six conditions (one walking and five falls due to "other causes") which were

required to be classified. Therefore, in evaluating performance, I considered a

specific marker combination to be the best if it scored the highest sensitivities in

the greater number of conditions classifying the most conditions.

Based on this criterion, I found that the best location for a marker was at

the head, which provided the best sensitivity in four conditions walking (100%

sensitive), IT-sitting (42% sensitive), reaching (62% sensitive) and turning (62%

sensitive). Similarly, the best two-marker combination (of waist + head), and the

best three marker combination (of left foot + right foot + head) was most sensitive

in identifying four conditions. Among all four-marker combinations, the one

including left foot + right foot + waist + head markers showed the best

sensitivities in all six conditions, and was as sensitive as the five-marker

combination for all conditions except IT-sitting (where the five-marker

combination showed a slightly higher sensitivity of 62% as opposed to 54%).
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However, even with the best five-marker combination, the LOA technique

provided a minimal sensitivity of only 62% in distinguishing other causes of falls.

This reflects that acceleration data from the five fall types were not entirely

linearly separable. Of particular note is the modest sensitivity of the algorithm (at

best 62%) for classifying falls due to IT-sitting and reaching for an object below

knee height, which exhibit similar whole-body kinematics. Modest sensitivity was

also observed for falls due to fainting which were often confused with falls due to

reaching. In contrast to falls due to fainting, IT-sitting and reaching, the LOA

technique was considerably more accurate in classifying walking trials and falls

due to IT-rising and turning. As in the case for slips and trips examined in

Chapter 2, this is primarily due to unique kinematic features of these falls

(Figures 3-1 and 3-2).

While my data analysis focused primarily on sensitivity, Table 3-2 also

presents specificities which were, for many fall causes, close to 100% for all

marker combinations. This reflects that false positives were generally less

frequent than false negatives. A specificity of 100% means that the test

recognizes all actual negatives - for example in detecting "walking", system does

not identify any of the five other fall causes (fainting, IT-sitting, IT-rising, reaching

and turning) as walking.

As in the study described in Chapter 2, there are important limitations to

this study. First, all falls were performed under controlled laboratory conditions by
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healthy individuals between the age 20 and 35 years. There are inevitable

discrepancies between the falls of these young individuals and older adults.

However, a strength of my study was the utilization of video segments of real life

falls of older adults in training sessions. Secondly, this study did not focus on fall

detection, but rather determining causes of falls based on acceleration data 1.5

seconds prior to pelvis impact. However, previous research shows that the same

markers, as included in my study (waist and sternum), can be used to detect an

occurrence of a fall (Wu 2000; Lindemann et aI., 2005; Bourke et aI., 2006; Chen

et aI., 2005 and Noury et aI., 2003) with high accuracy. Third, my analyses was

restricted to the use of linear discriminant analysis (with Fisher's criterion) to

classify falls from acceleration data. Additional studies are required to examine

the potential improvements provided by other linear and non-linear classification

techniques, such as Support Vector Machine (SVM) models or Gaussian and

Hidden Markov Models (HMM) to distinguish the cause of falls examined here.

In summary, I found that data from an array of up to five wearable 3D

acceleration sensors, input to an LDA classification scheme, provided reasonable

sensitivity (of at least 79%) in classifying falls due to loss of balance during rising

and turning, but less successful in classifying falls during sitting, fainting or

reaching. Future work should examine the utility of alternative classification

methods, and different sensor technologies, such as gyroscopes (which provide

measure of angular velocity of limb segments), for classifying the falls of interest

in this study. It remains possible, however, that specific types of falls, such as
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faints, cannot be easily classifies based only on kinematics, and physiological

data regarding blood pressure or muscle activity (from electromyographic surface

electrodes) are essential components to kinematic information in detecting such

causes.
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Figure 3-1: Simulation of falls due to fainting, incorrect transfer while sitting (IT-sitting), incorrect transfer while rising (IT-rising),
reaching and turning.
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Figure 3-2: Sample 3-dimensional acceleration traces from a typical participant in falls due to fainting, IT-sitting, IT-rising, reaching and
turning. On the time scale, 1.5 seconds represents and approximate instant of pelvis impact.
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3.7 Tables

Table 3-1: Confusion matrix, Head marker

Marker Position: Head

Classified as -7 NW Faint IT-sitting IT-rising Reaching Turning

NW 24 0 0 0 0 0

Faint 0 6 7 3 2 6

IT-sitting 1 2 10 0 2 9

IT- rising 1 8 11 2

Reaching 0 0 2 2 15 5

Turning 0 0 2 3 3 16

Legend:

NW = Normal Walk

Faint

IT-sitting = Incorrect Transfer of body weight while Sitting

IT-rising =Incorrect Transfer of body weight while Standing

Reaching

Turning
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Table 3-2: Confusion matrix, Sternum marker

Marker Position: Sternum

Classified as -7 NW Faint IT-sitting IT-rising Reaching Turning

NW 23 1 0 0 0 0

Faint 0 4 7 7 4 2

IT-sitting 2 7 4 2 0 9

IT- rising 1 3 1 12 3 3

Reaching 0 1 5 2 8 8

Turning 1 3 0 1 5 14

Table 3-3: Confusion matrix, Waist marker

Marker Position: Waist

Classified as -7 IN Faint IT-sitting IT- rising Reaching Turning
W

NW 22 2 0 0 0 0

Faint 0 8 1 4 2 9

IT-sitting 0 7 8 1 5 3

IT- rising 0 1 2 20 0 1

Reaching 1 0 4 3 12 4

Turning 0 7 0 0 1 16
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Table 3-4: Confusion matrix, Left foot + Right foot

Marker Position: Left Foot + Right Foot

Classified as -7 NW Faint IT-sitting IT- rising Reaching Turning

NW 20 0 3 0 0 1

Faint 0 15 2 0 5 2

IT-sitting 2 2 7 1 9 3

IT- rising 0 2 1 20 0 1

Reaching 0 4 4 0 12 4

Turning 1 1 2 0 3 17

Table 3-5: Confusion matrix, Waist + Sternum

Marker Position: Waist + Sternum

Classified as -7 INW Faint IT-sitting IT- rising Reaching Turning

NW 23 1 0 0 0 0

Faint 2 8 1 3 3 7

IT-sitting 0 9 7 0 1 7

IT- rising 0 1 2 18 2 1

Reaching 0 0 5 3. 12 4

Turning 0 4 2 0 2 16
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Table 3-6: Confusion matrix, Head + Waist

Marker Position: Head + Waist

Classified as -7 NW Faint IT-sitting IT- rising Reaching Turning

NW 24 0 0 0 0 0

Faint 0 8 3 3 3 7

IT-sitting 0 4 9 2 1 8

IT- rising 0 1 2 20 0 1

Reaching 0 0 2 2 16 4

Turning 0 3 1 0 2 18

Table 3-7: Confusion matrix, Sternum + Head

Marker Position: Sternum + Head

Classified as -7 NW Faint IT-sitting IT- rising Reaching Turning

NW 24 0 0 0 0 0

Faint 0 9 2 4 3 6

IT-sitting 0 4 12 0 1 7

IT- rising 1 2 2 18 1 0

Reaching 0 1 3 2 13 5

Turning 1 1 2 1 3 16
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Table 3-8: Confusion matrix, Left foot + Right foot + Waist

Marker Position: Left Foot + Right Foot + Waist

Classified as ~ NW Faint IT-sitting IT- rising Reaching Turning

NW 23 0 0 0 0 1

Faint 0 16 1 0 5 2

IT-sitting 0 3 9 2 7 3

IT- rising 0 0 2 21 0 1

Reaching 0 4 3 0 13 4

Turning 0 2 3 0 0 19

Table 3-9: Confusion matrix, Left foot + Right foot + Sternum

Marker Position: Left Foot + Right Foot + Sternum

Classified as ~
N

Faint IT-sitting IT- rising Reaching Turning
W

NW 23 1 0 0 0 0

Faint 1 16 2 0 5 0

IT-sitting 1 3 11 1 4 4

IT- rising 0 2 1 20 0 1

Reaching 0 3 4 0 11 6

Turning 0 1 2 0 3 18
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Table 3-10: Confusion matrix, Left foot + Right foot + Head

Marker Position: Left Foot + Right Foot + Head

Classified as ~ NW Faint IT-sitting IT- rising Reaching Turning

NW 24 0 0 0 0 0

Faint 0 16 2 0 4 2

IT-sitting 2 2 13 1 4 2

IT- rising 0 2 1 20 0 1

Reaching 0 2 2 1 16 3

Turning 0 0 2 1 3 18

Table 3-11: Confusion matrix, Waist + Sternum + Head

Marker Position: Sternum + Waist + Head

Classified as ~ NW Faint IT-sitting IT- rising Reaching Turning

NW 24 0 0 0 0 0

Faint 0 6 2 4 3 9

IT-sitting 0 6 12 1 0 5

IT- rising 0 1 3 20 0 0

Reaching 0 0 5 1 14 4

Turning 0 3 3 0 3 15
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Table 3-12: Confusion matrix, Left foot + Right foot + waist + Sternum

Marker Position: Left foot + Right foot + Waist + Sternum

Classified as -7 NW Faint IT-sitting IT- rising Reaching Turning

NW 22 2 0 0 0 0

Faint 0 16 1 0 4 3

IT-sitting 0 4 10 2 6 2

IT- rising 0 0 2 22 0 0

Reaching 0 2 3 0 15 4

Turning 0 2 2 0 2 18

Table 3-13: Confusion matrix, Left foot + Right foot + Waist + Head

Marker Position: Left foot + Right foot + Waist + Head

Classified as -7 INW Faint IT-sitting IT- rising Reaching Turning

NW 24 0 0 0 0 0

Faint 0 17 1 0 4 2

IT-sitting 0 2 13 1 3 5

IT- rising 0 0 1 22 0 1

Reaching 0 2 3 1 17 1

Turning 0 2 2 0 1 19
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Table 3-14: Confusion matrix, Left foot + Right foot + Sternum + Head

Marker Position: Left foot + right foot + Sternum + Head

Classified as ~ NW Faint IT-sitting IT- rising Reaching Turning

NW 22 2 0 0 0 0

Faint 0 16 1 0 4 3

IT-sitting 0 4 10 2 2 6

IT-rising 0 0 2 22 0 0

Reaching 0 2 4 0 14 4

Turning 0 2 2 0 2 18

Table 3-15: Confusion matrix, Left foot + Right foot + Waist + Sternum + Head

Marker Position: Left foot + Right foot + Waist + Sternum + Head

Classified as ~
I

NW Faint IT-sitting IT- rising Reaching Turning

NW 24 0 0 0 0 0

Faint 0 17 1 0 4 2

IT-sitting 0 1 15 1 4 3

IT-rising 0 0 1 21 0 1

Reaching 0 1 5 0 17 1

Turning 0 3 2 0 0 19
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Table 3-16: Sensitivity and specificity of marker array in detecting the cause of falls.

Walking (24) Faint (24) IT-sitting (24) IT- rising (24) Reaching(24) Turning (24)
Marker Combination Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

Head 100 98 25 92 42 90 46 93 62 92 67 82
Sternum 96 96 17 87 17 89 50 90 33 90 58 82
Waist 92 99 33 86 33 94 83 93 50 93 67 86

Left Foot + Right Foot 83 97 62 92 29 90 83 99 50 86 71 91
Waist + Sternum 96 98 33 87 29 92 75 95 50 93 67 84
Waist + Head 100 100 33 93 37 93 83 94 67 95 75 83
Sternum + Head 100 98 37 93 50 92 75 94 54 93 67 85

Left Foot + Right Foot + Waist 96 100 67 92 37 92 87 98 54 90 79 91
Left Foot + Right Foot + Sternum 96 98 67 92 46 92 83 99 56 90 75 91
Left Foot + Right Foot + Head 100 98 67 95 54 94 83 97 67 91 75 93
Waist + Sternum + Head 100 100 25 92 50 89 83 95 58 95 62 85

Left Foot + Right Foot + Waist + Sternum 92 100 67 92 42 93 92 98 62 90 75 92
Left Foot + Right Foot + Waist+ I-!ead 100 100 71 95 54 94 92 98 71 93 79 92
Left Foot + Right Foot + Sternum + Head 92 100 67 92 42 92 92 98 58 93 75 89

Right Foot + Left Foot + Waist + Sternum + Head 100 100 71 96 62 92 92 99 71 93 79 94

Legend:
True Positive True Negative

Sens (Sensitivity (%)) = x 100 Spec (Specificity (%)) = x 100
True Positive + False Negative True Negative + False Positive
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4: CHAPTER 4
THESIS SUMMARY AND CONCLUSION

The primary goal of my master thesis was to develop and evaluate a

system for automatic detection of the cause of a fall using wearable sensors. I

further analysed how the location and the number of sensors affected the

system's performance in distinguishing between various causes of falls.

In my first study (Chapter 2), I conducted laboratory experiments with

young adults who simulated various types of falls, observed through video

capture in the daily life of older adults. These included falls due to slips, trips and

other causes (fainting or syncope, incorrect transfer or shifting of body weight

during the trials, kinematic data were recorded with a video based motion capture

system. Means and variances of the acceleration data from each of five locations

(head, sternum, right ASIS, left ASIS and lateral malleoli) for the 1500

milliseconds preceding pelvis impact were calculated. Based on the assumption

that the acceleration data from different types of falls are linearly separable, I

used Linear Discriminant Analysis (LOA) to classify the causes of falls into three

groups of slips, trips and other. My results confirmed the linear separability of the

acceleration data from these three fall types. In particular, I observed at least
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96% sensitivity in correctly classifying these causes of falls using only three

sensors, optimally located at the left foot, right foot, and sternum. I also observed

that classification sensitivity was no better with four and five markers than with

three. Hence, I conclude that my linear discriminant analysis technique can

accurately identify the aforementioned three causes of falls with as few as three

markers, located at the ankles and sternum.

In my second study (Chapter 3), I examined whether similar acceleration

data and LOA technique could correctly classify falls (acquired in the same

experiment as described above) due to fainting or syncope, incorrect transfer

while sitting down and standing up from a chair, reaching and turnings. My

results indicated that, unlike slips, trips and all "other causes" combined, the

acceleration data from each of these "other causes" were less linearly separable

from each other. For example linear discriminant analysis using the most

effective marker combination left foot + right foot + waist + sternum + head was

only 62% sensitive in distinguishing falls due to incorrect transfer while sitting.

4.1 Future directions

This project contributes to improving our understanding of the cause and

circumstances of falls in the high risk older population through the development

of innovative wearable technologies. In particular, I showed that Linear

Discriminant Analysis (LOA) is an effective technique for identifying falls due to
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slips, trips and other causes (Chapter 2). However, as described in Chapter 3,

the LDA technique was considerably less accurate in distinguishing falls due to

fainUcoliapse, incorrect transfer while sitting down and rising from a chair, and

loss of balance when reaching and turning. To achieve high separability between

these fall causes, alternative data classification schemes should be tested, such i

as support vector machine (SVM) approaches or Gaussian and Hidden Markov

Models (HMM), should be tested. Furthermore, alternative sensing technologies,

such as angular rate gyros or position - measuring magnetometers, should be

considered as components to linear acceleration sensors.

By providing objective information on the cause of falls, and alleviating the

need for health providers to rely on (often inaccurate) self - recall or witness

reports of fall circumstances, my wearable sensor system has considerable value

to clinicians and researchers in the area of fall prevention. In the future, this

technology should be expanded to provide more comprehensive information on

fall mechanics and be integrated with comprehensive physiological measures

(e.g. electromyograms), blood pressure and electrocardiogram) for more detailed

analysis of fall causation.
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