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Abstract 

This dissertation concerns the investigation of current problems associated with the analysis 

and design of tunable continuous t ime  bandpass (CT BP) sigma-delta (CA) modulators. 

This specific modulator group is particularly promising within the context of software- 

defined radios. However, due to the nonlinear sampling element within a closed-loop s- 

domain system, the high level of analytical complexity makes current CT BP CA modulators 

difficult to implement. 

Specific problems addressed in this research were the fundamental principles of the 

CA modulation process, analytical and design methodology, loop delay compensation tech- 

niques, monolithic implementation and possible application areas. Theoretical general closed 

form solutions for the center frequency tunable CT BP CA modulator with fractional delays 

were derived, defining a new sub-class of fractional CT BP CA modulators. The developed 

subclass offers numerous possible solutions to existing problems in CA modulator based 

circuits, such as loop delay compensation and signal upconversion. A theoretical CT BP 

CA design methodology was then modified to  be suitable for mixed-signal integrated circuit 

(IC) design flow, currently used in both industrial and academic environments. In order to 

experimentally demonstrate these new analytical concepts, an IC prototype of the proposed 

fractional CA modulator was designed, manufactured in SiGe technology, and tested. 

This research showed that the developed fractional CT BP CA modulator concept is a 

feasible option for future wireless networks; thus providing the crucial element required for 

software-defined radios. 
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" I do not know what I may appear to the world, but to myself I seem to have been only a 
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Preface 

Despite its long history, apparent simplicity, and elegance, a sigma-delta (CA) modulator 

remains one of the most elusive circuits in microelectronics. So far, no researcher has 

presented a comprehensive analysis and model which completely and accurately describes 

all aspects of the circuit's operation. R.ather, circuit developments have resulted from work 

carried out by a large number of contributors, with only incremental advances in inner 

circuit operation knowledge. 

The goal of this dissertation was to investigate current problems associated with the 

analysis and design of a center frequency tunable continuous time bandpass (CT BP) CA 

modulator, in the high frequency (HF) signal range. Although the concept of CA modula- 

tion has existed for more than 40 years, there are still a number of outstanding problems 

related to this particular group of modulators; for example, loop delay compensation, cen- 

ter frequency tunability, and higher order stability. However, in the HF range, this group 

of modulators could potentially resolve some of the critical issues of the softwaredefined 

radio. It appears that CA modulators have the potential to include a tunable frequency 

element, combined with frequency mixing, A/D conversion, and a filtering function, in a 

single device. Clearly, there is enough motivation to invest more research efforts in this 

area. 

This research proposes to investigate and solve numerous interesting and important 

questions regarding CA modulators, including: 

0 Can the SNR level of a HF signal become as high as the levels previously demonstrated 

in the audio frequency range? 

0 What is the closed form solution for the 4th and 6th order center frequency tunable 

CT BP CA modulators? 
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What design methodology should be used and how should it fit into the current IC 

design flow? 

What IC implementation issues are to be resolved'? 

How can the loop delay compensation problem be solved? 

How does noise contribution affect the system? 

What architecture has the lowest nonlinearity? 

Can higher order stability be accurately predicted, particularly for the maximum SNR? 

Naturally, while attempting to solve these problems, others may be exposed. It is hypoth- 

esized that both theoretical and experimental work presented in this dissertation will offer 

some partial answers to, at least, some of these questions. 

After completing the theoretical work, it is important to consider the operational speed 

for design implementation. Higher operational speeds are generally achieved by exploiting 

fast technologies, such as GaAs. In addition, a higher SNR can be achieved using a higher 

oversampling ratio; however, power consumption then becomes an issue. The conclusion is 

reached that modulators of higher order are needed; this implies that system stability must 

first be examined. Conversely, if the modulators are tuned to any frequency relative to the 

sampling clock, i.e. fs/n type as opposed to the f s /4  type, there is the potential for better 

utilization of the modulator functionality (frequency translation) and a reduction in power 

consumption through the use of lower clock frequencies. 

The problem of achieving higher SNR values in high frequency CT BP CA modulators 

is still far from being solved; especially when compared to the 150dB (24bit) accuracy 

already achieved in the audio frequency range. The oversampling method has an upper 

limitation imposed by the power consumption. Thus, the exploitation of either oversampling 

or undersampling systems with fs/n may be a better alternative. 

Traditionally, initial analysis and behavioral models are developed in environments that 

are incompatible with the tools used during actual IC design. For example, a standard 

approach is to develop the internal behavioral CA models in a programming language, such 

as C or MATLAB. Thus, during the design process, this design flow requires that some form 

of manual interfacing, data remapping, and translation occur. Furthermore, all lower level 

IC blocks must be finished prior to simulating the top level. In closed-loop systems, such 
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as phase-locked loop (PLL) and CA loops, the simulation time becomes a limiting factor 

in the top level design; this means that only a fraction of the transistor level simulations 

can be performed within the allocated design time. Development of behavioral models that 

are compatible with the standard IC design environment creates new possibilities for better 

system verification. In these cases, simulation setup can contain one of the transistor-level 

subblocks, with the rest of the system remaining in behavioral form; thus, significantly 

reducing the simulation time. 

System tunability is an aspect that still requires additional analytical research. While 

the numerical methods generally used to design the loop filter function do produce valid 

results, analytical methods may contribute more to the fundamental understanding of the 

problem. 

The loop delay in CT systems also requires further exploration. In this dissertation, 

a novel method of compensating the loop delay was proposed, which introduced a new 

sub-class of fractional CA modulators. Rather than trying to remove the unavoidable loop 

delay, an argument was made for its utilization and incorporation in the loop filter design. 

The development of the fractional delay scheme allowed for the possibility of tolerating loop 

delays that are only fractions of a sampling period. 
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Chapter 1 

Introduction 

The principles of Delta-Modulation were first introduced in patent by C.C. Cutler, filed 

in 1954 and granted in 1960 [9]. Since that time, numerous papers, designs, books and 

chapters have been published on the topic [36, 271. Today, a large number of circuit designs 

have emerged from this classical feedback loop concept, known as the sigma-delta (CA) 

modulator. Regardless of the specific design, all CA modulator loops contain at least the 

following functional blocks: summing circuit at  the input, loop filter, sampled A/D converter 

at  the output, and D/A converter in the feedback loop. 

In order to define the focus of this dissertation, the following 'classifications are arbi- 

trarily introduced. Conceptually, the family of CA circuits can be divided into two groups: 

discretetime (DT) and continuous-time (CT). This categorization is based solely on the 

time domain characteristics of the CA loop filter. If the filter was designed in the z-domain, 

i.e. implemented as either a switched capacitor (SC) or switched current (SI) filter, then 

the CA modulator is referred to as a DT CA modulator. Similarly, if the filter was designed 

in the s-domain, then the CA modulator is designated as a CT CA modulator. The next 

level of classification is based on the filter type: low-pass (LP) or band-pass (BP) CA 

modulator. Regardless of the filter type, a connection can be made to either a one-bit or 

multi-bit AID converter. The general assumption is that the feedback D/A converter has 

the same number of bits as the AID converter. 

Lastly, the relationship between the input signal frequency and the AID sampling fre- 

quency is investigated. According to the Nyquist criteria, oversampled and undersampled 

CA modulators are defined. 
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1.1 Analog to digital conversion 

The conversion of CT signals into their corresponding DT signals (and viceversa) has been 

one of the most important tasks in signal processing since the digital age began; particularly 

due to the VLSI explosion which occurred during the last 30 years of the 2oth century. 

Digital signal processing enabled simpler design methodologies, resulting in noise margin 

and circuit reliability increases and reductions in both integrated circuit (IC) chip area and 

power consumption. 

At the most fundamental level, all signals are continuous, regardless of the mathematics 

(z-domain or s-domain) used to describe them. From a practical implementation perspec- 

tive, z-domain based circuits suffer from speed limitations, as they require an operational 

sampling clock; s-domain based circuits suffer from complex design methodology, generally 

lower signal margins and potentially higher power consumption. A modern mixed-signal 

approach, which merges the two design methodologies into the same circuit, often results in 

the most efficient designs. Consequently, new models, design methodologies and tools are 

being developed to facilitate the merger of these two widely separated domains. 

1.2 State of the art 

With the exception of a few milestone works, referenced for completeness, this section 

reviews CT BP CA modulator designs which were supported by the experimental data. 

Note that a large number of publications related to z-domain and s-domain (simulation 

results only) designs are beyond the scope of this work. 

In the late 1980s contributions to the fundamental understanding of bandpass CA mod- 

ulation operation have been very significant. In 1989, Schreier et al. [47] published one of 

the first theoretical works dedicated to the bandpass transfer function. Several papers by 

Jantzi et al. [23, 241 contributed a working methodology for calculating the noise transfer 

function (NTF) and signal transfer function (STF) for a CA loop. 

The first CT BP CA modulator was presented in 1990 by Dressler [12], where the low- 

pass filter inside CA loop was intuitively replaced with a resonator to achieve the bandpass 

effect. A summary of the experimental data for this 2nd order, discrete implementation 

design is as follows: signal to noise ratio (SNR) = 55dB, center frequency fo = 2.5 MHz, 

bandwidth (BW) = 80 kHz, and clock frequency fclk = 10 MHz. 
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Further advances were made in 1991 by Thurston et al. [55], who suggested a method 

for determining the analytical expression for a bandpass loop filter transfer function, H(s) ,  

in the s-domain. Their research demonstrated the first application of the impulse invariant 

transformation technique for performing the domain transformation H (z) -t H (s) , in order 

to solve for the CT BP CA loop filter transfer function. This concept, driven by emerging 

cellular networks, was proved through experiment, thus paving the way for future CT BP CA 

research. A summary of the experimental data for this 2nd order, discrete implementation 

design is as follows: SNR = 50 dB, fo = 7.5 MHz, B W  = 100 kHz, and fclk = 10 MHz. Also 

in the same year, while not strictly in the CT category, Horrocks [20] proposed a tunable 

center frequency, 2nd order z-domain bandpass filter. 

In May of 1992, Jantzi et al. [25] published the first monolithic implementation of a BP 

CA modulator. A summary of the 4th order, switched capacitor (SC) implementation design 

is as follows: 3pm CMOS technology, SNR = 63 dB, fo = 455 kHz, B W = 10 kHz and f d k  = 

1.82 MHz. Then in June, Troster et al. [56] published the first monolithic implementation of 

a CT BP CA modulator. With cellular network application in mind, they used a BiCMOS 

analog/digital array. A summary of the 2nd order monolithic implementation, with an 

external LC resonator is as follows: 1.2pm/7 GHz BiCMOS analogldigital array technology, 

SNR = 55 dB, fo = 6.5 MHz, B W  = 200 kHz, and fclk = 26 MHz. 

In 1995, Shoaei [48] contributed an analytical methodology for s-domain CT BP CA 

modulator analysis and design, covering both 2nd and 4th order modulators. In addition, 

an alternative method for H(s)  synthesis, for the quarter of the sampling frequency ( fs/4) 

CT BP CA modulator, was introduced. 

A 2nd order tunable g,-C based CT BP CA modulator, with programmable center 

frequency fo = 24.4MHzl62.5 MHz, was developed by Raghavan et al. in 1997 [41]. Taking 

advantage of the high clock speed, i.e. high oversampling ratio (OSR), in fast InGaAs 

technology, an SNR = 92 d B  was achieved. The reported data for this implementation was: 

InGaAs technology, area 750pm x 750pm, power dissipation DCp,, = 1.4W7 SNR = 92 dB, 

fo = 55.6 MHz, B W  = 366kHz7 and fclk = 4GHz. Also published in 1997, was a 4th 

order modulator design developed by Jayaraman [26]. He investigated the application of a 

power amplifier (PA) in combination with a CA modulator. A summary of the reported 

data is as follows: GaAs technology, SNR = 63dB, fo = 800MHz, B W  = 200kHz, and 

f d k  = 3.2 GHz. 

In 1998, Gao et al. [16] developed a 2nd order design, claiming it to be the first design 
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in the GHz range including on-chip LC components. This design exhibited: 0.5pm BJT 

technology, SNR = 57dB, fo  = 950 MHz, B W  = 200 kHz, and f d k  = 3.8 GHz. Currently, 

this design has the highest reported center frequency. In the same time he reported a 4th 

order design with the following data [15] : Vcc = 5.0V, DCpwT = 35Om W, area 0.85mm x 

1.46mm, fclk = 4.0 GHz, B W  = 4 MHz, f o  = 1 GHz, SNR = 53dB. 

The first working design of a 6th order CT BP CA modulator was developed by van 

Engelen e t  al. in 1999 [57]. Published data for this implementation is as follows: 0.5pm 

CMOS technology, SNDR = 67dB, fo  = 10.7MHz, B W  = 200kHz, fclk = 30/80MHz. 

During the same year, Tao [54] demonstrated his downconversion frequency translation 

approach, using a 2th order modulator as the downconverter. This design used discrete 

inductors with an SC integrator. A summary of the reported data is as follows: 0.35pm 

CMOS technology, SNDR = 54 dB, fo  = 100 MHz, BW = 200 kHz, and fclk = 400 MHz. 

A comprehensive study on the excess loop delay, with a novel approach to compensation, 

was published in 2000 by Maurino e t  al. [35]. A summary of the experimental data for 

this 4th order design is as follows: SiGe technology, SNR = 68dB, fo = 200 MHz, BW = 

200 kHz, and fclk = 800 MHz. The following year, Raghavan e t  al. [40] developed the second 

generation of their InGaAs design, a 4th order CT BP CA modulator. They reported the 

following data for their implementation: power supply Vcc = f 5V , power dissipation 

DCpwT = 3.2W, area 3.3mm x 1.7mm, SNR = 75.8dB, fo  = 180MHz, BW = 1 MHz, and 

f d k  = 4 GHz. 

One of the most accomplished designs so far was developed in 2002 by Schreier e t  al. 

[46], where a robust industrial mixed-signal approach was used to design their commercially 

available chip. Their 6th order CT design used external inductors for the first resonator, 

RC (with trimming capacitors tolerant to within 1%) for the second resonator, and SC for 

the third resonator. They reported the following data for their implementation: 0.35pm 

BiCMOS technology, power supply Vcc = 2.7V, power dissipation DCpwT = 50mW, area 

5.0mm2 , tunable range 10/300 MHz, BW = 333 kHz, SNR = 81 dB, and fclk = 3/32 MHz. 

In the same journal issue, the group lead by Henkel published their design of 4th order 

CT design in 0.65pm BiCMOS technology [18]. Their results demonstrated that if quadra- 

ture CT CA modulation is used, the anti-aliasing IF bandpass filter can be eliminated. 

Furthermore, use of a CT polyphase filter eliminates the problem of an I and Q channel 

mismatch, while reducing the sensitivity of the circuit to excess loop delays. They reported 

the following data: power supply Vcc = 2.7V, power dissipation DCwT = 21.8mW, area 



CHAPTER 1. INTRODUCTION 5 

2.lmm x 2.9rnm, fo = 1 MHz, B W  = 1 MHz, SNDR = 56.2dB, and fclk = 25/100 MHz. 

The third generation of the original design proposed by the Raghavan group was pub- 

lished in 2004 by Cosand et al. [8]. A summary of the 4th order CT is as follows: In- 

GaAs technology, power supply Vcc = 15V,  power dissipation DCpwT = 3.5W, area 

3.3mm x 2.6mrn2, tunable center frequency range fo = 140/210MHz, B W  = 1 MHz, 

SNDR = 78 dB, and fcl = 4 GHz . 
This dissertation introduces the concept of CT B P  C A  modulators with fractional delays 

[50]. This novel 4th order CT BP concept was confirmed by experimental data as follows: 

SiGe technology, power supply Vcc = 3.3V; power dissipation DCpwT = 1.0/1.2W, total 

chip area is 2.3mm x 2.3mm, tunable center frequency range fo = 1851289 MHz, B W = 

20 MHz, maximal SNR = 50 d B ,  and fclk = 0.611.2 GHz. 

1.2.1 Current design trends 

Although there are numerous publications available concerning CT BP C A  modulators, on 

average, only one successful design per year has been reported over the last fifteen years; 

illustrating that casual attempts a t  modulator designs are very likely to fail. This leaves 

room for further improvement on both theoretical and practical sides of the problem. 

From the overview presented in the previous section, it would appear that the major 

development directions relate to increasing both the center frequency and SNR. However, 

there are many other desirable circuit features that could be emphasized, such as wider band- 

width, higher filter order, lower power requirements and tunability of the center frequency. 

R.esearchers have used all means available to achieve these goals; advances in theoretical 

work, fast technologies, and higher OSRs are the most commonly exploited methods. Typ- 

ical limiting constraints are power consumption and stability. Higher order topologies may 

deliver higher SNR values, however, they are inherently unstable. Conversely, designing 

modulators that are tunable to any frequency relative to the sampling clock, i.e. fs/n type 

as opposed to the fs/4 type, creates the potential for better utilization of the modulator 

functionality (frequency translation) and a reduction in power consumption through the 

use of lower clock frequencies. While the numerical methods generally used to  design the 

loop filter function do produce valid results, analytical methods may contribute more to the 

fundamental understanding of the problem. 

Due to the simplistic methods used to define the design space, the CT BP C A  center 

frequency and maximal SNR, fair comparisons of various designs proved to be difficult. 



CHAPTER 1. INTRODUCTION 6 

I I I I 

-< Ragh97 1411 

V - 2nd order r Thur91 [55] 

- 4th order 
0 - 6" order 

Schr02 [461 RaghOl [40] 
-1 

+Cosa04 [8] 

------------ ,This design . Enge99 [57] H 
MaurOO [35] . Gaow98a [ I  51 1 

Frequency [Hz] 

Figure 1.1: A comparison of CT BP CA modulator designs. 

The designs exhibit various levels of performance depending on their specific combination 

of modulator order, number of slicing levels in the A/D and D/A blocks, bandwidth and 

oversampling ratio. A qualitative figure of merit for the performance of the modulators 

listed in this section are shown in Fig. 1.1; the horizontal axis is the signal frequency, the 

vertical axis is the maximal SNR normalized over BW = l H z ,  and the tunability range is 

given by the horizontal line. 

1.3 Motivation and contributions 

The desire to create an efficient and versatile global wireless network is the dominant force 

behind both industrial and academic efforts to study the bandpass version of the modulator. 

The main focus of this work is analytical and behavioral modeling of a tunable 4th order 

CT BP CA modulator. There are two problems specifically related to CT type modulators 
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which motivated this work. 

Firstly, the tunability aspect of CA modulators is very promising in the context of a 

softwaredefined radio. The primary focus was to develop the analytical modeling method- 

ology which would enable fine tuning of the center frequency. Secondly, the loop delay 

problem in CT systems still requires further exploration. Models prior to this work always 

assumed that the system had an integer number of clock delays, with the loop delay being 

dealt with separately from the loop filter design. In this dissertation, a novel way of dealing 

with the loop delay is proposed, where the loop delay is incorporated into the loop filter 

design. The final outcome is a new subclass of fractional delay modulators. 

The contributions of this dissertation are as follows: 

1. The overall design methodology for the CT BP CA modulators includes the following 

steps and elements: 

1.1 The C T  models were generalized to include tunability; i.e, instead of only using 

f s /4  models, f,/n is introduced, where n is a rational positive number. In order 

to perform the generalization by means of an impulse invariant transformation, 

a new class of mapping functions was introduced. 

1.2 The loop delay problem was addressed by introducing a new class of CT BP 

CA modulators with a fractional delay. Using the general zero-delay analytical 

models as a starting point, the timedomain shift was introduced by means of 

Laplace and inverse Laplace transforms. 

1.3 The proposed models were verified in the traditional IC design environment, using 

a behavioral simulation modeling technique. Behavioral models of the lower level 

CA blocks were developed first, followed by the creation and simulation of the 

top level topology. As a result, throughout the whole design process, only one 

software tool is required for the top level CA simulation. Thus, the problems 

relating to design data exchange between the various software tools used during 

the design process were eliminated. Furthermore, the transistor level sub-blocks 

were verified within the behavioral model. 

2. The introduction of the fractional delay class of modulators created the following 

possibilities: 

2.1 The integer delay requirement, a limiting factor in the modulators design, was 
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removed; this implies that the traditional feedback DAC could be replaced with 

an adaptive analog delay line. As a result, the loop delay time was accounted for 

during the loop filter design phase. 

2.2 A novel loop architecture was proposed where the DAC was replaced with a 

programmable analog delay line. 

3. The design and implementation of a fully monolithic 4th order CT BP C A  modulator 

in 0.5pm BiCMOS SiGe technology. 

3.1 A 9,-C prototype chip was designed and implemented, using the architecture, 

design methodology and analytical models developed in this dissertation. Exper- 

imental results were shown to confirm the proposal and explain the discrepancies. 

Suggestions for future designs are presented. 

4. Possible applications of this newly proposed topology were explored. 

4.1 By exploiting the frequency tunability and replacing the traditional BP modula- 

tors, the developed technique may be applied to cases where the overall system 

operates with multiple frequencies, such as cell phones intended for worldwide 

usage. 

4.2 Frequency upconversion is one of the required functions in a signal transmitting 

path. Inherently, a C A  modulator is a frequency multiplier circuit. This mul- 

tiplication property, combined with the fractional delay approach, enabled the 

introduction of a fractional delay C A  upconverter. 

4.3 The inclusion of a power amplifier within the C A  loop created the potential for 

transmitter power efficiency improvement. A novel architecture was proposed 

and discussed. 

1.4 The dissertation organization 

The remainder of this thesis is organized as follows. Chapter 2 introduces the basic con- 

cepts of C A  modulations, including the quantization of a CT signal and its corresponding 

terminology. A linear model which was extended through the describing function model 

described in [2] is then shown. 
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In Chapter 3, theoretical details of CT BP CA modulators with fractional delays are pre- 

sented. A new family of mapping functions, which enabled the theoretical development, are 

described. Systematic methodologies for obtaining models of 2nd, 4th and 6th order modula- 

tors, along with their respective limitations, are described. Next, the creation of fractionally 

delayed modulator models via Laplace and inverse Laplace transforms is introduced. 

The concept of the behavioral modeling technique is described in Chapter 4. This tech- 

nique enabled the development of practical ICs using a standard set of IC design software 

tools. In Chapter 5, implementation details of the SiGe prototype chip are presented; the 

basic blocks are analyzed in the context of the proposed g,-C architecture. The experimen- 

tal setup and results are presented in Chapter 6. In Chapter 7, two new circuit architectures 

are proposed: a fractional delay upconverter and power amplifier within the CA loop. Pos- 

sible applications are then discussed. Lastly, Chapter 8 provides a general discussion of 

presented results, along with plans for future work. 



Chapter 2 

Basic principles of CA modulation 

This chapter introduces the basic principles behind C A  modulation, along with the adopted 

terminology used in this dissertation. Although the basic principles are intuitively simple, 

a detailed analysis of the C A  modulator is still under development; a complete closed-form 

analytical model covering all aspects of C A  modulation does not currently exist. As a result, 

researchers are forced to develop their own semi-empirical solutions. This chapter gives a 

brief introduction of C A  modulation; a more detailed introduction can be found in [27]. 

First, general reviews of signal quantization and quantization noise are presented, fol- 

lowed by basic assumptions and shortcomings. Secondly, an advanced linear C A  loop model, 

based on the describing function method [2], is presented in detail. This provides an il- 

lustration of an analytical model, which correctly predicts the existence of the maximal 

signal-to-noiseratio (SNR) value for the 2n%nd yd order loops. 

Readers who are intimately familiar with the fundamental concepts and terminology 

may safely proceed to Chapter 3. 

2.1 Quantization of a continuous signal 

In this section, a set of basic definitions are introduced, the quantization noise power is 

calculated for both sawtooth and sinusoidal signals, and the SNR formula for an ideal A/D 

converter is derived. 

Inherently, digital logic circuits process only two levels of an input signal, while analog 

logic circuits operate with continuous signals. Therefore, a quantizer is required to provide 

an interface between these two signal domains; i.e., it converts the continuous signal into an 



CHAPTER 2. BASIC PRINCIPLES OF CA MODULATION 
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Figure 2.1: Ideal four level quantizer: (top) input signal f (x), output signal y(x); (bottom) 
quantization error. 

n-level discrete step function. The output function for the linear signal f (x) = G x, where 

G is the signal gain, at the output of the quantizer resembles 

(+1.5, if (x 2 f1.0); 

where y(x) is a four-level discrete output function and x is the input signal. A quantizer is 

said to be uniform if the step size, A, between any two of the output levels is constant. For 

now, the assumption is made that the quantizer input and output have the same A value. 

Function (2.1) represents an ideal four-level quantizer, as shown in Fig. 2.1. Without 

loss of generality, we will assume G = 1 in the following paragraphs. 

A quantizer is said to be mid-rise if the output state changes at the midpoint of its 

input range; otherwise, it is said to be a mid-tread quantizer [39]. Fig. 2.1 depicts a mid- 

rise quantizer. In addition, a mid-rise quantizer has an even number of output levels, while 

the mid-tread quantizer has an odd number of output levels. 
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The quantization error J(x) is defined as 

where y(x) and f (x) are the output and input signals of the quantizer, respectively. 

The quantizer input range RI corresponds to the range of the input signal for which 

((x) < y. Outside of RI, ((x) is unbounded; this situation is referred to as overloading. 

Periodic signals can also cause overloading if their amplitude is larger than RI. The input 

range corresponding to the signal in Fig. 2.1 is RI = f 2. 

The output range Ro of a quantizer is defined by the same boundary conditions as ((x). 

In a uniform n-bit quantizer, RI is partitioned into equal width segments, each mapping 

onto a single output code. The output range corresponding to the signal in Fig. 2.1 is 

R Q = f 2 .  

Setting G = 1 results in RI = Ro; based on this assumption, A can be calculated as 

either output referred 

or, as input referred 

where n is the internal quantizer resolution and N is the effective number of bits. 

When the maximal input signal amplitude is mapped onto 2N output levels, where N is 

any integer greater than zero ( N  = 1,2 , .  . .) the system is referred to as an N-bit quantizer. 

Figure 2.1 depicts a 2-bit quantizer, with 22 output levels. Using (2.3) and (2.4), we can 

easily relate n to N.  

The term A, as defined previously, is also commonly referred to as the least significant bit 

(LSB). In the special case where N = 1, the gain G is arbitrarily set. In general, unity gain 

approximation is used, which loosely states that the 1-bit quantizer has G = 1. Therefore, 

it is inherently linear as f (x) passes through only two points, selected arbitrarily; this is the 

main reason for its widespread use. 

2.1.1 Quantization noise 

It can be concluded from the previous section, that quantization errors occur even in ideal 

quantizers and subsequently, in all AID converters. Since the quantization error signal is 
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fundamental to the CA modulator's operation, its rms and average values are derived in 

this section. 

The error signal's rms and average values were determined by applying a stochastic ap- 

proach, used for general input signals [27]. Two assumptions are made: 1) the quantization 

error signal is random, with its amplitude always bounded by f A/2; i.e., only the non- 

overloaded quantizer is considered; and 2) the input signal is sampled at a sufficiently high 

sampling frequency, f, = 1/T. Furthermore, a linear ramp input signal is applied, as shown 

in Fig. 2.1. 

By definition, the average value of ((x) is calculated using a probability density function 

pdf (0. Following the first of the two assumptions, pdf (() = 0 for ( > IfA/2l. 

Therefore, the probability density function is 

Similarly, for the root mean square value (,,, we find 

From (2.6) we see that that IT,, is not a function off,. When a quantized signal is sampled 

at f, = *, where T is sampling period, all of its power is contained within the frequency 

band f 5 $; a two-sided definition of power. Furthermore, the quantization error signal's 

spectral density Sq(f) is constant within the frequency range defined by f, and is calculated 

2 A 2 1  2 
Isq(f)l = -- = l rms  

12 fs 
After quantization, the signal is passed through a brick wall profile LP filter with a 

cut-off frequency of fo, H(f) = 1 for f 5 f fo. The signal power remains unchanged as its 
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content is below fo. However, the quantization error power Pn(f) is reduced to 

where OSR is defined 

It is assumed that 

A2 1 A2 1 JTms 2 - -- - - 2f0 = -- - - 
12 fs 12 OSR Zo 

as the ratio of fs to the Nyquist frequency 2 fo. 

I 
J s OSR E - 
2fo 

the load impedance is Zo = 1, which conveniently allows the rms value 

to be calculated as JpoWer. In addition, by doubling the OSR in (2.9), the quantization 

noise power decreases by 3dB. Thus, an increase in fs alone is not an efficient way to 

improve the SNR. 

2.1.2 Sinusoidal and sawtooth input signals 

The SNR will now be calculated for two well known input signals: sawtooth and sinusoidal. 

For a sawtooth signal with period T and an amplitude equal to the maximal input range 

Am = RI, the rms power is given by 

Assuming an input referred A, where Am = RI = A2N, and equations (2.11) and (2.4), we 

find 

a 
S N k a Z  = 10 log (i:) = 20 log - 

Jrz 
= 20 log 2N = (6.02N) dB (2.12) 

Similarly, for a sinusoidal signal with period T = 27r and peak-to-peak amplitude equal to 

the maximal RI, i.e. Am = y, we write 
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Input signal relative to Vref [dB] 

Figure 2.2: Ideal S N R  versus input signal level (N=16). 

Thus, calculation of the S N R  for the sinusoidal input signal yields 

From (2.14) and (2.12), we conclude that a sinusoidal signal has 1.76 dB more power 

than the corresponding sawtooth signal. Equation (2.14) is a well known result, generally 

used to estimate N relative to SNG,, ,  for an AID converter. 

2.1.3 SNR of an ideal A/D converter 

Formulas for the ideal cases, derived in (2.12) and (2.14), are used as first estimates of 

the S N R  and dynamic range ( D R )  for an ideal A/D converter. When G = 1,  the D R  is 

equivalent to S N G a x .  Figure 2.2 depicts the relationship between the SNR,  input signal 

magnitude and D R ,  for a sinusoidal signal with a maximal amplitude of Vrej and a quantizer 

with N = 16. From equation (2.14), it is readily found that for N = 16, the S N G a X  is 

approximately 98 d B .  
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The quantization noise inside the non-saturated region was shown to be bounded by 

f A/2. For a 1-bit quantizer, the maximal peak-to-peak amplitude of a sinusoidal signal is 

A; i.e, based on (2. Id), SNG,, = 7.78dB7 implying that an additional technique is required 

to improve the SNR. 

At least two obvious methods exist to increase the SNR, each of which have their practical 

limitations. In the first method, N is increased in order to increase the input signal range 

relative to f A/2, thereby reducing the quantization noise. An increase in N reduces the 

SNR by approximately 6 dB per each added bit. However, implementation problems become 

quite challenging; design of a multi-bit quantizer is a non-trivial task, as linearity problems 

become dominant at an early stage. In the second method, the OSR is increased and the 

noise power within fo is reduced by approximately 3dB/octave, in accordance with (2.9). 

Using a simple 1-bit quantizer is very straightforward to implement, however, the gain 

resulting from an OSR increase is modest. 

Clearly, these two choices do not achieve a practical 16-bit resolution; therefore, addi- 

tional techniques are required to achieve that goal. One possible solution is using a noise 

shaping technique, which is the main product of CA modulation. 

2.2 Linear Model of a CA Modulator 

Figure 2.3 depicts a block diagram for a linear CA loop. The quantizer has been replaced 

by a summing node, where e[n] is Gaussian error signal. The following assumptions are 

made regarding the quantization error signal: 

the error signal is a stationary random process 

0 the error signal and input signals are not correlated 

0 the error signal has a white noise profile 

0 the error signal has a uniform probability distribution 

These assumptions are referred to as the soft version of the white noise approximation 

[37, 361. This approach will be used to describe the noise shaping operational principles. 

Furthermore, the white noise model allows for a precise calculation of the quantization 

error's root mean square, for a large variety of inputs and non-loading systems. The main 
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Quantizer 

Figure 2.3: Block diagram of a linear model for a CA modulator loop. 

drawback of this approach is the inability to predict idle tones and noise patterns; it also 

does not account for excess noise due to overload [36]. 

Two independent transfer functions are available to describe the feedback loop in Fig. 2.3. 

The first is a signal transfer function (STF) ,  which connects the input signal u[n] and output 

signal y[n] according to 
v r - 1  u r - 1  

LLJ - STF[Z]  = - - LLJ 

U [z]  1 + H [z] F [z]  
The second is a noise transfer function ( N T F ) ,  which follows the loop according to the 

assumption that e[n] is the input node and y[n] is the output node and is defined by 

Y[zI - NTF[z]  = - - 
1 

E [z] 1 + H [z] F [z] 

Due to the existence of a sampled quantizer inside the loop, it is convenient to describe 

the loop functions in the z-domain. In order to demonstrate the noise shaping principle, 

both the H[z]  and F[z]  functions need to be specified. Without loss of generality, we 

select F[n]  = 1 and H[n]  to be an integrator of order m. For this configuration, the STF 

degenerates into a delay function and the NTF drops to zero at DC. Consequently, the 

STF remains constant regardless of frequency, while the noise is shaped away from the low 

frequency region. For example, substituting H[z]  = z - ' / ( I -  z-') into equations (2.15) and 

(2.16), results in 
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0 
frequency 

Figure 2.4: Graph of S T F ( z )  = z-I and N T F ( z )  = (1  - z - ' ) ~ ,  m = 1,2 functions. 

A plot of these two functions for m = 1,2 is given in Fig. 2.4, with the frequency ranging 

from DC to fs/2. Clearly, the noise is shaped away from DC, with the higher order function 

having a lower noise floor inside the DC region. 

2.2.1 SNR of mth-order CA modulator 

In this section, a more general form of equation (2.14) is derived for the SNR. It is important 

to consider the initial estimate of the SNR relative to the OSR, the N T F  order m, and 

number of bits n, when determining the CA architecture capable of achieving the required 

system specifications. 

After applying complex algebra transformations to (2.18), the amplitude of the nbth 

order NTF is calculated according to 

N T F ( r )  = (1  - I-')" + 1 NTF( f )  I = sin (rL)] 
f s  

Using the results from (2.9) and (2.19), a more general expression for the quantization error 
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power is 

where the assumption f << fs (or equivalently OSR >> 1) allowed for the approximation 

sin(x) = x. A system with the following configuration is selected: an output referred 

sinusoidal signal, with maximal amplitude Am = Ro/2, a unity quantizer gain, i.e. RI = 

Ro, an m-order loop filter and an n-bit internal resolution quantizer. Then, from equations 

(2.3), (2.14) and (2.20), it follows that 

SNk, ,  r 10log (2) = 20 log [(2. - 1)L JZ;;E?-TOSR(m+t) 
7rm I (2.21) 

The SNR, as calculated using (2.21), for various loop orders (m = 0,1,.  . .8) and a 1- 

bit quantizer ( N  = 1) is shown in Fig. 2.5. This graph illustrates the trade-offs between 

complexity (CA loop order) and clock speed (OSR), for a given SNGax .  There are many 

different configurations that will achieve an SNRmax = IlOdB, such as a 2n,d order loop with 

OSR = 256, a 3'rd order loop with OSR = 64, or a 4th order with OSR = 32. In addition, 

by doubling the OSR, different gains in SNR can be achieved; for example, 3 dB for a zero 

order shaping loop, 9 dB for a lSt order shaping loop and 15 dB for 2n,d order shaping loop. 

For a detailed mathematical analysis of the quantization error, refer to [37, 27, 361. 

2.3 Describing function method 

The model described in the previous sections is useful for a first estimate of the SNR. How- 

ever, the model's main shortcoming is its incorrect prediction of the input signal's maximal 

amplitude and hence, the maximal SNR. In addition, the model does not provide any infor- 

mation regarding CA modulator stability. These inaccuracies are due to the nonlinearity of 

the quantizer, making it difficult to describe and solve for analytically [29]. Therefore, previ- 

ously published designs used simulations to estimate both the maximum SNR and stability 

region. 

The first model which predicts the existence of the maximal amplitude for the input 

signal was published by Ardalan and Paulos [2]. While the Ardalan model results are 

conservative compared to the simulation results, they are still similar to actual systems 1501. 
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Figure 2.5: SNR of mth-order CA modulator, m = 1,2 , .  . . ,8. 

.]though subsequent research has produced more sophisticated models [42, 131, the Arda 

model will be used to introduce the problem of maximal SNR. 

Jan 

2.3.1 Generalized CA loop mapping 

By selecting appropriate Hi[z] and H[z] functions, it can be shown that any CT signal or 

multi-loop block can be mapped into the general z-domain architecture (Fig. 2.6). Without 

loss of generality, the Ardalan model is essentially a remapping of the general model (Fig. 2.6) 

into a distributed feedback CA topology (Fig. 2.7). This is accomplished by equating the 

loop equations for both architectures, thereby producing the following equations 

H = anH2(1 + an-lHl(1 + ... + a2H1(1 + alH1))) (2.23) 

where a1 . . . a n  are gain stage parameters. For example, for a 2nd order CA loop (n = 2) 

equations (2.22) and (2.23) become 



CHAPTER 2. BASIC PRINCIPLES OF C A MODULATION 

I Quantizer 

Figure 2.6: Block diagram of a general CA modulator loop. 

I I Quantizer 

- 

Figure 2.7: Block diagram of a distributed feedback CA modulator architecture. 

where both H [ z ]  functions are integrator blocks described by 

Note that for loop orders of n 2 3, selecting the appropriate ai parameters becomes very 

difficult, as they also control the CA loop stability. In the following sections, the examples 

used ai = [l 11 for the 2nd order loop and ai = [0.1 0.1 11 for the 3rd order loop. 

2.3.2 Nonlinear quantizer 

It is common practice in control theory to neglect the feedback error signal y (t), as it is small 

in comparison to the input signal x(t). For a CA modulator loop, however, the amplitude 

of y(t) is almost the same as x(t); this is particularly true in the case of a 1-bit quantizer. 

In order to model the nonlinear quantizer N(x  + y), a two-path linearized model is 

introduced, consisting of two gain stages K, and Ky (Fig. 2.8). The input signal x(t) is 

processed in path K,, while the path Ky processes the feedback error component (i.e., the 

noise). In a traditional quantizer model, there is no distinction between the two paths. 
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Figure 2.8: Block diagram of a linearized two-path model quantizer. 

The output of the two-path model p(t) is compared to the output of the real quantizer 

u(t), in order to determine the values for K, and Ky. The difference between u(t) and p(t) 

is defined as the difference signal ~ ( t ) ;  the goal is to minimize the mean square value of ~ ( t ) .  

By definition, the SNR is [2] 
2 

0, SNR = (2.27) 
anb 

where a: is the input signal variance (power) and a:b is the noise variance (i.e. noise power 

within the signal bandwidth). The input signal variance is dependent upon the input signal 

statistics. Two commonly used input signals in CA loop analysis are DC and sinusoidal 

signals. The DC case is trivial since a: = m:, where m: is the DC value of the input signal. 

For a sinusoidal signal, a: = a:/2, where a, is the sinusoidal amplitude as given in (2.13). 

Substituting the twwpath model into the general CA modulator loop (Fig. 2.6) and 

remapping (K,, Ky) into (K,, Kn),  leads to the following two systems of equations: 
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DC input signal: 

A 
Kx = - erf (p) 

me 

Thus we have five equations and four unknown variables in this system: the error signal 

variance 02, the noise variance a:, Kn and Kx. In addition, two dummy variables, p and 

me, are defined as p = erf-l(m,/A) and me = p m .  One of the equations may be used 

as a check function in order to estimate the convergence of the algorithm used to solve the 

nonlinear coupled equations. 

SIN input signal: 

Again, the system has five equations and four unknown variables. The function M ( a ,  y, x) 

is the confluent hyper-geometric function [I], defined as 

where r ( x )  is the well known gamma function. 



CHAPTER 2. BASIC PRINCLPLES OF C  A MODULATION 

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 

Amplitude [dB] 

Figure 2.9: Calculated SNR for DC and SIN signals (f,/ fb = 256). 

Numerical solutions of (2.28) through (2.37) yield SNR values for the two cases of input 

signals (Fig. 2.9). In comparison to Fig. 2.2, we see that the Ardalan model correctly 

predicted the existence of a maximal input signal, which could be processed before the 

C A  loop became unstable; this led into a collapse of the SNR value. In comparison to 

Fig. 2.5, we see that the ideal model of the 2nd order loop with OSR = 256 predicted an 

SN&,, % llOdB, while Fig. 2.9 gives an S N k , ,  x 98dB. The numerical solutions also 

show that (K,, K,) are dependent on the amplitude of the DC input. It is believed that 

the maximum SNR is produced by this phenomena, which also causes instability in higher 

order C A  modulators. 

2.4 Summary 

The fundamental principles and definitions required for C A  modulator operation were in- 

troduced. The ideal quantization process was described in the context of maximal SNR 

calculations. A linear model of a C A  modulator was presented, along with common as- 

sumptions about the quantization error signal. The Ardalan model, the first model that 

could predict the existence of a maximal input signal that could be processed prior to the 

modulator becoming unstable, was then discussed. In the following chapter, an s-domain 

tunable CT BP C A  modulator model with fractional delays is presented. 



Chapter 3 

Fractional CA modulators 

Chapter 2 introduced the basic principles and terminology required to understand the ma- 

terial presented in the following sections. This chapter focuses on the development of an 

analytical procedure for obtaining a closed-form transfer function for the loop filter of a 

tunable CT BP CA modulator. Analytical models for tunable versions of 2"d and 4th order 

CT BP CA loops, as well as the fs/4 variant of the 6th order system, are presented. 

The developed procedure is extended to introduce a new concept of CA modulators with 

fractional delays [50] (f CA). Equation details for 2"d, 4th and 6th order tunable CT BP 

CA modulator designs are shown. A novel CA loop architecture, which has the traditional 

CT BP loop filter function replaced by a fractional filter function, is proposed. 

3.1 Theoretical background 

One challenge in designing a CT BP CA modulator is the lack of an s-domain analytical 

expression for the tunable loop filter transfer function. Hence, the first BP CA designs were 

achieved simply by following intuition and replacing the LP CA loop filter with a BP loop 

filter [55, 201. As a result, the designs were non-optimal for the given loop order. Shortly 

after, an analytical form of the second and fourth order fs/4 CT BP loop transfer functions 

were published by Shoaei in [48]. These functions were derived through the application of 

the impulse invariant transformation. 

The current trend is to create a tunable, higher order C T  BP CA modulator for RF 

frequencies [49] [52]. As analytical results for a tunable CT BP CA modulator do not exist, 

virtually all currently published tunable designs were developed with the help of numerical 



CHAPTER 3. FRACTIONAL CA MODULATORS 

loop filter quantizer 

- 1 -  

CT domain DT domain 

Figure 3.1: Block diagram of a CT CA modulator. 

filter design methods. However, analytical solutions are almost always preferable as they 

can offer more insight and flexibility in the design process. 

Control and compensation of the excess loop delay is another important property that 

is considered during CT BP CA design [6] [19]. The analytical procedure outlined in this 

chapter enables the proposal of a novel CA loop architecture, where the traditional CT BP 

loop filter function is replaced by a filter function with fractional delays. The architecture 

exploits the fact that the overall CA loop timing (including the excess loop delay) must be 

equal to a fractional multiple of the sampling period, which is matched by the CT loop filter 

transfer function. 

A block diagram of a CT CA modulator loop is shown in Fig. 3.1. The CT domain 

signals u(t) and y(t) are added before being processed by the CT loop filter H(s).  The 

output signal from the filter G(t) is sampled by a switch at a frequency of f,. The DT signal 

G(n) is then quantized by the A/D block. The feedback loop consists of a D/A converter, 

which is usually modeled with a zero-order-hold (ZOH) function. The output of the ZOH 

is the CT pulse function y(t). 

Clearly, the overall CA loop gain is a DT function. Therefore, an exact correspondence 

between the CT filter H(s) and its equivalent DT filter H(z)  can be derived only at  the 

sampling points. 

In the following subsections, the mathematical principles used in this chapter are out- 

lined. 
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Figure 3.2: DAC pulse forms for NRZ, RZ, and HZ. 

3.1.1 DAC pulses 

A ZOH block can deliver three forms of pulse shapes: non-return-to-zero (NRZ), return-to- 

zero (RZ) and hold-return-to-zero (HZ) [32] ,  as shown in Fig. 3.2.  For 50% RZ duty-cycle 

pulses, the pulse width p is T / 2 ;  in general, 0 < p 5 T. Depending upon the value of p, the 

RZ pulse degenerates into two cases: for p = 0, it results in the theoretical 6(t) function, 

while for p = T, it becomes the NRZ pulse. 

Time domain definitions 

The time domain definition of a pulse Rp(t) is based upon the step function u(t) as follows 

S-domain pulse forms 

The Laplace transform of (3.1) to (3.3) results in 

3.1.2 Discrete time to continuous time transformation 

The mathematical equivalence between the H(z)  and H(s)  functions can exist only at the 

sampling points. In other words, at the sampling points, the inverse z-transform of H(z) 
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must be equivalent to the inverse Laplace transform of H ( s ) ;  a mathematical description is 

as follows 

where T is the sampling period, p is the pulse width, k is the sampling index, H ( z )  is the 

z-domain representation and H ( s )  is the equivalent s-domain representation of the loop 

filter. 

A time domain form of (3.7) to (3.9) can be written as 

h ( k T )  = [Rp ( t )  * h( t ) ]  
t=kT 

where %(t )  is the corresponding time domain pulse, h( t )  is the impulse response of the 

CT function H ( s ) ,  h ( k T )  is the impulse response of the DT function H ( z ) ,  and * denotes 

convolution. Relations (3.7) through (3.9) along with (3.10) are known as the pulse invariant 

transformation. 

Single-pole function transformation 

In order to solve (3. l o ) ,  the exact form of both the pulse Rp(t)  and the filter impulse response 

h ( t )  are required. The residual form of a DT transfer function with only a single pole is 

given by 
N N 

H ( z )  = C -- - ak 
- ' (3.11) 

k=l k= 1 

where zk is the single pole, [29]. At the same time, the equivalent s-domain transfer function 

can be written as: 

with the impulse response in the form of 
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where the hat (^ )  is used to indicate continuous time parameters [32]. 

By substituting (3.1) and (3.13) into (3.lO), it was shown [48] that the impulse invariant 

transformation requires that 

Gk 
a k  = - (I - eskT) and z k  = eskT 

-sk 

Multiplepole function transformation 

The same procedure applied to the singlepole system can be applied to multiplepole 

systems as well. All results presented in this chapter assumed an NRZ pulse shape; however, 

the same procedure applies to other pulse shapes as well. Furthermore, the following three 

cases of the H(s)  function are considered: 

1) H(s)  contains only single poles 

2) H(s) contains double poles 

3) H(s)  contains triple poles 

and are referred to as the single-pole, doublepole and triple-pole functions, respectively. In 

Table 3.1, transformation functions for the partial fraction terms with pole orders of up to 

three are listed. Note that the analytical complexity of the required derivations becomes too 

complicated for the pole orders greater than three; in these cases, the help of a mathematical 

tool is required. 

3.2 CA loop filter transfer function 

The underlying assumption in most of the z-domain C A  loops expressions, is that the 

sampling frequency is four times higher than the signal frequency. The equivalent description 

is that the complex signal frequency is at the 6' = n/2 angle. Indeed, the C A  loop transfer 

functions within this category are referred to as the fs/4 functions. 

The natural starting point for determining tunable versions of the C A  transfer functions 

is the fs/4 case, as the z-plane location of the input signal frequency is at the mid-point 

between the DC frequency (6' = 0) and half the sampling frequency (6' = n). This symmetry 
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enables the relative change of the input signal frequency to the sampling frequency equally 

in both directions. 

3.2.1 EA fs/4 loop filter functions 

CT BP CA loop function development starts with the z-domain description of the fs/4 CA 

noise transfer function (NTF). One way to create the NTF is to place n resonators on the 

signal path of the CA loop 1361 

N T F  - 1 
Hm(z) = N T F  

where n = 1,2,3,  ... is the number of resonators which identifies the BP CA order as m = 2n. 

Substitution of (3.15) into (3.16) for m = 2,4,6 results in second, fourth and sixth order 

fs/4 filter transfer functions, respectively, as follows 

Each of the transfer functions Hm(z) can be written as a sum of its partial fraction terms, 

where each of the terms has the following general form 

where a, is either in complex form a, = j a,o or in real form a, = a,o, (az0 E R), po is a 

pole, x = 1,2, .  . . , n and n is the number of resonators. The poles in (3.17) through (3.19) 

have their real part equal to zero; therefore, po = f j .  

Specifically, (3.17) to (3.19) are rewritten in the following forms 

1 .  1 .  
5-1 + -2-1 H2 (2) = - 

z + j  z - j  
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A partial fraction form is always symmetrical. If the partial fraction term Q(z) has complex 

a,, then it is always paired with a partial fraction term having complex conjugate a:. The 

first and last two terms in (3.23) are examples of partial fraction terms with a complex 

conjugate pair of a,. 

If the partial fraction term Q(z) contains real a,, then its pair always has the same real 

a,; for example, the third and fourth terms in (3.23). We will return to this observation in 

the following sections. 

3.2.2 The partial fraction terms generalization 

Clearly, equations (3.18) and (3.22) are identical. However, the general a, term in (3.20) 

does not have its real part equal to zero. For example, a function with two double poles 

(3.22) corresponds to the following general form 

where a,k = azkr + j a,ki, ( k  = 1,2), (azkr, a,ki E R) are the real and imaginary parts of 

the partial fraction coefficients, respectively, and the "*" denotes the complex conjugate 

operation. Similar expressions can also be derived for the other two cases. 

An interesting observation can be made by comparing the numerator in (3.18) with 

its corresponding expanded numerator in (3.24). The numerator in (3.18) consists of even 

order terms only, while the numerator in (3.24) consists of both even and odd order terms. 

Moreover, the maximum order of the numerator in (3.24) is one step higher then the order 

of the numerator in (3.18). 

The above observation points to one of the possible ways to convert the fs/4 transfer 

function, (3.21) to (3.23), into an equivalent tunable expression. Intuitively, we could assume 

that the a,k partial fraction constants in (3.24) have a trigonometric (i-e., complex) form 

a,k = f (8, sin 8, cos 8). 

For example, the odd order numerator terrns in (3.24) could be multiplied by cos 8, while 

the even order terms could be multiplied by sing. In this case, letting 8 = 7r/2 would be 

correct as the newly created "tunable7' function would collapse into the fs/4 case. However, 
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Figure 3.3: The s-domain polezero plot for a 4th order ( f,/4) CT BP CA, with f ,  = 4  GHz. 

as one would expect, this approach is oversimplified and would not produce a correctly 

working CA loop filter function for any other value of 0. In the following subsection, 

additional arguments to help us determine the shape of the a,k  function are introduced. 

With the help of those arguments, we intend to further reduce the set of possible a,k  

functions from the infinitely large number of choices down to some finite and manageable 

number. 

3.2.3 The amplitude response 

Any rational function can be presented in the following form 

( j w  - z l ) ( j w  - z 2 )  . . . ( j w  - z,) 
= K  

( j w  - ~ 1 ) b J  - P I )  - - .bJJ - pn) 

where A ( w )  is the complex magnitude, 4 ( w )  is the complex angle, n is the number of poles, 

m is the number of zeros, K  is the gain factor, zi are zeros and pi are poles of H ( w ) .  
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Also, each of 

in the s-plane represents a vector length from the current jw to the respective pole or zero. 

After substituting (3.26) into (3.25), the magnitude of the H(w) function can be written as 

By inspection of (3.27), it can be reasoned that the shape of the magnitude function I H(w) ( 

will not change, if the poles and zeros are moved together and the relative polezero ratios 

are kept constant. 

For example, the s-domain fs/4 version of (3.18) has pole-zero locations as shown in 

Fig. 3.3. As long as the relative positions of the poles and zeros are the same, moving the 

poles along the j w  axis will not change the shape of the familiar BP CA loop NTF and STF 

response plots. At the same time, the maximal gain of (3.25) can be observed to ensure 

that it complies with Lee's rule [34]. 

Obviously, there are an infinite number of possible s-plane trajectories for the poles and 

zeros, which would still preserve the same transfer function shape. Some of the possible 

paths are suggested in Fig. 3.3. Also, note that the movement of poles along the jw axis in 

the s-plane is equivalent to tuning the center frequency of a CA loop transfer function. 

An interesting observation from Fig. 3.3 is that the poles and complex pairs of zeros have 

almost the same absolute values, which puts them close to the same circle. That being the 

case, the goal is to propose a a,(j) + a,(j, 8, sin 8, cos 8) mapping, such that the pole-zero 

trajectories come close to the ones in Fig. 3.3. 

3.3 Mapping functions 

Following the arguments made in the previous section, the conclusion is reached that the 

process of converting the fs/4 partial fraction terms @(z) into their corresponding tunable 

versions is not unique; this is due to the infinite number of 9(z ,  8) functions that would 

collapse into the 9(z)  form at 8 = 77-12. Thus, the exact analysis of this unconstrained 

problem is not possible. A more intuitive approach must be taken in defining the necessary 

set of a,k function constraints. 
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Type Mapping function 

sin 20 cos 20 
a,(j, 0) = -- - j 2 aZo- 

2 sin 0 2 sin 0 

a,(j,0) = -- 
2 sin 0 

a,(j, 0) = - cos 0 + j a,o sin 0 

Table 3.2: Mapping functions 

In this section, one of the possible mapping function families for a,(j) H a,(j, 0, cos 0, sin 0) 

is presented. The mapping functions are applicable to tunable CT BP CA modulators of the 

second and fourth order. The direction of the functions is very important, so let us define 

positive type  a s  the clockwise rotation and negative type as the counter-clockwise rotation of 

the mapping functions. In addition, the complex conjugate pair of each mapping function 

is also included. As discussed in Section 3.2, a, can be either real or complex. The two 

possible cases are considered separately. 

3.3.1 Mapping functions for complex a, 

In order to reduce the number of possible a, functions, the following set of s-plane con- 

straints is introduced: 

(a) a,(0) = j a,o for 0 = n/2, i.e. a,(0) crosses the imaginary axis at j a,o. This constraint 

was already introduced in Section 3.2.2 as the most logical way of guaranteeing that 

at  least the fs/4 case is covered. 

(b) IR{a,(0))I 5 1, i.e. a,(0) is bounded by f 1 on the real axis. Even though the real 

boundaries can be anywhere, the f 1 limit seems a logical choice, considering that the 

imaginary parts are a fraction of one and the sin and cos functions are always equal 

to or less than one. 
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Figure 3.4: Mapping functions of: (a) type I; (b) type 11; (c) type 111; and (d) type IV. In 
this example, a, = j 314; the fs/4 case is marked with a black dot. 

(c) a,(@) has no loops. The introduction of non-smooth curves with loops would certainly 

result in higher order analytical forms that are too complicated. 

Surprisingly, the above constraints result in only four possible function shapes for the com- 

plex a,, which are shown in Fig. 3.4. The four functions are referred to as type I, 11, 

I11 and IV. Analytical forms of these four functions are shown in Table 3.2, for positive 

cases only without the complex conjugate pairs. All four functions cross through the point 

aZ(7r/2) = j a , ~ ,  which corresponds to the fs/4 case (black dot on the plots). 

Mapping function of type I 

The type I function has an imaginary part limited by Z{a,(O)) = -co for 0 = 0, T. 



Mapping function type I1 

The type I1 function has an imaginary part with the following limits: Z{a,(6)) = -co for 

6 = .ir and Z{a,(6)) = 0, R{a,(6)) = 1 for 6 = 0. 

The analytical result shown in Table 3.2 and Fig. 3.4 is for a,o = 314 and is easy to 

adjust for other values of a,o, while still preserving the same function shape. 

Mapping function of type I11 

The type I11 function has an imaginary part with the following limits: Z{a,(6)) = -co for 

6 = .ir and Z{az(6)) = +co for 6 = 0. 

Mapping function of type IV 

The type IV function has the following limits: Z{a,(6)) = 0, R{a,(6)) = -1 for 6 = .ir and 

Z{az(6)} = 0, R{a,(6)) = 1 for 6 = 0. 

3.3.2 Mapping function for real a, 

Our constraining condition for a real a, corresponds to constraint (a) in the complex a, case: 

the crossing point on the real axis (i.e. the f,/4 case) is satisfied for az(n/2) = a,o, a , ~  E R. 

A complex function that satisfies the above condition, among an infinite number of 

other choices, is the mapping function which describes a full circle, as 6 = -.ir,. . . , +.ir in 

the s-plane. This function is referred to as type V and its analytical form is shown in 

Table 3.2. 

3.4 Zero delay CT BP CA modulators 

The transformation functions outlined in Sections 3.1 and 3.3 can now be applied to deliver 

the corresponding s-domain filter transfer functions. The following sections show results 

for the second, fourth and sixth order CT BP CA modulators. Unless otherwise stated, 

all examples used the following settings: f, = 4 GHz, SNR measured over BW = 20 MHz, 

input signal amplitude vi, = 0.27 V, comparator output levels f l V  and 16384 point FFT. 

3.4.1 Second order CT BP CA 

The application of type I to IV mapping functions and the transformation functions listed 

in Table 3.1 to (3.17) and (3.21) yields eight possible outcomes. However, only four of them 
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Figure 3.5: A comparative plot of 2nd order CT BP C A  functions corresponding to the four 
types of positive mapping functions; averaged curves shown. The legend refers to the type 
of mapping function used; for example, "lp" refers to the positive mapping function of 
type I. 

produce correctly working CT BP C A  modulators, all of which are associated with the 

positive type mapping functions. Each of the four resulting s-domain functions exhibits a 

different tuning range, shown in Fig. 3.5. The legend refers to the type of mapping function 

used; for example, "lp" refers to the positive mapping function of type I. 

The analytical s-domain expression of the transfer function associated with the positive 

mapping function of type I is 

1 (2 cos @+I) 1 1 (2 cos 8-1) 82  -- 
2 sine T ' + Z  (cos8-1) p 

Ho(s) = e2 
s2 + p 

with the other three functions having similar expressions. Note that application of the 

positive mapping function of type I exhibits the widest tuning range. However, for signal 

frequencies of .fs/16 and lower, the modulator practically degenerates into a very good low- 

pass C A  modulator. Application of the type IV mapping function yields a function with 

a very uniform and wide tuning range. The last two functions exhibit a narrower tuning 

range, as well as a larger amount of overtones in the frequency domain response. 
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Figure 3.6: A comparative plot of 4th order CT BP CA functions corresponding to the four 
types of positive mapping functions; averaged curves shown. 

3.4.2 Fourth order CT BP CA 

The application of type I to V mapping functions and the transformation functions listed 

in Table 3.1 to (3.18) and (3.22) yields sixteen possible outcomes. 

Again, only four of them produce correctly working CT BP CA modulators, all of which 

are associated with the positive types of mapping functions. 

Continuous time transfer function 

The loop filter transfer function H(s),  associated with type I1 and V mapping functions, 

produced the modulator with the widest tuning range, shown in Fig. 3.6 under label "2p5pn. 

The exact form of the s-domain function "2p5p" consists of a third order numerator and 

two double poles displaced from the center frequency by f 6: 
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z-plane s-plane 

Figure 3.7: Polezero plots for a 4th order CA modulator, with 8 = ~11.1,. . . , ~ / 4  and 
f, = 4 GHz. The complex poles and zeros move clockwise in the z-plane; the real zero first 
moves to --cm for 8 = 7r/2 and then approaches the origin from +m. At the same time, the 
complex poles and zeros move outwards in the s-plane, while the real zero moves from left 
to right. 

where, 

8 sin 8 1 
Ho3 = - - -- - - 

2 (1 - cos8) 4 

o2 (3 - 4cos8) 8 sin 8 
HO2 =- - - 

4 (1 - cos 8) 2 (1 - cos 8) 

O4 3 - 4 ~ 0 ~ 8  
Hoo =- 

4 (1 - cos 8) 

and S is the separation angle between the pole pairs and the center notch frequency [52]. 

For S = 0, the two pairs of poles collapse into a double pole. 

Tuning range 

Each of the resulting four s-domain functions exhibits a different tuning range, shown in 

Fig. 3.6. The code used in the legend is as follows: the first two alphanumerics specify the 

mapping function type being used for the first and second term in (3.22). For example, 

"lp" specifies a positive mapping function of type I. Similarly, the last two alphanumerics 

specify the mapping function being used for the third and fourth term in (3.22). Note the 

use of the complex conjugate mapping functions in both cases. 
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samples [n], time [sec] 

Figure 3.8: Impulse response h(t) and corresponding tunable h[n]. 

The actual pole-zero trajectories of (3.29) are shown in Fig. 3.7, for 6' = ~ l l . 1 , .  . . , ~ 1 1 6 .  

Polezero locations for 6' = ~ / 1 . 5 , ~ / 2 ,  and ~ 1 2 . 5  are shown for comparative purposes. For 

a tuning range of 6' = ~ l l . 1 , .  . . ,7r/4, the s-plane pole-zero trajectories are similar to the 

ones shown in Fig. 3.3. 

Impulse response 

The pulse invariance equivalence corresponding to the tunable z-domain version of (3.18) 

and its corresponding s-domain function (3.29) is shown in Fig. 3.8, for 6' = ~ 1 1 . 5 ,  ~ 1 2 . 5 .  

The first two samples of this function are equal to zero in the case of the fs/4 modulator 

[48]. A change in the tuning parameter 6' causes the second sample to move away on either 

side, while the rest of the samples follow accordingly. 

The plot confirms the impulse invariance equivalence of the s-domain function with its 

counterpart in the z-domain. 

Maximal SNR 

A commonly used linear model for predicting theoretical maxima of SNR was described in 

[36] by the following formula 
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where b is the number of the quantizer bits, n is the modulator order as defined in (3.15), 

and OSR is the oversampling ratio. For the results presented in this chapter OSR = 

fs/(2 BW) = 100, which means the linear model predicts S N h , ,  = 88.9 dB. 

Another often cited model for predicting the maximal SNR was published in [2]. It was 

based on the describing method and later modified in [42]. The original "Ardalan bound" 

version was used as a comparison, with simulation results of (3.29). In the simulations, 

a sinusoidal input signal was used to generate plots for the three values of 0, shown in 

Fig. 3.9. While the Ardalan bound is more conservative then the linear model and predicts 

SNL , ,  = 77.6 dB, the actual simulations show a value of SNR,,, = 86 dB. 

STF and NTF functions 

The AC simulation results for NTF and STF related to (3.29) are shown in Fig. 3.10 and 

Fig. 3.11, respectively. The tuning parameter 0 controls the position of the notch in the NTF 

response, as well as the centering of the STF pass-band response. One of the commonly 

cited criteria for CA loop stability is referred to as Lee's rule [34]. In its original version, 

the maximal allowed gain for these two functions was set at two (i.e., 6dB). However, most 

researchers further constrained this rule to 1.6 to allow for process variations. 

The NTF and STF maximum gain plots corresponding to 0 = ~ 1 4 . .  . ~ / 1 . 3  are shown 

in Fig. 3.12. The plots show that the maximum gain for both the NTF and the STF are 

well below Lee's limit, indicating that the loop is stable. 

3.4.3 Sixth order CT BP CA 

The analytical approach presented here has its limitations. For example, the set of mapping 

functions shown in Section 3.3 is not sufficient to produce a tunable version of the sixth 

order CT BP CA function. Also, the complexity of the working equations becomes very 

high. For example, the intermediate equations required for the sixth order modulator reach 

as many as one thousand terms. For all practical purposes, the work becomes impossible 

without the help of symbolic mathematical software. One possible solution for a simpler 

CT BP fs/4 CA sixth order variant is as follows 
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Figure 3.9: Relationship between the SNR and normalized input signal, for three values of 
8. The Ardalan bound is also indicated. 

where, 

and 6 is the separation angle between the pole pairs and the center notch frequency. For 

6 = 0, the three pairs of poles become equal, resulting in triple poles. 

Both the AC and transient simulations of (3.31) show that the NTF and STF func- 

tions exhibit appropriate maximal gains according to Lee's rule. However, even though the 

maximal SNR is in relatively close agreement with the Ardalan bound, it falls short of the 

120dB value predicted by the linear model, Fig. 3.13. Furthermore, the maximal SNR is 

much worse that the one achieved by (3.29), which indicates that some form of numerical 

optimization is required if the optimal SNR is to be reached for this modulator. 
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f [GHz] 0.1 pi14 0 [rad] 

Figure 3.10: AC simulation of NTF for 4th order tunable CT BP CA model. 

f [GHz] 0.1 pi14 0 [rad] 

Figure 3.11: AC simulation of STF for 4th order tunable CT BP CA model. 
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Figure 3.12: Maximum gain corresponding to the NTF in Fig. 3.10 and the STF in Fig. 3.1 1. 

3.5 Delayed CT BP CA modulators 

The equations shown so far describe zero delay CA loops. The zero delay term refers to 

CA architectures without the feedback latch. In other words, the loop transfer function is 

completely determined by the loop filter transfer function, Ho(z)  or Ho(s) .  

To emphasize the importance of the zero delay formulation of the loop function, the 

following statement should be kept in mind. The overall loop delay around any CT CA 

loop must be equivalent to the zero delay formulation. In other words, any delay introduced 

inside the loop path, due to circuitry propagation times, must be subtracted from the loop 

filter transfer function. This situation is the main cause of problems related to the loop 

delays encountered in CT CA modulators. Analytical methodologies inherited from z- 

domain mathematics allow for the calculation of the loop filter functions with an integer 

number of clock delays. Usually, a latch is used to introduce a one clock period delay in the 

feedback part of the loop. Consequently, the loop filter must be modified to exclude the one 

clock delay from its own transfer function, so that the overall CA loop transfer function is 

still equivalent to the zero delay scheme. 

For example, the division of (3.17) to (3.19) by z-I results in a one delay filter transfer 

function. Since the numerators in (3.17) to (3.19) are just one order lower than their 

corresponding denominators, this procedure can only accommodate up to two delay transfer 
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Figure 3.13: Maximal SNR versus normalized input signal for a 6th order CT BP CA 
function ( fs/4 case). 

functions. 

Instead of creating the delayed versions in the z-domain, we start from the s-domain 

equations. The Laplace transformation of (3.28) to (3.3 1) creates the time domain equivalent 

expression of Ho(s). The newly created time domain function is then shifted in the time 

domain by fractional multiples of the clock period T. Finally, the application of the inverse 

Laplace transformation produces the delayed s-domain version of Ho(s). 

In theory, the above procedure should produce loop transfer functions with any fractional 

number of clock delays. The mathematical description of the three step procedure is as 

follows 

where k is the fractional number of clock period delays being introduced. Transient simu- 

lations demonstrate that clock period delays less than or equal to four are not enough to 

destabilize a fourth order CA loop. 
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Figure 3.14: Transfer function of tunable 4th order CT BP CA with fractional delay. This 
modulator transfer function has an overall loop delay of td = T / 8  and 6' = ~ 1 1 . 3 .  

Applying (3.32) through (3.34) to (3.29) and setting k = 118 yields the following s- 

where, 

and 
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Figure 3.15: Transfer function of a tunable 4th CT BP CA with fractional delay. This 
modulator transfer function has an overall loop delay of td = T/8 and 0 = ~ 1 2 . 5 .  

and 6 is the separation angle between the pole pairs and the center notch frequency. For 

6 = 0, the two pairs of poles collapse into a double pole. 

The importance of being able to design a fractional multiple clock delay CT CA loop 

version becomes more evident at high frequencies. The high frequency input signals are 

associated with even higher frequencies of the sampling clocks. To make the situation even 

worse, the parasitic layout capacitances become more dominant factors at  high frequencies. 

It is easy to visualize a situation where the overall loop delay is longer then one clock period 

due to parasitic capacitances alone. 

An example of a fractional delay CA loop function output (3.35), which is set to match 

an overall loop delay of T/8, is shown in Fig. 3.14. If no additional numerical optimization 

of the loop filter function is performed, then according to Fig. 3.6, the overall circuit would 

have a somewhat lower SNR relative to the fs/4 case. On the other hand, setting the input 

signal frequency closer to DC would result in an increased SNR relative to the fs/4 case, 

Fig. 3.15. The dependence of the SNR upon introduced delay is shown in Fig. 3.16, for a 

fs/4 CA transfer function. 

The argument being made is that instead of trying to cancel the unavoidable loop delay, 

it should be incorporated in the design. 
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Figure 3.16: Dependence of a 4th order fs/4 fractional CT BP CA transfer function on the 
delay time (relative to the clock period T).  

3.6 Summary 
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An analytical design methodology for tunable continuous time bandpass CA modulators 

with fractional delays (fCA) has been presented. The procedure has been successfully used 

to develop working models of second and fourth order CT BP f CA loops. The models have 

been verified via simulations and compared in terms of tunability range, maximal SNR and 

stability. As a result, this approach allows the excess loop delay to be incorporated into the 

transfer function. 

3C 



Chapter 4 

Behavioral modeling 

In Chapter 3, a detailed concept for a CT BP f C A  modulator was introduced. The purpose 

of this chapter is to describe the simulation methodology used in this dissertation. 

CT C A  modulators are, by nature, mixed-signal systems. This creates a discontinuity 

in the traditional IC design flow, which assumes that "discrete" and "continuous" time 

domain systems require separate design tools. In this chapter, a top level behavioral CT 

C A  modeling methodology [51] is presented, which can be used within the analog IC design 

environment. Mixed-signal models of the CT C A  sub-blocks were built using primitives 

available in S P I C E  [45] and ~ e r i l o ~ - A ~ "  . Due to the mixed-signal nature of the circuits, 

we used SpectreTM for all simulations. 

4.1 Simulation flow 

Traditionally, the behavior of a C A  modulator is simulated by creating z-domain models and 

using a DT simulator, such as MATLAB@. This approach is logical since C A  modulators 

are sampled systems by nature. As a result, most of the C A  implementations were done by 

using techniques such as switched capacitors and switched current. The increased interest 

in the high speed continuous time C A  modulators created a problem with the traditional 

IC design flow, which is not well suited to this application. The principle reason is that 

the discrete domain simulators were not well connected to the back end IC design tools; 

at the same time, continuous time simulators were lacking top level behavioral modeling 

capability. However, mixed-signal simulators are now becoming more practical and are 

incorporated into the analog IC design environment. Previously published works on C A  
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modeling were based either on SIMULINK@ models 131, custom made C programs, or 

Verilog-ATM [58, 441. 

A general high speed CT CA modulator loop architecture was shown in Fig. 3.1. The 

loop filter H(s) is typically either LP or band-pass. Due to the presence of a high speed 

clock and quantizer, CT simulators exhibit very long simulation times and DT simulators 

use high level models, which do not offer enough insight into the circuit's behavior. 

Today, DT IC design tools are well developed, making it possible to design very compli- 

cated switched capacitor ICs, without having to use any of the CT tools such as S P I C E .  

However, in order to design an analog CT IC, one must use a tool that is capable of simu- 

lating in the CT domain. A CT CA modulator is an example of a mixed-signal circuit that 

creates discontinuities in the IC design flow. It requires a smooth connection between the 

behavioral models developed in DT and the physical realization of the IC circuits. Bridging 

these two worlds is one of the motivations behind the work presented in this chapter. 

One method used to reduce simulation time is to create circuit behavioral models using 

methodologies and tools developed for analog CT IC design. Unfortunately, S P I C E  based 

simulators have limited behavioral modeling capability. This problem was recognized in 

the early days of analog simulators, which resulted in the development of "mixed-signal" 

simulators. Fortunately, it is now possible to create behavioral model sub-blocks using 

primitives from S P I C E  along with ones from ~erilog-AT&'. Depending upon the circuit 

complexity and architecture, this arrangement can reduce the simulation time by orders of 

magnitude. 

4.2 Basic functional blocks 

In this section, behavioral models of the basic functional blocks required to create a com- 

plete CT CA modulator are introduced. The models are developed in S P I C E  [45] and 

~ e r i l o ~ - A ~ "  1141; the simulator used was SpectreTM within ~ n a l o ~ - ~ r t i s t ~ ~ .  In order 

to implement functional block diagram in Fig. 3.1 the following set of DT/CT behavioral 

modules is used: general s-transfer function H(s), comparator, D flip-flop (DFF), DAC 

with NRZ, RZ and HZ pulses, summing block, the loop delay block, and clock with con- 

trolled jitter. Another important requirement was that all the modules have a controlled 

propagation delay. Transition from the functional diagram in Fig. 3.1 into the behavioral 

domain in Fig. 4.3 is achieved by introducing the following behavioral block-level models. 
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Figure 4.1: Schematic for a 1-bit quantizer. 

4.2.1 s-domain transfer function H (s) model 

A general s-domain transfer function is needed to create a higher order CT CA filter 

loop function H(s). The Verilog-ATM laplacead function was used to create the transfer 

function H(s) = N(s)/D(s),  where no, nl , . . nN are the N(s) polynomial coefficients, 

do, dl, . . dD are the D(s) polynomial coefficients, and N + 1 5 D. 

4.2.2 A/D converter model 

The A/D block in Fig. 3.1 is modeled as a 1-bit quantizer and implemented with a com- 

parator and a DFF, Fig. 4.1. It is possible to create an s-domain comparator using S P I C E  

behavioral primitives [44, 71, however verilog-ATM code is used is this research. Both mod- 

els have similar simulation times. 

Comparator: The tanh function was used to simulate the maximal signal levels of the 

comparator. The code that implements the comparator function is 

 out) <+ 0.5*(outHigh-outLow) 

* tanh(slope* (V(in, ref 
- in0ffset)) 

+ 0.5*(outHigh + outlow); 

One of the problems with using S P I C E  to model a comparator, is that the min- 

max range used in the VCVS function is not exported by the Andog-ArtistTM netlister. 

These small syntax differences that are not supported by the Analog-ArtistTM netlister 
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Figure 4.2: DAC schematic. 

are important factors, which must be taken into consideration when the goal is to make a 

versatile model that works within the Analog-ArtistTM environment and as a stand-alone 

model. 

4.2.3 D/A converter model 

A schematic of the DAC is shown in Fig. 4.2, consisting of the DFF and digital AND gates. 

One of the assumptions in DT analysis is that the pulse is NRZ. However, as previously 

mentioned, in CT systems the pulse can take on various forms, such as: RZ, HZ, and NRZ, 

[49], [48], [5]. Also, during implementation there is often a need for the inverted pulses, 
-- 
NRZ, RZ, and HZ, as well (labeled NRZb, RZb, and HZb on the schematic). 

For the purposes of our DAC, we used high=l and low=-1. The DFF delivers NRZ data 

at the rising edge of the clock. By using both phases of the clock and eight AND/NAND 

gates, we created NRZ, RZ, and HZ data. The total propagation time of the circuit can be 

controlled at the output gates, while the rest of the gates in the circuit can have a delay 

time equal to zero. 

Finite rising and falling times of the pulse edges cause glitches in the switching logic. 

These glitches are one source of the "rising noise floor". The usual practice in CT design is 

to add "de-glitching" buffers at the interface between DT and CT domains. 
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D flip-flop (DFF): A ~erilog-ATM model of the DFF is created, which is a basic delay 

unit equivalent to z-l. The key code lines for the DFF are 

@(cross (V(CLK)-Vth, +I)) x=(V(d) > Vth) ; 

V(q) <+ transition(voutHigh*x + 

voutLow*!x, delay, transitTime); 

V(qbar) <+ transition(voutHigh*!x + 

voutLow*x, delay, transitTimel; 

AND/NAND gates: The digital ANDINAND gates are implemented with the fol- 

lowing code 

out = (logic1 && logic2) ? 

vlogicHigh : vlogicLow; 

V(vout) <+ transition(out, delay, 

trise, tf all) ; 

4.2.4 Summing function model 

Note that the CA loop (Fig. 3.1) can be designed to work both with the "+" and the "-" 
sign in the summing block. The summing block with propagation delay code is as follows 

V (out) <+ absdelay(V(in1) +V( in21 ,delay) ; 

4.2.5 Loop delay function model 

Similarly, the loop delay function model (Fig. 4.3) is given by 

V (out) <+ absdelay (V( in) *k, delay) ; 

4.2.6 Sampling clock model 

The most convenient way to implement an ideal clock that has no jitter is by using the 

vpulse function from SPICE.  A two-phase ideal clock reference is created by using two 

vpulse sources. 

Clock jitter is a very important element in CT CA modulators, [5]. Unfortunately, there 

is no straightforward method to create a clock pulse with added jitter in SPICE . However, 

both MATLAB@ and ~erilog-ATM have a random number generator function. 
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Figure 4.3: Schematic of a general CT CA modulator. 

The main problem with modeling clock jitter in the time domain is that the jitter 

distribution is not known prior to starting the simulation. The mean value and variance (zero 

and one in this case, respectively) are defined over the length 0.f the simulation, measured in 

the number of the clock cycles. Generating jitter on the clock edges is not possible during 

the simulation, therefore some initial work is required. A randn (MATLAB@) function is 

used to generate a vector of random numbers with a normal distribution and war = 1 over 

a given number of clock cycles. 

Generating data for 2N clock cycles simplifies the FFT analysis. The S P I C E  vpwlf 

was used to import this two-column clock data file into the simulations. A number of data 

files were generated, incorporating various amounts of jitter. 

4.3 Simulation examples 

The set of basic blocks described in the previous sections allowed for behavioral model 

simulations of a CT CA modulator. The models are generic and used inside Analog- 

ArtistTM. The obvious implication of this approach is that in subsequent phases of the 

IC development, we can swap transistor level S P I C E  models for the various sub-blocks 

and evaluate model performance with the rest of the circuit being "ideal". Due to the 

mixed-signal nature of the circuits, we used Spectrem for all simulations. In this section, 

examples of simulation results are shown for two categories of the CT CA modulators: first 

order low-pass and fourth order band-pass. 
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Figure 4.4: 4th order CT BP C A  modulator output. 
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Figure 4.5: SNR versus clock jitter for a 4th order CT BP C A  modulator. 
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Figure 4.6: SNR versus loop delay for a 4th order CT B P  CA modulator. 

Continuous time low-pass (CT LP) 

The simulation setup is shown in Fig. 4.3, where H(s)  = 11s was implemented using 

an LP filter with a single integrator and was used to simulate a first order CT LP CA 

modulator. A single simulation run, including a 16384 point FFT plot, took less then 2 

minutes of CPU time on a SUN Blade1000 computer, when using a 1GHz clock, 2MHz 

single tone input signal, and running 16384 clock cycles. 

Continuous time band-pass (CT BP) 

The schematic shown in Fig. 4.3 was also used to simulate the fourth order CT BP CA 

modulator, where a BP filter function was implemented using the general s-function block. 

The CA modulator was simulated with and without jitter, for a 1 GHz signal, sampled by a 

4 GHz clock over 4096 ns; the output plot is shown in Fig. 4.4 for jitter values of UI = 0 and 

UI = 0.1. This structure can also be implemented with one RZ clock delay. A plot showing 

the maximal SNR vs. clock jitter for the two cases is shown in Fig. 4.5, while the SNR vs. 

loop delay is shown in Fig. 4.6. 

The examples shown in this section demonstrate an efficient way to simulate CT CA 

modulators in the time domain, within the standard IC design flow. Behavioral modeling 

methodology was used throughout this work. 
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4.4 Summary 

A mixed-signal behavioral modeling methodology for a CT CA modulator circuit has been 

presented. It was shown that by using a mixed-signal approach for behavioral modeling 

and using only one design environment throughout the design process, high simulation 

speeds can be achieved and meaningful results can be produced. A mixture of Verilog- 

and S P I C E  models allows for rapid behavioral level simulations within the Analog- 

ArtistTM environment commonly used by analog IC designers. 



Chapter 5 

CT BP f EA modulator design 

The previous chapters introduced the theoretical background for CT BP f CA modulators, 

followed by a behavioral modeling methodology. In this chapter, a transistor level design of 

a fourth-order tunable CT BP f CA modulator in 0.5pml fT = 47 GHz SiGe technology is 

presented. 

The modulator is a fully differential 9,-C based circuit, that demonstrates a practical 

implementation of the analytical methodology used in designing the fractional CT loop 

transfer functions H ( s )  presented in Chapter 3. A loop filter transfer function is designed 

to compensate for the unavoidable loop delay. As a result, a new topology for the CT BP 

f CA modulator is suggested. 

5.1 Design architecture 

Currently, CT BP CA modulators are being designed for RF frequencies [8, 40, 351. Since 

a complete analytical model of a tunable CT BP CA modulator did not exist, virtually all 

published tunable designs were developed using numerical filter design methods [46, 411. 

However, closed-form analytical solutions are generally preferred, as they offer more insight 

into circuit operation fundamentals and provide flexibility in the design process [50]. 

A diagram of the top level modulator architecture, based on the analytical model pub- 

lished in [50], is shown in Fig. 5.1. The CT loop filter transfer function H ( s )  and summing 

circuit are both 9,-C based structures. This design employs a 1-bit comparator and, in- 

stead of a conventional 1-bit DAC, a programmable analog delay line. The length of the 

delay line is controlled by the mixed-signal control bus; it can generally be programmed 
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loop filter comparator 

Figure 5.1: Block diagram for a CT f CA modulator. 

to have a value ranging from zero to several clock cycles. The maximum delay length is 

hardwired by the number of on-chip delay elements. 

Conventionally, in order to correctly synthesize both the NTF and STF of the modulator, 

H(s)  is calculated to have a delay around the loop of either zero or an integer multiple of the 

clock cycle. Using this approach, the unavoidable parasitic loop delays must be dealt with 

separately [19]. However, in order to correctly calculate the fractional delay H(s),  the time 

delay required by the filter should be set to the loop delay value; this results in the proper 

synthesis of both the NTF and STF. The same analytical model enables the calculation of 

the center frequency within the range f,/n, where n is now a positive real number instead 

of an integer. The last two statements outline the main features of the design methodology 

presented in this chapter. 

As stated in Chapter 3, the numerator and denominator coefficients in (3.29) have too 

many significant digits; therefore, they can not be implemented with absolute accuracy. The 

numerator coefficients determine the position of the of zeros in (3.29); they will have little 

influence on the notch location, as long as the overall loop is still stable. Conversely, the 

denominator coefficients have to be implemented with relatively high accuracy, in order to 

preserve the notch location and high SNR. Simulation results for the SNR sensitivity versus 

the numerator coefficients for (3.29) are shown in Fig. 5.2. The figure indicates that if the 

SNR loss is to be held at less than approximately 6 dB, then the required accuracy of the 

coefficients should be greater than f 0.25%. A further implication is that a relatively high 
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Figure 5.2: Numerator coefficient sensitivity. 

Coefficient Value Coefficient Value 
Ho3 -4.1416e+09 d4 1.0000e+00 
H02 1.7042e+ 19 d3 0.0000e+00 
Hal -8.4547e+28 d2 7.8957ei-19 
Hoo 1.1689e+39 dl 0.0000e+00 

dn 1.5585e+39 

Table 5.1: Ideal coefficients for the fs/4 CT f C A  modulator configuration. 

Q is required to implement the resonator H ( s ) .  There are several rules of thumb used to 

determine the minimum Q requirement, which claim that Q 1 60 1481 or Q 1 100 [33]. We 

will return to this topic in the discussion of experimental results. 

Using (3.29), numerous different CT BP fCA transfer functions could be found for 

various center tuning frequencies. For example, letting 8 = 7r/2 (i.e. f,/4), f, = 1/T = 

4 GHz and 6 = 0, a set of coefficients is obtained that corresponds to a zero delay fs/4 CA 

modulator, with no pole splitting (Table 5.1). 



CHAPTER 5. CT BP FCA MODULATOR DESIGN 

Figure 5.3: Block diagram of a 4th order gm-C resonator. 

5.2 Gm-C resonator 

The set of coefficients from Table 5.1 must be further mapped into the final resonator 

architecture. A discussion of several practical architectures, whose transfer functions have 

a one-to-one mapping corresponding to (3.29), is given in [48]. 

In this work, the gmpC biquad resonator based architecture shown in Fig. 5.3 was used 

(each of the gm blocks is tuned with its own biasing current; not shown for simplicity). There 

are two resonators built around g , ~ ,  gfl , C1, C2 and gT2, gf2 , C3, C4 structures. Circuit blocks 

gtl and gt2 are required to fine tune the rather poor Q-factor of gm-C based resonators. 

The numerator coefficients Hi, (i = 01,. . . ,03) from Table 5.1 are implemented through 

go, . . . ,g3. Finally, the goo block is used to satisfy the one-to-one mapping requirement. 

The transfer function of the resonator in Fig. 5.3 is 

The ideal coefficients from Table 5.1 are mapped into gm values by equating the numera- 

tor and denominator coefficients in (3.29), with their respective counterparts in (5.1), where 

C = C1 = C2 = C3 = C4 = 26pF. Ideal values for a g,-C configuration of the resonator 

are shown in Table 5.2. (For detailed derivation of (5.1) see Appendix A.) 

Depending upon the 8 ,  T and 6 values used in (3.29), the gm values in Table 5.2 can 

map onto either positive or negative numbers or zero. From an implementation perspective, 

this forces the designer to make some practical choices. Firstly, a g, circuit capable of 
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Figure 5.4: A Q-enhancement sensitivity plot. 

Table 5.2: g,-C coefficients for the fs/4 CT fCA modulator configuration. 

implementing both positive and negative g, values requires approximately double the area 

and power consumption when compared to a g, circuit capable of implementing only single 

polarity g, values. Furthermore, the number of current biasing lines required for the g, 

blocks doubles, resulting in a complexity increase in the control circuitry used to program the 

g, values. Secondly, the use of the unipolar input g, stages simplifies the resonator design; 

however, this is at  the cost of a reduced programming range that can be implemented, when 

compared to the resonator built out of bipolar input g, stages. As shown in the schematic 

of Fig. 5.3, unipolar input g, stages were used in this work. As a result, the negative value 

required for the gs stage was implemented by twisting the g3 differential output lines. 

Another important design parameter is the dependence of the Q-factor on the correct 

biasing current value for gtl and gt2, Fig. 5.4. Simulation results indicated that the control 

current of the tuning g, stages had to be close to f 2% tolerance of its nominal value, to 
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Figure 5.5: Symbol and schematic for the g, circuit. 

maintain a gain requirement of > 6 0 d B .  We will return to this issue when discussing the 

experimental results in Chapter 6 .  

5.3 Design of the g, stage 

The schematic for the gm stage used throughout the design is shown in Fig. 5.5. The 

circuit topology is based on the multi-tanh architecture [17]. Transistors Q3-Q4 make 

first asymmetric differential pair and transistors Q5-Q6 make the second. The DC gain 

transfer functions for the two input stages, together with the overall transfer function, are 

shown in Fig. 5.6. A size ratio of four was used for the Q3-Q4 and Q5-Q6 transistor pairs, 

which created an offset of f 55mV relative to the input voltage. Their combined gain was 

approximately 30% larger than the gain of the two input stages alone. The linear range is 

now extended relative to the single differentia.1 pair; the maximal ripple in the gain function 

is shown in Fig. 5.7. 

The differential input stage consists of two C-E stages Q1-Q2. The function of the 

input stage is twofold: 1) it serves as the signal level shifter; and 2) it increases the input 

impedance of the g, stage by effectively creating Darlington configurations when combined 
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Figure 5.6: The multi-tanh g, doublet gain function. 

Figure 5.7: The g, gain ripple. 
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Figure 5.8: The g,  harmonic signature. 

with the differential pairs. 

Resistors R3-R4 present a passive load for the g,  stage, implying that a method is 

required to increase the output impedance of the g,  stage. In this design, a feedback 

approach was used: differential pairs Q7-Q8 and Q9-Q10, together with Rs-Rs, create a 

loop used to keep a constant common mode voltage at the output nodes. This mechanism 

effectively increases the output impedance of the gm stage. At the same time, the input and 

output common mode voltages are matched (2.4V in this case), allowing the g,  stages to 

be easily cascaded to each other. 

The tail currents for the differential pairs are produced by replicating appropriate mul- 

tiples of the Ibias current, within a current mirror consisting of transistors Ql1-QI5. 

The tunability of the gm stage is achieved simply by controlling the bias current. The 

coefficients shown in Table 5.2 are once again mapped; in this case, according to the g,  vs. 

Ibias relationship. 

The linearity of the g ,  stage can be estimated from the simulated harmonic signature 

plot shown in Fig. 5.8. The 1 dB compression point was found to be at V,, = -22.2 dBc. 

However, when using the multi-tanh doublet, the IIP3 point is insignificant as it is dependent 

on the input signal level [l7]. 
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Figure 5.9: A detailed schematic of the NRZ comparator 

5.4 Comparator 

A traditional latch-slave configuration for a high-speed comparator [21] is shown in Fig. 5.9. 

In accordance with the requirements of (3.29) transfer function, the NRZ pulse shape is used. 

The signal input stage consists of a differential preamplifier, which performs the fol- 

lowing three functions: 1) it amplifies weak signals at  the loop filter output; 2) it shifts the 

common mode voltage; and 3) it buffers possible kick-back signals, which are reflected back 

from subsequent latch and slave stages. The input buffer stage consists of the common- 

collector voltage buffers Q3 and Q4, along with the passive loads R3 and R4. Similar 

buffering stages are inserted between the preamplifier and the latch, between the latch and 

slave stages, and at the output of the comparator. At the input stage, common-collector 

voltage buffers Q1-Q2 and passive load R1-R2 are used for the differential clock signal. Dif- 

ferential pairs Qll-QI4 and QI9-Q22 serve as the current switching elements for the latch 

and slave stages, respectively. Biasing currents for the differential pairs are provided by the 

current mirror, which consists of transistors Q2~-Q29. 

This circuit was simulated with clock frequencies of up to 5 GHz. However, the imple- 

mented f CA circuit works at much lower speeds, which greatly relaxes the design margins 

of the implemented comparator circuit. 
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ECL gate reference 
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Figure 5.10: Symbol and schematic for the ECL based delay line segment with voltage 
reference generator. 

5.5 Delay line 

The suggested general architecture shown in Fig. 5.1 implies that a programmable delay line 

could be used instead of a traditional DAC circuit. Sampled DAC circuits are traditionally 

used in the feedback loop in order to accommodate integer clock delay values for the loop 

delay. However, analytical results presented in Chapter 3 effectively removed the integer 

clock delay requirement. Thus, a variety of fractional loop delay times can be incorporated 

into the loop filter design. The minimal loop delay that can be used will be determined by 

the parasitic and propagation delays encountered inside the loop, relative to the sampling 

clock edge. Therefore, there are at least two options available to the designer. First, the 

loop filter could be designed to accommodate for the parasitic and propagation delays only; 

the delay line would be set to zero delay or omitted completely. Second, if required, any 

combination of delay times (parasitic, propagation or delay line) could be incorporated in 

the loop filter design. 

Implementing an analog delay line is somewhat more difficult than implementing a digital 

delay line. One possible analog design method assumes that the tuning range boundaries are 

not necessarily fixed, provided that they are wide enough to meet the given requirements. In 



CHAPTER 5. C T  B P  F C A  MODULATOR, DESIGN 69 

other words, the boundaries are allowed to fluctuate with the process variations, as long as 

the minimal tuning steps are matched. Generally, this matching is achieved by replicating 

the same cell layout for the delay segment blocks. 

The single delay segment, shown in Fig. 5.10, is based on an ECL gate structure. The 

core of the circuit consists of the differential pair Q1-Q2 and passive loads R1-R2, followed 

by the output voltage buffer Q3-Q4 and their respective passive loads R3-R4. In the same 

schematic, a typical voltage reference used in ECL gate structures is shown [lo]. In order 

to save space and DC power consumption, the voltage reference is usually shared by up to 

four ECL gates. Depending on the technology used, the propagation time of this circuit can 

be set to be within the 5-20ps range. If the same cell layout is replicated throughout the 

design, an excellent matching of the propagation times is achieved. 

In order to apply the structure in Fig. 5.10 to a programmable delay line design, a current 

switch is implemented consisting of a MI-M2 current mirror and M3. A high voltage level 

at the ctrl input node turns on the M3 transistor and shorts the gate node of the current 

mirror to the ground; this effectively turns off the differential pair tail current. A practical 

architecture for the delay line in Fig. 5.11 is created by implementing an (n - 1) x n matrix 

of delay elements, followed by an ECL based NOR gate and the final delay element. For 

the sake of simplicity, the control lines are not shown. By turning the upper row delay 

elements ON and OFF, thereby redirecting the signal to the lower row, the length of the 

delay line can be controlled. The signal always terminates at the input of the NOR gate. 

This architecture has a tuning range from (n + l)td to 2ntd, where td is a single cell delay. 

5.6 Summing circuit 

The last sub-block of the architecture in Fig. 5.1 is the summing block, comprised of three 

g,  stages (Fig. 5.12). The use of identical g,  stages throughout the design makes the overall 

design and layout simpler, while also providing for better matching between the gm values. 

5.7 Post-layout simulation 

With the transistor level design of the f C A  modulator finished and the final layout com- 

pleted, the last stage of the design process was to perform a post-layout simulation. A 
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Figure 5.1 1 : Programmable delay line schematic. 
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Figure 5.12: Voltage surnming circuit schematic. 
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Figure 5.13: Simulated post-layout fCA response, using 8192 clock cycles and an FFT of 
65536, for: (left) an fs/4 configuration; and (right) an fs/5 configuration. 

mapping process is required to map the g, coefficients listed in Table 5.2 into the actual bi- 

asing currents required by the transistor level g, blocks; a detailed description will be given 

in Chapter 6. The results of the post-layout simulations for two different tuning positions, 

fs/4 and fs/5 configurations, are shown in Fig. 5.13; further descriptions will be given in 

Chapter 6. Fig. 5.13 was the last verification point prior to beginning chip manufacturing. 

5.8 Summary 

A practical implementation of the theoretical models discussed in Chapter 3 has been pre- 

sented. Transistor level schematics of all sub-blocks are shown. In the following chapters, 

experimental results for the implemented modulator are shown. 



Chapter 6 

Prototype chip testing 

In the previous chapters, analytical models and design details of the CT BP f  CA modulator 

were introduced. This chapter describes the prototype SiGe chip, the details of the test 

procedure and the measured results confirming the validity of the proposed methodology. 

6.1 Chip description 

The test chip was manufactured in 0 .5pml  fT = 47 GHz SiGe technology, with five packaged 

parts and 35 dice received. A microphotograph of the chip is shown in Fig. 6.1. The total size 

of the layout, including the bonding pads and on-chip test VCO circuit, is 2.3mm x 2.3mm. 

The chip was bonded to an HF 8 s p i n  ceramic package and soldered onto a test board. An 

operating frequency range of up to  4.8GHz was specified for the package and test board 

combination. 

The overall design assumed a 5 0 0  environment; therefore, all on-board HF differential 

lines were laid out as 500  microstrip transmission lines. Subsequently, the input signal and 

clock lines were terminated with on-chip 5 0 0  resistors, while the output pad drivers were 

designed to drive the same load. Due to space limitations, this version of the chip does not 

have a programmable delay line within the f C A  feedback loop (Fig. 6.2); thus, the loop 

filter function should only be programmed to compensate for parasitic loop delay times. 

The signal and clock lines are fully differential throughout the design and 20 control lines 

carrying DC currents are provided for the chip control. The tuning and control of the f  C A  

requires 16 DC currents, while the on-chip test VCO requires 4 DC currents. Neither voltage 

nor current references were implemented on-chip, which implies that the biasing voltages 
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Figure 6.1: Microphotograph of the f CA chip. 

and currents required by the chip must be delivered by off-chip sources. The power supply 

lines used 6 bonding pads for ground and 4 bonding pads for the positive rail. 

6.2 Test setup 

The development of a a successful and efficient testing strategy for a mixed-signal design is 

a non-trivial task. Modern testing setups are very complex and sophisticated [4]; therefore, 

planning for successful testing is an important aspect for mixed-signal chip design. The test 

setup used in this research consisted of: a signal generator, a clock generator, a spectrum 

analyzer, a PC1 bus compatible 16-channel DAC which generated the DC control currents 

(range OmA to +20mA), two power supplies (one for DC power and one for signal biasing), 

two 180' phase splitters (one for the input signal and one for the clock signal), and two 



CHAPTER 6. PROTOTYPE CHIP TESTING 

I 
loopfilter comparator , (resonator) 

I 
I 

on-chip i 

elk 

Figure 6.2: Block diagram of the implemented version of the f CA chip. 

pairs of bias-?' circuits; refer to Fig. 6.3. Optionally, an HF sampling storage oscilloscope 

was required to capture timedomain pulse streams. 

Typically, standard signal generators create singleended signals, which means that 

phase splitter circuits must be used to create the appropriate differential signal required 

by the chip. In addition, DC biasing of the signal is provided by means of a DC source 

and a pair of bias-T circuits. This configuration is preferable for an experimental chip as it 

provides more flexibility and lower design risk. Alternatively, one could design an on-chip 

single-ended to differential converter, with on-chip biasing references. 

6.3 Experimental results 

As the chip is essentially a continuous time filter design, a method of estimating the pro- 

cess variations is required. In order to establish correlation between the simulation results 

and the measurement results, a number of different methods have been used within both 

industry and academia. The approach used in this research, to find a mapping between 

the theoretical coefficients and the control currents, relied on a simple 9,-C based VCO, 

which was implemented on-chip by using replicas of the g, and capacitor layouts used to 

create the f CA modulator. In the initial VCO test, the same conditions were used for both 

simulation and measurement. The comparative plot given in Fig. 6.4 shows the relatively 

good agreement between the two results, indicating that the current wafer batch is close to 
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Figure 6.3: Photograph of the test bench. 

the typical case. 

Since the capacitor values used in both the VCO and . f E A  are identical, the output 

frequency values ,fMLt in Fig. 6.4 can be easily converted into the g,,,/C ratios from (5.1), 

as the VCO outpiit frequency is uunt = 2n,fOlLt = g7,,,/C. Therefore, Fig. G.4 provided the 

means to deterniine the biasing current Ioi,, ~equired to achieve the g,/C ratios in (5.1), 

which were calculated from the analytical niod.el (3.29). It fioliltl be noted that the output 

frequency .fmLt corresponds to tlie frequency location of the notch in the NTF function and 

consequently, the location of the input signal. 

The control currents (i.e. biasing currents), obtained using tlie aforementioned proce- 

dure, yielded an NTF which was very close to a correct f C A  frequency plot. There are two 

main sources for the discrepancies: 1) the resonator structure in Fig. 5.3 does not include 

any "dumlny" ym blocks, which should be used to match the iiiternal in~pedances of the 

resonator [30]; arid 2) the biasing current values required for the Q-eiihancernent g,, blocks 

do not come from the analytical model; they must be determined experimentally. 

Once the mapping procedure for the control currents is established, the biasing currents 
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Figure 6.4: A comparison of measured and simulated control currents for the internal res- 
onator. 

must then be recalculated for various signals, sampling frequencies, fs/n and delays, using 

(3.32) to (3.34) and Fig. 6.4. It should be noted that for practical implementation of this 

chip, not all tuning positions predicted by the analytical model may be achieved. In order 

to realize the full uninterrupted wide tuning range, the practical implementation would 

require both positive and negative g, values; this implies a more complicated structure 

than illustrated in Fig. 5.5. For example, in this design, both the positive and negative g, 

values calculated in Table 5.2 were hardwired; this limited the fCA tuning range to the 

cases exhibiting the same combination of positive and negative g, values. Furthermore, 

the control currents would also need to be outside of the PC1 DAC card's available range. 

For the purposes of this experimental prototype chip, satisfying the full theoretical range 

becomes impractical. Although the currently implemented resonator can be tuned to a much 

wider frequency range, in order to have the overall fCA tuned to the same range, some of 

the control current values (used to control the numerator coefficients in (5.1)) would have 

to be larger then 20mA. Thus, the specification list in Table 6.1 includes both achieved 

tunability range of the fCA, as well as the resonator by itself. 
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Figure 6.5: Measured frequency response for three signal frequencies within the tuning 
range: (top left) 185 MHz; (top right) 287.7 iMHz; and (bottom) 246 MHz. 

The experimental results shown in Fig. 6.5 demonstrate the operation of the f CA modu- 

lator, for three signal frequencies within the maximal tuning range of 185 MHz to 289 MHz. 

The graphs show that correctly tuning the NTF functions at the outskirts of the tuning 

range becomes more difficult, due to the reasons previously mentioned. 

The theoretical calculation for a sampling frequency f, = 800 MHz and n = 3 (i.e 

fin = 266.67 MHz) yields the following values for the control currents, required to set zeros 

in the transfer function (5.1): Ig, = 4.921mA1 Ig, = 10.030mA, I,, = 1.911mA1 and 

I,, = 0.117mA. The control current required to set the resonant frequency (i.e. coefficients 

in denumerator of (5.1)) was calculated to  be Ibias = 15.440mA for gf l ,  grl, goo, gf2 and gr2. 
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Figure 6.6: Measured maximal SNR. 

After providing the biasing currents Iqtl = 5.450mA and Iqtz = 8.470mA to the respective 

Q-nhancement g, blocks inside the resonator, the NTF notch formed at 246 MHz; refer to 

the bottom figure of Fig. 6.5. The application of the delayed versions to the f C A  transfer 

function revealed that the parasitic loop delay was less than 0.1 T at the given sampling 

frequency. 

A comparison of the bottom plot in Fig. 6.5 with a similar plot in Fig. 5.13 shows 

that the Q factor of the resonator is lower than predicted by the post-layout simulations. 

The expected notch depth was approximately 3 5 d B ,  while the measured notch was close 

to 2 0 d B .  There are several possible causes for this behavior; for example, the presence of 

noise inside the chip substrate, non-perfect singleended to differential conversion in the 

180" power splitter (causing common-mode noise and timing jitter), and jitter injected by 

the test equipment and setup. However, this issue is not pursued further in this research. 

The maximal SNR and dynamic range (DR) are two very important characteristics of a 

C A  modulator. Figure 6.6 shows one of the measured SNR values to be at approximately 

5 0 d B  (within resolution BW = 20 kHz). Reducing the input signal to very small values 

eventually leads to measurements of the minimal input signal amplitude, which is needed to 

determine the DR; this occurs at the moment when the input signal level becomes equal to 

the noisepower level. Note that at the bottom of the notch, the noise floor is not flat but 



CHAPTER 6. PROTOTYPE CHIP TESTING 

Table 6.1 : Measured specifications for the f C A .  
technology BiCMOS 

total die size 
power supply 
power consumption 
output HF power 
operational bandwidth 
sampling frequency 
maximal SNR 
(resBW=PO kHz) 

maximal DR 
f C A  tunability range 
resonator ranffe 

0.5pm SiGe 
f~ = 47GHz 
2.3mm x 2.3mm 
3.3V f 10% 
1.0/1.2W (DC total) 
40m W 
20 MHz 
fs = 0-6/1.2 GHz 
50dB 

47dB 
185 MHz to 289 AfHz 
60 MHz to 295 2LfHz 

slightly concave; thus, the minimal signal that is still above the noise level is approximately 

3 d B  within the operational B W  = 20 MHz, which means that the maximal DR = 47dB.  

A summary of the measured results is given in Table 6.1. 

6.4 Summary 

Test results for the prototype CT BP f C A  modulator, designed to demonstrate the design 

methodology, have been presented. The initial results confirmed the validity of the theoret- 

ical approach. At the same time, the design is comparable to the other published designs, 

as shown in Fig. 1.1. 



Chapter 7 

CT BP f EA Applications 

In this chapter a couple of possible applications for tunable CT BP f CA modulators are 

proposed. First, a new architecture for IF to RF conversion is presented. The architecture 

is based on a tunable CT BP f CA modulator in combination with Manchester coder and 

decoder [53]. Second, a combination of a power amplifier (PA) and CT BP f CA modulator 

in either open or closed loop configuration is presented. The ability to accomodate for the 

PA propagation delay during the loop filter design phase, and therefore include the PA 

inside the loop, opens possibility for further integration of a transmitting path [28]. 

7.1 A Fractional Delay CA Upconverter 

A softwaredefined radio is one of the most active research areas in modern circuit design. 

Specifically, an efficient way to continuously program the input/output RF converter needs 

to be developed. A number of researches have found that a pulsewidth modulated (PWM) 

signal has potential for efficient RF transmission [38]. More recently, CA modulators were 

used for supporting both down-conversion of an RF signal [54] and upconversion [31, 261 of 

an IF signal. 

However, there are still several unsolved problems related to application of CA modu- 

lators for an IF signal upconversion. 

First, carrier frequencies required by modern communication systems are on the order 

of multiples of GHz. Implication is that the CA circuits, if used as in the references above, 

have to be sampled at least twice the signal rate, most often four times. Subsequently, 

application of the traditional z-domain CA modulators is severely limited. Continuous time 
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loop filter comparator 

Figure 7.1: Block diagram of a fractional delay C A  upconverter. 

class of modulators is somewhat better suited for the task. However, the loop filter has to be 

implemented either with passive L-C circuits, which is not suitable for IC implementation, or 

with on-chip low-Q inductors, which necessitates a Q-enhancement circuit. Alternatively, 

a g,-C filter implementation can be used with a cost of reduced working frequency and 

increased nonlinearity. 

Second, a C A  modulator by itself is a frequency multiplier which generates predictable 

images of the input signal. Even though that signal to noise ratios of the images and the 

input signal are close, the image power levels decline rather quickly. 

Third, the loop delay associated with CT C A  modulators presents additional difficulty 

especially when additional circuit blocks, such as a modulator and power amplifier (PA), 

are added inside the loop. 

Circuit architecture presented in this section addresses all three of the above problems. 

Further, it demonstrates a potentially big advantage of using tunable CT BP f  C A  modu- 

lators, in combination with an encoding technique, for IF signal upconversion. 

7.1.1 Circuit description 

In Fig. 7.1 a block diagram of a fractional delay C A  upconverter is shown. A CT BP f C A  

loop consists of the summing node, CT loop filter H ( s )  and a onebi t  quantizer in a form of 

a comparator. The cR block generates both f, and N f ,  pulse streams, which are used by the 

quantizer and the encoder respectively. The first novelty of the circuit is the addition of two 

alien blocks inside the loop, namely Manchester encoder and decoder. If a PA is included 
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frequency 
divider 

Figure 7.2: A behavioral model of: (a) a Manchester encoder; and (b) a Manchester decoder. 

as the last block of the encoder then me[n] signal is ready to enter the antenna interfacing 

circuit. Second novelty is in application of CT BP f C A  loop filter [50] to compensate for 

the additional delays introduced by the alien circuits. 

A continuous time signal u(t) is converted by the CT BP f C A  part of the upconverter 

into a NRZ pulsewidth modulated signal y[n], which is then upconverted into a RF me[n] 

signal by the Manchester encoder. The upconverted signal me[n] is decoded before being 

returned into the f C A  loop again as m[n]. Two NRZ pulse trains y[n] and m[n] are identical 

except for some time delay. Effectively, the alien circuits are "visible" to the f C A  loop only 

as a fractional time delay, which is compensated for in the loop filter H ( s )  transfer function. 

The delay, which is caused by non-zero propagation times of the alien circuits, is a fraction 

of the sampling period T = l/ f,. Behavioral models of the Manchester encoder and decoder 

are shown in Fig. 7.2, where the signal notation is taken from Fig. 7.1, level is a combination 

of limiter and level shifting functions, delay is half a clock delay element and a standard 

asynchronous frequency divider (factor of two) is used to recreate the NRZ pulse train. The 

internal timedomain signals of the Manchester encoder/decoder are shown in Fig. 7.3, 

The important advantage of architecture in Fig. 7.1 is that the f C A  upconverter allows 

the loop filter to operate at a much lower variable IF frequency then the RF output frequency. 
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-1 !- 
time 

Figure 7.3: Internal timedomain signals of the Manchester encoder and decoder. 

This advantage, aside from relaxing the tuning problem, translates into greatly reduced 

circuit implementation requirements. Also, the f C A  may be tuned so that IF and the half 

sampling frequency f,/2 are closer, with further reduction in circuit complexity, fCA  loop 

stability requirements and power. Limiting factor to this approach is the loop stability 

which must obey the Lee's rule 1341. 

7.1.2 Simulation results 

A mixed-signal simulator, within a standard analog IC design environment, was used to 

perform verification of the proposed topology. There are a number of possible combinations 

for the sampling frequency f ,  and N f ,  which produce desired RF image of the input signal. 

Simulated IF frequency of 100MHz and the sampling frequency used in this example is 

f ,  = 448MHz and N = 5, shown in Fig. 7.4 from DC to f,/2. Frequency spectrum of 

upconverted WCDMA RF output signal y[n] is shown in Fig. 7.5 from DC to N f,. The 

small zoom-in window shows frequency spectrum around the fRF = 2.24 GHz - 100 hiHz = 

2.14GHz. Finally, the time delay of the alien circuits is estimated to be T / 8  which is 

accounted for during the design of the H ( s )  transfer function. The Manchester modulation 

suppresses the DC component while enhancing the RF' signal. 
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Figure 7.4: A WCDMA 100 MHz IF signal, y [n], m[n] . 

0.896 1.792 2.14 
F. GHz 

Figure 7.5: A WCDMA 2.14GHz RF signal, me[n] 
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loop filter comparator 

Figure 7.6: Block diagram of a power amplifier with fCA modulator. 

7.2 f EA based PA 

An architecture for power amplification with high power efficiency is presented. Simulation 

of a class-S amplifier in combination with CT BP fCA modulator shows power added 

efficiency (PAE) of 40.1% and SNR = 60 d B  for a two-tone signal spaced at 4.64 MHz. A 

WCDMA signal with peak-teaverage ratio (PAR) of 8.7 d B  demonstrates PAE = 16.6% 

and SNR = 42dB. 

7.2.1 Introduction 

Searching for newer and more efficient technologies, researchers are moving from traditional 

class-AB power amplifier (PA), which used to be the most commonly used type of amplifier 

for mobile phones, to switched PA in order to achieve higher power efficiencies. A number of 

researches have found that a pulse-width modulated (PWM) signal has potential for efficient 

RF transmission [38]. More recently, CA modulators were used for improving power added 

efficiency (PAE) of an RF power amplifier [31, 221. 

However, in order to create a PWM signal suitable for mobile applications, such as 

software-defined radio, a tunable version of a BP CA modulator is needed. Further, the 

CA modulator is required to operate in RF range, which imposes very high design challenges. 

Viable solutions to these two requirements, based on CT BP fCA modulators, have been 

shown in [50, 531. 

In this section we show a power amplification architecture which demonstrates potential 
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Class-S PA BP filter Y 

Figure 7.7: Block diagram of a fractional C A  class-S PA. 

Figure 7.8: Class--S PA schematic. 

of achieving high PAE in hand-held transmitters. A working version of CT BP f C A  

modulator, which may include encoding upconverter [5], is used with a CMOS class-S PA 

designed in 0.5pml fT = 47 GHz BiCMOS SiGe technology, Fig. 7.6. 

7.2.2 Circuit description 

In Fig. 7.7 we show a block diagram of a fractional C A  class-S amplifier. Depending upon 

the frequency range of operation an encoding upconverter [5] can be added as the output 

stage of the modulator. A continuous time signal u ( t )  is converted by the CT BP f  C A  

modulator into a NRZ PWM signal y[n], which is then used to drive class-S PA. Out of 

band switching noise is removed with the BP filter so that R F ( t )  signal is created and 

delivered into the antenna. 

Internal structure of the PA is shown in Fig. 7.8. Each of the six stages is built as an 

inverter, where both PMOS and NMOS transistors in the first stage have scaling factor 
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Figure 7.9: Bandpass filter schematic. 

Table 7.1: Component values for a bandpass filter, with fo = 181 MHz, BW = 10 MHz. 

m = 1, each subsequent stage has a three times larger scaling factor, with the sixth stage 

transistors having m = 243. In the given technology the achieved PA bandwidth is BW = 

1 GHz and output impedance is Rout = 2a.  With power supply voltage VDD = 3.3V 

consumed DC power is PWRDc = 1 .O59 W. 

Maximally flat third order LC filter, Fig. 7.9, is used to remove out of band switch- 

ing noise. For compatibility with WCDMA signal, the filter bandwidth is set to BW = 

10 MHz. Calculated component values for center frequency fo = 181 MHz and input/output 

impedance of Ro = 2 a  are listed in Table 7.1. 

7.2.3 Simulation results 

A mixed-signal simulator, within a standard analog IC design environment, was used to 

perform verification of the proposed topology. For purposes of this experiment, the CT 

BP f C A  modulator is sampled with sampling frequency f, = 800 MHz and noise transfer 

function (NTF) notch was set at 181 MHz, i-e. fs/4.42. First, two-tone test is performed 

with two signals centered around fo = 181 MHz with separation of f 2.32 MHz from the 

center. Simulated spectrum of a two-tone signal at the PA output is shown in Fig. 4 over 

bandwidth of 20 MHz. 

This configuration achieved SNR = 60 dB within B W  = 10 MHz, where the third-order 

intermodulation product (IM3) is at 41 dB below the signal level. Power added efficiency is 
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Figure 7.10: Two-tone output of PA. 

Figure 7.1 1: WCDMA output of PA. 
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found to be PAE = 40.1%. 

Second, WCDMA signal centered at the same frequency fo, with peak-teaverage ratio 

(PAR) of 8.7dB, SNR = 42dB within B W  = 10 MHz. In this case power added efficiency 

is PAE = 16.6%. 

Spectrum of WCDMA signal at  the BP filter output is shown in Fig. 7.11 The currently 

reported PAE numbers for class-AB amplifiers are in range of 30-44% [l l ] .  

7.3 Summary 

A novel fractional delay CA upconverter circuit architecture suitable for IF to RF  upcon- 

version inside a softwaredefined radio is presented. Mixed-signal behavioral simulations 

have confirmed validity of the upconverter concept. 

Power efficient combination of a class-S PA and CA modulator topology suitable for 

wireless communications has been presented. It has been shown that PWM signal generated 

by a CT BP f CA modulator improves power efficiency and SNR of a class-S power amplifier. 

This topology offers a promising solution for future softwaredefined radio transmitters. 



Chapter 8 

Conclusions 

In the previous chapters, the basics of CA modulation were first introduced, followed by the 

development of an analytical model for a CT BP f CA modulator transfer function. Then, a 

mixed-signal behavioral modeling technique was presented, which facilitated the transistor 

level design of the modulator prototype. Details of the tuning coefficient mapping from the 

analytical model to the behavioral model and from the behavioral model to the physical 

model were shown. A short review of the experimental results was followed by a discussion 

of possible applications that would benefit from the properties of the fCA modulators. In 

this section, closing comments are made regarding the results presented in this dissertation, 

concluding with suggestions for future work. 

In Fig. 1.1, a total of 15 experimental designs were shown, which fell into the continuous 

time category. Various methodologies, architectures and technologies were used to create 

the designs. Some research groups explored design methodologies used to achieve high 

SNR, for example by using measurements over a very narrow BW, with high OSR [41, 

551. Other groups pushed the limits for higher signal frequencies, using either on-chip or 

passive components for the HF resonator ([26, 16, 151). The architecture presented in this 

dissertation aimed to demonstrate the validity of the proposed design methodology and 

analytical models. The realized prototype circuit was comparable to other designs in terms 

of general circuit specifications; however, it was created from a complete analytical model 

capable of dealing with various signal and sampling frequencies, as well as various loop 

delays. Various exciting application possibilities were shown and practical implications of 

the achieved f CA model will be demonstrated in the future. 

Although a large amount of knowledge related to CT BP CA modulators has been 
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accumulated, numerous outstanding issues open up many opportunities for future work: 

1. A tuning algorithm for controlling the CT CA coefficients, which is robust enough for 

use in industrial applications, has still not been demonstrated. A relatively large num- 

ber of control lines are required to tune the CT BP CA modulator center frequency, 

presenting a considerable implementation problem. This is particularly true for the 

case presented in this dissertation, where a continuous spectrum of tuning frequencies 

is targeted. 

2. The elegance and versatility of the tunable bandpass filter implies that number of 

possible applications is very large. Potentially, the modulator may be applied to all 

forms of signal processing, from communication circuits and sensors to medical instru- 

mentation. Having the analytical model, one can now work on various configurations 

optimized for specific solutions, such as low-power, small area, and specific frequency 

range. 

3. As the design incorporates a mixed-signal model with a nonlinear element inside 

the loop, it may be possible to further simplify the analytical modeling or practical 

implementation through the use of log-domain [43] filter circuits. 

4. Successful mapping functions were introduced in Chapter 3 for the 2nd and 4th order 

modulator cases. Only a partially successful mapping function was introduced for the 

6th order case; however, we are hopeful that an equally successful analytical model for 

fCA modulator of 6th order can be found. 



Appendix A 

G,-C resonat or transfer function 

The derivation of (5.1) is based on the notation shown in Fig. A.l; for simplicity, the 

single-ended version of the resonator is shown. 

The currents at the capacitor nodes are: 

icl = sCIVo 

ic, = sC2Vl 

ic, = sc3v2 

ic, = sC4Vout. 

The currents at the gao to gas output nodes are: 

iao = gaol/,, 

ial = gal% 

ia2 = ga2Vzn 

ia3 = ga3 Kn. 

Similarly, the currents at the gl, 92, 921, gfl ,  and gf2 output nodes are: 

i l  = g1Vo 

i21  = g21v1 

i 2  = 92 [/2 

if1 = -gflVl 

if2 = -gfaV,,t. 
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Figure A.l: Circuit diagram for a 4th order singleended g,-C resonator. 

After solving systems (A.l) to  (A.l3), we have: 

(A. 14) 
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Impulse invariant transformation 

This appendix describes three timedomain pulse shapes: non-return to zero (NRZ), return- 

tezero (RZ), and hold-return-to-zero (HZ); refer to Fig. B.1. In general, p = T/2 (for 

50% RZ duty-cycle pulses); however, all values within 0 5 p _< T are possible. Setting p = 0 

results in the theoretica1 b(t) function, while setting p = T gives the NRZ pulse. 

B. 1 Time domain definitions 

The time domain definition of a pulse is based on the step function u(t), which is defined 

as : 

where t indicates the time. Clearly, by adding two step functions shifted in time, we 

arrive at the following definitions: 

NRZ pulse: 

NRZ(t) = ~ ( t )  - ~ ( t  - T)  

RZ pulse: 

RZ(t) = u(t) - u(t - p) 

HZ pulse: 

HZ(t) = u(t - p) - u(t - T). (B-4) 
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Figure B.l: DAC pulse forms for NRZ, RZ, and HZ 

B.2 s-domain pulse forms 

The Laplace transform of the step function is: 

while the delayed step function Laplace transform is: 

-ST 
L [ ~ ( t  - T ) ]  = -. 

S 

From ( B.2), ( B.3), and ( B.4), it follows that: 

B.3 Pulse invariance 

At all sampling instances, the inverse z-transform and inverse Laplace transform of a func- 

tion must be equal. Therefore, the selected pulse shape delivered by the DAC must be 

accounted for in the pulse invariant transformation, given as follows: 

This appendix describes two cases of ~ ( s ) :  
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1. ~ ( s )  only has a multiple number of single poles 

2. ~ ( s )  only has a multiple number of double poles 

These two cases are sufficient to create 2nd and 4th order CT BP CA functions, while the 6th 

order CA function requires a mapping to deal with the triple poles. The 6th order function 

is derived via the same methodology used for the 2nd and 4th order functions; however, 

the complexity of the equations is much higher and the function must be evaluated using 

symbolic mathematical software. 

B.4 Single pole H(z) case 

A general z-domain transfer function with N single poles is: 

where z k  is a single pole [29]. The equivalent s-domain function is given by: 

with the impulse response function being: 

(B. 14) 

where (^)  is used to indicate a continuous time parameter. 

In order to perform the transformation H(z)  + ~ ( s ) ,  the relationship between the 

discrete time coefficient a k  and its continuous time equivalent lik must first be determined. 

One possible approach is to start with the time domain impulse response and convolve it 

with the pulse: 

where Rp(t) is the time domain pulse shape. 



APPENDIX B. IMPULSE INVARIANT TRANSFORMATION 

B.5 NRZ impulse response 

From ( B.16) and Fig. B.l, we can derive: 

Then, substituting h(t) from ( B.15) results in: 

N & k e s k t  

= c SkeSkt [lt e-"kTd~] = - (epSkt - (B. 18) 
k=l k=l -Sk 

Thus, at t = nT: 

B.6 RZ impulse response 

From ( B.16) and Fig. B.l, we can derive: 

h (t) = RRZ (t) * h (t) 

+cC 
(t < 0) 

- 

- L RRZ (T) h(t - T ) ~ T  = h(t - T ) ~ T ,  (0 < t < p) (B.21) 

J:h(t - T ) ~ T ,  (t t p). 
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Then, substituting h(t) from ( B.15) results in: 

Thus, at t = nT: 

B.7 H Z  impulse response 

From ( B.16) and Fig. B.1, we can derive: 

+03 
(t < P) 

= L ~ ~ ~ ( ~ ) h ( t  - 7 ) d ~  = I: k(t - T ) ~ T ,  (p 5 t < T)  (B.25) 

J,T h(t - T ) ~ T ,  (t 2 T). 

Then, substituting h(t) from ( B.15) results in: 

1. (p 5 t < T)  
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Thus, at t = nT: 

h(nT) = 
(P  I t 5 T) 

( e C S k T  - PP) ; (t > T).  

B.8 DT to CT mapping 

1. H (z) : NRZ transformation function 

where: 
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2. H(z):  RZ transformation function 

H (z) = C h(n)zPn 

OC? 

(,-s~P - 1) C es*nTZ-n 

n=l I 

where: 

3. H (z) : HZ transformation function 
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where: 
Gk 

a k  = - (1  - eS@) and z k  = eSkT 
- s k  

B.9 Double pole H(z) case 

The general z-domain transfer function with N double poles z k :  

has an equivalent s-domain function given by: 

An effective approach for this transformation is to apply a limit to the two single pole 

case, in order to cause convergence of the two poles [48]. 

B.10 Double pole NRZ case 

After solving for the Ai (i  = 1 , 2 )  constants: 



APPENDIX B. IMPULSE INVARIANT TRANSFORMATION 

it follows that 

From the relations between H ( z )  and H ( s )  m d  between 'Jk and iik7 we can write: 

where 

For ski + s k p  + C1 + 8; therefore L7Hopital's rule must be applied: 

lim C1 = 
S k l  rSk2-Sk 
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Finally, we arrive at: 

ak 1 - T s k  - e-SkT s 
H ( S )  = lim [ C l s  + Co] = - + 

( S  - S k ) 2  skl1sk2--*sk [ ( 1  - eskT)2 T ( 1  - 1 
B.11 Double pole R Z  case 

After solving for the Ai (i = 1 ,2 )  constants: 

it follows that 

From the relations between H ( z )  and ~ ( s )  and between ak and iik, we can write: 
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where 

For ski + Sk2 Cl + i; therefore L'Hopital's rule must be applied: 

and 

si ( 1  - l e - s k p  
- - 2 > 

[ e s k p  ( 1  - e s k p  > I 2  * 

Finally, we arrive at: 

H ( S )  = a k  
lirn [Cis + Co] 

( s  - s k l , S k 2 - ' s k  
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B.12 Double pole HZ case 

For S k l  # S k 2  S k  

After solving for the Ai (i = 1 , 2 )  constants: 

it follows that 

From the relations between H ( z )  and ~ ( s )  and between a k  and i i k ,  we can write: 
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where 

For ski -+ S k 2  + Cl --+ Q ;  therefore L'Hopital's rule must be applied: 

and 

[skisk2 ( e s k 2 P  - e s k l P  
lirn Co = lirn 

S k l  rSk2-Sk Ski-*sk [ ( I  - e s k l ~ )  ( 1  - e s k 2 ~ )  ( e s k 2 T  - e s k l T  

Finally, we arrive at: 

H ( S )  = a k  lim [CIS + Co] 
( s  - S k ) 2  s k l , S r ~ 2 - - * ~ k  
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A dh order CA transfer function 

In this Appendix, the derivation of (3.29) is described in detail. 

The development of the CT BP CA loop function starts with the z-domain description 

of the f s /4  CA NTF. One way to create a 4th order NTF is to place 2 resonators on the 

signal path of the CA loop [36] 

N T F  - 1 
H m ( 4  = N T F  ' 

where m is the filter order. Substitution of (C . l )  into (C.2) results in the 4th order f s /4  

filter transfer function H4 ( 2 )  : 

The partial fraction form is given by: 

where the poles are zkl = - j ,  Zk2  = j ,  Z k 3  = - j ,  and zk4 = j .  The mapping functions used 

in this example are: 
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Each of the partial fraction terms in (C.5) are generalized in the z-domain using the following 

transformation: 

where i = 1,2,3,4 and n = 1,2  is zki pole order; poles zkl, Zk2 are single poles, while poles 

243, and 244 are double poles. 

The application of (C.lO) to each term in (C.5) results in the following generalized 

tunable z-domain transfer function: 

-4 cos (8) z3 + (- cos (6') + 3 cos (2 6') + 7) z2 - cos (8) + (-8 cos (8) + cos (2 8) + 1) z + 2 

2 z 4 - ~ ~ ~ s ( e ) z 3  - ~ ~ ~ ~ ( e ) ~ + ( 4 ~ ~ ~ ( 2 e ) + 8 ) ~ ~ + 2  

(C.ll) 

The conversion from the z-domain to s-domain is first done for the singlepole partial 

fraction terms, using the following transformations: 

resulting in: 

- \ / 
Hs2 = 

7 (4$f - 4 e - J ~  ~ ( 1 - e i ' )  (s- $)' 
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Next, for the doublepole partial fraction terms, the following transformations are used: 

resulting in: 

The addition of equations (C.15), (C.16), (C.21), and (C.22) results in: 

(C. 23) 

where, 

8 sin 8 
HO3 = - - 

1 - - 
2(1-cos8)  4 

and S is the separation angle between the pole pairs and the center notch frequency. For 

S = 0, the two pairs of single poles collapse into a double pole. 
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