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Abstract 

This thesis describes a mixed-initiative constraint satisfaction system for plan- 

ning academic schedules of university students. The proposed model is distin- 

guished from traditional planning systems by applying mixed-initiative con- 

straint reasoning algorithms, which provide flexibility in satisfying individual 

student preferences and needs. The graphical interface emphasizes visualiza- 

tion and direct manipulation capabilities to provide an efficient interactive 

environment for easy communication between the system and the user. The 

planning process is split into two phases. The first phase builds an initial 

plan using a systematic search method. The second phase involves a semi- 

systematic local search, which supports mixed-initiative user interaction and 

control of the search process. Part of the challenge in curriculum scheduling is 

handling multiple possible schedules that are equivalent under symmetry. We 

show to overcome these symmetries in the search process. Experiments with 

actual course planning data show that the mixed-initiative system generates 

effective curriculum plans efficiently. 
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Chapter 1 

Introduction 

The field of constraint satisfaction has been developing rapidly during the 

past 40 years. It has become an important field in computer science. Mem- 

bers of the constraint programming community are usually more familiar with 

applications such as scheduling than with action planning. Two well-known 

textbooks [I, 21 on the subject define scheduling as the problem of assigning 

limited resources to tasks over time to  optimize one or more objectives. Rea- 

soning about time and resources is the core activity of scheduling problems. 

Sport scheduling and timetabling are two very popular scheduling applications 

that have received many researchers' attention. 

Planning is a synthesis task. It involves formulating a course of action to 

achieve some desired objective or objectives. In practice, the form is often 

restricted to simple sequences or partial ordering of actions [3]. The objective 

in a planning problem can encompass many things, including achieving a set 

of goals or optimizing some objective function. It belongs to a similar domain 

and can be interpreted as an extension of the scheduling problem [4]. 

The Curriculum Planning Problem (CPP) is defined as constructing a set 

of courses for each semester - over a sequence of semesters - in order to  satisfy 

the academic requirements for an undergraduate university degree. Choosing 

different numbers of courses to take over the semesters and taking on-leave or 

internship are actions. The goal is to  ensure that the actions included in the 

plan satisfy the requirements for an academic degree and comply with as many 

of the students' preferences as possible. Like many other planning problems, it 



requires the ability to handle complex logical, temporal, and resource-oriented 

constraints. A mixed-initiative constraint satisfaction system is proposed in 

this thesis to solve the problem and exploit the advantages of generating plans 

on-line, making decisions in a reactive fashion over traditional off-line planning. 

There are many academic constraints including course availability, prereq- 

uisites, breadth requirements, eligibility rules, and so forth. In addition, there 

are constraints and preferences imposed by students regarding which acad- 

emic major to pursue and which courses or electives to choose in a particular 

semester. Thus, curriculum planning is a mixed-initiative (MI) constraint sat- 

isfaction problem (CSP) with preferences. Traditional constructive algorithms 

for solving CSPs do not support MI reasoning well. Hence, in this thesis, a 

two-phase approach is explored. An initial plan is constructed using construc- 

tive backtrack search, which satisfies all the academic constraints. Then a 

second semi-systematic local search algorithm is applied to the initial solution. 

This algorithm supports MI interaction by allowing a user to modify the cur- 

rent course plan directly through the GUI while maintaining consistency of the 

academic constraints. 

1.1 Motivation 

For university students, especially freshmen, planning a curriculum is like try- 

ing to walk in the dark. It is not unusual for students to overlook taking a 

course that they need as a prerequisite. Also, students often forget about an 

elective course they needed to satisfy a breadth requirement. Consulting regu- 

larly with academic advisors should avoid this confusion. However, waiting to 

meet with advisors can be time-consuming and advisors are often not available 

when decisions need to be made. 

Another common problem for undergraduate students is course space avail- 

ability. Since universities do not keep statistical data on the number of students 

wishing take each course, it is not unusual that the courses offered by schools 

fail to meet students' demands. As a result, students are often unable to take 



a course they need either because the course is not offered or because it has 

reached the enrollment limit. Currently, students at most universities still use 

paper and pens to develop their course plans. In this thesis, a mixed-initiative 

constraint-based planning model is proposed to replaces the error-prone man- 

ual procedure with an automated interactive planning procedure. 

1.2 Constraint satisfaction problems 

Constraints can be found in many places in daily life. Regulations, restrictions, 

requirements, capacity, and preferences are all constraints. For example, airline 

companies have to  schedule crews for flights and meet aviation regulations and 

company requirements. In schools, timetables must be generated in such a way 

that no instructor should teach two different classes at the same time in two 

different places. In most universities, an undergraduate student must obtain a 

certain number of credits to be awarded a bachelor's degree. 

A classical example of CSP is the n-queens problem. It is a well-known 

puzzle among computer scientists. The problem is to place n queens to n 

different squares on a chessboard, which has n rows and n columns, satisfying 

the constraint that no two queens can threaten each other. A queen can 

threaten any other queen on the same row, column, or diagonal. Figure 1.1 

shows one of many solutions to the 8-queens problem. 

We use the &queens problem as an example to  explain the CSP. A CSP is 

composed of a finite set of variables, each of which is associated with a domain 

and a set of constraints that restrict value assignments of variables [5]. In the 

8-queens problem, each queen must be on a separate row and column. We can 

model a column to a variable whose domain is from 1 to  8 - the range of the 

number of rows. Therefore, there are 8 variables in the problem. The value of 

a variable corresponds to  the row position of the queen in the column. There 

are 7 constraints from a variable to  every other 7 variables, which contain the 

allowed positions of the involved pair of queens to  ensure they do not threaten 

each other (the queens have to be on different rows and diagonals). 



Figure 1.1: A solution for the 8-queens problem. 

There are two basic approaches to solve the constraint satisfaction problem: 

1. Systematic search: Pick a row position for one queen (a variable) at a time 

and make sure that no constraint is violated until all eight queens are 

placed. If at any point, there is no safe place for a queen, move the previ- 

ous queen whose position has just been chosen to an alternative position 

that has not been tried. In this way, all positions in the chessboard will 

be tried if necessary. Thus, a systematic search strategy searches the 

entire space and is guaranteed to find a solution if one exists. 

2. Local search: Randomly choose a position for each queen and then check 

to see if any queen threatens another. If so, try to move it to a new 

position. Keep trying to repair the broken constraints in the hope that 

a solution can be found. The local search method does not explore the 



entire search space. Thus, this strategy does not guarantee a solution. 

1.3 Overview of the curriculum plan system 

The curriculum planning system can be modeled into a CSP as well. Figure 

1.2 illustrates a plan produced by the system, with semesters as columns and 

courses as rows. Each cell of the plan can be seen as a va.riable, whose doma.in 

is the set of available courses. The number of columns in the table is the 

number of semesters required t,o fulfill an  academic degrcc based on the course 

load specified by a user. The inasirnuin nunlber of rows is the ma~i inum 

number of courses tha.t a student may ta.ke in each semester. When an initial 

plan (see Figure 1.2) is constructed a.nd disphyed to a user, the user can 

directly modify the plan by cha.nging thc content, of cells in the table. For 

example, if the user plans to be on-leave for a term (a user preference), he or 

she simply clmnges the course load of the term to be zero and then clicks the 

"Make a New Plan" button. The system will produce a new plan with zero 

courses assigned in that term and then wait for the user to perform further 

verification and modifications. Plan const,ruction, revision, and inlprovement 

proceed iteratively within a "dec ide  and com,m.itl' cycle until the user is satisfied 

with the result. 

Z . (. 
~~~5 jJ jd5x j J f i~  a -iyLy5'. Conlputing Science1 Course Scheduling Interface 
Courses flannmg SaJ-ccn 

Figure 1.2: Curriculum planning system user ii~terfacc 



In addition to taking requests from users through the interface, the system 

also inputs data from the database, where system constraints, information 

about users, academic curriculum, and other related information are stored. 

Solutions generated by the system must satisfy all system constraints that are 

transformed from academic regulations. System constraints handled in the 

system are listed as follows. 

- All-different constraint: students should not take the same course twice. 

- Prerequisite constraint: some courses must have other courses or a number 

of credits as prerequisites. For example, in Figure 1.2, 'cmpt300' cannot 

be planned for a semester unless 'cmpt201' and 'macm201' have been 

planned in previous semesters. In addition, some prerequisite constraints 

are defined based on a number of credits. For example, a student cannot 

take 'cmns261' unless he or she has accumulated 25 credit hours during 

previous terms. 

- Mandatory-requirement constraint: some courses must be taken in order to 

obtain an academic degree, e.g. to obtain a bachelor's degree in computer 

science, 'cmpt300' and 'cmpt354' must be taken. Hence, a feasible plan 

must contain these two courses. 

- Equivalent-course constraint: a course is equivalent to another course and, 

thus, students cannot take both courses for credits. For example, 'ensc250' 

is identical to 'cmpt250'. Therefore, only one of these can be included in 

a feasible plan. 

- Breadth constraint: courses offered in a department may be divided into 

different academic levels and different areas. A number of courses in 

certain levels have to be taken from a number of different academic areas 

to satisfy the breadth requirements. For example, undergraduate courses 

in computer science are numbered from the 100-level up to the 400- 

level. Courses numbered at  the 300-level or higher are divided into six 

areas such as Artificial Intelligence (AI), networks, databases and so on. 



Students have to take five 300-level computer courses from five areas 

out of the six. Hence, at least five 300-level computer courses from five 

different areas have to be included in a feasible plan. 

- Depth constraint: A number of courses in a higher academic level from the 

same subject chosen to satisfy breadth requirements have to be taken, 

so that students can gain a deeper knowledge in these areas. For ex- 

ample, students in computer science have to take four computer courses 

numbered at  the 400-level. Each of those courses is from four out of the 

five areas, in which above five 300-level courses are chosen. Then, at 

least four 400-level courses from four different areas, in each of which a 

300-level course has been planned, must be included in a feasible plan. 

- Maximum-load constraint: a student's course load can not exceed the maxi- 

mum course load stated in the student handbook. For example, a student 

cannot take more than 3 computer courses per semester. 

The system uses a two-phase approach to solve the problem. In the first 

phase, the problem is modeled as a CSP problem. A modified dynamic back- 

tracking (DBT) search method 1151 is used to construct an initial plan. In 

the second phase, a user specifies the requests after reviewing the initial plan. 

These requests will be added into the system and considered when a new so- 

lution is generated for the user. Sometimes, these newly added user requests 

might make the problem over constrained. For example, because of not being 

familiar with course regulations, a user requests to take two courses that are 

equivalent. In this case, no solution can be found to satisfy all system con- 

straints and the user requests simultaneously. When the system suspects that 

no solution exists, it stops searching, returns the current best solution it has 

found thus far, and takes the initiative to ask the user for further assistance. 

The user deletes unsatisfied user constraints and asks the system to verify the 

plan again. Therefore, the problem at this stage is extended to an optimization 

problem. The system satisfies all system constraints and optimizes the user's 



requests. A systematic local search method, which combines min-conflicts 1 e  

cal search with conflict-directed backjumping [21], is used a t  the second stage 

in the solving process. 

Symmetry occurs in many scheduling, assignment, and routing problems 

[23]. It occurs in the curriculum-planning problem as well. Courses in a 

semester (or column) are indistinguishable and can be freely permuted in the 

semester. Many different solutions found by the search procedure are consid- 

ered to  be equivalent or the same from the logical point of view. Usually we 

are not interested in getting all these symmetric solutions. If the search al- 

gorithm does not exclude symmetries, whenever a solution is found or proven 

to  be inconsistent with the search problem, the algorithm still considers all 

symmetric solutions, which should not be considered any more. 

As an example of the above, there are two solutions S1, S2. Assume that 

they have the same course assignments for most terms except one term T. S1 

contains course A, B, C for term T, and S2 has course assignments of course 

B, C, A for term T.  Indeed, S1 and Sz are equivalent or the same from the 

logical point of view. If S1 has been considered inconsistent, then S2 should 

not be considered. Consequently, the symmetry problem in the application 

domain enlarges the search space dramatically. Hence, exclusion of symmetry 

promises to improve search performance efficiently. 

In order to  break this symmetry and prune the search tree more efficiently 

in the curriculum-planning problem, partial-order constraints are added into 

the model, which prevents to  search equivalent schedules. 

1.4 Thesis outline 

The rest of the thesis is organized as follows. In Chapter 2, the works in 

related areas are discussed. Chapter 3, I formally define the system and system 

constraints and also describe how to  store (or retrieve) system constraints 

into (or from) the database; Chapter 4 discusses Mixed-initiative constraint 

reasoning algorithms used in the system and other techniques applied to  tune 



up the performance of the system. In Chapter 5 ,  I present the experimental 

results of using different techniques on real course planning data. I conclude 

this thesis and discuss ideas for future research in Chapter 6. 



Chapter 2 

Related work 

2.1 Curriculum problems 

The curriculum-planning problem tackled in the thesis is not a timetabling 

problem. The timetabling problem is to fix a sequence of meetings between 

teachers and students in a prefixed period of time with a set of various con- 

straints satisfied [6]. Timetabling is a very popular scheduling application. It 

schedules courses, instructors and other resources at many different time slots. 

Typically, it is a weekly schedule, which tells students where and when to  take 

which courses during a semester. Many variants of the timetabling problem 

are in the literature based on the type of constraints and resources involved. 

The timetabling problem can be modeled either as a search problem or as an 

optimization problem. It has been an active research area and many works 

have been devoted to it. 

The curriculum-planning problem that I discuss here is somewhat related 

to a timetabling problem, since it deals with courses and resources at  school as 

well. The presented system produces curriculum plans for university students 

to fulfill their academic career. It focuses on choosing actions such as taking 

courses or being on-leave etc., and decides what actions students should take 

during academic years when they stay at universities. Thus, the system helps 

students to achieve the goal of obtaining an academic degree. Few studies 



have studied curriculum planning. Most university students still perform their 

course planning manually with the assistance of academic consultants. 

Castro et al. [7] proposed a CSP model on solving curriculum problems. 

They tackled a slightly different curriculum problem l .  The problem is to  find 

a balanced 4-year academic plan based on a given set of courses. Their goal is 

to  provide a plan with a balanced course load among semesters if possible with 

satisfying the prerequisite constraints and the maximum and minimum course 

load constraints. Their work focused on showing how constraint solving tech- 

niques can efficiently solve the curriculum problem that is too hard to  solve by 

using Integer Programming (IP) techniques. They modeled the assignment of 

semesters to courses by a two-dimensional matrix with the courses as columns 

and semesters as rows. The academic load constraint of a semester is stated by 

a weighted column sum. They handle the prerequisite constraints by implying 

a strict lexicographical ordering between rows. 

Hnich et. al. [8] proposed an interesting CP model for the curriculum plan- 

ning as well in 2002. They model the problem using a one-dimensional matrix 

indexed by courses and ranging over semesters to  achieve the assignment of 

semesters to  courses. The advantage of their model is that the one-dimensional 

matrix model can easily enforce the prerequisite constraints by enforcing the 

ordering on courses that have a prerequisite. The disadvantage is that the one- 

dimensional model requires some constraints, such as course load constraints, 

to  use variables (courses) to  index other variables. Such constraints are typi- 

cally delayed and cannot propagate efficiently resulting in an inefficient model. 

Both Castro et al. and Hnich et. al. tackled the curriculum problem as 

a combinatorial optimization problem. They focused more on investigating 

how to  use C P  to  achieve a balanced course load, rather than to  perform the 

planning. The limitation of the two CSP models is that only two types of 

system constraints - prerequisite and maximum load constraints - are handled. 

Compared with their work, the model proposed in this thesis tries to solve the 

curriculum problem in a more complete way. The course set has to be chosen 

'The detailed problem description can be found a t  www.csplib.org. It is prob030. 

11 



by the system from the available dataset. In addition to the prerequisite and 

the maximum load constraints, the system handles many other constraints 

that usually occur in curriculum planning as well. Furthermore, it integrates 

MI reasoning into the system to take end users' needs and preferences into 

consideration. In all, the curriculum-planning problem has been studied more 

completely in this thesis. 

A mixed-initiative (MI) system is one, in which both the system and the user 

have an active role to play in a dialogue or problem-solving process [9]. The 

earliest investigations into the design of mixed-initiative dialogue systems were 

presented in the paper of Whittaker and Walker [9] in 1990. More recently, MI 

interaction has been considered in the design of A1 Planning systems. Burstein 

and McDermott (1996) [13] discussed the decisions that must be addressed 

when allowing users and systems to play a more active role in the problem solv- 

ing process. They described that the objective of introducing Mixed-initiative 

into an A1 system is to explore the productive syntheses of the complementary 

strengths of both humans and machines to build effective plans more quickly 

and with greater flexibility [13]. 

At the early stage of MI research, researchers usually designed MI systems 

with a concrete model of initiative [9, 10, 111 . They believed that initiative 

should be equated with the control over the flow of conversation so that the 

metaphor of conversation is important in designing MI systems. Recently, 

Miller and n a u m  [12] questioned whether it is necessary to model initiative 

in order to design an MI system. They ultimately argue that a MI system can 

be designed effectively without a concrete model of initiative when application 

domains are in a task-oriented collaborative planning environment, like advis- 

ing. Their argument for not modeling initiative explicitly when the application 

domain is task-oriented, is that, in these application domains, agents already 

reason in terms of solutions and goals. Thus, there is no need to introduce 



the concept of "initiative" into their reasoning process. The model proposed 

in the thesis supports their view. Experiments indicate that when the appli- 

cation domain is in a task-oriented collaborative planning environment such 

as advising course planning, it is not important for participants to realize who 

has the initiative. Thus, it is not necessary to model initiative explicitly, but 

view initiative narrowly as controlling how a problem is being solved. 

2.3 Constraint programming 

Constraint programming techniques are widely used to model and solve plan- 

ning and scheduling problems. Various efficient algorithms have been proposed 

during the past few decades. They usually fall into three main categories: sys- 

tematic algorithms, local search algorithms, and hybrid search algorithms. 

Systematic searching algorithms are built upon various backtracking mech- 

anisms [14]. The foundation of various backtracking algorithms is the Chrono- 

logical Backtracking algorithm. It starts with a zero variable assignment, in- 

stantiates variables incrementally and explores a search tree, which is based 

on the possible values for each of the variables of the solved problem, until ob- 

taining a complete assignment that satisfies all the constraints in the problem. 

When the current variable is assigned a value from its current live domain, 

consistency checking is performed against every constraint that the current 

variable relates to. If the consistency checking fails, another value from the 

live domain is picked and the consistency check is performed again. If no value 

in the live domain can pass the consistency check, which means no value in the 

live domain of current variable is consistent with all assigned variables, then 

backtrack is needed. The variable, which was assigned right before the current 

variable, is unassigned and becomes the current variable. It will be assigned a 

new value, which is selected upon a successful consistency check. 

The Chronological Backtracking algorithm demonstrates the main concept 

of all systematic search methods. The biggest problem of such backtracking- 

based search algorithms is that they are typically plagued by early mistakes 



in the search, ie., a wrong variable assignment can cause a whole sub-tree 

to be explored with no success. Two ways of reducing the importance of the 

early-mistake problem - Backjumping (BJ) and Forward Checking (FC)- are 

well identified [15, 16, 171. 

Backjumping (BJ) [14], aims to reduce the number of backtracks and the 

number of consistency checks. It tries to directly backtrack to a culprit vari- 

able. And then, the search continues from that point. Any work from the 

current point up to the point where it jumps back to is erased. In order to 

backtrack to  a more effective point, BJ needs to use information about the 

reason for the failure to identify reasonable backtrack points. Hence, the BJ 

algorithm adds a data set R to maintain the explanations for the eliminated 

values. R represents the collection of eliminating explanations for all past 

variables. Every instantiated variable vi has a R, to remember the eliminated 

explanations for vi. An explanation records a past variable vj, where vj is less 

than vi according to the variable ordering, and a list of values that have been 

eliminated from the live domain of vi because of the current assignment of vj. 

FC is a technique that takes future variables into consideration to reduce 

the number of backtracks when it selects a value for a current variable [16]. 

When the FC scheme makes a trial instantiation of the current variable, it 

looks ahead toward the future variables and removes from the current live 

domain of those future variables all values that are incompatible with the 

trial instantiation. Thus, when the search moves forward to the next variable, 

it can be sure that all values in the live domain of the current variable are 

consistent with the past variables. The domain pruning information of every 

future variable for the current variable has to be stored so that the pruning can 

be undone when the trial instantiation does not work and a new value needs 

to be tried. 

If FC causes any domain-wipe-out of any future variable, then a new trial 

instantiation is tried for the current variable. If a domain-wipe-out of the 

current variable occurs, then a backtracking occurs. By now, we can see the 

'A future variables is a variable that hasn't yet been assigned a value. 
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goal of FC is to attempt to visit as few nodes as possible during the search 

by performing more work at each node when making the assignment decision 

for the node. Clearly, there are tradeoffs of either more work a t  each node 

but visiting fewer nodes or less work at each nodes but visiting more nodes. 

Hence, it is proper to apply the FC scheme when it is sure that a net saving 

in consistency checks performed can be gained by visiting fewer nodes. 

However, a systematic search still requires that a whole sub-tree be searched 

to find proof of inconsistency, which is far less efficient for applications having a 

huge domain. Local search algorithms may be preferable for such cases. Local 

search algorithms are iterative algorithms that move from one solution S to 

another S' according to some neighborhood structure. Several local search 

algorithms have been proposed over decades, e.g. Simulated Annealing, min- 

conflict [19], and tabu search [29]). They perform an incomplete exploration 

of the search space by repairing infeasible complete assignments. Local search 

algorithms mainly work on a total instantiation of the variables. They usually 

consist of the following general steps: 

1 Initialization: choose an initial solution S to be the current solution and 

evaluate S based on a predefined objective function F (S ) ;  

2 Neighbour generation: select a neighbour S'of the current solution S and 

compute F(S1) 

3 Acceptance test: test whether to accept the move from S to S'. If the 

move is accepted, then S' replaces S as the current solution; otherwise 

S is retained as the current solution. Go back to step 2 - the neighbour 

generation step. 

4 Termination test: test whether the algorithm should terminate. If it termi- 

nates, it outputs the best solution that has been found so far; otherwise 

it returns to step 2- the neighbour generation step. 

Various local search algorithms apply different techniques to choose an 

initial solution and a neighborhood and have different sorts of determination 



criteria on making moves. Normally they do not suffer from the early-mistake 

problem because, once a decision is suspected to  lead to a dead-end, it can 

be undone without having anything to prove. Thus, local search algorithms 

may be more efficient with respect to  response time than systematic search 

algorithms to find a solution especially when the search space is huge [17]. 

However, they are incomplete and cannot guarantee a solution. 

Cooperation between local and systematic search algorithms has been stud- 

ied [20, 21, 221 as well. These hybrid methods have led to good results on 

large-scale problems. There are three categories of hybrid search algorithms in 

the literature: 

- performing a local search before or after a systematic search; 

- performing an overall local search, but applying systematic search a t  some 

point of the search, for example, to  select a candidate neighbour or to 

prune the search space. 

- performing a systematic search improved with a local search a t  some point 

of the search, e.g., at leaves of the search tree (over the complete assign- 

ments) or at nodes in the search tree (on the partial assignments); 

Hybrid methods in the first category are intuitive. Algorithms in the sec- 

ond category apply systematic search in the complete problem domain, but 

introduce the extra flexibility of local search into small areas to  facilitate the 

search and improve the performance overall. The goal of the third category 

of algorithms is to exploit some filter techniques such as arc consistency (AC) 

and FC of backtrack based systematic methods for local search algorithm to  

improve the search behavior. Methods in the second and third categories try 

to combine advantages from both systematic search and local search into one 

approach and seem promising. They can start with either a partial solution 

or a complete solution and have more flexibility on avoiding the early-mistake 

problem. In this thesis, I take a systematic approach with some enhancements 

in the first phase and take a hybrid approach that somewhat falls into the sec- 

ond category in the second phase. Indeed, my goal was to show that solving 



the curriculum-planning problem at  different processing stages using different 

methods is a good strategy to produce high quality solutions. 

2.4 Symmetry breaking 

Many CSPs face symmetry problems. Symmetries give rise to many different 

solutions found by the search procedure, which are all considered to be equiv- 

alent. Without excluding symmetries, whenever a solution is found or proven 

to be inconsistent with the search problem the search algorithm still considers 

all symmetric solutions. As a consequence, these symmetries amplify, often 

exponentially, the search space. Breaking symmetry promises to efficiently 

prune the search tree. Hence, exploiting symmetry in constraint satisfaction 

problems has become a very popular topic of research. As a result, a growing 

number of techniques are being reported in the literature. 

Most methods of dealing with symmetry in CSP fall in two general cate- 

gories. One approach is to modify the search method to exclusive symmetry 

during the search or prune the symmetry branch [18, 251. Backofen and Will 

[18] proposed the Symmetry Exclusive Search (SES) method, which is based 

on the notion of symmetric constraints. It introduces the symmetry version 

of constraints into the search procedure so that it can be used with either the 

full set of the symmetries or a subset of all symmetries. Gent  and Smith [25] 

present Symmetry Breaking During Search (SBDS). This is a similar method 

to SES. Methods in this category can be applied to arbitrary symmetries and 

do not restrict the search strategy. I t  inserts additional constraints at  each 

branching point in the search tree instead of posting constraints at the start 

of the search. 

Arbitrary symmetries exist in the N-queens problems. As an example, 

consider the 8-queens problem. Elements in the array of queens [l . . .8] take 

values from 1 to 8. Q[i] = j means that there is a queen on i th row placed on 

j t h  column. The symmetries of this problem are rotational symmetries through 

180 degrees. Suppose that the first two Queens are assigned with Q1 = 2 and 



Qz = 4. On backtracking from the assignment of Q2, an alternative choice such 

that Q2 # 4 is made. Should the symmetric equivalent i.e. Q7 = 5 be allowed? 

If Q8 = 7 is eventually placed, which is the symmetric version of Q1 = 2, then 

the decisions of Q2 = 4 and Q7 = 5 are symmetrical and then Q7 = 5 should 

not be allowed. On the other hand, if Q8 # 7, then Q2 = 4 and Q7 = 5 are not 

symmetrical, and then Q7 = 5 should be considered when Q2 # 4 is chosen. 

Hence, when the node of the search tree is created with the choice between 

Qz = 4 and Q2 # 4, a conditional constraint (Q1 = 2 & Q2 # 4 & Q8 = 7 * 
Q7 # 5) is inserted. The symmetry exclusive search procedure inserts this type 

of symmetry exclusive constraint at every branch to avoid the symmetry. 

However, symmetry exclusion is very complex and often hard to  imple- 

ment. Thus, their usage was strongly hindered by the complexity [18]. The 

other approach is to  add constraints to  the CSP to convert the problem into 

an asymmetrical one or a less symmetrical one. This type of approach is more 

commonly used in practice. Since the task we are left with after converting the 

problem is still to  solve a CSP, the search algorithm is, in principle, unaffected. 

For example, Crawford et. al. 1261 have demonstrated how constraints can be 

added to the models in order to break symmetries. Puget [28] presented a 

formal framework that involves the addition of ordering constraints to break 

symmetries. Flener et  al. 1231 proposed a similar approach of posting global 

constraints for lexicographical orderings on vectors of variables to  break sym- 

metries in matrix models. Flener et al. [23] also reminds us that symmetry 

detection is graph-isomorphism complete in the general case. Approaches in 

this category are good at handling symmetries in CP, arising from matrices of 

variables where rows or (and) columns can be swapped. Many of these types 

of symmetry have been observed 1271, such as the rack configuration problem, 

social golfers problem, the template design problem 3, and as well as the well- 

known round robin tournament-scheduling problem (weeks and periods in a 

schedule are indistinguishable). 

3detailed descriptions of these problems can be found at  www.csplib.org. 
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The approach employed in the model presented by the thesis falls in the sec- 

ond category. Partial-ordering constraints are added to  make the CSP model 

less symmetrical so that the partial solutions that are symmetric to some in- 

feasible ones will not be considered again as well as the symmetrical solutions 

will not be returned. 



Chapter 3 

Curriculum planning modeling 

The complete curriculum planning model consists of three parts: the system 

process, the interface, and the database. Figure 3.1 outlines the model. The 

system process is responsible for initializations, constraint propagations, and 

decision-making. The interface is the place where users interact with the sys- 

tem, such as reviewing system proposed solutions, inputting their preferences 

and constraints and giving feedbacks. The details of the system process are 

discussed in 3.1. The formal definitions of constraints handled in the system 

are given in 3.2. The database stores data, which is needed to initialize and 

construct the system, variables, and constraints such as course information, 

user information, and relationships among related constraints. The relation 

between the system process and the database and how to store constraints in 

the database are described in 3.3. 

Load system constraints Output a solution 

Load courses and other System 

Load user information Convert changes as 
user constraints and 
post them into the 

Database system 

lnput 

End User 
User Interfaces 

Figure 3.1: Curriculum planning model outline 



3.1 System Process 

The system process is the control process in charge of solving the problem. 

The problem is solved in two phases. The structure of the system process is 

slightly different at each phase. Figure 3.2 illustrates the structure of the sys- 

tem process in phase one. The system process - the component circled by the 

dotted lines, contains a system controller and a user agent. The system con- 

troller is responsible for the creation and propagation of variables and system 

constraints. The user agent is responsible for collecting and maintaining user 

related information. 

3.1.1 System controller and user agent 

When the system starts, a system controller will be created for the logged-in 

user. In turn, the controller will create variables and system constraints based 

on regulations and information retrieved from the database or input by the 

user. System constraints are not shared with the user agent, but only con- 

trolled by the system controller. The system controller is also responsible for 

maintaining a current set of feasible solutions, propagating the consequences 

of decisions, and constructing the final solution incrementally. A feasible solu- 

tion is a plan that satisfies all system constraints in the model. The role of the 

user agent is to create and maintain the current set of users and their specific 

user constraints, and to retract requests that have proved unsatisfactory. The 

system controller has the control over the user agent. In phase two, requests 

from users are collected through the interface and transformed into user con- 

straints, which are maintained by the user agent and shared with the system 

agent. User constraints are unary and also retractable. They are kept active 

until being retracted. 



3.1.2 Problem solving process 

As mentioned in Chapter 1, the problem is treated as a CSP and solved using 

constraint-programming techniques. There are three major steps for solving 

this CSP: 

1. Gather the information required for the creation of variables and con- 

straints; 

2. Create variables and constraints; 

3. Perform the search. 

Data required to create variables are collected from the database and (or) 

interface if needed. When the system starts, it waits for a user to log in. Once 

a student logs into the system, he (or she) faces an interface to ask him (or her) 

to check the profile including the coordinates, courses that have been taken, the 

type of the major, interested areas and so on, while a system process dedicated 

to  this user is created, which contains a user agent and a system controller. If 

the information in the profile is obsolete, he (or she) has to perform an update 

before he (or she) can proceed. If no related information is displayed, the 

user needs to input the information and perform an update so that the input 

information will be saved in the system. 

I would like to walk through the planning process using a student who is 

an intended major in computer science as an example. Assume that he is a 

new student and it is his first time using the system. Thus, he should have no 

record of taking any course in the system. He needs to verify this. If no major 

type is recorded, he has to specify the type of the major. The information 

he has input is saved into the database and temporarily cached in the user 

agent so that the system controller can use it later during the solving process. 

For existing users, most information has been stored in the database. They 

need to verify and make changes if necessary. Upon confirmation, he would be 

asked to select areas that sound interesting to him. For a computing science 

major, there are 6 available areas. Assume he selects the first option, Artificial 



Intelligence. He can specify the average course load that he would like to have, 

otherwise the default minimum course load will be used. He also can state the 

semesters that he likes to be off from the school and so on. After specifying 

the preferences, he can simply ask for a plan. 

When the system controller receives the request, it creates variables and 

system constraints based on the number of taken courses and the total number 

of credit hours required for a program. The variables are the basic elements in 

the plan. The number of variables represents the number of courses that the 

user needs to take to finish the degree. In the example, the new student needs 

40 courses, which will have a total of 120 credit hours, provided all courses 

have the same 3 credit hours. 

3.1.3 Variables and their domains 

Figure 3.2 is an instance of the system process having n variables. In our 

example, the value of n is 40. The system controller creates 40 variables in a 

chronological variable ordering. Fewer variables would be created if the user 

in the example was a student who had taken a few courses. For example, 

if the user has had 12 credit hours, then only 108 credit hours are needed 

to graduate, thus, only 36 variables will be created. The number 40 (or the 

number 36) is the maximum number of variables that may be needed, because 

the system assumes that all courses planned to take have the minimum 3 credit 

hours. If several variables are assigned with courses that have 4 or more credit 

hours, the system controller does not need to assign courses to 40 (or 36) 

variables anymore. However, we do not know what values will be assigned to 

variables and cannot foresee the exact number of variables needed, we always 

create the maximum number of variables and at  the end of the search, some 

variable(s) may not be assigned a value representing a course, which depends 

on the assignments of the rest variables. These variables will be assigned a 

null value. 

Every variable has a static domain, which is a finite collection of continuous 

integers. Those integers are called values in the domain. Each value in the 
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Phase I 

domain represents an available course stored in the database. All variables 

-- 

in the model have the same static domain, which is the complete list of all 

- 

available courses in the database. An alternative method is to give variables 

representing courses in different school years, a different static domain, such as 

to exclude lower division courses from the static domain of a variable in a senior 



school year. The alternative method sounds more reasonable and efficient, but 

unfortunately, it will exclude reasonable solutions. 

It is true that  usually a fourth-year computer science student probably 

won't take a first or second year computing science course, but it is still possi- 

ble, if the course is a non-mandatory course and does not violate any equivalent 

constraint, which means students still can get the credit hours by taking that 

course. For instance, a fourth year computer science major student can still 

take a 200-level c++ programming course e.g. 'cmpt212' and get the cred- 

its. There are students who do so even though it is not popular. However, if 

the model applies the alternative method and then the static domain of vari- 

ables in the senior school year does not include the lower division courses, the 

method will eliminate the possibility discussed above. When users would like 

to make this type of request in their plans, the requests would not be able 

to be approved by the system, which is unreasonable and should not happen. 

Hence, the alternative method is not used. Every variable in the model has 

the same static domain and leaves the system process to  prune and decide the 

value through constraint propagation. 

3.1.4 Constraints and solvers 

When a variable is assigned a value, it can be constrained to  assume a value 

from its current domain, which is usually performed by a type of entity called 

a solver. A solver enforces a constraint on what value(s) a variable can take. It 

also can constrain the variable to only take a value from a subset of the initial 

domain. Thus, when creating variables, the system controller creates a solver 

for each variable and compiles them with the fixed total ordering among them. 

After creating the variables and solvers, the system controller creates system 

constraints. When creating a constraint, the controller needs to decide the 

related variables and propagation directions of each constraint based on the 

type of the constraint and the information controlled in the user agent, such 

as the intended or approved major, interested subject areas and the number of 

courses that the user intends to take per semester and so on. Each constraint 



has to be registered with the solver of the related variables so that whenever a 

trail assignment is initiated, the solver invokes propagations of all constraints 

related to its variable. 

In our example, this new computer science major student needs to take at 

least 8 lower division and 5 upper division computer and mathematic courses. 

Hence, there would be a total of 13 mandatory constraints created. The lower 

division mandatory constraints are prerequisites for most of the upper level 

courses, and will normally be taken in junior school years normally. Thus, 

lower-division mandatory constraints will be related only to the junior school 

years (the first half of columns in the plan). There are also breadth con- 

straints, (e.g. taking one upper division course from 5 out of 6 areas), and 

depth constraints. In addition, the all-different, prerequisite and maximum- 

load constraints, which apply to students in any major, are created as well. 

3.1.5 Creation of system constraints 

Constraints are created in a chronological order. Constraints related to lower 

division are created before constraints related to upper division. They are 

formally defined in the next section to ease the understanding of the constraints 

and their implementation. Furthermore, the number of system constraints 

are various for different types of majors and/or subject areas, e.g., taking 

'macm401' is a mandatory constraint for a student joint major in computer 

science and math but not for a student major in computer science. 

In Figure 3.2, two examples of system constraints are shown among vari- 

ables. One is an equivalent constraint (the system constraint scl in Figure 3.2). 

It is posted on two variables vl and v3. This type of constraint is called a bi- 

nary constraint since it is related to two variables. This constraint is registered 

with both solvers that control two variables respectively so that the propaga- 

tion direction can be dual direction. Since the propagation is dual-direction, 

a line with arrows at  both ends is used to illustrate the dual-direction propa- 

gation (see scl in Figure 3.2). Whenever the value of vl (or v3) is changed, a 

verification on live domain of v3 (or vl) will be performed. 



The other typical example of system constraint is a prerequisite constraint 

(see S C ~  in Figure 3.2), which involves 3 variables, v2, v3, and v4. The prop- 

agation directions are one way, always from v2 to v3 and from v2 to v4. This 

constraint only needs to be registered with the solver that controls v2 since this 

type of constraints propagates in one direction only. A line with an arrow at 

one end pointing to the direction that the propagation goes into (See Figure 

3.2) is used to represent the constraint. At this moment, there are only system 

constraints in the system and no user constraints. The user agent is only re- 

sponsible for caching the preference data collected from the interface and (or) 

loaded from the database. 

Upon finishing the creation of system constraints and the registration with 

corresponding solvers, the system controller starts to find the first feasible 

solution - a solution that satisfies all system constraints. The system is in the 

first phase and uses the first search algorithm, which will be discussed in 4.2. 

Once a solution is found, the controller posts it through the interface for the 

user to review. A sample feasible solution may look like Figure 3.3. From the 

figure, we can see that there are a total of 40 cells in the plan (8 x 5). Each 

cell holds a variable. All cells have been filled with an abbreviation of a course 

except the last one, where a "N/An is filled in. It is because three (or more 

but less than five) courses assigned in the plan have a credit hour greater than 

three. Thus, only 39 variables need to be assigned a value (an available course 

in the database). The last one does not need to be assigned any real value but 

a null value, which does not represent anything meaningful. 

3.1.6 User requests 

After reviewing the initial plan, the user can directly modify it through the 

interface for any unsatisfied places in the plan. In our example, assume the 

user does not like to take cmpt361, which is a computer graphic course. He 

clicks on the cell in the table and picks another choice that he likes from the 

drop down list. (See Figure 3.4). The user can make as many changes as they 

like. These modifications are called user requests. 
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Figure 3.3: Curriculum planning system user interface I 

Figure 3.4: Curriculuin planiliilg system user interface I1 

If the user increases or decreases the number of courses to take in a semester 

of the solution, the system agent will increase or decrease the number of vari- 

ables in t11a.t semester a.ccordingly. If the user requests to take on-leave, which 

does not take any course for a semester, the11 NULL values will be filled in for 

tha,t semester. If the user is willing to  take a practicum working in industry 

in a semester, which is also represented in a short term as "co-op", she or he 

selects the "co-op" choice pro~~ided in the interface (see Figure 3.5), then the 



system a,gent crea,tes only one variable for the semester. 
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Figure 3.5: Curriculum planning system user interface I11 

Once the user has made desired changes, he takes the initiative to ask the 

system to find out if  the cha.ngcc1 plan is feasible by clicking on the button of 

"Make a new plan". These changes a.re rcportecl to the user a.gent. The user 

agent, then, transfornls the changes into user constraints a,nd posts thein on 

the corresponding variables. Meanwhile, it notifies the system controller of the 

newly added constraints. Now the system enters the second phase. 

When receiving the notice, the system agent remodels the problem based 

on the requests, which includes crea.ting new variablcs, re-constructing the 

constraints and posting then1 on corresponding variables if necessary. Figure 

3.6 shows changes to the structure of the system process when the user makes 

cha.nges on two cells relative to Figure 3.2. These two cells contain variables 

Vl and Vn-l. In Figure 3.6 the user a.gent transforms the requests ma.de on 

thc two cclls into two uscr constraints UC1 and UC2, and then engages thcm 

with corresponding variables Vl a.nd belonging to  the two cells. Because 

a user constraint is a una.ry constraint, it only acts on a single varia,ble. A 

loop starting from a variable and going back to  the same variable is used 

t o  illustrate the user constraint. In addition, since both user constraints are 

registered with the system controller, the two lines linking the two variables to 



the system controller are drawn to indicate the registrations. (see Figure 3.6). 
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Figure 3.6: System process model structure phase I1 

After finishing the reconstruction, the system controller uses the solution 

provided by the first phase as a starting point and initiates a systematic local 

search to find out if the changed plan is feasible. If the changed plan complies 

with system constraints and newly added user constraints, then the solution 



is confirmed with the user. If it does not, the controller tries to find a solution 

that does. The search algorithm will be discussed in 4.3. When the system 

controller finds a new feasible solution, it displays the solution in the interface 

for the user to review. 

Sometimes, the user may put a request that does not comply with school 

regulations, e.g. a student wants to do a co-op in the third semester, which is 

usually not suggested by the school. This is the case where a user constraint 

conflicts with a system constraint, and then the user constraint has to yield 

the right to the system constraint. The controller will notify the user agent of 

the infeasibility of this user constraint and ask the user agent to retract the 

user constraint from the system. The user agent will retract the constraint 

and also send a notification to the interface to notify the user about the failure 

of fulfilling the request. If the user chooses to enforce the request, then the 

system will halt since it cannot solve the confliction and generate any solution. 

If user decides to change the preferences, they can click the back button on 

the browser to go back to the previous user profile/preference screen, reset the 

preferences and then ask for another plan. In this case, the system controller 

will go back to the phase one and restart the search using the first algorithm 

and then go through the refining steps depending on user's actions. The system 

and the user work together in a cycle of searching, reviewing, and modifying 

iteratively to construct a plan that the user is satisfied with. The final plan 

will be saved into the database and also emailed to the user for reference. 

3.2 Definition of the system constraints 

The Curriculum Planning Problem (CPP) is modeled as a Constraint Satis- 

factory Problem (CSP) problem, defined as a triple of (V, D, C). V is a set of 

ordered variables, corresponding to the slots in the plan that we need to assign 

values to. D is the domain, a set of possible values associated with a variable 

v, where v E V. In CPP, the domain D is the complete list of available courses. 

C, a set of constraints that restrict value assignments of variables, represents 



the collection of the academic constraints in CPP. 

In our model, each cell in the table contains a variable. V is organized as 

a matrix of variables with p columns and r rows (Figure 3.3). The number 

of columns represents the number of semesters planned. The number of rows 

represents the number of courses planned in a semester. p is used to represent 

the number of possible semesters that the user may take to finish an academic 

degree, and r is used to represent the maximum number of courses that can be 

taken per semester. The collection of available courses is the domain D. The 

size of D is the number of all available courses, which we use m to represent. 

For all vij E V, an assignment pair (vij, d j )  indicates that the value dj is 

assigned to the variable vij, which belongs to the cell located at the ith row 

and the j th  column in the table. A solution is denoted as a matrix of variable 

assignment pairs that satisfy the set of constraints. 

The system constraints have been described informally in Chapter 1. They 

are described formally in this section. Symbols used in the definitions are listed 

in Table 3.1. 

Table 3.1: List of symbols 

V: the collection of all variables. 

D: the collection of all possible domain values for a variable. 

C: the collection of all svstem constraints managed in the vroblem. 

tiij: a variable at ith row and j th  column in the matrix of variables. 

p : the number of periods (or semester) in the plan. 

r : the maximum number of rows among all periods. 

n : the total number of variables in the problem domain. 

m : the number of courses or domain elements in the variable domain D. 

The definitions of the constraints are stated as follows: 

All-different Constraint: Students can not take the same course twice and 

get credited twice on the same course. For any two variables vi, vj Uj where 



vi E V and vj E V. If vi # vj, and then for the corresponding variable 

assignment pairs of (vi, di) and (vj, dj) with  di E D and dj E D in the 

solution, it is always true that di # dj. 

Prerequisite constraint: A prerequisite of a course can be either a list of 

courses or a number of credit hours. When the prerequisite in a prereq- 

uisite constraint is a list of courses, this prerequisite constraint is defined 

as follows. Let D' represent the prerequisite for a course d. Thus, D' is a 

set of course values, s.t. D' c D and d E D but d $! D'. Let V,  represent 

the set of variables at the ith column, where 1 < i 5 p. A variable 

vi, vi E V,, can have a variable assignment pair of (vi , d) , if and only if, it 

is true that for every dk, dk E D', a variable assignment pair (v, dk) exists 

in the solution where v E V', V' = Vl U . . . U Vj, and 1 5 j < i 5 p. 

When a prerequisite is a number of credit hours, the prerequisite con- 

straint can be described as follows. Suppose a course dl d E D l  has a 

prerequisite of a number of credit hours. We use E to represent the num- 

ber of credit hours. The course d can not be assigned to any variable vj, 

vj E V', V' = V, U . . . U V,, until the number of the accumulated credit 

hours is equal to E after the variable assignment (vi, di) is made, where 

vi is a variable at  the ith column, vi E V,,  and 1 5 i < j 5 p. 

Mandatory-requirement constraint: A mandatory-requirement constraint 

requires that a student must take a course dl  d E D in order to obtain a 

degree. We use D' to be the collection of the mandatory courses. Clearly, 

D' c D is true. Thus, we can say that a mandatory requirement con- 

straint is satisfied if and only if Vd E D', a variable assignment pair (v, d) 

exists in the solution. 

Equivalent-course constraint: A student can not take two courses that are 

logically equivalent to each other and be credited on both. We define 

an equivalent-course constraint as follows. Let's use D', D' C D, rep- 

resent a set of courses that are logically equal. If a variable assignment 

(v, d), with  v E V and d E D', exists in the solution, and then, for every 



variable x, x E V with a variable assignment (x,d,), d, I$ D' is always 

true unless x and v are the same variable. 

BreadthIDepth  constraint: A breadthldepth constraint requires a student 

to take courses from different areas and different academic levels. It is 

defined as follows. A subset of domain values D' is divided into Ic groups, 

s.t. D' = Di U DL, U . . . U DL. We say that the constraint is satisfied if for 

every D:, D: E D', a variable assignment (v, d) with v E Vand d E D: 

exists in the solution. 

Maximum-load constraint: The course load of a student in a semester is re- 

stricted by the maximum-load constraint. It is defined as follows. Given 

a group of variables V' : {vl, . . . , vi) and their corresponding assignment 

pairs {(vl, dl)  , . . . , (vi, di)) in the solution, where 1 5 i 5 r ,  it is always 

true that 
i 

Here, cl, . . . , c, represents the number of credits for d l , .  . . , di respectively 

and Max represents the maximum course load allowed in each semester 

defined in the system. 

3.3 Storing constraints in the database 

Every university maintains databases to store data for courses and students. 

The basic information about courses may include course name, subject area 

to which it belongs, the number of credits, and etc.; basic student information 

may include name, contact information, year enrolled, and any courses pre- 

viously taken (and grades, if any). The database may be extended to store 

the constraints for processing the course planning. More tables need to be 

added to store system constraints, such as prerequisite constraints, mandatory 

constraints, equivalent constraints, breadth constraints and depth constraints. 

A complicated constraint like prerequisite constraint is represented in a 

tree structure in a database table. The table may have three columns: course 



id, prerequisite course id, and relationship, which indicates the prerequisite 

relationship between the two courses. There may be 5 types of relationships: 

- the prerequisite course is the sole request for a course, which means students 

may take this course as long as they have taken the prerequisite. 

- the prerequisite course is a co-prerequisite for a course, which means students 

still cannot take the course if they have just taken this prerequisite. 

- the prerequisite is a number of course credits; either lower level or upper 

level course credits can be counted. 

- the prerequisite is a number of course credits from upper level courses. 

- the prerequisite is a number of course credits from lower level courses. 

Related prerequisites are stored like a tree structure in the table. For ex- 

ample, if course A has prerequisites of B or "C and D" ; and C has prerequisites 

of E or F; B has prerequisite of "G and H", then prerequisites for A are stored 

like a tree structure in the table (Figure 3.7). Before a student is eligible to 

take course A,  she or he either has to take both G and H, and then B; or has 

to take one from E and F and then take both C and D. When loading the con- 

straints into the system, a query for finding all courses that have prerequisites 

will be executed and results of the query will be used for processing a solution. 

Figure 3.7: A example of a prerequisite tree structure 
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We can either add columns into the existing course table or create a new 

table to store mandatory constraints. Because sometimes OR relationships 

may also exist among mandatory courses. For example, computer science 

students must take either statistics 273 or business 254. Hence, it would be 

easier to add, delete, and maintain the constraints if we create a new table 

to store them. The table needs to remember which department, what degree, 

and what level (upper or lower division) the mandatory requirement is for. 

Equivalent constraints are very easily implemented in the database if a 

course has no more than one equivalent course. This condition is applied in 

the experiment model. This type of constraint is stored by adding an alias 

column into the existing course table. If a course has an equivalent one, then 

fill the field with the equivalent course id. If a course has more than one 

equivalent courses, then a dedicated table needs to be added in to remember 

the mapping from a course to one of its equivalent course. 

How to store breadth (or depth) constraints depends on detailed require- 

ments of the school. In my experiments, the breadth requirements require 

computer science majors to take one 300 level course from five different areas 

out of the six areas. Thus, I have a column in the course table to indicate the 

area that a course is in. In addition, a dedicated table is created to remember 

all areas and their descriptions. In this way, it is easy to delete or add new 

areas, in turn, it will be easier to update the change when breadth (or depth) 

constraints are changed. 

The actual data used for the experiment was from the Computing Science 

Department of Simon Fraser University. Descriptions of database tables, which 

include names of fields in the table, their data type, and default value used in 

the experiment for storing constraints are listed as Table 3.2 to Table 3.9. . 
The Course table (Table 3.2) forms the static domain of variables. The 

column of alias-id is to identify an equivalent constraint. It stores the cid 

of an equivalent course if it has one. The column cid will be used in the 

Course prerequisite table (Table 3.3) to represent courses. It is a unique string 

representation for each course, for example, the cid of Operating System I is 



cmpt300. The priority-id indicates the offering frequency. It is a single-digit 

number defined in the Course priority table (Table 3.5). The higher the value 

of the digit, the less priority it represents. The column area-code indicates the 

subject area to which the course belongs. A boolean flag haspre-reg indicates 

if the course has any prerequisite, which is for performance only and can be 

omitted. The column capacity stores the number of seats available for an 

offered course. 

Table 3.2: Course table 

Field I Type I Default Value 

Table 3.3: Course prerequisite table 

Field I Type I Default Value 

cid I varchar(8) I NOT NULL ' ' 

- 
NOT NULL' ' 

NULL 

NULL 

NULL 

NULL 

NULL 

'0' 

NULL 

cid 

name 

type 

priorityid 

area-code 

aliaid 

hasPrereq 

capacity 

varchar (8) 

varchar(50) 

enum('lower','upper','grad') 

char(1) 

char (2) 

varchar (8) 

enum('l','O') 

int (1 1) 

The Relation meaningtable (Table 3.4) maps a digit to the definition of a 

NOT NULL ' ' 

'0' 

pre-cid 

relationid 

varchar (8) 

enum('3','2','11 ,'01) 



prerequisite relationship. The Course area description table (Table 3.6) lists 

all subject areas that the Computing Science Department uses to categorize 

the offered computing courses. The column id is the integer representation for 

an area. It is used for breadth constraints and depth constraints. 

Table 3.4: Relation meaning table 

Field 1 Type I Default Value 

relationid I enum('3','2','1','0') I NULL 

Table 3.5: Course priority table 

Field I Type I Default Value 

description I varchar(50) 

I I 

id I char(1) 1 NOT NULL ' ' 

NULL 

I I 

name I varchar(50) I NOT NULL ' ' 

-- 

name I varchar(50) I NULL 

Table 3.6: Course area description table 

nickname I varchar(l0) I NULL 

Field 

Courses offered in the Computing Science Department are also grouped 

into different tables. Breadth and depth requirements require that students 

should take courses from different tables as well. Hence, a course mapping 

id 1 char(1) I NULL 

Type Default Value 



from an area to a table has to be established. Course area description table 

(Table 3.7) maps an area to a table. 

Table 3.7: Course area description table 

Field I Type / Default Value 

area-code I char(2) I NOT NULL ' ' 

coursetable I char(1) I NOT NULL ' ' 

The Mandatory courses table (Table 3.8) is used to store mandatory con- 

straints. The "roleid in the table indicates which type of students the manda- 

tory requirement is for, e.g. a mandatory requirement for a major may not 

be a requirement for a minor. Some mandatory courses have "OR" relation, 

e.g, course 'cmptlOll is required for a computer science major, however if 

'cmptl04' is taken, then 'cmptlol' is not required anymore. Then 'cmptlOll 

has a "OR" relation with 'cmptl04' in the table. The relation only affects 

the courses that have the same "groupid". The "groupid" is from the Group 

table (Table 3.9). 

Courses in the course table are divided into groups based on the school 

regulations. Every rule defined by the school forms a group and has a unique 

group-id. The column dept defines who makes the rule and relation defines 

the "AND/ORn relationships among rows that are in the same group. The 

mapping from group id to group definition is in the Group table (Table 3.9). 



Table 3.8: Mandatory courses table 

Field 1 Type I Default Value 

cid I varchar(8) / NULL 

relation I char(3) I NULL 

roleid I varchar(5) 1 NULL 

groupid 

Table 3.9: Group table 

Field I Type I Default Value 

groupid I char(1) / NULL 

dept I varchar(5) 1 NOT NULL' ' 

char(2) 

groupname I char(l0) I NULL 

NULL 



Chapter 4 

Search algorithms and solving 

techniques 

A two-phase approach is applied to generate a final solution iteratively. Two 

different search algorithms are employed based on the different characteristics 

of each search phase. A systematic search algorithm is used in phase one to 

find an initial solution. A systematic local search algorithm is used to find a 

final solution interactively under the user's guidance. Part of the challenge in 

curriculum scheduling is handling multiple possible plans, which are equivalent 

under symmetry. An ordering technique is applied to handle the symmetry so 

that equivalent infeasible solutions will not be considered more than once. 

Variable and value ordering is also an important factor impacted on search 

performance. Thus, in this chapter, related terminologies and definitions used 

in the algorithms are introduced first, followed by the detailed discussion of the 

two algorithms. An example is given to explain when and how the system uses 

the two algorithms during the search. Finally, it is a discussion of symmetry 

breaking and variable and value ordering techniques used to speed up the 

search procedure. 



4.1 Preliminaries 

I would like to define some concepts and coding conventions used throughout 

this chapter. 

Variable ordering: The system has n (see Table 3.1) variables. Those vari- 

ables are instantiated in a certain order. This is called variable ordering. 

Variable: v with either one or two subscripts is used to represent a variable. 

If a variable has one subscript, the subscript represents its order in the 

variable ordering. If a variable has two subscripts, the two subscripts 

represent the row and column positions of the variable in the plan. When 

we discuss a variable at the solver level, the variable has one subscript, 

which represents the order of the variable in the variable ordering. When 

we discuss how a variable is related to a constraint, the variable has 

two subscripts, which represent the position of the variable in the two- 

dimension model. 

Current variable: The variable currently chosen for instantiation is the cur- 

rent variable. Usually, vi represents the current variable in the algorithm, 

unless explicitly expressed. 

Variable assignment pair: is a pair (v, d) that contains a variable and a 

value that has been assigned to that variable. 

Variables assignment set: is a set that collects variable assignment pairs. 

Each pair consists of a variable and its consistent assignment. A is used to 

represent the collection of all assigned variables and assignments. Some- 

times, these assigned variables are also called past variables. A becomes 

a solution when it contains the assignment pairs for all variables. 

Future variables: are variables that have not been assigned a consistent 

value. U is the collection of all future variables. 



Live Domain: is a collection of possible domain values that have not yet been 

shown to be inconsistent with respect to the ongoing search process. Di 
is used to represent the current live domain of the current variable vi. 

A label: A set of variable assignment pairs is also called a label. 

noGood: is a label, in which some variable assignment pairs are precluded 

from any global solution. 

Culprit: is the variable in a noGood, whose assignment is disallowed. A 

culprit in a noGood can be any variable in it. 

4.2 Modified dynamic backtracking 

In this section, a modified dynamic backtracking algorithm is developed to 

find the initial solution in phase one. I start with justification for the applied 

algorithm, and then present the algorithm used in the model in detail. 

4.2.1 Algorithm justification 

A systematic search method is chosen to be used in the first phase because 

of the characteristics of the curriculum-planning problem. A university fresh- 

man always starts with an empty academic record. The record will be filled 

out semester by semester after the student starts to  take courses. Hence, it 

is intuitive t o  choose a search method that generates a curriculum plan in 

the way of mimicking the procedure of a student's taking courses gradually. 

Also, students graduate when they have achieved all academic requirements 

for a degree, which indicates many solutions are guaranteed to  exist. Thus, a 

systematic searching method, which starts with an empty variable assignment 

applying a chronological variable ordering, will be a good search method to find 

an initial solution for this problem domain. Therefore, a modified Dynamic 

Backtracking search method is used in the first phase. 



The modified Dynamic Backtracking search method employs a backtracking 

mechanism that is based on Backjumping (BJ) [14] with some inspirations from 

Ginsberg's [15] Dynamic Backtracking (DBJ). Forward-checking (FC) [14] is 

added into the search method as well. I will also discuss the justification while 

explaining the algorithm. 

4.2.2 Modified dynamic backtracking 

In this section, I present the modified DBT algorithm. It uses a backtracking 

mechanism that is based on BJ with an improvement inspired by Ginsberg's 

DBT [15], combined with FC. We add FC into the search algorithm, because it 

helps to improve the search performance for this application domain. We have 

mentioned in Chapter 2 that there is a type of system constraint - prerequi- 

site constraints, which is a partial-ordering constraint applied on all variables 

except those in the first column. They are one-way propagation constraints. 

Some prerequisite constraints involve over thirty variables and heavily impacts 

the search procedure. When FC is applied, it can take advantage of the charac- 

teristic of one-way propagation of prerequisite constraints to help in preventing 

an "early" mistake and ensures that every course assigned satisfies the prereq- 

uisite constraints. Therefore, the number of backtracks can be reduced. The 

experimental results presented in Chapter 5 have shown this effect. 

It is obvious that for a large problem domain, we cannot use the simple 

BT, which is too naive and slow. BJ is a more "intelligent" backtracking 

mechanism and will be a good choice. However, it has one aspect that is not 

suitable to the planning application domain. In the BJ algorithm, when a 

backtracking occurs, the search procedure jumps back to  the culprit and starts 

the search from there again. Any work between the culprit and the previous 

current variable is erased. There may be a great deal of work deleted, which 

should be avoided in most cases. 

It is particularly desired not to erase all the work in the planning domain. 

For example, suppose that the current variable is in the first row and the third 

column, and the backjumping point is at  the same row but at  the first column. 



According to  BJ,  those variable assignments are all removed, although most 

of them should be kept. This is because courses taken in the same semester 

usually will not affect each other, which means that the assignment of a variable 

usually does not affect the assignment of other variables in the same column. 

Therefore, some of the assignments could be retained. Some care needs to be 

taken to not erase meaningful work in BJ. 

In Ginsberg's DBT [15], it describes a technique that successfully keeps the 

work, not modifying the values of variables between the current variable and 

the backjumping variable, by moving the backjumping variable to the end of 

the partial solution to  replace its value. Variable re-ordering is a way of saving 

the work. However, it is not suited to this application. It is because of the 

characteristics of the partial-order prerequisite constraints as well. As stated 

earlier, these constraints propagate in one direction from earlier semesters to 

later semesters. Thus, when all cells in previous semesters have been assigned, 

the prerequisite constraint posed on variables in the current semester can prop- 

agate effectively. 

Prerequisite constraints cannot propagate backwards to prune the domain 

of variables in previous columns. Therefore, it is strongly desired that the 

variable ordering be lexicographic ordering. Any other variable reordering 

that makes the prerequisite constraints hard to  propagate is not desired. The 

approach we decide to  take is to backjump to  the culprit variable but keep 

the variable assignments that follow the backjumping spot, and only redo the 

variable assignment when a constraint violation has occurred. 

The algorithm is listed in Figure 4.1. Given a set of variables V, system 

constraints C, and a static domain D ,  the algorithm returns the first solution 

A, which satisfies each constraint in C. The algorithm starts from an empty 

variable assignment with each variable having the full domain D (Line 1) as the 

live domain. The loop starting a t  line 2 is repeated until all variables have been 

assigned and U becomes empty and then a solution is returned (line 3). While 

U is not empty, a variable vi is chosen from U based on the variable ordering 

rule (line 5). Update the live domain Di of vi, and remember the eliminating 



explanations Ri for vi (line 6).  R, remembers reasons of pruning values out of 

the live domain Di for vi(See definition of R, in Figure 4.1).  If the live domain 

Di is not empty, forward checking is performed on the future variables, which 

are those unassigned variables in U .  Forward checking is performed at  line 8 

by trying to instantiate vi repeatedly until a trail instantiation is found, which 

ensures no annihilation of the live domain of every future variable. With a 

successful instantiation of vi, vi is removed from U ,  the assignment of vi is 

added into A (line 10 and 11). If a domain-wipe-out occurs when pruning live 

domain Di of vi or when performing forward checking on the future variables, 

backtracking from vi to vj is performed, where vj is the last assigned variable 

that occurs in R, (line 16). If backtracking is needed while the set of eliminating 

explanations becomes empty, the algorithm returns a failure (line 13). 

In our model, a solution is always returned since there exists solutions and 

the systematic search method is guaranteed to find one. 

4.3 Systematic local search 

In this section, I describe the algorithm used in the second search phase. It is 

the algorithm that the system uses to shape the initial solution based on the 

users1 requests. I first discuss the algorithm justification and then present the 

algorithm in detail. 

4.3.1 Algorithm justification 

When the system finds the initial solution, it is at  a stage where every variable 

has an assignment consistent with system constraints. Next, it should find a 

new solution that can keep the consistency of system constraints and at the 

same time satisfy users' requests. As a MI system, the system should stop the 

search at  a certain time during the process of reasoning, providing the user 

with the best solution found so far and take the initiative to request further 

assistance from the user if necessary. A systematic local search algorithm is 



V: the set of all variables. 

vi: represents a variable E V a t  position i according to the variable ordering. 

A: the set stores all variables that have been assigned a consistent value. 

U: the set stores all variables that have not been assigned a value. 

Ci: the set of constraints on variable vi. 

D: the live domain of variables. Di represents the live domain for variable vi. 

R: the set of elimination explanations. Every element in R is associated with 
a variable. &, remembers all reasons for eliminating certain values from the 
live domain Di for the variable vi. Each reason is represented as a pair 
composed of a value and a list of variables d, (v,, . . . , v,), where 
d E D,  v, E V, and v, E V. The intended meaning is that vi can not take 
the value d because of the current assignments of variables v,, . . . , v,. 

begin 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
end 

Set A = 4, U = V, and then set R, = 4, and D, = D for  Vv, E V 
Begin loop 
if U = 4, returnA. 
else{ 

Select a variable vi E U according to the variable ordering, 
Set & based on Ci and A, 
update live domain Di of i based on Ri. 
if Di # 4 { 

if 3d E Di s.t. D, # 4  for  Vv, E U, then { 
Update live domain D, for Vv, E U and v, # vi. 
Add (vi, d) to A, 
Remove vi from U, go back to Line 3. 

1 
)else{ 

if R = 4, return no solution. 
else { 

find (vj, dj) be the last entry in A, s.t. vj E &. 
Remove (vj, dj) from A and add vj to U 
Update Rj, and R, for every variable v, assigned after vj. 
Set i = j ,  go back to Line 6. 

1 
1 

} 
End loop 

Figure 4.1: Modified dynamic backtracking algorithm 



used here instead of the algorithm used in the first phase because this method 

fits into the second phase of the application domain better. 

First, the initial solution provides a perfect starting place for a local search. 

Second, we observe that a department has hundreds of students and provides 

a couple of hundred available courses for students to take. The search space 

is huge, for example, if the number of courses available is 100, and number of 

variables is 40, then the search space is 401•‹0. We say that two students have 

one overlap spot in their academic records if they take a course in the same 

semester. Two records are similar if they have many overlap spots. If two 

students have taken the same courses at  the same semesters together during 

all school years, which rarely happen, then they have identical records. It is 

not easy to find two students who have identical curriculum records, but it is 

easy to find two students whose records are similar and have many overlaps. 

Students in a department have different academic records, in which there may 

be many overlaps with the records of many other students. It indicates that 

many feasible solutions may be clustered together in the search space. 

A good initial solution has been found in the first phase, where many other 

alternative feasible solutions are probably close by. It is reasonable to perform 

a local search, rather than a systematic search that starts from scratch again 

with a zero variable assignment. Especially, when user's requests on a proposed 

plan do not break any constraints, then local search can confirm with much less 

work - only verifying the variables that have user constraints posted. However, 

systematic search has to redo the whole planning search. 

Furthermore, in the second phase optimization is introduced into the model. 

It is well known that usually a local search will have much better performance 

with respect to response time and may reach a far better quality in a given 

time frame [22]. The reason to extend the model into an optimization problem 

in the second phase is because we would like to optimize to the number of 

satisfied user constraints. As the example mentioned in Section 3.1, users 

may post some constraints that have conflicts with some system constraints, 

such that no solution exists to satisfy both the system constraints and the 



newly posted user constraints. In a case like this, user constraints need to be 

sacrificed. A solution that satisfies all system constraints and optimizes the 

number of satisfied user constraint will be a desired one. 

When optimization is added, the system returns an optimal solution that 

has been found so far in a given time frame. Then, the system shows this 

optimal solution and takes the initiative to ask user's assistance. If the system 

still applies the same search method used in phase one at  this stage and does 

not add optimization, then it needs to search the complete search tree to return 

a failure, which probably takes a very long time and is not desired. It usually 

cannot detect a failure (no solution) in a given time frame. Instead, the system 

has to stop the search, rejects all user constraints and returns with the previous 

solution since it fails to find one. Clearly, the approach with the optimization 

extension behaves more reasonably. Hence, optimization is introduced into the 

model and a systematic local search method is applied. Experiments are done 

on both approaches for comparison. More details are discussed in Chapter 5. 

In the following subsection, a systematic local search method that is used in 

phase two is discussed. The systematic local search method combines desirable 

aspects of systematic backtrack search and heuristic local search. 

4.3.2 Systematic local search 

In this subsection, I present the systematic local search algorithm (see figure 

4.2), which is based on the search method described in 1211. It is mentioned in 

previous section that optimization is introduced into the model to optimize the 

user constraints in the second phase. The objective of the optimization is to 

satisfy as many user constraints as possible while keeping all system constraints 

satisfied. The objective function is f (v) = a*s+  (1 -a )  *u ; where v represents 

the full assignments of all the variables, s is the number of satisfied system 

constraints under the current variable assignments whilst u is the number of 

satisfied user constraints and finally alpha is a parameter and a E (0 , l ) .  

The parameter of a is used to control the weight allocated between the 

system constraint and the user constraint. The assignment of the weight must 



be chosen in such a way that the solution must satisfy all the system constraints 

while take the user constraint into consideration as well. Clearly if cr is set to 

1, the solution will only try to satisfy all the system constraints while if cr is 

set to 0, the solution will only try to maximize the number of user constraints 

satisfied. In our implementation, cr is set to 0.95. This setting can always 

ensure that the system constraints are all satisfied and the user constraints 

are also reasonably satisfied when the algorithm tries to optimize the objective 

function, as evidently shown in our experiments in Section 5 .  

The algorithm looks for maximal solutions for a set of variables, which 

is a subset of all variables. A solution is maximal for a variable set if every 

variable in the variable set is chosen a maximal assignment. A variable v 

has a maximal assignment d if the defined evaluation function f ,  not 3a E 

D,  s.t. f (d) 5 f (a) .  D is the live domain of v. Every time the algorithm 

reaches a maximal solution, it verifies that the solution satisfies all constraints. 

If so, it returns the solution. Otherwise, it keeps looking for the next maximal 

solution. It remembers the one with the best quality. Because the system is 

an interactive system, the response time is crucial. Once the predefined search 

time is exceeded, the current best solution is returned and the system takes 

the initiative to ask for help with the search from the user. 

In the current model, the system takes the initiative based on the searching 

time only. Actually, the criteria can be much more complex and more practical 

so that the user can make good decisions easily on the next step. This topic 

should be more fully discussed. However, this is beyond the scope of this thesis. 

We will discuss this in the future work in Chapter 6. 

The algorithm operates as follows. It initializes the current solution A and 

the best solution B with variable assignments obtained from phase one. The 

set of variables V contains the variables that have user constraints. The loop 

starting at line 2 is repeated until A is a maximal solution for the variable set 

of V. Then it verifies that A is consistent (line 7). If so, it returns A, otherwise 

it remembers the better one between A and B, fails A as a noGood (line 8). 

Then it updates V by adding those variables whose values have been changed 



because of the changed assignments of variables in V and goes back to line 

3 to look for the next maximal solution (line 9). While A is not maximal, a 

variable v is chosen based on the variable ordering rule (line 3). Then v is 

assigned based on the value ordering heuristics and the maximal assignment 

rule (line 4). Whenever an empty noGood is derived or the predefined search 

time is up, the current best solution is returned (line 5). 

uc: the set of user constraints that currently registered with the user agent. 

R: a collection of noGood. 

A: the list of variable assignment pairs, initialized with the assignments from 
the GUI. 

B: the best inconsistent solution that has found so far, initially B = A. 

V: the set of variables that either have user constraints or their assignment 
have been changed since the last Maximal solution has been found. 

begin 
1. initialize A, and set B=A 
2. loop 
3. pick v from V and mark v as 'picked'; 
4. assign a value d to  v; 
5. if an empty noGood is derived or 
6.  predefined searching time is exceeded 
7. return B;  
7. end loop when ( A  is a maximal solution for V) 
8. if A is consistent with all C and uc, return A 
9. else 
11. let B to  be the better one between A and B,  
12. set A as a noGood , add it to  R; 
13. update V for another loop; 
14. go back to  line 3 
end 

Figure 4.2: Systematic local search algorithm 

Let's go through an example t o  illustrate how the two algorithms cooperate. 



When a user accesses the system, he or she specifies his or her preference and 

then takes initiative to ask the system to find a plan. At this stage, the 

system invokes the search using the modified DBT method. When a feasible 

solution is found, the system displays the solution and waits for the user's 

feedback on it. The user inspects the plan, makes some changes and then asks 

the system to provide a new plan that can satisfy the changes as well as the 

general constraints stored in the system. This time the system performs the 

search using the SLS method. When a result is found or predefined termination 

criteria is reached, the system stops the search and takes initiative to ask user 

for further assistance. The user has three choices. The first one is to choose 

to accept the result. The second is that the user makes more changes on 

the current result and asks the system to generate another one. In this case, 

the system continues the search using the systematic local search method. 

The third choice is that user chooses to discard the current result, resets the 

preferences and asks the system to start again. In this case, the system goes 

back to phase one and uses the modified DBT algorithm to perform the search. 

4.4 Other techniques 

In this section, the technique used to overcome the symmetry in the plan- 

ning problem is described and followed by the discussion of the importance of 

variable and value ordering during the problem solving and what variable and 

value ordering are used. 

4.4.1 Symmetry breaking 

The curriculum-planning problem, like many other scheduling problems, en- 

counters the symmetry problem as well. There is symmetry among courses 

in the column. Rows are undistinguishable and can be freely permuted in a 

semester. In Chapter 2, two general ways of handling symmetry problems are 

discussed. The approach of defining symmetry versions of constraints requires 

adjustment of the search method and is hard to apply to application domains 



that have many complex constraints. Because we have only one-dimension 

symmetry in the planning problem, it is more straightforward to take the 

other approach of adding constraints to  the CSP to  convert the problem into 

an asymmetrical one. The symmetry constraints are treated as the system 

constraints as well. By taking this approach, we do not need to  make any 

changes on the search algorithm . 
The method involves adding a partial-order constraint on the variables 

that are in the same column to break the row symmetry. Simply adding the 

lexicographical ordering constraints on symmetry breaking does not work well. 

Lexicographical constraints can solve the symmetry problem but they may 

hinder the search in some cases in this application. A detailed explanation is 

discussed below. Hence, adding partial-ordering constraints onto the variables 

in columns breaks the symmetry occurred in the curriculum-planning problem. 

In the model, the courses in the variable domain are grouped into classes 

according to their subjects. Each class has an associated value, which is used 

to  determine if a course has a higher order than another one. For example, 

all mathematics courses belong to  the class of 'math.' All computer science 

courses belong to the class of 'cmpt.' The system defines that the 'cmpt' class 

has a higher order than the 'math' class. Thus, a computer course has a higher 

order than a math course. 

The symmetry-breaking constraint enforces the partial ordering on vari- 

ables in a column by the class value of the variables rather than the lexi- 

cographical ordering by domain values. This is because the lexicographical 

constraints may be too strict under certain circumstances and can hinder the 

search by causing unnecessary backtracks in the second search phase. 

For example, suppose that the symmetry-breaking constraint directly uses 

domain values to  evaluate the ordering on those variables. There are three vari- 

ables in the column i (vli, vzi, v ~ ~ ) ,  four domain values with dl < d2 < d3 < d4, 

and three classes Al < A2 < A3, where dl E Al, d2 E A2, and d3, d4 E A3. The 

three variables have the assignment pairs of {(vli, dl) , (vzi, d2) , (vsi, d3) , . . .) 
for a column i, where 1 5 i 5 p . When the user changes the assignment of 



the variable vai from one course d2 to d4, provided no system constraints are 

violated by the change, the partial order on the three variables evaluated by 

domain values (dl 5 dq > d3) is broken. Thus, the constraint is violated after 

the change, and then backtracking has to  be performed. However, the ordering 

on class values (Al 5 A3 5 A3) exists, and the backtracking can be avoided if 

the constraint uses class values to  evaluate the partial ordering on variables. 

Hence, the better approach to  break the symmetry is to let symmetry- 

breaking constraints use class values to check the ordering on variables in a 

column. In this way, the efficiency of pruning the search space is ensured, 

meanwhile, unnecessary backtracks are avoided. 

4.4.2 Variable and value ordering 

It is known that, when using symmetry-breaking constraints, the variable and 

value ordering are very important [24]. In particular, if variable ordering 

moves from a direction that increases conflicts with the symmetry-breaking 

constraint, we can expect to gain from both the lower complexity and in- 

creased pruning [24]. Also, there are system constraints such as prerequisite 

constraints, preferring special variable ordering, aside from the fact that vari- 

able ordering affects the search performance significantly. Therefore, variable 

ordering should be carefully selected and maintained in this application. 

In the model, variables are grouped by semesters and ordered from top 

to  bottom within a semester, and chronologically among semesters in phase 

one. In phase two, variables are divided into two groups. One group contains 

variables that have user constraints posted and has higher ordering. The other 

group contains variables that have no user constraints posted, thus has lower 

ordering. Inside each group, variables are ordered lexicographically. 

When selecting values for variables, the value ordering heuristics are applied 

first. The heuristics are defined based on the variable position and related 

user information. Heuristics simulate what a human advisor would suggest. 

When students make their plans manually, they usually choose courses under 

the guidance of an academic advisor. These rules are transformed into value 



ordering heuristics stored in the system to guide the search. For those variables 

that have user constraints, the value ordering will be little different. The value 

specified by the user has the highest priority. 

When there are no related value-ordering heuristics to apply, values in a 

live domain are ordered as follows. Courses in a variable's live domain are 

divided into different classes. If two courses are in the same class, these two 

courses are ordered by the value of their integer representations; otherwise, the 

course that has a lower class level is less than the one that has a higher-class 

level. Through the experimental results presented in Chapter 5, we found that 

it can speed up the search. 



Chapter 5 

Experimental results 

The model is implemented into a Web Service using Java ', JSP and Servlets 

on Apache Tomcat server 4 .  JSP and JavaScript handle the presentation 

layer - the interface of the model. The Servlets handle the navigation flow and 

data access. The system process (the service part) is implemented in Java. 

The program also uses a Java-based Constraint Programming (CP) library 

called ConstraintWorks [30], which provides the procedure of the systematic 

local search algorithm. The database is implemented in MySql server 5.  The 

'Java technology is a portfolio of products that are based on the power of networks 
and the idea that the same software should run on many different kinds of systems and 
devices. JDK1.3.2 is used in implementation. Related documentation can be found at 
http://java.sun.com/j2se/l.3/docs/api/. 

'JavaServer Pages (JSP) technology provides a simplified, fast way to create dynamic 
web content. It enables rapid development of web-based applications that are server and 
platform independent. JSP specification is developed by Sun Microsystems, which can be 
found at http://java.sun.com/products/jsp/. 

3Java Servlet technology was created as a portable way to provide dynamic, user- 
oriented content. Their specifications are developed by Sun under the Java Commu- 
nity Process. Detailed information is available at http://java.sun.com/j2ee/tutorial/1-3- 
fcs/doc/Servlets.html. 

4Apache Tomcat is the Servlet container that is used in the official Reference Implemen- 
tation for the Java Servlet and JavaServer Pages technologies. Binaries and documentations 
can be found a t  http://jakarta.apache.org/tomcat/. 

5MySql database server is an open source database. It can be downloaded at 
http://dev.mysql.com/downloads/. 



application uses JDBC driver provided by MySql to connect the database. 

The experimental data is from the Computing Science Department at Si- 

mon Fraser University (SFU), British Columbia. All course related information 

stated in the calendar, which includes course name, credit hours, subject area, 

prerequisites, equivalent courses and course level (upper or lower division), 

is stored in the testing database. Other requirements needed to finish a de- 

gree such as mandatory upper or lower division requirements, and breadth 

or depth requirements for different types of programs offered in the School of 

Computing Science are also defined clearly in the testing database. The test- 

ing database includes available courses from the school calendar that computer 

science students may take. There are plenty of courses in SFU school calen- 

dar that computer science student would never take, and thus, those courses 

are excluded from the database. The implemented system limits its service to 

undergraduate students in computing science only. 

Users used in the testing are fabricated and so is any user related infor- 

mation. There are total 9 types of typical computer science students in the 

School of the Computing Science at SFU: students who are major in comput- 

ing science and interested in five different subject areas (Artificial Intelligent, 

Graphics, Network, Database and Theory); students intended to have a math 

minor; students intended to have a business minor; students intended to com- 

plete the co-op program (Students have to finish at least four co-op terms 

during their undergraduate study in order to complete the co-op program); 

students intended to graduate with software engineer special program. Hence, 

I created 9 made-up users, one for each typical type of user group. Test cases 

are run against these nine users. 

In addition to computer science courses, available courses stored in the 

testing database include elective courses from many departments, such as Art, 
-- -- 

6Java Database Connection (JDBC) technology is an API that provides cross-Database 
Management System connectivity to a wide range of SQL databases and access t o  other 
tabular data sources, such as spreadsheets or flat files 

7MySql provides a native JDBC driver called MySQL Connector/J. The binaries and 
documentation can be found a t  http://www.mysql.com/products/connector/j/. 



English, Economics, Business, Natural science, Philosophy and so on. The 

maximum number of available courses used for experiments is 120 courses, 

among which 48 are computing science courses. The remaining courses are 

from departments mentioned above. The number of available courses used 

as the static domain for variables varies from 60, 80 t o  120. The model is 

validated in following four aspects. 

1. Compare the performance of with or without FC during the search. 

2. Compare the performance of with or without symmetry breaking. 

3. Perform experiments with different domain sizes, number of constraints 

on different systematic search method to  show the modified DBT with 

heuristics has the best performance overall. 

4. Compare the performance in the second phase. The systematic local search 

can reach a better solution with respect to search time than the system- 

atic search method in most of the test runs. 

Experiments were run on a windows machine with Intel Pentium 4 Mobile 

CPU 1.60 GHz and RAM 512 MB. When the result is measured by searching 

time (seconds), the time is rounded to  whole seconds, i.e., if it takes less than 

one second, it counts as one second. The experiment configuration used to  

verify the performance of using FC is as follows. The domain size of a variable 

m is 60. The total number of system constraints is 28. The search method 

is the systematic search method with no heuristics applied. A total of 18 test 

runs were performed against all typical users. Results of test runs are plotted 

into charts (Figure 5.1 and 5.2). The X-axis represents test runs for individual 

users. The Y-axis is either the number of backtracks or the search time in 

seconds. 



With FC vs. Without FC 
Without  FC 

1 2 3 4 5 6 7 8 9 

individual user 

Figure 5.1: Number of backtracks comparison chart of searching with or with- 
out  FC with the domain size of 80 

5.1 Forward checking 

The  experimental data of applying FC and not applying FC is measured in 

the number of backtracks against test runs for each individual user, and is 

plotted into a chart (see Figure 5.1). The comparison is performed under 

another measurcmcnt - search time as well. The test results arc plotted in 

Figure 5.2. All Test runs were perforrned in an incomplete system environment 

'rn: the donlain size of variables. see table 3.1 



with partial system constraints posted. The  charts from both Figure 5.1 and 

Figure 5.2 show tha t  the method with FC applied has morc nct savings in 

both the number of backtracks and search time. In some test runs, the savings 

were about approximately 2 times or more even. The results indicate that  

applying FC into the search procedure can improve the search performance 

and is suitable for the course planning application. 

With FC vs. Without FC (comparison in Search time) 
n Wilh FC 

mWilhout FC 
250 , 

1 2 3 4 5 6 7 R 9 

Individual user 

Figure 5.2: Search time comparison chart of searching with or without FC  
with the donlain size of 80 

5.2 Symmetry breaking 

Next, we look a t  thc experimental results of breaking or not breaking s y n -  

inetry. The experimeiit configuratioi~ used to verify the performance of using 

svmmetry breaking is as follows. The donlain sizes are GO, 80 and 120. The 



Table 5.1: Performance evaluation on symmetry breaking 

total number of system constraints is 28, excluding the symmetry-breaking 

constraints. The maximum number of course load is 12 credit hours. The 

Domain 
size 

search method is the systematic search method with no heuristics applied. 

This test case ran against all 9 users. A typical set of the experimental results 

is listed in the table 5.1. They are for the user who is an intended major in 

computer science and interested in the database area. 

Instead of listing the experimental data on this test case for the remaining 8 

users into 8 tables, the data are plotted into the two charts (see Figure 5.3 and 

Figure 5.4). The first chart (Figure 5.3) shows the comparison of the number 

of backtracks used when the symmetry breaking technique is applied versus 

when symmetry breaking is not applied and the number of backtracks was less 

With symmetry breaking 
# of search time 

backtracks (seconds) 

when the symmetry technique was used in the test runs. The second chart 

(Figure 5.4) shows the comparison of the search time. The runs, in which the 

symmetry breaking was applied, used less search time. From the two charts, it 

clearly shows that the search method with the symmetry-breaking technique 

has better performance with respect to the number of backtracks and the search 

time. Hence, we can conclude that it is better to apply symmetry breaking 

techniques in the curriculum problem solving for good performance. 

No Symmetry breaking 
# of search time 

backtracks (seconds) 



Number of backtracks comparison on symmetry breaking 

3 4 5 6 7 

Individual users 

Figure 5.3: Number of backtracks comparison chart on symmetry breaking 
techniques with the domain size of 80 

5.3 Comparison of search methods 

Next, we inspect the performance comparison anlong three different search 

methods: systematic search with no heuristics, systematic local search, and 

the systematic search with heuristic. Experimental results are presented in 

Tables 5.2, 5.3, and 5.4. All system constraints arc loaded into the system 

for this set of test runs. I compared the performance of the three different 

search methods a t  a domain size changing from 60, 80, up to 120. A total 

of 18 test runs were executed to cornpare the performance anlong the three 

search methods. Similar test results were collected. One set of test results is 

listed in the tables below (5.2. 5.3. and 5.4). We use the number of backtracks 

and the number of iterations to evaluate the performance of thc mcthod. The 



Search time comparison on symmetry breaking 

0 symmetry breaking applied 

w symmetry breaking not applied 

1 2 3 4 5 6 7 8 9 

Individual users 

Figure 5.4: Search time comparison chart on symmetry breaking tecllniqucs 
with the doma.in size of 80 

number of backtracks is the number of tiriles trying to un-assign an assigned 

varia.ble. The  number of iterations is the number of times t,rying to assign a 

future variables during the search. The  three tables (5.2, 5.3, and 5.4) show 

that  as  domain size increases, the number of backtracks and the number of iter- 

a.tions of both the local search nlet,hod and the systematic search method with 

no he~r is t~ ics  increase dra.matica.11~. In contrast, the systematic search with 

heuristics can find a solut,ion without ba~kt~racking in all 3 cases. It  ma.inta.ins 

good performance as the domain size increases. Hence, results confirm that 

a systematic search method nccds good heuristics to ha.ve good pcrforrnance, 

especially when the size of the domain bccornes large. 



Table 5.2: Search method performance comparison with m=60 

Search method I # of backtracks ( # of Iterations I 
I Systematic search with no heuristic I 7189 I 4435 I 

Systematic search with VOHg 

Table 5.3: Search method performance comparison with m=80 

[ Local search with no heuristic I 740 

0 

10 

5.4 Phase two performance evaluation 

39 

Search method 
Systematic search with no heuristic 

Systematic search with VOH 
Local search with no heuristic 

As for the second phase, we study the performance of local search method 

when the user's requests break different numbers of constraints at  different 

positions in the schedule. A position in a plan is defined as follows: for a plan 

with p  number of columns, a slot S is at  column c  with c / p  < 30%, then we 

say S is at  an early position of the plan; if 30% < c / p  < 70%, then S is posted 

at  a middle position, otherwise it is posted at  a late stage of the schedule. 

In order to compare the performance of the systematic local search method, 

we also run the second phase using the search algorithm from the first phase. 

Table 5.4: Search method performance comparison with m=120 

# of backtracks 
12991 

0 
6740 

# of Iterations 
8997 
39 
983 

I Svstematic search with VOH I 0 I 39 I 

Search method 
Systematic search with no heuristic 

# of backtracks ) # of Iterations 

I Local search with no heuristic I 11811 

99760 

5585 

31216 



Where the second phase is solved only as a CSP, the algorithm either returns 

a solution satisfying all constraints including the newly added user constraints 

or a failure. In the case of a failure, the system keeps the old solution and 

discards all newly added user constraints. The experiment configuration used 

to evaluate the performance of systematic local search (SLS) and systematic 

search (modified DBT search) at  the second stage is as follows. The number of 

courses available is 120. Maximum course load is 12 credit hours. The search 

time limit for the systematic local search method is 3 minutes. The following 

cases are tested on all 9 users. The precondition of running these experiments 

is that the system has entered phase two and it has proposed an initial plan. 

- Test case one: Modifications made in the proposed plan do not break any 

constraints, e.g. replacing an English course with a Philosophy course, 

which does not violate any system constraint. Make this type of change 

at an early, middle or late position respectively. 

- Test case two: Modifications made in the proposed plan break one con- 

straint. For example, replacing a mandatory computer course with a 

non-mandatory computer course. Thus, a mandatory constraint is bro- 

ken, provided the newly chosen computer course does not break any other 

constraint. Then, the system needs to fix this broken constraint by re- 

placing this mandatory course at  some other place in the plan with all 

constraints satisfied. Another typical test case is like this: the plan sug- 

gests a course in the third semester, a change is made by the user to take 

that course in the second semester provided there is no prerequisite or 

other constraint violated. This change leads to two cells having the same 

value. Thus, the all-different constraint is broken and the system needs 

to provide a good suggestion to reassign a new course to the slot in the 

third semester to repair the all-different constraint. Make this type of 

change that violates either a mandatory or (exclusive or) the all-different 

constraint at an early, middle or late position in the plan. 



- Test case three: Modifications made in the proposed plan break two con- 

straints, e.g. change the contents of two slots in the proposed plan, 

which breaks one prerequisite and one mandatory constraints. Choose 

the two slots from two early positions, two middle positions and two late 

positions respectively. 

- Test case four: Modifications made in the proposed plan break three con- 

straints, e.g. change the contents of three slots in the proposed plan 

so that a prerequisite, a mandatory and the all-different constraints are 

broken. Choose the three slots at three early positions and late positions 

respectively. 

- Test case five: Changes made at  two slots in the proposed plan break three 

constraints, a prerequisite, an equivalent and the all-different constraints. 

The change is to request taking two equivalent courses, which should not 

be satisfied. Choose the two slots at two middle positions. This is a 

special case. 

Table 5.5 lists the test results for a user who is a computer science major and 

wants to  have a business minor. We observe that when the user's requests (the 

modifications committed by the user) do not violate any system constraints, 

the SLS search returns the confirmation within a second and the modified 

DBT method takes 11 seconds to return. The SLS is much faster. When 

the user requests break from one to three constraints, local search has shorter 

search time than the systematic search in seven out of nine cases. For the 

special case that no feasible plan can satisfy the user's requests, it takes the 

systematic method a very long time to return a failure and report the culprit 

user constraints, which really are the two modifications made to  take two 

equivalent courses. The SLS method stops with one user constraint satisfied 

when the predefined search time is up. When the systematic method stops 

searching at  the predefined time, it stops with the old solution returned but no 

report of finding culprit user constraints. Instead, it rejects all user constraints. 

SLS reaches a better solution in the given time frame. 



Table 5.5: Performance comparison between the systematical Local search and 
the modified DBT search 

Systematic Local Search I Modified DBT search 

# of broken Position in 
# ?f time used 1 . # of 

constraints the ~ l a n  iterations (seconds) iterations time (seconds 

Middle 
Late 

I 

n Early 2 1 

3 Early 1838 151 1 1638 193 

39 11 

1 Early 222 39 
Middle 31 44 

Late 10 16 

Middle 40 
Late 194 

1222 171 
910 79 
62 10 

*note: In this test case, we did not let the systematic search method stop at 
the predefined search time limit, because we would like to see how long to take 
it to find a failure. 

3 Early 13 9 
Middle 2024 180 

Late 3 2 

The first four sets of test cases listed above were run against the remaining 

8 test users as well. Thus, the total number of users is nine. Each user runs 

93 29 
8324' 6478 

3 4 

four sets of test cases at three different positions. The total number of test 

runs is 108. Instead of listing all experimental data in a table for the remaining 

8 users, I plotted the data into figures so that we can compare the performance 

with respect to search time between the two methods more easily. Three figures 

are included below. Figure 5.5 displays the time used by two methods for 9 

different users when users make changes at early positions in the plan. Data 

used to plot Figure 5.5 are the result of running the second set of test cases 

(changes made break one system constraint). The SLS method used less search 

time in 9 out of 9 runs. Figure 5.6 shows the time used by two methods for 9 

different users when users make changes that breaks two system constraints, 



Search time comparison at early positions 

0 Systemtic local search I Modified DBT 

180 1 1 

Individual users 

Figure 5.5: Search time comparison a t  early positions 

a.t middle positions in the plan. The SLS method outperformed the modified 

DBT method in 8 out of' 9 runs. 

Figure 5.7 plots the time used by two methods for 9 different users whcn 

users make changes at  la,te positions in the plan a i d  the test runs fell in the 

category of the test case four (the changes break three system constraints, the 

specia.1 case is not included). The SLS method used less time in 7 out of 9 runs. 

Overall, there were 84 out of 108 runs that  SLS solved problem and returned 

the answer within a minutes. Thcre were 79 out of 108 that  the SLS method 

used less search time to return the solution than the modified DBT. 

Hence, from above experimental results, it is observed that  the SLS method 

usually is able to solve the problem within a minute in most of cases and overall 

has better performance with respect t o  the response t,ime than modified DBT. 



Search time comparison at middle positions 

Syslemallc local search Mccil~ed DBT search 

Individual users 

Figure 5.6: Search time comparison a t  middle positions 

The  SLS method can return a. better qualit,y solution within the given time 

fra.me in the case tha.t user requests make the problem over constrained. 



Search time comparison at late positions 

nSyslemallc local search rnelhodm Modilied DBT 

Individual users 

Figure 5.7: Search time conlparison a t  la.te posit.ions 



Chapter 6 

Conclusion 

6.1 Summary 

In this thesis, a twephase CSP based reasoning model is developed to solve 

the curriculum-planning problem. Due to the diversity in the characteristics 

and preferences of different users, mixed-initiative is integrated into the plan- 

ning system, which provides a direct-manipulation environment for the efficient 

communication between a user and the system. Through a cycle of plan con- 

struction, revision, and improvement, the mixed-initiative system can serve 

various users effectively. 

The CSP based planning model solves the problem using two phases. A 
backtrack-based systematic search method is used in the first phase to produce 

an initial solution. In the second phase, the user can take the initiative to post 

requests and ask for new solutions. Then the system starts to search. It either 

returns a solution or asks for help with an optimal solution, which some user 

constraints are not satisfied. It depends on the user to take further actions. The 

systematic local search method is employed to construct new plans iteratively, 

under the interactive guidance from the user. 

Because symmetry exists in the course-planning problem, an approach of 

adding partial-ordering constraints is employed to break the symmetry arising 

in the model. Value ordering heuristics are used as  well to speed up the search. 



Results from the experiments with actual curriculum data are promising and 

show that the system generates effective curriculum plans efficiently. 

Experiments with actual course planning data illustrate that constraint 

programming techniques with proper variable ordering and value ordering 

heuristics can yield impressive results when solving curriculum-planning prob- 

lems. The promising results indicate that it is a proper approach to model 

the curriculum-planning problem into a CP substrate and solve it using CP 

techniques. The success of modeling the planning problem into a CSP demon- 

strates connections between planning and constraint satisfaction as well. 

6.2 Future work 

One idea for future work is to determine what the better criteria could be used 

for the system to stop the search in the second phase. Should all solutions 

found be returned to the user or only the optimal one be returned? To solve 

these questions, it requires further investigate and also more input from users. 

Indeed, sometimes a "worse solution" may be easier for a user to correct or 

perhaps even preferred by the user. The knowledge and ability of individual 

users should be taken into consideration to solve these questions and improve 

the system. 

The response time collected in the second phase during the experiments is 

a little bit long for an interactive system. Another place for future work would 

be considering to  include compilation methods that transform the original 

problem into a data structure to allow a short response time for interactive 

solving [3 11. 

Since the goal of the thesis is not to discuss how to build software to solve 

the curriculum-planning problem but concentrate on presenting an efficient 

CP model. Thus, scalability, generalization and deployability are beyond the 

scope of this thesis and can be considered as future work. 
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