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ABSTRACT 

Uncertainty in stock biomass estimates of marine invertebrates arises, in part, due 

to difficulties in obtaining accurate and precise density estimates. In aggregated 

populations, such as with red sea urchins (Strongylocentrotus fianciscanus), a precise 

estimate of density may be quite challenging to obtain. I examined different survey 

designs using simulated urchin populations with the objective of improving density 

estimation. I evaluated alternative designs in terms of precision, cost, and bias. Designs 

under consideration were a simple version of random transect sampling, and more 

complex random transect sampling designs, including restricted adaptive cluster sampling 

and a design stratifying by substrate within the transect. The complex designs were more 

precise and cost-efficient than the current sampling method used in British Columbia but 

produced slightly biased estimates. Choice of sampling designs for use in field surveys, 

which are conducted by SCUBA divers, may be influenced by the ability to implement 

complex designs. 
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INTRODUCTION 

Stock assessment programs face the challenge of reliably estimating abundance of 

aquatic species. Some of the greatest challenges are with invertebrates, which, up until 

the last decade, have generally received less research attention than finfish. In new or 

emerging fisheries where management is required to follow a precautionary and risk- 

averse approach (Fisheries and Oceans Canada (DFO) 2003), biological and exploitation 

rate information collected via population sampling is vital to decision-making. In 

developing marine invertebrate fisheries, managers are often faced with making decisions 

when limited information is available on the biology and exploitation of the species in 

question (Perry et al. 1999). A precautionary and risk-averse management approach 

increases the probability of maintaining a sustainable fishery while managers and 

scientists improve their understanding of the population dynamics of target species. 

The red sea urchin (Strongylocentrotus fianciscanus) is one such species where 

the population dynamics are not well understood. Research suggests that population 

parameters such as recruitment and mortality vary greatly by location. Sloan et al. (1 987) 

estimated recruitment of red sea urchins in British Columbia at 9.5% of the total number 

of sea urchins but noted that recruitment varied substantially in study sites within close 

proximity, as well as between sites sampled in a broad-scale survey. Density-dependent 

mechanisms or Allee effects (Allee 193 1) potentially influence recruitment of urchins. 

The Allee effect is the positive feedback between population density and reproductive 

success of individuals that tends to drive populations toward extinction if density is 



below some threshold. Urchins are broadcast spawners and as a result require some 

minimum density for successfbl reproduction (Levitan et al. 1992). Aggregations of 

adults are also important for the protection of juveniles (Tegner and Dayton 1977). 

Juveniles will settle under the cover of adults' spines to avoid predation. Reported 

estimates of mortality rates for urchin populations vary greatly. For instance, 

instantaneous natural mortality rates in northern California were estimated to reach 

0.2llyear (Morgan et al. 2000), whereas Ebert et al. (1 999) report study sites with much 

lower estimates (0.0 161year) of mortality in the same region. Scientific understanding is 

better for the habitat preferences than for mortality rates. Red sea urchins feed on kelp 

and drift algae, and play an important role in kelp forest communities (Tegner 2001). Red 

sea urchins also have a preference for certain substrates and are commonly found on 

rocky substrates from the intertidal zone to depths of 20 m (Campbell et al. 1999a). 

In British Columbia, DFO is responsible for maintaining a balance between 

healthy red sea urchin populations and harvest levels that provide reasonable economic 

returns to the urchin fishery (Campbell et al. 1999a). Accurately estimating biomass is an 

important factor in achieving a sustainable harvest. In the management of the red sea 

urchin fishery, fishing quotas are in part based on a modified surplus production model 

for which biomass estimates are a key input (Campbell et al. 1999b, 2001). The model 

calculates the maximum sustainable yield from a stock. Scientists acknowledge the 

uncertainty in the model by applying a correction factor to the quota estimate. The 

correction factor is a means of preventing overharvesting due to errors in the biomass 

estimate. The upper and lower 90% confidence intervals of the current biomass estimate 



are also used in additional model scenarios to provide a range of quota options for 

managers (Campbell et al. 1999b, 2001; DFO 2004). 

There are two main approaches to estimating biomass of red sea urchins in British 

Columbia. One approach is to use fishery-dependent data, such as catch-per-unit-effort 

(CPUE), which are an index of abundance and can help estimate fishery trends. However, 

Campbell et al. (1999a) identify several reasons why this approach is unreliable for red 

sea urchins. First, CPUE can remain relatively unchanged if sequential depletion of 

populations is occurring across space. That is, fishermen may continually move from one 

fished area to an unfished one, preventing a significant reduction in CPUE until all the 

populations in a region have been overfished. Second, market demand can also affect 

CPUE. Fishermen may modify effort to meet a buyer's requests. Third, preferences of 

fishermen to harvest only in optimal areas to obtain high-quality roe may also influence 

the CPUE. Harvesting these areas subsequently allows red sea urchins occupying lower 

quality habitat to move to the more optimal areas. Consequently, the CPUE may remain 

unchanged in successive visits to a site and abundance indices can become distorted. The 

resulting lack of reliability of fishery-dependent data creates a necessity for high quality 

fishery-independent surveys that can provide precise estimates of density for use in 

harvest planning. 

The other approach to estimating biomass of red sea urchins is fishery- 

independent population surveys, which is the primary stock assessment tool used by 

DFO. Two general types of fishery-independent surveys are currently used in British 

Columbia to estimate density of red sea urchins, "broadbrush" and "targeted" surveys. 

Both types of surveys are conducted by SCUBA divers. Few fishery-independent surveys 



had been carried out prior to the 1990s, even though a commercial fishery in British 

Columbia has been ongoing since the 1970s (Campbell et al. 1999a). Surveys within a 

given area may also be infrequent. DFO strives to survey Pacific Fishery Management 

sub-areas at least every five years or more frequently in locations that have experienced 

heavy fishing or depredation by otters (Campbell et al. 2001). Broadbrush surveys, first 

conducted in 1993 (Jamieson and Schwarz 1998), provide a general estimate of the 

density of red sea urchin for large areas such as a sub-area of a Pacific Fishery 

Management Area (Campbell et al. 1999a). An example of the size of a survey area is a 

survey of Laredo Channel in British Columbia, which covered approximately 11 1 km of 

total shore length. In a typical broadbrush survey, the location of the starting transect is 

randomly selected and the other transects are systematically placed relative to the first 

one. Surveys generally occur in water depths no greater than 15 m below chart datum 

(chart datum refers to lowest normal tide) which corresponds to the majority of fishing 

activity (Campbell et al. 1999a). Advantages of the broadbrush survey include its 

simplicity to plan and its flexibility for estimating density on a g/m2 basis or g/m of 

shoreline basis (A. Campbell, personal communication, Fisheries and Oceans Canada, 

Nanaimo, B.C., 2004). 

The other type of fishery-independent survey, targeted survey, began in 2003 and 

is similar in sampling design to the broadbrush survey but differs in that sampling effort 

is not evenly spaced across the survey area (A. Campbell, personal communication, 

2004). In these surveys, transect placement is also perpendicular to the shoreline but 75% 

of the transects are concentrated randomly within harvest areas, and 25% outside of 



harvest areas. Surveys provide an estimate of red sea urchin density and size-frequency 

distribution, which are used to estimate biomass for the given area. 

Uncertainty in biomass estimates arises from several sources (Campbell et al. 

1999b, 200 1). First, surveys in a given area may occur once every five years, so that past 

data may no longer reflect the current state. Density estimates are also not available for 

all sub-areas of a Pacific Fisheries Management Area (PFMA), so an estimate is based on 

an average estimate from the entire PFMA for all years surveyed. In PFMAs where no 

data is available from fishery-independent surveys, then an estimate of density is based 

on the data of an adjacent PFMA. Second, in addition to requiring the density estimate 

and size-frequency data, an estimate of the total urchin bed area is necessary to estimate 

the total biomass. Bed area refers to an area of fishable density of red sea urchins (e.g. 2 

1 urchin per m2). The estimate of urchin bed area, though, is highly uncertain. The 

accuracy of harvest logbooks used to determine the location and size of a bed area is 

unknown. Furthermore, biologists are unsure of how many years of harvest logbook data 

to include within a cumulative total of bed area because it is unknown how closely annual 

changes in harvest locations reflect changes in urchin bed area. Third, precise density 

estimation of spatially clustered species, such as urchins, can be difficult to obtain (Smith 

et al. 1995). My research will focus on reducing this third source of uncertainty by 

improving density estimation through a survey's sampling design. 

Difficulties associated with surveying red sea urchin populations are typical of 

many species with an aggregated distribution. The aggregated distribution of red sea 

urchins results in large areas without any urchins and a few areas with many urchins, so 

traditional sampling regimes (e.g. simple random sampling) will yield a dataset with 



many zero-counts (Thompson and Seber 1996). For instance, in a 1994 DFO red sea 

urchin survey using a two-stage cluster design, urchins were present in only one-third of 

the total quadrats measured (Jamieson and Schwarz 1998). Such situations suggest 

adaptive cluster sampling (ACS) strategies should be used because they can improve 

precision of density estimates over conventional designs for rare andlor highly 

aggregated populations (Thompson 1990, 199 1 a, 199 1 b, 1992, 1996; Seber and 

Thompson 1994; Thompson and Seber 1996). ACS designs focus sampling effort in areas 

where non-zero-counts occur and still provide an unbiased estimate of density using 

either the Hansen-Hurwitz (HH) or the Horvitz-Thompson (HT) estimators. ACS 

essentially has two stages; the initial random selection of n sample units and the adaptive 

sample. If a unit within the initial random selection satisfies the density condition, then 

sampling occurs in the neighbourhood of the selected unit. A neighbourhood is 

commonly defined as the units adjacent to the selected unit; however, complex 

neighbourhood patterns are possible (Christman 1997; Lo et al. 1997). If a unit within the 

neighbourhood satisfies the condition, then the neighbourhood of that unit is also 

sampled and so forth, until no further units satisfy the condition. The result of the 

sampling is a contiguous group of sampled units, called a cluster, made up of edge units 

and a network. The network includes those units in the cluster that satisfy the density 

condition, whereas edge units refer to observations that fall short of the condition. Since 

the sampling of observational units continues until all units of a neighbourhood fail to 

satisfy the density condition, the final sample size is unknown prior to the completion of 

the survey. This is problematic because in most cases, time and budget constraints limit 

the sample size of a survey, potentially making ACS a less feasible option for field 



applications (Brown and Manly 1998; Comers and Schwager 2002; Salehi and Seber 

2002; Smith et al. 2003; Su and Quinn 2003). 

This problem can be dealt with by modifying adaptive cluster sampling to limit 

the total sampling effort. I illustrate this approach using several examples. First, Lo et al. 

(1 997) limited sampling effort by using a restricted adaptive cluster sampling design that 

imposed neighbourhood restrictions in a survey of hake larval abundance. They restricted 

the adaptive sampling stage to a maximum number of units beyond the initial sampling 

unit. Similarly, Su and Quinn (2002) imposed a stopping rule restricting the number of 

adaptively sampled units in the sampling of simulated fish and bird populations. This 

sampling design biased the Hansen-Hurwitz (HH) and the Horvitz-Thompson (HT) 

estimators by using the stopping rule and further biased the HT estimator by using a 

design where the density condition value changed with each sample. Another variation of 

restricted adaptive cluster sampling design (Brown and Manly 1998) used a defined limit 

for the final sample size. A unit within the initial sample was selected and adaptive 

sampling took place (if the pre-defined condition was satisfied) before the next initial unit 

was randomly selected. As part of this restricted design, when the cumulative sample size 

met or surpassed the pre-specified limit on the final sample size, sampling ceased after 

the completion of the cluster even if all units within the expected initial sample had not 

yet been sampled. Sample size was not fixed, so the error in estimating the expected 

value of the initial sample size biased the density estimate. In other research, Woodby 

(1998) constrained sample size in adaptive cluster sampling surveys of simulated 

populations of red sea urchins by adaptively sampling only those units midway between 



secondary sampling units (i.e. quadrats). Thompson and Seber (1996) describe additional 

methods of limiting sampling effort in ACS. 

My research focuses on improving density estimates of red sea urchins in British 

Columbian waters by comparing alternative designs, including ACS, with the current 

sampling method used by DFO. The purpose of this research is to identify potential 

designs that are both practical in the field and improve the precision of density estimates 

over what is achieved through current survey methods. Several other benefits will also 

result from this research. As previously mentioned, improving the precision will reduce 

the uncertainty of biomass estimates that are used in making harvest policy decisions, 

which should reduce the chance of both overharvesting and harvesting less than could be 

sustained. Second, cost and time savings could result from identifying designs that 

require less sampling effort than what is currently used while still providing a similar 

level of precision. 

Little research has been published that investigates the use of different sampling 

designs for estimating density of red sea urchins. Currently, the only published simulation 

experiment assessing sampling designs for red sea urchins is Woodby (1998), which 

compares ACS to simple random sampling. I expand upon Woodby (1 998) by using 

simulated urchin populations to assess the performance of other designs, in addition to 

adaptive cluster sampling. Specifically, I simulate simple random sampling and variations 

of random transect sampling designs, including a modified version of Woodby's (1998) 

ACS method of constraining sample size in red sea urchin populations. I primarily 

evaluate the designs relative to the current method by determining which one(s) provides 

the greatest precision and statistical efficiency, and minimize the bias in the density 



estimates of red sea urchins. As well, the cost of a design is often a primary consideration 

that managers cannot ignore because they are faced with budget constraints. Therefore, I 

also assess cost efficiency of each design. Simple random sampling is included in the 

simulation primarily as a means of determining a design's statistical efficiency, but it is 

not considered a realistic alternative to the current sampling method. 



To compare the potential field performance of various sampling designs for 

surveys of red sea urchins, I tested the designs on simulated populations of urchins that 

were generated using a spatial model. The spatial model simulated populations using data 

from the red sea urchin population in Laredo Channel in British Columbia (Pacific 

Fishery Management Area 6) (Figure 1). I bootstrapped the field survey data collected 

from that location to generate one spatial configuration ("simulated realization") of a 

survey area. The resulting simulated survey area represented the spatial configuration of 

red sea urchin distribution and associated habitat. For my comparison of sampling 

methods, I assumed that the simulated survey area was the "true" spatially heterogeneous 

distribution of red sea urchins. By simulating sampling designs in a survey area with a 

known density, I was able to compare the estimates of density for each design against that 

known "true" value. I then re-bootstrapped the field survey data to create 200 "true" 

populations to compare the sampling designs over a wide variety of potential spatial 

configurations. I programmed the simulation in Excel Visual Basic for Applications 

(2002). To generate uniform random deviates, I used an algorithm, function "ran3" (Press 

et al. 1992) that was independent from Excel's built-in RAND function. 

Basis for the Spatial Model 

The basis for the spatial model that I used to generate realizations of urchin 

populations was survey data collected by DFO to estimate red sea urchin density in the 



area of Laredo Channel in 2000 (Tzotzos et al. 2003). These data were collected via a 

broadbrush survey, which extended over 11 1 km of coastline. Using a systematic transect 

survey design, 86 transects were placed systematically along the coastline from a 

randomly selected starting point. Transects were laid out perpendicular to the coastline to 

a depth of 10 m below chart datum; thus, the slope of the ocean floor determined the 

actual length of each transect. Transects ranged in length from 17 m to 341 m and had a 

mean length of 53 m. Within a transect, SCUBA divers counted the number of urchins in 

every second quadrat (quadrat = 1 m2) and collected information on urchin size, 

substrate, algae, and water depth. In total, 2303 quadrats were sampled. Density estimates 

among transects varied widely, ranging from zero to 19.8 urchins/m2. The density 

estimate of the survey area in 2000 was 1.09 (standard error = 0.22) urchins/m2. Further 

details of the survey are found in Tzotzos et al. (2003). 

To parameterize the spatial model, I first analyzed the field data in several ways. 

Red sea urchins have a preference for rocky substrate and urchin distribution in the 2000 

survey data show this strong association between substrate and density. In particular, 

substrates with bedrock and boulders have a much greater mean density of red sea 

urchins than substrates of cobble, gravel, sand, shells, and mud (Figure 2). A mixed 

effects model was fit to the survey data. The model in simplified syntax that represents 

the treatment, experimental, and randomization structure is: 

count = substrate transect(R) substrate *transect(R) (1) 

where count is the response variable, R indicates that an effect was random and the 

asterisk indicates interaction between the blocking factor (transect) and the treatment 

(substrate). Equation 1 indicates that the count (response variable) is affected by 



substrate and transect. I ran the model assuming a covariance structure of compound 

symmetry (i.e. the correlation between quadrats in a transect is the same) (Table 1). 

Results confirmed that there was a significant difference in counts of red sea urchins 

between types of substrate and this difference was consistent across transects. The 

variation in density among transects was small when the collection of substrates within 

the transects was the same. The large residual value from the model (Table 1) signifies 

high natural variation in the counts of urchins within a particular substrate of a transect. I 

fit the same model again but assumed a spatially auto-regressive covariance structure 

(where the (ij) element of the covariance matrix between urchin counts in successive 

2 I / - / \  quadrats is a p ). The results were similar to the model fit that assumed a covariance 

of compound symmetry and the correlation value between urchin counts in successive 

quadrats of a transect was low (0.18). In the survey area, sand substrate occurred most 

frequently (38%) and pea gravel occurring least frequently (0.1%) (Figure 2). 

Another feature of the survey data is that only approximately 16% of quadrats had 

red sea urchins present. From a transect perspective, shorter transects had a higher 

proportion of quadrats occupied by urchins than the longer transects (Figure 3). This 

appears to be a function of substrate type. Shorter transects generally have a larger 

proportion of area composed of bedrock%oulders whereas longer transects have a greater 

proportion of the area with less urchin-desirable substrate types (e.g. sand, mud, cobble) 

(Figure 3). Bedrock and boulder substrates likely occur on sharper gradients than sand or 

mud substrates and as a result, transects composed mainly of bedrock and/or boulders are 

generally shorter in length because transect length is constrained by water depth. Using 



these general features of the population and survey results as basic characteristics, I 

simulated urchin populations and their associated habitat. 

Simulation of a Population 

Two hundred realizations of a red sea urchin population were simulated by 

bootstrapping the Laredo Channel transect survey data with replacement. I assumed the 

field survey to be representative of the substrate types and urchin numbers in the area. I 

also assumed that transects in the survey data were independent. The length of the 

transect and the proportion of each substrate within the transect were bootstrapped 

together (Figure 4). However, the order of substrates occurring along a transect, as well 

as the urchin counts within the quadrats, changed from the field survey data, as described 

below. Each simulated survey area was composed of 107 bootstrapped transects (primary 

units) to enable a range of sample sizes to be tested. Each transect was made up of 

quadrats (secondary units) 1 m2 in size. Because lengths of transects varied, the total 

number of possible quadrats in the simulated survey area depended on which transects 

were randomly selected in the bootstrap procedure. 

The order in which substrates occurred within a transect in the simulated survey 

area was based on two factors. The first reflected the observation that most transects in 

the field survey have bedrock occurring near the shallow end while substrates such as 

sand and mud are more likely to occur on the deep end of the transect. Either smooth 

bedrock or bedrock with crevices occurred in the first quadrat from the shallow end of the 

transect 93% of the time in the field data. Although depth was not explicitly considered in 

the model, the order of substrate types may be important, so the model was designed to 



give bedrock substrates a 93% probability of being selected as the shallowest quadrat of 

the transect if they actually occurred in the randomly selected transect. 

The second factor affecting the order of substrate type along a transect in the 

model was the observation in the field survey data that quadrats of the same substrate 

type have a high probability of being adjacent to each other. Note that the order of 

quadrats and substrate types in the modelling process is discussed here in terms of 

moving along a transect from the shallow to the deep end. For example, moving from 

shallow to deep water, a sandy quadrat is more likely to follow a sandy quadrat within a 

transect than a quadrat of a differing substrate type. All substrates types had a high 

probability (2 0.74) of the next quadrat in the transect being of the same substrate type in 

the field survey data (highlighted diagonal of Table 2), except pea gravel. However, less 

than 1% of the quadrats in the field survey data consisted of pea gravel (Figure 2). The 

simulation used a transition matrix of probabilities (Table 2) to control the transition of 

substrate type between adjacent quadrats in a transect. For each new quadrat, a uniform 

random number was generated. Random numbers that were less than or equal to the 

transition probability resulted in the selection of a quadrat with the same substrate type as 

the previous quadrat, whereas a random number above the transition probability meant 

that all substrate types present in the transect had an equal chance of selection for that 

next quadrat. I used an equal probability of selection in this case instead of using the 

transition probabilities (non-highlighted values of Table 2) to determine the next 

substrate type in the transect because transition probability values between differing 

substrate types were generally much lower than those between the same substrate types. 

The exception to this was pea gravel. The observed probabilities for this substrate type 



were likely due to its rare occurrence in the Laredo Channel survey data. Furthermore, 

the number of substrates present in the transect was often small (approximately three on 

average) and the order of substrate type within a transect was already influenced by the 

weighted probability that bedrock substrate types would occur more frequently at the 

beginning of a transect. Bootstrapped transects did not change from the field survey 

transects in terms of length or the proportion of substrate types present. Once the 

proportion of a substrate was met in a transect, I determined the substrate type of the next 

quadrat using equal probability of selection (as described above) of the remaining 

substrate types that were not yet proportionally represented in the transect. I did not alter 

the length of the transects or substrate proportions within them because a wide range of 

lengths and substrate proportions were already present in the data. I therefore assumed 

the outcome of the simulation would not be affected. 

Abundance values of urchins for each quadrat in the simulated survey area were 

then generated using the urchin count data from the Laredo Channel field survey. For the 

first quadrat of a simulated transect, the abundance value was randomly selected from the 

urchin counts in the field survey data associated with the given substrate type of the 

simulated quadrat. The count values for the remaining quadrats in a simulated transect 

were generated using transition matrices and Poisson distributions based on the field 

survey data. I produced a 3 x 3 transition matrix for each substrate type with three count 

categories: zero-count, low-count (1 - 10 urchins), and high-count (>I0 urchins). Each 

matrix contained the probabilities of a quadrat of a given count category following 

another quadrat of a given count category (Table 3) as the surveyor moved from the 

shallow to the deep end of the transect. Using these transition matrices, I attempted to 



capture any patterns of clustering or aggregation of urchins within a transect that may 

exist in th.e field survey data. In the model, I used these probabilities to assign a count 

category to a quadrat based on the count of the previous quadrat. For instance, if the 

urchin count in quadrat a is 4 and it has a sandy substrate, then if quadrat a+l is also 

composed of sand, it has a 0.67 probability of a zero-count, 0.33 probability of a low- 

count, and zero probability of a high-count (Table 3). For simplicity, the rule remained 

the same when the substrate type changed within a transect (e.g. sand to cobble). For 

example, if the urchin count in quadrat a is 4 and has a sandy substrate, then quadrat a+l, 

composed of cobble, still has a 0.67 probability of falling in the zero-count, 0.33 

probability of a low-count, and zero probability of a high-count (Table 3). These 

transition probability values are associated with sand, not cobble. If quadrat a+2 is also 

composed of cobble, then its selected count category would then be based on transition 

probabilities associated with cobble. 

The actual count value of a quadrat was randomly selected from a Poisson 

distribution based on these count categories. Poisson distributions were generated for the 

low-count category and the high-count category of each substrate using the observed 

mean count of each category from the field survey (Table 4). The largest count value that 

was possible for a quadrat in a low-count category was ten for any substrate, whereas the 

largest count value that was possible for a quadrat in a high-count category differed 

according to substrate type (Table 4). Substrates of gravel, pea gravel, and mud did not 

have any count values greater than zero in the field survey. Thus, quadrats in the 

simulated population composed of one of these three substrates types always had zero 

urchins. 



Description of the Simulated Survey Designs 

I examined the statistical performance and cost efficiency of five different 

sampling regimes to estimate density of the simulated urchin populations. Statistical 

performance was measured in terms of bias, relative efficiency, and precision. Cost 

efficiency was assessed using survey time and variance of the density estimate, where 

survey time was defined as the total time to count each of the sampled quadrats. The five 

different sampling regimes under evaluation were a simple random sampling design, a 

simple random transect sampling design, the current random transect sampling design 

(approximating DFO's current survey method), a within-transect stratification sampling 

design, and a restricted adaptive cluster sampling design. With the exception of the 

simple random sample design, each of the designs was a variation of random transect 

sampling. 

Simple Random Survey (SRS) 

In the simple random sample (SRS) survey, quadrats were randomly selected with 

replacement from the simulated survey area. The SRS estimator of the mean density of 

urchins is: 

where yi denotes the observed density on the ith quadrat and n is the number quadrats 

selected. 



Random Transect Surveys (RTS) 

In the random transect sampling (RTS) design, transects were randomly selected 

with replacement from the simulated survey area. Transects were perpendicular to the 

shoreline, as is currently the practice in the field. They were also of different length, so it 

was necessary to weight them in the calculation of the overall mean density of the survey 

area. Thus, for each of the RTS designs described below, the estimator of the mean 

density of the population is (Campbell et al. 1999b): 

where LT is the length of transect Tin metres, K is the total number of transects in the 

sample, and iiT is the estimated density of transect T. The calculation of j, is specific to 

each survey design and is described below for each variation of the random transect 

survey. 

Simple Random Transect Sampling Design ("RTSsimple") 

In the "RTSsimple" design, the number of urchins in all quadrats of a transect were 

counted. The estimated density of sea urchins for a given transect is: 

where nr is the number of quadrats sampled in transect T, and a~ is the surface area of all 

quadrats surveyed on transect T. Note that a~ = n~ because the area of a quadrat in the 

simulation was equal to 1 m2. 



Current Random Transect Sampling Design ("RTScurrent") 

The "RTScurrent" design approximated the survey regime that DFO currently 

employs by counting urchins in every second quadrat of a randomly selected transect. In 

DFO surveys, the transects are placed systematically as opposed to randomly; however, I 

considered systematic and random placement of transects to be equivalent because it is 

unlikely that the systematic placement of transects matches any trends in the distribution 

of the urchin population (Jamieson and Schwarz 1998). The starting point for sampling 

within a transect was randomly selected to be quadrat 1 or 2. The estimated density of sea 

urchins for a given transect is calculated using Equation 4. 

Within-Transect Stratification Sampling Design ("RTSstrat") 

In the "RTSstrat" survey, the field survey data were used as prior knowledge to 

estimate the level of sampling effort necessary within each substrate type. Sampling 

effort within a randomly selected transect varied according to substrate type. This design 

may be useful to the biologist planning a survey if the area is not physically suitable to 

stratify into homogenous areas andfor data are scarce such that available information is 

inadequate to stratify. The estimated density of sea urchins for a given transect (Cochran 

1977) is: 

where Ph is the mean density of stratum h, His  the total number of strata, and Wh is the 

weighting factor calculated by (Cochran 1977): 



where mh is the number of quadrats in stratum (substrate) h of the transect. 

Using the field survey data, I determined the allocation of sampling effort for each 

substrate type using Neyman allocation (Neyrnan 1934). Allocation of effort was 

calculated by multiplying the proportion of total quadrats occupied with urchins by a 

given substrate type with the standard deviation of urchin counts in the same substrate 

type (Table 5). For the simulation, sampling effort in each stratum (substrate type) was 

made relative to sampling effort in the smooth bedrock substrate, 

where Nh is the proportion of stratum h in the survey area, s is the standard deviation of 

urchins per quadrat in stratum h, N, is the proportion of smooth bedrock substrate in the 

survey area, and s, is the standard deviation of urchins per quadrat in the smooth bedrock 

substrate. The result was that sampling effort in the simulation varied greatly between the 

strata (substrate types) within a transect (Table 5). Twice as much sampling occurred in 

quadrats of smooth bedrock than in quadrats of bedrock with crevices and one-fourth the 

sampling effort in quadrats of boulders as that of quadrats in smooth bedrock (Table 5). 

For some substrate types (gravel, pea gravel, shell, mud), the Neyman allocation scheme 

indicated that very little or no sampling effort was required (Table 5). To maintain some 

simplicity in the sampling design, quadrats of these latter four substrate types were 

sampled every 2oth time they occurred in a transect (Table 5). 

Restricted Adaptive Cluster Sampling Design ("RTSacsv) 

In the "RTSacs" survey design, the initial sample of quadrats was selected 

systematically within a transect and the quadrat next to a sampled quadrat was adaptively 



sampled when a density condition was satisfied (Figure 5). The neighbourhood definition 

was the next quadrat adjacent to the observed quadrat along the transect. Adjacent 

quadrats preceding the initially observed one or areas outside of the transect were not 

sampled as part of the neighbourhood, resulting in an asymmetric neighbourhood pattern. 

In the simulation, the initial sample was the systematic sampling of every third 

quadrat in a randomly chosen transect. The starting point for the initial sample within the 

transect was also randomly selected (possible starting points were quadrats 1,2, and 3) 

(Figure 5). Each possible starting point for the initial sample represents a different 

possible systematic sample within the given transect, so there were three possible 

systematic samples (N) within a transect. Only one initial sample of the three possible 

initial samples was taken per randomly selected transect, so n = 1. The number of 

quadrats measured in the initial sample varied depending on the length of the transect 

(e.g. if transect length = 12 m and every third metre is measured then four quadrats are 

sampled as part of the initial sample). The criterion for sampling the neighbourhood of yii 

was based on the number of urchins per quadrat ( yv l  c where yii is the number of urchins 

in the quadrat of interest and c is equal to some condition). A condition of c = 1 urchin 

per quadrat was used in all simulated scenarios because of the high frequency of zeros in 

the data. Thus, the detection of one urchin was treated as a possible cluster. A cluster is a 

contiguous group of sampled units consisting of edge units and a network. The network 

includes those units in the cluster that satisfy the density condition, whereas edge units 

are observations that do not satisfy the condition (Figure 5). 

The restricted adaptive cluster sampling design (RTSacs) constrained the adaptive 

sampling within the randomly chosen transect as opposed to potentially sampling across 



the whole survey area. This constraint required the calculation of an estimator of mean 

density for each sampled transect. The Hansen-Hurwitz (HH) estimator and Horvitz- 

Thompson (HT) estimator (Thompson 199 1) normally produce different, unbiased 

estimates for adaptive cluster designs. In this case of restricted adaptive cluster design, 

both produce the same estimate (Woodby 1998) (Appendix 1). However, that estimate is 

biased because of the asymmetric neighbourhood pattern used in the design. I will 

examine only the Hansen-Hurwitz (HH) estimator. Using the Hansen-Hurwitz (HH) 

estimator (Thompson 1991), the mean density of urchins in a randomly chosen transect 

is: 

where wj is the mean urchin density over all networks detected by the ith transect and n = 

1, as described above. The variable, wj is calculated by: 

(9) 

where xk is the number of possible samples that intersect the k' network, yi is the total 

number of urchins in all quadrats of network k, and M is the (L~)l(step size of the 

systematic sample). 

Recall that the total possible number of initial samples in a transect (N) was three 

because there were three possible starting quadrats (1,2, or 3) from which to start 

sampling. Using Figure 5 as an example, the transect has two networks detected when 

sampling begins at quadrat 1. Network 1 intersects all three of the possible initial samples 

(xl = 3) but extends over four quadrats, so y~ = 8. Network 2 intersects two of the 



possible initial samples (x;! = 2) and y;! totals to 4 urchins. Transect length (LT) is 12 m 

long and the systematic step is three so, M = 4 as defined above. 

In summary, five different sampling regimes were evaluated using simulated 

urchins populations. A simple random sampling design (SRS) selected quadrats randomly 

from the entire survey area. The four other sampling designs selected a random sample of 

transects from the entire survey area but the sub-sampling within each transect varied 

among the designs. Specifically, simple random transect sampling regime (RTSsimple) 

sampled all quadrats within a transect. The current transect sampling design 

(RTScurrent), which approximated DFO's current survey method, sampled every second 

quadrat in a transect. In the within-transect stratification regime (RTSstrat), sampling 

effort within a transect depended on substrate type. Finally, the restricted adaptive cluster 

sampling design (RTSacs), took an initial sample of every third quadrat in a transect and 

an adaptive sample when the density condition was satisfied. 

Stratification of the Survey Area 

To determine the extent to which the performance of each survey design (except 

SRS) would improve if stratification was used, I next stratified the simulated survey area 

based on survey type by dividing the simulated shoreline equally into 11 strata. In each 

stratum, I determined the ratio of quadrats with "good" substrate (smooth bedrock, 

bedrock with crevices, and boulders) to the total number of quadrats. Allocation of 

sampling effort among strata was proportional to the ratio of good-to-total substrate. As 

mentioned previously, good substrate was defined as those substrates for which urchins 

show a strong preference (bedrock and boulders). I assumed perfect information on the 

number of quadrats with good substrate and total number of quadrats in each stratum. 



Although this is of course not realistic in the field situation, my analysis would indicate 

the maximum potential improvement possible by adding stratification to a survey design. 

The number of sampling units in a given stratum was determined by (Cochran 1977): 

where n is total sample size for the survey area, Ph is the proportion of good substrate 

relative to the total substrate in stratum h, and P = Pl+P2+. . .+PH. The sum of the sample 

sizes across all strata should equal the total sample size for the survey area. In some 

cases, this did not occur, so I adjusted the sample sizes of the strata until their sum was 

equal to the total sample size using the following rules. When x: n, > n , then the 

sample size of the stratum with the lowest ratio of good-to-total substrate was reduced by 

one. If x: n, was still greater than n, then the stratum with the next lowest ratio of good- 

to-total substrate was reduced in sample size. Conversely, when x: n,, < n , then the 

sample size of the stratum with the greatest ratio of good-to-total substrate was increased 

such that x: n, = n . The estimate of the population mean (& ) when using a stratified 

sampling design was calculated using Equation 4. The weighting factor (Wh), in this case, 

is the number of possible transects in stratum h relative to the total number of possible 

transects in the entire survey area. 

I applied each of the survey designs (except the simple random sampling survey) 

described in the previous section, "Description of the Simulated Survey Designs", to the 

stratified survey area, yielding a total of nine survey designs that I investigated. 



Monte-Carlo Simulation 

I conducted repeated Monte Carlo simulations of the sampling procedure (Figure 

6) to ensure that results were not due to some chance selection of a small number of 

sampling units. The overall spatial model was parameterized based on Laredo Channel 

survey data, as discussed above. Using the spatial model, 200 realizations (simulated 

spatial configurations of sea urchin populations) were generated using the methods 

described earlier. For each realization, 1200 Monte Carlo trials were run for each 

sampling design scenario. This number of Monte Carlo trials was set after conducting 

several numerical experiments that increased the number of trials by 100 until the relative 

standard error of mean urchin density was different by I 7% from simulations with fewer 

trials. At least two successive incremental increases in the number of trials had to occur 

where the relative standard error fell within this criterion. The sample size for each 

design ranged from 5 to 45 transects with a step size of 10, except in the scenarios where 

the survey area was stratified. Only sample sizes from 25 to 45 transects were used in 

scenarios involving stratification of the survey area to enable the opportunity to sample in 

each of the 11 strata. For each Monte Carlo trial of the random transect (RTS) type 

surveys, I estimated the urchin density of the simulated survey area and then simulated a 

corresponding simple random sampling (SRS) survey using the equivalent number of 

sampled quadrats. Each survey design applied a different amount of sampling effort, yet 

equivalent sample sizes were required for a fair comparison of the designs to SRS. Thus, 

a corresponding SRS survey was simulated for each trial of a design using the equivalent 

sample size. 



Calculations of the summary statistics for a given population were based on Su 

and Quinn (2003). Average mean density over a set of Monte Carlo trials is: 

where ji, is the i" estimate of an estimator and R is the number of Monte Carlo trials. 

Absolute bias is: 

B(b) = P - P  

where p  is the true density of the population. Relative bias is: 

Variance was estimated via Monte Carlo simulation, as opposed to using variance 

equations developed by statistical theory. The variance of the estimator is: 

Relative efficiency is a means of comparing one estimator to another, given 

equivalent sample size. The relative efficiency of an estimator relative to simple random 

sampling (SRS), as defined by Woodby (1998), is the ratio of the variance of SRS to the 

variance of the estimator of interest: 

The density estimate (@ ) for SRS and the design of interest was calculated using 

equivalent sample sizes. The total number of quadrats sampled is the equivalent SRS 



sample size. In the case of adaptive sampling, the total number of number of quadrats 

sampled is the sum of edge units and units that are part of a network. The equivalent 

sample size for SRS is the expected final sample size of a given design, which, based on 

the methods of Salehi and Seber (2002), is: 

where v is the final sample size and R and i are as denoted above. 

I provide an example for clarification. If I simulate three survey replications using 

the RTSacs design, then R = 3 and final sample sizes in secondary units (edge and 

network cells) are vl = 1585, v2 = 1560, and v3 = 1591. The expected final sample size 

of SRS is then the mean number of the replications, 1578.7. Instead of using the expected 

final sample size of SRS when simulating the SRS surveys, I used the final sample size 

for each Monte Carlo trial of the sampling design under consideration. The standard error 

of the mean urchin density for SRS using the expected final sample size, E ( v )  , was 

approximately equal (numerical tests show this was a good approximation) to the average 

of the standard error of the mean urchin density for SRS over all Monte Carlo trials. In 

other words, 

Efficiency of the estimators was also determined relative to the RTScurrent design. In 

this case, I substituted V(@R,,rre,,, ) for I/(@,) in Equation 15. 



Cost Considerations 

Cost was incorporated into the model by determining the cost per unit of 

information (Snedecor and Cochran 1967; Swallow 1987; Kosmelj et al. 2001). In the 

case of random transect sampling survey designs for red sea urchins, base costs (e.g. 

equipment and fuel) and daily costs (e.g. salaries and travel expenses) for each of the 

designs are approximately the same because the primary sampling unit in all variations of 

the random transect sampling designs is the strip transect. Thus, I excluded base and daily 

costs and included only marginal (or variable) costs in the study. I did not consider the 

costs of simple random sampling because it is not a practical alternative sampling design. 

Marginal costs are those that are directly affected by the number of quadrats sampled and 

urchin density. However, determining the actual cost per quadrat is a complex task. I 

used sampling time as a proxy for cost because divers record the time it takes to complete 

the sampling of urchins for each quadrat along a transect. The average sampling time to 

complete a quadrat was generalized into three urchin count groups: zero-count time, low- 

count time (1 - 10 urchinslquadrat), and high-count time (>lo urchinslquadrat) using the 

Laredo Channel survey data and a second DFO survey completed in 2003 in the Dundas 

Island Group. For each urchin count group, I chose the larger sampling time value of the 

two data sets. 

An optimal sampling design is the one that has the lowest cost per unit of 

information, where information is defined as the reciprocal of the variance of the mean 

(Snedecor and Cochran 1967; Swallow 1987; Kosmelj et al. 2001). Thus, inefficiency is 

the product of cost (or time in this case) and variance of the mean density: 



where t l  is the time it takes to sample a quadrat that contains no sea urchins (zero-count 

time = 52 seconds from the above data), c l  is the number of sampled quadrats with a 

zero-count, t2 is the time it takes to sample a low-count quadrat (low-count time = 90 

seconds), c2 is the number of sampled quadrats with a low-count (1 -1 O), t3 is the time it 

takes to sample a high-count quadrat (high-count time = 152 seconds), and c3 is the 

number of sampled quadrats with a high-count (> 10). 



RESULTS 

Simulated "True" Populations 

The 200 simulated realizations of "true" sea urchin populations resulted in a large 

range in the degree of urchin aggregation, a desirable situation for testing the 

performance of the sampling designs. The mean population density ranged widely from 

0.74 to 1.79 urchinslquadrat (Figure 7a); however, the median value (1.1 1 

urchinslquadrat) well-approximated the field survey mean of 1.09 urchinslquadrat. The 

distribution of the coefficient of variation (CV) for the 200 populations represents their 

range of aggregation (Figure 7b). Note that a CV = 1 means the standard deviation is 

equal to the mean. Of the 200 realizations, 160 populations had a CV < 2 and were 

classified as "weakly-aggregated", eight populations were "moderately-aggregated" with 

a CV ranging between 2 and 3, and 32 populations could be classified as "highly- 

aggregated" with a CV greater than three. A large gap in CV values occurred between the 

weakly-aggregated populations with a maximum CV value of 1.78 and the moderately- 

aggregated populations with a minimum CV value of 2.45, so I combined the small, 

moderately-aggregated group with the larger, highly-aggregated group to create two 

aggregation categories: weakly-aggregated with 160 populations and highly-aggregated 

with 40 populations. 



Comparison of Sampling Designs without Stratification of the Survey 
Area 

Relative Efficiency of Designs 

The sampling designs in the scenarios without stratification of the survey area 

were generally equally efficient to, or more efficient than, DFO's current random transect 

sampling design (RTScurrent) (Figure 8). Recall, in this case, that relative efficiency 

(RE) is the ratio of the variance of RTScurrent to the variance of the estimator of interest. 

A RE value greater than one (dotted line) indicates that the alternative design was more 

efficient than RTScurrent. The simple random transect sampling design (RTSsimple) had 

a median efficiency relative to RTScurrent of 1.2 1 to 1.18 for sample sizes of 5 to 45 

transects. Within-transect stratification design (RTSstrat) had the lowest relative 

efficiency values of the three designs and was roughly equal in efficiency to the 

RTScurrent design with values ranging from 1 .O1 to 0.95 (median values) for sample 

sizes of 5 to 45. The restricted adaptive cluster sampling design (RTSacs) performed 

similarly to RTSsimple with median efficiency values relative to RTScurrent ranging 

from 1.17 to 1.21 for sample sizes of 5 to 45 transects. 

Relative efficiency (RE) of the designs in the scenarios without stratification of 

the survey area was lower when I compared the designs to simple random sampling 

(SRS) instead of RTScurrent (Figure 9). In this case, relative efficiency is the ratio of the 

variance of SRS to the variance of the estimator of interest. Most simulated scenarios 

were less efficient than SRS. Relative efficiency values less than one (dotted line) 

indicate that the design was less efficient than its set of corresponding SRS surveys. 

RTScurrent (median RE values ranged from 0.43 to 0.45 for sample sizes of 5 to 45 

transects) fared better relative to its corresponding set of SRS surveys than RTSsimple 



(RE = 0.25 to 0.26 for sample sizes 5 to 45) did relative to its set of SRS surveys. Within- 

transect stratification (RTSstrat) and restricted adaptive cluster sampling (RTSacs) 

designs performed very similarly relative to their respective sets of SRS surveys. The 

median relative efficiency of RTSstrat ranged from 0.57 (n = 5) to 0.62 (n = 45) and 

RTSacs ranged from 0.58 (n = 5) to 0.65 (n = 45). For some highly-aggregated 

populations, RTSacs and RTSstrat had relative efficiency values greater than one, 

indicating that they were more efficient than SRS in those scenarios. For many others that 

were categorized as highly-aggregated, efficiency was just below one. The rank order of 

the designs remained the same for each sample size because sample size has no effect on 

relative efficiency and any differences were an artefact of the simulation. 

Relative Bias of Designs 

The bias ([absolute biasltrue population density] x 100) of RTScurrent, 

RTSsimple, and RTSstrat decreased with sample size, indicating that bias in the density 

estimates from smaller sample sizes was due to the ratio estimator used to estimate 

density (Figure 10). Overall, when sample size was sufficient to eliminate the bias from 

the ratio estimator, the RTScurrent and RTSsimple designs without stratification in the 

survey area were unbiased (Figure 10, e.g. n = 45 transects). The distribution of relative 

bias over the 200 simulated populations was the narrowest for RTScurrent and 

RTSsimple. The RTScurrent design had a median bias of 14.3% for n = 5 and declined to 

1.8% for n = 45. RTSsimple had a bias similar to RTScurrent with a median value of 

14.1% for n = 5 and declined to 1.7% for n = 45. The bias in the estimates of RTSstrat 

were the largest of the four designs, declining from 22.1% (n = 5) to 9.7% (n = 45). This 

design also produced the widest distribution for each sample size. Density estimates for 



RTSacs were least biased at n = 5 (1.7%) but increased in bias to approximately -8% for 

n = 25,35, and 45 transects. When I switched the direction of sampling in the simulation 

so that sampling began at the deep end of the transect instead of the shallow end of the 

transect, I observed that the bias of the RTSacs design was positive and it approached 

zero as sample size increased. These results are discussed further in the "Discussion". 

Precision of Designs 

Within each sample size, the distribution of the standard error of the mean density 

(precision) for the 200 simulated urchin populations was very similar across sampling 

designs in scenarios without stratification in the survey area (Figure 11). The median 

standard error of the RTScurrent design decreased from 0.89 for n = 5 transects to 0.27 

for n = 45 transects (i.e. precision increased with sample size). RTSsimple improved in 

precision with median standard error values decreasing from 0.80 (n = 5) to 0.24 (n = 45) 

and median values of RTSstrat design went from 0.88 (n = 5) to 0.27 (n = 45). The 

standard error for RTSacs had a similar range as RTSsimple, decreasing from 0.80 (n = 

5) to 0.24 (n = 45). 

Consideration of Costs 

The distribution of the inefficiency (marginal cost x the variance of the density 

estimate) of the four sampling designs without stratification of the survey area indicates 

the marginal cost per unit of information that each design incurred sampling the 200 

simulated urchin populations (Figure 12). The marginal cost per unit of information when 

using the RTScurrent design (median values) ranged from 0.84 (n = 5) to 0.69 (n = 45) 

and the values for RTSsimple ranged from 1.39 (n = 5) to 1.16 (n = 45). The marginal 



cost per unit of information when using the RTSstrat design was less than RTScurrent 

and RTS simple, ranging from 0.63 (n = 5) to 0.5 1 (n = 45). RTSacs performed similar to 

RTSstrat with values ranging from 0.63 (n = 5) to 0.50 (n = 45). The rank order of 

designs remained the same for each sample size because sample size has no effect on 

inefficiency. Thus, RTSstrat and RTSacs designs had the lowest marginal cost per unit of 

information and RTSsimple regime had the highest cost per unit of information. 

Comparison of the Sampling Designs with Stratification of the Survey 
Area 

Relative Efficiency of Designs 

In sampling scenarios with stratification of the survey area, each of the sampling 

designs were evaluated in a survey area that was divided into 11 strata, as described in 

"Stratification of the Survey Area" of the "Methods" section, whereas scenarios without 

stratification of the survey area did not divide the survey area into strata. 

Efficiency of the designs in a stratified survey area relative to DFO's current 

random transect design (RTScurrent without stratification of the survey area) was 

generally less than one (Figure 13), indicating that the RTScurrent design was more 

efficient than the alternative designs for scenarios in a stratified survey area. Recall, in 

this case, that relative efficiency (RE) is the ratio of the variance of RTScurrent to the 

variance of the estimator of interest. Note that only sample sizes of 25 to 45 transects 

were tested in scenarios with stratification of the survey area to enable the opportunity to 

sample in each of the 11 strata. 

The rank order of the sampling designs in terms of efficiency relative to SRS (i.e. 

the ratio of the variance of simple random sampling to the variance of the estimator of 



interest) did not change when the survey area was stratified (Figure 14) compared to 

when the survey area was not stratified (Figure 9). Relative efficiency values less than 

one (dotted line) indicate that the design was less efficient than its corresponding set of 

SRS surveys of equivalent sample size. Relative efficiency is not dependent on sample 

size, so I report the relative efficiency values for n = 45, which are similar to the values of 

the other sample sizes evaluated (Figure 14). RTScurrent and RTSsimple had a median 

relative efficiency of 0.34 and 0.22, respectively. RTSstrat and RTSacs designs had 

higher (best) median efficiency values of 0.48 and 0.47, respectively. In general, the 

relative efficiency was lower for all designs when the survey area was stratified 

compared to no stratification. As a result, fewer scenarios occurred where RTSacs and 

RTSstrat had a relative efficiency greater than one. These results are contrary to 

expectation and are discussed further in the "Discussion". 

Relative Bias of Designs 

When the survey area was stratified, the relative bias of all sampling designs 

decreased with increasing sample size (Figure 15), but only by small amounts. For the 

most part, the designs performed poorly, with much larger relative biases and wider 

distributions compared to their counterparts without stratification (Figure 10). The 

stratified versions of RTScurrent and RTSsimple had the same amount of bias decreasing 

from 28% to 21% (median values) for sample sizes of 25 to 45 transects. Median relative 

bias of RTSstrat decreased from 34% (n = 25) to 29% (n = 45) and RTSacs decreased 

from 13% (n = 25) to 8% (n = 45). The large bias in all designs is contrary to expectation 

and is discussed further in the "Discussion". 



Precision of Designs 

Within each of the sample sizes, the standard error was approximately the same 

between sampling designs in a stratified survey area, suggesting that the designs had 

similar levels of precision (Figure 16). The median standard error of RTScurrent declined 

from 0.43 (n = 25) to 0.3 1 (n = 45) and for RTSsimple the standard error decreased from 

0.39 (n = 25) to 0.28 (n = 45). Similarly, the median standard error of RTSstrat design 

declined fiom 0.42 to 0.3 1 and the standard error of RTSacs ranged fiom 0.40 to 0.29 for 

sample sizes of 25 to 45. For all designs, the standard error of the mean was slightly 

larger compared to when the survey area was not stratified (Figure 1 1). 

Consideration of Costs 

The distribution of the inefficiency (marginal cost x the variance of the estimator 

of interest) of the designs in a stratified survey area indicates the marginal cost per unit of 

information that each design incurred sampling the 200 simulated urchin populations 

(Figure 17). Inefficiency is independent of sample size, so I report the inefficiency values 

for n = 45, which are similar to the inefficiency values of the other sample sizes evaluated 

(Figure 17). The RTScurrent design had a median marginal cost per unit of information 

of 0.89 and RTSsimple had a value of 1.41. RTSstrat and RTSacs were the designs in the 

scenarios of a stratified survey area with the lowest (median) marginal cost per unit of 

information (0.70 and 0.69, respectively) (Figure 17). 



DISCUSSION 

Comparison of Alternative Designs to Current Sampling Design 

Sampling Effort 

The sampling designs varied considerably in the number of quadrats measured. 

Compared to DFO's current random transect sampling design (RTScurrent), restricted 

adaptive cluster sampling (RTSacs) surveyed 18% fewer quadrats, the within-transect 

stratification (RTSstrat) regime sample size was smaller by 33%, and simple random 

transect sampling (RTSsimple), as expected, was double the number of quadrats. 

The neighbourhood restrictions in the RTSacs design constrained the increase in 

sampled quadrats from the initial to final sample size. The change from initial to final 

sample size for RTSacs could not exceed three times the initial sample size because the 

initial sample included every third quadrat in a transect and the neighbourhood pattern 

restricted adaptive sampling to within the transect. The final sample size increased on 

average by 24% of the initial sample. This value was consistent across all sample sizes (n 

= 5 to 45 transects, step size = lo). 

Relative Efficiency 

The RTScurrent design did not perform well in the first performance measure, 

relative efficiency. The RTScurrent design ranked third of four survey methods when the 

efficiency of each design was measured relative to its corresponding set of simple 

random sample (SRS) surveys (Figure 9). Recall, in this case, that relative efficiency is 



the ratio of the variance of SRS to the variance of the estimator of interest. RTSacs and 

RTSstrat both had a higher relative efficiency than RTScurrent; however, neither had a 

relative efficiency greater than one on average across all 200 simulated populations. In 

other words, the respective corresponding SRS surveys of RTSacs and RTSstrat were 

more efficient for most of the simulated populations. Restricted adaptive cluster sampling 

and the within-transect random transect design were at their most efficient in the highly- 

aggregated urchin populations because both designs placed more sampling effort in areas 

of higher urchin density, which have the greatest variability in urchin counts. 

When the designs are compared directly to DFO's current design (RTScurrent), 

RTSsimple and RTSacs had a relative efficiency above one and RTSstrat had an 

efficiency of about one (Figure 8). Relative efficiency, in this case, is the ratio of the 

variance of RTScurrent to the variance of the estimator of interest. However, in the 

scenarios of the RTSsimple design, twice the amount of sampling effort was used as 

RTScurrent to achieve a relative efficiency greater than one, while RTSacs actually 

sampled 18% fewer quadrats than RTScurrent to achieve a high efficiency (i.e. RE > 1). 

Similarly, RTSstrat performed about the same as RTScurrent (i.e. RE = 1) but sampled 

33% fewer quadrats. Both the restricted adaptive cluster sampling design and the within- 

transect random transect sampling design performed better than DFO's current design 

when one accounts for the differences in sampling effort. 

Relative Bias 

For the second performance measure, relative bias, the RTSstrat design had a 

wide distribution and a fairly substantial positive bias occurred in some realizations 

(Figure 10). The tail behaviour of a distribution for a sampling design is important for 



cases in which estimation of stock size influences management decisions (Comers and 

Schwager 2002). This is the case with red sea urchins, where biomass estimates are a 

factor determining the harvest quota. Thus, the occurrence of large overestimates in 

density produced by RTSstrat is undesirable. The positive bias in the density estimates of 

RTSstrat was likely a result of the ratio estimator that was used to estimate the density 

within each substrate (or stratum) of the transect. The bias of the ratio estimator is of the 

order 1 / & , becoming negligible at a large sample size (Cochran 1977). It is likely that 

within some stratum, the sample size was not large enough for the bias to become 

negligible. Thus, the RTSsimple, RTScurrent, and RTSacs designs may be preferable 

from a long-term biological conservation standpoint because they had a narrower 

distribution that was not positively biased, meaning a reduced probability of large 

overestimates. From the standpoint of the fishing industry, a large positive bias in the 

density estimates is undesirable for the long-term sustainability of the fishery and a 

negative bias in the density may result in a fishing quota lower than what an unbiased 

estimate would provide. 

The restricted adaptive cluster sampling design (RTSacs) also produced biased 

estimates of density. The asymmetric neighbourhood pattern constrained adaptive 

sampling to the next quadrat from the quadrat of interest moving from shallow to deep 

along the transect, whereas a symmetric pattern would adaptively sample the next and 

previous quadrat from the quadrat of interest. This asymmetric neighbourhood pattern 

biased the Hansen-Hurwitz (HH) and Horvitz-Thompson (HT) estimators. Bias of the 

estimate also changed direction based on the direction of sampling (shallow vs. deep end 

as starting point). This directional change in bias was due to the asymmetry in the 



neighbourhood pattern, and was exacerbated by the spatial model, which had a realistic, 

but weighted probability of urchin-preferred substrate occurring at the shallow end of a 

transect. Thus, sampling quadrats from shallow to deep resulted in networks averaging 

out counts of urchins lower than expected, yielding an underestimate of the density of the 

transect (negative bias). The network averages were more likely to decrease as sampling 

moved to deeper water because quadrats were less likely to have favourable substrate and 

thus, fewer urchins. For instance, if one started sampling with the first quadrat in a 

transect and formed a network, the network would likely average out to a lower value as 

the next quadrats along the transect were sampled because they are more likely to have 

fewer urchins. If the starting point for sampling was the third shallowest quadrat in the 

transect, then the first two quadrats, which are generally more likely to be occupied by 

urchins than quadrats deeper along the transect, have zero probability of being sampled. 

The network, in this case, would average out to an even lower value than if the starting 

point was at quadrat 1. Thus, the negative bias in the estimate was a result of the 

networks averaging lower values than the true density and generally not averaging higher 

values. Conversely, sampling from deep to shallow resulted in networks averaging out 

higher than the true density more often than expected, yielding an overestimate of the 

density of the transect (positive bias). Networks average out higher than expected 

because quadrats at the shallow end of the transect have a greater probability of being 

included in a network regardless of the starting point at the deep end. 

Precision 

The third performance measure, precision, was measured using standard error of 

the mean density. In general, the designs had a similar level of precision (Figure 11) for a 



given sample size, despite the different amount of sampling effort used in each design. 

RTScurrent, RTSstrat, and RTSacs measured fewer quadrats in the transect than 

RTSsimple, which measured all quadrats in the transect, and they all achieved a similar 

level of precision in the density estimate of the survey area for a given sample size. 

Therefore, each design measured a sufficient number of quadrats within a transect to 

result in a negligible sampling error within the transect. It is the number of transects, 

though, that influenced the overall precision in the density estimates of the survey area. 

Precision of the density estimates was poor when only a small number of transects were 

measured, but it improved greatly as sample size increased. Thus, when transect-to- 

transect variation is high, such as in this simulation study, the greatest gains in precision 

are achieved by increasing the number of transects to sample. 

Consideration of Cost 

The fourth performance measure, marginal cost, was assessed using marginal cost 

per unit of information (marginal cost x variance of density estimate) or ineficiency. The 

RTScurrent design had the second highest marginal cost per unit of information as a 

result of its relatively large variance of the mean density and the large number of quadrats 

sampled (Figure 12). RTSstrat and RTSacs both had a lower marginal cost per unit of 

information. However, ranking the inefficiency of the designs based on marginal costs 

may be irrelevant because by definition, only the marginal costs (and not the larger base 

or fixed costs) of a survey are affected by the different survey designs. The total cost of a 

survey of 10 days is generally about $15,000 which includes base costs, such as boat and 

fuel, and daily costs, such as travel expenses and the salary of the biologist and divers 



(Mike Featherstone, Pacific Urchin Harvesters Association, New Westminster, B.C., 

2005). Base costs are essentially fixed, but if the reduction in quadrats was large enough 

to increase time savings by a day, then cost savings could potentially add up from 

reduced spending on travel expenses and salaries. A pilot study would provide an 

indication of just how much time could be saved by switching to either an RTSstrat or 

RTSacs design from the current DFO design. In any case, the results of the simulation 

suggest that neither of these designs would increase the amount of time required to 

complete a survey. 

In summary, the restricted adaptive cluster sampling design (RTSacs) and within- 

transect stratification (RTSstrat) outperformed the other designs (with the exception of 

simple random sampling) in efficiency, precision, and marginal cost per unit of 

information. In practice though, simple random sampling is not a realistic option because 

it would incur other costs such as greater fuel usage, which would result from travelling 

between the many randomly selected quadrats. Furthermore, the simple random 

sampling design is not logistically possible due to SCUBA diving constraints. Divers are 

limited in the number of dives that they can do in a single day, which would then increase 

the total number of days required to complete a survey. 

Effect of Stratification 

Performance of all designs was worse when the survey area was stratified than 

when it was not. The poor performance, in particular the large positive bias in the density 

estimates of urchins, was likely due to a combination of the small sample size in each 

stratum and use of a ratio estimator to estimate density. A small sample size in each 

stratum resulted from dividing the survey area into many strata in an attempt to make the 



areas as homogenous as possible, while using the same total sample size (n = 25, 35,45) 

as in the non-stratified designs. This, in combination with using a ratio estimator to 

calculate the density of each stratum, caused an increase in the bias from the non- 

stratified design. As described earlier, the bias of the ratio estimator is of the order 1 I & , 

becoming negligible at a large sample size (Cochran 1977). However, sample size in the 

strata never got large enough for this bias to become negligible. The small sample size 

within each stratum also increased the variance of the density estimate. The survey area 

required many strata because of the low level of substrate homogeneity between 

simulated transects. Simulated transects were bootstrapped from the transects in the 

Laredo Channel field survey data, which were independent from each other, so two 

adjacent transects would not necessarily share similar characteristics of substrate type and 

urchin abundance. In an actual field survey, stratification may be more successful if the 

strata are fairly homogenous and the sample size within each stratum was larger than 

used here in the simulation. However, less-than-perfect information would be available in 

a field survey, necessitating decision-making based on previous survey data and scientific 

expertise to determine the location of strata. This may or may not be feasible in most 

situations. 

Other Research 

Previous simulation studies that have tested adaptive cluster sampling (ACS) have 

generally compared it to simple random sampling (SRS). Su and Quinn (2002) found the 

performance of adaptive cluster sampling using a restricted design was dependent on 

sample size, stopping rule, and degree of aggregation in the population. In particular, 

ACS was generally less efficient than SRS for populations that the authors defined as 



low-aggregated (CV = 1.92), while ACS designs in the intermediate- and highly- 

aggregated populations were more efficient than SRS. My results correspond to some 

degree with these findings; the efficiency of my restricted adaptive sampling design was 

less than one for weakly-aggregated populations and more than one (i.e. more efficient 

than SRS) for some of the most highly-aggregated populations (not all populations 

categorized as highly-aggregated had a relative efficiency greater than one). Woodby 

(1 998), who applied a similar restricted adaptive design to what I used, also had 

comparable efficiencies to mine for highly-aggregated populations with values averaging 

somewhat less than one. Woodby's (1998) results differed in that his design achieved a 

relative efficiency approximating one for spatially random populations, whereas my 

results for similar populations were much less than one. The difference in my results 

from Woodby's may be related to the modifications I made in the restricted adaptive 

cluster sampling design andlor differences in the characteristics of the simulated 

populations. 

Among the few published attempts at using adaptive cluster sampling (ACS) in 

biological field applications, success of the design has been mixed. In a study of 

freshwater mussels, ACS was less efficient than simple random sampling (SRS) but 

increased the detection of uncommon species (Smith et al. 2003). Adaptive sampling 

designs were less precise and had a larger bias in their estimates compared to traditional 

sampling regimes in a survey of benthic invertebrates (Cabral and Murta 2004). 

Sufficient survey time has also been problematic in field trials when a restricted design 

was not in place to control final sample size. Adaptive sampling in a hydroacoustic 

survey for Lake Erie smelt was not completed because the researchers ran out of vessel 



time (Comers and Schwager 2002). A restricted adaptive cluster design proved to be 

more precise and time efficient than SRS for estimating density of Pacific Ocean perch, 

which are considered highly clustered (Hanselman et al. 2003). For populations of 

shortraker and rougheye rockfish, which are more uniformly dispersed, the same authors 

found ACS was less precise and time efficient than SRS. Lo et al. (1997) found that using 

restricted adaptive sampling in a simple stratified design was more efficient than their 

proportional stratified sampling but they did not do a direct comparison with SRS. To my 

knowledge, a field application of adaptive sampling for red sea urchin populations has 

not yet been attempted. 

Limitations 

The degree of aggregation of red sea urchins on the BC coast varies widely, as 

exemplified by the wide range of urchin densities even in the transects of the Laredo 

Channel 2000 survey data. The simulated realizations of urchin populations characterized 

aggregations on a transect level. Aggregation across adjacent transects in the simulation 

was not necessary because all designs tested here were strip transects. As mentioned 

above, this method of simulating urchin populations likely affected the performance of 

the designs in the simulated stratified survey area. Using independent transects created a 

very heterogeneous survey area which I attempted to compensate for by creating smaller 

strata to increase the homogeneity of each; however, this resulted in a small sample size 

within each stratum. Another limitation of my results is that they are based on simulated 

populations which were parameterized by data from a single urchin survey. However, this 

limitation was somewhat compensated for by generating 200 realizations of urchin 

populations that varied widely in their degree of aggregation (Figure 7b), which may 



represent, in part, the diversity of spatial configurations that red sea urchins populations 

form. Future research should look at survey data from other locations. 

In the simulation, restricted adaptive cluster sampling (RTSacs) and within- 

transect stratification (RTSstrat) design performed better than DFO's current random 

transect sampling (RTScurrent) design in terms of efficiency, precision, and marginal 

cost per unit of information. However, it is unclear how realistic it is to use these designs 

in field surveys of red sea urchins. A potential problem with both RTSacs and RTSstrat 

designs is that they may be so complex that divers may make frequent errors while 

sampling underwater. 

RTSacs, which is likely the simpler of the two designs, creates one major 

additional complexity over the current DFO sampling design. The divers would need to 

know when to sample adaptively and which quadrats to include as part of the initial 

sampling stage. For instance in the simulation of RTSacs, every 3rd quadrat in a randomly 

selected transect was included as part of the initial sample. A second issue that could 

deter its use in the field is the design's sensitivity to choices that affect its efficiency, 

such as the neighbourhood pattern, density condition for sampling adaptively, and 

quadrat size (Christman 1997). In the case of surveying red sea urchins, the 

neighbourhood pattern and the density condition are the most relevant concerns. A 

restricted neighbourhood pattern is necessary because it is a dive survey and the amount 

of time spent underwater needs to be controlled both for the safety of the diver and cost. 

This type of restricted design would reduce the uncertainty in time required to complete 

the transect because divers know the approximate length of the transect before going 

underwater. Expanding the neighbourhood definition to include adjacent areas beyond 



the bounds of the transect would substantially increase the uncertainty of the finishing 

time for a transect. The neighbourhood pattern proposed here is fairly logical and would 

be a manageable task for divers. It enables divers to move forward along a transect and 

never swim back towards the beginning or beyond the transect's bounds. This pattern did 

result in a biased estimate in the simulations. In a field survey estimate of density, the 

amount of bias can be estimated using simulation (Hanselman et al. 2003) and then the 

density estimate can be adjusted accordingly. 

Setting an appropriate density condition may be the largest barrier in the use of 

adaptive sampling for red sea urchins. In most areas of a survey, the density of urchins is 

fairly low, so a criterion value equal to one urchin would likely be suitable. However, in 

areas where the density is high for a large portion of the transect or for numerous 

transects, the number of quadrats measured could increase dramatically and increase the 

survey time considerably due to a large adaptive sample (Salehi and Seber 1997). Setting 

a large critical value can increase the precision of an estimate (Brown 1996 in Lo et al. 

1997), but a critical value that is set too high will result in a survey consisting of all edge 

units (Salehi and Seber 1997). Lo et al. (1997) address this problem by stratifying the 

survey area into areas with a high density condition and areas with a low density 

condition. Using a stratified design also enabled those authors to revise the density 

condition midway through their survey. 

Within-transect stratification (RTSstrat) design may also not perform as well in 

the field as the simulation results suggest because of complexities in the design. First, the 

design is more technically complex than RTScurrent and potentially more complicated 

than RTSacs. Divers may have difficulty in keeping track of the differing levels of 



sampling effort required for each substrate within a transect. I simulated the ideal 

sampling strategy based on optimal allocation of effort (Table 5); however, a simpler 

strategy could make this design a more practical option. For instance, quadrats with any 

substrate that is not bedrock or boulders (i.e. cobble, gravel, pea gravel, sand, shells, and 

mud) could be sampled at every 2 0 ~  quadrat, while bedrock and boulder substrates could 

be sampled according to the optimal allocation. A second issue of the design that may 

cause poorer performance in the field than the simulation is the necessity of prior 

information. The planning of a RTSstrat survey requires previous survey information to 

estimate the level of sampling effort required for each substrate type. Unfortunately, in 

the case of red sea urchins on the British Columbia coast, the time between surveys in a 

given area may be several years. The urchin biologist planning a survey would be forced 

to assume that little or no change has occurred in the area since the last urchin survey, a 

gap that could be as long as five years (Campbell et al. 2001). Thus, the quality of the 

survey will depend on the accuracy of the prior information relative to the current state. 

Conclusion 

A number of factors are responsible for the uncertainty in estimating biomass of 

red sea urchins, including the estimates in total bed area, the infrequency of population 

surveys, and the patchy distribution of urchins, which affects the quality of survey 

density estimates. This research focused on this third source of uncertainty by testing 

different sampling designs to determine whether the uncertainty of density estimates 

could be reduced, as well as whether a more cost-effective design is available as an 

alternative to the current survey method used by DFO. The research suggests that the 

within-transect stratification design and a restricted adaptive cluster design offer 



improvement over the current DFO survey design in terms of efficiency, precision, and 

marginal cost. Nevertheless, the complexity of the within-transect stratification design 

may be a barrier to its use in field applications. A more practical approach could be to use 

simpler versions of this design. With the restricted adaptive cluster design, factors such as 

the potential difficulty in selecting an appropriate density condition upon which to base 

adaptive sampling may deter its use. The results of the simulation indicate that the 

designs had a similar levels of precision because sampling error of all the designs was 

negligible within the transect. The key to improving precision of estimates then, is to 

increase the number of sampled transects because variability among transects is high. 

Time savings gained by sampling fewer quadrats within a transect could be used to 

sample additional transects. Alternative sampling methods such as towed video camera 

surveys could potentially provide significant time savings over dive surveys. 

Future research should investigate the robustness of these results by evaluating 

the designs using field testing and also further simulations. In the latter case, the survey 

designs may perform differently relative to each other when tested on simulated 

populations based on another spatial model of the underlying spatial distribution of sea 

urchins. Using field surveys from additional locations besides Laredo Channel will likely 

provide more insight about the spatial configuration of substrates and urchins. The results 

of this study can also serve as a starting point from which to test the restricted adaptive 

cluster sampling design, the within-transect stratification design and other potentially 

time-efficient methods using pilot surveys. Pilot surveys can assess the viability of the 

designs in the field and provide feedback for modifications to the design. Modifications 



suggested from pilot surveys can then be incorporated into simulations to assess the 

performance of the survey designs for future use in the field. 



REFERENCES 
Allee, W.C. 193 1. Animal aggregations. The University of Chicago Press, Chicago. 

Brown J.A. and Manly, B.F.J. 1998. Restricted adaptive cluster sampling. Environ. Ecol. 
Stat. 5: 49-63. 

Cabral, H.N. and Murta, A.G. 2004. Effect of sampling design on abundance estimates 
of benthic invertebrates in environmental monitoring studies. Mar. Ecol. Prog. 
Ser. 276: 19-24. 

Campbell, A., Boutillier, J., and Rogers, J. 1999a. Discussion on a precautionary 
approach for management of the red sea urchin fishery in British Columbia. Can. 
Stock Assess. Sec. Res. Doc. 991094. 

Campbell, A., Hajas, W., and Bureau, D. 1999b. Quota options for the red sea urchin 
fishery in British Columbia for fishing season 20001200 1. Can. Stock Assess. Sec. 
Res. Doc. 991201. 

Campbell, A., Tzotzos, D., Hajas, W.C., and Barton, L.L. 2001. Quota options for the red 
sea urchin fishery in British Columbia for fishing season 200212003. Can. Scientific 
Advice Secretariat Res. Doc. 20011141. 

Christman, M.C. 1997. Efficiency of some sampling designs for spatially clustered 
populations. Environmetrics 8: 145- 166. 

Cochran, W.G. 1977. Sampling Techniques. 3rd edition. John Wiley & Sons, Inc., New 
York, p.89-91, 107. 

Comers, M.E. and Schwager, S.J. 2002. The use of adaptive cluster sampling for 
hydroacoustic surveys. ICES J. Mar. Sci. 59: 13 14-1 325. 

Ebert, T.A., Dixon, J.D., Schroeter, S.C., Kalvass, P.E., Richmond, N.T., Bradbury, 
W.A., and Woodby, D.A. 1999. Growth and mortality of red sea urchins 
(Strongylocentrotus fianciscanus). Mar. Ecol. Prog. Ser. 190: 189-209. 

Fisheries and Oceans Canada. Fisheries development program: new and emerging 
fisheries. http:llwww-comm.pac.dfo-mpo.~c.cdpublicationslfishdev e.htrn. 
Accessed: July 6,2005. 

Fisheries and Oceans Canada. Pacific Region Integrated Fisheries Management Plan Red 
Sea Urchin by Dive, August 1,2004 to July 3 1,2005. http:l/www-ops2.pac.dfo- 
mpo.ac.cdxnet~content/MPLANS/MP1ans.htm. Accessed: July 6,2005. 



Jamieson, G.S. and Schwarz, C.J. 1998. Survey protocol considerations for 1995 red sea 
urchin surveys. In: B.J. Waddell, G.E. Gillespie, and L.C. Walthers (eds.). 
Invertebrate Working Papers reviewed by the Pacific Stock Assessment Review 
Committee (PSARC) in 1995. Part 2. Echinoderms. Can. Tech. Rep. Fish. Aquat. 
Sci. 2215: 69-81. 

Kosmelj, K., Cedilnik, A., Kalan, P. 2001. Comparison of a two-stage sampling design 
and its composite sample alternative: an application to soil studies. Environ. Ecol. 
Stat. 8: 109-1 19. 

Hanselman, D.H., Quinn, T.J., Lunsford, C., Heifetz, J., and Clausen, D. 2003. 
Applications in adaptive cluster sampling of Gulf of Alaska rockfish. Fish. Bull. 
101: 501-513. 

Levitan, D.R., Sewall, M.A., and Chia, F. 1992. How distribution and abundance 
influence fertilization success in the sea urchin Strongylocentrotusfianciscanus. 
Ecology. 73: 248-254. 

Lo, N.C.H., Griffith, D., and Hunter, J.R. 1997. Using a restricted adaptive cluster 
sampling to estimate Pacific hake larval abundance. CalCOFI Report. 38: 103- 
113. 

Morgan, L.E., Botsford, L.W., Wing, S.R., and Smith, B. D. 2000. Spatial variability in 
growth and mortality of the red sea urchin, Strongylocentrotus fianciscanus, in 
northern California. Can. J. Fish. Aquat. Sci. 57: 980-992. 

Neyman, J. 1934. On the two different aspects of the representative methods: the method 
of stratified sampling and the method of purposive selection. J. Roy. Stat. Soc. 97: 
558-625. 

Perry, R.I., Walters, C.J., and Boutillier, J.A. 1999. A framework for providing scientific 
advice for the management of new and developing invertebrate fisheries. Rev. 
Fish Biol. Fish. 9: 125-1 50. 

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. 1992. Numerical 
Recipes in FORTRAN Sampling. 2nd edition. Cambridge University Press, 
Cambridge, pp.273-274. 

Salehi, M.M. and Seber, G.A.F. 2002. Unbiased estimators for restricted adaptive cluster 
sampling. Aust. N.Z. J. Stat. 44: 63-74. 

Seber, G.A.F. and Thompson, S.K. Environmental adaptive sampling. 1994. In: G.P. Patil 
and C.R. Rao (eds.). Handbook of Statistics. 12: 201-220. Elsevier Science 
Publishers, North Holland, New York. 

Sloan, N.A., Lauridsen, C.P., and Harbo, R.M. 1987. Recruitment characteristics of the 
commercially harvested red sea urchin Strongylocentrotus fi.anciscanus in 
southern British Columbia, Canada. Fish. Res. 5: 55-69. 

Smith, D.R., Conroy, M.J., and Brakhage, D.H. 1995. Efficiency of adaptive cluster 
sampling for estimating density of wintering waterfowl. Biometrics. 5 1 : 777-788. 



Smith, D.R., Villella, R.F., and Lemarie, D.P. 2003. Application of adaptive cluster 
sampling to low-density populations of freshwater mussels. Environ. Ecol. Stat. 
10: 7-15. 

Snedecor, G.W. and Cochran, W.G. 1967. Statistical Methods. The Iowa State University 
Press, Iowa, pp.53 1-34. 

Sparrow, W.H. 1987. Relative mean squared error and cost considerations in choosing 
group size for group testing to estimate infection rates and probabilities of disease 
transmission. Phytopathology. 77: 1376-1 38 1. 

Su, Z., and Quinn 11, T.J. 2003. Estimator bias and efficiency for adaptive cluster 
sampling with order statistics and a stopping rule. Environ. Ecol. Stat. 10: 17-4 1. 

Tegner, M.J. 200 1. The ecology of Strongvlocentrotusfianciscanus and 
Strongylocentrotus purpuratus. In: J.M Lawrence (ed.). Edible Sea Urchins: 
Biology and Ecology. 307-33 1. Elsevier Science B.V., Amsterdam, Netherlands. 

Tegner, M.J. and Dayton, P.K. 1977. Sea urchin recruitment patterns and implications of 
commercial fishing. Science. 196: 324-326. 

Thompson, S.K. 1990. Adaptive cluster sampling. Journal of the American Statistical 
Association. 85: 1050-1 059. 

Thompson, S.K. 199 1 a. Adaptive cluster sampling: designs with primary and secondary 
units. Biometries. 47: 1103-1 11 5. 

Thompson, S.K. 1991 b. Stratified adaptive cluster sampling: designs with primary and 
secondary units. Biometrika. 78: 389-397. 

Thompson, S.K. 1992. Sampling. John Wiley & Sons, Inc., New York. 

Thompson, S.K. 1996. Adaptive cluster sampling based on order statistics. 
Environrnetrics. 7: 123- 133. 

Thompson, S.K. and Seber, G.A.F. 1996. Adaptive Sampling. John Wiley & Sons, Inc., 
New York. 

Tzotzos, D., Campbell A., and Norgard, T. 2003. Survey of red sea urchin populations in 
Laredo Channel, British Columbia, 2000. Can. Manuscr. Rep. Fish. Aquat. Sci. 
2629. 

Woodby, D. 1998. Adaptive cluster sampling: efficiency, fixed sample sizes, and an 
application to red sea urchins (Strongvlocentrotusfianciscanus) in southeast 
Alaska. In: G.S. Jamieson and A. Campbell (eds.). Proceedings of the North 
Pacific Symposium on Invertebrate Stock Assessment and Management. Can. 
Spec. Pub. Fish. Aquat. Sci. 125: 15-20. 



TABLES 

Table 1. Results of a mixed model fit to the Laredo Channel 2000 survey data. The model 
uses a covariance structure of compound symmetry, which has constant variance and constant 

2 covariance (where the (i j) element of the residual covariance matrix is ol + o l(i = j) ). 
Transects and substrate*transect were set as random effects and quadrats as repeated measures 
within a transect. DF = degrees of freedom and CS = compound symmetry. 

Effect Numerator Denominator 
DF DF P 

-- 

Substrate 8 154 3.75 0.0005 

Covariance Subject Estimate parameter 
Transect 2.52 
SubstrateYransect 
CS Transect 
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Table 3. Transition matrices for each substrate type with three categories of counts for 
urchins: zero count, low count (1 - 10 urchins), and high count (>lo urchins). Based on the 
Laredo Channel 2000 survey data. Values in the matrices indicate the probability of a count 
category in quadrat a+l following quadrat a of the same substrate type, while moving from the 
shallow to the deep end of the transect. The values were not calculated between substrate types. 

Quadrat a+l 

Substrate 
Quadrat a zero count low count high count 

tY Pe 

Smooth 
Bedrock 

Bedrock with 
crevices 

Boulders 

Cobble 

Gravel 

Pea gravel 

Sand 

Shell 

Mud 

zero count 
low count 
high count 

zero count 
low count 
high count 

zero count 
low count 
high count 

zero count 
low count 
high count 

zero count 
low count 
high count 

zero count 
low count 
high count 

zero count 
low count 
high count 

zero count 
low count 
high count 

zero count 
low count 
high count 0.00 0.00 0.00 
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Table 5. Relative sampling effort for each substrate type in the simulation based on the 
Laredo Channel 2000 survey data. Sampling effort within each substrate type was determined 
using Neyman optimal allocation and was set relative to smooth bedrock. Sampling in the gravel, 
pea gravel, shell, and mud substrates was set to every 2oth quadrat because the calculated effort 
relative to smooth bedrock was extremely small or zero. Nh = proportion of stratum h (substrate) 
in the field survey data; s = standard deviation of the number of urchins per quadrat in the field 
survey data. 

Effort Every 
Substrate 

N h 
relative to 

Sh 
X' 

type (h) Nhah smooth quadrat 
bedrock sampled 

Smooth 0.13 12.80 bedrock 

Bedrock 0.17 
with 5.33 

crevices 

Boulders 0.16 2.36 0.39 0.24 4 

Cobble 0.05 2.35 0.12 0.08 13 

Gravel 0.01 0.00 0.00 0.00 20 

Pea gravel 0.001 0.00 0.00 0.00 20 

Sand 0.38 0.38 0.14 0.09 11 

Shell 0.03 0.56 0.02 0.01 20 

Mud 0.06 0.00 0.00 0.00 20 
Total 1 .OO 



FIGURES 

Figure 1. Map of Laredo Channel, British Columbia displaying the systematic layout of 
transects for the survey conducted in 2000. Missing transect numbers are transects that were not 
surveyed due to logistical difficulties. Hyphenated numbers indicate Pacific Fishery Management 
sub-areas. Inset map provides location of the survey on a larger scale. PFMA= Pacific Fishery 
Management Area. 

, Key to Features 

Princess 
Royal 
Island 
- - 

Reprinted with permission from Tzotzos et al. (2003). 



Figure 2. Mean number o f  urchins (* SE) per 1 m2 quadrat for nine different substrate types 
(open bars) and associated substrate composition o f  the survey area (shaded bars). Based on 
Laredo Channel 2000 survey data. 

Substrate conposition 

Bedrock, Bedrock, Boulders Cobble Gravel Pea gravel Sand Shell Mud 
smooth crevices 

Substrate 



Figure 3. Mean proportion o f  a transect (* SE) with quadrats occupied by red sea urchins for 
different ranges o f  transect length (open bars). Mean proportion o f  a transect (h SE) with quadrats 
composed o f  bedrock and/or boulders for different ranges o f  transect length (shaded bars). Based 
on Laredo Channel 2000 survey data. 

....................................... Proportion of transect with 0.9 ....... 
occupied quadrats 

T T Proportion of transect with 
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20 - 39 40 - 59 
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Figure 4. An example of the bootstrapping procedure using a subset of the Laredo Channel 
2000 survey data. Length of transect and substrate proportions within a transect are bootstrapped 
together. Letters A to G represent the transects. Numbers are used to arbitrarily represent the 
different substrate types. Note that the order of transects and substrate type within each transect is 
different after bootstrapping. Bootstrapping of urchin count data is not shown here. 

Field Survey Data 

Bootstrapping - 
Bootstrapped Survey Area 

G F B D E A C  



Figure 5. An example of the restricted adaptive cluster design (RTSacs) (not drawn to scale). 
An initial sample of quadrats is systematically selected (every third quadrat) from a randomly 
selected transect. The starting point within the initial sample of every third quadrat in the transect 
is randomly selected; in this example it is quadrat 1 (other possible starting points are quadrats 2 
and 3). The number of quadrats sampled in the initial sample of this example is four. Adaptive 
sampling occurs in the neighbourhood of sampled quadrats that satisfy the density condition of 2 
1 urchin. The neighbourhood is restricted to the next adjacent quadrat along the transect. A 
cluster is a contiguous group of sampled units that can be divided into edge units and a network. 
The network includes those units in the cluster that satisfy the density condition, whereas edge 
units refer to observations that fall short of the condition. xk is the number of possible initial 
samples that a network intersects; in this example there are three possible samples (i.e. maximum 
value of xk corresponds to the number of potential starting points). 

Network 1 

Xk = 3 

Network 2 

x, = 2 

Random starting 
quadrat 1 

point: Quadrat in initial sample 

I.... . 
: : Quadrat in adaptive sample 
P m m m m r  

:.:.:.:.. 

. .:. . . . . . . . . . . Quadrat not sampled 

One urchin 

Condition 2 1 urchinlquadrat 

. i 1 Edge unit 



Figure 6. Flowchart outlining the basic procedure of the simulation model. Sampling designs 
include simple random sampling (SRS), DFO's current survey method (RTScurrent), simple 
random transect sampling (RTSsimple), restricted adaptive cluster survey (RTSacs), and within- 
transect stratification survey (RTSstrat). Sample size ranged from 5 to 45 transects with a step 
size of 10. The same survey designs were also tested using a stratified survey area. In the latter 
scenarios, sample size ranged from 25 to 45 transects with a step size of 10. MC = Monte Carlo. 
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APPENDIX 
For some variations of adaptive cluster sampling (ACS), the estimators produce 

the same density estimate. This simulation study used one such variation that resulted in 

the Hansen-Hurwitz (HH) estimator and the Horvitz-Thompson (HT) estimator providing 

equivalent estimates. This variation of ACS was a restricted adaptive cluster sampling 

design (RTSacs) where the neighbourhood for adaptive sampling was restricted to the 

next adjacent quadrat along the transect. The following example demonstrates that both 

estimators produce the same density estimate when sampling is based on the RTSacs 

design: 

Assume: 

HH estimator 



HT estimator 




