THE EVOLUTION OF MITOCHONDRIAL GENOME STRUCTURE AND FUNCTION IN INSECTS

by
James Bruce Stewart
B.Sc.H, University of Waterloo, Waterloo, Ontario, 1997
M.Sc. Simon Fraser University, Burnaby, British Columbia, 2001

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
in the
Department of Molecular Biology and Biochemistry
© James Bruce Stewart, 2005
SIMON FRASER UNIVERSITY
Summer 2005

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

Approval

```
Name: James Bruce Stewart
Degree:
Doctor of Philosophy
```

Title of thesis:
The Evolution of Mitochondrial Genome Structure and Function in Insects
Examining Committee:
Chair: Dr. Nicholas Harden, Associate Professor, Department of Molecular Biology and Biochemistry

Dr. Andrew T. Beckenbach, Professor
Senior Supervisor
Department of Biological Sciences

Dr. David L. Baillie, Professor
Supervisory Committee Member
Department of Molecular Biology and Biochemistry

Dr. Peter J. Unrau, Assistant Professor
Supervisory Committee Member
Department of Molecular Biology and Biochemistry

Dr. Esther M. Verheyen, Associate Professor
Public Examiner
Department of Molecular Biology and Biochemstry

[^0]
SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of this work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain shall not be allowed without the author's written permission. $\$

Permission for public performance, or limited permission for private scholarly use, of any multimedia materials forming part of this work, may have been granted by the author. This information may be found on the separately catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Simon Fraser University Archive.

W. A. C. Bennett Library
Simon Fraser University
Burnaby, BC, Canada

Abstract

The mitochondrial genomes (mt-genomes) of animals are very compact in structure, encoding thirteen protein genes involved in the production of ATP, and the key components of the translation system to express these proteins. The mitochondrial expression system, which functions separately from that of the nucleus, shows characteristics of both prokaryotic and eukaryotic expression systems, and has diverged greatly from that currently observed in the closest living relatives of mitochondria, the α-proteobacteria. Current understanding of transcript maturation is that large multi-gene transcripts are processed by the removal of intervening tRNA genes, leaving behind RNA templates to be matured into the functional mRNAs and rRNAs. One of the most striking features of insect mt-genomes has been the apparent replacement of a start codon with a stop codon for the essential mitochondrial gene cytochrome c oxidase subunit 1 (coxl). When first observed in Drosophila, Clary and Wolstenholme proposed a highly unusual four-base "ATAA" start codon. With the expanded sampling of mitochondrial sequence across the various insect orders, the data does not support the use of this aberrant initiation for coxl. At the initiation of this study, the diversity of insect groups represented by complete mt-genome sequence was very poor. To address this deficit, I undertook sequencing projects to increase the number of insect orders represented in the mitochondrial sequence databases. I report the complete mt-genome sequences for two insects, the spittlebug Philaenus spumarius, and the giant stonefly Pteronarcys princeps. The sequences are annotated and compared to other insect mt-genomes in the sequence databases. I report the cDNA sequences of Drosophila melanogaster mitochondrial mRNAs, rRNA subunits, and a population of pre-mRNA molecules that are intermediates of the RNA processing system. Models to explain mitochondrial transcript maturation in light of these new observations are proposed. Comparative analyses were undertaken to apply the information gained from the mitochondrial transcripts of D. melanogaster to the mitochondrial structure and annotations of mt-genomes from the other insects. These analyses suggest a 5 ' specific modification to the tRNA punctuation model for insect mitochondria. This modification may represent a further evolutionary simplification of the mitochondrial expression system.

To Laila, for everything,
And to You who we patiently await.

In memory:
Grandpa Bruce Stewart
December 6, 1922 - February 27, 2001
and
Great-Grandpa Ted Baxter
October 20, 1897 - May 5, 1990

Acknowledgements

To my senior supervisor Andy Beckenbach, for allowing me the chance to explore this project and believing that I could get it done. The last few years have been a lot of fun, and I will miss our lab chats.

A special thanks to my former lab-mate Russ Watkins for keeping in touch after moving on, and for supplying a key tip for my early RNA struggles. To my lab-mates Andrea Scouras, Dave Russell, Alison Cloutier, Karen Beckenbach, Denise Reichow, Cam Muir and Mike Vankoeveringe. Thanks for all the tips, advice and silliness.

Thanks to the RNA-work troubleshooters Alex Ebhardt and Don Sinclair, and to the computer guys Jeff Bryer and Duncan Napier. To Jillian Smith, Darrell Bessette and Theresa Kitos for the help with cell culture.

To my committee members Peter Unrau and Dave Baillie for their time, effort and advice over the course of my degree work. I would also like to thank Mike Smith for his role as unofficial committee member. Thank-you to Jamie Cates for the very important discussion of translation at a key time.

To Laurie Kaguni and Esther Verheyen, my external examining committee members, for the useful, constructive and kind comments regarding my thesis.

To my fellow graduate students in Biology and the MBB for all the fun and for the shop talk. I especially want to thank John Taylor, Ian Hamilton, Jeremy Mitchell, Tom Chapman, Lynnette Kuervers, Nigel O'Neil, Greg Vatcher, Steve Springer, Michelle Harrison, Susanne Kühnholz, Richard Fahlman, Anat Feldman, Carrie Simms and Daniela Ginta for important discussions over the course of my study. My personal thanks to the Biergarten Entrepreneurs, past and present. Where else would the discussions take place? To Carlo Artieri, Leslie Mitchell and Connie Roth for seminar practice sessions.

To our Vancouver friends; Annick, Kevin and Giselle; Cam; Cathy and Rasmus; David; Kym, Dana and Tayme; Kat and Greg; Tina and Olie; Jennifer and Stevo; Markus, Lisa and Anna; Cris and Diana; Anna, Jurgen, Max and Sophie; Nat, Dirk, Steffen and Gabby; Leah, Omar and Amira; Melissa. From Ontario, to Pete, Tina, Mason and Rowan; Jilly, Bomina, Susan and Carole; Scott, Kurt and Karl and Christine for continued support and friendship.

Thanks to Cathy, Don, Mike, Kelly Joel, Ardis, Fred, and to Norm, Joe, Vicky, Rob, Tracy, Mary and all the rest of my family, for your patience, support, and well wishes over the years. Thank-you to Agneta and Zubin for welcoming me.

Table of Contents

Approval ii
Abstract. iii
Dedication iv
Acknowledgements. v
Table of Contents. vi
List of Tables. ix
List of Figures x
CHAPTER 1. Introduction 1
1.1. Mitochondria. 1
1.2. Mitochondrial Evolution. 2
1.3. Animal Mitochondrial Genomes 5
1.3.1. Animal mitochondrial gene content 5
1.3.2. Animal mitochondrial genome structure 9
1.3.3. Mitochondrial genome sequencing 10
1.4. Mitochondrial Transcription And Replication. 14
1.4.1. Mitochondrial replication in animals 14
1.4.2. Variation in transcriptional systems between eukaryotic groups. 17
1.4.3. Mammalian mitochondrial transcription 18
1.4.4. Transcript processing in mammalian mitochondria 19
1.4.5. Transcription in Drosophila mitochondria 20
1.4.6. RNA editing and programmed frameshifting in animal mitochondria 23
1.5. Thesis Outline 24
CHAPTER 2. The Complete Mitochondrial Genome Sequence of the Meadow Spittlebug Philaenus spumarius (Hemiptera: Auchenorrhyncha: Cercopoidae) 26
2.1. Introduction. 26
2.2. Materials and Methods 28
2.2.1. DNA extraction and PCR amplification. 28
2.2.2. Sequence assembly, annotation and analysis 32
2.3. Results and Discussion 33
2.3.1. Genome content 33
2.3.2. Protein coding genes 39
2.3.3. Genomic comparisons 43
2.4. Conclusions 44
CHAPTER 3. The Complete Mitochondrial Genome Sequence of a Giant Stonefly, Pteronarcys princeps (Plecoptera; Pteronarcyidae) 47
3.1. Introduction 47
3.2. Materials and Methods 51
3.2.1. Specimen collection and identification. 51
3.2.2. DNA isolation 51
3.2.3. PCR and Long-PCR amplification 52
3.2.4. Purification of PCR products 54
3.2.5. DNA sequencing 56
3.2.6. Sequence assembly, annotation and analysis 56
3.2.7. Sequence comparisons. 57
3.3. Results and Discussion 61
3.3.1. Genome annotation 61
3.3.2. Genome architecture 65
3.3.3. Nucleotide composition 65
3.3.4. Stonefly A+T rich regions 74
3.4 Conclusions 80
CHAPTER 4. Characterization Of Mitochondrial Transcripts In Drosophila melanogaster 82
4.1. Introduction 82
4.1.1. The coxl initiation mystery in insect mitochondria 82
4.1.2. Mitochondrial transcription and RNA processing in Drosophila. 84
4.1.3. 5' amplification and sequencing 86
4.2. Materials and methods 89
4.2.1. Blast searches for nuclear copies of the coxl gene in Drosophila. 89
4.2.2. Maintenance of Drosophila fly stocks. 89
4.2.3. Maintenence of Drosophila Schneider-2 cell lines. 90
4.2.4. Mitochondrial isolation protocols 91
4.2.5. RNA extraction protocol 93
4.2.6. Reverse-transcription pcr protocols 96
4.2.7. Protocol for 5'-RACE amplification 100
4.2.8. Protocol for 3'-RACE amplicication 101
4.2.9. RNA circularization for RT-PCR. 101
4.2.10. Cloning of amplification products. 102
4.2.11. Sequencing of cDNAs and sequence alignment. 104
4.3. Results 104
4.3.1. Search for a nuclear copy of cox 1 104
4.3.2. RNA extraction from mitochondria 106
4.3.3. Detection of unprocessed pre-mRNA molecules in flies 107
4.3.4. Mapping of mRNA and rRNA boundaries by RACE 107
4.3.5. Detection of RACE amplified RNAs from Schneider-2 cells 111
4.3.6. Characterization of RNAs by CR-RT-PCR 111
4.4. Discussion 117
4.4.1. Schnieder-2 cells versus adult fly data. 117
4.4.2. Detection of pre-mRNA molecules 118
4.4.3. Description of mitochondrial mRNAs. 119
4.4.4. Intitiation of the coxl gene. 127
4.4.5. Characterization of the ribosomal RNAs 129
4.4.6. Polyadenylated pre-mRNAs. 130
CHAPTER 5. Conclusions And Discussion 136
5.1. Transcript Characterization in Drosophila Mitochondria 136
5.1.1. Characterization of mt-rRNAs 136
5.1.2. Characterization of mt-mRNAs. 138
5.1.3. Processing of tRNAs versus mRNAs in insect mitochondria 141
5.2. Insect Mitochondrial Genomics. 143
5.2.1. Two insect mitochondrial genomes. 143
5.2.2. Annotation of mitochondrial genes 143
5.2.3. Genome structure and rearrangements. 145
5.3. Future Directions 148
5.3.1. Modification of the CR-RT-PCR protocol 148
5.3.2. Transcrption of $\mathrm{A}+\mathrm{T}$ rich region sequence 149
5.3.3. Further characterization of nuclear transcription and processing factors. 151
APPENDIX A. Genbank Flatfile for Philaenus spumarius 155
APPENDIX B. Genbank Flatfile for Pteronarcys princeps 165
REFERENCES 174

List of Tables

Table 2.1. List of Primer Pairs Utilized in the Amplification of the Mitochondrial Genome of Philaenus spumarius
 30

Table 2.2. Insect Mitochondrial Genomes Utilized in Alignments and Comparative Analyses. 35
Table 2.3. Nucleotide Composition of Meadow Spittlebug (P. spumarius) Genome Features 40
Table 2.4. Relative Synonymous Codon Usage for Meadow Spittlebug, the Kissing Bug and the Migratory Locust Mitochondrial Genomes 45
Table 3.1 Primers Used in the Amplification of the Mitochondrial Genome of the Giant Stonefly Pteronarcys princeps 53
Table 3.2. Complete and Near-Complete Hexapod Mitochondrial Genome Sequences Utilized in this Study, with their GenBank Accession Numbers. 59
Table 3.3. Nucleotide Composition of Stonefly Mitochondrial Genome Features 66
Table 3.4. Comparison of Relative Synonymous Codon Usage for the Giant Stonefly, a Silverfish and a Locust. 68
Table 3.5. Positional Nucleotide Bias in the Mt-Genome of the Giant Stonefly and Other Representative Insects. 73
Table 4.1. Primers Used in 5^{\prime} and 3^{\prime} RACE Amplification. 97
Table 4.2. Primers Utilized in CR-RT-PCR Reactions 98
Table 4.3. Results of tBlastn Searches for a Nuclear coxl Gene. 105
Table 4.4. Positional Annotation of Transcribed RNA Nucleotides as Determined Through cDNA Sequencing 115

List of Figures

Figure 1.1. Summary of Major Changes in the Evolution of Animal Mitochondrial Genome Content7
Figure 1.2. An Insect Phylogeny. 13
Figure 1.3. Schematic Representation of Asymmetric Unidirectional Versus Bi-directional, Symmetric Semidiscontinious Replication in Animal Mitochondria 15
Figure 1.4. Summary of Results from Berthier et al. (1986) Study of Drosophila Mitochondrial RNAs 22
Figure 2.1. One view of Evolutionary Relationships of the Order Hemiptera 27
Figure 2.2. Schematic Representation of Amplification Strategy Employed for the Philaenus spumarius Mitochondrial Genome 31
Figure 2.3. Putative secondary structure folds for the tRNA genes of the Philaenus spumarius mt-genome. 36
Figure 2.4. Putative stem-loop structures for two repeat units of Repeat Region 1 41
Figure 2.5. Map of the Region Between the $s r R N A$ and the $n a d 2$ Genes 42
Figure 3.1. Differing Phylogenetic Views of the Placement of Plecoptera within the Insects 50
Figure 3.2. Proposed Secondary Structure for the tRNA Genes of the Giant Stonefly 63
Figure 3.3. Illustration of the Directional Mutational Pressure Observed in the Mitochondrial genome of the Giant Stonefly. 71
Figure 3.4. Dot Plot Analyses of the A+T Rich Region of Pteronarcys princeps. 76
Figure 3.5. Predicted Secondary Structure Folds for Potential Stem-Loop Regions Identified within the A+T Rich Region of the Giant Stonefly 77
Figure 3.6. The A+T Rich Regions of Pteronarcys princeps and Two Peltoperla Species 78
Figure 4.1. Alignment of the 5' End of the coxl Gene for Various Insect, Springtail and Crustacean Representatives 85
Figure 4.2. Summary of the Analysis of Mitochondrial Transcripts from Drosophila, as Described by Berthier et al. (1986) 87
Figure 4.3. A Schematic Representation of the Circularization RT-PCR Reaction 103
Figure 4.4. Alignment of 3^{\prime} cDNA Sequence to the Mitochondrial DNA Sense Strand for Drosophila melanogaster. 109
Figure 4.5. Alignment of 5' cDNA Sequence to the Mitochondrial DNA Sense Strand for Drosophila melanogaster. 110
Figure 4.6. Example of Sequencing Results Obtained from CR-RT-PCR Generated cDNAs. 113
Figure 4.7. Characterization of Polyadenylated mRNA and pre-mRNA Molecules from Drosophila mitochondria 116
Figure 4.8. A Model for Processing of the nad3-tRNA ${ }^{G l u}$ RNA Transcript 132
Figure 4.9. A Model for the Processing of the cox2 - atp8 Transcript 134
Figure 5.1. Transcription Map for the D. melanogaster Mitochondrial Chromosome. 137
Figure 5.2. Proposed Annotation of Insect coxl 5' ends for Representative Insect and Hexapod Taxa 146

Chapter 1. Introduction

1.1. Mitochondria

Mitochondria are organelles found within most eukaryotic cells. They are observed to be small $(0.5-1.0 \mu \mathrm{~m})$, typically rod shaped, with two distinct membrane bilayers surrounding them. They are responsible for the generation of cellular ATP through the oxidative phosphorylation enzyme pathway. A proton gradient across the mitochondrial inner membrane, maintained by the oxidative phosphorylation enzyme complexes, is utilized to drive the production of ATP from ADP and phosphate within the mitochondrial inner matrix.

The term "mitochondria" was originally coined by C. Benda in 1898 , formally naming these entities that had been observed within cells for the preceding 60 years (Ernster and Schatz, 1981). During the early stages of molecular technology, DNA was isolated from the mitochondrial organelles, showing that the mitochondria had a genetic system independent of the nuclear genome of the cell (Nass and Nass, 1963a; Nass and Nass, 1963b; Nass, et al., 1965). This discovery lead to a renewed interest in the "Serial Endosymbiotic Theory", first proposed by Altmann in 1890, that the mitochondrion was the result of a bacterium that entered into a symbiotic relationship with the ancestor of the eukaryotic cell (Ernster and Schatz, 1981). Widespread acceptance of an endosymbiotic origin of mitochondria and chloroplasts appears to have been achieved after clear arguments that would support the theory were described by Gray and Doolittle (1982). Subsequent studies have supported endosymbiotic theory, and remaining controversies focusing on the Serial Endosymbiotic Theory versus a simultaneous origin of the
mitochondria and nucleus in eukaryotic cells (Gray, 1992; Gray, et al., 1999; Dyall, et al., 2004a; Gray, 2005).

1.2. Mitochondrial Evolution

Current opinions of mitochondrial origin are based on molecular phylogenetic analyses of various molecular markers, which consistently describe the mitochondria as branching with extant α-proteobacteria (Olsen, et al., 1994; Viale and Arakaki, 1994; Andersson, et al., 1998). This endosymbiotic association is thought to have occurred at a very early stage of the evolution of eukaryotes. Eukaryotic cells exist that lack mitochondria, but most groups have now been investigated and appear to either encode genes that are clearly of mitochondrial origin, or contain organelles that may be modified mitochondria (Gray, et al., 1999). Currently there are claims that organelles known as hydrogenosomes may be highly modified mitochondria that have evolved in place of the aerobically respiring mitochondria in anaerobic eukaryotes (Hrdy, et al., 2004; Boxma, et al., 2005), however the evidence supporting this assertion is still controversial (Dyall, et al., 2004b; Gray, 2005). Mitosomes are also considered to be degenerate mitochondrial organelles (Gray, et al., 2004), minimizing the potential number of protists that may have maintained a primitive amitochondriate state (Gray, 2005).

The diversity of structural forms that extant mt-genomes have adopted is often not appreciated by those familiar with only animal, plant and yeast mitochondrial systems. The circular chromosome presumed to be ancestral state has been modified to single linear molecules in some protist groups, split into multiple linear chromosomes in Amoebidium protists, or developed into complex groups of gene encoding maxicircles and minicircles that direct RNA editing in trypanosome mitochondria (Gray, et al., 1999;

Burger, et al., 2003a; Burger, et al., 2003b; Bullerwell and Gray, 2004; Gray, et al., 2004).

Great functional diversity has also been observed, including numerous examples of RNA editing systems (Gray, 2003). There have been descriptions of rRNA genes expressed as pieces that must self-associate to function (Boer and Gray, 1988; Gillespie, et al., 1999). Protein genes have been divided into independently expressed protein subunits (Edqvist, et al., 2000), with one portion expressed in the mitochondria and the other expressed in the cytoplasm (Nedelcu, et al., 2000; Perez-Martinez, et al., 2001).

The mt-genomes for which complete sequence exists show that extensive gene loss by the mitochondrial chromosome has occurred in all eukaryotic lineages. The hypothetical ancestor of the mitochondria would be expected to lose genes required by the free living organism as purifying selection on these genes was diminished within the new host. Further gene loss has since occurred as genes were moved from the mitochondrial genome to the nuclear genome, presumably to enable nuclear coordination of expression of the mitochondrial genes and thereby increase nuclear control over mitochondrial function (Muller and Martin, 1999; de Grey, 2005). The gene content within mt-genomes varies greatly between the different extant groups, from 98 genes in the freshwater protozoon Reclinomonas americana (Lang, et al., 1997) to only three genes in Plasmodium species (Conway, et al., 2000).

Given that from 600 to 1000 other genes have successfully transferred from the mtgenome to the nuclear genome, considerable effort has gone into developing a theory to describe why mitochondria have actually maintained any genes, and not allowed for complete transfer of genes to the nucleus. Three main theories are currently cited to
explain the persistence of organellar DNA; the hydrophobicity hypothesis, the codon disparity hypothesis, and location based expressional control (Adams and Palmer, 2003; de Grey, 2005). The hydrophobicity hypothesis demonstrates that mitochondrial gene products are among the most hydrophobic proteins, are difficult to import across the outer and inner mitochondrial membranes, and argue that these properties of the proteins have prevented gene transfer to the nucleus (von Heijne, 1986; Popot and de Vitry, 1990; Claros, et al., 1995).

The second theory notes that the changes in genetic code between nuclear and mitochondrial genomes, especially the common change of UGA to code for tryptophan in mitochondria instead of a stop codon in the nuclear code, would lead to proteins being translated with severe truncations or amino acid substitutions and would be selected against gene transfer (Andersson and Kurland, 1991; Jacobs, 1991; Leblanc, et al., 1997). The codon changes appear to have occurred after the loss of the majority of genes, so may be involved in maintenance of the now heavily reduced mt-chromosome (de Grey, 2005).

The third hypothesis proposes that key genes involved in oxidative phosphorylation are expressed in the mitochondria so that their proximity to the enzyme complexes may regulate their expression (Allen, 1993). Location based expressional control theory is gaining support within the community (Race, et al., 1999; Adams and Palmer, 2003; Allen, 2003; Gaspari, et al., 2004b). Experimental elucidation of translational-based control of mt-mRNAs in yeast (Naithani, et al., 2003; Barrientos, et al., 2004) and potentially in humans (Mili and Pinol-Roma, 2003; Mootha, et al., 2003; Xu, et al., 2004) are adding considerable support to this hypothesis.

1.3. Animal Mitochondrial Genomes

1.3.1. Animal Mitochondrial Gene Content

In terms of structure and gene content, animal mt-genomes are far more stable and predictable than mt-genomes in other eukaryotic groups (Wolstenholme, 1992; Boore, 1999). The standard animal mt-genome encodes thirteen protein-coding genes that are subunits of four of the five mitochondrial membrane associated protein complexes involved in oxidative phosphorylation. The genes are $N A D H$ dehydrogenase subunit 1 (nad1), nad2, nad3, nad4, nad4L, nad5 and nad6 from complex I (NADH-ubiquinol oxidoreductase), cytochrome b (cytb or cob) from complex III, (ubiquinone-cytochrome-c-oxidoreductase), cytochrome c oxidase subunit $I(\operatorname{cox} 1)$, cox2, and cox 3 from complex IV (cytochrome c oxidase), and ATP synthase FO subunit 6 (atp 6) and atp8 from complex V (ATP synthase). In addition to the protein coding genes, the mitochondria encode a minimal translation system, including the large and small mitochondrial ribosomal subunits ($l r R N A$ and $\operatorname{sr} R N A$, respectively), as well as 22 tRNA genes ${ }^{1}$. The 22 tRNA genes are the entire complement found within the mitochondria, and interact with the two or four degenerate codons for that amino acid through a "super-wobble" codon pairing interaction (Taanman, 1999; Lavrov, et al., 2005). The final structural feature is a large non-coding region recognized for its involvement in replication and transcript initiation, and variously designated the major control region, displacement loop (D-loop), major non-coding region or $\mathrm{A}+\mathrm{T}$ rich region (in insects and other hexapods).

[^1]Variations from this standard genome content are rare, but known from a variety of different animal groups (see Figure 1.1). The most basal of the metazoa, the sponges (phylum Porifera), are represented by three complete mitochondrial genome sequences and appear to have retained a small number of genes that are found in the mitochondria of fungi, protists and plants (Gray, et al., 1999; Burger, et al., 2003a). In the three sponge mt-genomes, the $\operatorname{atp} 9$ subunit of complex V has been retained within the mt-genome, whereas it has been transferred to the nuclear genome in other animal groups (Lavrov, et al., 2005; Lavrov and Lang, 2005). A Tethya sponge mt-genome has retained three additional tRNA genes not seen in other animal mitochondrial genomes. A second methionine tRNA (the additional elongator $t R N A^{\text {Met }}$ as well as the f-met initiator $\left.t R N A^{M e t}\right)$, the $t R N A^{I l-A T A}$, and the $t R N A^{-A r g-A G Y}$ are found in addition to the 22 tRNAs normally found in the animals (Lavrov, et al., 2005). Two additional sponge mt-genome sequences are available and appear to have subsequently lost the elongator $t R N A^{\text {Met }}$ but retain $t R N A^{I l e-A T A}$ and $t R N A^{A r g-A G Y}$ (Lavrov, et al., 2005; Lavrov and Lang, 2005).

Addition of non-ancestral genes to the mitochondrial chromosome has only been reported in the Cnidaria (corals, jellyfish and hydras). The first is a gene originally identified as a member of the MutS mismatch repair system (Pont-Kingdon, et al., 1995; Pont-Kingdon, et al., 1998) and is currently proposed to be fusion of a MutS2 gene with a mismatch recognition-nicking domain (Helfenbein, et al., 2004).

Figure 1.1. Summary of Major Changes in the Evolution of Animal Mitochondrial Genome Content. Adapted from de Grey (2005) with updates from Helfenbein, et al.(2004), Papillon, et al. (2004), Watkins and Beckenbach (1999) and Lavrov et al. (2005). Arrows point to proposed timing of major genome additions, losses or changes in animal evolution. The independent losses of atp8 in mollusks, nematodes and chaetognaths are not represented.

A number of independent animal lineages have lost the atp 8 gene from the mitochondrial chromosome. The first examples of this were found in the nematodes, including the genetic model organism Caenorhabditis elegans and the pig intestinal roundworm Ascaris suum (Okimoto, et al., 1992). A second gene has been acquired in the Cnidaria, which appears to be a homing endonuclease gene that may be involved in the removal of intron sequences that have evolved in the cnidarian mitochondria (Beagley, et al., 1998).

Gene loss in animal mitochondria is rare, but more frequent than the acquisition of new genes. In the chaetognath Paraspadella gotoi, the mt-genome appears to have lost all but one mitochondrial tRNA, as well as the atp6 and atp 8 genes normally found in animal mitochondria (Helfenbein, et al, 2004). A second chaetognath mt-genome has been completely sequenced, and also appears to lack the same protein coding genes and may have lost the remaining tRNA gene (Papillon, et al., 2004). Bivalves, mollusks and platyhelminth flat worm mt-genomes have independently lost the atp 8 gene as well (Hoffmann, et al., 1992; Le, et al., 2000). Whether the atp8 gene has transferred to the nucleus or had its function replaced by other proteins has been of interest to those studying the molecular evolution of the mitochondria. The atp8 protein is very small (51 to 65 aa in length) with very little sequence conservation. At present, it has not yet been identified through sequence similarity to small open reading frames within the complete nuclear genome of C. elegans (Helfenbein, et al., 2004).

Change in tRNA content varies widely across the animals, but generally it appears that early animals shared the 25 tRNA content of the sponges, where the only genetic code change is UGA to coding tryptophan, rather than a terminator (Lavrov, et al., 2005).

The number of tRNAs was reduced to the current 22 by the loss of the elongator $t R N A^{\text {Met- }}$ CAU , the $t R N A^{A r g-U C Y}$, and the $t R N A^{I l e-A U A}$. This altered the genetic codes further to encode only two and four-fold degenerate tRNAs, so that the 22 tRNAs are sufficient to recognize the 62 or 60 coding codons, depending on the particular genetic code (Boore, 1999; Lavrov and Lang, 2005).

1.3.2. Animal Mitochondrial Genome Structure

Typically the animal mitochondrial genome is a circular DNA molecule. Early reports of linear animal mitochondrial genomes have been published, but no sequence confirmation of these molecules has yet been reported (Bridge, et al., 1992). The animal mt-genome is typically very small and compact, at $15-17 \mathrm{~kb}$ in size with very few noncoding nucleotides (Wolstenholme, 1992). Variations in the size of a mitochondrial genome are quite large, with the largest reported mt-genome belonging to the deep-sea scallop, Placopecten magellanicus, at 42 kb (Snyder, et al., 1987), with the smallest being the mt-genome of the chaetognath (or arrow worm) Paraspadella gotoi at 11423bp (Helfenbein, et al., 2004). Larger than average mitochondrial genomes tend to be the result of repeat unit expansions (Boyce, et al., 1989; La Roche, et al., 1990; Fuller and Zouros, 1993), duplication of genome regions (Arndt and Smith, 1998), or the development of very large non-coding regions, not through increase in gene content. In contrast, the smallest mt-genome has been observed to be the result of loss of protein coding and tRNA genes, and the contraction of the major non-coding region (Helfenbein, et al., 2004; Papillon, et al., 2004).

1.3.3. Mitochondrial Genome Sequencing

Complete mitochondrial DNA sequences are being generated and released in the sequence databases at a very rapid rate. As of June 2005, complete (or nearly complete) NCBI Reference Sequences (RefSeq, Pruitt, et al., 2005) mt-genome sequences were available in GenBank for 721 different species of plants, animals, fungi and protists.

Animal sequences are strongly over represented with 649 (90\%) of the mtgenome sequences. Besides our own phylum Chordata (with 484 mt -genome sequences), Arthropoda is the best represented phylum, with 95 mt -genome sequences.

Within the arthropods, the insects and other hexapods are the best represented with mt-genome sequences, with 49 species represented (45 from class insecta and four collembolan springtails). The remaining major divisions of arthropods show less mtgenome sampling at this time: 4 Myriapoda (centipedes and millipedes), 17 Chelicerata (spiders, ticks, scorpions and horseshoe crabs) and 25 crustaceans.

The first insect mitochondrial genome sequences were obtained for Drosophila $y a k u b a$ and D. melanogaster. The mt-genome of $D . y a k u b a$ was finished in advance of D. melanogaster primarily due to the large (4.6 kb) and complex non-coding region found in D. melanogaster that made for difficult cloning and sequencing (Goddard and Wolstenholme, 1980; Clary and Wolstenholme, 1985a; Lewis, et al., 1994). The mitochondrial gene order originally observed in Drosophila has been demonstrated to be the ancestral gene order of the hexapods and crustaceans, as representatives with this gene arrangement are observed in each of these groups (Clary and Wolstenholme, 1985a; Crease, 1999; Hwang, et al., 2001; Nardi, et al., 2003b). This gene order is generally conserved, with occasional tRNA rearrangements via a duplication / random loss model
(Moritz, et al., 1987) that seem to have occurred independently (Flook, et al., 1995; Yukuhiro, et al., 2002). Mosquitoes and hymenoptera appear to have undergone tRNA translocations relative to the ancestral gene order (Moritz, et al., 1987; Crozier and Crozier, 1993; Flook, et al., 1995; Dowton and Austin, 1999; Dowton, et al., 2003). Protein gene and rRNA rearrangements are rare within the insects, and currently appear to be confined to the group known as the Paraneoptera (Shao, et al., 2001; Shao and Barker, 2003; Shao, et al., 2003; Thao, et al., 2004).

A unique feature was noted in these earliest insect mt-genomes that set insect mitochondria apart from the standard mitochondrial peculiarities. The most unexpected of these was the lack of an in-frame start codon for the otherwise highly conserved coxl gene (Clary and Wolstenholme, 1983a; de Bruijn, 1983). In response to this unusual situation, a four base start "ATAA" start codon was described, incorporating the in-frame TAA stop plus the 5 ' encoded A nucleotide at positions 1470-1473 in both Drosophila species. Subsequent analyses of other Drosophila species did not support the conservation of a 4-base ATAA start codons (Satta, et al., 1987). As more sequences accumulated, it became apparent that a multi-base start codon was not a reasonable model for translation. Such an unusual mechanism would be expected to be well conserved, but the proposed multi-base initiation codon was not conserved between the insects studied (Beard, et al., 1993). The uncertainty has persisted, and annotation of coxl has become a difficult problem for insect mt-genome researchers (discussed in Mitchell, et al., 1993; Flook, et al., 1995; Lessinger, et al., 2000; Spanos, et al., 2000; Nardi, et al., 2001; Yukuhiro, et al., 2002; Friedrich and Muqim, 2003; Nardi, et al., 2003a; Stewart and Beckenbach, 2003; Junqueira, et al., 2004; Yamauchi, et al., 2004; Coates, et al., 2005).

The nad 4 gene of the plague thrips Thrips imaginis encodes a similarly cryptic initiation codon (Shao and Barker, 2003). Aside from annotation questions, these unusual genes raise interesting questions regarding transcription and translation of these genes.

Much of the subsequent interest in complete mt-genome sequences of insects has been promoted by molecular evolution and molecular phylogenetic studies. The insects are a very diverse class of animals, with more living species than all other animal groups (Kristensen, 1991). This rich diversity has proven to be very problematic in deciphering the interrelationships between the insect orders through more classical taxonomic methods, with disputes regarding the between-order relationships being very common (see Boudreaux, 1979; Hennig, 1981; Kristensen, 1991). Expectations were that molecular evolutionary studies might discriminate among the phylogenetic hypotheses and thereby resolve some of these relationships. Analyses using nuclear genes have so far not been successful in the resolution of order-level phylogenetics, and have led to some very high profile controversies in the literature (Whiting and Wheeler, 1994; Carmean and Crespi, 1995; Huelsenbeck, 1997; Whiting, et al., 1997; Huelsenbeck, 1998; Hwang, et al., 1998; Whiting, 1998; Wheeler, et al., 2001). It has been suggested that more complete sampling of insect mt-genomes would create a data set sufficient to resolve the order level relationships of insects and help to resolve these unclear relationships (Friedrich and Muqim, 2003; Nardi, et al., 2003b; Stewart and Beckenbach, 2003; Bae, et al., 2004; Cameron, et al., 2004; Castro and Dowton, 2005; Kim, et al., 2005). The phylogeny proposed by Kristensen (1991) is presented in Figure 1.2.

Figure 1.2. An Insect Phylogeny. A reconstruction of the phylogeny of insect orders proposed by Kristensen (1991). Names of orders are followed by a common name of representatives of that order. Dotted lines reprsent branches that are not well supported in the view of Kristensen (1991).

1.4. Mitochondrial Transcription and Replication

1.4.1. Mitochondrial Replication in Animals

Mitochondrial replication in animals has been studied for over 30 years in vertebrate and invertebrate systems (Wolstenholme, 1973; Goddard and Wolstenholme, 1978; Crews, et al., 1979; Goddard and Wolstenholme, 1980; Montoya, et al., 1982 and others). Replication in mammalian mitochondria initiates at the origin of heavy strand replication $\left(\mathrm{O}_{\mathrm{H}}\right)$ which is found within the D-loop region of the mt-DNA. Replication of the heavy strand proceeds asymmetrically and unidirectionally for approximately two thirds the way around the mt-genome until the origin of light strand replication $\left(\mathrm{O}_{\mathrm{L}}\right)$ is reached (see figure 1.3A). Once heavy strand replication uncovers the O_{L}, lagging strand replication initiates and proceeds unidirectionally in the opposite direction. Until O_{L} is reached, the displaced light strand stays single-stranded and exposed to the environment of the mitochondrial inner matrix (reviewed in Clayton, 2000).

At present, the known and characterized enzymes involved in mitochondrial replication are the gamma polymerase (POL γ) (Kaguni, 2004), a T7-phage like helicase (TWINKLE) (Spelbrink, et al., 2001), and the mitochondrial single-strand binding protein (mtSSB) (Korhonen, et al., 2004). Insect homologues for POL γ (Wernette and Kaguni, 1986; Wernette, et al., 1988) and mtSSB (Stroumbakis, et al., 1994; Farr, et al., 1999) are known for D. melanogaster.

Recently, controversy surrounding the model of mt-DNA replication has appeared in the literature (Bogenhagen and Clayton, 2003; Holt and Jacobs, 2003; Yasukawa, et

A

B

C

Figure 1.3. Schematic Representation of Asymmetric Unidirectional Versus Bi-directional, Symmetric Semidiscontinious Replication in Animal Mitochondria. Origins of replication are denoted and labeled. Thick lines represent the parental molecule and thin represents the newly replicated molecule, with the arrowhead representing the polymerase. A Replication in mammal mitochondria, with O_{L} initiation occurring after approximately two-thirds of the H -strand replication (Clayton, 2000). B - Replication in Drosophila, where \mathbf{N}-strand replication initiates after $\mathbf{> 9 0 \%}$ of the replication of the \mathbf{J}-Strand (Goddard and Wolstenholme, 1978, 1980). C - Bidirectional replication of a mitochondrial chromosome (Bowmaker et al., 2003).
al., 2005). Evidence for a bi-directional, symmetric and semidiscontinuous replication model has been described in mammalian mitochondria (Yang, et al., 2002; Bowmaker, et al., 2003) and bird mitochondria (L'Abbe, et al., 1991; Reyes, et al., 2005)(outlined in figure 1.3C). In response to these reports, strong defense of the asymmetric model has been published (Clayton, 2003; Fish, et al., 2004). In support of asymmetric replication models, a mutational pattern has been observed in mt-DNA that is consistent with the displaced single strand in replication being exposed to stronger mutational pressures in regions of the mt-DNA that are maintained in the single stranded state longer. In these regions, mt-DNA on the lagging strand appears to select against the deaminationsensitive A and C nucleotides, resulting in characteristic AT and GC skews in nucleotide composition (Reyes, et al., 1998; Saccone, et al., 1999).

A possible explanation of these conflicting results was published much earlier based on direct observation of replicating mt-DNA in Drosophila. Electron microscopy of restriction endonuclease digested mitochondria undergoing replication have shown that a majority of mitochondria undergo extreme asymmetric replication (figure 1.3B), yet a minority of molecules were observed that suggest a bi-directional or only slightly asymmetric model of replication (figure 1.3C) (Goddard and Wolstenholme, 1978). The two Drosophila replication origins appear to be encoded in the central region of the major non-coding region ($\mathrm{A}+\mathrm{T}$ rich region) in a number of different Drosophila species (Goddard and Wolstenholme, 1980). Thus the use of two modes of replication within animal mitochondria had already been suggested.

1.4.2. Variation in Transcriptional Systems Between Eukaryotic Groups

The transcriptional initiation, regulation and processing machinery of mt-genomes has varied over the course of eukaryote evolution. Three systems have received the majority of the research interest, the mammal mitochondria, plant mitochondria and yeast mitochondria. The study of yeast and plant mitochondrial systems has a number of advantages over animal mitochondrial systems. Both yeast and plant mitochondria can be manipulated by the addition of DNA into the mitochondria (Johnston, et al., 1988; Farre and Araya, 2001; Koulintchenko, et al., 2003), a technique not yet possible in animal mitochondria. Yeast's ability to grown via fermentation when their aerobic respiration system is disrupted has allowed for the isolation of mitochondrial mutants that would have been lethal to animal model organisms (Gagliardi, et al., 2004).

Important differences between animal and other eukaryotic systems persist and necessitate the study of animal systems. Both plant and yeast transcriptional systems encode important functional information within the 3^{\prime} untranslated region (UTR) of the mRNAs, with animal mitochondrial transcripts lacking UTRs completely, or encoding only very few non-coding nucleotides (Gagliardi, et al., 2004). Animals require polyadenylation of their mature mt-transcripts for function (Ojala, et al., 1980a; Ojala, et al., 1981), while plants utilized polyadenylation as a signal to promote RNA degradation, and polyadenylation of RNA is absent in yeast (Binder and Brennicke, 2003; Gagliardi, et al., 2004). Animal transcription is also unusual in that it proceeds as a small number of very large polycistronic messages that are post-transcriptionally processed into mature RNA molecules (see section 1.4.4) (Ojala, et al., 1980a; Ojala, et al., 1981). Also, apoptosis is absent in the unicellular yeast (Foury and Kucej, 2002), yet studies show that
mitochondria play a pivotal role in the apoptotic cascade in animals (Adrain and Martin, 2001).

1.4.3. Mammalian Mitochondrial Transcription

All animal mitochondrial genes involved in transcription of the mt-genome are encoded within the nuclear genome, and are imported into the mitochondria. In vitro transcription of cloned mitochondrial sequence has been accomplished for mammalian systems (Falkenberg, et al., 2002; Gaspari, et al., 2004a). Transcription in vitro requires mitochondrial RNA polymerase (POLMT), the transcription factor alpha (TFAM), and either of the mammalian transcription factor beta proteins (TFB1 or TRB2)(Falkenberg, et al., 2002; Rantanen, et al., 2003). The transcription activities of TFB1 and TFB2 have not yet been confirmed in cell culture or in whole organism studies. The TFB genes are interesting in that they show strong sequence similarity to bacterial RNA methyl transferase genes (Falkenberg, et al., 2002). TFB1 has been shown to have methylase activity in addition to a transcription factor role (McCulloch and Shadel, 2003; SeidelRogol, et al., 2003). These genes appear to have evolved as methyl transferase genes and were recruited to their current role in transcription initiation (Falkenberg, et al., 2002; Shoubridge, 2002; Rantanen, et al., 2003).

Mammalian mitochondria transcription initiates at either the light strand promoter (Lsp) or one of two heavy strand promoters (Hsp1 or Hsp2), which are located within the D-loop region of the mammalian mt-genome (Fernandez-Silva, et al., 2003). The Lsp and Hsp2 promoters appear to be involved in the generation of the large polycistronic messages that produce mRNAs, tRNAs and rRNAs (Montoya, et al., 1982; Montoya, et al., 1983), while the Hsp2 promoter is more active (approximately 20x more active) and
may be involved in transcribing the rRNA cassette (Montoya, et al., 1983; Kruse, et al., 1989; Fernandez-Silva, et al., 2003). The promoters require binding of TFAM and the associated POLMT / TFB2 complex to initiate transcription, and appear to interact in a nucleotide sequence-specific manner with the proteins (Gaspari, et al., 2004a). The Lsp and Hsp2 initiated mt-transcripts are then extended to transcribe nearly the complete mtgenome before termination, while Hspl initiated transcripts are terminated just downstream of the lrRNA gene (Montoya, et al., 1982; Montoya, et al., 1983; Tracy and Stern, 1995; Nakamichi, et al., 1998; Fernandez-Silva, et al., 2003). These large polycistronic messages are then processed into mature RNA molecules (see section 1.4.4)

Other nuclear-encoded mammalian genes involved in the mitochondrial transcription and transcript maturation have been characterized, such as a termination factor (Fernandez-Silva, et al., 1997), the RNase P (Doersen, et al., 1985; Puranam, et al., 2001) a poly(A) polymerase (Tomecki, et al., 2004; Nagaike, et al., 2005) and a polynucleotide phosphorylase (Nagaike, et al., 2005).

1.4.4. Transcript Processing in Mammalian Mitochondria

The processing of animal mitochondria has been most thoroughly described from human cell line mitochondria. The large polycistronic pre-RNA messages generated by the transcriptional machinery are then recognized by a currently undescribed RNA processing machinery. These large transcripts are then thought to be processed through a "tRNA punctuation" model of processing, whereby the removal and maturation of the intervening tRNA genes liberates molecules that are then processed into mature rRNA and mRNA molecules (Ojala, et al., 1980a; Ojala, et al., 1981). Polyadenylation of the mRNAs was shown to be required to complete some of the stop codons, which were
predicted to encode only in-frame U or UA nucleotides after the removal of the 3^{\prime} abutting tRNA genes (Ojala, et al., 1980a; Anderson, et al., 1981), and is thought to impart stability to the mRNAs similar to mechanisms in the nucleus (Fernandez-Silva, et al., 2003; Gagliardi, et al., 2004). It has been recognized that this could not be the complete description of the processing machinery, as cox3 gene in mammal mitochondria directly abuts the atp6 gene, but both are expressed as separate transcripts (Ojala, et al., 1980a; Montoya, et al., 1981; Ojala, et al., 1981; Chrzanowska-Lightowlers, et al., 2004). Due to the interspersing of tRNAs between the rRNA and protein genes of other animal mitochondria, this model for transcript processing has been broadly applied to all animal genomes (Wolstenholme, 1992; Taanman, 1999; Fernandez-Silva, et al., 2003).

1.4.5. Transcription in Drosophila Mitochondria

The homologues of a number of the mammalian mitochondrial transcription genes are known in Drosophila, including the TFAM (Goto, et al., 2001; Takata, et al., 2001), TFB2 (Matsushima, et al., 2004), a termination factor DmTTF (Roberti, et al., 2003) and the RNA polymerase (Goldenthal and Nishiura, 1987). Interestingly, the TFB1 homologue in Drosophila shows RNA methyl transferase activity, and does not appear to function in transcription, but RNAi knockdown of the TFB1 has an impact on protein synthesis, implying a role in translation (Matsushima, et al., 2005).

Detailed analyses of mt-RNA pools were conducted in the late 1970s and early 1980s. Mitochondrial RNAs were first identified in Drosophila as thirteen molecules whose expression profiles were uninfluenced by heat shock or camptothecin treatment of Drosophila Schneider-2 cell lines, but were sensitive to actinomycin treatment (Sprading, et al., 1977). Merten and Pardue (1981) characterized the mitochondrial RNA
fraction and described two rRNA genes and "nine or ten" mRNA molecules. It was not until after the complete D. yakuba mitochondrial DNA sequence was published (Clary and Wolstenholme, 1985a) that a study by Berthier et al. (1986) was able to identify the genetic identities of each of the mRNA and rRNA genes.

Berthier et al. (1986) determined the relative abundance of RNA in a LiCl insoluble fraction of RNAs smaller than 200bp (30\%), the poly-A fraction (5\%) and the non-polyA fraction (65\%) of the RNA pool. They were also able to identify eleven poly-A mRNAs (nine corresponding to single gene mRNAs and two bicistronic messages) based on hybridization of the RNAs to restriction digested Drosophila mt-DNA. The $s r R N A$ was found in the non-poly-A fraction, but the $\operatorname{lr} R N A$ was identified in the poly-A fraction. The poly-A state of the $\operatorname{lr} R N A$ has been reported elsewhere (Spradling, et al., 1977; Benkel, et al., 1988). Twenty-eight large RNA species were also identified that were interpreted as processing intermediates of the tRNA punctuation mediated maturation of the transcripts. By hybridizing these large RNAs to digested mt-DNA they were able to identify five clusters of polycistronic transcriptional products which led them to infer five transcriptional cassettes for Drosophila, in contrast to the two observed in mammals. The results of this study are summarized in Figure 1.4.

Unfortunately the only RNA sequencing technologies available at the time were through the digestion of radiolabeled RNA with selective RNases (Ojala, et al., 1980a; Montoya, et al., 1981; Ojala, et al., 1981), nuclease protection assays and primer extension assays (Thompson, et al., 1979; Rohrbaugh and Hardison, 1983). Nucleotide sequence information was therefore not available for the RNAs.

Figure 1.4. Summary of Results from Berthier et al., (1986) Study of Drosophila Mitochondrial RNAs. The genes are labeled in the center of the figure, with genes on one strand offset from the other. Arrows depict transcription units, with the start of the line at the predicted transcript initiation site and the arrowhead at the predicted transcript termination site. White rectangles to the outside represent mRNAs, black the rRNAs.

1.4.6. RNA Editing and Programmed Frameshifting in Animal Mitochondria

Though some of the more exotic transcriptional mechanisms seen in other eukaryotic mitochondria are absent in animals, two unusual mechanisms are described that cause variation between the inferred transcribed information and the final gene function. RNA editing refers to the modification of RNA from the original transcript, whether by the insertion or deletion of nucleotides or the specific C to U modification of bases to alter the nucleotide sequence of the mature RNA. This phenomenon is distinct from RNA modification that is commonly observed in rRNA and tRNA sequences, where non-standard nucleotides are created by post-transcriptional modification of coded bases. RNA editing has been extensively studied in mitochondrial systems of plants and specific protist lineages, such as the trypanosomes and dinoflagellates (Lin, et al., 2002; Gray, 2003; Knoop, 2004; Simpson, et al., 2004; Stuart, et al., 2005).

In animal mitochondria, numerous mitochondrial tRNA genes have been determined to undergo editing in diverse groups such as marsupials (Janke and Paabo, 1993; Morl, et al., 1995; Borner, et al., 1996), land snails (Yokobori and Paabo, 1995), a squid (Tomita, et al., 1996), centipedes (Lavrov, et al., 2000), and potentially in spiders (Masta, 2000; Masta and Boore, 2004; Qiu, et al., 2005). Editing of mRNAs has not been yet been observed in animal mitochondria (Orr, et al., 1997).

Programmed translational frameshifting is a second mechanism by which the mRNA molecule is decoded in a way other than by the reading of the simple open reading frame. Bird and turtle mitochondrial nad 3 have been observed to encode a single C insertion that disrupts the open reading frame and would result in an unusually short NAD3 protein (Desjardins and Morais, 1990; Harlid, et al., 1997; Zardoya and Meyer,
1998). Mindell, et al (1998) investigated this extra nucleotide by sampling a large number of bird taxa, as well as some turtles. Determining that the presence of the extra nucleotide varied between different bird taxa, they proposed a frameshifting model in an attempt to explain the highly variable nad3 gene structure within birds. A similar phenomenon has now been observed in the cytb gene of ant mitochondria, and a more detailed description of a possible frameshifting mechanism has been published (Beckenbach, et al., 2005).

1.5. Thesis Outline

In this study I combine a comparative mitochondrial genomic approach with molecular characterization of RNAs found in the mitochondria of Drosophila melanogaster in an attempt to understand the molecular evolution of the insect mitochondrial genome. Chapters 2 and 3 describe the sequencing, annotation, characterization and analyses of complete mitochondrial genomes from two insect species, the meadow spittlebug Philaenus spumarius (Hemiptera; Auchenorryncha; Cercopoidae) and the giant stonefly Pteronarcys princeps (Plecoptera; Pteronarcyidae), respectively.

Chapter 4 describes the sequencing and characterization of the mitochondrial mRNA and rRNA pools from isolated mitochondria from adult Drosophila melanogaster. A discussion of models proposed to describe the expression and transcript processing of mt-RNAs based on these sequences is provided.

Chapter 5 discusses the comparative analyses of the available complete mitochondrial genome sequences, and what comparative analyses can tell us of the evolution of insect mitochondria. It also discusses the implication of the observed
mitochondrial transcripts on the annotation of insect mitochondrial genomes. Finally, a description of what the transcript analysis has added to our understanding of insect mitochondrial function, and a discussion of potential research to follow this study is included.

Chapter 2. The Complete Mitochondrial Genome Sequence of the Meadow Spittlebug Philaenus spumarius (Hemiptera:

 Auchenorrhyncha: Cercopoidae) ${ }^{2}$
2.1. Introduction

The order Hemiptera is the largest group of insects outside of the holometabolous orders. Three suborders are recognized within the Hemiptera: the Heteroptera (true bugs), Stremorrhyncha (aphids, scale bugs, whiteflies and psyllids) and the Auchenorrhyncha (planthoppers, leafhoppers, spittlebugs and cicadas) (Carver, et al., 1991). The interrelationships of these three suborders have traditionally been controversial. At one time the Stremorrhyncha and the Auchenorrhyncha were considered to form the order Homoptera, with Heteroptera being classified as an independent order. More recently, the three suborders were united under the single order Hemiptera, as a result of morphological comparisons and nuclear DNA sequence data arguing against the monophyly of the groups constituting the Homoptera (see Kristensen (1991) and von Dohlen and Moran (1995)). A current phylogenetic view of the Hemiptera is summarized in Figure 2.1.

There has been a recent interest in mitochondrial genome (mt-genome) sequencing within the Paraneoptera, which includes the orders Hemiptera, Psocoptera, Phthiraptera and Thysanura. To date, the heteropteran Triatoma dimidiata (the kissing

[^2]

Figure 2.1. One view of evolutionary relationships of the Order Hemiptera. Adapted from (Kristensen, 1991) and (von Dohlen and Moran, 1995). Names in all capital letters are informal name designations of larger insect groups. Underlined names represent the three recognized groups within the Order Hemiptera.
bug), the phthirapteran Heterodoxus macropus (the wallaby louse), the thysanuran Thrips imaginis (the plague thrips,) and a psocopteran (a booklouse identified as lepidopsocid RS-2001) have their complete mitochondrial DNA sequences available in the sequence databases (Dotson and Beard, 2001; Shao, et al., 2001; Shao and Barker, 2003; Shao, et al., 2003). The thrips, louse and booklouse mt-genomes include the only known examples of rearrangements of relative position of protein coding genes and ribosomal RNA genes within the hexapods. This unusual trait has made this group an interesting one in the study of mitochondrial sequence evolution.

In this chapter I describe the mt-genome of the meadow spittlebug, Philaenus spumarius. The spittlebug is a member of the Auchenorrhyncha (family Cercopoidea), and represents an individual from a second suborder to represent the large order Hemiptera.

2.2. Materials and Methods

2.2.1. DNA extraction and PCR amplification

An adult specimen of P. spumarius (the meadow spittlebug) was collected in Coquitlam, British Columbia. The specimen was keyed using Hamilton (1982). The insect was quartered, with each quarter ground and digested in 100μ l protease buffer at $65^{\circ} \mathrm{C}(0.01 \mathrm{M}$ Tris $\mathrm{pH} 7.8,5 \mathrm{mM}$ EDTA, $5 \% \mathrm{w} / \mathrm{v}$ SDS, $50 \mathrm{ng} / \mu$ proteinase K). The digestion was extracted with 1 volume of Tris-buffer saturated phenol, then 1 volume of SEVAG (24:1 chloroform: isoamyl alcohol). DNA was precipitated over night in 2.5 volumes of 95% ethanol at $-20^{\circ} \mathrm{C}$, then pelleted through centrifugation. The pellets were washed once with 70% ethanol, and stored at $-20^{\circ} \mathrm{C}$. Prior to use, the pellets were
dissolved in $100 \mu \mathrm{ddH}_{2} \mathrm{O}$. One-tenth dilutions were utilized as template in PCR reactions.

The genome was amplified in overlapping PCR fragments (see Table 2.1 for list of primer pairs, and Figure 2.2 for a map of the amplification fragments). Initial amplifications were conducted using sets of heterologous primers we have developed, based on aligned insect and hexapod sequence. As more conserved genes were sequenced, primers were chosen based on obtained sequence, and occasionally were designed specifically from the spittlebug sequence.

PCR amplifications were carried out in an Eppendorf Mastercycler 5333 thermocycler. QIAGEN Taq DNA polymerase was utilized in 50μ l reactions, with magnesium concentration adjusted to 2.0 mM . The PCR cycling consisted of a 2 minute denaturation step at $94^{\circ} \mathrm{C}$, followed by five 30 second cycles of denaturation at $94^{\circ} \mathrm{C}$, annealing for 30 seconds at $45^{\circ} \mathrm{C}$, then 120 second elongation at $72^{\circ} \mathrm{C}$. Thirty additional cycles were carried out as above, with the annealing temperature increased to $50^{\circ} \mathrm{C}$.

Amplification products for the region between the $n a d 2$ and $s r R N A$ genes, including the major non-coding (or $\mathrm{A}+\mathrm{T}$ rich) region, were produced using the GeneAmp XL PCR kit (Applied Biosystems), utilizing the reaction concentration suggested by the manufacturer, scaled to $50 \mu \mathrm{l}$ reactions. Cycling conditions were followed as per the product information, with a $60^{\circ} \mathrm{C}$ or $65^{\circ} \mathrm{C}$ anneal/elongation step for 8 minutes per cycle. For the primer pair TI-N18 and SR-J14766, lower annealing temperatures gave two fragments of 5.5 and 6.3 kb in size, which were digested with HincII (Gibco BRL). The fragments ($2.0 \mathrm{~kb}, 3.5 \mathrm{~kb}$ and $2.5 \mathrm{~kb}, 3.8 \mathrm{~kb}$, respectively) were A-tailed with Taq polymerase in PCR reaction buffer containing only dATP at $72^{\circ} \mathrm{C}$ for 10 minutes, then

Table 2.1. List of Primer Pairs Utilized in the Amplification of the Mitochondrial Genome of Philaenus spumarius.

	Primer 1	Sequence ($5^{\prime}-3^{\prime}$)	Primer 2	Sequence ($5^{\prime}-3^{\prime}$)
1	TI-J34	GCCTGATAAAAAGGRTTAYYTTGATA	N2-N993	GGTAAAAATCCTAAAAATGGNGG
2	N2-J574	ATAGGAGCCGCTCCNTTYCA	C1-N1828	GTTCATCCTGTWCCWGCWCC
3	C1-J1751	GGAGCCCCTGATATAGCWTTYCC	C1-N2326	AATATATGATGAGCTCANAC
4	C1-J2222	TTAATTTTACCAGGATTYGG	C2-N3695	TACAATAGGTATAAATCT
5	TL-3034	TAATATGGCAGATTAGTGCA	A8-N4067	CTGAGAATAAGTTGTTATCA
6	A8-J3927	TTTATTCCTCAAATAGCWCC	A6-N4552	ATGTCCWGCAATYATATTWGC
7	A6-J4103	TCAAYATTTGAYCCNTCAAC	C3-N5346	ACATGTAGCCCATGYAANCC
8	C3-J4948	CGAGAAGGAACTTTTCARGG	N3-N5731	TAAGGGTCAAATCCRCAYTC
9	C3-5524	TTTCTATCTAYTGATGAGGTAG	N5-N6551*	TTGAGGGGTATATTGAGGACC
10	TS-J6246\#	GCTGCTAACTATATTTATAAGCGG	N5-N7208	GCTTTATATTTATGTGYGCWGG
11	N5-J7077	AAATCCTTTGARTAAAANCC	N5-N7832	CTATAATATTTTAATTATTAGTCC
12	N5-J7518	AAAGCAGANACWGGRGTWGG	N5-N8622	TCATGGTCTATGTTCWTCTGG
13	N5-J7806	ACTAATCCTAACCCATCTCA	N4-N8727	GCTTTAATTGCATAYTCNTC
14	N4-J8644 \#	AAAGCAGANACWGGRGTWGG	N4-N9153	TGAGGTTATCAACCNGARCG
15	N4-J8941	ACAGGAGCTTCAACRTGNGC	N4L-9629	GTTTGTGAGGGWGYTTTRGG
16	N4-J9360	ATAACCATTAAGCATCTAATCC	N6-N10484 \#	GTITTTTATACGTAGAGGACCATC
17	TT-J9885	AAAAAAAACATTGGTCTTGTA	CB-N10917	CAAAATGATAATTGWCCTCANGG
18	CB-J10747	TGTCGAGATGTAAATTATGGNTG	CB-N11526	TTCAACTGGTCGRGCTCCAATYCA
19	CB-J11389\#	CCCAACAAATTGGGGGGG	N1-N12067	AATCGWACTCCWTTTGATTTTGC
20	CB-J11858	TTATCATAACGAAANCGNGG	LR-N13003	TACCTTAGGGATAACAGCG
21	LR-J12967	TAATCCAACATCGAGGTCGCAA	SR-N14220	TGGTACACATGCCCCGTC
22	LR-J13900	TGATAAACCCTGATACAMAAGG	SR-N14588	CAAACCAGGATTAGATACCCTGTTAT
23	SR-J14247	GGCGATGTGTGCATAATTAAGAGC	DL-N \#	GAAATAACCATTAAAGTGAATTTG
24	SR-J14766	TAACCGCAACTGCTGGCAC	TI-N18	TCCTATCAARRAAYCCTTT
25	SR-J14766	(listed above)	C1-N1828	(listed above)
26	DL-J\#	AGATAAAAATATAATTATGGTTTC	N2-N558 \#	TCATATATGGAATGGTGCGACTCC

\# Specific primer derived from P. spumarius sequence.
cloned using the Original TA Cloning ${ }^{\circledR}$ Kit (Invitrogen). The $65^{\circ} \mathrm{C}$ annealing resulted in a 2 kb fragment that was A-tailed as above and cloned using the Original TA Cloning ${ }^{\circledR}$ Kit. Multiple copies of all cloned fragments were independently sequenced to confirm their sequence identity.

Sequencing was conducted by the University of Calgary DNA Sequencing Center, using an ABI Prism model 377 sequencing machine and the ABI BigDye Terminators Version 3.0 or Version 3.1 sequencing kits.

2.2.2. Sequence Assembly, Annotation and Analysis

Sequences were aligned, and the genome assembled using BioEdit v. 5.0.9 (Hall, 1999). Nucleotide composition calculations were also conducted with BioEdit features. Protein coding genes and ribosomal RNA genes were identified through alignment to the other insect mt-genomes available in GenBank. The 22 tRNA genes were identified using the tRNAScan-SE server, or through alignment to other insect mt-tRNA genes (Lowe and Eddy, 1997) http://www.genetics.wustl.edu/eddy/tRNAscan-SE/. The $t R N A^{\text {Ser-AGN }}$ secondary structure was developed using constraints proposed by Steinberg et al. (1994). Relative synonymous codon usage (RSCU) was calculated using MEGA version 2.1 (Kumar, et al., 2001), but the calculated 8 -fold serine and 6-fold leucine families generated by the software were re-calculated as two 4-fold families and a 4-fold and 2fold family, respectively.

Potential secondary structure folds of non-coding and $\mathrm{A}+\mathrm{T}$ rich regions of the genome were calculated using the DNA mfold web server, using default settings and a folding temperature of $22^{\circ} \mathrm{C}$ (Zuker, 2003) http://www.bioinfo.rpi.edu/applications/mfold/. Dot-plot comparison of sequences was
conducted using the Windows version of DOTTER version 1.0 (Sonnhammer and Durbin, 1995). Repeat regions were identified using dot plots.

The genome P. spumarius sequence is available from GenBank under the accession number AY630340. Comparative analysis utilized the 20 hexapod mitochondrial genomes found in Table 2.2. These organisms were selected to cover the broadest phylogenetic range possible at the time, and limited each genus to a single representative. Near-complete genomes found in GenBank that were missing sequences for tRNA genes or portions of protein coding or ribosomal RNA genes were not utilized.

2.3. RESULTS AND DISCUSSION

2.3.1. Genome Content

The typical gene content for an animal mt-genome was observed for the spittlebug genome, with the genes arranged in the same order as that observed in Drosophila yakuba (Clary and Wolstenholme, 1985a). The majority-coding strand (J-strand) encodes the sense strand of 23 genes (nad2, coxl, cox2, atp8, atp6, cox3, nad3, nad6, cob, plus the tRNA genes $t R N A^{\text {Ile }}, t R N A^{\text {Met }}, t R N A^{\text {Trp }}, t R N A^{\text {Leu-CUN }}, t R N A^{L y s}, t R N A^{A s p}, t R N A^{G l y}$, $\left.t R N A^{A l a}, t R N A^{A r g}, t R N A^{A s n}, t R N A^{S e r-A G N}, t R N A^{G l u}, t R N A^{T h r}, t R N A^{S e r-T C N}\right)$. The minoritystrand (N-strand) encodes the remaining 14 genes (nad5, nad4, nad4L, nadl, lrRNA, $\operatorname{sr} R N A$, plus the tRNAs $t R N A^{\text {Gln }}, t R N A^{C y s}, t R N A^{\text {Tyr }}, t R N A^{\text {Phe }}, t R N A^{\text {His }}, t R N A^{\text {Pro }}$, $\left.t R N A^{\text {Leu-TTR }}, t R N A^{V a l}\right)$.

Table 2.2. Insect Mitochondrial Genomes Utilized in Alignments and Comparative Analyses.

Accession Number	RefSeq Number	Species	Common Name	Reference
Collembola: Arthropleona				
AY191995.1	NC_005438	Gomphiocephalus hodgsoni	springtail	(Nardi, et al., 2003b)
AF272824.1	NC_002735	Tetrodontophora bielanensis	giant springtail	(Nardi, et al., 2001)
Insecta: Coleoptera				
AF467886.1	NC_003372	Crioceris duodecimpunctata	asparagus beetle	(Stewart and Beckenbach, 2003)
AF452048.1	NC_003970	Pyrocoelia rufa	firefly	(Bae, et al., 2004)
AJ312413.2	NC_003081	Tribolium castaneum	flour beetle	(Friedrich and Muqim, 2003)
Insects: Diptera				
L04272.1	NC_000875	Anopheles quadrimaculatus	mosquito	(Mitchell, et al., 1993)
AY210702.1	NC_005333	Bactrocera oleae	olivefly	(Nardi, et al, 2003a)
AJ242872.1	NC_000857	Ceratitis capitata	Mediterranean fruitfly	(Spanos, et al., 2000)
AF352790.1	NC_002697	Chrysomya putoria	latrinefly	Junqueira et al., 2003, unpublished
AF260826.1	NC_002660	Cochliomyia hominivorax	screwworm fly	(Lessinger, et al., 2000)
X03240.1	NC_001322	Drosophila yakuba	-	(Clary and Wolstenholme, 1985a)
Insecta: Hemiptera				
AY630340.1	NC_005944	Philaenus spumarius	meadow spittlebug	This Study, (Stewart and Beckenbach, 2005)
AF301594.1 Insecta: Hym	$\begin{aligned} & \text { NC_002609 } \\ & \text { noptera } \end{aligned}$	Triatoma dimidiata	kissing bug	(Dotson and Beard, 2001)
L06178.1	NC_001566	Apis mellifera ligustica	honeybee	(Crozier and Crozier, 1993)
Insecta: Lepidoptera				
AY242996.1	NC_004622	Antheraea pernyi	Chinese oak silkmoth	Lui et al., 2003, unpublished
AB070263.1 Insecta: Orth	NC_003395 ptera	Bombyx mandarina	wild silkmoth	(Yukuhiro, et al., 2002)
X80245.1 Insecta: Pht	NC_001712 raptera	Locusta migratoria	migratory locust	(Flook, et al., 1995)
AF270939. 1 Insecta: Pso	NC_002651 ptera	Heterodoxus macropus	wallaby louse	(Shao, et al., 2001)
AF335994.2 Insecta: Thy	NC_004816 noptera	Lepidopsocid RS-2001	scaly-winged barklouse	(Shao, et al., 2003)
Insecta: Thysanura				
AY191994.1	NC_005437	Tricholepidion gertschi	silverfish	(Nardi, et al., 2003b)

The standard 22 tRNA genes were identified in the same relative genomic positions as observed for the Drosophila yakuba genome. The tRNAScane-SE was unable to detect $t R N A^{A r g}$ and $t R N A^{\text {Ser-AGN }}$ (settings: Organellar search, invertebrate mitochondrial code, cove cut-off score $=10$). $t R N A^{A r g}$ and $t R N A^{S e r-A G N}$ were identified through alignment of other insect tRNA genes to unassigned nucleotide gaps corresponding to the conserved relative position of these missing tRNA genes. Predicted cloverleaf folds are given in Figure 2.3.

The $\mathrm{A}+\mathrm{T}$ composition is very close to the mean observed for other insect mtgenomes, at 77.0% for the entire genome, and 76.7% for the coding sequences only (mean 0.759 , standard deviation 0.037 for the 20 selected species).

At 16324 bp , the spittlebug mt-genome is the sixth largest complete insect mtgenome sequence reported to date, behind Drosophila melanogaster, the firefly, the kissing bug, the booklouse, and the honeybee (Crozier and Crozier, 1993; Lewis, et al., 1995; Dotson and Beard, 2001; Shao, et al., 2003; Bae, et al., 2004). The majority of difference in the length of the insect mt-genomes observed to date has been in the size of the $\mathrm{A}+\mathrm{T}$ rich region (the inferred control region) or the insertion of other large noncoding regions within the genome. The $\mathrm{A}+\mathrm{T}$ rich region varies greatly in insects, from 4599bp in Drosophila melanogaster to 73bp in the louse Heterodoxus (Garesse, 1988; Shao, et al., 2001). The control region of the spittlebug was observed to be 1834 bp in length, and includes two repeat regions. The first repeat region is situated to the $r r n S$ gene-side of the $\mathrm{A}+\mathrm{T}$ rich region. This repeat region consists of a 46 basepair repeat unit
A.

Phe

Tyr

Cys

Gln

Figure 2.3. Putative secondary structure folds for the tRNA genes of the Philaenus spumarius mt-genome. Watson-Crick basepairs is designated by "-", and G-T basepairs, by " + ". A. Minority coding strand tRNAs. B. Majority coding strand tRNAs.
(Figure 2.3, concluded)

repeated 19 times. Repeat unit six has a single A to C transversion at position 30, repeat 18 has a deletion of an A at position 4 and an insertion of a C at position 12. The terminal three repeats also have an additional A at the 3 ' end.

The nucleotide composition of this repeat region is $75.9 \% \mathrm{~A}+\mathrm{T}$, compared to 78.9% in the entire $\mathrm{A}+$ Trich region, and 81.9% for the $\mathrm{A}+\mathrm{T}$ region excluding this repeat. Nucleotide compositions for various genomic features are summarized in Table 2.3.

The spittlebug $\mathrm{A}+\mathrm{T}$ rich region was compared to the $\mathrm{A}+\mathrm{T}$ rich region of the kissing bug using DOTTER (Sonnhammer and Durbin, 1995). No significant sequence similarity was identified for this region for the two hemipteran species.

Potential secondary structure folds were observed for this repeat region. Stemloop structural units may consist of folds within a single repeat unit or between the eight 3' nucleotides of one repeat unit and the adjacent repeat unit (see Figure 2.4). Interestingly, all nucleotide substitutions and insertions noted in the repeat units occur in non-basepairing regions of these predicted secondary structures.

The A+T rich region also contains a second repeat sequence of 146 bp in length. This $\mathrm{A}+\mathrm{T}$ rich repeat unit $(79.5 \% \mathrm{~A}+\mathrm{T})$ occurs four times, with a fifth truncated repeat unit near the $t R N A^{l l e}$ gene. A map of the region between the small ribosomal subunit ($s r R N A$) and nad2 genes is given in Figure 2.5. The largest open reading frame found within the $\mathrm{A}+\mathrm{T}$ rich region was only 35 amino acids in length, and is assumed to have no functional significance.

Our long PCR reactions utilizing the primer pair TI-N18 and SR-J14766, spanning the control region also amplified two other fragments when lower annealing
temperatures were utilized in the annealing/elongation step of the Long-PCR cycling reaction. We do not believe these larger fragments represent mt-genome encoded copies, as two independently designed primers, specific for sequence contained only within the larger fragments were unable to produce amplification products when used in PCR with primers known to amplify within the $s r R N A$ sequence. Also, primers designed for the shorter amplification product (DL-J and DL-N, see Table 2.1) amplified fragments containing the same number of repeats.

2.3.2. Protein Coding Genes

Four different initiation codons appear to function in the spittlebug genome. This annotation includes six genes encoding ATG start codons (coxl, atp6, cox3, nad4, nad4L and cob), three with TTG (nad2, cox2, and nad3), two with ATA (nad6 and nad1), and two with ATT (atp8 and nad5). The TAG stop codon was not observed within this mtgenome. Only three protein coding genes (atp6, nad5 and nadl) encoded a stop codon that did not overlap with the abutting gene. As is common to many insect mt-genomes sampled to date, the atp8/atp6 and nad4l/nad4 gene pairs appear to overlap seven nucleotides (ATGNTAA) in different reading frames, and a number of the protein coding genes have a single nucleotide overlap with the abutting genes. Four genes (cox1, cox2, $\operatorname{cox} 3$ and nad4) appear to have their termination signals constructed through the addition of the poly-A tail to the mature mRNA (Ojala, et al., 1980a; Ojala, et al., 1981).

Table 2.3. Nucleotide Composition of Meadow Spittlebug (P. spumarius) Genome Features.

Feature	Proportion nucleotides					Number of Nucleotides
	A	C	G	T	A+T	
Whole Genome (J-strand)	0.409	0.124	0.106	0.361	0.770	16324
Protein Coding Genes - (coding nts)*	0.319	0.113	0.134	0.434	0.753	11148
- J-strand Encoded *	0.349	0.126	0.121	0.404	0.753	6802
- N-strand Encoded ${ }^{*}$	0.281	0.096	0.131	0.492	0.773	4219
- 1 st Codon Position*	0.353	0.105	0.178	0.364	0.717	3710
- $2^{\text {nd }}$ Codon Position ${ }^{\text {* }}$	0.197	0.176	0.153	0.474	0.671	3710
- $3^{\text {rd }}$ Codon Position ${ }^{\text {- }}$	0.408	0.059	0.069	0.464	0.872	3710
tRNA genes - total	0.407	0.083	0.124	0.385	0.792	1454
- J-strand encoded	0.413	0.090	0.120	0.377	0.790	918
- N -strand encoded	0.397	0.071	0.132	0.399	0.797	536
rRNA Genes - (coding, N-strand)	0.315	0.082	0.133	0.470	0.785	1999
Intergenic Nucleotides (J-strand) \&	0.429	0.036	0.036	0.500	0.929	28
Repeat Region 1	0.413	0.132	0.108	0.347	0.759	877
Repeat Region 2	0.330	0.084	0.121	0.466	0.795	704
A+T Rich Region	0.378	0.103	0.108	0.411	0.789	1835

Note: overlapping nucleotides are counted in each feature in which they appear.

* Excluding stop codons.
${ }^{\&}$ Does not include $\mathrm{A}+\mathrm{T}$ region or repeat regions.

Figure 2.4. Putative stem-loop structures for two repeat units of Repeat Region 1. Arrows $(-)$ denote nucleotide positions were variations in repeat unit sequence were observed. Dots represent predicted basepair interactions. Secondary structure was predicted using DNA mfold Version 3.1 (Zuker, 2003) with folding temperature of $22^{\circ} \mathrm{C}$.

Figure 2.5. Map of the Region Between the $s r R N A$ and the nad2 Genes. Rectangles above the central line represent J-strand encoded features, below are \mathbf{N}-strand encoded features, and centered boxes have no directionality. The tRNA genes are labeled with their one-letter code amino acid code. Vertically printed numbers represent the genomic position of the vertical dash. The asterisk (*) represent the truncated repeat, while repeats containing nucleotide substitutions are designated by (^). Figure not drawn to scale.

The relative synonymous codon usage (RSCU) was calculated for all protein coding genes, and then for the major coding strand genes and minor coding strand genes separately (Table 2.4). Comparison of four-fold degenerate amino acid codon usage shows a clear bias towards an A in the third codon position for J-strand encoded genes, and a bias for the use of T in the third codon position for N -strand encoded genes. Only two of the four-fold degenerate amino acids do not clearly demonstrate this bias, ACNserine (AGA preferred on both strands) and CTN-leucine (CTA and CTT equally utilized on N -strand).

2.3.3. Genomic Comparisons

One of the most distinctive features of the paraneopteran mitochondrial genomes, relative to other insect groups, is the extent of rearrangement of protein coding genes and the ribosomal RNA genes. The rearrangement of tRNA. genes within insect mt-genomes is not uncommon, and has been discussed for the migratory locust (Flook, et al., 1995), the honeybee (Crozier and Crozier, 1993), various hymenoptera (Dowton and Austin, 1999; Dowton, et al., 2003), and the silkworm moths (Yukuhiro, et al., 2002). Within the paraneoptera, representatives of three of the four orders display rearrangements of tRNAs and protein coding genes (Shao, et al., 2001; Shao and Barker, 2003; Shao, et al., 2003). The hemipterans (the kissing bug and the spittlebug), however, maintain the ancestral genome arrangement.

I compared nucleotide strand bias between the spittlebug and the kissing bug, with the locust sequence used as a non-hemipteran comparison (Table 2.4). The four-fold degenerate amino acids in all three insects demonstrate a clear bias towards third codon position A nucleotides in J-strand encoded protein coding genes, while the bias is towards

T in the third codon position on the N -strand. For two-fold degenerate amino acids, the locust and spittlebug show a biaṣ towards the codons with A or T in the third codon position for both strands. The kissing bug, however shows a J-strand third codon position bias towards A or T nucleotides, but a bias towards G and T in the third codon position on the N -strand. Dotson and Beard (2001), in their description of the kissing bug genome noted a reduction in $\mathrm{A}+\mathrm{T}$ ratio in that species. This unusual bias towards third codon position G nucleotides on the N -strand may help to explain this reduced $\mathrm{A}+\mathrm{T}$ richness.

Examination of codon usage reveals that the cognate codon for each four-fold degenerate tRNA is more commonly utilized only on the J-strand of the mt-genomes examined. The bias towards the use of third codon position T on the N -strand outweighs the presumed advantage of improved efficiency during translation by the use of cognate codons by the mRNAs. For the three organisms analyzed, the two-fold degenerate tRNAs utilize the cognate codon only approximately a third of the time, on either strand, while six of the thirteen tRNAs never preferentially utilize the cognate codon.

2.4. Conclusions

The mt-genome of the spittlebug is relatively conservative in terms of gene organization and nucleotide composition. The genome organization is the same as observed in Drosophila yakuba, with the addition of a relatively $\mathrm{A}+\mathrm{T}$ deficient repeat region located within the $\mathrm{A}+\mathrm{T}$ rich region. This conservation of genome structure is consistent with the other mt-genome example observed within the Hemiptera, but varied from the other species sampled from the other paraneopteran orders. The nucleotide composition and patterns of nucleotide strand biases are more similar to those observed in other insects than the other hemipteran, the kissing bug.

Table 2.4. Relative Synonymous Codon Usage for Meadow Spittlebug, the Kissing Bug and the Migratory Locust Mitochondrial Genomes. RSCU values were calculated for all 13 genes, then major strand encoded only and minor strand encoded only genes. Values in bold type represent the most commonly utilized codon for the given amino acid. Underlined codons represent the cognate codon for each amino acid.

Amino Acid	Codon	Spittlebug All		N	Kissing bugAll		N	Locust		N
Lys	AAA	1.766	1.896	1.471	1.766	1.452	0.435	1.414	1.829	0.414
	AAG	0.234	0.104	0.529	0.234	0.548	1.565	0.586	0.171	1.586
Asn	AAC	0.301	0.342	0.237	0.301	0.840	0.082	0.484	0.632	0.080
	AAT	1.700	1.658	1.763	1.699	1.160	1.918	1.516	1.368	1.920
Gln	CAA	1.667	1.730	1.529	1.667	2.000	0.714	1.905	2.000	1.571
	CAG	0.333	0.270	0.471	0.333	0	1.286	0.095	0	0.429
His	CAC	0.328	0.415	0	0.328	0.952	0	0.704	0.906	0.111
	CAT	1.672	1.585	2.000	1.672	1.048	2.000	1.296	1.094	1.889
Glu	GAA	1.174	1.726	1.692	1.714	1.724	0.759	1.714	1.960	1.259
	GAG	0.286	0.275	0.308	0.286	0.276	1.241	0.286	0.040	0.741
Asp	GAC	0.100	0.143	0	0.100	0.936	0.231	0.325	0.520	0
	GAT	1.900	1.857	2.000	1.900	1.064	1.769	1.675	1.480	2.000
Tyr	TAC	0.331	0.487	0.198	0.331	0.961	0	0.378	0.692	0.137
	TAT	0.167	1.513	1.802	1.669	1.039	2.000	1.622	1.308	1.863
Trp	TGA	1.726	1.821	1.500	1.726	1.855	0.839	1.920	1.972	1.793
	TGG	0.274	0.179	0.500	0.274	0.145	1.161	0.080	0.028	0.207
Cys	TGC	0.140	0	0.200	0.140	1.273	0	0.364	1.000	0.067
	TGT	1.861	2.000	1.800	1.860	0.727	2.000	1.636	1.000	1.933
Mey	ATA	1.710	1.791	1.540	1.710	1.850	0.989	1.687	1.836	1.270
	ATG	0.290	0.210	0.460	0.290	0.150	1.011	0.313	0.164	0.730
Ile	ATC	0.159	0.194	0.088	0.159	0.605	0.058	0.225	0.311	0.049
	ATT	1.841	1.807	1.912	1.841	1.395	1.942	1.775	1.689	1.951
Phe	TTC	0.164	0.200	0.122	0.164	0.946	0.071	0.515	0.938	0.125
	TTT	1.836	1.800	1.878	1.836	1.054	1.929	1.485	1.062	1.875
Leu	ITA	1.728	1.777	1.672	1.728	1.890	1.059	1.757	1.966	1.584
	TTG	0.272	0.223	0.328	0.287	0.110	0.941	0.243	0.034	0.419
Leu	CTA	1.913	2.000	1.765	1.913	1.906	0	2.149	2.706	0.375
	CTG	0.261	0.207	0.353	0.261	0.235	0	0.119	0.157	0
	CTC	0.174	0.207	0.118	0.174	0.729	0	0.149	0.157	0.125
	CTT	1.652	1.586	1.765	1.652	0.129	4.000	1.582	0.980	3.500

(Continued on next page)
(Table 2.4 concluded)

Amino Acid	Codon	Spittlebug			Kissing bug			Locust		
		All	J	N	All	J	N	All	J	N
T	ACA	1.961	2.300	0.800	1.961	1.784	0.300	2.556	3.066	0.316
	ACG	0.077	0.100	0	0.077	0.081	0.200	0.059	0.072	0
	ACC	0.258	0.233	0.343	0.258	0.973	0.100	0.234	0.287	0
	ACT	1.703	1.367	2.857	1.703	1.162	3.400	1.151	0.575	3.684
P	CCA	1.536	1.822	0.800	1.536	1.560	0.242	2.294	2.969	0.615
	CCG	0.096	0.089	0.114	0.096	0.080	0.242	0.088	0.082	0.103
	CCC	0.320	0.311	0.343	0.320	0.800	0.121	0.118	0.165	0
	CCT	2.048	1.778	2.743	2.048	1.560	3.394	1.500	0.784	3.282
A	GCA	1.500	2.000	0.556	1.500	1.857	0.750	2.107	2.781	0.533
	GCG	0.039	0.059	0	0.038	0	0.333	0.053	0.038	0.089
	GCC	0.385	0.294	0.556	0.385	1.214	0.083	0.160	0.190	0.089
	GCT	2.077	1.647	2.889	2.077	0.929	2.833	1.680	0.990	3.289
S	TCA	1.770	2.228	1.117	1.770	2.094	0.336	1.897	3.194	0.548
	TCG	0.030	0.051	0	0.030	0.094	0	0.063	0.062	0.065
	TCC	0.312	0.329	0.288	0.312	0.719	0.112	0.111	0.124	0.097
	TCT	1.889	1.392	2.595	1.888	1.094	3.551	1.929	0.620	3.290
S	AGA	2.688	3.015	2.333	2.688	3.139	2.143	2.945	3.491	2.400
	AGG	0.128	0.000	0.267	0.128	0	0.643	0.073	0	0.145
	AGC	0.256	0.308	0.200	0.256	0.354	0	0.109	0.073	0.145
	ACT	0.928	0.677	1.200	0.928	0.506	1.214	0.873	0.436	1.309
R	CGA	1.726	2.125	1.053	1.725	2.824	1.636	2.473	3.657	0.400
	CGG	0.471	0.625	0.211	0.471	0.235	0.364	0.145	0.114	0.200
	CGC	0.157	0.125	0.211	0.157	0.118	0	0.073	0.114	0
	CGT	1.647	1.125	2.526	1.647	0.824	2.000	1.309	0.114	3.400
G	GGA	1.757	2.045	1.284	1.757	3.030	0.375	2.019	3.079	0.390
	GGG	0.785	0.812	0.741	0.785	0.273	0.750	0.192	0.159	0.244
	GGC	0.131	0.060	0.247	0.131	0.333	0.375	0.019	0.000	0.049
	GGT	1.327	1.083	1.728	1.327	0.364	2.500	1.769	0.762	3.317
V	GTA	1.653	1.918	1.275	1.653	2.087	0.566	1.749	2.731	0.456
	GTG	0.287	0.367	0.174	0.287	0.174	0.496	0.066	0.038	0.101
	GTC	0.240	0.327	0.116	0.240	0.661	0.071	0.109	0.154	0.051
	GTT	1.820	1.388	2.435	1.820	1.078	2.867	2.077	1.077	3.392
Number	Codons	3670	2260	1410	3668	2271	1417	3725	2296	1429

Chapter 3. The Complete Mitochondrial Genome Sequence of a Giant Stonefly, Pteronarcys princeps (Plecoptera; Pteronarcyidae)

3.1. Introduction

Mitochondrial DNA sequence has a long history of use in molecular studies of populations (Wrischnik, et al., 1987) and molecular phylogenetic analyses between taxonomic groups (Kocher, et al., 1989). With improvements in amplification, isolation and sequencing technology, groups studying phylogenetic relationships of more deeply diverging taxa have begun to use complete mt-DNA data sets for their analyses (for examples and discussion see Curole and Kocher, 1999; Inoue, et al., 2001; Delsuc, et al., 2003; Friedrich and Muqim, 2003; Nardi, et al., 2003b; Stewart and Beckenbach, 2003; Cameron, et al., 2004; Helfenbein, et al., 2004; Papillon, et al., 2004; Scouras, et al., 2004; Lavrov, et al., 2005 and others).

Complete mitochondrial (mt-) genome sequencing of insects and other hexapods has recently received renewed attention from a number of research groups. The first seven insect sequences were released between 1985 (Clary and Wolstenholme, 1985a) and 1999 (Lee, et al. unpublished, Accession AF149768). Since 2000, 38 new insect species have had complete or near-complete mt-genome sequences released. Of the thirty recognized insect orders (Kristensen, 1991; Klass, et al., 2002), complete mtgenome sequences are available in GenBank for eleven orders. Near-complete genome sequences (those missing some tRNAs, small sections of $\operatorname{sr} R N A$ and / or nad2, and all or
part of the $\mathrm{A}+\mathrm{T}$ rich region) increase the number of orders represented by mt-DNA sequence by two (Odonata and Blattodea). This sampling still leaves seventeen insect orders not represented in the mitochondrial sequence databases.

The subsequent use of the resulting "mitogenomic" data sets is only one motivation to obtain complete mt-genome sequence. Interesting molecular evolutionary phenomenon are also being reported in insect mt-genomes. Contrary to the generally stable gene order and arrangement observed in most insect mt-genomes, it is becoming apparent that some insect lineages appear to have evolved a predisposition to major genome rearrangements. One such group is the Paraneoptera, where many different patterns of gene re-arrangement have been observed, (Shao, et al., 2001; Shao and Barker, 2003; Shao, et al., 2003; Thao, et al., 2004), including the apparent evolution of up to four independent rearrangements within the whitefly family (Hemiptera, Sternorrhyncha, Aleyrodidae). A similar phenomenon has been discussed in detail regarding tRNA clusters within the Hymenoptera (Dowton and Austin, 1999; Dowton, et al., 2003).

Obtaining sequence in the larger context of the whole or majority of the mtgenome has also allowed for the identification of unusual coding of functional genes that may otherwise have been interpreted as the amplification of a nuclear pseudogene copy if only partial gene sequences been amplified and sequenced. One such example is the report of programmed translational framshifting in the mitochondrial cytb gene of an ant genus (Beckenbach, et al., 2005).

An important grouping of orders referred to as the Neoptera incertae sedis by Kristensen (1991), or as the "basic" or "lower" Neoptera have very poor representation by
complete mt-DNA sequence (See Chapter 1, Figure 1.2). At present, the complete mt-genome sequence of the migratory locust, Locusta migratoria (Flook, et al., 1995) and the oriental mole cricket, Gryllotalpa orientalis (Kim, et al., 2005) represent the single order Orthoptera. The near-complete mt-DNA sequence of a cockroach, Periplaneta fuliginosa (Order Blattodea) increases the representation to only two of the eleven Neoptera incertae sedis orders. Given the ancient origin and unknown inter-order relationships of most of these groups, it is unusual that these order have been neglected this long.

The stoneflies (order Plecoptera) are an ancient group of insects. Their fossil record extends into the Lower Permian (285 to 240 million years before present), where five to six distinct families can be described, implying an earlier origin for the group (reviewed by Wootton, 1981). Some of the competing evolutionary hypotheses place the stoneflies as a single basal group, diverging early after the split between the Paleoptera and the Neopteran ancestors, and before other Neopteran diversification (see Figure 3.1).

In this work, I present the complete mitochondrial genome sequence of a giant stonefly, Pteronarcys princeps (Plecoptera; Pteronarcyidae). This sequence provides the first complete mt -genome from a plecopteran.

Figure 3.1. Differing Phylogenetic Views of the Placement of Plecoptera within the Insects. A - Summary of relationships presented in (Boudreaux, 1979). B - Summary of relationships presented in (Hennig, 1981).

3.2. Methods

3.2.1. Specimen Collection and Identification

A giant stonefly was collected from the foliage surrounding Stoney Creek, in Burnaby, British Columbia, Canada on April 22, 2002. The specimen was identified as an adult male of the species Pteronarcys princeps (Plecoptera; Pteronarcyidae) using the key by Baumann et al. (1977). After the specimen was killed by exposure of ethyl acetate vapours, it was pinned and allowed to dry prior to DNA extraction.

3.2.2. DNA isolation

Two legs were removed from the specimen and each was ground and digested separately in $100 \mu \mathrm{l}$ protease buffer $(0.01 \mathrm{M}$ Tris pH $7.8,5 \mathrm{mM}$ EDTA, $0.5 \% \mathrm{SDS}, 50 \mathrm{ng} / \mu \mathrm{l}$ proteinase K) for 10 minutes at $60^{\circ} \mathrm{C}$. The solution was extracted with 1 volume of Trisbuffer saturated phenol (pH 7.6), then with 1 volume chloroform: isoamyl alcohol (24:1). The aqueous layer was again removed to a new Beckman ultrafuge 1.5ml Eppendorf tube, and the volume measured. Tubes were balanced to volume by the addition of 10 mM Tris. A volume of cold 95\% ethanol 2.1 times the adjusted aqueous layer volume was added. The solution was mixed by hand agitation, and left to precipitate overnight at $-20^{\circ} \mathrm{C}$. The DNA was pelleted by centrifugation in a Beckman desktop ultra-centrifuge with a TLA-45 rotor for 30 minutes at $40,000 \mathrm{rpm}$. The pellet was washed with cold 70% ethanol and centrifuged in a desktop Eppendorf centrifuge at maximum speed for 10 minutes. The pellet was allowed to air dry on the bench. The pellet was finally dissolved in $100 \mu \mathrm{l}$ of $\mathrm{ddH}_{2} \mathrm{O} .1 / 10$ were dilutions used in PCR reactions.

3.2.3. PCR and Long-PCR Amplification

The genome, except for the $\mathrm{A}+\mathrm{T}$ rich region, was amplified in overlapping PCR fragments, using QIAGEN Taq DNA polymerase (QIAGEN Inc.). Heterologous primers used were designed using aligned insect and hexapod mt-genome sequences. At later stages in the sequencing effort, primers designed from the obtained stonefly sequence were used in PCR and sequencing reactions. Primer pairs are listed in Table 3.1. PCR amplifications were carried out in an Eppendorf Mastercycler 5333 thermocycler. QIAGEN ${ }^{\left({ }^{(}\right)} \mathrm{Taq}$ DNA polymerase was utilized in $50 \mu 1$ reactions with MgCl_{2} concentrations adjusted to $2.0 \mathrm{mM}, 0.2 \mathrm{mM}$ of each dNTP, 400 nM of each primer and 1.25 U of Taq polymerase in a $1 / 10$ dilution of the supplied reaction buffer.

The PCR cycling consisted of a 2 minute denaturation step at $94^{\circ} \mathrm{C}$, followed by five 30 second cycles of denaturation at $94^{\circ} \mathrm{C}$, annealing for 30 seconds at $45^{\circ} \mathrm{C}$, then 120 second elongation at $72^{\circ} \mathrm{C}$. Thirty additional cycles were carried out as above, with the annealing temperature increased to $50^{\circ} \mathrm{C}$.

Some primer pairs required additional optimization, normally an adjustment of annealing temperatures upward to $50-55^{\circ} \mathrm{C}$. In these cases, cycling was conducted as described above, but with 35 cycles, with the same annealing temperature for all cycles.

PCR reactions were visualized by agarose gel electrophoresis on a 0.8% agarose gel with 0.5 X TAE (20 mM Tris- $\mathrm{HCl}, 5 \mathrm{mM}$ EDTA, 10 mM acetic acid) as buffer. Four $\mu \mathrm{l}$ of each of the reactions was run against 200ng of 100 bp Ladder (Invitrogen ${ }^{\mathrm{TM}}$ Life Technologies) as a size and concentration standard.

Table 3.1. Primers Used in the Amplification of the Mitochondrial Genome of the Giant Stonefly Pteronarcys princeps.

	Forward Primer\&	Sequence ($5^{\prime}-3^{\prime}$)	Reverse Primer ${ }^{\circledR}$	Sequence ($5^{\prime}-3^{\prime}$)
1	T1-J34	GCCTGATAAAAAGGRTTAYYTTGATA	N2-N993	CCATTTTTAGGATTTTTACCNCC
2	TM-J210	AATTAAGCTACTAGGTTCATACCC	C1-N1859	GGAGGCTAAACWGTTCANCCTGTNCC
3	N2-J574	ATAGGAGCCGCTCCNTTYCA	C1-N1828	CAAGTAGGACAWGGWCGWGG
4	C1-J1709	AATTGGWGGWTTYGGAAAYTG	C1-N2353	CGAGCACATAGTTGCAGATAWGG
5	C1-J1709	(see above))	C1-N2776	ATTAGACTTATTGCAGCNCC
6	C1-J2222	TAATTTIACCAGGATTYGG	C2-N3389b	ATGAGTATYCTAGTYATAGTRAC
7	TL-J3034	TAATATGGCAGATTAGTGCA	A8-N4067	GACTCTTATTCAAACAATAGT
8	TK-J3790	CATTAGATGACTGAAAGCAAGTA	C3-N4911	AAGAGCACTTTATAGAGCAGTRGT
9	A8-J3927	TTTATTCCTCAAATAGCWCC	C3-N4911	(see above)
10	C3-J4792	GTTGATTATAGACCWTGRCC	N3-N5731	AATCCCAGTTTAGGYGTRAG
11	TG-J5584	agtatattigacticcaatc	N5-N6551sF	ССТАСТТСАСТСАТААСАССТС
12	TN-J6172	AGAGGTATATCACTGTTAATGA	N5-N7211	GTTCCGAAAWAAYAAATAYACRCG
13	N5-J7077	AAATCCTTTGARTAAAANCC	N5-N7793	AATCCAACYCTACCNRATCC
14	N5-J7077	(see above)	N5-N8727	CGAAATTAACGTATRAGNAG
15	N5-J7714sF	GTAAAGCAACATCTCCAATACGA	N4-N9154	ACTCCAATAGTTGGNCTYGC
16	N4-J8944	GGAGCTTCAACATGAGCTTT	N6-N10035sF	TCGATTGCCTACTAAATAAACTC
17	N4-J8944	(see above)	CB-N10198	TATAAAGTAAACACCGTACAG
18	TT-J9885	AAAAAAAACATTGGTCTTGTA	CB-N10917	GTTTTACTATTAACWGGAGTNCC
19	TT-J9885	(see above)	N1-N12067	TTAGCWTGAGGWAAACTAAAACG
20	CB-J10933	GTTCTACCTTGAGGNCAAATRTC	N1-N12067	(see above)
21	CB-J11335	CATATTCAACCWGAATGRTA	N1-N12560	TAAGTTTAAGCATTYCCNGG
22	CB-J11335	(see above)	LR-N12886	TGTACTAGACTCAAGTYTGGCC
23	N1-J12260	AATYTCATAAGAAATAGTTTGWGC	LR-N13003	AATGGAATCCCTATTGTCGC
24	LR-J12967	TTAATCCAACATCGAGGTCGCAA	SR-N14220	AACATGTGTAGCGGGCAG
25	LR-J13342	CCTTCGCACRGTCAAAATACYGC	SR-N14744b	CACGGTCGTNYRCGCCAATNTG
26	LR-J13900	TTTGATAAACYCTGATACAMAAG	SR-N14588	TTTGATCCTAATCTATGGGATAATA
27	SR-J14247*	CGATGTGTGCATATTTYAGAGC	DL-N15188s**	CAATAAATAAATTATTTACCCCG
28	SR-J14618SF*	СTTTAAATTTCACAGCTTCAACAACC	TM-N193 sf^{*}	CGATTACCCAAGTATGGGGTAAAT
29	DL-J15121sF*	gacaltaanttacctaaccaac	N2-N313 ${ }_{\text {sF }}{ }^{*}$	CGTGGTTTAGTACTTAACCGAC

*Long-PCR reaction utilized with this primer pair.
${ }^{\&}$ Primer names followed by ${ }_{\text {SF }}$ were designed specifically from the obtained stonefly sequence.

The $\mathrm{A}+\mathrm{T}$ rich region of the genomes was amplified using the GeneAmp ${ }^{\circledR}$ XL PCR Kit (Applied Biosystems). Specific, high annealing primers were designed for use with the XL PCR reaction (see Table 2.1). DNA template concentrations were 10 times as concentrated as that utilized in standard PCR reactions. Reaction mixture concentrations were as suggested by the supplier, but scaled to 50μ l. Final concentrations for the reaction mixture were 0.9 mM dNTP mix, 1.25 mM magnesium acetate, $0.25 \mu \mathrm{M}$ of each primer in 1-x supplied reaction buffer.

Long-PCR Cycling was conducted in an Eppendorf Mastercycler 5333 thermocycler, and consisted of a one-minute $94^{\circ} \mathrm{C}$ incubation of the template and the primer master mixes, before they were combined, then a $94^{\circ} \mathrm{C}$ denaturation for 90 s after the combination of the two master mixes. The first 16 cycles consisted of a denaturation step of $90^{\circ} \mathrm{C}$ for 20 s , followed by an anneal/elongation step at $62^{\circ} \mathrm{C}$ for 6 minutes. The final 23 cycles were similar, but with an addition of 15 seconds per cycle to the anneal/elongation time.

3.2.4. Purification of PCR Products

Successful amplification products (single bands of approximately expected size) were isolated using the QIAquick ${ }^{\circledR}$ PCR Purification kit $\left(\right.$ QIAGEN ${ }^{\circledR}$) as directed by the supplier, with minor alterations to the protocol. This purification kit was designed to remove excess nucleotides and primers from the PCR reaction, so that the products could be sequenced.

Briefly, the PCR reaction was mixed with five volumes of the proprietary chaotropic salt mixture supplied with the kit. The PCR products were bound to a membrane within the column by centrifuging the solution through the column. Next, 0.75 ml of an ethanol
containing "wash buffer" was passed over the membrane by centrifugation. The column was then dried by centrifugation for 1 minute with no solutions passing through the membrane. The membranes was then allowed to thoroughly dry by leaving it on the bench top for at least 1 hour. The DNA was eluted by the addition of $40 \mu \mathrm{l}$ of either $\mathrm{ddH}_{2} \mathrm{O}$ or a $1 / 10$ dilution of the supplied elution buffer, then centrifuging the eluted DNA into a fresh 1.5 mL Eppendorf tube.

If optimization of the PCR protocol was not able to eliminate secondary bands from the PCR reaction, the band of the expected size was separated by agarose-gel electrophoresis. The target band was then cut from the gel and transferred to a 1.5 ml Eppendorf tube. The gel slice was allowed to freeze at $-20^{\circ} \mathrm{C}$ overnight. The next morning, the gel slice was subjected to centrifugation at top speed in a desktop centrifuge for 20 minutes. The resulting liquid was pipetted into a fresh tube and saved.

The remaining agarose in the original tube was then extracted using the QIAquick ${ }^{\circledR}$ Gel Extraction kit (QIAGEN $\left.{ }^{\circledR}\right)$. The agarose was dissolved in three volumes of the supplied PB buffer, and dissolved at $50^{\circ} \mathrm{C}$ for at least 10 minutes. This solution was then passed over a column through centrifugation, then washed with 0.75 ml of the supplied ethanol containing wash buffer. The column was then dried by centrifugation for 1 minute with no solutions passing through the membranes, to speed drying. The column was then allowed to sit on the bench top for at least one hour to dry. The liquid recovered after centrifugation was treated as a PCR reaction and purified using the same column as was used above, in the agarose extraction.

3.2.5. DNA Sequencing

Sequencing was conducted by the University of Calgary DNA Sequencing Center. The sequencing center uses an ABI Prism model 377 sequencing machine, with the BigDye Terminators Version 3.0 or Version 3.1 sequencing kits (Applied Biosystems). Pre-mixed primer (3.2 pmol) and template ($100 \mathrm{ng} / 1 \mathrm{~kb}$ template length) were diluted into $12 \mu \mathrm{l}$ total volume, then mailed to the sequencing center. The sequencing center supplied the ABI trace files generated by the sequencer, text files of each individual sequence read, and a .pdf file of all sequencing runs.

3.2.6. Sequence Assembly, Annotation and Analysis

Sequence alignments, assembly of PCR fragments, and nucleotide sequence analysis was conducted using BioEdit (version 7.0.1, August 17, 2004) (Hall, 1999). Relative Synonymous Codon Usage calculations (RCSU) were conducted using MEGA2 (version 2.1, 2001) (Kumar, et al., 2001). Alignment of amino acid sequences, as well as rRNA sequences and $\mathrm{A}+\mathrm{T}$ region sequences was carried out using CLUSTAL W (version 1.81) (Thompson, et al., 1994). Clustal aligned sequences often required manipulation by eye after the completion of the alignment.

Dot plots were conducted to search for repeats and inverted repeats in sequence analyses, especially in the major non-coding region (also called the $\mathrm{A}+\mathrm{T}$ rich region) of mitochondrial genomes. Dot plots were conducted using DOTTER for windows (October 1999) (Sonnhammer and Durbin, 1995).

Searches for tRNA genes were conducted using tRNAScan-SE (version 1.23, April 2002) (Lowe and Eddy, 1997), installed on a Sun Microsystems UNIX machine running SunOS 5.8. Searches were constrained to organellar tRNA's only, using the
invertebrate mitochondrial genetic code, with a COVE cut-off score of 5 . For searches on small sections of DNA sequence the tRNAScan-SE Search Server Version 1.21 was used online at (http://www.genetics.wustl.edu/eddy/tRNAscan-SE/).

Sequence statistics were calculated using features of BioEdit, while relative synonymous codon usage (RSCU) values were calculated using MEGA 2.1 (Kumar, et al., 2001). Serine TCN and AGN codons were re-calculated, by hand, as two 4-fold degenerate codon families (instead of the 8 -fold family computed by MEGA), since two simultaneous non-synonymous nucleotides substitutions in first and second codon positions would be required for the synonymous movement between the two serine codon families. The leucine CUN and UUR codons were also separated into a four-fold and a two-fold degenerate family, as the UUA codon was so strongly over-represented that the six-fold codon RSCU obscured the contribution of the CUN codons.

Codon usage for A-T and G-C skew calculation was calculated using CodonW (version 1.4.2 May 2005, available at http://codonw.sourceforge.net/) (Peden 1999).

3.2.7. Sequence Comparisons

Primer design, gene annotation and comparative analyses relied on the alignment of other complete mitochondrial genomes from other hexapods that were deposited in GenBank. Table 3.2 lists the genomes, released in GenBank prior to April 22, 2005, that were utilized in this study.

A number of independent species groups within the insects appear to be undergoing strongly accelerated rates of evolution, accompanied with gene-order rearrangements. These groups include the social bees and wasps (Crozier and Crozier, 1993; Foster, et al., 1997; Foster and Hickey, 1999; Castro and Dowton, 2005), and some of the
paraneopteran lineages (Shao, et al., 2001; Shao and Barker, 2003; Shao, et al., 2003; Thao, et al., 2004). Use of various phylogenetic reconstruction techniques to estimate insect phylogenies identify these species as "long-branch attracting" taxa (Hendy and Penny, 1989). Given the increase rate of sequence evolution, primer design often did not consider sequence variation from the remaining insect alignment observed for the sequences of Apis, Melipona, Neomaskellia, Pachypsylla, Schizaphis, Trialeurodes, Heterodoxus, Lepidopsocid and Thrips.

The $\mathrm{A}+\mathrm{T}$ rich region of two stoneflies from genus Peltoperla (family Peltoperlidae) were obtained from Genbank (Accessions AY142073 and AY142074). The giant stoneflies (family Pteronarcyidea) are considered a sister group to the Peltoperlidae+family Styloperlidae (Thomas, et al., 2000; Zwick, 2000).

The complete mt-genome sequence was submitted to GenBank, under accession number AY687866 (with associated RefSeq NC_006133).

Table 3.2. Complete and Near-Complete Hexapod Mitochondrial Genome Sequences Utilized in this Study, with their GenBank Accession Numbers.

Accession Number	RefSeq Number	Species	Common Name	Reference
Collembola: Arthropleona				
AY191995.1	NC_005438	Gomphiocephalus hodgsoni	springtail	(Nardi, et al, 2003b)
AF272824.1	NC_002735	Tetrodontophora bielanensis	giant springtail	(Nardi, et al., 2001)
Insecta: Archaeognatha				
AY793551.1	NC_006895	Nesomachilis australica	jumping bristletail	(Cameron, et al., 2004)
Insecta: Blattaria				
AB126004.1	NC_006076	Periplaneta fuliginosa	smokybrown cockroach	(Yamauchi, et al., 2004)
Insecta: Coleoptera				
AF467886.1	NC_003372	Crioceris duodecimpunctata	asparagus beetle	(Stewart and Beckenbach, 2003)
AF452048.1	NC_003970	Pyrocoelia rufa	firefly	(Bae, et al., 2004)
AJ312413.2	NC_003081	Tribolium castaneum	flour beetle	(Friedrich and Muqim, 2003)
Insecta: Diptera				
AY072044.1	NC_006817	Aedes albopictus	Asian tiger mosquito	Ho et al., 2004, unpublished
L20934.1	NC_002084	Anopheles gambiae	mosquito	(Beard, et al., 1993)
L04272.1	NC_000875	Anopheles quadrimaculatus	mosquito	(Mitchell, et al., 1993)
AY210702.1	NC_005333	Bactrocera oleae	Olivefly	(Nardi, et al., 2003a)
AJ242872.1	NC_000857	Ceratitis capitata	Mediterranean fruitfly	(Spanos, et al., 2000)
AF352790.1	NC_002697	Chrysomya putoria	latrinefly	(Junqueira, et al., 2004)
AF260826.1	NC_002660	Cochliomyia hominivorax	screwworm fly	(Lessinger, et al., 2000)
AY463155.1	NC_006378	Dermatobia hominis	human botfly	unpublished
AF200830.1	NC_005779	Drosophila mauritiana	-	(Ballard, 2000b)
U37541.1	NC_001709	Drosophila melanogaster	-	(Lewis, et al., 1995)
AF200828.1	-	Drosophila melanogaser*	Oregon R strain	(Ballard, 2000b)
AF200832.1	NC_05780	Drosophila sechellia*	-	(Ballard, 2000b)
AF200833.1	NC_05781	Drosophila simulans*	-	(Ballard, 2000a)
X03240.1	NC_001322	Drosophila yakuba	-	(Clary and Wolstenholme, 1985a)
DQ029097.1	NC_007102	Haematobia irritans irritans	horn fly	Lessinger et al., 2005, unpublished
Insecta: Hemiptera				
AY572538.1	NC_006160	Aleurochiton aceris	whitefly	(Thao, et al., 2004)
AY521251.1	NC_005939	Aleurodicus dugesii	Doogie Howzer whitefly	(Thao, et al., 2004)
AY521259.2	NC_006279	Bemisia tabaci	sweet potato whitefly	(Thao, et al., 2004)
AY875213.1	NC_006899	Homalodisca coagulata	glassy-winged sharpshooter	Baumann and Baumann, 2005, unpublished
AY572539.1	NC_006159	Neomaskellia andropogonis	sugarcane whitefly	(Thao, et al., 2004)
AY278317.1	NC_006157	Pachypsylla venusta	psylid	(Thao, et al., 2004)
AY630340.1	NC_005944	Philaenus spumarius	meadow spittlebug	(Stewart and Beckenbach, 2005)

(Table 3.2 concluded)

Accession Number	RefSeq Number	Species	Common Name	Reference
AY531391.1	NC_006158	Schizaphis graminum	greenbug (aphid)	(Thao, et al., 2004)
AY521262.2	NC_06292	Tetraleurodes acaciae	acacia whitefly	(Thao, et al., 2004)
AY521265.2	NC_006280	Trialeurodes vaporariorum	greenhouse whitefly	(Thao, et al., 2004)
AF301594.1	NC_002609	Triatoma dimidiata	kissing bug	(Dotson and Beard, 2001)
Insecta: Hymenoptera				
L06178.1	NC_001566	Apis mellifera ligustica	honeybee	(Crozier and Crozier, 1993)
AF466146.1	NC_004529	Melipona bicolor*	stingless bee	Silvestre,D and Arias, 2003, unpublished
AY787816		Perga condei*	spitfire grub (sawfly)	(Castro and Dowton, 2005)
Insecta: Lepidoptera				
AY242996.1	NC_004622	Antheraea pernyi	Chinese oak silkmoth	Lui et al., 2003, unpublished
AB070263.1	NC_003395	Bombyx mandarina	wild silkmoth	(Yukuhiro, et al., 2002)
AF149768.1	NC_002355	Bombyx mori	domestic silkmoth	Lee et al., 2000, unpublished
AF467260.1	NC_003368	Ostrinia furnacalis*	Asian cornborer	(Coates, et al., 2005)
AF442957.1	NC_003367	Ostrinia nubilalis*	European cornborer	(Coates, et al, 2005)
Insecta: Odonata				
AB126005.1	-	Orthetrum triangulare melania*	dragonfly	(Yamauchi, et al., 2004)
Insecta: Orthoptera				
AY660929.1	NC_006678	Gryllotalpa onientalis*	Oriental mole cricket	(Kim, et al., 2005)
X80245.1	NC_001712	Locusta migratoria	migratory locust	(Flook, et al., 1995)
Insecta: Phthiraptera				
AF270939.1	NC_002651	Heterodoxus macropus	wallaby louse	(Shao, et al., 2001)
Insecta: Plecoptera				
AY687866.1	NC_006133	Pteronarcys princeps	ebony salmonfly	This study
Insecta: Psocoptera				
AF335994.2	NC_004816	Lepidopsocid RS-2001	scaly-winged barklouse	(Shao, et al., 2003)
Insecta: Thysanoptera				
AF335993.2	NC_004371	Thrips imaginis	plague thrips	(Shao and Barker, 2003)
Insecta: Thysanura				
AY639935.1	NC_006080	Thermobia domestica	firebrat	Cook and Akam, 2004, unpublished
AY191994.1	NC_005437	Tricholepidion gertschi	silverfish	(Nardi, et al., 2003b)

Species names followed by ${ }^{*}$ represent near-complete mt-genome sequences.

3.3. Results and Discussion

3.3.1. Genome Annotation

The genome sequencing methodology used, based on amplification with insectderived heterologous primers gave an immediate crude map of the genome based on the identity of the genes from which the primers were designed. Refinement of this annotation began with the identification of the tRNA genes, which are known to punctuate the larger genes within insect mt-genome (Ojala, et al., 1980a; Clary, et al., 1982)

3.3.1.1. Annotation of tRNA Genes

As sequence accumulated, the assembled genome fragments were examined for tRNA genes. The tRNAScan software (Lowe and Eddy, 1997) (Version 1.23, complied for a Sun Microsystems UNIX machine running SunOS 5.8) was able to identify 20 of the 22 tRNAs for the stonefly. The remaining two, $t R N A^{S e r-A G N}$ and $t R N A^{A r g}$, were identified by inspection of the two approximately 70bp gaps in the tRNA cluster located between the nad3 and nad5 genes, where the orthologues of these tRNAs are found in most other insect mt-genomes. The identity of the $t R N A^{A r g}$ gene was confirmed by the folding of the putative tRNA by hand to ensure a cloverleaf structure was observed. The sequence was then aligned to orthologues from other insect mt-genomes for further confirmation. Similar to most animal mitochondria sequenced to date, the $t R N A^{S e r-A G N}$ for the stonefly mitochondria lacked a dihydrouridine loop and stem (Wolstenholme, 1992). Due to the unusual secondary structure for the $t R N A^{S e r-A G N}$ gene, the sequence was first identified by alignment to orthologous tRNA genes, and then by finding a putative
secondary structure fold that was constrained by tertiary structure considerations (Steinberg and Cedergren, 1994; Steinberg, et al., 1994). The proposed secondary structures of the tRNA genes are shown in Figure 3.2.

3.3.1.2. Protein Coding Genes

With the tRNA genes identified, the large sequence gaps between them was examined for open reading frames, yielding amino acid sequences that would align to the known insect mitochondrial protein coding genes. All thirteen expected protein-coding genes were identified in their conserved relative position.

Five putative start codons are utilized by the stonefly mitochondrial genome. The most commonly used start, ATG, was found for six of the protein coding genes (cox2, atp6, cox3, nad4, nad4L, and cytb). These six protein genes include the four that are abutted to their 5' end by another protein coding gene that overlaps with the start codon by at least one nucleotide (cox3 and $c y t b$), or are overlapped by seven nucleotides (atp6 and nad4). The ATT codon is utilized to initiate three protein genes (atp8, nad3 and nad6), GTG by two (nad2 and nad5), and TTG by one (nad1).

The coxl gene has been tentatively annotated to start with a CGA codon at position 1445-1447. It can be argued that the start should instead be annotated to start at the ATT at position 1436-1438, requiring the overlapping of the $\operatorname{cox} 1$ and $t R N A^{T y r}$ genes by seven nucleotides, and extending the 5^{\prime} end of coxl by nine nucleotides. Since these two genes are encoded on opposite strands, there is no functional argument to dismiss this possible annotation. Common practice has, however, been not to overlap these genes, and to base the annotation of the coxl the open reading, or on a four (or greater) base initiation signal,

A	Acceptor			Anticodon		T ψ C Stem and Loop			Acceptor Stem
	Stem D	- Stem and	oop						
	1111111.. 2222		2222.33333		33333		44444	44444	1.
I	AATGAAGTGCCT	GATAAA	AGGATTATC	GTGATAG	GATAA	AtTAT	GTAAATTATA	TTTAC	CTTCATTA
Q	TATGTTCTAGTGT	ATGGT	GCACGAAAGT	TTTTGAT	ACTTT	CGGA	AATAGTTCAAGT	CTATT	gGAcAta
M	AGAAAGATAAGCT	AATAA	AGCTAATGGG	TTCATAC	CCCAT	ttat	AGAGGTTTTACT	ССТСт	tCTTTCTA
W	AAGGCTTTAAGTT	AATtA	AACTAATAGC	CTTCAAA	GCTGT	AAAT	AAAG TATCTAT	CTTT	AAGCCTTA
C	AGCTTTATAGTCA	ATGA	tGAtAttaga	CTGCAAT	TCTAA	AGGT	GTAA GTGATC	TTAC	TAAGGCTT
Y	GGTAGAATGGCT	GAGATATAA	GGTGATAGA	TTGTAAA	TCTAT	TTAG	GAGG tatacc	CCTC	TTCTACCA
L-UUR	TCTAATATGGCA	GAtAAG	TGCAATGGA	TTTAAGC	тCCAT	AtAT	AAAGGCTATT	ССTTT	TGTtAGAA
K	CATCAGATGACT	GAAAGCA	AGTATTGGT	CTCTTAA	ACCAT	TTTATA	AGTAATCTCGCAA	TTACT	tCTGATGA
D	AAAGAATTAGTTA	AAT	TAACATTAGT	ATGTCAT	GCTAA	AATT	ACTAGTACTAGC	CTAGT	ATTCTTTA
G	ATTTGTCTAGTAT	AATAA	GTATATTTGA	CTTCCAA	TCAAA	AGGT	CTGA ATATCT	TCAG	GACAAATA
A	AGGACTGTAGTTA	AGTA	TAACATTTGG	TTTGCAT	CCAAA	AAGT	AttG AGAtT	CAAT	CTGTCTTA
R	GAATAAGAAGCGA	TTTT	TTGCACTCAG	TTTCGAC	CTGAA	TCTA	GAtAACTCAG	TTATC	CTTATTCT
N	TTAATTGAAGCC	AAATAGA	GGCATATCA	CTGTtAA	TGATA	TAATTG	GAAT AACTT	АтTC	CAATTAAG
E	Atttatatagttt	AATTCA	AAACATTACA	TTTTCAC	tGTAA	AAAT	AAAG GCTTTA	CTTT	tatanata
F	ATTCAAGTAGCTT	AtaAata	GAGCATGACA	CTGAAGA	TGTTA	GGGA	GATT AATGT	AATC	TTTGAATA
T	GTTTTAATAGTTT	AAAGA	AAACATTGGT	CTTGTAA	AtCAA	AAATTA	AAGG CCTGGA	CCTT	TTAGAACT
S-UCA	AGTTAATAAGCTT	ATTGTA	AAGCATATGT	TTTGAAA	ACATA	AGAC A	AGAAGTTTAAAT	CTTCT	ATTAACTT
P	CAGAGAATAGTTT	Attta	AAATATTAGT	TTTGGGG	AttaA	TGATAG	GGGGGTTT	CTCTT	TTCTCTGA
L-CUN	TCTATTTTGGCA	GATAAG	TGCAATGGG	TTTAGAA	TCCAT	tTAT	GTAA AGGGATT	TTAC	AgAtAGAA
V	CAAGGCAGAGCTT	GATTAGTT	AAGCATTTCA	TTTACAC	TGAGA	AGTC	ACTG TGCAATT	CAGTT	TTGTTTTGA
	111111112	2	3.3.33333	.	33333	3. 3	. 44444	44444	11111111.
S-AGN	GAAATATG A	TGT T	C AAGAAAAAG	CTGCTAA	CTTTT	тCT TT	T AGCGGTTAAAT	CCGTT	TATATTTCT

Figure 3.2. Proposed Secondary Structure for the tRNA Genes of the Giant Stonefly. The tRNA genes are listed by their one letter codes, with the codon listed for leucine and serine. A - Alignment of the primary sequences of the tRNA genes. B-Guide to fold all tRNAs except $\boldsymbol{t} \boldsymbol{R N A} A^{S e r-A G N}$ into potential clover-leaf structures. C - Tertiary structure compensation fold of the $t R N A^{\text {Ser-AGN }}$ gene, from (Steinberg and Cedergren, 1994; Steinberg, et al., 1994). Watson-Crick and G-T basepairs are denoted by a dash for B and C.
beginning with an A (Clary and Wolstenholme, 1983a; de Bruijn, 1983; Beard, et al., 1993; Mitchell, et al., 1993; Flook, et al., 1995). Data to be discussed in a later chapter will clarify my choice of the shorter, and non-standard start codon (see chapter 4).

Stop codons that do not overlap with the abutting gene were only observed for two of the protein coding genes, for nad4 (a TAA stop) and for nadl (a TAG stop). Three protein genes (cox1, cox2, and nad5) do not encode their stop codons in their DNA sequence, but evidently make use of single in-frame T nucleotides that are abutted by a tRNA genes and are presumed to have their stop codons completed by the polyadenylation of the mature mRNA (Ojala, et al., 1980a; Ojala, et al., 1981). Six protein coding genes encode a putative stop codon that overlaps by one or two nucleotides with the 5^{\prime} end of their downstream tRNA or protein coding genes (a potential TAA for nad2, atp6, cox 3 and nad6 and a TAG for nad 3 and $c y t b)$. It is equally likely that these six overlapping stop codons are not functional, but coincidentally appear to be stop codons. These genes could be interpreted to encode only the in-frame T or TA nucleotides that are then polyadenylated as mRNAs to construct their functional stop codons.

As is observed in most arthropod mt-genomes, the stop codons for the short atp 8 and nad4L genes are encoded as part of a seven nucleotide overlap with the coding region of their 3' neighbouring genes, atp6 and nad4, respectively. It has been demonstrated in Drosophila that these gene pairs are expressed via bicistronic mRNA molecules (Berthier, et al., 1986). It appears, by the conservation of this overlap that the stonefly maintains a bicistronic expression system for these gene pairs.

3.3.1.3. Ribosomal RNA Genes

Finally the $\operatorname{lr} R N A$ gene and the $s r R N A$ gene were identified based on conserved relative genome position and sequence alignment to the orthologues in other insect mitochondria. My annotation of the ribosomal genes presented here is based on the assumption that there are no non-coding nucleotides between the rRNA genes and their abutting tRNA genes. The boundary between the 5^{\prime} end of $s r R N A$ and the major noncoding region (or the $\mathrm{A}+\mathrm{T}$ rich region) could be detected by the alignment of a conserved "TTNAAGTTNTAARANCG" 5 ' motif for hexapod $s r R N A$ sequences.

3.3.2. Genome Architecture

The complete genome of the giant stonefly Pteronarcys princeps was observed as a circularly amplifiable molecule through the PCR methods employed. The genome size was found to be 16004 bps in total length. The same gene content and relative order observed in the Drosophila yakuba mitochondrial genome was maintained in the stonefly sequence (Clary and Wolstenholme, 1985a). This sequence organization has been termed the ancestral genome arrangement, due to the conservation of this exact gene order in non-insect hexapods (Nardi, et al., 2003b) and crustaceans (Crease, 1999).

3.3.3. Nucleotide Composition

Analyses of nucleotide composition for various genome features are summarized in Table 3.3. The complete genome is observed to consist of approximately $71.5 \% \mathrm{~A}$ and T nucleotides. High $\mathrm{A}+\mathrm{T}$ richness is observed for the $1158 \mathrm{bp} \mathrm{A}+\mathrm{T}$ rich region (81.3\%), the 3739 third codon position nucleotides (84.6\%), and the 60 non-coding, intergenic nucleotides (85.0%). $\mathrm{A}+\mathrm{T}$ content values less than those observed for the complete

Table 3.3. Nucleotide Composition of Stonefly Mitochondrial Genome Features. Bolded values represent the most frequently used nucleotide for the described feature, while italicized numbers represent the least frequently used nucleotide.

Annotated Genome Feature	number of nucleotides	A	T	G	C	A + T
Whole Genome (J strand)	16004	0.3710	0.3435	0.1108	0.1746	0.7146
J strand protein genes	6896	0.3008	0.3872	0.1299	0.1821	0.6879
${ }^{\text {st }}$ codon position	2298	0.2881	0.3042	0.2293	0.1784	0.5923
$2^{\text {nd }}$ codon position		0.1915	0.4339	0.1375	0.2372	0.6254
3 rd codon position		0.4230	0.4230	0.0231	0.1310	0.8460
N strand protein genes	4325	0.2717	0.4603	0.1734	0.0946	0.7320
$1{ }^{\text {st }}$ codon position	1441	0.2713	0.4282	0.2124	0.0881	0.6995
$2^{\text {nd }}$ codon position		0.1811	0.4684	0.1749	0.1756	0.6459
$3^{\text {rd }}$ codon position		0.3622	0.4844	0.1332	0.0201	0.8466
tRNA genes - coding	1413	0.3369	0.3631	0.1670	0.1316	0.7146
tRNA genes - J	870	0.3563	0.3609	0.1425	0.1402	0.7172
tRNA genes - N	543	0.3094	0.3665	0.2063	0.1179	0.6759
rRNA genes - N	2121	0.3310	0.3885	0.1862	0.0943	0.7195
A + T rich region (J strand)	1158	0.4387	0.3739	0.0639	0.1235	0.8126
Non-coding nucleotides	60	0.5000	0.3500	0.0500	0.1000	0.8500

genome are found for the protein coding gene first and second codon positions, and the rRNA and tRNA genes (59.2\% to 72.0\%).

The Relative Synonymous Codon Usage (RSCU) values were calculated for the protein coding genes of the giant stonefly (Table 3.4). The results for the two-codon tRNA families show a distinct bias for the use of the A or T nucleotide in the third codon position, regardless of the identity of the anti-codon encoded by the tRNA. If one inspects the majority-coding strand alone (the J strand), the third codon position sites for fourcodon tRNA families show a preference for A nucleotides (T nucleotides for the minority-coding or N -strand proteins). This preference for A on the J -strand is common for most insect mt-genomes investigated (see silverfish and locust comparisons in Table 3.4).

Positional asymmetric nucleotide bias has been carefully explored for mammalian mt-DNA (Reyes, et al., 1998; Saccone, et al., 1999). In mammals, it is hypothesized that the slow initiation of lagging strand replication leaves the nucleotides exposed (see figure 1.3 A), increasing the rate of deamination of C to U , resulting in a bias towards the pyrimidine T on the lagging replication strand (Francino and Ochman, 1997). Also, A is a target for deamination to hypoxanthine, which is complemented on the leading strand by by C. The majority of replicating mt-DNA molecules in Drosophila have been observed, using electron microscopy coupled with restriction mapping, to undergo an extreme asymmetric replication (Figure 1.3B). Up to 99% of the leading strand (the J-strand of the genome) is replicated before replication is the initiated for the lagging strand (the N Strand) (Goddard and Wolstenholme, 1978; 1980). Such a replication mechanism is expected to leave obvious patterns of nucleotide substitution, in which genes near the

Table 3.4. Comparison of Relative Synonymous Codon Usage for the Giant Stonefly, a Silverfish and a Locust

Amino Acid K	Codons	Stonefly			Silverish			Locust		
		All	J	N	All	J	N	All	J	N
	AAA	1.135	1.556	0.737	1.506	1.704	1.043	1.414	1.829	0.414
	AAG	0.865	0.444	1.263	0.494	0.296	0.957	0.586	0.171	1.586
N	AAC	0.297	0.384	0.122	0.464	0.653	0.080	0.484	0.632	0.080
	AAT	1.703	1.616	1.878	1.536	1.347	1.920	1.516	1.368	1.920
Q	CAA	1.684	1.922	1.200	1.726	1.852	1.368	1.905	2.000	1.571
	CAG	0.316	0.078	0.800	0.274	0.148	0.632	0.095	0	0.429
H	CAC	0.420	0.515	0	0.775	0.848	0.429	0.704	0.906	0.111
	CAT	1.580	1.485	2.000	1.225	1.152	1.571	1.296	1.094	1.889
E	GAA	1.619	1.960	1.118	1.526	1.773	1.188	1.714	1.960	1.259
	GAG	0.381	0.040	0.882	0.474	0.227	0.813	0.286	0.040	0.741
D	GAC	0.338	0.490	0	0.685	0.958	0.160	0.325	0.520	0
	GAT	1.662	1.510	2.000	1.315	1.042	1.840	1.675	1.480	2.000
Y	TAC	0.408	0.707	0.080	0.517	0.709	0.294	0.378	0.692	0.137
	TAT	1.592	1.293	1.920	1.483	1.291	1.706	1.622	1.308	1.863
W	TGA	1.886	2.000	1.676	1.714	1.853	1.459	1.920	1.972	1.793
	TGG	0.114	0	0.324	0.286	0.147	0.541	0.080	0.028	0.207
C	TGC	0.191	0.500	0.067	0.500	1.077	0.258	0.364	1.000	0.067
	TGT	1.809	1.500	1.933	1.500	0.923	1.742	1.636	1.000	1.933
M	ATA	1.656	1.796	1.462	1.553	1.727	1.184	1.687	1.836	1.270
	ATG	0.344	0.204	0.538	0.447	0.273	0.816	0.313	0.164	0.730
1	ATC	0.256	0.340	0.081	0.412	0.532	0.155	0.225	0.311	0.049
	ATT	1.744	1.660	1.919	1.588	1.468	1.845	1.775	1.689	1.951
L	TTA	1.772	1.974	1.592	1.453	1.893	1.118	1.757	1.966	1.584
	TTG	0.228	0.026	0.408	0.547	0.107	0.882	0.243	0.034	0.419
F	TTC	0.348	0.580	0.045	0.510	0.834	0.150	0.515	0.938	0.125
	TTT	1.652	1.420	1.955	1.490	1.166	1.850	1.485	1.062	1.875
L	CTA	1.643	1.694	1.333	2.170	2.792	0.625	2.149	2.706	0.375
	CTG	0.119	0.083	0.333	0.395	0.226	0.813	0.119	0.157	
	CTC	0.310	0.333	0.167	0.269	0.327	0.125	0.149	0.157	0.125
	CTT	1.928	1.889	2.167	1.166	0.654	2.438	1.582	0.980	3.500
V	GTA	1.636	1.926	1.177	1.558	2.433	0.566	1.749	2.731	0.456
	GTG	0.363	0.207	0.612	0.478	0.233	0.755	0.066	0.038	0.101
	GTC	0.346	0.415	0.235	0.407	0.500	0.302	0.109	0.154	0.051
	GTT	1.655	1.452	1.977	1.558	0.833	2.377	2.077	1.077	3.392

(Continued on next page)
(Table 3.4 concluded)

Amino Acid	Codons	Stonefly All	J	N	Silverfis All	J	N	Locust All	J	N
T	ACA	1.425	1.646	0.853	1.929	2.154	0.952	2.556	3.066	0.316
	ACG	0.146	0.025	0.459	0.089	0.044	0.286	0.059	0.072	0
	ACC	0.384	0.506	0.066	0.804	0.923	0.286	0.234	0.287	0
	ACT	2.046	1.823	2.623	1.179	0.879	2.476	1.151	0.575	3.684
P	CCA	1.227	1.382	0.800	2.306	2.815	0.778	2.294	2.969	0.615
	CCG	0.133	0.146	0.100	0.139	0.074	0.333	0.088	0.082	0.103
	CCC	0.640	0.836	0.100	0.611	0.593	0.667	0.118	0.165	0
	CCT	2.000	1.636	3.000	0.944	0.519	2.222	1.500	0.784	3.282
A	GCA	0.873	0821	0.986	1.696	2.281	0.571	2.107	2.781	0.533
	GCG	0.127	0	0.406	0.196	0.066	0.444	0.053	0.038	0.089
	GCC	0.491	0.689	0.058	0.826	1.091	0.317	0.160	0.190	0.089
	GCT	2.509	2.490	2.551	1.283	0.562	2.667	1.680	0.990	3.289
S	TCA	1.550	1.714	1.301	1.934	2.759	0.701	1.897	3.194	0.548
	TCG	0.115	0.032	0.241	0.083	0.110	0.041	0.063	0.062	0.065
	TCC	0.402	0.635	0.048	0.529	0.800	0.124	0.111	0.124	0.097
	TCT	1.933	1.619	2.410	1.455	0.331	3.134	1.929	0.620	3.290
S	AGA	2.050	2.109	2.000	2.029	2.571	1.650	2.945	3.491	2.400
	AGG	0	0	0	0.412	0.071	0.650	0.073	0	0.145
	AGC	0.298	0.363	0.242	0.235	0.357	0.150	0.109	0.073	0.145
	ACT	1.653	1.527	1.758	1.324	1.000	1.550	0.873	0.436	1.309
R	CGA	2.323	2.769	1.565	1.931	2.526	0.800	2.473	3.657	0.400
	CGG	0.258	0.103	0.522	0.828	0.632	1.200	0.145	0.114	0.200
	CGC	0.129	0.205	0	0.207	0.316	0	0.073	0.114	0
	CGT	1.290	0.923	1.913	1.034	0.526	2.000	1.309	0.114	3.400
G	GGA	2.050	2.282	1.708	1.600	1.971	1.121	2.019	3.079	0.390
	GGG	0.571	0.254	1.042	0.980	0.870	1.121	0.192	0.159	0.244
	GGC	0.235	0.366	0.042	0.196	0.261	0.112	0.019	0	0.049
	GGT	1.143	1.099	1.208	1.224	0.899	1.645	1.769	0.762	3.317
Number of Codons		3729	229	1438	3724	2289	1435	3725	2296	1429

origin of replication that are exposed longest accumulate more nucleotide substitutions and exhibit a more extreme nucleotide bias (Reyes, et al., 1998). This nucleotide substitution pattern thus supports the asymmetric unidirectional replication model (Goddard and Wolstenholme, 1978; 1980; Clayton, 2000), and implies a limited role in the bi-directional, symmetric and semidiscontinious replication model (Goddard and Wolstenholme, 1978; 1980; Yang, et al., 2002; Bowmaker, et al., 2003). For insects, a pattern of more A and C nucleotides are predicted to accumulate on the J -strand (leading) of the insect mitochondria as you move from the nad2 gene towards the ribosomal subunit genes.

To test if this nucleotide bias signature was present in the giant stonefly, third codon position nucleotides were compared for the four-fold degenerate codon families. The nad2 and coxl genes are coded approximately 780 to 3040 bps from the center of the $\mathrm{A}+\mathrm{T}$ rich region, and would be single stranded only a short time during replication. In comparison, the nad6 and cytb genes, which are coded approximately 3880 to 5550 bp from the $\mathrm{A}+\mathrm{T}$ region center on the opposite side, would be expected to be in a single stranded form for a much longer period of time. As these genes are encoded on the JStrand, an expected relative increase in A and C nucleotides at neutral sites is expected in response to the reduction in A and C on the complement N -strand. Comparisons show a strong bias towards the use of A in the third codon position for the J-strand encoded nad6 and cytb, with a sharp decrease in the use of G nucleotides. A more centrally encoded gene cluster of atp6, cox3 and nad3 show an intermediate usage of A and C nucleotides (see Figure 3.3).

Figure 3.3. Illustration of the Directional Mutational Pressure Observed in the Mitochondrial genome of the Giant Stonefly. Hypothesized locations of the origins of replication (O_{J} and O_{N}) are labeled. Due to the extended time spend single stranded during replication, the N -strand is expected to experience increased levels of \mathbf{C} to T substitutions and selection against A nucleotides in neutral sites. Genes closest to (clockwise from) $\mathbf{O}_{\mathbf{N}}$ will remain single stranded for less time, resulting in lower mutational bias towards T and C nucleotides at neutral sites. The nucleotide composition of four-fold degenerate third codon position nucleotides and the calculated A-T and G-C skews, as well as AC:GT ratios for the analyzed gene clusters are shown.

The ratio of A and C nucleotides to G and T third codon position nucleotides was calculated for each of the three gene clusters, and showed an increase as you moved towards the nad6 and cytb gene cluster, as expected in this model (Figure 3.3). The A-T skew (the difference between number of A and T nucleotides, divided by the sum) and GC skew were calculated for these three gene clusters of the giant stonefly mt-genome (Perna and Kocher, 1995). Similar to the situation observed in mammals, the A-T skew increases as the estimated time that the particular region of DNA is expected to persist in the single stranded state increases (see Figure 3.3) (Reyes, et al., 1998).

The analysis was repeated for eighteen additional representative insect mtgenomes, from ten insect orders. Mt-genome sequences which lacked complete nad2 sequence were excluded, as were mt-genomes with protein gene rearrangements relative to the D. yakuba mt-genome. Generally, the trend of increasing AC:GT ratio and A-T skew from the nad2 - coxl genes versus the nad6 - cytb genes was observed for the insects examined (Table 3.5). Six of the nineteen insect mt-genomes observed did not show the expected directional mutation bias. These six organisms represent four of the insect orders (Lepidoptera, Hymenoptera, Coleoptera and Hemiptera). The mt-genomes currently sequenced for the Lepidoptera and Hymenoptera are known to have extreme $\mathrm{A}+\mathrm{T}$ biases (79.78% to 86.62%, excluding the $\mathrm{A}+\mathrm{T}$ rich regions) (Crozier and Crozier, 1993; Yukuhiro et al. 2002) and may be undergoing additional mutational pressures that could obscure the directional mutation effects. There has been the suggestion of a second origin of replication in the honeybee, between the coxl and cox2 genes, which would have a strong effect on the observed substitution pattern (Cornuet et al. 1991). Further investigation into paraneopteran and coleopteran mt-DNA replication and nucleotide

Table 3.5. Positional Nucleotide Bias in the Mt-Genome of the Giant Stonefly and other Representative Insects. Values were calculated using third codon postiton nucleotides of fourfold degenerate codons for the three gene clusters (see Figure 3.3). The ratio of A and C to G and T nucleotides, as well as A-T and G-C skews are also presented. Bolded numbers represent trends in AC: GC ratio and skew values based on the directional mutation pressure driven by an asymmetric unidirectional replication model.

Species	AC:GT Ratio			A+T Skew			G+C Skew		
	nad2 \& $\operatorname{cox} 1$	$\begin{aligned} & \operatorname{atp6-} \\ & \operatorname{cox} 3 \end{aligned}$	 cytb	nad2 \& $\operatorname{cox} 1$	atp6- cox 3	 cytb	 cox1	$\begin{aligned} & \operatorname{atp6-} \\ & \operatorname{cox} 3 \end{aligned}$	nad6 \& cytb
Diptera									
Drosophila yakuba	1.0679	1.0165	1.2159	0.0349	0.0085	0.0880	0.0000	0.0000	-1.0000
Chrysomya putoria	1.3691	1.5784	2.1343	0.1078	0.2097	0.3403	-1.0000	-0.4667	-0.5790
Ceratitis capitata	1.0343	1.0000	1.7887	-0.0119	-0.0202	0.2553	-0.5000	-0.3846	-0.8000
Anopheles gambiae	1.3611	1.2072	1.8116	0.1615	0.0644	0.2865	0.0000	-0.6667	-0.3333
Lepidoptera									
Antheraea pernyi	1.1793	0.9908	1.0689	-0.0145	-0.0778	-0.0307	-0.7500	-0.5833	-0.6471
Bombyx mori	2.7073	3.6428	2.8372	0.4456	0.5714	0.4737	-0.6842	-0.5385	-0.5385
Hymenoptera									
Apis mellifera	2.3452	2.8409	2.2391	0.3806	0.4731	0.3566	-0.8462	-1.0000	-1.0000
Coleoptera									
Tribolium castaneum	2.4786	2.1765	2.1918	0.3851	0.3484	0.3107	-0.5765	-0.4694	-0.5714
Crioceris duodecimpunctata	1.3642	1.2800	1.4024	0.1761	0.0872	0.1228	-0.0462	-0.3333	-0.4615
Pyrocoelia rufa	1.9160	2.7742	3.5952	0.3141	0.4579	0.5778	-0.3143	-0.6000	-0.3846
Hemiptera									
Tratoma dimidiata	2.4286	3.1343	2.5797	0.3531	0.4570	0.3552	-0.6543	-0.7500	-0.6875
Philaenus spumarius	0.9940	1.8493	2.8627	0.0239	0.3222	0.5439	0.2105	-0.1429	-0.0769
Pachypsylla venusta	2.1217	2.2609	1.4878	0.3311	0.3503	0.1345	-0.5185	-0.6429	-0.5151
Blatteria									
Periplaneta fuliginosa	2.3000	2.4189	3.3750	0.4030	0.4250	0.5612	-0.2857	-0.2308	-0.2857
Orthoptera									
Locusta migratoria	2.4255	3.6481	5.0625	0.4890	0.5949	0.6757	-0.2421	-0.1429	-0.5556
Grylotalpa orientalis	1.2022	1.6600	2.8360	-0.0533	0.1142	0.3708	-0.5146	-0.8723	-0.8214
Plecoptera									
Pteronarcys princeps	1.1316	1.2656	1.6404	-0.0143	0.0122	0.1099	-0.5357	-0.7209	-0.8182
Thysanura									
Tricholepidion gertechi	2.9720	3.4032	4.9070	0.5164	0.5333	0.7059	-0.4222	-0.5873	-0.4800
Thermobia domestica	1.5412	1.9074	1.7684	0.1057	0.1342	0.1237	-0.5644	-0.8072	-0.7101
Archeognatha									
Nesomachilis australica	1.4824	1.9694	2.4211	0.0859	0.2105	0.3300	-0.5625	-0.7460	-0.7000

substitution patterns are required to understand their deviation from the expected directional mutation bias.

G-C skew values generally did not reveal the trend as clearly at the A-T values. In most cases, the number of third codon G and C nucleotides was very low (typically $<10 \%$ and never $>30 \%$), providing very few G or C containing sites, limiting the power of the analysis.

3.3.4. Stonefly A+T Rich Regions

The 1158 bp non-coding region was observed in the conserved location, between the $s r R N A$ and the $t R N A^{l l e}$ genes. The sequence was found to be highly $\mathrm{A}+\mathrm{T}$ rich at 81.26%, approximately 10% higher than the entire genome content. Only the third codon positions of protein coding genes and the 60 intergenic non-coding nucleotides had higher $\mathrm{A}+\mathrm{T}$ compositions.

The region was searched for open reading frames (ORFs) of 50 amino acids or larger, with the seven potential start codons suggested for insect mitochondrial genomes (ATN and NTG codons). The fifty amino acid limit was chosen, as it would produce a product approximately the size of the stonefly's atp 8 gene (51 amino acids), the smallest known functional protein coding gene in insect mt-genomes. Four open reading frames were found meeting these criteria, a 64aa ORF (positions 15928 to 15737), a 56aa ORF (positions 14898 to 15065), a 54 aa ORF (positions 15157 to 14996), and 50aa ORF (positions 15362 to 15511). Blastp searches of these ORFs gave a small number of hits (1, 2 or 3) with high E values (2.3 to 8.6), to fragments of annotated genes within the database, and were not consider significant matches. The small size and lack of similarity to any known proteins imply that these are non-functional ORFs.

The region was searched against itself, using DOTTER (Sonnhammer and Durbin, 1995) to identify repeat and inverted repeat regions within the $\mathrm{A}+\mathrm{T}$ rich region (see Figure 3.4A). Two regions were identified, stem-loop 1 (with positions 15126 - 15178) and stem-loop 2 (positions 15252 - 15290) showed sequence similarity to each other, and the potential ability to fold into stem-loop structures. The identified regions were folded using DNA mfold (Zuker, 2003) to look for putative secondary structures (see Figure 3.5).

A comparison of two stonefly $\mathrm{A}+\mathrm{T}$ rich regions from genus Peltoperla has been published previously, and revealed conserved repeat structures and secondary structures within that genus (Schultheis, et al., 2002). Interestingly, the sequence encompassing one of the putative stem-loops was aligned by Clustal X to the regions coding "inverted repeat 1" for both Peltoperla species (Figure 3.6). The other putative P. princeps stemloop aligned between the two remaining inverted repeats for Pe tarteri.

I compared the $\mathrm{A}+\mathrm{T}$ region of the giant stonefly to those from $P e$. arculata and $P e$. tarteri. Dot plot analysis revealed five conserved sequence blocks shared by the $\mathrm{A}+\mathrm{T}$ rich regions of the two different genera (see Figure 3.4B). Additionally, the dot plots reveal a shared low sequence complexity region spanning 168 nt (in P. princeps) to 188 nt (in Pe. tarteri), where the $\mathrm{A}+\mathrm{T}$ compositions are elevated to 94.15% to 96.43%. Generally, the A+T regions of these two Peltoperla species are not immediately alignable to that of the giant stonefly. Clustal X alignment (Thompson, et al., 1994) show very low levels of sequence identity when comparing the giant stonefly to $P e$. arcuata (61.44%) or $P e$. tarteri (60.44%), despite the very high $\mathrm{A}+\mathrm{T}$ richness for all three species (81.10% to $82.56 \% \mathrm{~A}$ and T nucleotides).

A

B

Figure 3.4. Dot Plot Analyses of the A+T Rich Region of Pteronarcys princeps. Dot-plots were generated using DOTTER. A - comparison of P. princeps against itself identified inverted repeat units (labeled 1 and 2) and a low-complexity sequence region. B comparison of P. princeps (horizontal) versus Pe. tarteri (vertical). Conserved Sequence Blocks (CSBs) are identified and the low-complexity sequence region are identified.
A

B

$$
\Delta \mathrm{G}=-8.7
$$

G	G
A C	G C
$G \quad A$	G A
$G \quad G$	$G \quad G$
T-A	T-A
A-T	A-T
A-T	A-T
A-T	A-T
T-A	T-A
A-T	A-T
A-T	A-T
T-A ${ }^{\text {T }}$	A-T
T-A	T-A
T-A	G+T
A-T	T-A
$T+G$	A-T
G+T	$\mathrm{T}+\mathrm{G}$
A-T	T -A
$\mathrm{T}^{\mathrm{C}-\mathrm{G}}$	T-A
A-T	A-T
A-T	AATTGT-ATGATT
$\mathrm{T}-\mathrm{A}$	
T-A	
TGACGT-ATAGTA	
$\Delta G=-8.7$	$\Delta G=-7.9$

Figure 3.5. Predicted Secondary Structure Folds for Potential Stem-Loop Regions Identified within the A+T Rich Region of the Giant Stonefly. Secondary structure folds and ΔG values ($\mathrm{kcal} / \mathrm{mol}$) were calculated by DNA mfold (Zuker, 2003). Numbers represent the genome positions of the noted nucleotides. Watson - Crick basepairs represented by "-" and G-T pairing represented by " + ". A - Stem-loop from positions 15124-15175, shown on the N-strand. B - Repeat from position 15252-15291.

```
    ....|....|....|....|....|....|....|....|....|....|....||....|....| ....l....| |...l
Pp GGACTTAGACAAAAAAAAGACTTTG--CCTTAAATCATTCAACTCAATAGTTAATTAAGTGTATATTAGAAAGTTGAAAA 14925
Pt ----..T.TT......СС.T.AA.AC...СТ...T.АС..САС...А.T...CA.GTAAAACA..A.T...A.AA.TT. 1196
Pa -----.,T.TT......CC.T.AA.AC...СТ...T.AC..CAC...A.T...CA.GT.AAACA..A.T...A.AA.TT. }99
    ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|
Pp ATAACAAATAGGGGGGCCCAAAAAATTTTTTTAAACAAAATCAAAAGCCAAATT---TTAAATAGACTTTCTTACTTACC 15002
Pt .C..GC..G.ATAAAA.TTTG....A.AAAAC...-..T..GGG..TAT...A.AAA...G...C.AA.AAAC.TA...T 1117
Pa .C..GC..G.ATAAAA.TTTG...GA.AAGAC...-..T..AGG..C.....A.AAA.....C.T.AA.AA.C.T.A..T }91
```



```
Pp ---TCTCCACCTGATTAAACAGTCA-----ААTTCCCTCCCTAAAAAAAATCTAAATCTTCATATAACATGA--TAATTA 15072
Pa GAACT.AA.AAA..A...GT.A.A.ATAAA..AC.AA.TTAAG..T....AAC....AAA..A..T.A.C..ACCGG.C. }83
```



```
Pa .CT.GG.G.C.CT.G. . .ATGA.AT.----------------------------------------------------
```



```
(CSB1) TAAYAAATYTGCCCC---ATYTATTA-AATAAATAA
```



```
Pp СTAAATTTGTTTATTTTAATAAAAATAACTAAATAACCTACTCAATAAAACCATTAAATATATAATTTAAATAACTGAAC 15372
Pt AATT.С..T.A.....-.......ССТT.T..A..A.ACT.........T------..CAT.G.AC..T.A.TTAATGT }73
```



```
    ...l...l....l....l....|....|....|....|....|....|....|....l....|....l....|....|
Pp TATTAATAGTAAAATTAGTTAAAGTTTATTGGAAAGACTTAATATTTACTTTTTCAAATGGATTTTTTATCTTAATGGAT 15451
Pt A.A...C--...............................................---..GATA..AAA...GGA.....-.. }66
Pa AGG...C--.............A...........GAAG..A.A.A.A.-----G..ATA..AAA...GGA.-..T... }52
    (CSB2) TAAAATTAGTTAAArTTTATTGGAAAGr
```



```
Pp GATCCTCATTTTTTTCTTATTTATAAAATGAGGATCATCCCATTAATTTATTATTTAAATTAATAACCTCTTGTTAATAA 15532
Pt AC.TTC.........TA..GGAC.......GAA.GT... AATA..... AC.....A.T.. A. . . . .TTATA.A.G.T.TT 581
Pa AС.тTC........TA..GAAC.......GAA.GT...AATA...A.ACC...G.T..........T..TA.A.A...TT 450
```


(Continued on next page)

Figure 3.6. The A+T Rich Regions of Pteronarcys princeps and Two Peltoperla Species. Dots represent a nucleotide identical to the P. princeps ($\boldsymbol{P} \boldsymbol{p}$) sequence at top, and dashes represent introduced gaps for the alignment. Numbers represent the genomic position of the righthand most nucleotide. Pe. tarteri (Pt) and Pe. arcuata (Pa) are show as the reversecomplement of the Genbank Flatfiles (AY142074 and AY142073). Boxed sequences represent areas containing putative stem-loop structures. Conserved sequence blocks (CSB) are highlighted by the consensus sequence beneath the aligned regions.
(Figure 3.6. concluded)
 Pp GAACTTAATTTAA-TATATATATTTAATTAAATA-АTAATTATATTTATATATTTATTTATATAATATAAAATTTAATTT 15610 Pt A..---....... A...T....G.AT.A......C...TA......AC..--. AA...A.TA.......AGC.TACAT..A. 506

 Pt A..T......A..T.....C.T..A.......T.. AT...AAGA...TAATTAATTAATA...G....ATAT.TA...AG 426

 Pp TATAATAACAATTAAGTTTATA-TATATA---ATCTATATATA-AATAAGAATTTAATATTAAATATATCTATTTTTTGC 15746

 -) TATATA-AATAAGAATTTAATATTAAATAT (CSB3)
 Pp CTTTAACTATAAACATAATAGGTATATAAATATGATGTATATAATATAAGCTCTTATTATACACCCAAATTTTTAACAAA 15825

 (CSB4) TATAArCATAATAGGTATATAArnATrATGTATATAAnnTAAryTCTTAT-ATACA
....|....|.......|....|....|....|....|....|....|....|....|.....|....|.....|....| \mid Pp AAATTACACCTTCTGAACAATTTACTTTTTGTTCATAAAATTAAGGGTTTTGGGTTTTTAAAAAAAGGGTAAAAAAAATC 15905 Pt C..AA.A.AAAA. . . TAGG...TAG...C..GG.C..CT.....AA...G...GA.GGGTT...CCCCCC....CCCC, 188 Pa T..AA.A.AAAA....TAGG...TAG......GG.C..CT......AA.... . . . GAAGGGTT... CCTCCC....CCCC. 71
 Pp СА--AAATCCTCAATTTTTTGAACAAAAATCATAAA----AGAAAACATTCCCTCTTCCCCTTTTAAAGGGCCATATTCA 15979 Pt . ССС......CT..AA. .G.CCC..... CC.TC..TTTTTG....TTT.CAG...C.TT.AA.....G.TAAA.A.A.A. 108

 Pt T.A..A..С..T....C..TCC.T.CTCTATCAAGTTCCCGTAAATAATAAAAAAAAAATGAAACCCTGATAAAAAGGAT 28

Pp ---------------------------(tRNA $\left.{ }^{\text {Ile }}\right) 16004$
Pt TATCGTGATAGGATAAATCATGTAAAT (t RNA $\left.{ }^{\text {Ile }}\right)$ 1
Pa -------------------------- $\left(t R N A^{I l e}\right) 1$

The four conserved sequence blocks (CSBs) identified in the dot-plot analyses were compared in the sequence alignment. CSB1 is a 32 to 36 nt sequence (positions 15381 - 15408) that co-localizes with putative stem-loop structures predicted to occur at the same aligned position in all three species. CSB2 is 28 nt in length and is identical in sequence to that in Pe. tarteri, and codes only two A-G nucleotide transitions relative to the Pe. arcuata sequence. CSB4 occurs immediately after the low complexity regions, and encodes a single nucleotide insertion in the two Peltoperla species over the region's 29nt. CSB4 occurs closest to the $t R N A^{\text {lle }}$ gene, and encodes only 8 transitions and one insertion over the 55 nt length.

Though the conservation of these sequences and structures are intriguing, it is important to remember that the mechanism of replication initiation in insect mt-DNA is still not characterized. As such, it is not possible to assign and functionality to these conserved segments, nor infer that the observed secondary structures may have homologous function to the D-loop structures observed the replication of other animal mt-genomes (Jacobs, et al., 1989).

3.4. Conclusions

The complete mitochondrial genome of the first plecopteran representative is presented. The size, nucleotide composition and genome arrangement are very typical of a "standard" insect mitochondrial genome, such as the D. yakuba mt-genome (Clary and Wolstenholme, 1985a). The coding of the rRNA, tRNA, and protein coding genes is also canonical, including the apparent absence of a start codon for the coxl gene, as first observed in Drosophila species (Clary and Wolstenholme, 1983a; de Bruijn, 1983).

Nucleotide biases are observed to be strand specific and positional in nature. These observations argue that the replication of the mt-genome in the giant stonefly follows the same highly asymmetrical and asynchronous pattern as replication in Drosophila species (Goddard and Wolstenholme, 1978; 1980). Positional bias also argues that the N -strand is replicated first, from the $\mathrm{A}+\mathrm{T}$ region toward the ribosomal gene cluster, as in Drosophila.

Comparisons of the $\mathrm{A}+\mathrm{T}$ rich region from two other stoneflies of the genus Peltoperla reveal conservation of some putative secondary structure elements, as well as regions of very high sequence conservation. These results are surprising, given the highly variable nature of the insect $\mathrm{A}+\mathrm{T}$ rich region. Sampling of a broader selection of stonefly families may reveal deeper conservation of these elements, which may lead to investigations of their involvement in insect replication and potentially transcription initiation.

With the addition of this plecopteran sequence to the mt-genome databases, further sampling of the Neoptera incertae sedis orders must be undertaken. With the mt-genome sequences available, further insights into the diversification of these early diverging groups can help improve our conflicted understanding of early insect evolution. With the immensely broad diversity of insect evolution available to sample, who knows what other interesting molecular evolutionary phenomenon may be waiting to be described in insect mitochondria.

Chapter 4. Characterization of Mitochondrial Transcripts in Drosophila melanogaster.

4.1. Introduction

4.1.1. The cox1 Initiation Mystery in Insect Mitochondria

One of the most striking features of insect mt-genomes has been the apparent lack of a coded start codon for the essential mitochondrial gene cytochrome c oxidase subunit 1 (coxl) in most insects sampled to date. The first descriptions of this phenomenon were published by investigators involved in the sequencing of the Drosophila melanogaster (de Bruijn, 1983) and D. yakuba (Clary and Wolstenholme, 1983a) mt-genomes. These studies identified the presence of an in-frame TAA stop codon at the 5^{\prime} end of the cox 1 open reading frame, followed by a TCG serine and the remaining open reading frame of the coxl gene. In order to satisfy the conditions of a start signal for the gene, the researchers proposed a four-base ATAA start codon (the in-frame TAA plus a noncoding A to the 5^{\prime}). This four-base start was assumed to undergo an unusual basepairing interaction during the initiation of transcription (Clary, et al., 1983; de Bruijn, 1983; Clary and Wolstenholme, 1985a). Further analyses within Drosophila species showed a lack of conservation of the ATAA signal (Satta, et al., 1987), and the first mosquito mtgenome sequences showed that a four base start signal was not conserved within the Diptera (Beard, et al., 1993; Mitchell, et al., 1993). Beard et al. (1993) suggested that the lack of conservation of the multi-base starts were not indicative of a conserved, unusual start mechanism and proposed that the TCG instead may serve as an unusual start codon
for insect mt-genomes. This proposed novel start codon has been questioned due to the frequency by which nucleotide transitions converting the TCG to a CCG codon has been observed in other Drosophila species (Ballard, 2000a; 2000b).

Characterization of coxl from other insect orders has added to the confusion regarding the start of the coxI gene. Some groups of Lepidoptera, such as the Bombyx and Ostrinia moths also share an aligning in-frame stop with the Diptera (Yukuhiro, et al., 2002; Coates, et al., 2005). In contrast, the butterflies of the genus Papilio appear to encode a highly variable sequence region that would align to the Bombyx and Ostrinia moths' in-frame stop codons and dipterian first nucleotide of the TCG serine (Caterino and Sperling, 1999).

Within most other species studies to date, neither a start nor stop codon can be identified adjacent to the first serine (Flook, et al., 1995; Lunt, et al., 1996; Friedrich and Muqim, 2003; Stewart and Beckenbach, 2003; Bae, et al., 2004). Continuation of the open reading frame into the small non-coding region, or the adjacent $t R N A^{T y r}$ gene eventually finds either a wobble-start codon or a stop codon. This is most likely due to random occurrence because of the high proportion of A and T nucleotides utilized in insect mt-genomes, not due to the coding of highly variable coxl reading frame sizes. It is becoming increasingly common in these circumstances to annotate the first in frame codon as the start of the coxl gene and simply annotate the gene with "start codon unknown". The four orders comprising the Paraneoptera in contrast appear to have evolved and maintain a methionine start codon (Shao, et al., 2001; Shao and Barker, 2003; Shao, et al., 2003; Thao, et al., 2004; Stewart and Beckenbach, 2005). An alignment of insect coxl starts is presented in Figure 4.1.

This unusual coxl initiation is also very ancient. Examples are known in non-insect hexapods (Nardi, et al., 2001; Nardi, et al., 2003b). So far, the phenomenon is confined to the hexapods, as crustaceans appear to utilize ATN or NTG codons for initiation (Valverde, et al., 1994; Crease and Little, 1997; Crease, 1999).

4.1.2. Mitochondrial Transcription and RNA Processing in Drosophila

Prior to the determination of a complete Drosophila mt-genome sequence, Spradling et al. (1977) reported twelve poly-T binding RNAs and one RNA that did not bind polyT , that were synthesized in the presence of the antibiotic Actinomycin D and were found to hybridize to isolated mitochondrial DNA. Merten and Pardue (1981) also mapped the two ribosomal RNAs and " 9 or 10 " isolated mitochondrial RNAs to mt-DNA through the use of electron microscopy and hybridizing restriction digested mt-DNA fragments to the RNA in Northern Blot analyses.

After the release of the complete mitochondrial DNA sequence of D. yakuba (Clary and Wolstenholme, 1985a), Berthier et al. (1986) were finally able discern the gene identities of these mitochondrial RNAs through Northern blotting, and determine the relative abundance of the mature molecules. This study also described 28 minor RNA species that appeared to correspond to RNAs being processed into the mature mRNAs, tRNAs and rRNAs. Based on the pools of molecules observed, the authors proposed the existence of five transcriptional start sites in Drosophila mitochondria, two on the majority coding strand (one upstream of $t R N A^{\text {Ile }}$, and one upstream of $t R N A^{T h r}$) and three

amino acid
D. melanogaster
D. yakuba
screwworm fly Meditterian
olive fly olive fly
oakmoth
silkwormmoth cornborermoth sawfly*
honeybee*
flourbeetle
asparagusbeetle fireflybeetle kissingbug spittlebug leaf hopper whitefly aphid psylid barklouse* louse* thrips* locust mole cricket cockroach dragonfly stonefly silverfish firebrat
archeognatha giantspringtail springtail Daphnia
Figure 4.1. Alignment of the 5^{\prime} End of the cox 1 Gene for Various Insect, Springtail and Crustacean Representatives. Asterisks after the organism's common name represent a non-standard 5' abutting tRNA gene ($\boldsymbol{T R N A} \boldsymbol{A}^{T y r}$ for species without asterisks). Shaded nucleotides represent $\mathbf{8 0 \%}$ or higher identity. Upper case nucleotides represent the first in frame start or stop codon for coxl. The first line represents a consensus amino acid translation where capital letters represent an amino acid always coded at that position in the alignment, lower case represents amino acids coded for over 80% of the time in the alignment, and "?" no amino acid is utilized over $\mathbf{8 0 \%}$ of the time. The thick bar at the bottom highlights nucleotides encoding the last eight nucleotides of the abutting tRNA gene.
in the minority coding strand (one upstream of $\operatorname{sr} R N A$, one within $N A D 6$ gene upstream of $t R N A^{\text {Pro }}$, and one within the coxl gene, upstream of $t R N A^{C y s}$ and $\left.t R N A^{T y r}\right)$. Figure 4.2 summarizes the results of this study.

Transcription is thought to initiate at any of the five sites described above, then proceed around to the transcriptional termination site. At this point, the pre-mRNAs are recognized by an undescribed processing complex that identifies and removes the tRNA genes from within the transcript. The RNA fragments that are left behind correspond to the protein coding genes. These are believed to be identified, polyadenylated, and utilized as the mature mRNAs. The mature mRNAs encode no, or only a few, noncoding nucleotides, are not 5' capped as in nuclear transcript maturation, and have an exposed 5' monophosphate (Ojala, et al., 1980b; Montoya, et al., 1981). This processing model has been termed the tRNA punctuation model, and was first described for the human mitochondrial genome (Ojala, et al., 1980a; Ojala, et al., 1981).

4.1.3. 5' Amplification and Sequencing

The amplification of the 5^{\prime} ends of linear DNA or of RNA molecules has long been problematic, due to the primer-dependence of the polymerases utilized in amplification. The most commonly used method to sequence 5^{\prime} end of RNA molecules in
 1988). Briefly, cDNA is produced via a reverse transcriptase enzyme. The resulting cDNA is then modified by the addition of a polynucleotide "tail" to its 3 ' end using the enzyme Terminal deoxynucleotidyl Transferase (TdT). This reaction extends a mononucleotide tail beyond the original RNA's 5' end. The modified cDNA is then

Figure 4.2. Summary of the Analysis of Mitochondrial Transcripts from Drosophila, as Described by Berthier et al. (1986). The genes are labeled in the center of the figure, with genes on one strand offset from the other. Arrows depict transcription units, with the start of the line at the predicted transcript initiation site and the arrow head at the predicted transcript termination site. White rectangles to the outside represent mRNAs, black the rRNA genes.
amplified through PCR, using a gene specific primer and a primer complementary to the nucleotide tail that was added to the cDNA.

The enzyme T4 RNA ligase has the ability to ligate together single stranded RNAs, or RNAs to DNAs (Tessier, et al., 1986). T4 RNA ligase accomplishes this by covalently linking a 5' monophosphate to a free 3 ' hydroxyl group from the two oligonucleotides. T4 RNA ligase has been used to generate circularized tRNAs for amplification and sequencing. The protocol for the circularization of RNA molecules using T4 RNA ligase was originally developed for the sequencing of tRNA molecules to study RNA editing of these molecules in some mitochondrial systems (Janke, et al., 1994; Yokobori and Paabo, 1995). This protocol has been adapted to protein coding genes for nuclear genes (Couttet, et al., 1997) and mitochondrial genes in plants (Kuhn and Binder, 2002). Kuhn and Binder have dubbed this technique CR-RT-PCR. (Circulariztion and RT-PCR).

In this chapter, I describe and characterize the mitochondrial mRNA and rRNA molecules from Drosophila melanogaster. The RNAs are amplified by a combination of 5' and 3' RACE protocols (Frohman, et al., 1988) and CR-RT-PCR (based on the protocol of Couttet (1997). Characterization of the mature RNAs provide insights into mitochondrial transcript processing, maturation and expression in insect mitochondria. A potential model for the expression of the enigmatic Drosophila coxl gene is discussed.

4.2. Materials and Methods

4.2.1 Blast Searches for Nuclear Copies of the coxl Gene in Drosophila

The 511aa long open reading frame of two coxl mt-genes (see below) were tBlastn searched against the NCBI sequence database, restricted to Drosophila melanogaster sequence hits, and mitochondrial chromosome hits excluded. The standard genetic code was used to translate the D. melanogaster nuclear genome sequences.

The first coxl amino acid query sequence was derived from the D. melanogaster Oregon R mt-genome sequence (Accession AF200828.1, positions 1474-3006). The second from the ATG-containing coxl sequence (discussed in Chapter 2) of the spittlebug Philaenus spumarius mt-genome sequence (Accession AY630340.1, positions 1382 - 2914). The most recent search was conducted on May 18, 2005.

4.2.2. Maintenance of Drosophila Fly Stocks

Oregon R strain Drosophila melanogaster flies were maintained in a population cage at lab temperature ($19-24^{\circ} \mathrm{C}$ range). Vials of fly food (See below) were placed in the population cage, as needed. Each vial was allowed to stay in the cage for approximately 3 weeks before they were removed. This typically allowed the majority of the pupae attached to the vial to emerge, but minimized the levels of mold and bacteria inside the population cage.

To make the fly food, 1 L of tap water was brought to a boil. 3.25 g of agar was slowly sprinkled into the water, with constant stirring with a wooden spoon. Next, 40 g of sucrose, 20 g of D-glucose, 0.36 g of calcium chloride, and 2.8 g of sodium-potassiumtartrate was dissolved in the mixture. Twenty grams of inactivated brewers yeast was then
slowly stirred into the mixture. The mixture was brought to a vigorous boil again, and then 47.6 g of cornmeal was added and left to boil for 5 minutes. The mixture was removed from the heat and allowed to cool at room temperature for $7-10$ minutes, until the mixture had thickened. 5 ml of acid mixture $\left(51.5 \% \mathrm{H}_{2} \mathrm{O}, 44.1 \%\right.$ propionic acid, 4.4% phosphoric acid) was stirred in to the mixture, as a mold and bacterial inhibitor. The mixture was distributed into glass vials (approximately $20-25 \mathrm{ml}$ per vial), and allowed to cool and solidify with cheesecloth covering the vials. The hardened mixtures were stored in a bag or with parafilm covering the vial mouth at $4^{\circ} \mathrm{C}$ until used.

Vials were left on the bench top to warm and excess water that had condensed and pooled on top of the food was poured off before use.

4.2.3. Maintenance of Drosophila Schneider-2 Cell Lines

Drosophila melanogaster Schneider-2 cell (Schneider, 1972) were generously provided by Darrell Bessette, from the lab of Dr. Esther M. Verheyen.

4.2.3.1. Complete S2/M3 Media

The entire vial of Shields and Sang M3 Insect Media Powder (39.4g, enough for 1L of culture media) was dissolved in 600 ml of water, then the solution was topped up to 675 ml . Next, 200 ml of 5 x BPYE (12.5g Difco Bacto-peptone and 5g Difco TCyeastolate in 1 L of water, autoclaved and stored at $4^{\circ} \mathrm{C}$) and 0.5 g potassium bicarbonate was added, and the mixture was filter sterilized through a Filtropur BT25 0.22μ bottle-top filter (Sarstedt), into bottle that had been autoclaved. Prior to use, FBS (Fetal Bovine Serum, Gibco ${ }^{\text {TM }}$) and a Penicillin/Streptomycin antibiotic mixture (Invitrogen ${ }^{\text {TM }}$ Life Technologies (\circledR) were thawed in a $28^{\circ} \mathrm{C}$ water bath. The sterile mixture of M3 media and BPYE were also warmed to $28^{\circ} \mathrm{C}$. In the tissue culture hood, 125 ml of FBS was added to
the M3+BPYE mixture, followed by the addition of 10 ml of the Penicillin/Streptomycin antibiotic mixture. The bottle was capped again, and shaken to mix thoroughly. After the bubbles had disappeared, the media was used in cell culture.

The media was kept for up to 4 months at $2-4^{\circ} \mathrm{C}$.

4.2.3.2. Cell Line Growth Conditions

All cell culture manipulations were carried out in a Laminar Flow Hood that had been wiped down with 70% ethanol prior to use. Cells were grown in T75 size culture flasks at $25^{\circ} \mathrm{C}$ in approximately 50 ml of Complete $\mathrm{S} 2 / \mathrm{M} 3$ Media.

Cells were allowed to grow for 2 weeks, then were split by the transfer of 5 ml of old cell culture (containing cells) into an new culture flask containing 45 ml of fresh media. As the cells adhere weakly to the culture flask, simply swirling of the flask was sufficient to free the cells and allow the splitting of the culture.

Culture flasks were maintained at $25^{\circ} \mathrm{C}$ in an incubator with atmospheric air conditions, with humidity maintained by placing open beakers of sterilized water into the incubator and allowing the water to evaporate.

4.2.4. Mitochondrial Isolation Protocols

4.2.4.1. Crude Mitochondria Isolation from Cell Culture

The Schneider-2 cells were transferred from the T75 culture dish to a 50 ml Falcon Tube, which was spun at 1000 rpm for 2 minutes to pellet the cells. The cells were resuspended in $250 \mu \mathrm{l}$ of cold MSB buffer per 0.1 g of recovered wet cell mass. The MSB / cell suspension was transferred to an ice chilled Wheaton homogenizer. The cells were disrupted by ten strokes of the homogenizer. All stages of the mitochondrial
isolation was carried out at cold temperatures, either in a $4^{\circ} \mathrm{C}$ cold room or with tubes were kept on ice.

The aqueous homogenate was transferred to 1.5 ml Eppendorf tubes in 1.0 ml fractions, leaving the large tissue debris in the glass homogenizer. The homogenate was centrifuged in a desktop centrifuge for 5 minutes at 4000 rpm in a $4^{\circ} \mathrm{C}$ cold room to pellet the cellular debris. The supernatant was drawn off to a fresh, pre-chilled tube that was centrifuged again for 5 minutes at 4500 rpm in a $4^{\circ} \mathrm{C}$ cold room. The supernatant was then transferred to Beckmann 1.5 ml polyallomer, Eppendorf-style ultracentrifuge tubes.

In some experiments, the homogenized solution was treated with $1 \mu \mathrm{l}$ of $35 \mathrm{mg} / \mathrm{ml}$ chloramphenicol. Other experimental conditions did not include the chloramphenicol treatment. The supernatant was centrifuged for 20 minutes and $20,000 \mathrm{rpm}$ in a Beckmann TLA-45 centrifuge rotor to pellet the crudely purified mitochondria. Discoloured (red, dark brown or milky white) pellets were resuspended again in 1.0 ml MSB (containing chloramphenicol if the original solution was subjected to that treatment) and re-centrifuged for 20 minutes at $20,000 \mathrm{rpm}$.

Clean pellets containing the crude mitochondrial fraction were resuspended in $100 \mu \mathrm{l}$ of 1 x TE (10 mM Tris-Cl, 1mM EDTA, pH 7.4) and used immediately for RNA isolation. Alternately, the mitochondrial pellet was exposed to $100 \mu \mathrm{l}$ of 1 x TE and $50 \mu \mathrm{l}$ of Denaturation Solution (from the Ambion Inc. TōTALLY RNA ${ }^{\text {TM }}$ RNA isolation kit), vortexed to resuspend the mt-pellet, then placed at $-80^{\circ} \mathrm{C}$ until the RNA extraction could be undertaken (see section 4.2.5).

4.2.4.2. Crude Mitochondrial Isolation for Adult flies

Adult flies were transferred to a glass Wheaton homogenizer that had been chilled on ice. When the insects had been slowed from the cold, approximately 10 ml of cold MSB buffer (210.0 mM mannitol, 70.0 mM sucrose, 50.0 mM Tris- $\mathrm{Cl} \mathrm{pH} 7.5,10.0 \mathrm{mM}$ EDTA) per gram of insects was added to the homogenizer. The tissues were disrupted by 10 strokes of the homogenizer, or more until the fly bodies were well homogenized.

The aqueous homogenate was recovered by centrifugation of the disrupted tissue, and was alloquated into 1.5 ml Eppendorf tubes, leaving behind the organismal remnants. Mitochondria were then isolated by centrifugation, as described above (section 4.2.4.1).

4.2.5. RNA Extraction from Isolated Mitochondria

4.2.5.1. Special Precautions for the Handling of RNA

All protocols that involved the use of RNA were carried out is such a way to reduce the potential of contamination of the RNA samples by RNase. Isolation of RNA and the subsequent handling of RNA solution were carried out on a dedicated bench top with dedicated pipetters. The bench top and pipetters were cleaned with RNase Erase (ICN Biomedicals Inc.) prior to use. All pipette tips and tubes used were purchased from suppliers, with assurances of the RNase-free nature of the products. Primer stocks to be used in RT-PCR were dissolved in, and diluted to stock concentrations with DEPCtreated $\mathrm{H}_{2} \mathrm{O}$.

4.2.5.2. RNA Extraction Protocol

The Ambion Inc. TōTALLY RNA ${ }^{\text {TM }}$ RNA isolation kit was utilized for the isolation of total mitochondrial RNA. The protocol followed was that specified by the instruction manual supplied with the kit, with minor modifications.

The $100 \mu \mathrm{l}$ crude mitochondrial pellet in TE was lysed by the addition of $50 \mu \mathrm{l}$ of the kit's Denaturation Solution. This mixture was vortexed for at least one minute to mix the solution and disrupt the mitochondria.

The disrupted mitochondria were extracted with $150 \mu \mathrm{l}$ of Phenol: Chloroform: Isoamyl Alcohol solution (supplied by kit). The mixture was vortexed for 1 minute, then allowed to sit on ice for 5 minutes. The extraction mixture was centrifuged for 5 minutes at full speed in an Eppendorf 5415C desktop centrifuge, at room temperature. The aqueous phase was removed by careful pipetting, and was transferred to a new, clean tube. Care was taken not to transfer any of the organic phase with the aqueous phase.

Sodium acetate solution ($3.0 \mathrm{M}, \mathrm{pH} 4.5$, supplied with kit) was added to the aqueous phase, at one-tenth the volume of the recovered aqueous phase. The solution was then extracted with $150 \mu \mathrm{l}$ of Acid-Phenol: Chloroform solution (supplied by kit). The mixture was vortexed for 1 minute, left on ice for 5 minutes, then centrifuged, as described above. The aqueous phase was then transferred to an RNase free 0.6 ml Eppendorf tube, and mixed with an equal volume of isopropanol. The solution was allowed to sit at $-20^{\circ} \mathrm{C}$ overnight to precipitate.

RNA was pelleted by centrifugation at full speed in an Eppendorf 5415C desktop centrifuge for 20 minutes. The isopropanol was removed with a pipetter, and the pellet was washed with $200 \mu \mathrm{l}$ of 70% ethanol. The pellet was centrifuged again for 15 minutes, and the ethanol was removed with a pipetter. The pellet was allowed to dry within 30 cm of a Bunsen burner for at least 20 minutes, until no trace of liquid could be seen in the tube. For long-term storage of RNA, the pellets were stored dry at $-80^{\circ} \mathrm{C}$. Samples to be used immediately were dissolved in 100μ of kit-supplied DEPC treated water with
0.1mM EDTA, and allowed to dissolve on the bench top until the RNA pellet was no longer visible.

4.2.5.3. Removal of Contaminant DNA by Lithium Chloride Precipitation.

Lithium chloride precipitation is employed to remove gross DNA contamination from the samples, but also removes small RNA molecules, such as tRNAs or 5s rRNA. One half volume of kit-supplied LiCl was added to the dissolved RNA sample and left at $-20^{\circ} \mathrm{C}$ for at least 1 hour. The large RNA molecules were then pelleted by centrifugation in a desktop centrifuge at full speed for 20 minutes. The supernatant containing small RNAs and DNA was removed and stored in a separate RNase-free Eppendorf tube. The RNA pellet was then washed with cold 70% ethanol, and allowed to dry as described above.

Removal of DNA by DNase became the preferred method to obtain clean RNA samples. As a result, the less effective Lithium Chloride precipitation method was discontinued in the early stages of the project, and was only used on the Schneider-2 cell line RNA isolations.

4.2.5.4. Removal of Contaminant DNA by DNase Digestion.

A second method for the removal of contaminant DNA was to treat the dissolved RNA with Ambion ${ }^{\circledR}$ TURBO ${ }^{\text {TM }}$ DNase (RNase-free). RNA samples were adjusted to a lx concentration, using the $10 x$ DNase buffer supplied. Two units ($1 \mu \mathrm{l}$) of TURBO ${ }^{\mathrm{TM}}$ DNase was added per $49 \mu \mathrm{l}$ of RNA-DNase buffer solution. The solution was incubated 30 minutes at $37^{\circ} \mathrm{C}$. The solution was extracted using the Ambion ${ }^{\circledR}$ TōTALLY RNA ${ }^{\mathrm{TM}}$ RNA isolation kit as described previously, but using one-tenth volume of denaturation solution, for the extraction of the DNase-treated samples.

4.2.6. Reverse-Transcription PCR Protocols

4.2.6.1. Primer Design

A set of primers were designed to specifically amplify the RNA molecules, based on comparison of the D. melanogaster complete mitochondrion sequence (GenBank Accession U7541.1; (Lewis, et al., 1995)) to the D. melanogaster Oregon R strain nearcomplete mitochondrial sequence (GenBank Accession AF200828; (Ballard, 2000b)). Some heterologous primers (described in Chapters 2 and 3) which matched exactly the two D. melanogaster mt-DNA sequences were utilized as well. Both sequences were utilized to re-confirm the identity of nucleotides for primer design, and to check that the chimeric D. melanogaster mt-DNA sequence completed in 1995 did not contain strainspecific sequence variations that may have affected primer performance.

Primers are listed in Table 4.1 and Table 4.2.

4.2.6.2. Standard RT-PCR Protocol

The Enhanced Avian HS RT-PCR Kit (Sigma ${ }^{\circledR}$) was used for Reverse-Transcription PCR (RT-PCR) reactions. Reaction volumes used varied depending on the amount of amplified product required. For direct sequencing of the generated RT-PCR amplification products, $50 \mu \mathrm{l}$ reactions were used, while $25 \mu \mathrm{l}$ were sufficient for products that were to be cloned, or visualized but not sequenced.

Final concentrations for the reactions were $3.0 \mathrm{mM} \mathrm{MgCl} 2,200 \mu \mathrm{M}$ of each dNTP , 0.4 units $/ \mu$ l of the supplied RNase Inhibitor Enzyme, $0.4 \mu \mathrm{M}$ of each primer, 0.4 units $/ \mu \mathrm{l}$ of eAVV-RT reverse transcriptase, 0.05 units $/ \mu$ l of the JumpStart AccuTaq LA DNA polymerase, in a 1 x reaction buffer. Approximately 0.3 ng (in $1 \mu \mathrm{l}$) of total RNA extract was utilized per $25 \mu \mathrm{l}$ of RT-PCR reaction buffer volume.

Table 4.1. Primers Used in 5' and 3' RACE Amplification.

Gene	3' Race Primer	Sequence (5'-3')	5' Race Primer	Sequence ($5^{\prime}-3^{\prime}$)
nad2	N2-J953	AAATTTTTTATCATTAGGAGGATT	N2-N562	AAATCAAAAATGGAAAGGAGCG
cox1	C1-J2203	GGTCACCCTGAAGTTTATATT	C1-N1701	AAAGGGCACTAATCAATTTCC
	C1-J2636	ATAGGRGCWGTATTTGCYATTAT	C1-N1828	GTTCATCCTGTWCCWGCWCC
	C1-J2791	ATACCTCGACGTTATTCAGA	C1-N1843	AAGGGAGGGTACACAGTYCA
cox2	C2-J3198	TAATAATTACAGTATTGGTGGG	C2-N3152	CTAAAATTAATAATGCATGATCATG
	-		C2-N3389	TCATAACTTCAGTATCATTG
	-		C2-N3665	CCACAAATTTCTGAACATTG
atp8	A8-J3927	TTTTATTCCTCAAATAGCWCC	-	
atp6	A6-J4526	ATTAGAAATATWATYCGRCC	-	
cox3	C2-J4777	AATCACCCMTTTCAYTTAGTWGA	C3-N4980	ATAAATARAATTATTCCTCATCG
	C3-J5188	TACTGTAACTTGAGCCCACCA	-	
nad3	N3-J5723	AATCGACCGAGAAAAAAGATC	N3-N5677	GCTTITTTTGATAAAATTGAAGC
nad5	N5-N7076	GGAATACCATTTTTAGCTGG	-	
nad4	N4-N8871	TACTAAAATTAGGAGGTTATGG	-	
nad4L	N4L-N9771	TTGTTTCTAATCGGAAAC	-	
nad6	N6-J10176	AATTTTTTTAGGAGGAACATTTG	-	
cytb	CB-J11335	CATATTCAACCWGAATGRTA	-	
nad1	N1-N12059	CCTTTTGATTTTGCTGAAGGAG	-	
IrRNA	LR-N13396	CGCCTGTTTANCAAAAACATG	-	
	N3-J5723	AATCGACCGAGAAAAAAGATC	-	
	pT-L01	ATTGCGATTGCGTTGCGA(T) 18	pT-L01	ATTGCGATTGCGTTGCGA(T) 18
	-		pA-L01	ATTGCGATTGCGTTGCG(A) 18

Table 4.2. Primers Utilized in CR-RT-PCR Reactions

Gene	5' Facing Primer	Sequence	3^{\prime} Facing Primer	Sequence
nad2	N2-N562	AAATCAAAAATGGAAAGGAGCG	N2-J965	AAATTTTTTATCATTAGGAGGATT
cox 1	C1-N1540	TGTTCCAACTATTCCAGCTCA	C1-J2791	ATACCTCGACGTTATTCAGA
	C1-N1701	AAAGGGCACTAATCAATTTCC	C1-J2203	GGTCACCCTGAAGTTTATATT
cox 2	C2-N3152	CTAAAATTAATAATGCTAGATCATG	C2-J3198	TAATAATTACAGTATTGGTGGG
trNatys	-		TK-J3790	CATTAGATGACTGAAAGCAAGTA
t RNA ${ }^{\text {Asp }}$	-		TD-J3837	GTTAAAATCATAACATTAGTATGTC
	-		TD-J3862	ATAAAAAATTAGTTAAAATCATAAC
atp8	A8-N4014	TTTAATTCATTAGATTTAGGTG	-	
atp6	A6-N4456	AAGGTATAAGAATAGCGGGTGT	A6-J4522	CGACCTGGAACATTAGCTGTTCG
cox 3	C3-N5322	GTTGCTATAAAAAATGTTGATCC	C3-J5375	CGGAATTCATGTATTAATCGGA
nad3	N3-N5821	AGGTAGAATTAATGCAATCTC	N3-J5723	AATCGACCGAGAAAAAAGATC
	N3-N5677	GCTTTTTTTGATAAAATTGAAGC	-	
tRNA ${ }^{\text {ala }}$	-		TA-J6016	ATATAACATTTGATTTGCATTC
tRNAA'g	.		TR-J6089	TTGATTGCAATTAGTTTCGACC
tRNAAsn	-		TN-J6148	GCCAAAAAGAGGCATATCACTG
tRNA ${ }^{\text {Ser }}$	TS-N6191	TTAGCAGCTTTTACTTGATCATC	TS-J6240	TTTCTTTTAATGGTTAAATTCCA
tRNA ${ }^{\text {Gu }}$			TE-J6288	AAATAAAACCTTACATTTTCATTG
tRNA ${ }^{\text {Phe }}$	-		TF-J6361	CCAAAGATTTAATAATCTCCAT
nad5	N5-J7806	GAMACAARACCTAACCCATCYCA	N5-N6881	AAAGTTGAATTATACTCCGTGG
nad4	N4-J9157	ATAAACCAGCTTGTAAACGTT	N4-N8871	TACTAAAATTAGGAGGTTATGG
	N4L-J9597	TTGAAAATAATCATTTCCATG	N4-N8283	ttagatagagtanaittcgaca
nad4L	N4L-J9648	tTGTttctantcgaaiac	-	
nad6	N6-N10488	AGATATTATTCGAATAGGTCC	N6-J10176	AATTTTTTTAGGAGGAACATTTG
	N6-N10292	AAAATAAAGAAGAAGAAGTTTTATC	N6-J10409	AAATAAATTATATAATTTTCCCACA
cob	CB-N11114	ATTAGATCCTGTTTGATGAAGG	CB-J11278	CAAATTTATTGGGAGACCCTGA
nad1	N1-J12099	AAGGATCCGATTAGTTTCAGCT	N1-N12059	CCTTTGATTTTGCTGAAGGAG
	N1-J12278	GAGCCACAGCTCGCAAACCYCC	-	
	N1-J12337	ACTATAACAGTATAAACCCCCA	-	
IrRNA	LR-J13900	TTTGATAAACYCTGATACAMAAG	LR-N12866	ACATGATCTGAGTTCARACCGG
srRNA	LR-J14766	TAACCGCAACTGCTGGCAC	SR-N14472	tttaatcgataltccacgatg

The reaction was incubated at $42^{\circ} \mathrm{C}$ for 60 minutes to allow for the reverse transcription reaction. The temperature was then elevated to $94^{\circ} \mathrm{C}$ for 2 minutes, followed by 35 cycles of $94^{\circ} \mathrm{C}$ for 15 seconds, $50-55^{\circ} \mathrm{C}$ for 30 seconds, and $68^{\circ} \mathrm{C}$ for 120 seconds. The reaction was finished by a 5 -minute soak at $68^{\circ} \mathrm{C}$ before reducing the reaction temperature to $8^{\circ} \mathrm{C}$ to end the reaction.

The large tRNA cluster between the nad3 and the nad5 genes appeared to be capable of forming secondary structures that inhibited reverse transcription. To amplify this region by RT-PCR the RT-PCR reaction was set up without the enzymes present, then exposed to $92^{\circ} \mathrm{C}$ for 30 seconds then transferred directly to ice. The enzymes were then added and the RT-PCR reaction carried out as described above.

4.2.6.3. Control Reaction for DNA Contamination of RNA Samples

Each total RNA sample underwent the same control experiment to ensure the presence of RNA in the sample, and to ensure no contamination by DNA. Two RT-PCR reactions were set up (as per section 4.2.7.2), one that had its RNA digested by the addition of 10 ng of RNase AI for one half hour on the bench top prior to the addition of the RT-PCR mixture, while the second vial contained intact RNA as template.

The region amplified by the RT-PCR covered a region spanning the genes nad2, $t R N A^{T r p}, t R N A^{C y s}, t R N A^{T y r}$, and cox1, with the amplification product measuring 759 bp in total length. The primers used for this control were N2-L965 and C1-H1702 (see Table 4.1).

If both tubes showed an absence of amplification, the RNA extract was assumed to have failed, and the template was disposed of. If amplification of appropriate sized bands
for RNase digested and undigested samples, the sample was interpreted as having contaminating DNA. The RNA sample was again subjected to DNase digestion (section 4.2.5.2). Amplification only in the RNase-free tube showed the absence of contaminant DNA in the sample, and the presence of RNA through the RT-PCR amplification of the target region. These samples were utilized is subsequent experiments.

4.2.7. Protocol for 5'-Race Amplification

The RACE protocol (Rapid Amplification of cDNA Ends) is modified slightly from that originally presented by Frohman et al. (1988). Approximately 0.3 ng of total mitochondrial enriched RNA template was reverse transcribed using either the enzyme supplied in the Enhanced Avian RT-PCR kit (eAMV-RT by Sigma ${ }^{(8)}$) or by the M-MLV RT enzyme (Ambion ${ }^{\circledR}$). Conditions for the reactions were as directed by the enzyme supplier, with either a gene-specific primer for amplification of the target Drosophila mitochondrial gene, or a poly- $\mathrm{T}_{(18)}$ primer, designed to anneal to mRNA's poly-A tail. Reverse transcription was conducted for one hour at $42^{\circ} \mathrm{C}$ (for eAMV-RT) or at $37^{\circ} \mathrm{C}$ (for M-MLV-RT).

The cDNAs were precipitated using 2 volumes of 95% ethanol over night. In the morning, the pellets were washed with 70% ethanol, then dissolved in $10 \mu \mathrm{l} \mathrm{H} 2 \mathrm{O}$ containing lng RNase A1 to remove the residual RNA from the solution. A TdT reaction was then used to add a mononucleotide tail of a single nucleotide to the 3^{\prime} end of the generated cDNA molecule. The reaction was carried out in a total volume of $25 \mu \mathrm{l}$, containing 1 x of the supplied reaction buffer, 1.65 mM of the chosen dNTP , and 6 U of the rTdT enzyme (Invitrogen ${ }^{\text {TM }}$ Life Technologies). The solution was incubated for 60 minutes at $30^{\circ} \mathrm{C}$, then passed through a QIAGEN ${ }^{\circledR}$ QIAquick ${ }^{\circledR}$ PCR column (see Chapter

3, section 3.2.4). The QIAquick ${ }^{\circledR}$ purified cDNA was then precipited overnight at $-20^{\circ} \mathrm{C}$ with 2 volumes of 95% ethanol. PCR of the modified cDNA was then conducted with a gene specific primer as well as a mononucleotide-binding primer. The primers used are listed in Table 4.1.

4.2.8. Protocol for 3'-RACE Amplification

Reactions for 3'-RACE were set up as described above (section 4.2.7), except that a single gene-specific primer was used. The second primer consisted of 18 T 's (poly- T_{18}) at the 3 ' end, with a 5^{\prime} unique sequence motif not found the D. melanogaster mitochondrial genome (primer pT-L01). The unique sequence was designed to raise the annealing temperature of the primer, after the reverse transcription step had incorporated the primer into the cDNAs, allowing for annealing of $50^{\circ} \mathrm{C}$ or more, depending on the nature of the matched gene-specific primer.

4.2.9. RNA Circularization for RT-PCR

RNA samples were circularized with T4 RNA ligase (Fermentas Life Sciences) using the supplied buffers, ATP and BSA. To decrease the probability of ligating different RNA molecules together, and increasing the pool of circularized RNA molecules, I modified the protocol from Couttet et al. (1997). Approximately 6.0 ng of total RNA was diluted in a $200 \mu 1$ reaction $(20 \mu \mathrm{l}$ of 10 x reaction buffer, 1μ l SUPERase•In RNase Inhibitor (Ambion ${ }^{(8)}$) $8 \mu \mathrm{l}$ of $1 \mathrm{mg} / \mathrm{ml} \mathrm{BSA}, 2 \mu \mathrm{l}$ of the 10 mM ATP and $0.5 \mu \mathrm{l}$ of $10 \mathrm{U} / \mu \mathrm{l}$ T4 RNA ligase). The mixture was incubated at $16^{\circ} \mathrm{C}$ for at least 16 hours. After circularization, the RNA was extracted as described in section 4.2.5.

The RNA was the precipitated with an equal volume of isopropanol, incubation at $20^{\circ} \mathrm{C}$ for at least 4 hours, precipitation for 20 minutes at top speed in a bench top centrifuge, and the pellet was washed with 70% ethanol.

The RNA was diluted to approximately $0.3 \mathrm{ng} / \mu \mathrm{l}$ and utilized in a standard RT-PCR reaction (Section 4.2.6.2). The primers utilized were selected such that a primer near the 3' of the RNA would produce the first cDNA strand from the ligated RNA circle, through the 3^{\prime} region of the molecule, across the ligation site, then to the 5^{\prime} end of the molecule (see Figure 4.3).

4.2.10. Cloning of Amplification Products

The TOPO TA Cloning ${ }^{\circledR}$ Kit, Version R (Invitrogen ${ }^{\text {TM }}$ Life Technologies) was used for cloning. This kit utilizes the Topoisomerase enzyme, linked to the plasmid via a 3^{\prime} phosphate to each end of the cloning vector's insertion site to carry out the ligation of the insert into the plasmid vector.

Four $\mu \mathrm{l}$ of PCR or RT-PCR products was added to $1 \mu 1$ of the supplied salt solution and $1 \mu \mathrm{l}$ of the kit's vector. The reaction was carried out at room temperature for up to 30 minutes, before being transfected in to the supplied One Shot ${ }^{\circledR}$ chemically competent E. coli cells, as directed by the kit's manual.

Cells were plated onto LB agar plates containing $50 \mu \mathrm{~g} / \mathrm{ml}$ of kanamycin, $10 \mathrm{mg} / \mathrm{ml}$ of X-gal, and 100 mM of IPTG, using $10 \mu \mathrm{l}, 50 \mu \mathrm{l}$ and $150 \mu \mathrm{l}$ of the transfected cells. Putative colonies were selected via blue / white screening, and grown up overnight in 3 ml LB cultures containing $50 \mu \mathrm{~g} / \mathrm{ml}$ of kanamycin. After isolation of the plasmid by alkaline lysis miniprep methods (Sambrook, et al., 1989), the plasmids were selected for sequencing based on the size of the insert that was excised by digestion of two the

A

$$
\mathrm{PO}_{4}-\underline{\mathrm{AUGUCAAUU}}
$$

5'nnnnnnnnnnnnnnnTTACCTTAAaaaaaaaaaaaaaATGTCAATT 45' Facing Primer 3' Facing Primer AATGGAAUUtttttetttet TACAGTTAAnnnnnnnnnnnnnn3'

Figure 4.3 A Schematic Representation of the Circularization RT-PCR Reaction. A - Mono-phosphate mitochondrial mRNA molecules. B - After incubation with T4 RNA ligase in dilute conditions, the molecule has been 5^{\prime} to 3^{\prime} ligated to produce a circular RNA. C-RT-PCR is conducted using gene specific primers. D - Simultaneous generation of 5 ' and ${ }^{\prime}$ ' cDNA amplification products of the original mRNA molecule.
flanking restriction sites with the restriction enzyme EcoRI (Invitrogen ${ }^{\mathrm{TM}}$ Life Technologies).

4.2.11. Sequencing of cDNAs and Sequence Alignment

All amplification products were isolated using the QIAquick PCR purification kit (see Chapter 3, Section 3.2.4) eluted in 40μ l glass-distilled $\mathrm{ddH}_{2} 0$. Samples were prepared for sequencing, and sequenced by the University of Calgary DNA Sequencing Center (Chapter 3, section 3.2.5).

Obtained cDNA sequences were aligned to both the D. melanogaster mt-DNA sequence (Genbank Accession AF200828.1) and the complete D. melanogaster complete mitochondrion sequence (Benbank Accession U37541.1) in order to characterize the boundaries of the mature RNA molecules.

4.3. Results

4.3.1. Search for a Nuclear Copy of coxI

The tblastn analysis of the complete D. melanogaster genome sequence from GenBank revealed no putative nuclear encoded copies of the coxl gene. Blast searches with the translated open reading frame from both D. melanogaster and the spittlebug revealed the same small regions of similarity. Three of the hits appear to represent the same DNA region on chromosome 4, and two hits appear to originate from chromosome 2 L (see Table 4.3). Both hits revealed only small portions of the coxl open reading frame (35 and 53aa versus the D. melanogaster query). Inspection of the Blast-generated alignment lead to the conclusion that these are most likely the remnants of two nuclear

Table 4.3. Results of tBlastn Searches for a Nuclear coxl Gene. The Results of a tBlastn search of the translated mitochondrial cox1 amino acid sequence (511 amino acids) from D. melanogaster and Philaenus spumarius. Blast hits were limited to \mathbf{D}. melanogaster sequence only, and excluded mitochondrial DNA. E Value, Hit Length, Identities and Positives list the values from both D. melanogaster (left number) and Philaenus spumarius (right number). The result at the bottom (AF200828.1) shows the best hit obtained by tBlastn search against mitochondrial DNA only.

Accession	Description	E Value	Hit Length	identities	Positives
AC006467.13	Drosophila melanogaster clone BACR03L08, complete sequence	$7 \mathrm{e}-07 / 3 \mathrm{e}-05$	$35 / 41$	$27 / 25$	$21 / 31$
AC150553.1	Drosophila melanogaster clone BACR09H20, complete sequence	$7 \mathrm{e}-07 / 3 \mathrm{e}-05$	$35 / 41$	$27 / 25$	$21 / 31$
AE003781.5	Drosophila melanogaster chromosome 2L, section	$7 \mathrm{e}-07 / 3 \mathrm{e}-05$	$35 / 41$	$27 / 25$	$21 / 31$
AE003844.580 of 83 of the complete sequence Drosophila melanogaster chromosome 4, section 2 of 5 of the complete sequence	$4 \mathrm{e}-04 / 1.2$	$53 / 58$	$35 / 28$	$40 / 28$	
AC114394.1Drosophila melanogaster, chromosome 4, region 101B-101C, BAC clone BACR33O09, complete sequence	$4 \mathrm{e}-04 / 1.2$	$53 / 58$	$35 / 28$	$40 / 28$	
AF200828.1	Drosophila melanogaster isolate Oregon R mitochondrion, complete genome	$0.0 / 0.0$	$511 / 507$	$420 / 329$	$439 / 393$

pseudogenes of the mitochondrial coxl gene, complete with TGA-stop codons aligning to the TGA-Trp codons of the query sequences. Nuclear pseudogene sequences of mitochondrial origin are commonly encountered in insects (Sunnucks and Hales, 1996; Bensasson, et al., 2000) and other groups of organisms (reviewed in Bensasson, et al., 2001; Bensasson, et al., 2003).

These blast results imply that the translatable sequence from the D. melanogaster complete genome do not contain an open reading frame of suitable composition to suggest a nuclear version of the coxl gene. This adds further evidence to the belief that the mitochondrial version is the functional version of the protein.

4.3.2. RNA Extraction from Mitochondria

Thiamphenicol and chloramphenicol have been shown to inhibit protein synthesis in animal mitochondria (Jager and Bass, 1975). Studies with thiamphenicol have shown that this class of antibiotic's inhibition of protein synthesis results in an increase in steady-state levels of mature mitochondrial RNAs (Chrzanowska-Lightowlers, et al., 1994; Selwood, et al., 2001).

Mitochondrial extractions were carried out both with and without chloramphenicol being added after the tissues were homogenized to compare levels of mitochondrial RNA obtained. Comparisons of mt-RNA yield between chloramphenicoltreated mitochondria and untreated mitochondria showed very little difference in the amount of RNA obtained. Total mt-RNA yields ranged from 100 to 150 ng per 1.0 g of adult flies homogenized, for both treatments. Variation between duplicate tubes from the same homogenization equaled the difference between samples treated with chloramphenicol and samples not treated with chloramphenicol. As a result, further
experimentation with chloramphenicol added to the mitochondrial preparation was determined to be irrelevant and was discontinued.

4.3.3. Detection of Unprocessed pre-mRNA Molecules in Flies

RT-PCR was conducted on the adjacent protein-coding and ribosomal RNA genes to determine if large pre-processing transcripts could be observed at RT-PCR detectable levels. I tested whether a gene-specific primer from each gene, from nad2 (position 965) around the genome to $s r R N A$ (position 14746 in OreR D. melanogaster), could amplify in a RT-PCR reaction with primers from either of their adjacent genes. This observation included RNA molecules that encoded genes that are on opposite strands of the mt-DNA molecule at the nad3-nad5, nad4L-nad6 and cytb-nadl gene boundaries. The bands were sequenced from a single primer to confirm the identity of the amplification products. Amplification from the nad2 to $s r R N A$ was not attempted.

Detection of RNA molecules containing three or more protein coding genes were not detected by this methodology. The inability to detect such molecules could be due to the inability of the reverse transcriptase enzyme to produce cDNAs of sufficient size to serve as a PCR template, or the absence of the molecules in the total RNA pool. Multi-gene pre-mRNA molecules have been observed in Drosophila by others (see (Berthier, et al., 1986)), therefore it appears that the RT enzymes lack the ability to generate sufficiently large cDNAs for amplification.

4.3.4. Mapping of mRNA and rRNA Boundaries by RACE

The 3' end of all mRNA and the $\operatorname{lr} R N A$ molecules were mapped by the sequencing of cDNAs generated by 3 ' RACE. The presence of the post-transcriptionally added poly-A
tail made it impossible to determine whether A-nucleotides at the 3^{\prime} end of the transcripts were the result of polyadenylation versus those that were transcribed from the mitochondrial DNA.

4.3.4.1. Characterization of RNA 3' Ends Detected by 3' RACE Techniques

The 3^{\prime} ends of eleven mRNAs were determined using 3' RACE protocols. Two of the molecules were bicistronic messages, with one coding both the atp 8 and atp 6 genes, and the other encoding both nad $4 L$ and $n a d 4$. The remaining nine mRNAs were single gene mRNAs for the remaining nine mitochondrial genes. An alignment of the 3^{\prime} cDNA sequences is presented in Figure 4.4. .

A polyadenylated $\operatorname{lr} R N A$ was amplified and sequenced as well. The presence of a polyadenylated $\operatorname{lr} R N A$, has been discussed in mammal and insect mitochondrial genomes (Ojala, et al., 1980a; Merten and Pardue, 1981; Berthier, et al., 1986; Benkel, et al., 1988). A cDNA from the $s r R N A$ could not be amplified using 3' RACE techniques. An interesting population of molecules was detected at the 3^{\prime} end of the nad3 gene. Distinct polyadenylated RNA species were detected that contained just the nad3 gene, as well as the nad3 gene with one or more of the 3 ' abutting tRNA genes still included in the RNA. To further investigate these molecules, tRNA specific primers were designed and used in CR-RT-PCR (see below, section 4.3.6.2).

4.3.4.2. Characterization of RNA 5' Ends Detectable by 5^{\prime} RACE Techniques

The 5 ' sequence for five RNA species was determined by 5 ' RACE methods. The nad2, $\operatorname{cox} 1, \operatorname{cox} 2 \operatorname{cox} 3$ and nad 3 genes were amplified and sequenced using this protocol. The nad2, cox1, $\operatorname{cox} 2$, and nad3 genes were detected after the addition of a poly-T stretch upstream of the first nucleotide of the message, and $\operatorname{cox} 1$ and $\operatorname{cox} 3$ detected after the

```
....*....l....*....|....*....|....*....|..........|..........|.......................|
nad2
TCAATTTTTGGATTATTTTTAATTTCTTTATTTTATTTTATATTTTaaggctttaagttaataaaactaataaccttcaa
UCAAUUUUUGGAUUAUUUUUAAUUUCUUUAUUUUAUUUUAUAUUUUAA (Poly-A)
    \(\begin{array}{llllllllllllllll}\mathrm{S} & \mathrm{I} & \mathrm{F} & \mathrm{G} & \mathrm{L} & \mathrm{F} & \mathrm{L} & \mathrm{I} & \mathrm{S} & \mathrm{L} & \mathrm{F} & \mathrm{Y} & \mathrm{F} & \mathrm{M} & \mathrm{F} & \text { * }\end{array}\)
cox1
CCGCCAGCTGAACATAGATATTCTGAATTACCACTTTTAACAAATTAATTtctaatatggcagattagtgcaatagattt
CCGCCAGCUGAACAUAGAUAUUCUGAAUUACCACUUUUAACAAAUUAAUU (POly-A)
```



```
cox2
GTTCCTGTAAATTACTTTATTAAATGAATTTCTAGAAATAACTCTTCattagatgactgaaagcaagtactggtctctta 3801
GUUCCUGUAAAUUACUUUAUUAAAUGAAUUUCUAGAAAUAACUCUU (Poly-A)
    \(\begin{array}{llllllllllllllll}V & \mathrm{P} & \mathrm{V} & \mathrm{N} & \mathrm{Y} & \mathrm{F} & \mathrm{I} & \mathrm{K} & \mathrm{W} & \mathrm{I} & \mathrm{S} & \mathrm{S} & \mathrm{N} & \mathrm{N} & \mathrm{S} & \text { * }\end{array}\)
\(\operatorname{atp} 8 / a \operatorname{tp} 6\)
TATGTGTTTGCTGTATTAAGAACTTTATATTCTAGAGAAGTAAATTAatgtctacacactcaaatcaccctttccattta 4771
UAUGUGUUUGCAGUAUUAAGAACUUUAUAUUCUAGAGAAGUAAAUUAA (Poly-A)
    \(\begin{array}{llllllllllllllll}Y & V & F & A & V & L & S & T & L & Y & S & S & E & V & N & *\end{array}\)
cox 3
GTAGTTTGATTATTTTTATATATCACAATTTACTGATGAGGAGGATAATTATATTATTAATTAAATatctatatagtata 5656
GUAGUUUGAUUAUUUUUAUAUAUCACAAUUUACUGAUGAGGAGGAUAAUUAUAUUAUUAAUUAAAUA (Poly-A)
    \(\begin{array}{llllllllllllllll}\mathrm{V} & \mathrm{V} & \mathrm{W} & \mathrm{L} & \mathrm{F} & \mathrm{L} & \mathrm{Y} & \mathrm{I} & \mathrm{T} & \mathrm{I} & \mathrm{Y} & \mathrm{W} & \mathrm{W} & \mathrm{G} & \mathrm{G} & \text { * }\end{array}\)
nad3
GGATTATACCATGAATGAAATCAAGGAATATTAAATTGATCAAACTAATATATATTTATATATATATagggttgtagtta 6093
GGAUUAUACCAUGAAUGAAAUCAAGGAAUGUUAAAUUGAUCAAACUAAUAUAUAUUUAUAUAUAUAUA (PO1 y-A)
    \(\begin{array}{llllllllllllllll}G & L & Y & H & E & W & N & Q & G & M & L & N & W & S & N\end{array}\)
nad5
TTATTTGTATTTTGAATTTTAATTTTATTAATTTTATTATTTTTATatccaaatagcttatactagagtttgacattgaa \(6368^{\prime}\)
UUAUUUGUAUUUUGAAUUUUAAUUUUAUUAAUUUUAUUAUUUUUAUA (Poly-A)
    \(\begin{array}{llllllllllllllll}\mathrm{L} & \mathrm{F} & \mathrm{V} & \mathrm{F} & \mathrm{W} & \mathrm{I} & \mathrm{L} & \mathrm{I} & \mathrm{L} & \mathrm{L} & \mathrm{I} & \mathrm{L} & \mathrm{L} & \mathrm{F} & \mathrm{L} & \text { * }\end{array}\)
nad4L/nad4
TTAAATTTATTAATTTTAAAAAGAGAATCATTTATATTATGATTATatttaaatagtttaaaaaaaatactaatttgtgg 8172'
UUAAAUUUAUUAAUUUUAAAAAGAGAAUCAUUUAUAUUAUGAUUAUA (Poly-A)
    \(\begin{array}{llllllllllllllll}\mathrm{L} & \mathrm{N} & \mathrm{L} & \mathrm{L} & \mathrm{I} & \mathrm{L} & \mathrm{K} & \mathrm{S} & \mathrm{E} & \mathrm{S} & \mathrm{F} & \mathrm{M} & \mathrm{L} & \mathrm{W} & \mathrm{L} & \star\end{array}\)
nad6
GTAAAAATTACAAAATTATTTAAAGGACCTATTCGAATAATATCTTAATTAatgaataaacctttacgaaattcccatcc 10526
GUAAAAAUUACAAAAUUAUUUAAAGGACCUAUUCGAAUAAUAUCUUAAUUAA (Poly-A)
```



```
cytb
TTAGTAAACCCATTAATTACAAAATGATGAGATAATTTATTAAATTAAATagttaatgagcttgaataagcatatgtttt 11666
UUAGUAAACCCAUUAAUUACAAAAUGAUGAGAUAAUUUAUUAAAUUAAAUA (Poly-A)
    \(\begin{array}{llllllllllllllll}\mathrm{L} & \mathrm{V} & \mathrm{N} & \mathrm{P} & \mathrm{L} & \mathrm{I} & \mathrm{T} & \mathrm{K} & \mathrm{W} & \mathrm{W} & \mathrm{D} & \mathrm{N} & \mathrm{L} & \mathrm{L} & \mathrm{N} & \text { * }\end{array}\)
nad1
TATTTATTTTTTATTGGGTTTAAAATTTTATTATTTTCTTTATTATAGTGAATTTTTTTTAGTAAaagttaatagaaaat 11688'
UAUUUAUUUUUUAUUGGGUUUAAAAUUUUAUUAUUUUCUUUUUUAUAGU (Poly-A)
    \(\begin{array}{llllllllllllllll}Y & L & F & F & I & G & F & K & I & L & L & F & S & L & L & *\end{array}\)
1rRNA
AATATCAAAATAATTATATTTTTTATAAGAATATTATTAATATAAAactattttggcagattagtgcaataaatttagaa 12700'
AAUAUCAAAAUAAUUAUAUUUUUUAUAAGAAUAUUAUUAAUAUAAAA (Poly-A)
SIRNA
ATAAGTCGTAACATAGTAGATGTACTGGAAAGTGTATCTAGAATGAcaatttaaagcttattaagtaaagtatttcattt 14097'
AUAAGUCGUAACAUAGUAGAUGUACUGGAAAGUGUAUCUAGAAUGAaaa (aaa)
Figure 4.4 Alignment of \(\mathbf{3}^{\prime}\) cDNA Sequence to the Mitochondrial DNA Sense Strand for Drosophila melanogaster. The top sequence is derived from the D. melanogaster OreR sequence. Lower case sequence represents nucleotides that encode the abutting gene. Numbers to the right represent the genome position of the right-hand most nucleotide (with ' representing a minority strand encoded sequence). The second strand represents the sequence obtained from the cDNA (illustrated as an RNA sequence to differentiate from the genomic sequence).
```


Figure 4.5. Alignment of $\mathbf{5}^{\prime}$ cDNA Sequence to the Mitochondrial DNA Sense Strand for Drosophila melanogaster. The top sequence is derived from the \boldsymbol{D}. melanogaster OreR sequence, with the sequence to the 5' of $\operatorname{sr} R N A$ inferred from the chimeric D. melanogaster sequence. Lower case sequence represents nucleotides that encode the abutting gene or feature. Numbers to the left represent the genome position of the left-hand most nucleotide (with ' representing a minority strand encoded sequence). The second strand represents the sequence obtained from the cDNA (illustrated as an RNA sequence to differentiate from the genomic sequence). The number symbols (\#) represent cDNA sequence confirmed by CR-RT-PCR and 5' RACE. The cox2-a and cox2-b RNA species are labeled.
addition of a poly-A nucleotide stretch. These results are summarized in Figure 4.5. Only the $c o x-2 b$ species was identified by 5 ' RACE.

4.3.5. Detection of RACE Amplified RNAs from Schneider-2 Cells

Four RNA species were characterized from the mitochondria of Schneider-2 cells. The coxl and cox2 genes had their 5' ends sequenced through 5' RACE amplification products, and the coxl, nad4 and nadl had their 3' ends sequenced through 3' RACE amplification products. The RNA products characterized matched precisely to those later determined in the mitochondria isolated from adult flies, with the cox-2bcDNA sequence only being observed in the cell lines (see below).

4.3.6. Characterization of RNAs by CR-RT-PCR

4.3.6.1. Characterization of Mature RNA Molecules

The CR-RT-PCR was a far more efficient method for the amplification and sequencing of the 5^{\prime} ends of the mitochondrial genes than the 5^{\prime} RACE protocol. The 3^{\prime} ends and 5^{\prime} ends of all eleven mRNAs and two rRNAs were examined using the CR-RT-PCR protocols (see Figure 4.5 for 5' sequence alignments, Figure 4.4 for 3^{\prime} alignments). The same eleven mRNAs characterized by 3^{\prime} RACE were characterized by RNA circularization.

The cox2 gene was unusual in that a single population of RNA molecules was not observed. Cloning and sequencing of the amplification products generated revealed the cox 2 mRNA exists in the RNA pool as two mature mRNAs. The first mRNA, which I will refer to as cox2-a, starts at the approximate location predicted by the removal of the upstream $t R N A^{\text {Leu-UUR }}$ by the tRNA punctuation model (Ojala, et al., 1980a; Ojala, et al.,
1981). The second molecule starts five nucleotides downstream of this point, and will be referred to as cox2-b (see Figure 4.5).

The poly-A tailed $\operatorname{lr} R N A$ was also detected by circularization. The CR-RT-PCR protocol, unlike 3^{\prime} RACE, does not rely on the presence of the 3^{\prime} poly-A tail in the amplification of an RNA molecule. Consequently, if molecules lacking a poly-A tail are present in the pool, they should be detected as well. Though one cannot conclusively deny the presence of a molecule through lack of its observation, it is interesting to note that no copies of the $\operatorname{lr} R N A$ gene, or any of the protein-coding genes lacking a posttranscriptionally added poly-A tail were detected in the CR-RT-PCR analyses.

The $\operatorname{sr} R N A$ was amplified and both ends sequenced. The $s r R N A$ had a very small poly-A tail added to its 3^{\prime} end. Depending on the annotation of the 5^{\prime} end or the srRNA, the molecule has either 3-4 or 6-7 non-transcribed A's on the 3 ' end of the molecules (see Figure 4.4 and Figure 4.5).

For the poly-adenylated RNAs, each CR-RT-PCR reaction generated a pool of sequences, each containing poly-A tails of varying length. This variation in the A-tail length made it impossible to obtain the complete 3^{\prime} and 5^{\prime} sequence in a single sequencing reaction. Careful examination of the chromatogram obtained from the sequencing center allowed for the observation of an estimate of the poly-A tail length, by looking for the accumulation and distribution of the first non-A nucleotide encountered in the sequencing read (Figure 4.6). Cloning and sequencing of representative amplification products allowed for sequencing reaction that could read through the poly-A tail region, plus gave accurate measurements of the size of representative poly-A tails.

A

B

Figure 4.6. Example of Sequencing Results Obtained from CR-RT-PCR Generated cDNAs. Two sequencing reaction reads are presented. A - Sequence from the 5' facing LR-J13900 primer. B - Sequence from the 3' facing LR-N12866 primer.

Due to the ligation of the 3^{\prime} encoded poly-A tail to the 5^{\prime} end of the molecule using the CR-RT-PCR method, it is not possible in all cases to unambiguously determine which A nucleotides originate from the transcript and which nucleotides are posttranscriptionally added as part of the poly-A tail. To accurately map the 5' starting position of all mRNAs, it would be necessary to obtain 5' RACE sequences in which a primer other than a poly-A based 5' RACE primer was used to amplify the modified cDNA. Nucleotide positions of the transcribed mRNA and rRNA boundaries are found in Table 4.4.

4.3.6.2 Polyadenylation of Pre-mRNAs

CR-RT-PCR was employed to further characterize the pool of poly-A molecules detected for the nad3 genes and the 3^{\prime} encoded tRNAs. Gene-specific primers for each of the tRNA genes were paired with a gene-specific nad3 primer (see Table 4.2).

Amplification was observed for each of the Majority Strand encoded tRNA genes $\left(t R N A^{A l a}, t R N A^{A r g}, t R N A^{A s n}, t R N A^{S e r-A G N}\right.$, and $\left.t R N A^{G l u}\right)$ circularizing to the 5^{\prime} end of the nad3gene. No amplification of the Minority Strand encoded $t R N A^{P h e}$ circularized to the nad3 gene was detected.

These nad3-tRNA CR-RT-PCR products were cloned and sequenced. Excluding $t R N A^{G l u}$, the length of the poly-A tail varied widely, from 14 to 53 in the sampled clones. The $t R N A^{G l u}$ gene had a substantially smaller A tail on the 3^{\prime} end, numbering only 4-5 A's. Figure 4.7A depicts the pool of molecules amplified.

A similar situation was observed with the cox2 gene, which is abutted at the 3 , end by the two tRNA genes $t R N A^{L y s}$ and $t R N A^{A s p}$. CR-RT-PCR amplified three molecules: one RNA encoding the polyadenylated $\operatorname{cox} 2$ gene with five non-coding

Table 4.4. Positional Annotation of Transcribed RNA Nucleotides as Determined Through cDNA Sequencing. GenBank Annotation positions refer to annotations from D. melanogaster Oregon R strain mt-genome sequence (Accession AF200828).

Gene	5' Position		3' Position 2	
	GenBank Annotation	Observed in cDNA*	GenBank Annotation	Observed in cDNA*
nad2	240	240	1263	$1263-1265$
cox1	1470	1474	3009	3011
cox2	3083	3083	3767	3767
atp8	3907	$3906-3907$	4068	(as for atp6)
atp6	4062	(as for atp8)	4735	$4734-4736$
cox3	4736	$4735-4736$	5524	$5542-5543$
nad3	5608	5608	5961	$5978-5979$
nad5	8116	8131	6400	$6400-6399$
nad4	9563	(as for nad4L)	8198	$8198-8197$
nad4L	9826	$9827-9826$	9537	(as for nad4)
nad6	9961	$9959-9961$	10485	$10488-10489$
cytb	10489	$10488-10489$	11625	$11627-11628$
nad1	12649	12658	11711	11710
IrRNA	14046	$14048-14047$	12725	$12728-12724$
sTRNA	14905	$14903-14901$	14120	$14121-14120$

* Ranges of values represent ambiguous identification of transcriptional versus post-transcriptionally derived A nucleotides (see discussion).

Figure 4.7. Characterization of Polyadenylated mRNA and pre-mRNA Molecules from Drosophila mitochondria. CR-RT-CPR products are shown with a wrapping dotted arrow, representing the ligation of the mRNA. Unfilled boxes represent protein gene regions and black boxes represent tRNA gene regions. A - Schematic representation of poly-A RNA molecules originating from the nad3-nad5 gene junction, detected by CR-RT-CPR and 3' RACE. B - Schematic representation of poly-A RNA molecules originating from the cox2-atp8 gene junction The thick line at the 5 ' end of the gene represents a 5nt non-coding region between cox 2 and $\boldsymbol{t} \boldsymbol{R N A}{ }^{\text {Leu }}$.
nucleotides, $\operatorname{cox} 2$ and the $t R N A^{L y s}$ with a poly-A tail. Attempts to amplify a molecule that contained $\operatorname{cox} 2+t R N A^{L y s}+t R N A^{A s p}$ were carried out with two separate $t R N A^{A s p}$ primers paired with the 5^{\prime} facing cox2 primer, but failed to produce an amplification product. Either this product is not produced, or is rapidly removed from the RNA pool (see Figure 4.7B)

4.4. Discussion

4.4.1. Schneider-2 Cells Versus Adult Fly Data

The DSMZ German Collection of Microorganisms and Cell Cultures reports that the Schneider-2 cell line currently contains 60-80\% tetraploid cells (DSMZ, 2005). Though polyploidy of the nuclear genome does not necessarily mean that there would be an effect on mitochondrial transcription or transcript processing, such a substantial alteration of the genetic system within the cells may have any number of unknown effects on the system.

Supporting my distrust of cell lines is a study on the effects of overexpression of the Drosophila mitochondrial polymerase $\gamma-\alpha$ subunit (pol $\gamma-\alpha$) in whole organism versus Schneider cell lines (Lefai, et al., 2000). The authors observed that overexpression of pol $\gamma-\alpha$ in their cell cultures by more than 50 -fold over normal expression levels resulted in no obvious affects on cell physiology, growth rate, relative mt-DNA content, or mt-DNA integrity. In contrast, overexpression of pol $\gamma-\alpha$ to similar levels turned out to be lethal to late stage pupae, and resulted in decreased levels of mt-DNA and mitochondrial transcripts observed. With this knowledge, I felt it important to switch to studies on the
whole organism whenever possible, and to reconfirm all results obtained from cell-line mitochondria.

Despite my concerns, the small number of cDNA sequences obtained from experimentation with Schneider-2 showed no variation from the sequences obtained from adults. The only variation was the detection of a single 5^{\prime} processed cox 2 mRNA instead of the two differing molecules observed in the mt-RNAs of adult flies. As studies had been abandoned on cell cultures, I was unable to determine if this variation was due to a difference in the transcript processing. It is more likely that this variation is the result of increased examination of the transcripts from the adult flies, allowing me by chance to detect molecules that existed at lower frequencies.

4.4.2. Detection of Pre-mRNA Molecules

RT-PCR reactions using total RNA from mitochondrially enriched extracts were able to amplify between any two adjacent protein coding genes, protein gene and rRNA gene, and rRNA genes. The notable exception to this was the $s r R N A$ and nad2 genes that are separated by the $4.6 \mathrm{~kb} \mathrm{~A}+\mathrm{T}$ rich region. RT-PCR amplification was not attempted due to the large size of this gene junction.

The methodology I used to amplify the RNAs was not able to determine which strand the RNA molecule amplified originated from. Due to this, comparisons to the pre-RNA pools observed by Berthier et al. (1986) are not possible across the protein coding regions of the mt-DNA. I do, however, characterize the existence of a pre-rRNA molecule that encodes the $\operatorname{sr} R N A+t R N A^{V a l}+l r R N A$. This observation, in the absence of a similar molecule being observed by Berthier et al. (1986) opens the possibility that the radiolabeling of RNAs may not have detected all mitochondrial transcripts. The RT-PCR-
only detectable level of these molecules implies that they are very quickly turned over by the RNA processing machinery, and are therefore not detected by standard analyses, such as RNA labeling or Northern blot analysis.

As it is assumed that the Drosophila mt-genome is transcribed from five transcription initiation sites, based on the pre-mRNA pool observed by Berthier et al., it is important that confirmation of their transcription units be undertaken with a more sensitive assay. It may be possible to determine strand specific origin of the RNAs through RT-PCR, by splitting the reaction into two steps. The reverse transcription step would be carried out with only the majority-strand primer, and a parallel reaction conducted with only the minority strand primer. After the RT step, the RNA is removed by RNase, the second primer added, and the PCR amplification step initiated.

4.4.3. Description of Mitochondrial mRNAs

I detected the same eleven mitochondrial mRNA species for D. melanogaster as reported previously (Spradling, et al., 1977; Merten and Pardue, 1981; Berthier, et al., 1986). The cDNAs were sequenced on their 5^{\prime} and 3^{\prime} ends, resulting in a more precise map of the mRNA transcripts than was previously available.

4.4.3.1. Bicistronic Mitochondrial mRNAs

The atp8-atp6 and nad4L-nad4 genes are reported here to be expressed as two bicistronic messages, confirming the earlier prediction by (Berthier, et al., 1986). Expression of bicistronic genes in known from three well studied nuclear genes in Drosophila, as well as up to 44 more cases predicted from the Drosophila genome project annotations (reviewed in Blumenthal, 1998; 2004). In the nuclear instances, the genes are separated by a non-coding region, and are thought to be either translated by the
recruitment of the ribosome to an internal ribosome entry site (IRES), or by the ribosome re-initiating translation of the second gene after completion of the first transcript.

In contrast to these nuclear examples, the mt-bicistronic messages overlap their reading frames by one nucleotide (nad4L - nad4) or overlap by seven nucleotides (atp8 atp6). Besides very small regions of T-rich sequence, there is very little observable sequence similarity between the two mRNAs that could be interpreted as a conserved IRES. An alternate mechanism for the expression of these genes may involve the rerecruitment of a ribosome that has finished translation of the first protein (see Sarabhai and Brenner, 1967) coupled with a -1 or -7 slippage of the ribosome to initiate at the ATG start codon of the second gene. The establishment of an in vitro translation system for mitochondria is still in its early stages (Hanada, et al., 2000; Hanada, et al., 2001), so further investigations of this translational system are currently not feasible.

4.4.3.2. Mapping of mRNA 3' Ends

For the 3^{\prime} ends of the mRNA genes, sequence was originally obtained using 3 , RACE amplification, and was confirmed through sequencing CR-RT-PCR products with the 3^{\prime} facing primer. Generally, processing the 3^{\prime} end of the mRNA appears to be mediated by a tRNA punctuation, as proposed by Attardi and colleagues in the early 1980's (Ojala, et al., 1980a; Ojala, et al., 1981). The cox3 and nad3 genes encode relatively large non-coding regions between their stop codons and their distally encoded tRNAs. Examinations of their transcripts show that this large non-coding sequence is present on the mature mRNA molecules. Examination of the cox2, nad5 and nad4 genes reveal that these genes lacking stop codons are processed as predicted by the tRNA punctuation model (Ojala, et al., 1981) (see Figure 4.4). The genes are processed at the
in-frame $3^{\prime} \mathrm{T}$ nucleotide that directly abuts the tRNA genes encoded downstream, and polyadenylation completes the predicted stop codons. For the nad5 and nad 4 genes, it is not possible to discern whether the first A nucleotide annotated at the 5^{\prime} end of the downstream tRNA is encoded as part of the transcribed mRNA genes or is added through polyadenylation.

One exception to the 3^{\prime} tRNA processing model was observed. The nadIgene encodes a 17 nt non-coding region to the 3^{\prime} of its encoded TAG stop codon (see Figure 4.4). The observed mRNAs for the nadl gene lacked 16 of these bases, encoding only the single in-frame T that immediately follows the encoded stop codon. Two factors regarding this gene boundary make it distinct from the majority of the protein gene tRNA boundaries observed in the mitochondrial genome. First, it is one of four locations in the mt-genome where a protein-coding gene is abutted by a tRNA gene encoded on the opposite strand. The other three locations are all instances where the tRNA is to the 5 , side of the protein gene ($t R N A^{T y r}-\operatorname{cox} 1, t R N A^{T h r}-n a d 4 L$, and $t R N A^{P r o}$ - nado). The nadl-tRNA ${ }^{S e r-T C N}$ is the only 3' tRNA to 3' protein gene boundary within the mt-genome. This complement of the $t R N A^{\text {Ser-TCN }}$ may not be able to adopt the appropriate structures to be recognized by mitochondrial RNase P, and therefore may not be able to serve as a punctuating signal. The human mitochondrial RNase P has been well characterized, and appears to excise tRNAs via a precise 5^{\prime}-then- 3^{\prime} excision mechanism that would serve as accurate punctuation for the mammalian mRNAs (Rossmanith, et al., 1995; Rossmanith and Karwan, 1998; Puranam, et al., 2001). It has been suggested that the human $t R N A^{\text {Ser-AGY }}$, which lacks a dehydrouridine-stem and loop, may not itself be a substrate of the RNase P , but is liberated by the processing of the two flanking tRNA genes
(Rossmanith, 1997). This claim implies that the RNase P may be very discriminating in its substrates, making it a reasonable assumption that a "reverse-complement" tRNA may not be recognized as a substrate.

Secondly, it has been shown that the mitochondrial transcription termination factor DmTERF1 (formerly DmTTF) binds to two DNA sequences within Drosophila mt-DNA (Roberti, et al., 2003). One of these binding sites is the non-coding junction between the nadl and $t R N A^{\text {Ser-TCN }}$, and the second is the junction between the 3^{\prime} to 3^{\prime} abutting tRNA genes, $t R N A^{\text {Phe }}$ and $t R N A^{G l u}$. DNase I protection studies revealed that DmTTF1 protects a stretch of DNA that includes 6 nt of $n a d 1,5 \mathrm{nt}$ of $t R N A^{S e r-T C N}$, and the entire intervening non-coding sequence (Roberti, et al., 2003). No further information regarding how DmTERF1 interacts with the mitochondrial transcription machinery is currently available.

It is tempting to speculate that the transcription is stopped by DmTERF1 after the nadl gene. The terminated transcript could then be polyadenylated, and become a functional mRNA by the removal of the $t R N A^{\text {Leu-UUR }}$ at the 5^{\prime} end. The transcript termination would, however, need to be very precise to generate only the one observed nadl mRNA species. A processing based mechanism where excision of the 3^{\prime} encoded sequence produces the RNA to be polyadenylated would seem to be a more precise mechanism. A processing based model would also seem more plausible, based on the tight linkage observed between transcript processing and polyadenylation (Taanman, 1999; Fernandez-Silva, et al., 2003). It will be very interesting to see if further advances in our understanding of mitochondrial transcript initiation and termination can begin to address this one exception of the 3^{\prime} tRNA processing model for Drosophila mt-mRNAs.

CR-RT-PCR detected a distribution of the observed poly-A tail lengths for the various mRNAs. By identifying the first non-A nucleotide to appear in the 5^{\prime} of the cDNA sequence, it is possible to observe a distribution of the poly-A tail lengths in the chromatogram obtained from the sequencing of the cDNAs (see Figure 4.6). Coupled with the sampling of cDNAs that were cloned and sequenced, thereby giving an exact poly-A tail length, it was possible to generally characterize the poly-A tail length for the mRNAs. The poly-A tails typically ranged from 35 A's to 60 , with the peak of most observed distributions occurring at approximately 50 nucleotides. This poly-A size correlates well to the approximately 55 nt A-tail observed in mammals (Ojala, et al., 1980a).

No RNA species containing a protein-coding gene sequence were observed in the absence of a poly-A tail. The CR-RT-PCR methods do not have a preference between poly-A or non-poly-A RNAs. Therefore, if an intermediate RNA existed in the total RNA pool, the methods presented here should have detected such a pool of molecules. Agarose gel electrophoresis of the CR-RT-PCR products did resolve slightly thicker bands than observed in a standard PCR reaction. These bands were not thick enough to infer a pool of amplified products that differed by the approximate length of the poly-A tail. Nor did the sequencing reaction chromatograms or sequenced clones infer that there was potentially an A-tailless portion of cDNAs in the sequencing pool. These results are consistent with the current belief that the polyadenylation of mitochondrial RNAs is very tightly linked to the processing cleavage reactions that generate the free 3 '-hydoxyl of the mRNA (discussed in Taanman (1999) and Fernandez-Silva et al. (2003)).

4.4.3.3. Mapping of $m R N A s 5^{\prime}$ Ends

The precise 5^{\prime} nucleotide for four of the mRNA transcripts was mapped using a combination of CR-RT-PCR and 5' RACE (nad2, cox1, cox2-b, and nad3). Additionally, the nadl gene could be accurately mapped by the lack of a 5^{\prime} A nucleotide in its sequence. The nad5 5^{\prime} can be inferred by the absence of a C nucleotide to the 5^{\prime} end of a 5^{\prime} ATG codon. Conclusive evidence that the 5^{\prime} A for nad5 is transcribed instead of being the terminal poly-A nucleotide in the circularized mRNA was not obtained, but transcription of this A nucleotide is consistent with the 5^{\prime} processing pattern observed for the other mitochondrial mRNAs (discussed below).

The remaining five mRNAs plus cox2-a are mapped to within two 5' A's encoded on the mt-DNA (atp8, cox3, nad4L and cytb), three A's (nad σ), or four A's (cox2-a). Repeated attempts to obtain 5' RACE sequence with non-A nucleotides were unsuccessful for these genes. Further attempts to obtain 5' RACE sequence, plus a proposed alteration to the CR-RT-PCR protocol may be attempted to complete the characterization of their 5 ' ends (see Chapter 5, section 5.3.1).

For the six precisely mapped mRNAs sequences, processing occurred at the first codon position of the first in-frame recognized invertebrate mitochondrial start codon. The one notable exception is the coxl gene (discussed in section 4.3.6.1) which starts at the first codon position of an in-frame TCG-Serine codon. This close proximity of the first codon to the very 5^{\prime} end of the mRNA is also consistent with the observations in mammals (first reported by Montoya, et al (1981), reviewed by Taanman (1999) and Fernandez-Silva et al. (2003)).

Three of the gene boundaries within the Drosophila mt-genome are structured so that a tRNA gene on the opposite strand abuts the protein-coding gene in a 5^{\prime} to 5^{\prime} fashion $\left(t R N A^{T y r}-c o x l, t R N A^{T h r}-n a d 4 L\right.$ and $\left.t R N A^{P r o}-n a d \sigma\right)$. Earlier, I discussed the potential difficulties with a complementarily encoded tRNA gene adopting an appropriate structure for RNase P to identify and process (see section 4.4.3.2). These three gene junctions would be expected to encounter similar problems during transcript processing. Preliminary inspections of the nad4L and nad6 $5^{\prime} \mathrm{cDNA}$ sequences show that punctuation at the complementary tRNA could produce the observed 5^{\prime} for the mRNA (considering the 2-nucleotide ambiguous annotation of these 5^{\prime} mRNAs). The 5^{\prime} end of the cox 1 mRNA, however cannot be produced by a processing of the complementarily encoded tRNA sequence. Five additional nucleotides (AATAA) have to be removed from the transcript to produce the observed mRNA. Interestingly, these extra nucleotides encode the in-frame stop codon that was so troubling to earlier researchers (Clary and Wolstenholme, 1983a; de Bruijn, 1983).

Two of the gene boundaries within the Drosophila mt-genome are protein-protein gene boundaries (atp6 - cox3 and nad6 - cytb). Both of the cox3 and cytb genes appear to be precisely processed to leave their start codons within 1 to 2 nucleotides of the 5^{\prime} end of the mRNA. The processing of protein-protein boundaries has not been discussed in great detail for mitochondrial processing. It is assumed that a mechanism must be employed to facilitate this processing, but mechanistic details are not available.

The cox 2 mRNA is uncharacteristic in that two distinct species were identified. 5^{\prime} RACE techniques detected a sequence that was processed precisely at the first codon position of the in-frame ATG proposed as the start codon for the gene (cox2-b). CR-RT-

PCR identified cox2-b, but also a second species (cox2-a). The cox2-a species encodes another 3 to 7 nucleotides of transcribed sequence at the 5^{\prime} end.

More accurate mapping of the nad4L and nad6 will be required to discuss their processing, but in the remaining nine mitochondrial mRNAs, it appears the mature mRNAs do not encode non-coding nucleotides from the gene junctions. For mRNAs of cox1, cox2-b, nad4L, nad6 and nad1, their processing would involve the removal of nucleotides other than those predicted to be removed by tRNA processing model. The open reading frames of the mitochondrial mRNAs begin with the first nucleotide of the mRNA.

A mutation derived from a human patient suffering a mitochondrial disorder may provide and interesting model that implicates the 5 ' sequence of the downstream protein gene in the accurate processing of the transcript boundaries. Multiple mutations have been observed in mitochondria from that patient, so it is currently unclear which mutations are responsible for the mitochondrial misfunction and disease (ChrzanowskaLightowlers, et al., 2004). One homoplasic mutation observed results in the deletion of two nucleotides (TA) at the 3 ' end of atp6 that directly abut the ATG-start of the cox3 gene (polyadenylation is assumed to complete the atp6 stop codon, similar to what I observe for Drosophila) (Temperley, et al., 2003). Analyses of a cell line derived from the patient revealed that the mRNA for cox 3 was processed normally, and maintained the appropriate start codon (Temperley, et al., 2003). These results imply that the mechanism by which protein-protein gene junctions are processed operates either by recognition of the 5^{\prime} end of the downstream-encoded gene ($\cos 3$), or by an as of yet unknown
mechanism that is tolerant of the deletion of two important nucleotides from the 3^{\prime} end of the upstream-encoded atp6 gene.

4.4.4. Initiation of the coxl Gene

As discussed above (Section 4.4.3), the six precisely mapped mRNA molecules occur at the first codon position of the first in-frame codon. This codon is not recognized as a start codon in any currently proposed genetic code. Nor is it easy to model a first and second codon position wobble interaction between $U-U$ and A-C nucleotides that would allow for the methionine to bind to this codon and initiate translation. The TCG codon is not a remarkable codon. It is underrepresented in use by the Drosophila mt-genome, as are the other codons with third position G for four-fold degenerate amino acids. The $t R N A^{S e r-T C N}$ is not noted for any unusual structures or features.

One alternative explanation is that this TCG is not the start codon, and that the open reading frame of coxl begins 36 nt downstream, at an in-frame ATT codon (see Figure 4.5). Though ignoring the first thirteen codons would find a suitable in-frame codon, the evolution of the 36 nt intervening sequence implies that it is a functional protein sequence. Alignment to other insect coxI show high levels of conservation of the translated amino acids for this region, and that nucleotide substitutions tend to be synonymous substitutions at third codon positions. How then does the coxl initiate?

First, can translation initiate in the absence of a start codon? It has been known since the earliest experiments to determine the genetic code that start codons are not necessary for translation initiation. In the famous work by Nirenberg and Matthaei (1961) it was shown that poly-U, poly-C and poly-A RNAs do direct the translation of their encoded mono-amino acid peptides. This transcript initiation is much less efficient than
when an ATG codon is used, but these experiments were conducted using isolated E. coli translation machinery.

Mitochondrial ribosomes are very unusual in comparison to the other ribosomes observed throughout living organisms. Despite a drastic reduction in the amount of RNA sequence for the ribosome, the mitochondrial ribosome is larger than the prokaryotic counterpart (Sharma, et al., 2003). The increased size is due to the apparent replacement of ribosomal RNA components with those of protein components, imported from the nuclear genome. Given this unusual evolution of the mitochondrial ribosome, it may be possible that novel function has also evolved for the insect ribosome.

As discussed above, the Drosophila mitochondrial mRNAs observed in this study appear to initiate with the first codon of the first in-frame codon (except for nad4L and nad6, where prediction of the precise 5^{\prime} nucleotide is not possible, and the cox2-a RNA species, discussed in section 4.4.3.3). By processing the mRNAs to begin their open reading frames at the first nucleotide the mitochondria has eliminated the need to code for a special initiation signal to find the correct open reading frame. The first nucleotide of the mRNA is sufficient for this function. With the ribosome only exposed to these simplified translational templates, it becomes easy to imagine the ribosome losing the specific requirement of the methionine tRNA for translational initiation.

The ability of the ribosome to translate all open reading frames in the mitochondria is speculative at this point, however another alternative translational mechanism to start the coxl gene cannot be envisioned. Cell free mitochondrial translation systems are being developed, but are currently not capable of full-length protein synthesis (Hanada, et al., 2000; Hanada, et al., 2001). Until the development of a robust cell free mitochondrial
translation system, experimentation to clarify the mechanism of mitochondrial translation initiation will need to wait. Also, further investigation of the RNAs of other insect groups would tell us how conserved the 5^{\prime} processing at the initiation of the open reading frame is within insects. Of great interest would be the study of organisms, such as the Paraneoptera, who appear to have re-evolved the consistent use of a start signal for their mitochondrial genes.

4.4.5. Characterization of the Ribosomal RNAs

The inability to obtain 5^{\prime} RACE sequences of the rRNA genes limits discussion of the ribosomal RNA molecules. If the ambiguous $5^{\prime} \mathrm{A}$ nucleotide for the $\operatorname{lr} R N A$ gene is actually part of the poly-A tail, the sequence of the $\operatorname{lr} R N A$ described here corresponds to that predicted by S1 nuclease protection mapping of the D. yakuba lrRNA (Clary and Wolstenholme, 1985b). The absence of the potentially transcribed A would also be the predicted molecule based on tRNA punctuation.

The sequence reported here for the $s r R N A$ differs from that predicted by D. yakuba S1 nuclease protection assays by 2 to 5 nucleotides, depending on the origin of the three 5^{\prime} ambiguously annotated A nucleotides (Figure 4.5). The 5' abutting sequence to the $s r R N A$ is the $\mathrm{A}+\mathrm{T}$ rich region, and our lack of understanding regarding the function of the region give us no insights into how transcript processing occurs at the 5^{\prime} end of the $s r R N A$. The fact that the $s r R N A$ could be sequenced by circularization reveals that the molecule has an exposed 5' monophosphate. RNA transcripts observed in prokaryotic and eukaryotic systems (prior to 5' capping) have a 5' triphosphate. The presence of this monophosphate implies that the $s r R N A$ is also the result of a transcript processing, where by a primary transcript containing $\mathrm{A}+\mathrm{T}$ region sequence was processed to remove the
non-srRNA nucleotides (including the two T's that were originally annotated as the 5' most nucleotides of the RNA). Though it would have been of interest to pursue the identity of this pre-rRNA molecule, the nucleotide composition and structure of the $\mathrm{A}+\mathrm{T}$ rich region complicated any attempts to isolate the molecule.

4.4.6. Polyadenylated Pre-mRNAs

The 3 ' boundaries of the nad 3 and $\operatorname{cox} 3$ genes are unique in the Drosophila mtgenome in that they are the only cases where multiple tRNAs encoded on the same strand abut the 3^{\prime} ends of protein coding genes. The observation of a pool polyadenylated RNAs corresponding to these two regions may provide insight to the processing mechanisms and tRNA maturation of insect mitochondria. A diagram of the transcripts observed for the nad3 and cox2 regions is presented in Figure 4.7.

4.4.6.1. The nad3 gene

Five polyadenylated RNA species were identified containing large (approximately 50 nt) poly-A tails. These included the fully processed transcript for the nad3 gene alone, and four species where the nad3 gene is observed with the next one through four tRNAs still encoded in the RNA (the largest being nad3 with $t R N A^{A l a}, t R N A^{A r g}, t R N A^{A s n}$ and $t R N A^{\text {Ser-AGN }}$). A sixth species was identified encoding nad3 through to $t R N A^{G l u}$, but this species encoded a much smaller poly-A tail (up to 8 nt).

Attempts to obtain a molecule that encoded nad3, all the J-stand encoded tRNAs plus the N -strand encoded $t R N A^{\text {Phe }}$ were unsuccessful. Also, attempts to circularize a small molecule containing just the tRNA cluster in the absence of nad3 were unsuccessful.

Given the pool of molecules observed, a simple pattern of processing of this region emerges (see Figure 4.8). The original transcript is produced, and the $t R N A^{G l y}$ to the 5^{\prime} of
nad 3 is removed. This leaves a molecule containing nad3 and five tRNAs (to the $\left.t R N A^{G l u}\right)$. How the processing at the 3^{\prime} end of this molecule is undertaken is unknown. The DmTERF1 termination factor has been shown to DNase I protect the region of DNA encoded between the $t R N A^{G l u}$ and $t R N A^{\text {Phe }}$, and may serve to terminate transcription before the transcription of the complement of $t R N A^{P h e}$. The mechanism by which the short poly-A tail is added or what processing of this 3 ' end occurs could not be deduced by these investigations.

The next step in the process in the recognition of the $t R N A^{G l u}$ by the processing machinery, and its subsequent liberation by mitochondrial RNase P. A poly-A tail is added to the 3^{\prime} end of the $t R N A^{\text {Ser-AGN }}$. The processing of tRNAs then continues, with each tRNA being removed serially until the $t R N A^{A l a}$ is finally removed. The serial processing model is preferred over a model that targets specific tRNAs or randomly processes any of the remaining tRNAs as the cleavage product of two or more 3^{\prime} tRNAs that would be lost by such a mechanism were never observed despite attempts at their CR-RT-PCR amplification.

It is also interesting to note that the nad3 gene encodes its own in-frame stop codon, then non-coding ${ }^{\prime}$ ' nucleotides. As such any of these molecules at any stage of the tRNA processing could serve as mRNAs for the nad3 gene, that would terminate at the coded stop codon, and when liberated again from the ribosome, would be further processed to remove more tRNAs for maturation.

Figure 4.8. A Model for Processing of the nad3-tRNA ${ }^{\text {Glu }}$ RNA Transcript.

4.4.6.2. The cox2 gene

The pool of observed cox2 molecules is distinct from the nad3 pool in two ways. First, the $\operatorname{cox} 2$ gene requires the processing of the 3^{\prime} encoded $t R N A^{L y s}$ and polyadenylation to complete its stop codon. Second, there are two distinct species that were observed, with differing 5 ' ends.

One advantage of the CR-RT-PCR protocol over RACE methods is that by linking together the 5^{\prime} and 3^{\prime} ends of the RNA in the circularization, it is possible to simultaneously obtain information about each end of the molecule. This is not possible with 5^{\prime} RACE, as the use of a gene specific primer in amplification causes the loss of all information downstream of the primer after amplification.

The cox2-a 5' RNA species was observed with two distinct 3^{\prime} sequences. One sequence included the $t R N A^{L y s}$ followed by a large poly-A tail. The second cox2-a species was observed with the $t R N A^{L y s}$ removed and the stop codon of $\operatorname{cox} 2$ completed by the poly-A tail. cox2-b in contrast, the species that lacks an in-frame stop codon encoded to the 5^{\prime} of the ATG start codon for the gene, was only observed with its 3 ' end lacking the tRNA, and being processed to include the post-transcriptional stop.

Figure 4.9 diagrams a model to describe the processing and maturation of the cox 2 mRNA . The polycistronic pre-mRNA for the region spanning cox 2 through atp8/atp6 is recognized by the processing machinery and the $t R N A^{A s p}$ is removed from the transcript, freeing the cox2 portion from the atp8/atp6 portion. The lack of observation by CR-RT-PCR of a cox2 species containing the $t R N A^{A s p}$ supports the removal of this tRNA as important to generating a free 3^{\prime} end lacking the atp $8 / a t p 6$. The

polyadenylated $\operatorname{cox} 2-a+t R N A^{L y s}$ is now present in the mitochondrial. If the ribosome were able to recognize this molecule, it would produce a COX2 with eleven extra amino acids from translation of the $t R N A^{L y s}$ sequence. Give the very conserved size of the cox2 gene through insect evolution, it would be assumed that these extra nucleotides would be deleterious. Fortunately, the cox2-a 5' sequence encodes an in frame stop codon prior to the reading frame of cox2. If translation were initiated on $\operatorname{cox} 2-a$, a stop codon would be encountered at the ninth codon, and the release factors would rapidly be employed and the pre-mRNA liberated.

The molecule is now further processed by the removal of the $t R N A^{L y s}$, and polyadenylation completes the stop codon for the 228aa cox2 open reading frame. This pre-mRNA still encodes the cox2-a 5^{\prime} end, so is untranslatable if my assumptions above are correct. Finally, the $\operatorname{cox} 2-a 5^{\prime}$ end is processed, revealing the $\operatorname{cox} 2-b 5^{\prime}$ end. This mRNA now encodes, as is observed with the other mRNAs for Drosophila mitochondria, the start of the open reading frame being defined by the first nucleotide. The cox2-b RNA is the mature mRNA.

The observation of non-coding RNAs that are polyadenylated has been reported in the cytoplasm of Drosophila (Tupy, et al., 2005), but the use of large poly-A tails on pre-mRNAs in mitochondrial systems is not known. The observation that not all poly-A RNAs are matured mRNAs, with the notable exception of the lrRNA (Spradling, et al., 1977; Merten and Pardue, 1981; Berthier, et al., 1986; Benkel, et al., 1988), has not been recognized in mitochondrial research. This new recognition of mature and incompletely processed mt-mRNAs with poly-A tails alters our previous view that all poly-A mt-RNAs represent mature and functional message.

Chapter 5. Conclusions and Discussion

5.1. Transcript Characterization in Drosophila Mitochondria

The results I have presented here increase our understanding of the structure of mature mRNA and rRNAs in the mitochondria of D. melanogaster beyond that presented in the study by (Berthier, et al., 1986). Figure 5.1 depicts the additional information obtained (compare to Figure 1.4 or 4.1).

5.1.1. Characterization of mt-rRNAs

Sequence level mapping of $\operatorname{lr} R N A$ is in agreement with the current $\operatorname{lr} R N A$ annotation (Clary and Wolstenholme, 1985a). There is a slight annotation conflict with the lrRNA annotation given for the Oregon R strain mt-genome (Accession AF200828) which does not include the 5^{\prime} G nucleotide in the $\operatorname{lr} R N A$, instead annotating it as a non-coding nucleotide (Ballard, 2000b), while the chimeric D. melanogaster (Accession U37541) does include the G as part of the rRNA. The polyadenylated state of the mature $\operatorname{lr} R N A$ is confirmed for D. melanogaster mitochondria, as no non-poly-A $\operatorname{lr} R N A$ molecules were observed, even at RT-PCR detectable levels (Spradling, et al., 1977; Merten and Pardue, 1981; Berthier, et al., 1986; Benkel, et al., 1988).

For the $s r R N A$, a minor variation was observed relative to the S 1 nuclease protection map obtained by Clary and Wolstenholme (1985b). The sequence obtained through CR-RT-PCR shows that two unpaired T nucleotides from the very 5 ' end of the $\operatorname{sr} R N A$, which they annotated as part of the $\operatorname{sr} R N A$, are not present. Identification of the precise 5^{\prime} end of $\operatorname{sr} R N A$ was not possible since the A residues may have originated from the poly-A

Figure 5.1. Transcription Map for the D. melanogaster Mitochondrial Chromosome. Blocks to the outside represent mRNAs (unfilled) and rRNAs (filled black) sequenced in this study. Numbers represent mapped OreR strain mt-genome positions of transcribed nucleotides, with ranges representing ambiguous annotations due to methods used. The letters following the numbers represent the encoded nucleotides, with italicized letters represented the ambiguously annotated nucleotides, and underlines represent codons, and lower case "a" representing known post-transcriptionally added poly-A tail nucleotides. Arrows represent predicted transcription units based on Berthier et al. (1996), with thickening of the arrows representing transcripts detected in this study by RT-PCR.
tail, artificially linked during circularization. The complementary 5' RACE experiments were not successful with the rRNAs. The S1 nuclease protection-based secondary structure by Clary and Wolstenholme encodes three unpaired nucleotides at the 5^{\prime} end of the secondary structure. This implies that if the transcribed sequence begins at either nucleotide positions 14092 or 14093 as I suggest, there would be no effect on the 5^{\prime} encoded stem-loop structure predicted for positions 14092-14886.

It is interesting to note that a small poly-A tail was also found on the $\operatorname{sr} R N A$ molecule. The small size of this poly-A tail (5-9 nt) would have excluded it from being detected by its ability to bind poly-T, and the S1 nuclease protection assays would not have detected it, based on its inability to anneal to the $t R N A^{V a l}$ sequence, and therefore would not be observed previous experiments (Spradling, et al., 1977; Merten and Pardue, 1981; Clary and Wolstenholme, 1985b; Berthier, et al., 1986). All RNA molecules detected in this study had at least three post-transcriptionally added A nucleotides on their 3' ends, implying that polyadenylation is a feature of all mRNAs, rRNAs and premRNAs in insect mitochondria.

5.1.2. Characterization of mt-mRNAs

The sequence of the mRNAs reveals a number of features of mitochondrial transcript processing. First, the 3' end of Drosophila mRNAs are processed where predicted by the tRNA punctuation model (Ojala, et al., 1980a; Ojala, et al., 1981). The only 3 ' exception to this is the apparent processing of the nadl mRNA at the DmTERF1 binding sequence (see Chapter 4, section 4.4.3.2). This processing leaves six mRNA molecules that encode 3' UTR sequences (cox1, cox3, nad3, nad6, cytb and nad1). These UTRs show a great variation in size (1 nt to 19 nt) and show very little sequence similarity.

Given that the remaining five mRNAs completely lack a 3' UTR, it is likely that they have no functional significance to the Drosophila mRNAs. Alignment of the mt-genomes of the various insects reveals that these UTR regions are very poorly conserved, even within the Drosophila species. These observations appear to suggest that these UTRs have arisen by random insertional mutations, independently in different insects. As the processing at the 3^{\prime} end of the mRNAs appears to be directed by the abutting tRNA sequences, it appears that the conservation of the intact stop codon neutralizes any potential effects these UTRs could have on the amino acid sequence.

The 5^{\prime} cDNA sequences of the nad5 and nadl genes imply that an update to the Drosophila annotation of these genes is warranted. The nad5 mRNA appears to encode five additional codons not included in the current gene annotation, and initiates with an AUG codon. If the boundaries at the 5^{\prime} end I have observed for D. melanogaster can be applied to D. yakuba, these extra amino acids align well, and the D. yakuba sequence would initiate with an in-frame GUG codon that aligns with the D. melanogaster AUG codon (Clary, et al., 1984). It appears that this potential initiator, which would not have been recognized as an initiator at the time these sequences were obtained, has been ignored as subsequent sequences were annotated with the objective of aligning to the D. yakuba nad5 amino acid sequence. Similarly, the nadl mRNA appears to encode three additional amino acids, and initiates with a UUG codon that is well conserved among the Diptera represented by complete mt-genome sequence.

The 5^{\prime} ends of the molecules do not conform to what is predicted by the tRNA punctuation model. Nucleotides other than those encoding the abutting tRNA sequence were observed to be removed for the coxl, cox2 and nadl genes. In these three cases the
extra nucleotides removed leave the mRNA with the first nucleotide defining the ORF for the gene. Precise annotation was not available for the cox3, nad4L/4, nad6 or cytb mRNAs in this study because of ambiguity arising from circularizing polyadenylated transcripts. These four genes also may encode extra nucleotides other than the ORF for the protein. Precise mapping for nad2 and nad 3 was also accomplished, but these mRNAs, as well as nad5 and atp $8 / 6$, are predicted to encode only the ORF predicted by tRNA punctuation.

Additionally, characterization of the processing intermediates of the $\operatorname{cox} 2+t R N A^{L y s}+t R N A^{A s p}+a t p 8+a t p 6$ transcript may imply that the 5 ' "trimming" to the ORF follows the tRNA punctuation processing. RNA molecules with cox 2 sequence were observed as matured poly-A mRNAs, and as a pre-mRNA with the $t R N A^{L y s}$ sequence still encoded. No molecules with both the $t R N A^{L y s}$ and $t R N A^{A s p}$ sequences still associated were observed, implying that the removal of the $t R N A^{A s p}$ gene is the first processing step, followed by the removal of the $t R N A^{L y s}$, then finally the five 5^{\prime} nucleotides that precede the start (see Chapter 4, Figure 4.9).

Determination of the precise 5^{\prime} nucleotide for the ambiguously annotated mRNAs is a high priority (see section 4.4.3.3). I discussed in chapter 4 (section 4.4.4) the possibility of the mitochondria of insects adopting a 5^{\prime} processing model that leaves just ORFs, which eventually may have evolved to no longer require start codons to define the ORF for proper translation. Completion of the sequencing of the mRNAs is required to test whether this model of 5^{\prime} mRNA processing is universally applied in the Drosophila mitochondria. Such a mechanism can be interpreted as a simplification of the ancestral translational machinery as opposed to the evolution of a novel function.

5.1.3. Processing of tRNAs Versus mRNAs in Insect Mitochondria

The standard methodology for the annotation of animal mitochondrial genes has been to annotate just the ORF of the predicted amino acid as the gene. Some researchers take into account the tRNA punctuation model, and therefore do not allow the overlap of stop codons from predicted ORFs with abutting tRNAs, while others annotate such scenarios as gene overlaps. Though for gene identification these differing methods do not result in important differences in the genome annotation, they imply an important distinction between two models of RNA processing.

The first method implies a system in which one pre-mRNA, which could be matured to a poly-A mRNA, is produced for each of the transcribed copies of the tRNA genes. Such a model would infer that mRNAs would be considerably less stable than the tRNA genes, as translation would require that an equilibrium be maintained where tRNAs are far in excess of the mRNAs, despite their 1 to 1 transcription ratio. The second model implies that a mechanism exists that determines whether a particular transcript encoding a protein gene / tRNA gene overlap is to be matured into the tRNA or the mRNA. Inclusion of the overlapping nucleotides in the mRNA would remove one to two 5 ' nucleotides from the amino acid acceptor stem of the potential tRNA, rendering that tRNA molecule non-functional. This would necessitate multiple rounds of transcription in order to maintain tRNA levels for translation.

The methods presented in this thesis are not able to infer which of the above models is at work in insect mitochondria, but the molecules inferred to be processing intermediates of the nad3 and cox2 genes may imply that the first model described is the one utilized. If an nad3 mRNA was directly produced from the pre-mRNA molecule that
contained the nad 3 gene plus the five 3^{\prime} encoded tRNA genes, CR-RT-PCR should have been able detect a circularized product using primers for the tRNA gene sequences. I was unable to detect any molecules that encoded only these tRNA genes in the absence of the nad3 sequence. Though this lack of a result cannot prove the absence of a molecule, it is intriguing that the CR-RT-PCR methods were able to detect a circularization of the entire $s r R N A+t R N A^{V a l}+\operatorname{lr} R N A+t R N A^{\text {Leu }}+n a d l$ transcript, which was not detectable by direct RNA labeling or Northern Blot analysis by Berthier et al. (1986). This implies that CR-RT-PCR is much more sensitive at detecting RNAs. If the 5-tRNA molecule is produced by mRNA specific transcript processing, it must be actively recognized and degraded within the mitochondria.

Also, characterization of the $\operatorname{cox} 2+t R N A^{L y s}+t R N A^{A s p}$ region supports a model of 1 to 1 processing. A circularized product containing $\operatorname{cox} 2+t R N A^{L y s}+t R N A^{A s p}$ was never identified. That product would only be expected if the 3 ' encoded atp $8 / 6$ bicistronic message was actively identified and removed by another undescribed processing mechanism. Instead, I was only able to observe the $\operatorname{cox} 2$ only and the $\operatorname{cox} 2+t R N A^{\text {Lys }}$ products, as would be predicted by the active processing of the tRNA genes.

To determine whether tRNAs and mRNAs are matured via a 1 to 1 model, or through specific targeting will require direct experimentation on the rates of degradation of mRNAs and tRNA molecules, or through the complete characterization of the mitochondrial RNA processing machinery.

5.2. Insect Mitochondrial Genomics

5.2.1. Two Insect Mitochondrial Genomes

The mt-genomes of Philaenus spumarius and Pteronarcys princeps are presented in Chapters 2 and 3, respectively. Generally the two genomes were quite typical in terms of genome content, genome arrangement, nucleotide composition, codon usage and $\mathrm{A}+\mathrm{T}$ bias.

The stonefly sequence is significant in that it now represents the second order of early branching Neoptera (Neoptera excluding the Endopterygota and Paraneoptera) for which complete mt-genome sequence is available (Flook, et al., 1995; Kim, et al., 2005), or the third if you include the near-complete cockroach sequence (Yamauchi, et al., 2004). The positional bias analysis conducted based on asymmetric replication caused mutational bias should become another standard analysis done on new mt-genomes, so that unusual evolutionary alterations in the mode of replication of insect mitochondria can be detected.

The spittlebug sequence is also significant as it represented the first auchenorrhynchan Hemiptera sequence in the database. With the impressive diversity of other Hemiptera now available, it is now possible to begin to investigate some of the unusual phenomenon within the Paraneoptera, such as gene order instability and the reversion to the strict coding of recognizable initiation codons for the coxl gene.

5.2.2. Annotation of Mitochondrial Genes

The annotation of the start for coxI has long been problematic. The Diptera and Lepidoptera encode a conserved, in-frame TAA or TAG stop codons in place of a
recognizable start codon (Clary and Wolstenholme, 1983b; de Bruijn, 1983; Beard, et al., 1993; Mitchell, et al., 1993; Caterino and Sperling, 1999; Ballard, 2000a; 2000b; Lessinger, et al., 2000; Spanos, et al., 2000; Yukuhiro, et al., 2002; Nardi, et al., 2003a; Junqueira, et al., 2004). Comparative analyses began to question the use of the proposed four-base codons based on the lack of conservation of such an unusual coding signal within other organisms (Beard, et al., 1993). In contrast, the Paraneoptera (excluding the psocopteran barklouse) faithfully code an ATN start codon downstream of the $t R N A^{T y r}$, and most commonly utilize the ATG start codon (Shao, et al., 2001; Shao and Barker, 2003; Thao, et al., 2004), including the spittlebug sequence presented in Chapter 2. This confusing array of comparative observations has further contributed to a very diverse set of annotations of the coxI gene.

Pfam searches of mitochondrial coxl from insects show a strong conservation of a coxl domain. This domain initiates with the tryptophan at amino acid 4 of the translated coxl open reading frame from Drosophila, predicted from the obtained cDNA sequence. This domain, starting with the tryptophan, is very well conserved through mitochondrial coxl and the known bacterial homologues. The crystal structure of the bull (Bos taurus) mitochondrial complex IV has been solved (Tsukihara, et al. 1996). This crystal structure reveals that the 5 ' end of coxl forms a small alpha helix, initiating with amino acid 2 and ending with the conserved tryptophan mentioned above. By alignment, this helical region is not present in the Drosophila mRNAs, implying that its function has been lost or compensated for by other structural changes in the insect coxl.

My proposed annotation and alignment of insect the coxl genes is presented in Figure 5.2. Based on the cDNA sequence obtained from D. melanogaster, I propose that
annotation of the gene should initiate with the first in-frame nucleotide of the coxl open reading frame whether a putative initiation signal can be detected or not. This annotation should not overlap with the complementary sequence to the $t R N A^{T y r}$ gene at the 5' end, or any other 5^{\prime} abutting genes in the case of genome rearrangements relative to the conserved insect arrangement.

RNA sequencing should be expanded to better sample the diversity of coxl gene structure represented by the insects to help us come to a clearer understanding of the molecular structure of this gene. Obvious candidates for sequencing would include startcodon containing Hemiptera (such as Triatoma or Philaenus) (Dotson and Beard, 2001). Also, taxa that appear to encode neither a start nor stop should be investigated, such as a beetle or the giant stonefly. A dragonfly would also an interesting taxon, as they encode an extensive sequence between the $t R N A^{T y r}$ and coxl that is presumably not part of the mature mRNA. I would also like to sequence the coxl mRNA from another Drosophila species for which the TCG serine found to initiate the coxl of D. melanogaster is known to overlapped the $t R N A^{T y r}$ gene to examine the effects of this overlap of the composition of the mature mRNA (Ballard, 2000a; 2000b).

5.2.3. Genome Structure and Rearrangements

After the release of the GenBank file representing the mt-genome of Philaenus spumarius, a large number of mt-genomes representing the remaining hemipteran group, the Sternorrhyncha, were made public (Thao, et al., 2004). These species included six whiteflies, an aphid and a psylid. A second mt-genome from an auchenorrhyncan, the leafhopper Homalodisca coagulatta was also released in GenBank (Baumann and Baumann, unpublished).

Figure 5.2. Proposed Annotation of Insect cox1 5' ends for Representative Insect and Hexapod Taxa. Nucleotide identities to the D. melanogaster sequence are represented by a dot. Underlined nucleotides represent putative wobble-interacting start codons or ATG start codons. The amino acid consensus of the hexapod alignment is above the \boldsymbol{D}. melanogaster sequence, with capital letters representing amino acids always present, and lowercase representing amino acids present in $>80 \%$ of the hexapod sequences. The black line above the alignment represents sequence within the conserved coxl domain predicted by Pfam. The bull (Bos taurus) cox1 nucleotide sequence inferred from the crystal structure is compared below, with its amino acid translation.

The genome arrangement of the kissing bug, and the two auchenorrhynchan mtgenomes have conserved the ancestral mt-gene arrangements. Of the sternorrhynchan sequences, only the psylid and aphid sequences appear to conserve the ancestral insect mt -genome arrangement. The whitefly mt-genomes all appear to have undergone at least minimal tRNA re-arrangements (such as in Trialeurodes, Aleurochiton and Aleurodicus), while the others have undergone major tRNA and protein coding gene rearrangements (Bemisia and Tetraleurodes) or rearrangements of all gene types (in Neomaskelia) (Thao, et al., 2004). For the non-hemipteran orders within the Paraneoptera, protein gene rearrangements are observed in all three representative mt-genomes currently available (Shao, et al., 2001; Shao and Barker, 2003; Shao, et al., 2003). What is unusual about the mitochondria from these four insect orders that could lead to this predisposition to rearrange, when other insect groups appear to conserve the gene arrangement?

One feature is the increase in reported tandem repeat units observed in these nonrearranged taxa within the Paraneoptera. The kissing bug sequence is very unusual in that it encodes a large non-coding region between the $t R N A^{S e r-U C N}$ and nadl genes (Dotson and Beard, 2001). This region is 309 bp in length and consists of eight direct repeat units between the $t R N A^{S e r-U C N}$ and nadl genes. The Philaenus and Homalodisca sequences are also noted for their repeat structures in their $\mathrm{A}+\mathrm{T}$ regions.

Tandem repeats have been demonstrated to be involved in bacterial genome rearrangements (Rocha, 2003) and are implicated in human disease-causing mitochondrial deletions (Samuels, et al., 2004), and can, if they form stem-loop structures, lead to duplications that can result in gene order rearrangement (Stanton, et al., 1994).

Diptera also have extended repeat units within their $\mathrm{A}+\mathrm{T}$ rich regions, and tRNA gene rearrangements and translocations are also observed in the mosquitoes (Beard, et al., 1993; Mitchell, et al., 1993), plus the duplication of the $t R N A^{I l e}$ has been observed in Chrysomya blowflies (Lessinger, et al., 2004).

A predictive example of this theory could also be examined in the Pyrocoelia firefly beetles. The complete mt-genome of Pyrocoelia rufa revealed a large expansion of a repeat motif between the $n a d 2$ gene and the $t R N A^{T r p}$ genes (Bae, et al., 2004). Amplification and sequencing of this mt-genome region in other Pyrocoelia species may reveal the genome rearrangements and further support the association between large repeats and predisposition of genome rearrangement.

5.3. Future Directions

5.3.1. Modification of the CR-RT-PCR Protocol

The CR-RT-PCR methodology was more efficient than the 5' RACE methods at obtaining 5' sequence of the mitochondrial RNAs. Unfortunately, the ligation of the poly-A tail to the 5^{\prime} end of the RNA molecules obscured precise annotation of the 5^{\prime} transcribed nucleotide in nine of the eleven mRNAs and both of the rRNAs due to the linkage of a variable length 3^{\prime} polyadenylated sequence to one or more 5' A residues. For this reason, it was important to continue to attempt to obtain cDNA sequence through 5’ RACE amplification. By comparison of CR-RT-PCR sequence obtained from a 5' RACE sequence in which a nucleotide stretch other than A was added to the 5 ' end of the cDNA, it became possible to unambiguously identify the 5^{\prime} transcribed nucleotides.

As CR-RT-PCR was a more efficient means of amplification, it would be advantageous to modify this protocol to introduce non-A nucleotides to the terminal end of existing poly-A tails, thereby speeding the precise identification of the processed ends of the RNAs. The poly(A) polymerase enzyme has long been utilized to add poly-A tails to bacterially derived transgene RNAs in vitro. It has been noted that in the absence of rATP molecules, the poly A polymerase has the capacity to add nucleotides other than A to the 3 ' end of an RNA (Martin and Keller, 1998). By combining a poly-A polymerase step to add non-A nucleotides to the mitochondrial RNAs, followed by RNA circularization, it may be possible to develop a rapid protocol to generate circularized RNAs, with a non-A nucleotide linked to the 5^{\prime} end of the RNA molecule. Comparisons to the non-modified circularized mRNA would lead to the easy discrimination of the exact 5^{\prime} boundaries of all of the RNAs.

Also, the model presented for the transcription of the coxl gene should be investigated further. The obvious next investigation would be the isolation and peptide sequencing of the coxl protein to determine which amino acids are translated by the Drosophila mitochondrial translation machinery.

5.3.2. Transcription of A+T Rich Region Sequence

The D. melanogaster mitochondrial $\mathrm{A}+\mathrm{T}$ rich region is a very large region of DNA (4601bp in size) that contains a large number of tandemly repeated sequence units (Lewis, et al., 1995). As the name implies, the A+T region is heavily over-represented by A and T nucleotides, making PCR amplification and sequencing technically challenging. Also the large and repetitive structure makes primer design within the $\mathrm{A}+\mathrm{T}$ region very difficult. As a result, RT-PCR reactions linking $s r R N A$ and nad2 were not attempted. I
was also unable to construct primers that would test for the presence of RNA species that encoded sequence from the $\mathrm{A}+\mathrm{T}$ rich region and the flanking genes. Given the continued assumption that the $\mathrm{A}+\mathrm{T}$ region contains regulatory elements that are important to replication and transcript initiation, it is unfortunate that D. melanogaster mt-DNA encodes such an unusual $\mathrm{A}+\mathrm{T}$ rich region. Unlike the D -loop region in vertebrate mitochondria, there have been no demonstrations of the role of the major non-coding region in Drosophila mitochondrial transcription, nor reports of $\mathrm{A}+\mathrm{T}$ region transcripts.

The CR-RT-PCR protocol utilized in this study should have been able to overcome any limitations of primer design. It is expected that the amplification of the nad2 and srRNA genes after circularization would have detected pools of the matured forms of the RNAs, as well as the unprocessed primary transcripts that would encode $\mathrm{A}+\mathrm{T}$ region sequence that was transcribed immediately downstream of the transcriptional promoter regions.

Not all insects encode such problematic mitochondrial A+T rich regions. Many of the other Drosophila species have much smaller A+T regions, and are amenable to growth in laboratory conditions. Comparative analyses between the $\mathrm{A}+\mathrm{T}$ region of Drosophila species has been undertaken, and conserved sequence regions have been identified that may be candidates for replication or transcriptional control (Lewis, et al., 1994). Further experimentation should be undertaken with another Drosophila species to examine what role $\mathrm{A}+\mathrm{T}$ rich sequences may have on mitochondrial transcription in flies.

The exact composition of the 5^{\prime} most nucleotide of mitochondrial transcripts is currently not known for animal mitochondria. In a study of mitochondrial RNA from HeLa cells it was determined that 5' caps were not present in human mitochondrial

RNAs, and that only mono-phosphate (rNMPs) and a di-phosphate (rADP), presumed to be from the 5^{\prime} of the RNAs digested in the study, were present in observable levels (Grohmann, et al., 1978). If these finding could be extended to insect mitochondria, it could be suggested that primary transcripts either start with a di-phosphate or monophosphate nucleotide. If they do initiate with mono-phosphate nucleotides, primary transcripts should have been detectable by CR-RT-PCR, and therefore imply that the large $s r$ RNA-nadl transcript is the primary transcript. This would imply that the sequence directly upstream of the observed $s r R N A$ cDNA sequence is the transcriptional promoter for this gene cassette.

If the di-phosphate is the natural state for the primary transcript, the primary transcript would not have been circularized (due to the T4 RNA ligase specificity for 5’ mono-phosphate). The large srRNA-nadl molecule observed would then be the product of a 5 ' removal of a transcribed leader sequence from this multi-gene transcript.

It should be feasible to explore these two described scenarios by a simple modification of the protocols used in this study. If the mitochondrial total RNA pool was first de-phosphorylated by an RNA phosphatase, then the molecules monophosphorylated by an RNA kinase, it should be feasible to detect the primary transcript by CR-RT-PCR, providing the correct 3^{\prime} facing primer could be chosen. By adopting this protocol, it may be possible to determine the transcript initiation sites in the $\mathrm{A}+\mathrm{T}$ rich region, without switching to another Drosophila species as the model organism.

5.3.3. Further Characterization of Nuclear Transcription and Processing Factors

In vitro transcription initiation is now possible, using mammalian mitochondrial transcription factor alpha TFAM, (Garstka, et al., 1994), either of the two mt-
transcription factor betas (TFB1 or TFB2), and the mitochondrial RNA polymersae POLMT, (Tiranti, et al., 1997) (Falkenberg, et al., 2002). This simple transcription system cannot yet function on isolated mitochondrial DNA, but can transcribe from mitochondrial sequences cloned into plasmids (Gaspari, et al., 2004a). A mitochondrial transcription termination factor DmTERF1 has been characterized (Fernandez-Silva, et al., 1997), and three additional mTERFs are being investigated (Gustafsson, C.M., personal communication).

Additionally, human mitochondrial poly(A) polymerase has been characterized (Tomecki, et al., 2004; Nagaike, et al., 2005). Given the tight association between the polyadenylation of mt-mRNAs and the transcript processing machinery, it may now be possible to identify the processing factors through protein-protein interactions with mtpoly(A) polymerase. I was able to quickly identify a putative Drosophila homologue of the mammalian poly(A) polymerase using a t Blastn search of the Drosophila complete genome sequence. The 612 amino acid candidate, CG11418, was examined to determine if the predicted protein sequence had a mitochondrial import signal using MitoProtII (Claros and Vincens, 1996). The first 33 amino acids were determined to be a mitochondrial import signal (with $\mathrm{p}=0.833$). The sequence was then analyzed using Pfam (version 17.0, March 2005) and found to contain a 406 amino acid poly(A)polymerase associated domain (Sonnhammer, et al., 1997). A putative homologue for Anopheles (XM_319519) was also identified using tBlastn of the human sequence against the Anopheles complete genome. XM_319519 was 0.46 identical and 0.68 similar to Drosophila CG11418, and had the same poly(A) polymerase domain. The ORF for the Anopheles sequence was incomplete at the 5^{\prime} end, so the presence of a mitochondrial
import signal could not be investigated. This simple analysis has lead to potential candidate for biochemical and molecular characterization to determine if it is the Drosophila mt-poly(A) polymerase. If the molecule does turn out to be the Drosophila mt-poly(A) polymerase gene, it will be of great interest to determine what other proteins interact with this enzyme. Given the close association between transcript processing and polyadenylation, it would be very interesting to determine if other enzymes involved in mitochondrial transcript processing could be isolated by co-immunoprecipitation or other such molecular methods. These and other studies should be undertaken in attempt to isolate, characterize and eventually reconstitute the components of the mitochondrial processing machinery for in vitro studies.

In Drosophila, homologues for TFAM (Goto, et al., 2001; Takata, et al., 2001), TFB2 (Matsushima, et al., 2004), RNA polymerase (Goldenthal and Nishiura, 1987) appear to make up the minimal transcription unit. The first Drosphila mitochondrial termination factor, DmTERF1 has been characterized (Roberti, et al., 2003; Roberti, et al., 2005), with three other paralogues identified and awaiting characterization (Gustafsson, C.M., personal communication).

This body of knowledge strongly points towards the possibility of complete in vitro mitochondrial transcription and transcript processing system being developed. The in vitro system would have profound impacts upon our understanding of mitochondrial transcription and transcript maturation, as it is still not possible to introduce recombinant DNA or exogenous mRNAs into animal mitochondria. Also, due to the fundamental biochemical processes being carried out by the protein subunits expressed from mt-DNA, the isolation and characterization of non-fatal mitochondrial mutations in animal model
organisms has been a very slow and random process. As the field progresses towards a cell-free mitochondrial transcription system, the possibility of experimental observation of these processing mechanisms becomes an exciting possibility.

Appendix A. GenBank Flatfile for Philaenus spumarius.

LOCUS	AY630340 16324 bp DNA circular INV ll-MAY-2005
DEFINITION	Philaenus spumarius mitochondrion, complete genome.
ACCESSION	AY630340
VERSION	AY630340.1 GI:47933676
KEYWORDS	
SOURCE ORGANISM	mitochondrion Philaenus spumarius (meadow spittlebug)
	Philaenus spumarius
	Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
	Neoptera; Paraneoptera; Hemiptera; Euhemiptera; Cercopoidea;
	Aphrophoridae; Philaenus.
REFERENCE	1 (bases l to l6324)
AUTHORS	Stewart, J.B. and Beckenbach,A.T.
TITLE	Insect mitochondrial genomics: the complete mitochondrial genome sequence of the meadow spittlebug Philaenus spumarius (Hemiptera:
	Auchenorrhyncha: Cercopoidae)
JOURNAL	Genome 48 (1), 46-54 (2005)
PUBMED	15729396
REFERENCE	2 (bases 1 to 16324)
AUTHORS	Stewart, J.B. and Beckenbach,A.T.
TITLE	Direct Submission
JOURNAL	Submitted (19-MAY-2004) Molecular Biology and Biochemistry, Simon
	Fraser University, 8888 University Drive, Burnaby, British Columbia
	V5A 1S6, Canada
FEATURES source	Location/Qualifiers
	1..16324
	/organism="Philaenus spumarius"
	/organelle="mitochondrion"
	/mol_type="genomic DNA"
	/db_xref="taxon:36667"
	/dev_stage="adult"
tRNA	1..63
	/product="tRNA-Ile"
	/note="codons recognized: AUY"
	/anticodon=(pos:29..31,aa:Ile)
tRNA	complement (61.. 129)
	/product="tRNA-Gln"
	/note="codons recognized: CAR"
	/anticodon=(pos: complement (97..99), aa:Gln)
tRNA	129.. 198
	/product="tRNA-Met"
	/note="codons recognized: AUR"
	/anticodon=(pos:160..162, aa: Met)
gene	199..l191
	/gene="nad2"
CDS	199..1191
	/gene="nad2"
	/codon_start=1
	/transi_table=5
	/produc $\bar{t}=$ "NADH dehydrogenase subunit 2"
	/protein_id="ААТ39431.1"
	/db_xref="GI:47933677"
	/translation="MTMMNSTKMIFLLFMFVSPLISLSSNNWFGSWMGLEINLISFTP
	LMPSKNNYYSSESSMKYFIIQSVSSMILLLGIISLSLMMSYSYLIMICALMAKLGVAP
	FHMWAPSVMEGISWFNCFIFLTWQKLAGLMLMSYIIINSMVVFPVIASLIIGSFGGIN
	QSSMKKLMAYSSINNMGWIIMGMTISESLWMSYFLIYTEMVYNLIYLFMIMEINYLNQ
	FLINMHNSSFKIILSLLLFSFGGVPPLLGFLPKLIIIQSLMLNSNFLILLIMIMTSLI
	TLFYYIRVTTMMLMVNSSKIKFNNYLLLNSKLFYLMTEMNLFGFGLIFIFKTIN"
tRNA	1191. 1255

```
    /product="tRNA-Trp"
    /note="codons recognized: UGR"
    /anticodon=(pos:1222..1224,aa:Trp)
    comp1ement(1248..1314)
    /product="tRNA-Cys"
    /note="codons recognized: UGY"
    /anticodon=(pos:complement(1281..1283),aa:Cys)
    complement (1317..1381)
    /product="tRNA-Tyr"
    /note="codons recognized: UAY"
    /anticodon=(pos:complement (1351..1353), aa:Tyr)
gene 1382..2915
    /gene="cox1"
    1382..2915
    /gene="cox1"
    /note="TAA stop codon completed by the addition of 3' A
    residues to the mRNA"
    /codon start=1
    /transl_except=(pos:2915,aa:TERM)
    /transl tab1e=5
    /produc\overline{t}="cytochrome c oxidase subunit I"
    /protein_id="ААT39432.1"
    /db_xref="GI:47933678"
    /trānslation="MKKWMFSTNHKDIGTLYFLFGIWSGMIGTTLSLLIRVELGQPGS
    FIGDDQIYNVIVTSHAFIMIFFMVMPIMIGGFGNWLVPLMIGAPDMAFPRMNNMSFWM
    LPPSLTLLLSSSMIDNGVGTGWTVYPPLSSGVAHAGACVDLAIFSLHLAGISSILGAV
    NFITTIFNMRSSGMKMDRTPLFVWAVLITTILLLLSLPVLAGAITMLLTDRNINTSFF
    DPSGGGDPILYQHLFWFFGHPEVYILILPGFGLISHIISQESGKNESFGSLGMIYAMM
    AIGLLGFVVWAHHMFTVGMDVDTRAYFTSATMIIAVPTGIKIFSWLATMHGMPFKLSS
    PILWSIGFVFLFTIGGLTGIVLSNSSIDIILHDTYYVVAHFHYVLSMGAVFAILGSFI
    QWYPLFTGLTMNSKWLKMQFMIMFVGVNLTFFPQHFLGLSGMPRRYSDYPDAYMSWNI
    LSSIGSMISFIGILLLIFIVWESLISKRKSIFSKNMISSIEWLQMMPPSEHSYNELPM
    LTN"
    2916..2980
    /product="tRNA-Leu"
    /note="codons recognized: UUR"
    /anticodon=(pos:2946..2948,aa:Leu)
    2981..3650
    /gene="cox2"
    2981..3650
    /gene="cox2"
    /note="TAA stop codon completed by the addition of 3' A
    residues to the mRNA"
    /codon start=1
    /trans1_except=(pos:3650,aa:TERM)
    /trans1_table=5
    /produc\overline{t}="cytochrome c oxidase subunit II"
    /protein_id="AAT39433.1"
    /db_xref="GI:47933679"
    /trānslation="MATWSNFGLQDGMSPLMEQMIFFHDHTLMILIMITMMVGYTMVS
    LTYNNLINRYLLEGQMIELLWTIIPAITLVFIALPSLKLLLYLLDEMSNPSITIKSIGH
    QWYWSYEYSDFKNLEFESYMSLYEKTKFRLLDVDNRIILPFLIQIRMLVCSMDVIHSW
    TIPSLGVKLDALPGRLNQMSFLMSRPGLMFGQCSEICGSNHSFMPIVIESISMEKFVK
    WLKSY"
tRNA 3651..3721
    /product="tRNA-Lys"
    /note="codons recognized: AAR"
    /anticodon=(pos:3681..3683,aa:Lys)
    3723..3789
    /product="tRNA-Asp"
    /note="codons recognized: GAY"
    /anticodon=(pos:3753..3755,aa:Asp)
gene 3791..3946
```

	/gene="atp8"
CDS	3791..3946
	/gene="atp8"
	/codon_start=1
	/transl_table=5
	/product="ATP synthase FO subunit 8"
	/protein_id="AAT39434.1"
	/db_xref="GI: $47933680{ }^{\prime \prime}$
	/translation="MPQMAPMWWLSLFMMFILSFFLFNSIIYFFFKSNKINTFNKFII
	NQMIWKW"
gene	3940..4599
	/gene="atp6"
CDS	3940..4599
	/gene="atp6"
	/codon_start=1
	/transl_table=5
	/product="ATP synthase FO subunit 6"
	/protein_id="AAT39435.1"
	/db_xref="GI:47933681"
	/translation="MMTNLFSVFDPSTGILSLNWVSTLIGLIIIPMPLWILPSRLFIM
	NLIIFQKINNELKILMTMNSKGNSLIFVSMFFFILYNNIMGLLPYIFTSSSHLVFTLS
	LALPMWLMLMIFGWLMNTNKMFYHLIPVGTPSILMPFMVCIETISNMIRPGSLAVRLT
	ANMIAGHLLMTLLGNMSINSSFIMLIIIIQLMLMIFETAVSIIQAYVFTILSTLYSSE
	I' ${ }^{\prime \prime}$
gene	4602. 5382
	/gene="cox3"
CDS	4602..5382
	/gene="cox3"
	/note="TAA stop codon completed by the addition of 3' A residues to the mRNA"
	/codon_start=1
	/transl_except=(pos:5382,aa:TERM)
	/transl_table=5
	/product="cytochrome c oxidase subunit III"
	/protein_id="AAT39436.1"
	/db_xref="GI:47933682"
	/translation="MMKNHPFHLVDASPWPITGSIGAMTITSGMVMWFHQLNLFLFML
	GLIIIILTMFQWWRDVTRESTFQGNHTIIVTKGMKWGMLLFIVSEVFFFLSFFWGFFH
	SSLSPSMEIGMMWPPKGIVTFNPMQIPLLNTMILLSSGITITWSHHSMMNSNHSQSVQ
	GLFLTIILGIYFSMLQGYEYYESPFFTISDSIYGSTFFMSTGFHGLHVLIGTTFIIVTM
	ARQMNFHFSNKHHFGFEAAAWYWHFVDVVWLFLYISIYWWGS"
tRNA	5383. 5447
	/product="tRNA-Gly"
	/note="codons recognized: GGN"
	/anticodon=(pos:5414..5416,aa:Gly)
gene	5448. 5801
	/gene="nad3"
CDS	5448. 5801
	/gene="nad3"
	/codon_start=1
	/transl_table=5
	/produc $=$ = NADH dehydrogenase subunit 3"
	/protein_id="ААТ39437.1"
	/db_xref="GI:47933683"
	/trānslation="MMNLIMSSFMIITILILLIILLTLISKKSFMDREKSSPFECGFD
	PINSSRIPFSLHFFLMAVIFLIFDVEIVLILPITIIFKYSVIWEWMLSSIMFIMILIL
	GLYHEWYHGMIEWAN"
tRNA	5801. 5864
	/product="tRNA-Ala"
	/note="codons recognized: GCN"
	/anticodon=(pos:5830..5832,aa:Ala)
tRNA	5865. 5927
	/product="tRNA-Arg"

```
    /note="codons recognized: CGN"
    /anticodon=(pos:5892..5894,aa:Arg)
tRNA
tRNA
tRNA
tRNA
gene
CDS complement (6185..7894)
tRNA
gene
CDS
gene
    5926..5990
    /product="tRNA-Asn"
    /note="codons recognized: AAY"
    /anticodon=(pos:5957..5959,aa:Asn)
    /gene="nad5"
    /codon_start=1.
    /transl__table=5
    /product="NADH dehydrogenase subunit 5"
    /protein_id="AAT39438.1"
    /db_xref="GI:47933684"
    /translation="MNYKINLGFITSLMLILFSLIFFLMFLYFVIHEKLILLEWSIIF
    LNSSSVYMSIILDWMSLIFMSFVLGISSFVIFYSNEYMIVDNKNINRFIYLIILFVASM
    MFLIISPNLISILLGWDGLGLISYCLVVYYQNNKSYNAGMLTALMNRIGDVALLMSIG
    WMMNFGGWNYIFYLDKMFNFEFISFMIILAAFTKSAQLPFSSWLPAAMAAPTPVSALV
    HSSTLVTAGVYLLIRFNLLIMNFFMIDFFLILSLLTMIMSSEGANFEFDLKSIIALST
    LSQLGFMMSVLMMGFPSMAFFHLLTHALFKALLFLCAGVVIHSMWGNQDIRFMGGLIN
    QLPIITSCMNISNLALCGFPFLTGFYSKDLIMESMMMSNLNFLSYMLFLLSVGLTVSY
    SFRLSYYTLSGNLNSFSFLCIYDCSSNMSWSIFIMVFFSIIGGSMLNWLMFSSPVVIM
    LPLDLKLTTLTMIVMGSLIGYELSMYKNNFFYYFPLLNYFSGMMWFTPLFSTFFFTNH
    LFKFSLIFSLVINQGWGEYWG PKGLSNLVVNFSKFNQIIQMNSFKFYLMSLIIWILFM
    FMI"
    complement(7960..9280)
    /gene="nad4"
    /note="TAA stop codon completed by the addition of 3' A
    residues to the mRNA"
    /codon_start=1
    /trans1_except=(pos:complement (7960), aa:TERM)
    /transl_table=5
    /product="NADH dehydrogenase subunit 4"
    /protein_id="AAT39439.1"
    /db xref="GI:47933685"
    /translation="MLKFIVFIIFLIPLYFNFWLIQSMMFLLCILLMFSNYGFNYTMM
    SYFFSIDLISLGFIILSIWISCLMVMASFMIKKNNNYPGSFILLVNLLMFFLIVSFST
    NNYLLFYFFFESSLVPTLILIFGWGYQPKRLSSGYYLLFYTLLASLPLLLSIIYLYNL
    NGSFMFMINSYNSNCLYIYIGLIMAFLVKLPMFMFHFWLPKAHVEAPISGSMVLAGIL
    LKLGGYGLMRFMYFVPNYFITYNYIWIVVSLYGGVLISLVCLVQSDVKSLIAYSSVCH
    MSLVLMGIMTLFCWGESGSFMLMLGHGLCSSGLFCLSNIMYERLNSRSFFISKGMMSF
    MPSMSLFWFMFCSSNMASPPSMNLLGEIMI INSLISWSSFSVLFLGLMSFLSACYSLY
    LFSYSQHGNFYSGYNSFSCGYVREYLLLILHWLPLNFFVLKLNMFLLL"
    complement(9274..9561)
```

```
    /gene="nad4l"
complement (9274..9561)
/gene="nad4l"
/codon_start=1
/transl table=5
/product="NADH dehydrogenase subunit 4L"
/protein_id="AAT39440.1"
/db_xref="GI:47933686"
/translation="MNFFIIYMYMYIIGLWTLCSIRKHILLCLLSLEFIVLSLFLMLY
FYLVNFNYELYFSMIYLSFSVCEGVLGLSVLVAMVRSHGNDYLNSFNSLLC"
9564..9628
/product="tRNA-Thr"
/note="codons recognized: ACN"
/anticodon=(pos:9594..9596,aa:Thr)
complement (9631..9696)
/product="tRNA-Pro"
/note="codons recognized: CCN"
/anticodon=(pos: complement (9663..9665), aa: Pro)
9698.. 10216
/gene="nad6"
9698.. 10216
/gene="nad6"
/codon start=1
/transi_table=5
/product="NADH dehydrogenase subunit 6"
/protein_id="AAT39441.1"
/db_xref="GI:47933687"
/translation="MKMMIMMSSIMMSTIFSMMKHPLSMGMILLIQTLITCLMNGLNS
YSMWFSYILFITFIGGMLILFIYIASIASNEKFLFSMKMMMIIIFMMFMLLIMSMMDM
TIVVNNHMIIETMSYNKSVNEMNKEINSIMKMFNMPTTMITLMTIIYLLFTMITVVKV TNMKDGPLRMKN"
10216..l1349
/gene="cytb"
/note="synonym: cob"
10216.. 11349
/gene="cytb"
/codon start=1
/trans1_table=5
/produc \(\bar{t}="\) cytochrome b"
/protein_id="AAT39442.1"
/db_xref="GI:47933688"
/translation="MFKPMRKKELLSIINSTIVDLPTPCNLSSWWNFGSLLGLCLMIQ VVTGIFLAMHYSSNVEMAFNSISHICRDVNFGWLIRIMHANGASLFFICMFMHIGRGM YYGSYKSIKTWVMGVMIMLTVMATAFLGYVL PWGQMSFWGATVITNLLSAI PYLGESM VKWIWGGFAVDNATLTRFFTLHFLMPFIVLVMSSLHIFFLHKKGSNNPLGISSNIDKI PFHPYFSIKDLMGFTIAMMMFLILNLMEPYILGDPDNFIPANPLVTPAHIKPEWYFLF AYAILRSIPNKLGGVIALIMSILILLTLPFSNMSKFKGMKFYPISQMLFWMLVSTTML FTWIGARPVEEPYIWTGMNLTYIYFSYFIIEPLSKKLWDNFIN"
11349..11413
/product="tRNA-Ser"
/note="codons recognized: UCN"
/anticodon=(pos:11377..11379,aa:Ser)
complement (11430..12347)
/gene="nad1"
complement(11430..12347)
/gene="nad1"
/codon start=1
/transī_tab1e=5
/product="NADH dehydrogenase subunit 1"
/protein_id="AAT39443.1"
/db_xref="GI:47933689"
/translation="MYFINVLILVIFIMLGVGFLTLVERKILGYIQVRKGPNKLGFLG IFQPFSDAIKLFTKEQMVPLKSNFLIYYFSPILSLFISLFLWLVYPFLINCFSFIYGI
```

```
    LFLLCCMSMGVYTIMISGWASCSTYSLLGSLRSVAQTISYEVSLSMIFLSFIFLINSY
    SLIDFYYYQLNLWFLFICFPLSMCFISSCMAETNRSPFDFAEGESELVSGFNVEYSGG
    GFSYIFLSEYSSIIFMSVLYSIIFLGCNLSSYTFFLSVTFVCFLEVWVRGTLPRYRYD
    KLMYMAWSSYLPISLNYFVFFLGFKSLII"
    tRNA
rRNA
tRNA complement(13662..13735)
rRNA
misc_feature 14490..16324
repeat_region
repeat_region
complement(12349..12414)
/product="tRNA-Leu"
/note="codons recognized: CuN"
/anticodon=(pos:complement(12382..12384),aa:Leu)
complement(12417..13661)
/product="large subunit ribosomal RNA"
/product="tRNA-Val"
/note="codons recognized: GUN"
/anticodon=(pos:complement(13698..13700),aa:Val)
complement(13736..14489)
/product="small subunit ribosomal RNA"
    /note="A+T rich region; putative control region"
    14524..15400
    /rpt unit="14524..14569"
    15452..16161
    /note="second part of repeat is incomplete"
    /rpt_unit="15452..15597"
ORIGIN
121
181
241
301
361
4 2 1
481
541
6 0 1
6 6 1
7 2 1
71
841
901
961
1021
1081
1141
1201
1261
1321
1381
1441
1501
1561
1621
1681
1741
1801
1861
1 9 2 1 ~ t
1 9 8 1
2 0 4 1
2 1 0 1
2161
2 2 2 1
2281
```

\qquad
aataagatgc ctgaaaagg attattttga tgtaataaat ta
ttataatatt tagaattaaa ctaaatctat taatttcaaa tacattataa aagataagc taataaggct aataggttca ta accctattt atagaaataa ttaattttct tctttttatt gactataata aattcaacta aaataatttt cttattattt atatttgtta gacctttgat ttccttgtct tctaataatt gatttggttc ttgaatagga ttagaaatta atttaatttc ttttactcct ctaataccet caaaaataa ttattattct tctgaatcaa gaataaaata ttttattatt cagagagtaa gatcaatgat tctattacta ggaattatta gcttatcatt aataataga tactcatatt tgattataat ttgtgcactt atagcaaat tgggagtcgc accattccat atatgagctc ctagagtaat ggaaggtatt agatgattta attgttttat ttttttaaca tggcaaaaat tagctggttt aatattaata agttatatta ttattaattc catagttgtt tttcctgtaa ttgcttcttt aattattggt tcatttgggg gaatcaatca aagttcaata aaaaaattaa tagcttattc ttctattaat aatataggat gaatcattat aggtataact attagttttt cattatgaat aagatattt ttaatctata cattcatagt ttataatcta atttatttat ttataattat agaaattaat tatttaaatc aatttttaat taatatacac aattcttctt ttaaaattat tttatcctta ttattatttt cttttggagg agtacctcct ctattaggat ttttacctaa attaattatt attcagtcat taatattaaa ttcaaatttt ttaattttgt taattataat tataacttca ttgattactc tattttatta tattcgggtt acaacaatga tactgatagt taattcatcc aaaatcaaat ttaataacta tctattacta aatagaaaat tattttattt aataactttt ataaatttat ttggatttgg tttaatcttt atttttaaaa caattaatta aaggttttaa gttaaattaa actattaacc ttcaaagtta aatatataat attttataag ccttagtatt aatttttact cctttagaat tgcagtctaa aatcatttta ttgactataa ggcttatact aaggaaatc tattatttca tttataaatt tacaatttat tactctttca gccactttag tatgaaaaaa tgaatattct ctactaatca caagatatc ggaactttat attttctatt tgggatttga tctggaataa ttgggactac tctaagatta ttaattcggg ttgaattggg tcaacctggg tcatttattg gggatgatca aatttataat gtaattgtaa cttcccatgc ttttatcatg atttttttta tagttatacc aattataatt ggtggttttg gaaattgatt agttccatta ataattggtg ctcctgacat agcatttcca cgaataaata atataagatt ttgaatgctt cctccttcat taacgcttct tctttcaaga agaataattg ataatggagt agggacggga tgaacagttt atcctccttt atcaagaggt gtagcacatg ctggtgcatg tgttgattta gctattttct ctttacattt agcaggaatt tcttctattc taggtgctgt aaattttatt actactattt thatatacg ttcttcaggt atgaaaatag atcgaactcc tttatttgta tgagcagttt tgattactac aattttactt ttactttcct taccagtctt ggctggagct attacaatgt tattaacaga tcgaaatatt aatacttcat tttttgatcc gtcgggggga ggagatccaa ttttatacca acatttattt tgattttttg ggcacccaga ggtttatatt ttgattttac cagggtttgg tttaatctct catattatta gacaagaaag aggaaaaat gaatcttttg gatctttagg tataatttat gctataatag caattggttt gctaggtttc gtggtttgag ctcatcatat atttactgta ggtatagatg ttgatacacg tgcatatttt acttcagcca caataattat tgctgtaccc acaggtatca aaatttttag

2341

2401
2461
2521
2581
2641
2701
2761
2821
2881
2941
3001
3061
3121
3181
3241
3361
3421
3481
3541
3601
3661
3721
3781
3841
3901

4081
4141
4201
4261
4321
4381
4441
4501
4561
4621
4681
4741
4801
4861
4921
4981
5041
5101
5161
5221
5281
5341
5401
5461 ttatatcaag attcataatt
5521 tttctaaaaa aagatttata
5581 caattaactc atcacgtatc
5641 taatttttga tgtagaaatt
5701 ttatttgaga atgaatatta
5761 accatgaatg ataccatgga
5821 taattgattt gcattcaata
5881 tacaattagt ttcgacctaa
5941 atagaggcaa tttattgtta
6001 ataataaagt agctgctaac
6061 aagaagttta taaacgtttc
gaataccatt caaattgtct caattggggg tttgacagga atacttacta tgtagtagct ttttagggag atttattcaa ggttaaaaat acaatttata attttttagg tttaagagga cttgaaatat tttatcttca tttttattgt ttgagaaaga tttcttcaat tgagtgactc caatattaac taatttctga agaaattatc tttattagaa cccctcttat agaacaaata ttacaataat agtaggttat accttcttga aggtcaaata tttttattgc cctgccatca ctattacaat taaatctatt aaaatttaga atttgaatca atgttgataa tcgtatcatt tggatgttat tcattcatga ggcgattaaa tcaaatgaga cagaaatttg tggatcaaat aaaatttgt taaatgatta cttaaaccat attatagtaa aaatattaat ttgtcaaatt tagctccaat atgatgatta attcaattat ttattttttc ttaatcaaat aatttgaaaa aattttatca ttaaattgag atgaatttta cgaattaaaa attttttttt aagacattta tggatgatta atgaatacaa aattttaata ccatttatag tttagctgtt cgattaacag aatatatca attaatagat gatttttgag acagcagtct ttactcaaga gaaatttaaa ccttgaccaa ttactggctc tttcaccaac taaatttatt tttcaatgat gacgtgatgt gtaactaagg gaataaaatg ttatcttttt tttgaggatt atatgacctc caaaaggaat ataattttgt tatcttcagg aatcatagcc atattacaag tcaacatttt attattgtaa tttgaagcag aaaaggactt aaatctaaga attactattt taattttatt gatcgggaaa agtcttcccc ccattttcat tacatttttt gtcttaattt taccaattac a tctagaatta tatttattat g ataattgagt gagcaaacta ggtatctttg aaagattaat taataaggaa ataaaaaaat tgaattaatt tatatttata agcggtttaa t
tctcctattt tatgatcaat attgttttat ctaattcttc cattttcatt atgtattatc tgataccctt tatttactgg attatatttg ttggggtgaa atacctcgtc gatactctga attggaagaa taatttcatt ttaatttcaa acgaaaaag caaatgatac ccccatccga tatggcagaa atagtgcatt ttggcaactt gatcgaattt attttttttc atgatcacac actatagtta gattgacgta attgaattat tatgaacaat ttaaaattat tgtacctatt ggtcatcaat ggtactggtc tatatatcat tatatgaaaa cttccttttc taattcaaat acaattccaa gattaggagt tttttaatat cccgtcccgg catagattta tacctattgt aatcttact cattaagtga attagcattt actcttaatg agagaatttg aaataattca tccttattta taatatttat tttaaatcaa ataaaattaa tgataacaaa tttattttca taagaacatt aattggatta tatttattat aaatttaatt caataaattc aaaaggaaat ataacattat aggcttatta taagattagc tttacctata acaaaatgtt ttatcatctt tatgtatcga aacaattaga caaatataat tgctggtcat catttattat attaatcatt caattattca agcatatgtg tatgataaaa aatcatcctt tatcggagcc ataacaatca tttatttata ttagggttaa aacacgagag tcaacttttc aggaatatta ttattcattg ttttcacaga agattatctc tgtaactttt aatcctatac gattacaatt acatgatcac gggacttttt ttaaccatta ttatgagtcc ccatttacaa cggatttcat gggcttcatg gcaaataaat tttcattttt ctgacatttt gttgatgttg atactttttt agtattaact aaaagtattg ataaatttga aattatttta ttaacattaa atttgaatgt ggatttgatc tttaatagca gtgatttttt attattttt aaatattctg gattttaatt ttagggttat aggattatag ttaattataa cttaaataga gaagtaatta cctatttaac taaagccaaa tctagttaaa agaaaataag ttccgttttt ttcttaattt

6121 tattttagag taacaactat attaatatct tcaatattat gcttttaatt ttaagctact 6181 aaaattaaat tataaacata aataaaattc aaataattaa tcttattaaa taaaatttaa 6241 atctatttat ttgaataatt tgattaaatt tggagaaatt aacaactaaa ttagacaaac 6301 ctttaggtcc tcaatattcc cctcaacctt gattaattac taaagaaaaa a 6361 acttaaataa atgattagta

6421
6481 6541 g 6601 6661 a 6721 a 6781 t+atta 6841 cacataatgc caaatttgaa 6901 a 6961 a 7021 g 7081 t aagacaaaat t 7201 ttaatagata a 7261 ttggggcagc 7321 aagctgctaa
aaaaaaaag ttgagaatag gggggtaaac ggaaaataat aaaaaaatt attcttatac ataacaatta ttgttagagt agttaatttt ctactaaata ttaatcaatt tagtatagaa aaaattgatc aagatatatt ccttgaacaa aaattaccag ataaggtata atatcttaga cttaataaaa ataatatata ggatagaaaa attaaatcct ttgagtaaaa tccagttaaa atattcatac aagaggtaat aataggtaat tcctgattcc aataaagcat gatattataa tcaaaattgg tcaattatga gtaactaaag t ggcagccatg aagaaaaggg taattgagct aaagaaataa attcaaaatt aaatatttta aaatttatta ttcaaccaat agatattaat gctgttaata tcccagcgtt ataagattta gaaatcaaac ctaaaccatc tcaacctaac aaaaatatta tagaagcaac aaatagaata tcaacaatca tgtattcatt actataaaag gatataaaaa ttaaagacat tcaatctaaa aaaaaataa tagatcattc taataaaatg attaaaaaa aaatcaatga gaataaaatt attttataat taataactta aaatcaatag tttattaaac tatttaagta taataataaa aaaggaagtc aatgaagaat taataataaa ttataaccag aataaaaatt gccatgctga gctcttaaga aagacattaa acctaaaaat ctattaataa ttataatttc acccaataaa gaacaaaata taaatcagaa tagggatatt ataaaaaac tgcggctatt taaacgttca gaagaacata gcccatgacc taatattaat aaagttataa tacccattaa aactaatctt a gattttacat ctctttgaac taagcatact a actacaatcc aaatataatt atatgtaata attaaaccgt aacctcctaa tttaagtaaa ggagcttcta catgagcttt aggaagtcaa aaaaaagcta taattaaacc aatataaata ataaatatga gaagctaata cctcaaccaa aacaaataat ta aaaataaaac aagcatctaa aaatagctta aaaaatatta aaaacaataa tacgaactat aataaattat aaaataaaga ttgaacataa ttagttttaa ttaattcatt aataaactat ttttttcaat ttacatgttt aa ttacatttat t
attaatgaaa catattattc attcttaatt aaatctaaag cctccaataa tcatagatac cgaaaagaat tttaaattac aaaggaaatc tgattaatta acacctgcac gccatagaag gataaagcaa atagttaata ttaaatcgaa gatactggag ctcttagtaa tcaagataaa aaggctacat ttattttgat agaattctaa attaaataaa attacaaaag ataattgata agtttttcat aacattaatg cagatatcta atatattca tactctcgaa ctataagaaa aaaacactaa tttattcttg gaaggtataa tatataatgt ataaaagatc atatgacaaa aatctaatta aaataattag attccagcta aaatgaaata tataaacaat aagtaaatga taaccagaac actaatcttg atcaaaaaaa ttttaatta aaacctaaag taattagaaa ttaaaatata taaaagaatt ccaacacacc taaaattaac ttaatagaca atatatatat tcttgtaatc tatcttaaat ttataatatc taggaataat attcaatatg ttatttatat

9901 tgcaagaatt gcaagaaatg aaaaattttt attttccata aaaataataa taattattat

9961 ttttataata tttatactat ta
10021 ccacataatt attgaaacaa
10081 taactcaatt ataaaaatat
10141 ttatttacta tttacaataa
10201 acgtataaaa
10261 agtacaattg
10321 ctattaggat t
10381 tcatctaatg t
10441 ggatggttaa
10501 atacatattg
10561 ggagtaataa
10621 ggtcaaatat c
10681 ctcggagaat
10741 a
10801 catatttttt
10861 gataaaattc
10921 ataataatat
10981 tttatcccag
11041 tttgcgtatg
11101 atatcaatct
11161 aaattttatc
11221 acttgaattg
11281 tatatttatt
11341 attaattaag
11401 actttattaa
11461 aaaacaaaat
11521 tcataacgat
11581 acccttaaaa
11641 actctcataa
11701 ctatattcaa
11761 gaacgattag
11821 aataaaaatc
11881 aaaaaaataa
11941 actgaacgaa
12001 atagtataaa
12061 aaacaattaa
12121 ataggggaaa
12181 aataatttaa
12241 cctttacgaa
12301 cccaacataa
12361 taaaacctat
12421 taattaaagt
12481 aatctaagga
12541 taaaggtcga
12601 tcgaggtcgc
12661 aaggtaactt
12721 aataaaaaaa 12781 tcaaaaaata
12841 gtcccttaaa
12901 aaagttgttt
12961 ctacctttgc
13021 taaaataaaa
13081 cctacaaaaa
13141 tttaaaatct
13201 cgtaatcaaa
13261 tattaaagca
13321 taaaaaactt a

13501 gatacaaaag
13621 atttaaaaa taaataataa aaaaaatca aaatattata
aataatagat ataacaattg caaaagcgta cacaacaata aaaagtaact cgaaaaaaag aatttatcaa gttacaggga attagacata ggagcatcat tcatataaat actgcatttc attaccaatt ggaggatttg ccattcattg aataatccac attaaagatt gaaccttata gcccacatta aacaaattgg ttttcaaata tgaatattag ccttacattt ccattaagaa atgatttgaa taaataatta tatctcctcc actcatacaa ttgcatccca gacaaaaaaa tcagattcac ataaaacata taaaaatcaa aatcttacct gtagaacagg agcaaaaaca cataaaaata gattttaaag aaaattccta ttacgttcaa acattaataa atgcactatt ttggtccttt gccggtctga actgcccctt actctccaaa aataaaggat ccatcacccc aataaaata taaaaattaa cagactccaa attaaaaat taaacaggtg taatcattat caaataataa ccaaaaatta atatcaaaaa aaatcttaag a attaataatt aaaatatatt taatcaaaat
aacgaaataa atcacattaa aacataaaag atggtcctct aattacttag tattattaat gatgatgaaa ttttggatca tttttcttgc tatacactat tttgtcgaga tgtaaatttt tatttttcat ttgtatattt ctattaaaac atgagtcata tagggtatgt cctaccatga tattatcagc aattccttac ctgttgataa tgcaacatta tgttagttat aagaagctta ttggaatttc atcaaatatt taataggatt tactattgct ttttaggaga ccctgataat aaccagaatg atacttctta ggggggtaat tgcattaatc taagaaaatt taaaggaata tgtcaacaac aatattattt gaacaggaat aaatctcaca aaaaattatg ggacaacttt atcataagat agaaaagaaa aagacttaaa ccctaaaaaa agctatata tataagctta ataaaaaaca aacaaaagta aaaaataat tgaatacaga tataagaaaa tccecctcca cttcagcaaa atcaaatgga tagataaagg aaaacaaata ttaatctata tctattaatc cataagaaat agtttgagct aagcccaacc agaaatcata aaataccata aataaatgaa aagaaataaa caatcttaaa gaaccatttg ttctttagta aaaatccaag tttattaggc ccaaagttaa gaatccaact aatatatgta ctgaatatag tctgccaatt cagttaatta cgtactgata tcaaatataa actcagatca tgtaagaatt attctaatct taatccaaca ataattacgc tgttatccct caaataaaca tttatttatg aattaaaaaa tcactacata aagctctata gggtcttatc gttttaataa aaaaatgaag ttaaaagact aattattatg cattgggcag actaaatctt gaaaaaagaa ttgccgaatt taattaaaa aataattaac attataaaaa taaacaatta ttataataaa aaattataaa aattattaaa ataaaatttt aaccagata ccattaaggg atgaaacatt aattaaaata ataattaatt aattaaccct aaaatatcc tatacagtac taaataaaa aaaatacttt tcaaattaa attgaattgc

13681 acaacttatt tattagtgta aataataagc ttaaactata taaagcttta atttgaactt 13741 tcagcttcac ctccggtaaa actactttgt tacgacttat cccaagttat tgggagtgac 13801 gggcgatgtg tgcataatta agagctaaaa tcaaaataac tttactagtt aaaattactg 13861 ttaaatccaa aatctaatag ttaattacaa actataacaa attcaaaat tattgtaacc 13921 catttctact ttaatacaaa ctgcaccttg acctaacatt tttctcaaac agaaaaaaga 13981 aaataatcta atgatacatt caatgacaga gatatacaag taacattaaa gtaaaatcaa 14041 tcgtggatta tcaattatag aacaggttcc tctaaaaaga attaattacc gccaaattct 14101 ttgaatttca agatcatagc taataataat caacctaaaa tatttatatt tcaaaataat 14161 agggtatcta atcctagttt aattaagaat ttctcaaaat aaaaaagaaa taaaaataaa 14221 taaaaatttc acttaattaa tttatttttt aatttctata aaaacaattt ttgaaagata 14281 atatatttga atattaataa a
14341 attatcaatt aacaaaatca ta
14401 ttatattctt ttagaacaat
14461 tcaaatttaa agcaagaatc
14521 ttagccaact aaacctaaat
14581 ctaaattatt gggaatttaa
14641 atttaagttt ac
14701 aaatttagcc
14761 aaacctaaat
14821
14881
14941 actaact
15001 tattgggaat
15061 gtttacataa
15121 agccaactaa
15181 aaattattgg
15241 ttaagtttac
15301 atttaagcca
15361 aaacctaaat
15421 atttataaga
15481 tttcttcttt
15541 tctcacttaa
15601
15661 ttaattattg
15721 ttagataata
15781 ttttcttaaa
15841 aaagttagga
15901 taatggttat
15961 tgattatttt
16021 tatttattat
16081 aataaaagaa
16141 gaattaatta
16201 tataaaataa t
16261 gaataaattt taattcaatc atttaattaa
16321 atat

Appendix B. GenBank Flatfile for Pteronarcys princeps.

CDS	<1444.. 2975
	/gene="cox1"
	/note="start codon not determined; TAA stop codon
	completed by the addition of 3^{\prime} A residues to the mRNA" /codon start $=2$
	/trans $\overline{1}$ _except=(pos:2975, aa:TERM)
	/transl_table=5
	/product="cytochrome c oxidase subunit I"
	/protein_id="AAT76649.1"
	/db_xref="GI:50402841"
	/translation="RQWLFSTNHKDIGTLYFIFGAWSGMVGTSLSLLIRAELGQPGSL
	IGDDQI YNVIVTAHAFVMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNMSFWLL
	PPSLTLLLASSLVENGAGTGWTVYPPLSAGIAHAGASVDLAIFSLHLAGVSSILGAVN
	FITTVINMRSNGMTLDRMPLFVWAVAITALLLLLSLPVLAGAITMLLTDRNLNTSFFD
	PAGGGDPILYQHLFWFFGHPEVYILILPGFGLISHIVSQESGKKEAFGALGMIYAMLS
	IGLLGFVVWAHHMFTVGMDVDTRAYFSSATMIIAVPPGIKIFSWLATLHGTQLNYSPA
	LLWAMGFIFLFTIGGLTGVVLANSSLDIILHDTYYVVAHFHYVLSMGAVFAIMAGFIQ
	WYPLFTGLTMNPHWLKIQFLTMFIGVNMTFFPQHFLGLAGMPRRYSDYPDAYTTWNVV
	SSIGSMISLIGVIMLVFIVWESMAANRIALFPLQMSTSIEWYQNLPPAEHSYAELPML
	TG"
tRNA	2976.3041
	/product="tRNA-Leu"
	/note="codons recognized: UUR"
	/anticodon=(pos:3005..3007, aa:Leu)
gene	3046..3733
	/gene="cox2"
CDS	3046..3733
	/gene="cox2"
	/note="TAA stop codon completed by the addition of 3^{\prime} A residues to the mRNA"
	/codon start=1
	/translı except= (pos:3733, aa:TERM)
	/transl_table=5
	/product="cytochrome c oxidase subunit II"
	/protein_id="AAT76650.1"
	/db_xref="GI:50402842"
	/trānslation="MATWANLGLQDSASPLMEQLTYFHDHALLILIIITVLVSYVMAT
	LFYNSNLDRFLLDGQTIETVWTILPAITLLFIALPSLRLLYLLDEVAYPTLTLKTIGH
	QWYWSYEYSDFLNIEFDS YMTPYNEMGLEGFRLLDVDNRAVLPMNTEIRILVTAADVL
	HSWTVPALGVKVDATPGRLNQTHFTLLRPGLFFGQCSEICGANHS FMPIVIESVPTNI
	FINWVSSLSEA"
tRNA	3734.3804
	/product="tRNA-Lys"
	/anticodon=(pos:3764.3766, aa:Lys)
tRNA	3804..3870
	/product="tRNA-Asp"
	/note="codons recognized: GAY"
	/anticodon=(pos:3832..3834, aa:Asp)
gene	3871.4029
	/gene="atp8"
CDS	3871.4029
	/gene="atp8"
	/codon start=1
	/transl_table=5
	/product="ATP synthase FO subunit 8"
	/protein_id="AAT76651.1"
	/db_xref="GI:50402843"
	/translation="MPQMAPISWLTLFIAFSLILLIFNCMNYYSFLPNTPETRAKSIS
	QTPMNWKW"
gene	4023. . 4700
	/gene="atp6"
CDS	4023..4700
	/gene="atp6"
	/codon_start=1
	/trans $\overline{1}$ table $=5$
	/produc $\bar{t}=$ "ATP synthase FO subunit 6"
	/protein_id="AAT76652.1"
	/db_xref="GI:50402844"
	/translation="MMTNLFSVFDPSTSVLNLSLNWISTILGLTLIPSIYWFMPSRYT
	LIWNKILLTLHNEFKTLLGPTGHAGSTFMFISLFSLILFNNFLGLFPYVFTSSSHLTL
	TLALALPLWLSFMIYGWINHTQHMFAHLVPQGTPAVLMPFMVCIETISNVIRPGTLAV

	RLAANMIAGHLLLTLLGNTGPSLTYSILSLLIVAQIALLVLESAVAIIQSYVFAVLST LYSSEVN"
gene	4700..5488
	/gene="cox3"
CDS	4700. 5488
	/gene="cox3"
	/codon_start=1
	/transl_table=5
	/product="cytochrome c oxidase subunit III"
	/protein_id="AAT76653.1"
	/db_xref="GI:50402845"
	/translation="MSTHANHPYHLVDQSPWPLTGALGALVTVSGLLKWFHHYNSSLL
	ALGLLITTLTMIQWWRDITREGTFQGLHTYPVTLGLRWGMILFIVSEVFFFLSFFWAF
	FHSSLAPTTELGVMWPPVGIIPFNPLQIPLLNTAILLASGVTVTWAHHGLMEGNHSQS
	LQGLFFTVILGIYFTILQAYEYIEAPFAISDAVYGSTFFVATGFHGLHVLIGTTFLLI
	CLIRHASFHFSVNHHFGFEAAAWYWHFVDVVWLFLYISIYWWGS"
tRNA	5488..5553
	/product="tRNA-Gly"
	/note="codons recognized: GGN"
	/anticodon= (pos:5518..5520,aa:Gly)
gene	5554.5907
	/gene="nad3"
CDS	5554. 5907
	/gene="nad3"
	/codon_start=1
	/transl_table=5
	/product="NADH dehydrogenase subunit 3"
	/protein_id="AAT76654.1"
	/db_xref="GI:50402846"
	/translation="MLSISAIATIIITLSIIVMSLASILSKKSIIDREKSSPFECGFD
	PKSSSRLPFSLRFFLIAVIFLIFDVEIALLLPMIIILPSSSLLIWLTVSFFFLAILLI
	GLYHEWNQGALEWAE"
tRNA	5906. 5969
	/product="tRNA-Ala"
	/note="codons recognized: GCN"
	/anticodon=(pos:5935. 5937, aa:Ala)
tRNA	5970.6035
	/product="tRNA-Arg"
	/note="codons recognized: CGN"
	/anticodon=(pos:5999..6001, aa:Arg)
tRNA	6037.6101
	/product="tRNA-Asn"
	/note="codons recognized: AAY"
	/anticodon=(pos:6067. 6069 ,aa:Asn)
tRNA	6104..6170
	/product="tRNA-Ser"
	/note="codons recognized: AGN"
	/anticodon=(pos:6129..6131, aa:Ser)
tRNA	6171. 6237
	/product="tRNA-Glu"
	/note="codons recognized: GAR"
	/anticodon=(pos:6202..6204, aa:Glu)
tRNA	complement (6243..6309)
	/product="tRNA-Phe"
	/note="codons recognized: UUY"
	/anticodon=(pos:complement (6275..6277), aa: Phe)
gene	complement (6309..8044)
	/gene="nad5"
CDS	complement (6309..8044)
	/gene="nad5"
	/note="TAA stop codon completed by the addition of $3^{\prime \prime}$ A residues to the mRNA"
	/codon_start=1
	/transl_except=(pos: complement (6309..6310), aa:TERM)
	/transl_table=5
	/product="NADH dehydrogenase subunit 5"
	/protein_id="AAT76655.1"
	/db_xref="GI:50402847"
	/translation="MLWSLSLCLISFIFLFIISLFLVITGFYFVMQDLVYFIEWEVLS
	MNSGSIVMTFLFDWMSLIFMGFVLFISSLVIYYSQEYMDGDLNINRFIILVLMFVLSM
	MFLIISPNLISILIGWDGLGLVSYLLVIYYQNVKSYNAGMLTALSNRIGDVALLLAIA

	WMLNFGSWNYIYYLECSKSSTEMLIIGSLVMLAAMTKSAQIPFSSWLPAAMAAPTPVS
	ALVHSSTLVTAGVYLLIRFNVLLANSSLGSFLLLFAGLTMFMAGLGANFEFDLKKIIA
	LSTLSQLGLMMSILAMGFPKLAFFHLLTHALFKALLFMCAGAIIHNMKDSQDIRFMGG
	LVVQMPLTSSCFNLSNLALCGMPFLAGFYSKDLILEIVSLSYLNVFSFILYFFSTGLT
	VCYSLRLVYYSMSGDFNVNSLHPLNDEGWTMLKGMMTLSLMAVLGGSLLSWTLFPTPS
	MICLPLSLKTLALSVSVIGGWLGYELAKFSLSYELQTLRFHFMTSFMGSMWFLPFLST
	YGVSYTPLQLGSYVFKSFDQGWSEYCGAQGLYKTFTSWSTINQGWQNNDLKTYLISFM
	LWIIILLVLVAL"
tRNA	complement (8045..8112)
	/product="tRNA-His"
	/note="codons recognized: CAY"
	/anticodon=(pos: complement (8080..8082), aa: His)
gene	complement (8119..9459)
	/gene="nad4"
CDS	complement (8119..9459)
	/gene="nad4"
	/codon_start=1
	/transl_table=5
	/product="NADH dehydrogenase subunit 4"
	/protein_id="AAT76656.1"
	/db_xref="GI:50402848"
	/translation="MLKLLVSLVFLIPLCFMKNMWWTVQSILFLLTFMFMLSNVFSTF
	FGNLSYFMGCDILSYGLILLS FWICVLMMTASESVYRTRNYEGFFLFMIIMLLILLYC
	TFSTMNLFMFYLFFESSLIPTLFLILGWGYQPERLQAGVYLLFYTLLASLPLLVGIFY
	LYSLNSTLYFPLMNKISISHIICYLGLILAFLVKMPMFLVHLWLPKAHVEAPVSGSMI
	LAGVLLKLGGYGLLRIFKILLIAGLSFNFVWVGISLVGGVLVSLICLRQTDLKALIAY
	SSVAHMGIVLGGLMTLSYWGFCGSFTLMIAHGLCSSELFCLANISYERLGSRSLLINK
	GLMNFMPSMTLWWFLLSSCNMAAPPSLNLLSEISLLNSLVGWTWSTMLMLSFLSFFSA
	AYTLYLYSYSQHGKIYSGVYSCCMGYSREYLLLFLHWVPLNLLILKSEPCMLWL"
gene	complement (9453..9749)
	/gene="nad4L"
CDS	complement (9453..9749)
	/gene="nad4L"
	/codon_start=1
	/transl_table=5
	/product="NADH dehydrogenase subunit 4L"
	/protein_id="AAT76657.1"
	/db_xref="GI:50402849"
	/trānslation="MLTSFYWAFPLFLFMCGGWVFTSKRKHLLLTLLSLEFIVLSLFL
	ILFIYLNLLNYELFFSMVFLTFSVCEGALGLSILVSMIRTHGNDYFQSFSVLQC"
tRNA	9752. 9818
	/product="tRNA-Thr"
	/note="codons recognized: ACN"
	/anticodon= (pos:complement (9782, .9784), aa:Thr)
tRNA	complement (9820..9885)
	/product="tRNA-Pro"
	/note="codons recognized: CCN"
	/anticodon= (pos: complement (9853. 9855), aa: Pro)
gene	9887..10411
	/gene="nad6"
CDS	9887..10411
	/gene="nad6"
	/codon_start=1
	/transl table=5
	/product="NADH dehydrogenase subunit 6"
	/protein_id="AAT76658.1"
	/db_xref="GI:50402850"
	/translation="MSHLI IMTASSILSIIFTQMNHPLAMGLMLLLQTLVICLMTGFM
	TQSFWFSYILFLVFLGGLLVLFIYVTSLASNEMFSLSMSTLILTSGPFMFMLMLMMFL
	DPLPWLTSIVSNDMMTISNLMIYQEESITSLMKLYNQPTSLITTMLVVYLFLTLIAVV
	KITSIFYGPLRQKN"
gene	10411..11547
	/gene="cytb"
	/note="synonym: cob"
CDS	10411..11547
	/gene="cytb"
	/codon_start=1
	/transl table=5
	/product="cytochrome b"
	/protein_id="AAT76659.1"
	/db_xref="GI:50402851"

	/translation="MNKPLRTSHPLFKIANNALVDLPAPVNISAWWNFGSLLGLCLVV
	QIATGLFLAMHYTAHIDLALSSVAHICRDVNYGWLLRTLHANGASFFFICLYLHTGRG
	MYYGSYMFMHTWMIGVIILFLVMGTAFMGYVLPWGQMSFWGATVITNLLSAVPYLGID
	MVQWVWGGFAVDNATLTRFFTFHFVLPFIVAAAVLIHLLFLHQTGSNNPLGLNSDVDK
	IPFHPYFTFKDVVGFLVLIMILTLLTLLEPYMLGDPDNFIPANPLVTPVHIQPEWYFL
	FAYAILRSIPNKLGGVIALILSIAILLILPFSNKSNFRGMQFYPINQIMFWFLLVIVI
	LLTWIGARPVEDPYILVGQILTVLYFLYYILNPLMFKLWDNLLK"
tRNA	11546..11615
	/product="tRNA-Ser"
	/note="codons recognized: UCN"
	/anticodon= (pos:11577..11579, aa:Ser)
gene	complement (11637..12587)
	/gene="nad1"
CDS	complement (11637..12587)
	/gene="nad1"
	/codon start=1
	/transl_table=5
	/product="NADH dehydrogenase subunit 1"
	/protein_id="AAT76660.1"
	/db_xref="GI:50402852"
	/translation="MFLYDMILPLVGALILIICVLVGVAFLTLLERKVLGYIQIRKGP
	NKVGFAGI PQPFCDAIKLFTKEQTYPVTSNYLPYYFSPIFSLFLALLVWMIIPYLSGL
	FTFNLGLLFFLSCTSLGVYTVMIAGWSSNSNYALLGGLRGVAQTISYEVSLALILLSF
	VFLIGGYCLMDFLMYQKYLWFVVMTFPLALSWFASCLAETNRTPFDFAEGESELVSGF
	NVEYSSGGFALIFLAEYASILFMSMLFVVI FLGCNI YSWEFFVKLAFISFMFIWVRGT
	LPRFRYDKLMYLAWKSFLPLSLNYLFMFVGLKLLIMSILF"
tRNA	complement (12589..12654)
	/product="tRNA-Leu"
	/note="codons recognized: CuN"
	/anticodon=(pos:complement (12623..12625), aa:Leu)
rRNA	complement (12655..13982)
	/product="large subunit ribosomal RNA"
tRNA	complement (13983..14053)
	/product="tRNA-Val"
	/note="codons recognized: GUN"
	/anticodon=(pos: complement(14018..14020), aa:Val)
rRNA	complement (14054..14846)
	/product="small subunit ribosomal RNA"
misc_feature	14847..16004
	/note="A+T rich region; putative control region"

ORIGIN
1 aatgaagtgc ctgataaaag gattatcgtg ataggataaa ttatgtaaat tatatttacc
ttcattatgt ccaatagact tgaactattt ccgaaagtat caaaaacttt cgtgcaccat acactagaac atataatata aagaaagata agctaataaa gctaatgggt tcatacccca tttatagagg ttttactcct cttctttcta gtgctaaata atccaaccaa attcttattt ttgataacat taataagtgg tactttaatc tctgtttcag ccaattcatg atttggagca tgagtagggt tagaaattaa tcttttatct tttatcccct taataactaa ttctaataat ttattatcta ctgaagcttc tttaaaatac tttttaactc aagccctagc ttctgctaca ctattattta caattattct tgctgctcta atttttagat cccctagatc attattaatt agaaatcctt tcttaattac cttagttaat tcatctttat tattaaaaat gggagctgct cccttccatt tttgattccc aggtgtaata gagggattaa actgaataaa tggtcttata ctaataacct gacaaaaact tgctccatta atattacttt cttataatct aaaaattgac atctttattg ctttagcaat tatcttatca gtaattattg gatctttagg aggcctcaat caaacttcat tacgtaaat tcttgcttat tcctctatta atcatttagg ttgattagta gcagcattaa ccttagggga aaatttatga ggactttatt ttataattta ttcttttta actgctacaa ttattttcat acttcattca tttaaattat tctattttaa tcaaatcttt tcattaaatt ttactccccc tgttattaaa ttttcattat ttataacttt actatccctt ggtggactcc ctccatttat tggatttctt ccaaagtgaa tcattattca atctatagtt gaagctaatc taaccctact aattactatt atagtagtaa taacactaat tactctattt tactatctac gaataggatt tggagccttt atattaactt attctgaatc tttatgaaat tattcctatt tacaaaataa tttcactcac ataactgccc taaccttaac aatatgttca accttagggt tagttatttg tgcaactcta taccacattt tctaaggctt taagttaatt aaactaatag ccttcaaagc tgtaaataaa gtatctatct ttaagcctta gtaagatcac ttacaccttt agaattgcag tctaatatca tcattgacta taaagctatt tactatggta gaagaggggt atacctccta aatagattta caatctatca ccttatatct cagccattct accgcgacaa tgattattct caacaaatca caaggatatt ggaactttat acttcatttt tggagcatga tcaggaatag ttggaacatc cctaagtctt ttaattcgag ctgaattagg acaaccgggt tccttaattg gagatgatca aatttataat gtaattgtta ctgctcacgc ttttgtaatg atttttttta tagtaatacc tattataatt ggaggattcg gaaattgatt agtaccttta atactaggtg ctcccgatat agctttcccc cgaataaata atataagttt ttgattactt cctccttctc taactttact gttagcaagt agactagtgg aaaatggggc
1801 tggtacaggt tgaacagttt accctccact atctgcagga attgctcatg ctggagcatc 1861 tgtcgactta gctattttct cattacattt agctggagtc tcatccatct taggtgctgt 1921 aaattttatt accactgtaa tcaacatacg atctaacgga ataacattag atcgtatgcc 1981 attatttgta tgagctgtag caattacagc tctactttta cttttatctt taccagtttt 2041 agcaggggct atcacaatac ttctaacaga tcgaaatctt aatacatcat tttttgatcc 2101 agccggggga ggtgatccta ttctttatca acatcttttt tgattttttg gtcaccctga 2161 agtatacatt ttaattttac caggatttgg gcttatttca catattgtta gacaagaaag 2221 aggtaaaaag gaagcctttg gagcattagg aataatttat gctatacttt ctattggttt 2281 attaggattt gttgtatgag ctcatcacat atttactgta ggcatagatg ttgatacacg 2341 agcttacttt tcttctgcca ctataattat tgctgtccct cctggaatta aaatttttag 2401 ttgactagct acattacatg gaactcaatt aaactatagc ccagccctct tatgagctat 2461 aggatttatt ttcctattta ctattggagg attaacaggt gtagttctag ctaattcttc 2521 tttagatatc attttacatg atacttatta tgtagtagct cattttcatt atgtgttatc 2581 cataggagca gtatttgcta ttatggctgg atttattcaa tgatacccat tatttacagg 2641 ccttactata aaccctcact gattaaagat ccaattcctt acaatattta ttggagttaa 2701 tataacattc ttccctcaac atttcttagg attagcaggt atgcctcgac gttactctga 2761 ttacccagac gcctatacta catgaaatgt agtttcatca attggttcca taatctcttt 2821 aattggtgta attatattag tttttattgt ttgagaaaga atagccgcta atcgaattgc 2881 tttatttcct ttacaaataa gtacgtcaat tgaatgatac caaaatctgc cccctgcaga 2941 acatagttat gctgaattac ctatactaac tggattctaa tatggcagat aagtgcaatg 3001 gatttaagct ccatatataa aggctattcc ttttgttaga aattaatggc aacatgagca 3061 aatttaggtc ttcaagatag tgcttcccct ttaatagaac aattaacata ttttcatgat 3121 catgcacttt taattttaat tattattaca gttctagtaa gttatgtaat agcaacttta 3181 ttttataatt ctaatcttga tcggttttta ctagatggtc aaactattga aacagtatga 3241 actattctac cagctattac tcttcttttt attgctttac cttctttacg tcttctttat 3301 ttactagatg aagttgctta cccaaccctt actttaaaaa caattggtca tcaatgatac 3361 tgaagttatg aatattccga tttcctaat attgaatttg actcatatat aacaccttat 3421 aacgaaatag gattagaagg tttccgttta ttagatgttg ataatcgagc cgtccttcct 3481 ataaatactg aaattcgtat tcttgttaca gctgcagacg tattacattc ttgaacagta 3541 ccagccctcg gagtaaaggt ggatgctaca ccaggacgac taaatcaaac tcattttact 3601 ctccttcgtc ctggcttatt ctttggtcaa tgttcagaaa tctgtggagc taatcataga 3661 tttataccta ttgtaattga aagtgttcca actaatattt tcattaattg agtctcttcc 3721 ttaagtgaag cttcatcaga tgactgaaag caagtattgg tctcttaaac cattttatag 3781 taatctcgca attacttctg atgaaagaat tagttaaatt aacattagta tgtcatgcta 3841 aattactag tactagccta gtattcttta attccacaaa tagccccaat tagttgatta 3901 actttattta ttgctttttc attaatttta ttaattttta attgtataaa ttattattca 3961 tttttaccca atacacctga aactcgagcc aagtctatta gacaaactcc cataaactga 4021 aaatgataac aaaccttttt tccgtttttg atccttcgac aagcgtatta aatctttcct 4081 taaactgaat tagtacaatt ttaggactaa ctctgattcc ctcaatttac tgatttatgc 4141 catcacgata tactttaatt tgaaataaaa ttttattace acttcataat gaatttaaaa 4201 cattattagg cccaactggt catgcaggaa gaacatttat attcatctct ttattttcat 4261 taattttatt caataatttc ctaggcettt tccettatgt ttttactagt tcaagtcatt 4321 taactttaac cttagcctta gctttacctc tttgattaag atttataatt tacggttgaa 4381 ttaatcacac tcaacatata tttgctcatt tagttcctca aggaactcca gcagttttaa 4441 taccatttat agtatgtatt gaaactatta gaaatgtaat tcgcccagga acacttgctg 4501 tccgattggc tgcaaatata attgctggac acttattact aactttatta ggtaatactg 4561 gcccaagctt acttactca attctatcat tactcattgt agctcagatt gctttattag 4621 tcctagaatc tgctgtggct atcattcaat cttacgtttt tgctgtttta agaactttat 4681 attctagcga agtaaattaa tgtcaacaca cgctaaccat ccttatcatc ttgtagatca 4741 aagaccttga cccttaactg gagctctcgg agctttagtt actgtttcag gacttcttaa 4801 atgattccac cattacaatt catcattatt agccctaggt ttattaatta ctactcttac 4861 tataatccaa tgatgacgtg atatcacacg agaaggaaca ttccaaggac ttcacaccta 4921 tccagtcact ttaggattac gatgaggaat aattttattt attgtatctg aagtattctt 4981 tttcttgtct tttttttgag cattcttcca cagaagtctt gcccctacaa ctgaattagg 5041 tgtaatatga cctccggtag gaattattcc atttaatcct ttacaaattc cacttctaaa 5101 tacagctatc cttttagcet ctggtgttac agtaacatga gctcatcatg gcctaataga 5161 aggtaatcat agtcaaagtc ttcaaggcet attttttaca gtaattttag gtatttactt 5221 tactatttta caagcctatg aatatattga agcccctttt gctatttcag atgctgttta 5281 cggatcaaca ttttttgtag ctacaggctt ccatggatta catgtcctta ttggaacaac 5341 tttccttcta atttgcctaa ttcgacatgc ttccttccat ttttctgtaa atcatcattt 5401 tggatttgaa gcagctgctt gatattgaca ctttgttgat gtagtttgat tatttttata 5461 tatctcaatt tactgatgag gtagctaatt tgtctagtat aataagtata tttgacttcc 5521 aatcaaaagg tctgaatatc ttcaggacaa ataattttat ctatttcagc aattgcaaca 5581 attattatta cactttctat tattgttata tccttagcat caattctttc taaaaatct 5641 attattgatc gagaaaaaag atcccctttt gaatgtggat ttgaccctaa aagatcctca 5701 cgacttccgt tttctttacg attcttctta atcgctgtga ttttcttaat ttttgatgtt 5761 gaaattgctc ttctacttcc aataatcatt atcttaccat catcaagatt attaatttga 5821 ttaacagtaa gatttttctt tttagccatt ctattaattg gcctctatca tgaatgaaac 5881 caaggagctc tagaatgagc cgaataggac tgtagttaag tataacattt ggtttgcatc 5941 caaaaagtat tgagattcaa tctgtcttag aataagaagc gattttttgc actcagtttc 6001 gacctgaatc tagataactc agttatcctt attcttatta attgaagcca aatagaggca
6061 tatcactgtt aatgatataa ttgaataact tattccaatt aaggaaatat gatgttcaag 6121 aaaagctgc taacttttct ctttagcggt taaattccgt ttatatttct atttatatag 6181 tttaattcaa aacattacat tttcactgta aaaataaagg ctttactttt ataaatacaa 6241 tctattcaaa gattacatta atctccctaa catcttcagt gtcatgctct atttataagc 6301 tacttgaata taaagcaacc aagactagca aaataataat tcataatata aaactaatta 6361 aatatgtctt taaatcatta ttttgtcacc cctgattaat agttgatcaa gaagtaaacg 6421 ttttatataa tccttgagct ccacaatact cacttcatcc ttgatcaaaa gatttaaata 6481 cataacttcc taattgtaaa ggagtataac tcaccccata agtcgataaa aaagggagaa 6541 atcatattga acctataaaa cttgttataa aatgaaaccg taaagtttgt aattcataac 6601 tcaaagaaaa ttttgccaac tcataaccta atcatccccc aataactcta acacttaaag 6661 ctaaagtttt taaagataaa ggtaaacaaa tcattctagg tgtaggaaat aaagttcatc 6721 tcaataaact accccctaaa acagctatta aagataaagt tattattccc ttcaatatag 6781 ttcaaccctc atcatttaat ggatgtaaag aatttacatt aaaatcacct cttatagaat 6841 aatacaccaa tcgtaatgaa taacataccg ttaacccagt agaaaaaaaa tataaaataa 6901 agctaaaaac atttaaatat cttaatgaca caatttccaa aattaaatcc tttgagtaaa 6961 atcccgccaa aaaaggtata ccacataaag ccaaattaga caaattaaaa caagaagatg 7021 tcaaaggtat ttgaacgact aaccctccta taaatcgaat atcctgagaa tccttcatat 7081 tatgaataat cgccccagca catataaata ataaagcctt aaataatgca tgagttaata 7141 aatgaaaaaa tgctagcttt gggaaaccta tagctaaaat tctcattatt aatcctaatt 7201 gtcttaatgt agataaagca ataatctttt ttaaatcaaa ttcaaaatta gcccctaagc 7261 cggctataaa tatagtcaat cctgcaaata ataataaaaa agatcctaat gaactattag 7321 ctaataaaac attaaatcga attaataaat agactccagc cgttactaaa gttgaagaat 7381 gaactaaagc agacactggt gttggagctg ctatagcagc tggcaatcat gaagaaaaag 7441 gaatttgagc tctcttagtt attgcagcca atataactaa tctaccaata attaatattt 7501 cagttcttct ttttctacat tccaaataat agatataatt tcaactacca aaatttaata 7561 ttcaagcaat agctaatagt aaagcaacat ctccaatacg attagaaaga gcagttaata 7621 tcccagcatt atatgatttc acattctgat aataaattac taataaatat gatactaatc 7681 ctaaaccatc tcaccctaat aaaattctaa tcaggttagg tctaataatc agaaacatta 7741 ttgataaaac aaacattaat accaaaataa taaaacggtt aatatttaaa tctccatcca 7801 tatattcctg actataataa atcactaatg aagaaataaa taatacaaat cctataaaaa 7861 ttaaagatat tcaatcaaat aaaaaagtca taacaatact ccctgaattt atagataata 7921 cctctcactc aataaaatat accaaatctt gtattacaaa ataaaatcct gtaataacta 7981 aaaataaaga aataataaac aaaaaataa atctaattaa acaaagagac aaggaccata 8041 acacgaccta agatgagact tatcccatat ccttgacacc acaaatcaaa gtttttatta 8101 aactacctaa gtgattattt ataaccataa tatacatggc tctctcttta aaatcaataa 8161 atttaaagga actcaatgta aaaataataa taaatactct cgagaataac ctatacaaca 8221 cgaataaact ccagaataaa tctttccatg ttgtctataa gagtacaaat ataaagtata 8281 cgcagctcta aaaatgata aaaatcttaa catcaatata gttgatcaag tccaaccaac 8341 taaactattt aataaactaa tttctcttaa taaatttaaa gaaggaggtg ccgctatatt 8401 acatgaactt aataaaaatc atcataatgt catacttggc ataaaattca ttaatccctt 8461 attgattaac aaacttcgtc ttcctaaacg ttcataagaa atatttgcta aacaaaataa 8521 ttccgaagaa caaagaccat gagcaatcat taacgtaaaa gatccacaaa atcctcaata 8581 acttaaagtt attagacctc ctagaacaat ccccatatga gctacagaag aataagcaat 8641 taaagcctta agatcagtct gacgtaaaca aattaacta actaatactc cacctactaa 8701 tctaataccc actcatacaa aattaaatga taaaccagca attaataaaa ttttaaaaat 8761 acgcaataat ccatatcccc caagctttaa taacacacca gccaaaatta tcgacccaga 8821 gacaggagct tcaacatgag ccttaggaag tcacaaatga actaaaaata ttggtatttt 8881 tactaaaaat gctaaaatta atcctaaata acaaataata tgagaaattc taatcttatt 8941 tattaaagga aaatataaag ttctattcaa tgaatataaa taaaaaatac ctactaataa 9001 aggtaaagaa gctaataagg tataaaaaag taaatacacc cctgcttgca accgttcagg 9061 ctgataccct caccccaaaa ttaaaaataa cgtcggaatc aagctgcttt caaagaacaa 9121 ataaaatata aataaattta ttgtactaaa tgtacaataa agtaaaatta ataatataat 9181 aattataaat aaaaaaatc cctcataatt acgagtacga taaactgatt ctctagcagt 9241 tattattaaa acacaaattc aaaaacttaa taaattaga ccataagaaa gaatatcaca 9301 tcctataaaa taacttaaat taccaaaaaa agttctaaat acattactta atataaatat 9361 aaaagttaat agaaacaaaa ttgactgaac cgttcatcac atatttttca taaaacataa 9421 ggggatcaaa aaaactaaag aaactaataa ttttaacatt gcaaaactct aaaagactga 9481 aaataatcat ttccatgagt tcgaattatc gaaaccaaaa ttgataatcc caaagctcct 9541 tcacaaactg aaaaagttaa aaatactatt ctaaaaaata attcataatt taataaattt 9601 aaataaataa ataaaattaa aaataatctt aaaacaataa attctagact taataaagtt 9661 aacaataaat gcttccgctt tgaagtaaat actcaacccc cgcacataaa taaaaataaa 9721 ggaaatgctc aataaaaaga tgttaacatt agttttaata gtttaaagaa aacattggtc 9781 ttgtaaatca aaaattaagg cctggacctt ttagaacttt cagagaaaag agaaaccccc 9841 tatcattaat ccccaaaact aatattttaa ataactatt ctctgcattt cccatttaat 9901 cattataact gctagatcaa ttttaagaat tatcttcact caaataaatc atccgttagc 9961 tataggtctt atattattac tccaaacact agtaatttgt ctaataacag gattcataac 10021 tcaaagattt tgattttctt acatcttatt tttagtcttc ctcggagggc tattagtttt 10081 atttatttat gtaacaagac tagcctcaaa tgaaatattt tctttatcaa tatcaaccct 10141 tattttaact tcaggcccct ttatatttat attaatacta ataatatttt tagacccctt 10201 accttgatta acaagtatcg taagaaatga tataataaca atttcaaatt taataattta
10261 tcaagaagaa tcaattacct ctttaataaa actctataat caacccacta gacttattac

References

Adams, K.L. and Palmer, J.D. (2003). Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29, 3: 380-95.

Adrain, C. and Martin, S.J. (2001). The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci 26, 6: 390-7.

Allen, J.F. (1993). Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol 165, 4: 609-31.

Allen, J.F. (2003). The function of genomes in bioenergetic organelles. Philos Trans R Soc Lond B Biol Sci 358, 1429: 19-37; discussion 37-8.

Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijn, M.H., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., Smith, A.J., Staden, R. and Young, I.G. (1981). Sequence and organization of the human mitochondrial genome. Nature 290, 5806: 457-65.

Andersson, G.E. and Kurland, C.G. (1991). An extreme codon preference strategy: codon reassignment. Mol Biol Evol 8, 4: 530-44.

Andersson, S.G., Zomorodipour, A., Andersson, J.O., Sicheritz-Ponten, T., Alsmark, U.C., Podowski, R.M., Naslund, A.K., Eriksson, A.S., Winkler, H.H. and Kurland, C.G. (1998). The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 6707: 133-40.

Arndt, A. and Smith, M.J. (1998). Mitochondrial gene rearrangement in the sea cucumber genus Cucumaria. Mol Biol Evol 15, 8: 1009-16.

Bae, J., Kim, I., Sohn, H. and Jin, B. (2004). The mitochondrial genome of the firefly, Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Mol Phylogenet Evol 32, 3: 978-985.

Ballard, J.W. (2000a). Comparative genomics of mitochondrial DNA in Drosophila simulans. J Mol Evol 51, 1: 64-75.

Ballard, J.W. (2000b). Comparative genomics of mitochondrial DNA in members of the Drosophila melanogaster subgroup. J Mol Evol 51, 1: 48-63.

Barrientos, A., Zambrano, A. and Tzagoloff, A. (2004). Mss51p and Cox 14 p jointly regulate mitochondrial Coxlp expression in Saccharomyces cerevisiae. Embo J 23: 3472-82.

Baumann, R.W., Arden, R.G. and Surdick, R.F. (1977). The Stoneflies (Plecoptera) of the Rocky Mountains. Memoirs of the American Entomological Society 31, 1-228.

Beagley, C.T., Okimoto, R. and Wolstenholme, D.R. (1998). The mitochondrial genome of the sea anemone Metridium senile (Cnidaria): introns, a paucity of tRNA genes, and a near-standard genetic code. Genetics 148, 3: 1091-108.

Beard, C.D., Hamm, D.M. and Collins, F.H. (1993). The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organisation, and comparisons with the mitochondrial squences of other insects. Insect Molec Biol 2, 2: 103-124.

Beckenbach, A.T., Robson, S.K. and Crozier, R.H. (2005). Single nucleotide +1 frameshifts in an apparently functional mitochondrial cytochrome b gene in ants of the genus Polyrhachis. J Mol Evol 60, 2: 141-52.

Benkel, B.F., Duschesnay, P., Boer, P.H., Genest, Y. and Hickey, D.A. (1988). Mitochondrial large ribosomal RNA: an abundant polyadenylated sequence in Drosophila. Nucleic Acids Res 16, 20: 9880.

Bensasson, D., Feldman, M.W. and Petrov, D.A. (2003). Rates of DNA duplication and mitochondrial DNA insertion in the human genome. J Mol Evol 57, 3: 343-54.

Bensasson, D., Zhang, D., Hartl, D.L. and Hewitt, G.M. (2001). Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends Ecol Evol 16, 6: 314-321.

Bensasson, D., Zhang, D.X. and Hewitt, G.M. (2000). Frequent assimilation of mitochondrial DNA by grasshopper nuclear genomes. Mol Biol Evol 17, 3: 40615.

Berthier, F., Renaud, M., Alziari, S. and Durand, R. (1986). RNA mapping on Drosophila mitochondrial DNA: precursors and template strands. Nucleic Acids Res 14, 11: 4519-33.

Binder, S. and Brennicke, A. (2003). Gene expression in plant mitochondria: transcriptional and post-transcriptional control. Philos Trans R Soc Lond B Biol Sci 358, 1429: 181-8; discussion 188-9.

Blumenthal, T. (1998). Gene clusters and polycistronic transcription in eukaryotes. Bioessays 20, 6: 480-7.

Blumenthal, T. (2004). Operons in eukaryotes. Brief Funct Genomic Proteomic 3, 3: 199211.

Boer, P.H. and Gray, M.W. (1988). Scrambled ribosomal RNA gene pieces in Chlamydomonas reinhardtii mitochondrial DNA. Cell 55, 3: 399-411.

Bogenhagen, D.F. and Clayton, D.A. (2003). The mitochondrial DNA replication bubble has not burst. Trends Biochem Sci 28, 7: 357-60.

Boore, J.L. (1999). Animal mitochondrial genomes. Nucleic Acids Res 27, 8: 1767-80.
Borner, G.V., Morl, M., Janke, A. and Paabo, S. (1996). RNA editing changes the identity of a mitochondrial tRNA in marsupials. Embo J 15, 21: 5949-57.

Boudreaux, H.B. (1979). "Arthropod phylogeny with special reference to insects" WileyInterscience, New York.

Bowmaker, M., Yang, M.Y., Yasukawa, T., Reyes, A., Jacobs, H.T., Huberman, J.A. and Holt, I.J. (2003). Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone. J Biol Chem 278, 51: 50961-9.

Boxma, B., de Graaf, R.M., van der Staay, G.W., van Alen, T.A., Ricard, G., Gabaldon, T., van Hoek, A.H., Moon-van der Staay, S.Y., Koopman, W.J., van Hellemond, J.J., Tielens, A.G., Friedrich, T., Veenhuis, M., Huynen, M.A. and Hackstein, J.H. (2005). An anaerobic mitochondrion that produces hydrogen. Nature 434, 7029: 74-9.

Boyce, T.M., Zwick, M.E. and Aquadro, C.F. (1989). Mitochondrial DNA in the bark weevils: size, structure and heteroplasmy. Genetics 123, 4: 825-36.

Bridge, D., Cunningham, C.W., Schierwater, B., DeSalle, R. and Buss, L.W. (1992). Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proc Natl Acad Sci US A 89, 18: 8750-3.

Bullerwell, C.E. and Gray, M.W. (2004). Evolution of the mitochondrial genome: protist connections to animals, fungi and plants. Curr Opin Microbiol 7, 5: 528-34.

Burger, G., Forget, L., Zhu, Y., Gray, M.W. and Lang, B.F. (2003a). Unique mitochondrial genome architecture in unicellular relatives of animals. Proc Natl Acad Sci U S A 100, 3: 892-7.

Burger, G., Gray, M.W. and Franz Lang, B. (2003b). Mitochondrial genomes: anything goes. Trends in Genetics 19, 12 SU: 709-716.

Cameron, S.L., Miller, K.B., D'Haese, C.A., Whiting, M.F. and Barker, S.C. (2004). Mitochondrial genome data alone are not enough to unambiguously resolve the relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda). Cladistics 20, 6: 534-557.

Carmean, D. and Crespi, B.J. (1995). Do long branches attract flies? Nature 373, 6516: 666.

Carver, M., Gross, G.F. and Woodward, T.E. (1991). "Hemiptera (Bugs, leafhoppers, cicadas, aphids, scale insects etc.)". Pp. 429-509 in Organisation, C. S. I. R., ed The Insects of Australia, a textbook for Students and Research Workers. Melbourne University press, Victoria.

Castro, L.R. and Dowton, M. (2005). The position of the Hymenoptera within the Holometabola as inferred from the mitochondrial genome of Perga condei (Hymenoptera: Symphyta: Pergidae). Molecular Phylogenetics and Evolution 34, 3: 469-479.

Caterino, M.S. and Sperling, F.A.H. (1999). Papilio Phylogeny Based on Mitochondrial Cytochrome Oxidase I and II Genes. Molecular Phylogenetics and Evolution 11, 1: 122-137.

Chrzanowska-Lightowlers, Z.M., Preiss, T. and Lightowlers, R.N. (1994). Inhibition of mitochondrial protein synthesis promotes increased stability of nuclear-encoded respiratory gene transcripts. J Biol Chem 269, 44: 27322-8.

Chrzanowska-Lightowlers, Z.M., Temperley, R.J., Smith, P.M., Seneca, S.H. and Lightowlers, R.N. (2004). Functional polypeptides can be synthesized from human mitochondrial transcripts lacking termination codons. Biochem J 377, Pt 3: 725-31.

Claros, M.G., Perea, J., Shu, Y., Samatey, F.A., Popot, J.L. and Jacq, C. (1995). Limitations to in vivo import of hydrophobic proteins into yeast mitochondria. The case of a cytoplasmically synthesized apocytochrome b. Eur J Biochem 228, 3: 762-71.

Claros, M.G. and Vincens, P. (1996). Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241, 3: 779-86.

Clary, D.O., Goddard, J.M., Martin, S.C., Fauron, C.M. and Wolstenholme, D.R. (1982). Drosophila mitochondrial DNA: a novel gene order. Nucleic Acids Res 10, 21 : 6619-37.

Clary, D.O., Wahleithner, J.A. and Wolstenholme, D.R. (1983). Transfer RNA genes in Drosophila mitochondrial DNA: related 5^{\prime} flanking sequences and comparisons to mammalian mitochondrial tRNA genes. Nucleic Acids Res 11, 8: 2411-25.

Clary, D.O., Wahleithner, J.A. and Wolstenholme, D.R. (1984). Sequence and arrangement of the genes for cytochrome b, URF1, URF4L, URF4, URF5, URF6 and five tRNAs in Drosophila mitochondrial DNA. Nucleic Acids Res 12, 9: 3747-62.

Clary, D.O. and Wolstenholme, D.R. (1983a). Genes for cytochrome c oxidase subunit I, URF2, and three tRNAs in Drosophila mitochondrial DNA. Nucleic Acids Res 11, 19: 6859-6872.

Clary, D.O. and Wolstenholme, D.R. (1983b). Nucleotide sequence of a segment of Drosophila mitochondrial DNA that contains the genes for cytochrome c oxidase subunits II and III and ATPase subunit 6. Nucleic Acids Res 11, 12: 4211-27.

Clary, D.O. and Wolstenholme, D.R. (1985a). The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22, 3: 252-71.

Clary, D.O. and Wolstenholme, D.R. (1985b). The ribosomal RNA genes of Drosophila mitochondrial DNA. Nucleic Acids Res 13, 11: 4029-45.

Clayton, D.A. (2000). Transcription and replication of mitochondrial DNA. Hum Reprod 15 Suppl 2, 11-7.

Clayton, D.A. (2003). Mitochondrial DNA replication: what we know. IUBMB Life 55, 4-5: 213-7.

Coates, B.S., Sumerford, D.V., Hellmich, R.L. and Lewis, L.C. (2005). Partial mitochondrial genome sequences of Ostrinia nubilalis and Ostrinia furnicalis. Int. J. Biol. Sci. 1, 1: 13-18.

Conway, D.J., Fanello, C., Lloyd, J.M., Al-Joubori, B.M., Baloch, A.H., Somanath, S.D., Roper, C., Oduola, A.M., Mulder, B., Povoa, M.M., Singh, B. and Thomas, A.W. (2000). Origin of Plasmodium falciparum malaria is traced by mitochondrial DNA. Mol Biochem Parasitol 111, 1: 163-71.

Cornuet, J.M., Garnery, L. and Solignac, M. (1991). Putative origin and function of the intergenic region between COI and COII of Apis mellifera L. mitochondrial DNA. Genetics 128, 2: 393-403.

Couttet, P., Fromont-Racine, M., Steel, D., Pictet, R. and Grange, T. (1997). Messenger RNA deadenylylation precedes decapping in mammalian cells. Proc Natl Acad Sci US A 94, 11: 5628-33.

Crease, T.J. (1999). The complete sequence of the mitochondrial genome of Daphnia pulex (Cladocera: Crustacea). Gene 233, 1-2: 89-99.

Crease, T.J. and Little, T.J. (1997). Partial sequence of the mitochondrial genome of the crustacean Daphnia pulex. Curr Genet 31, 1: 48-54.

Crews, S., Ojala, D., Posakony, J., Nishiguchi, J. and Attardi, G. (1979). Nucleotide sequence of a region of human mitochondrial DNA containing the precisely identified origin of replication. Nature 277, 5693: 192-8.

Crozier, R.H. and Crozier, Y.C. (1993). The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics 133, 97-117.

Curole, J.P. and Kocher, T.D. (1999). Mitogenomics: digging deeper with complete mitochondrial genomes. Trends in Ecology and Evolution 14, 10: 394-398.
de Bruijn, M.H.L. (1983). Drosophila melanogaster mitochondrial DNA: a novel organisation and genetic code. Nature 304, 234-241.
de Grey, A.D. (2005). Forces maintaining organellar genomes: is any as strong as genetic code disparity or hydrophobicity? Bioessays 27, 4: 436-46.

Delsuc, F., Phillips, M.J. and Penny, D. (2003). Comment on "Hexapod origins: monophyletic or paraphyletic?" Science 301, 5639: 1482; author reply 1482.

Desjardins, P. and Morais, R. (1990). Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol 212, 4: 599-634.

Doersen, C.J., Guerrier-Takada, C., Altman, S. and Attardi, G. (1985). Characterization of an RNase P activity from HeLa cell mitochondria. Comparison with the cytosol RNase P activity. J Biol Chem 260, 10: 5942-9.

Dotson, E.M. and Beard, C.B. (2001). Sequence and organization of the mitochondrial genome of the Chagas disease vector, Triatoma dimidiata. Insect Mol Biol 10, 3: 205-15.

Dowton, M. and Austin, A.D. (1999). Evolutionary dynamics of a mitochondrial rearrangement "hot spot" in the Hymenoptera. Mol Biol Evol 16, 2: 298-309.

Dowton, M., Castro, L.R., Campbell, S.L., Bargon, S.D. and Austin, A.D. (2003). Frequent mitochondrial gene rearrangements at the hymenopteran nad3-nad5 junction. J Mol Evol 56, 5: 517-26.

DSMZ. (Retrieved March 05, 2005).Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH - Human and Animal Cell Lines - SCHNEIDER-2. http://www.dsmz.de/mutz/mutz130.htm.

Dyall, S.D., Brown, M.T. and Johnson, P.J. (2004a). Ancient invasions: from endosymbionts to organelles. Science 304, 5668: 253-7.

Dyall, S.D., Yan, W., Delgadillo-Correa, M.G., Lunceford, A., Loo, J.A., Clarke, C.F. and Johnson, P.J. (2004b). Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431, 7012: 1103-7.

Edqvist, J., Burger, G. and Gray, M.W. (2000). Expression of mitochondrial proteincoding genes in Tetrahymena pyriformis. J Mol Biol 297, 2: 381-93.

Ernster, L. and Schatz, G. (1981). Mitochondria: a historical review. J Cell Biol 91, 3 Pt 2: 227s-255s.

Falkenberg, M., Gaspari, M., Rantanen, A., Trifunovic, A., Larsson, N.G. and Gustafsson, C.M. (2002). Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet 31, 3: 289-94.

Farr, C.L., Wang, Y. and Kaguni, L.S. (1999). Functional interactions of mitochondrial DNA polymerase and single-stranded DNA-binding protein. Template-primer DNA binding and initiation and elongation of DNA strand synthesis. J Biol Chem 274, 21: 14779-85.

Farre, J.C. and Araya, A. (2001). Gene expression in isolated plant mitochondria: high fidelity of transcription, splicing and editing of a transgene product in electroporated organelles. Nucleic Acids Res 29, 12: 2484-91.

Fernandez-Silva, P., Enriquez, J.A. and Montoya, J. (2003). Replication and transcription of mammalian mitochondrial DNA. Exp Physiol 88, 1: 41-56.

Fernandez-Silva, P., Martinez-Azorin, F., Micol, V. and Attardi, G. (1997). The human mitochondrial transcription termination factor (mTERF) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions. Embo J 16, 5: 1066-79.

Fish, J., Raule, N. and Attardi, G. (2004). Discovery of a Major D-Loop Replication Origin Reveals Two Modes of Human mtDNA Synthesis. Science 306, 5704 : 2098-2101.

Flook, P.K., Rowell, C.H. and Gellissen, G. (1995). The sequence, organization, and evolution of the Locusta migratoria mitochondrial genome. J Mol Evol 41, 6: 928-41.

Foster, P.G. and Hickey, D.A. (1999). Compositional bias may affect both DNA and protein-based phylogenetic reconstruction. J Mol Evol 48, 284-290.

Foster, P.G., Jermiin, L.S. and Hickey, D.S. (1997). Nucleotide composition bias affects amino acid content in proteins coded by animal mitochondria. J Mol Evol 44, 282-288.

Foury, F. and Kucej, M. (2002). Yeast mitochondrial biogenesis: a model system for humans? Curr Opin Chem Biol 6, 1: 106-11.

Francino, M.P. and Ochman, H. (1997). Strand asymmetries in DNA evolution. Trends Genet 13, 6: 240-5.

Friedrich, M. and Muqim, N. (2003). Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetle Tribolium castanaeum. Mol Phylogenet Evol 26, 3: 502-12.

Frohman, M.A., Dush, M.K. and Martin, G.R. (1988). Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U SA 85, 23: 8998-9002.

Fuller, K.M. and Zouros, E. (1993). Dispersed discrete length polymorphism of mitochondrial DNA in the scallop Placopecten magellanicus (Gmelin). Curr Genet 23, 4: 365-9.

Gagliardi, D., Stepien, P.P., Temperley, R.J., Lightowlers, R.N. and ChrzanowskaLightowlers, Z.M. (2004). Messenger RNA stability in mitochondria: different means to an end. Trends Genet 20, 6: 260-7.

Garesse, R. (1988). Drosophila melanogaster mitochondrial DNA: gene organization and evolutionary considerations. Genetics 118, 4: 649-63.

Garstka, H.L., Facke, M., Escribano, J.R. and Wiesner, R.J. (1994). Stoichiometry of mitochondrial transcripts and regulation of gene expression by mitochondrial transcription factor A. Biochem Biophys Res Commun 200, 1: 619-26.

Gaspari, M., Falkenberg, M., Larsson, N.G. and Gustafsson, C.M. (2004a). The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells. Embo $J 23,23: 4606-14$.

Gaspari, M., Larsson, N.G. and Gustafsson, C.M. (2004b). The transcription machinery in mammalian mitochondria. Biochim Biophys Acta 1659, 2-3: 148-52.

Gillespie, D.E., Salazar, N.A., Rehkopf, D.H. and Feagin, J.E. (1999). The fragmented mitochondrial ribosomal RNAs of Plasmodium falciparum have short A tails. Nucleic Acids Res 27, 11: 2416-22.

Goddard, J.M. and Wolstenholme, D.R. (1978). Origin and direction of replication in mitochondrial DNA molecules from Drosophila melanogaster. Proc Natl Acad Sci USA 75, 8: 3886-90.

Goddard, J.M. and Wolstenholme, D.R. (1980). Origin and direction of replication in mitochondrial DNA molecules from the genus Drosophila. Nucleic Acids Res 8, 4: 741-57.

Goldenthal, M. and Nishiura, J.T. (1987). Isolation and characterization of a mitochondrial RNA polymerase from Drosophila melanogaster. Biochem Cell Biol 65, 2: 173-82.

Goto, A., Matsushima, Y., Kadowaki, T. and Kitagawa, Y. (2001). Drosophila mitochondrial transcription factor A (d-TFAM) is dispensable for the transcription of mitochondrial DNA in Kc167 cells. Biochem J 354, Pt 2: 243-8.

Gray, M.W. (1992). The endosymbiont hypothesis revisited. Int Rev Cytol 141, 233-357.

Gray, M.W. (2003). Diversity and evolution of mitochondrial RNA editing systems. IUBMB Life 55, 4-5: 227-33.

Gray, M.W. (2005). Evolutionary biology: the hydrogenosome's murky past. Nature 434, 7029: 29-31.

Gray, M.W., Burger, G. and Lang, B.F. (1999). Mitochondrial Evolution. Science 283, 1476-1481.

Gray, M.W. and Doolittle, W.F. (1982). Has the endosymbiont hypothesis been proven? Microbiol Rev 46, 1: 1-42.

Gray, M.W., Lang, B.F. and Burger, G. (2004). Mitochondria of Protists. Annu Rev Genet.

Grohmann, K., Amairic, F., Crews, S. and Attardi, G. (1978). Failure to detect "cap" structures in mitochondrial DNA-coded poly(A)-containing RNA from HeLa cells. Nucleic Acids Res 5, 3: 637-51.

Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41, 95-98.

Hamilton, K.G.A. (1982). "The Insects and Arachnids of Canada Part 10. The Spittlebugs of Canada. Homoptera: Cercopidae." The Insects and Arachnids of Canada, Biosystematics Research Institute, Ottawa, ON.

Hanada, T., Suzuki, T. and Watanabe, K. (2000). Translation activity of mitochondrial tRNA with unusual secondary structure. Nucleic Acids Symp Ser 44: 249-50.

Hanada, T., Suzuki, T., Yokogawa, T., Takemoto-Hori, C., Sprinzl, M. and Watanabe, K. (2001). Translation ability of mitochondrial tRNAsSer with unusual secondary structures in an in vitro translation system of bovine mitochondria. Genes Cells 6, 12: 1019-30.

Harlid, A., Janke, A. and Arnason, U. (1997). The mtDNA sequence of the ostrich and the divergence between paleognathous and neognathous birds. Mol Biol Evol 14, 7: 754-61.

Helfenbein, K.G., Fourcade, H.M., Vanjani, R.G. and Boore, J.L. (2004). The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protostomes. Proc Natl Acad Sci U S A 101, 29: 10639-43.

Hendy, M.D. and Penny, D. (1989). A framework for the quantitive study of evolutionary trees. Syst Zoo 38, 297-309.

Hennig, W. (1981). "Insect phylogeny" Wiley-Interscience, New York.

Hoffmann, R.J., Boore, J.L. and Brown, W.M. (1992). A novel mitochondrial genome organization for the blue mussel, Mytilus edulis. Genetics 131, 2: 397-412.

Holt, I.J. and Jacobs, H.T. (2003). Response: The mitochondrial DNA replication bubble has not burst. Trends Biochem Sci 28, 7: 355-6.

Hrdy, I., Hirt, R.P., Dolezal, P., Bardonova, L., Foster, P.G., Tachezy, J. and Embley, T.M. (2004). Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432, 7017: 618-22.

Huelsenbeck, J.P. (1997). Is the Felsenstein zone a fly trap? Syst Biol 46, 1: 69-74.
Huelsenbeck, J.P. (1998). Systematic bias in phylogenetic analysis: is the Strepsiptera problem solved? Syst Biol 47, 3: 519-37.

Hwang, U.W., Friedrich, M., Tautz, D., Park, C.J. and Kim, W. (2001). Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413, 6852: 154-7.

Hwang, U.W., Kim, W. and Tautz, D. (1998). Molecular phylogenetics at the Felsenstein Zone: approaching the Strepsiptera problem using 5.8 S abd 28 S rDNA sequences. Mol Phylogenet Evol 9, 3: 470-480.

Inoue, J.G., Miya, M., Tsukamoto, K. and Nishida, M. (2001). A mitogenomic perspective on the basal teleostean phylogeny: resolving higher-level relatioships with longer DNA sequences. Mol Phylogenet Evol 20, 275-285.

Jacobs, H.T. (1991). Structural similarities between a mitochondrially encoded polypeptide and a family of prokaryotic respiratory toxins involved in plasmid maintenance suggest a novel mechanism for the evolutionary maintenance of mitochondrial DNA. J Mol Evol 32, 4: 333-9.

Jacobs, H.T., Herbert, E.R. and Rankine, J. (1989). Sea urchin egg mitochondrial DNA contains a short displacement loop (D-loop) in the replication origin region. Nucleic Acids Res 17, 22: 8949-65.

Jager, E. and Bass, R. (1975). Chloramphenicol/thiamphenicol and cycloheximide as tools for the measurement of mitochondrial protein synthesis in vitro during organogenesis of rat embryos. Naunyn Schmiedebergs Arch Pharmacol 290, 2-3: 161-73.

Janke, A., Feldmaier-Fuchs, G., Thomas, W.K., von Haeseler, A. and Paabo, S. (1994). The marsupial mitochondrial genome and the evolution of placental mammals. Genetics 137, 1: 243-56.

Janke, A. and Paabo, S. (1993). Editing of a tRNA anticodon in marsupial mitochondria changes its codon recognition. Nucleic Acids Res 21, 7: 1523-5.

Johnston, S.A., Anziano, P.Q., Shark, K., Sanford, J.C. and Butow, R.A. (1988). Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240, 4858: 1538-41.

Junqueira, A.C., Lessinger, A.C., Torres, T.T., da Silva, F.R., Vettore, A.L., Arruda, P. and Azeredo Espin, A.M. (2004). The mitochondrial genome of the blowfly Chrysomya chloropyga (Diptera: Calliphoridae). Gene 339, 7-15.

Kaguni, L.S. (2004). DNA polymerase gamma, the mitochondrial replicase. Annu Rev Biochem, 73: 293-320.

Kim, I., Young Cha, S., Hee Yoon, M., Sam Hwang, J., Mong Lee, S., Dae Sohn, H. and Rae Jin, B. (2005). The complete nucleotide sequence and gene organization of the mitochondrial genome of the oriental mole cricket, Gryllotalpa orientalis (Orthoptera: Gryllotalpidae). Gene 32, 2: 155.

Klass, K.D., Zompro, O., Kristensen, N.P. and Adis, J. (2002). Mantophasmatodea: a new insect order with extant members in the Afrotropics. Science 296, 5572: 1456-9.

Knoop, V. (2004). The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 46, 3: 123-39.

Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Paabo, S., Villablanca, F.X. and Wilson, A.C. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86, 16: 6196-200.

Korhonen, J.A., Pham, X.H., Pellegrini, M. and Falkenberg, M. (2004). Reconstitution of a minimal mtDNA replisome in vitro. Embo J 23, 12: 2423-9.

Koulintchenko, M., Konstantinov, Y. and Dietrich, A. (2003). Plant mitochondria actively import DNA via the permeability transition pore complex. Embo $J 22,6$: 1245-1254.

Kristensen, N.P. (1991). "Phylogeny of Extant Hexapods." Pp. 125-142 in Organisation, C. S. I. R., ed The Insects of Australia, a textbook for Students and Research Workers. Melbourne University Press, Victoria.

Kruse, B., Narasimhan, N. and Attardi, G. (1989). Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination. Cell 58, 2: 391-7.

Kuhn, J. and Binder, S. (2002). RT-PCR analysis of 5^{\prime} to 3^{\prime}-end-ligated mRNAs identifies the extremities of cox2 transcripts in pea mitochondria. Nucleic Acids Res 30, 2: 439-46.

Kumar, S., Tamura, K., Jakobsen, I.B. and Nei, M. (2001). MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 12: 1244-5.

La Roche, J., Snyder, M., Cook, D.I., Fuller, K. and Zouros, E. (1990). Molecular characterization of a repeat element causing large-scale size variation in the mitochondrial DNA of the sea scallop Placopecten magellanicus. Mol Biol Evol 7, 1: 45-64.

L'Abbe, D., Duhaime, J.F., Lang, B.F. and Morais, R. (1991). The transcription of DNA in chicken mitochondria initiates from one major bidirectional promoter. J Biol Chem 266, 17: 10844-50.

Lang, B.F., Burger, G., O'Kelly, C.J., Cedergren, R., Golding, G.B., Lemieux, C., Sankoff, D., Turmel, M. and Gray, M.W. (1997). An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387, 6632: 493-7.

Lavrov, D.V., Brown, W.M. and Boore, J.L. (2000). A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proc Natl Acad Sci USA 97, 25: 13738-13742.

Lavrov, D.V., Forget, L., Kelly, M. and Lang, B.F. (2005). Mitochondrial Genomes of Two Demosponges Provide Insights into an Early Stage of Animal Evolution. Mol Biol Evol 22, 5: 1231-1239.

Lavrov, D.V. and Lang, B.F. (2005). Transfer RNA gene recruitment in mitochondrial DNA. Trends Genet 21, 3: 129-33.

Le, T.H., Blair, D., Agatsuma, T., Humair, P.F., Campbell, N.J., Iwagami, M., Littlewood, D.T., Peacock, B., Johnston, D.A., Bartley, J., Rollinson, D., Herniou, E.A., Zarlenga, D.S. and McManus, D.P. (2000). Phylogenies inferred from mitochondrial gene orders-a cautionary tale from the parasitic flatworms. Mol Biol Evol 17, 7: 1123-5.

Leblanc, C., Richard, O., Kloareg, B., Viehmann, S., Zetsche, K. and Boyen, C. (1997). Origin and evolution of mitochondria: what have we learnt from red algae? Curr Genet 31, 3: 193-207.

Lefai, E., Calleja, M., Ruiz de Mena, I., Lagina, A.T., 3rd, Kaguni, L.S. and Garesse, R. (2000). Overexpression of the catalytic subunit of DNA polymerase gamma results in depletion of mitochondrial DNA in Drosophila melanogaster. Mol Gen Genet 264, 1-2: 37-46.

Lessinger, A.C., Junqueira, A.C., Conte, F.F. and Azeredo-Espin, A.M. (2004). Analysis of a conserved duplicated tRNA gene in the mitochondrial genome of blowflies. Gene 339, 1-6.

Lessinger, A.C., Junqueira, T.A., Lemos, T.A., Kemper, E.L., da Silva, F.R., Vettore, A.L., Arruda, P. and Azeredo-Espin, A.M.L. (2000). The mitochondrial genome
of the primary screwworm fly Cochliomyia hominivorax (Dipter: Calliphoridae). Insect Molec Biol 9, 5: 521-529.

Lewis, D.L., Farr, C.L., Farquhar, A.L. and Kaguni, L.S. (1994). Sequence, organization, and evolution of the A+T region of Drosophila melanogaster mitochondrial DNA. Mol Biol Evol 11, 3: 523-38.

Lewis, D.L., Farr, C.L. and Kaguni, L.S. (1995). Drosophila melanogaster mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons. Insect Mol Biol 4, 4: 263-278.

Lin, S., Zhang, H., Spencer, D.F., Norman, J.E. and Gray, M.W. (2002). Widespread and extensive editing of mitochondrial mRNAS in dinoflagellates. J Mol Biol 320, 4: 727-39.

Lowe, T.D. and Eddy, S.R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25, 955-964.

Lunt, D.H., Zhang, D.X., Szymura, J.M. and Hewitt, G.M. (1996). The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Mol Biol 5, 3: 153-65.

Martin, G. and Keller, W. (1998). Tailing and 3'-end labeling of RNA with yeast poly(A) polymerase and various nucleotides. $R N A$ 4, 2: 226-30.

Masta, S.E. (2000). Mitochondrial sequence evolution in spiders: intraspecific variation in tRNAs lacking the TPsiC Arm. Mol Biol Evol 17, 7: 1091-100.

Masta, S.E. and Boore, J.L. (2004). The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs. Mol Biol Evol 21, 5: 893-902.

Matsushima, Y., Garesse, R. and Kaguni, L.S. (2004). Drosophila mitochondrial transcription factor B2 regulates mitochondrial DNA copy number and transcription in Schneider cells. J Biol Chem 279, 26: 26900-5.

Matsushima, Y., Garesse, R. and Kaguni, L.S. (2005). Drosophila mitochondrial transcription factor B1 modulates mitochondrial translation but not transcription or DNA copy number in Schneider cells. J Biol Chem.

McCulloch, V. and Shadel, G.S. (2003). Human mitochondrial transcription factor B1 interacts with the C-terminal activation region of h -mtTFA and stimulates transcription independently of its RNA methyltransferase activity. Mol Cell Biol 23, 16: 5816-24.

Merten, S.H. and Pardue, M.L. (1981). Mitochondrial DNA in Drosophila. An analysis of genome organization and transcription in Drosophila melanogaster and Drosophila virilis. J Mol Biol 153, 1: 1-21.

Mili, S. and Pinol-Roma, S. 2003. LRP130, a pentatricopeptide motif protein with a noncanonical RNA-binding domain, is bound in vivo to mitochondrial and nuclear RNAs. Mol Cell Biol, 23: 4972-82.

Mindell, D.P., Sorenson, M.D. and Dimcheff, D.E. (1998). An extra nucleotide is not translated in mitochondrial ND3 of some birds and turtles. Mol Biol Evol 15, 11: 1568-71.

Mitchell, S.E., Cockburn, A.F. and Seawright, J.A. (1993). The mitochondrial genome of Anopheles quadrimaculatus species A: complete nucleotide sequence and gene organisation. Genome 36, 1058-1073.

Montoya, J., Christianson, T., Levens, D., Rabinowitz, M. and Attardi, G. (1982). Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc Natl Acad Sci US A 79, 23: 7195-9.

Montoya, J., Gaines, G.L. and Attardi, G. (1983). The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell 34, 1: 151-9.

Montoya, J., Ojala, D. and Attardi, G. (1981). Distinctive features of the 5'-terminal sequences of the human mitochondrial mRNAs. Nature 290, 5806: 465-70.

Mootha, V.K., Lepage, P., Miller, K., Bunkenborg, J., Reich, M., Hjerrild, M., Delmonte, T., Villeneuve, A., Sladek, R., Xu, F., Mitchell, G.A., Morin, C., Mann, M., Hudson, T.J., Robinson, B., Rioux, J.D. and Lander, E.S. (2003). Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci U S A, 100: 605-10.

Moritz, C., Dowling, T.E. and Brown, W.M. (1987). Evolution of animal mitochondrialDNA - relevance for population biology and systematics. Annu. Rev. Ecol. Syst 18, 269-292.

Morl, M., Dorner, M. and Paabo, S. (1995). C to U editing and modifications during the maturation of the mitochondrial tRNA(Asp) in marsupials. Nucleic Acids Res 23, 17: 3380-4.

Muller, M. and Martin, W. (1999). The genome of Rickettsia prowazekii and some thoughts on the origin of mitochondria and hydrogenosomes. Bioessays 21, 5: 377-81.

Nagaike, T., Suzuki, T., Katoh, T. and Ueda, T. (2005). Human mitochondrial mRNAs are stabilized with polyadenylation regulated by mitochondria-specific poly(A) polymerase and polynucleotide phosphorylase. J Biol Chem 280, 20: 19721-7.

Naithani, S., Saracco, S.A., Butler, C.A. and Fox, T.D. (2003). Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the
inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. Mol Biol Cell 14: 324-33.

Nakamichi, N., Rhoads, D.D., Hayashi, J.I., Kagawa, Y. and Matsumura, T. (1998). Detection, localization, and sequence analyses of mitochondrial regulatory region RNAs in several mammalian species. J Biochem (Tokyo) 123, 3: 392-8.

Nardi, F., Carapelli, A., Dallai, R. and Frati, F. (2003a). The mitochondrial genome of the olive fly Bactrocera oleae: two haplotypes from distant geographical locations. Insect Molec Biol 12, 6: 605-611.

Nardi, F., Carapelli, A., Faniulli, P.P., Dallai, R. and Frati, F. (2001). The complete mitochondrial DNA sequence of the basal hexapod Tetrodontophora bielanensis: Evidence for heteroplasmy and tRNA translocations. Mol Biol Evol 18, 12931304.

Nardi, F., Spinsanti, G., Boore, J.L., Carapelli, A., Dallai, R. and Frati, F. (2003b). Hexapod origins: monophyletic or paraphyletic? Science 299, 5614: 1887-9.

Nass, M.M. and Nass, S. (1963a). Intramitochondrial Fibers with DNA Characteristics. I. Fixation and Electron Staining Reactions. J Cell Biol 19, 593-611.

Nass, S. and Nass, M.M. (1963b). Intramitochondrial Fibers with DNA Characteristics. II. Enzymatic and Other Hydrolytic Treatments. J Cell Biol 19, 613-29.

Nass, S., Nass, M.M. and Hennix, U. (1965). Deoxyribonucleic Acid in Isolated RatLiver Mitochondria. Biochim Biophys Acta 95, 426-35.

Nedelcu, A.M., Lee, R.W., Lemieux, C., Gray, M.W. and Burger, G. (2000). The complete mitochondrial DNA sequence of Scenedesmus obliquus reflects an intermediate stage in the evolution of the green algal mitochondrial genome. Genome Res 10, 6: 819-31.

Nirenberg, M.W. and Matthaei, J.H. (1961). The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A 47, 1588-602.

Ojala, D., Merkel, C., Gelfand, R. and Attardi, G. (1980a). The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA. Cell 22, 2 Pt 2: 393-403.

Ojala, D., Montoya, J. and Attardi, G. (1981). tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 5806: 470-4.

Ojala, D.K., Montoya, J. and Attardi, G. (1980b). The putative mRNA for subunit II of human cytochrome c oxidase starts directly at the translation initiator codon. Nature 287, 5777: 79-82.

Okimoto, R., Macfarlane, J.L., Clary, D.O. and Wolstenholme, D.R. (1992). The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130, 3: 471-98.

Olsen, G.J., Woese, C.R. and Overbeek, R. (1994). The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176, 1: 1-6.

Orr, A.T., Rabets, J.C., Horton, T.L. and Landweber, L.F. (1997). RNA editing missing in mitochondria. RNA 3, 4: 335-6.

Papillon, D., Perez, Y., Caubit, X. and Le Parco, Y. (2004). Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome. Mol Biol Evol 21, 11: 2122-9.

Peden, J.F. (1999). "Analysis of Codon Usage". Thesis for degree of Doctor of Philosophy. University of Nottingham, Nottingham, UK.

Perez-Martinez, X., Antaramian, A., Vazquez-Acevedo, M., Funes, S., Tolkunova, E., d'Alayer, J., Claros, M.G., Davidson, E., King, M.P. and Gonzalez-Halphen, D. (2001). Subunit II of cytochrome c oxidase in Chlamydomonad algae is a heterodimer encoded by two independent nuclear genes. J Biol Chem 276, 14: 11302-9.

Perna, N.T. and Kocher, T.D. (1995). Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41, 3: 353-8.

Pont-Kingdon, G., Okada, N.A., Macfarlane, J.L., Beagley, C.T., Watkins-Sims, C.D., Cavalier-Smith, T., Clark-Walker, G.D. and Wolstenholme, D.R. (1998). Mitochondrial DNA of the coral Sarcophyton glaucum contains a gene for a homologue of bacterial MutS: a possible case of gene transfer from the nucleus to the mitochondrion. J Mol Evol 46, 4: 419-31.

Pont-Kingdon, G.A., Okada, N.A., Macfarlane, J.L., Beagley, C.T., Wolstenholme, D.R., Cavalier-Smith, T. and Clark-Walker, G.D. (1995). A coral mitochondrial mutS gene. Nature 375, 6527: 109-11.

Popot, J.L. and de Vitry, C. (1990). On the microassembly of integral membrane proteins. Annu Rev Biophys Biophys Chem 19, 369-403.

Pruitt, K.D., Tatusova, T. and Maglott, D.R. (2005). NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33, Database issue: D501-4.

Puranam, R.S., Attardi, G., Shadel, G.S., Clayton, D.A. and Dairaghi, D.J. (2001). The RNase P associated with HeLa cell mitochondria contains an essential RNA component identical in sequence to that of the nuclear RNase P. Mol Cell Biol 21, 2: 548-61.

Qiu, Y., Song, D., Zhou, K. and Sun, H. 2005. The Mitochondrial Sequences of Heptathela hangzhouensis and Ornithoctonus huwena Reveal Unique Gene Arrangements and Atypical tRNAs. J Mol Evol, 60: 57-71.

Race, H.L., Herrmann, R.G. and Martin, W. (1999). Why have organelles retained genomes? Trends Genet 15, 9: 364-70.

Ramon Valverde, J., Batuecas, B., Moratilla, C., Marco, R. and Garesse, R. (1994). The complete mitochondrial DNA sequence of the crustacean Artemia franciscana. J Mol Evol 39, 4: 400-8.

Rantanen, A., Gaspari, M., Falkenberg, M., Gustafsson, C.M. and Larsson, N.G. (2003). Characterization of the mouse genes for mitochondrial transcription factors B1 and B2. Mamm Genome 14, 1: 1-6.

Reyes, A., Gissi, C., Pesole, G. and Saccone, C. (1998). Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15, 8: 957-66.

Reyes, A., Yang, M.Y., Bowmaker, M. and Holt, I.J. (2005). Bidirectional replication initiates at sites throughout the mitochondrial genome of birds. J Biol Chem 280, 5: 3242-50.

Roberti, M., Fernandez-Silva, P., Polosa, P.L., Fernandez-Vizarra, E., Bruni, F., Deceglie, S., Montoya, J., Gadaleta, M.N. and Cantatore, P. (2005). In vitro transcription termination activity of the Drosophila mitochondrial DNA-binding protein DmTTF. Biochem Biophys Res Commun 331, 1: 357-62.

Roberti, M., Polosa, P.L., Bruni, F., Musicco, C., Gadaleta, M.N. and Cantatore, P. (2003). DmTTF, a novel mitochondrial transcription termination factor that recognises two sequences of Drosophila melanogaster mitochondrial DNA. Nucleic Acids Res 31, 6: 1597-604.

Rocha, E.P. (2003). DNA repeats lead to the accelerated loss of gene order in bacteria. Trends Genet 19, 11: 600-3.

Rohrbaugh, M.L. and Hardison, R.C. (1983). Analysis of rabbit beta-like globin gene transcripts during development. J Mol Biol 164, 3: 395-417.

Rossmanith, W. (1997). Processing of human mitochondrial tRNA(Ser(AGY))GCU: a novel pathway in tRNA biosynthesis. J Mol Biol 265, 4: 365-71.

Rossmanith, W. and Karwan, R.M. (1998). Characterization of human mitochondrial RNase P: novel aspects in tRNA processing. Biochem Biophys Res Commun 247, 2: 234-41.

Rossmanith, W., Tullo, A., Potuschak, T., Karwan, R. and Sbis, E. (1995). Human Mitochondrial tRNA Processing. J. Biol. Chem. 270, 21: 12885-12891.

Saccone, C., De Giorgi, C., Gissi, C., Pesole, G. and Reyes, A. (1999). Evolutionary genomics in Metazoa: the mitochondrial DNA as model system. Gene 238, 1: 195-209.

Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989). "Book 1". Molecular Cloning. A Laboratory Manual. Second Edition.

Samuels, D.C., Schon, E.A. and Chinnery, P.F. (2004). Two direct repeats cause most human mtDNA deletions. Trends in Genetics 20, 9: 393-398.

Sarabhai, A. and Brenner, S. (1967). A mutant which reinitiates the polypeptide chain after chain termination. J Mol Biol 27, 1: 145-62.

Satta, Y., Ishiwa, H. and Chigusa, S.I. (1987). Analysis of nucleotide substitutions of mitochondrial DNAs in Drosophila melanogaster and its sibling species. Mol Biol Evol 4, 6: 638-50.

Schneider, I. (1972). Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27, 2: 353-65.

Schultheis, A.S., Weigt, L.A. and Hendricks, A.C. (2002). Arrangement and structural conservation of the mitochondrial control region of two species of Plecoptera: utility of tandem repeat-containing regions in studies of population genetics and evolutionary history. Insect Mol Biol 11, 6: 605-10.

Scouras, A., Beckenbach, K., Arndt, A. and Smith, M.J. (2004). Complete mitochondrial genome DNA sequence for two ophiuroids and a holothuroid: the utility of protein gene sequence and gene maps in the analyses of deep deuterostome phylogeny. Mol Phylogenet Evol 31, 1: 50-65.

Seidel-Rogol, B.L., McCulloch, V. and Shadel, G.S. (2003). Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop. Nat Genet 33, 1: 23-4.

Selwood, S.P., McGregor, A., Lightowlers, R.N. and Chrzanowska-Lightowlers, Z.M. (2001). Inhibition of mitochondrial protein synthesis promotes autonomous regulation of mtDNA expression and generation of a new mitochondrial RNA species. FEBS Lett 494, 3: 186-91.

Shao, R. and Barker, S.C. (2003). The highly rearranged mitochondrial genome of the Plague Thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. Mol Biol Evol 20, 3: 362-370.

Shao, R., Campbell, N.J.H. and Barker, S.C. (2001). Numerous Gene Rearrangements in the mitochondrial genome of the Wallaby Louse, Heterodoxus macropus (Phthriptera). Mol Biol Evol 18, 5: 858-865.

Shao, R., Dowton, M., Murrell, A. and Barker, S.C. (2003). Rates of gene rearrangement and nucleotide substitution are correlated in the mitochondrial genomes of insects. Mol Biol Evol 20, 10: 1612-9.

Sharma, M.R., Koc, E.C., Datta, P.P., Booth, T.M., Spremulli, L.L. and Agrawal, R.K. (2003). Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 115, 1: 97-108.

Shoubridge, E.A. (2002). The ABCs of mitochondrial transcription. Nat Genet 31, 3: 227-8.

Simpson, L., Aphasizhev, R., Gao, G. and Kang, X. (2004). Mitochondrial proteins and complexes in Leishmania and Trypanosoma involved in U-insertion/deletion RNA editing. RNA 10, 2: 159-70.

Snyder, M., Fraser, A.R., LaRoche, J., Gartner-Kepkay, K.E. and Zouros, E. (1987). Atypical Mitochondrial DNA from the Deep-Sea Scallop Placopecten magellanicus. PNAS 84, 21: 7595-7599.

Sonnhammer, E.L. and Durbin, R. (1995). A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167, 1-2: GC1-10.

Sonnhammer, E.L., Eddy, S.R. and Durbin, R. (1997). Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28, 3: 405-20.

Spanos, L., Koutroumbas, G., Kotsyfakis, M. and Louis, C. (2000). The mitochondrial genome of the Mediterranean fruit fly, Ceratitis capitata. Insect Molec Biol 9, 2: 139-144.

Spelbrink, J.N., Li, F.Y., Tiranti, V., Nikali, K., Yuan, Q.P., Tariq, M., Wanrooij, S., Garrido, N., Comi, G., Morandi, L., Santoro, L., Toscano, A., Fabrizi, G.M., Somer, H., Croxen, R., Beeson, D., Poulton, J., Suomalainen, A., Jacobs, H.T., Zeviani, M. and Larsson, C. (2001). Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28, 3: 223-31.

Spradling, A., Pardue, M.L. and Penman, S. (1977). Messenger RNA in heat-shocked Drosophila cells. J Mol Biol 109, 4: 559-87.

Stanton, D.J., Daehler, L.L., Moritz, C.C. and Brown, W.M. (1994). Sequences with the potential to form stem-and-loop structures are associated with coding-region duplications in animal mitochondrial DNA. Genetics 137, 1: 233-41.

Steinberg, S. and Cedergren, R. (1994). Structural compensation in atypical mitochondrial tRNAs. Struct Biol 1, 8: 507-510.

Steinberg, S., Gautheret, D. and Cedergren, R. (1994). Fitting structurally diverse animal mitochondrial $\mathrm{tRNA}{ }^{\text {Ser }}$ to common three-dimentional constraints. J Mol Evol 236, 982-989.

Stewart, J.B. and Beckenbach, A.T. (2003). Phylogenetic and genomic analysis of the complete mitochondrial DNA sequence of the spotted asparagus beetle Crioceris duodecimpunctata. Mol Phylogenet Evol 26, 3: 513-26.

Stewart, J.B. and Beckenbach, A.T. (2005). Insect mitochondrial genomics: the complete mitochondrial genome sequence of the meadow spittlebug Philaenus spumarius (Hemiptera: Auchenorrhyncha: Cercopoidae). Genome 48, 1: 46-54.

Stroumbakis, N.D., Li, Z. and Tolias, P.P. (1994). RNA- and single-stranded DNAbinding (SSB) proteins expressed during Drosophila melanogaster oogenesis: a homolog of bacterial and eukaryotic mitochondrial SSBs. Gene 143, 2: 171-7.

Stuart, K.D., Schnaufer, A., Ernst, N.L. and Panigrahi, A.K. (2005). Complex management: RNA editing in trypanosomes. Trends Biochem Sci 30, 2: 97-105.

Sunnucks, P. and Hales, D.F. (1996). Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol 13, 3: 510-24.

Taanman, J.W. (1999). The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410, 2: 103-23.

Takata, K., Yoshida, H., Hirose, F., Yamaguchi, M., Kai, M., Oshige, M., Sakimoto, I., Koiwai, O. and Sakaguchi, K. (2001). Drosophila mitochondrial transcription factor A: characterization of its cDNA and expression pattern during development. Biochem Biophys Res Commun 287, 2: 474-83.

Temperley, R.J., Seneca, S.H., Tonska, K., Bartnik, E., Bindoff, L.A., Lightowlers, R.N. and Chrzanowska-Lightowlers, Z.M. (2003). Investigation of a pathogenic mtDNA microdeletion reveals a translation-dependent deadenylation decay pathway in human mitochondria. Hum Mol Genet 12, 18: 2341-8.

Tessier, D.C., Brousseau, R. and Vernet, T. (1986). Ligation of single-stranded oligodeoxyribonucleotides by T4 RNA ligase. Anal Biochem 158, 1: 171-8.

Thao, M.L., Baumann, L. and Baumann, P. (2004). Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha). BMC Evol Biol 4, 1: 25.

Thomas, M.A., Walsh, K.A., Wolf, M.R., McPheron, B.A. and Marden, J.H. (2000). Molecular phylogenetic analysis of evolutionary trends in stonefly wing structure and locomotor behavior. Proc Natl Acad Sci U S A 97, 24: 13178-83.

Thompson, J.A., Radonovich, M.F. and Salzman, N.P. (1979). Characterization of the 5'terminal structure of simian virus 40 early mRNA's. J Virol 31, 2: 437-46.

Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 11, 4673-4680.

Tiranti, V., Savoia, A., Forti, F., D'Apolito, M.F., Centra, M., Rocchi, M. and Zeviani, M. (1997). Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the Expressed Sequence Tags database. Hum Mol Genet 6, 4: 615-25.

Tomecki, R., Dmochowska, A., Gewartowski, K., Dziembowski, A. and Stepien, P.P. (2004). Identification of a novel human nuclear-encoded mitochondrial poly(A) polymerase. Nucleic Acids Res 32, 20: 6001-14.

Tomita, K., Ueda, T. and Watanabe, K. (1996). RNA editing in the acceptor stem of squid mitochondrial tRNA(Tyr). Nucleic Acids Res 24, 24: 4987-91.

Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R. and Yoshikawa, S. (1996). The whole structure of the 13 -subunit oxidized cytochrome c oxidase at 2.8 A. Science 272, 5265: 113644.

Tracy, R.L. and Stern, D.B. (1995). Mitochondrial transcription initiation: promoter structures and RNA polymerases. Curr Genet 28, 3: 205-16.

Tupy, J.L., Bailey, A.M., Dailey, G., Evans-Holm, M., Siebel, C.W., Misra, S., Celniker, S.E. and Rubin, G.M. (2005). Identification of putative noncoding polyadenylated transcripts in Drosophila melanogaster. Proc Natl Acad Sci U S A.

Ueda, T., Watanabe, K. and Ohta, T. 1983. Structural analysis of bovine mitochondrial tRNASer (AGY). Nucleic Acids Symp Ser, 141-4.

Viale, A.M. and Arakaki, A.K. (1994). The chaperone connection to the origins of the eukaryotic organelles. FEBS Lett 341, 2-3: 146-51.
von Dohlen, C.D. and Moran, N.A. (1995). Molecular phylogeny of the Homoptera: a paraphyletic taxon. J Mol Evol 41, 2: 211-23.
von Heijne, G. (1986). Why mitochondria need a genome. FEBS Lett 198, 1: 1-4.
Watkins, R.F. and Beckenbach, A.T. (1999). Partial sequence of a sponge mitochondrial genome reveals sequence similarity to Cnidaria in cytochrome oxidase subunit II and the large ribosomal RNA subunit. J Mol Evol 48, 5: 542-54.

Wernette, C.M., Conway, M.C. and Kaguni, L.S. (1988). Mitochondrial DNA polymerase from Drosophila melanogaster embryos: kinetics, processivity, and fidelity of DNA polymerization. Biochemistry 27, 16: 6046-54.

Wernette, C.M. and Kaguni, L.S. (1986). A mitochondrial DNA polymerase from embryos of Drosophila melanogaster. Purification, subunit structure, and partial characterization. J Biol Chem 261, 31: 14764-70.

Wheeler, W.C., M.F., W., Wheeler, Q.D. and J., C. (2001). Phylogeny of the extant hexapod orders. Cladistics 17, 2: 113-210.

Whiting, M., Carpenter, J.C., Wheeler, Q.D. and Wheeler, W.C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18s and 28 s ribosomal DNA sequences and morphology. Syst Biol 46, 1-68.

Whiting, M.F. (1998). Long-branch distraction and the Strepsiptera. Syst Biol 47, 1: 1348.

Whiting, M.F. and Wheeler, W.C. (1994). Insect homeotic transformation. Nature 368, 6473: 696.

Wolstenholme, D.R. (1973). Replicating DNA molecules from eggs of Drosophila melanogaster. Chromosoma 43, 1: 1-18.

Wolstenholme, D.R. (1992). Animal mitochondrial DNA: structure and evolution. Int RevCytol 141, 173-216.

Wootton, R.J. (1981). Palaeozoic insects. Ann. Rev. Entomol. 36, 319-344.
Wrischnik, L.A., Higuchi, R.G., Stoneking, M., Erlich, H.A., Arnheim, N. and Wilson, A.C. (1987). Length mutations in human mitochondrial DNA: direct sequencing of enzymatically amplified DNA. Nucleic Acids Res 15, 2: 529-42.

Xu, F., Morin, C., Mitchell, G., Ackerley, C. and Robinson, B.H. (2004). The role of the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene in cytochrome oxidase assembly: mutation causes lowered levels of COX (cytochrome c oxidase) I and COX III mRNA. Biochem J 382: 331-6.

Yamauchi, M.M., Miya, M.U. and Nishida, M. (2004). Use of a PCR-based approach for sequencing whole mitochondrial genomes of insects: two examples (cockroach and dragonfly) based on the method developed for decapod crustaceans. Insect Mol Biol 13, 4: 435-42.

Yang, M.Y., Bowmaker, M., Reyes, A., Vergani, L., Angeli, P., Gringeri, E., Jacobs, H.T. and Holt, I.J. (2002). Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell 111, 4: 495-505.

Yasukawa, T., Yang, M.Y., Jacobs, H.T. and Holt, I.J. (2005). A bidirectional origin of replication maps to the major noncoding region of human mitochondrial DNA. Mol Cell 18, 6: 651-62.

Yokobori, S. and Paabo, S. (1995). Transfer RNA editing in land snail mitochondria. Proc Natl Acad Sci U S A 92, 22: 10432-5.

Yukuhiro, K., Sezutsu, H., Itoh, M., Shimizu, K. and Banno, Y. (2002). Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Mol Biol Evol 19, 8: 1385-9.

Zardoya, R. and Meyer, A. (1998). Complete mitochondrial genome suggests diapsid affinities of turtles. Proc Natl Acad Sci U S A 95, 24: 14226-31.

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 13: 3406-15.

Zwick, P. (2000). Phylogenetic system and zoogeography of the Plecoptera. Annu Rev Entomol 45, 709-46.

[^0]: Dr. Laurie S. Kaguni, Professor
 External Examiner
 Department of Biochemistry and Molecular Biology
 Michigan State University

[^1]: ${ }^{1}$ The tRNA genes will be referred to by the superscripting of their three-letter amino acid codes, for example $t R N A^{H e}$ for the isoleucine. The serine and leucine tRNAs will be specified by their three letter code, and the codons they decode (for example $t R N A^{S e r-A G N}$).

[^2]: ${ }^{2}$ This chapter was published in the journal Genome, volume 48(1): pg. 46-54, February 2005, under the coauthorship of James Bruce Stewart and Andrew T. Beckenbach.

